Science.gov

Sample records for ccim phase ii-a

  1. ART CCIM Phase II-A Off-Gas System Evaluation Test Plan

    SciTech Connect

    Nick Soelberg; Jay Roach

    2009-01-01

    This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

  2. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT

    SciTech Connect

    Nick Soelberg

    2009-04-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter

  3. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    SciTech Connect

    Maio, Vince

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  4. GLASS FORMULATION DEVELOPMENT AND TESTING FOR COLD CRUCIBLE INDUCTION MELTER (CCIM) ADVANCED REMEDIATION TECHNOLOGIES DEMONSTRATION PROJECT - 9208

    SciTech Connect

    Marra, J; Amanda Billings, A; David Peeler, D; Michael Stone, M; Tommy Edwards, T

    2008-08-27

    Over the past few years, Cold Crucible Induction Melter (CCIM) demonstrations have been completed using SRS sludge batches 2, 3 and 4 (SB2, SB3 and SB4) simulant compositions. These campaigns demonstrated the ability of the CCIM to effectively produce quality glasses at high waste loadings. The current Advanced Remediation Technology (ART) Phase II-A Project is aimed at demonstrating the CCIM technology under representative DWPF flowsheet conditions and to demonstrate extended operations of the melter. A glass composition development effort was completed to identify and recommend a frit composition and sludge batch 4 (SB4) simulant waste loading target for subsequent ART-Phase II-A CCIM demonstration testing. Based on the results of the glass formulation testing, it was recommended that the Frit 503-R6 composition (B{sub 2}O{sub 3} = 14 wt %; Li{sub 2}O = 9 wt %; Na{sub 2}O = 3 wt %; and SiO{sub 2} = 74 wt %) be utilized for the demonstration. Furthermore, a waste loading of 46 wt % was recommended. The recommended frit and waste loading would produce a glass with acceptable durability with a liquidus temperature adequately below the 1250 C nominal CCIM operating temperature. This frit composition and waste loading was found to result in a glass that met CCIM processing requirements for viscosity, electrical conductivity and thermal conductivity. The recommended frit and waste loading level should also provide a buffer for sludge product compositional variation to support the Phase II-A CCIM demonstration.

  5. Continuing the Validation of CCIM Processability for Glass Ceramic HLLW Forms: Plan for Test AFY14CCIM-GC1

    SciTech Connect

    Vince Maio

    2014-04-01

    This test plan covers test AFY14CCIM-GC1which is the first of two scheduled FY-2014 test runs involving glass ceramic waste forms in the Idaho National Laboratory’s Cold Crucible Induction Melter Pilot Plant. The test plan is based on the successes and challenges of previous tests performed in FY-2012 and FY-2013. The purpose of this test is to continue to collect data for validating the glass ceramic High Level Liquid Waste form processability advantages using Cold Crucible Induction Melter technology. The major objective of AFYCCIM-GC1 is to complete additional proposed crucible pouring and post tapping controlled cooling experiments not completed during previous tests due to crucible drain failure. This is necessary to qualify that no heat treatments in standard waste disposal canisters are necessary for the operational scale production of glass ceramic waste forms. Other objectives include the production and post-test analysis of surrogate waste forms made from separate pours into the same graphite mold canister, testing the robustness of an upgraded crucible bottom drain and drain heater assembly, testing the effectiveness of inductive melt initiation using a resistive starter ring with a square wave configuration, and observing the tapped molten flow behavior in pans with areas identical to standard High Level Waste disposal canisters. Testing conditions, the surrogate waste composition, key testing steps, testing parameters, and sampling and analysis requirements are defined.

  6. Melting Hanford LAW into Iron-Phosphate Glass in a CCIM

    SciTech Connect

    Nick Soelberg; Sharna Rossberg

    2011-09-01

    A vitrification test has been conducted using the cold crucible induction melter (CCIM) test system at the Idaho National Laboratory. The test was conducted to demonstrate the vitrification of a Hanford low activity waste (LAW) that contains relatively large amounts of sulfate and sodium, compared to other radioactive Hanford waste streams. The high sulfate content limits the potential loading of this waste stream in conventional borosilicate glass, so this test demonstrated how this waste stream could be vitrified in an iron-phosphate glass that can tolerate higher levels of sulfate.

  7. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    SciTech Connect

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a

  8. Hope-X high speed flight demonstration program phase II - a CNES/NAL/NASDA cooperation

    NASA Astrophysics Data System (ADS)

    Venel, S.; Faucon, P.; Yanagihara, M.; Miyazawa, Y.; Akimoto, T.; Sagisaka, M.

    2004-01-01

    In the frame of its cooperation with the National Space Development Agency of Japan (NASDA), the CNES French Space Agency takes part in the High Speed Flight Demonstration (HSFD) Phase II. The HSFD program is planned as part of the National Aerospace Laboratory (NAL) and NASDA joint research for the H-II Orbiting Plane Experiment (HOPE-X), an unmanned re-entry vehicle project. The program consists of two phases, and the purpose of HSFD Phase II is to estimate the HOPE-X transonic aerodynamic characteristics: a sub-scaled vehicle will be lifted to high altitude by a stratospheric balloon, from where it will be released and will accelerate into free fall to transonic region. The CNES Balloon Division is responsible for the balloon system, the launch operation, and the recovery of the vehicle after touch down. Six flights are planned between May and August 2003.

  9. Evaluation of Vocational Technical Education. Phase II. A Skeletal Model with Suggested Research and Development Activities.

    ERIC Educational Resources Information Center

    New Educational Directions, Crawfordsville, IN.

    Phase 2 of this project presents a skeletal model for evaluating vocational education programs which can be applied to secondary, post-secondary, and adult education programs. The model addresses 13 main components of the vocational education system: descriptive information, demonstration of need, student recruitment and selection, curriculum,…

  10. Project Care Phase II: A Case Study in the Evaluation of Communication and Learning Materials.

    ERIC Educational Resources Information Center

    Williams, Frederick; And Others

    Phase II was a field evaluation of a communication and learning system package of films, simulation games, discussion questions, and posters designed to promote career awareness in junior high school children. It was proposed that this evaluation serves as a prototype for the assessment of the effects of learning systems on the affective and…

  11. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics

    SciTech Connect

    Kee, R.J.; Rupley, F.M.; Miller, J.A.

    1989-09-01

    This document is the user's manual for the second-generation Chemkin package. Chemkin is a software package for whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides an especially flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular Fortran subroutines that may be called to return information on equation of state, thermodynamic properties, and chemical production rates.

  12. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.

    2015-04-01

    We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.

  13. Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa

    NASA Astrophysics Data System (ADS)

    O'Bannon, Earl; Williams, Quentin

    2016-10-01

    The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm-1 shifts negatively by -4.57 (±0.55) cm-1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that

  14. ATMS_Phase_II: a standalone code for counting non-overlapping high-density nuclear tracks

    NASA Astrophysics Data System (ADS)

    Khayat, Omid

    2014-02-01

    In this paper we focus on counting and density measurements of non-overlapping high-density nuclear track images. This paper is a continuum of another paper of the author introducing ATMS software which has been particularly developed for overlapping nuclear tracks. Here, as the second phase of the ATMS software, a hybrid algorithm is presented for counting the tracks according to user parameter initialization, template inserting and correlation estimation to initially detect nuclear track candidates, then to evaluate geometrical and contextual features of track candidates and finally a decision-making process according to the user's sensitivity considerations. The presented hybrid algorithm is verified and validated by a database containing 100 randomly selected Alpha track images captured from the surface of CR-39 polycarbonate detectors irradiated by environmental Alpha particles emitted from Rn-222 near a copper mine around Anarak city.

  15. Preparing for Phase II: A Guide to the Pay/Personnel Administrative Support System (PASS) Source Data System (SDS) Site Preparation Process for PASS Field Managers.

    DTIC Science & Technology

    1981-06-01

    AO-AIO4 968 NAVAL POSTGRADUATE SCHOOL MONTEREY CA p/s 5/1 PREPARING FOR PHASE It: A GUIDE TO THE PAY/PERSONNEL ADINISTRA--ETCfU) r L7WLASSI Aid I .0U...1J E CRAIG WdCASSFI2; ihEE E smEohohEohEoh EomhEEEohhEEEEI NAVAL POSTGRADUATE SCHOOL o Monterey, California THESIS> PREPARING FOR PHASE MI A GUIDE TO...RONIATONNAE NOACRESAREA[ & WORtK U NiT MUMUIERlS Naval Postgraduate School Monterey, California 93940 I1. CONTROLLING OFFICE NAME ANO AOORNESS 12

  16. DOD USER-NEEDS STUDY, PHASE II -- FLOW OF SCIENTIFIC AND TECHNICAL INFORMATION WITHIN THE DEFENSE INDUSTRY. FINAL REPORT. VOLUME II, A. TECHNICAL DESCRIPTION, B. TECHNICAL APPENDICES.

    ERIC Educational Resources Information Center

    GOODMAN, ARNOLD F.; AND OTHERS

    IN PHASE II OF THE DEPARTMENT OF DEFENSE (DOD) SURVEY TO FIND OUT HOW SCIENTISTS AND ENGINEERS IN GOVERNMENT AND INDUSTRIAL RESEARCH, DEVELOPMENT, AND PRODUCTION ACTIVITIES ACQUIRE INFORMATION, SCIENTIFIC PERSONNEL IN THE DEFENSE INDUSTRY WERE INTERVIEWED TO DETERMINE THEIR INFORMATION NEEDS AND THE FLOW OF INFORMATION INHERENT IN SATISFYING THESE…

  17. Comparison of three development approaches for Stationary Phase Optimised Selectivity Liquid Chromatography based screening methods Part II: A group of structural analogues (PDE-5 inhibitors in food supplements).

    PubMed

    Deconinck, E; Ghijs, L; Kamugisha, A; Courselle, P

    2016-02-01

    Three approaches for the development of a screening method to detect adulterated dietary supplements, based on Stationary Phase Optimised Selectivity Liquid Chromatography were compared for their easiness/speed of development and the performance of the optimal method obtained. This comparison was performed for a heterogeneous group of molecules, i.e. slimming agents (Part I) and a group of structural analogues, i.e. PDE-5 inhibitors (Part II). The first approach makes use of primary runs at one isocratic level, the second of primary runs in gradient mode and the third of primary runs at three isocratic levels to calculate the optimal combination of segments of stationary phases. In each approach the selection of the stationary phase was followed by a gradient optimisation. For the PDE-5 inhibitors, the group of structural analogues, only the method obtained with the third approach was able to differentiate between all the molecules in the development set. Although not all molecules are baseline separated, the method allows the identification of the selected adulterants in dietary supplements using only diode array detection. Though, due to the mobile phases used, the method could also be coupled to mass spectrometry. The method was validated for its selectivity following the guidelines as described for the screening of pesticide residues and residues of veterinary medicines in food.

  18. Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): a phase 2 randomised controlled trial

    PubMed Central

    Anagnostou, Katherine; Islam, Sabita; King, Yvonne; Foley, Loraine; Pasea, Laura; Bond, Simon; Palmer, Chris; Deighton, John; Ewan, Pamela; Clark, Andrew

    2014-01-01

    Summary Background Small studies suggest peanut oral immunotherapy (OIT) might be effective in the treatment of peanut allergy. We aimed to establish the efficacy of OIT for the desensitisation of children with allergy to peanuts. Methods We did a randomised controlled crossover trial to compare the efficacy of active OIT (using characterised peanut flour; protein doses of 2–800 mg/day) with control (peanut avoidance, the present standard of care) at the NIHR/Wellcome Trust Cambridge Clinical Research Facility (Cambridge, UK). Randomisation (1:1) was by use of an audited online system; group allocation was not masked. Eligible participants were aged 7–16 years with an immediate hypersensitivity reaction after peanut ingestion, positive skin prick test to peanuts, and positive by double-blind placebo-controlled food challenge (DBPCFC). We excluded participants if they had a major chronic illness, if the care provider or a present household member had suspected or diagnosed allergy to peanuts, or if there was an unwillingness or inability to comply with study procedures. Our primary outcome was desensitisation, defined as negative peanut challenge (1400 mg protein in DBPCFC) at 6 months (first phase). Control participants underwent OIT during the second phase, with subsequent DBPCFC. Immunological parameters and disease-specific quality-of-life scores were measured. Analysis was by intention to treat. Fisher's exact test was used to compare the proportion of those with desensitisation to peanut after 6 months between the active and control group at the end of the first phase. This trial is registered with Current Controlled Trials, number ISRCTN62416244. Findings The primary outcome, desensitisation, was recorded for 62% (24 of 39 participants; 95% CI 45–78) in the active group and none of the control group after the first phase (0 of 46; 95% CI 0–9; p<0·001). 84% (95% CI 70–93) of the active group tolerated daily ingestion of 800 mg protein (equivalent to

  19. HOLIMO II: a digital holographic instrument for ground-based in-situ observations of microphysical properties of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-05-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in-situ image cloud particles in a well defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  20. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-11-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in situ image cloud particles in a well-defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  1. Multi-electron systems in strong magnetic fields II: A fixed-phase diffusion quantum Monte Carlo application based on trial functions from a Hartree-Fock-Roothaan method

    NASA Astrophysics Data System (ADS)

    Boblest, S.; Meyer, D.; Wunner, G.

    2014-11-01

    We present a quantum Monte Carlo application for the computation of energy eigenvalues for atoms and ions in strong magnetic fields. The required guiding wave functions are obtained with the Hartree-Fock-Roothaan code described in the accompanying publication (Schimeczek and Wunner, 2014). Our method yields highly accurate results for the binding energies of symmetry subspace ground states and at the same time provides a means for quantifying the quality of the results obtained with the above-mentioned Hartree-Fock-Roothaan method. Catalogue identifier: AETV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 72 284 No. of bytes in distributed program, including test data, etc.: 604 948 Distribution format: tar.gz Programming language: C++. Computer: Cluster of 1-˜500 HP Compaq dc5750. Operating system: Linux. Has the code been vectorized or parallelized?: Yes. Code includes MPI directives. RAM: 500 MB per node Classification: 2.1. External routines: Boost::Serialization, Boost::MPI, LAPACK BLAS Nature of problem: Quantitative modelings of features observed in the X-ray spectra of isolated neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product iron, at high magnetic field strengths. The predominant amount of line data in the literature has been calculated with Hartree-Fock methods, which are intrinsically restricted in precision. Our code is intended to provide a powerful tool for calculating very accurate energy values from, and thereby improving the quality of, existing Hartree-Fock results. Solution method: The Fixed-phase quantum Monte Carlo method is used in combination with guiding functions obtained in Hartree

  2. Brain Korea 21 Phase II: A New Evaluation Model. Monograph

    ERIC Educational Resources Information Center

    Seong, Somi; Popper, Steven W.; Goldman, Charles A.; Evans, David K.

    2008-01-01

    In the late 1990s, the Korea Ministry of Education and Human Resources, in response to concern over the relatively low standing of the nation's universities and researchers, launched the Brain Korea 21 program BK21). BK21 seeks to make Korean research universities globally competitive and to produce more high-quality researchers in Korea. It…

  3. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    SciTech Connect

    Amoroso, J.; Marra, J.

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  4. LSPRAY-II: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2004-01-01

    LSPRAY-II is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray because of its importance in aerospace application. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-II, we have advanced the state-of-the-art in spray computations in several important ways.

  5. TRUPACT-II, a regulatory perspective

    SciTech Connect

    Gregory, P.C.; Spooner, O.R.

    1995-12-31

    The Transuranic Package Transporter II (TRUPACT-II) is a US Nuclear Regulatory Commission (NRC) certified Type B packaging for the shipment of contact-handled transuranic (CH-TRU) material by the US Department of Energy (DOE). The NRC approved the TRUPACT-II design as meeting the requirements of Title 10, Code of Federal Regulations, Part 71 (10 CFR 71) and issued Certificate of Compliance (CofC) Number 9218 to the DOE. There are currently 15 certified TRUPACT-IIs. Additional TRUPACT-IIs will be required to make more than 15,000 shipments of CH-TRU waste to the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico. The TRUPACT-II may also be used for the DOE inter-site and intra-site shipments of CH-TRU waste. The Land Withdrawal Act (Public Law 102-579), enacted by the US Congress, October 30, 1992, and an agreement between the DOE and the State of New Mexico, signed August 4, 1987, both stipulate that only NRC approved packaging may be used for shipments of TRU waste to the WIPP. Early in the TRUPACT-II development phase it was decided that the transportation system (tractor, trailer, and TRUPACT-II) should be highway legal on all routes without the need for oversize and/or overweight permits. In large measure, public acceptance of the DOE`s efforts to safely transport CH-TRU waste depends on the public`s perception that the TRUPACT-II is in compliance with all applicable regulations, standards, and quality assurance requirements. This paper addresses some of the numerous regulations applicable to Type B packaging, and it describes how the TRUPACT-II complies with these regulations.

  6. [Liquisolid technique for enhancement of dissolution prosperities of tanshinone II(A)].

    PubMed

    Liu, Xiao-qian; Meng, Qing-ju; Xu, Xue-lin; Zhao, Jie; Yang, Hua; Yi, Hong

    2015-12-01

    The technique of liquisolid compress is a new technique developed in 1990s, which was considered to be the most promising technique to improve the dissolution of water-insoluble drugs. In this article, tanshinone II(A) and the extracts of the ester-solubility fractions were chosen as the model drugs to evaluate the effects of the liquisolid technique for enhancement of dissolution properties of tanshinone II(A). Several liquisolid tablets (LS) formulations containing different dosage of drugs and various liquid vehicle were pre-pared and for all the formulations, microcrystalline cellulose and silica were chosen as the carrier and coating materials to evaluate their flow properties, such as angle of repose, Carr's compressibility index and Hausner's ratio. The interaction between drug and excipients in prepared LS compacts were studied by differential scanning calorimetry(DSC) and X-ray powder diffraction (XRPD). The dissolution curves of tanshinone II(A) from liquisolid compacts were investigated to determine the technique's effect in improving the dissolution of tanshinone II(A) and its impacting factors. According to the results, the dissolution increased with the rise in the dissolution of the liquid-phase solvent. The R-value and drug dosage can significantly affect the drug release, but with less impact on active fractions. This indicated that liquisolid technique is a promising alternative for improvement of dissolution property of water-soluble drugs, and can make a synergistic effect with other ester-soluble constituents and bettern improve the release of tanshinone II(A). Therefore, the technique of liquisolid compress will have a better development prospect in traditional Chinese medicines.

  7. Communication II: A Basic Report Writer's Guide. Revised.

    ERIC Educational Resources Information Center

    Asher, V., Ed.; Kline, L., Ed.

    This course syllabus presents information on Communications II, a course offered at Pikes Peak Community College to provide students with practice in communication, while emphasizing vocabulary and basic writing techniques. A course outline is first presented, including a course description, a statement of general objectives, and a list of units.…

  8. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    NASA Astrophysics Data System (ADS)

    Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; Brinkman, Kyle; Xu, Yun; Tang, Ming; Maio, Vince; Webb, Samuel M.; Chiu, Wilson K. S.

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  9. DEVELOPMENT OF A SUPERSONIC TRANSPORT AIRCRAFT ENGINE - PHASE II-A.

    DTIC Science & Technology

    JET TRANSPORT PLANES, *SUPERSONIC AIRCRAFT ) (U) TURBOJET ENGINES , PERFORMANCE( ENGINEERING ), TURBOFAN ENGINES , AFTERBURNING, SPECIFICATIONS...COMPRESSORS, GEOMETRY, TURBOJET INLETS, COMBUSTION, TEST EQUIPMENT, TURBINE BLADES , HEAT TRANSFER, AIRFOILS , CASCADE STRUCTURES, EVAPOTRANSPIRATION, PLUG NOZZLES, ANECHOIC CHAMBERS, BEARINGS, SEALS, DESIGN, FATIGUE(MECHANICS)

  10. Design of Training Systems, Phase II-A Report. An Educational Technology Assessment Model (ETAM)

    DTIC Science & Technology

    1975-07-01

    D iSt’Ciirlty classification ol tltlo. body of tihstnict mid indexing .mnouuicn mwl he entered when (he overall report im <lossifled) I...Tree for Assessment of Training Innovation (3- D Procedural Trainer Analyzed Over Preliminary Range-of-Effect) V-16 V-4 Training Cost...Training Program Development V-38 V-18 Benefit Outcome Summary (3- D Procedural Trainer V-41 V-19 Benefit Outcome Summary (3- D Procedural

  11. Concentration of HLLW from Future SNF Recycling for Efficient Immobilization in a CCIM

    SciTech Connect

    Maio, Vince; Rutledge, Roni

    2015-01-01

    Sponsored by the Department of Energy Nuclear Energy’s Fuel Cycle Research and Development Program, the Cold Crucible Induction Melter is being developed as the next generation of melter technology for High Level Liquid Waste’s efficient immobilization in highly durable glass ceramic and ceramic forms. Concentration of the radioactive High Level Liquid Waste generated from the proposed future recycling of spent nuclear fuel, after the fuel’s dissolution in nitric acid, is necessary to take advantage of the inherent attributes of Cold Crucible Induction Melting technology. Based on a provided range of commercial spent nuclear fuel fission product composition data and its expected High Level Liquid Waste raffinate composition data as provided in oxide form, an analysis was completed to concentrate the waste. The analysis involved using nitric acid vapor liquid equilibrium data over a range of boiling temperatures and performing spreadsheet calculations to concentrate the High Level Liquid Waste through evaporation. The calculation results will provide a concentrated nonradioactive surrogate High Level Liquid Waste melter feed recipe for testing in Idaho National Laboratory’s Cold Crucible Induction Melter Pilot Plant. This testing will provide a quantifiable verification of the relatively high feed rates of Cold Crucible Induction Melters compared to those achievable with the current ceramic lined Joule Heated Melters.

  12. CERAMIC WASTE FORM DATA PACKAGE

    SciTech Connect

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  13. Phases and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Gitterman, Moshe

    2014-09-01

    In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...

  14. OPTICAL PROPERTIES OF ARCTIC MIXED PHASE BOUNDARY LAYER CLOUDS OBSERVED FROM A TETHERED BALLOON INSTRUMENT PLATFORM: PART II a M. Sikand, a J. Koskulics, a K. Stamnes, b B. Hamre, b J.J. Stamnes, c R.P. Lawson a Department of Physics, Stevens Institute of Technology, 1 Castle point, Hoboken, NJ 07030, USA b Department of Physics and Technology, University of Bergen, Allegaten 55, Bergen, Norway c SPEC Incorporated, 3022 Sterling Circle, Suite 200, Boulder, CO 80301, USA

    NASA Astrophysics Data System (ADS)

    Sikand, M. V.; Stamnes, K. H.; Koskulics, J.; Stamnes, J.; Hamre, B.; Lawson, P.

    2011-12-01

    Tethered balloon microphysical and radiative measurements in boundary-layer mixed phase clouds, consisting of ice crystals and liquid droplets, observed in the Arctic have been analyzed. The cloud microphysical and radiometric measurements were collected during a May-June 2008 experimental campaign in Ny Ålesund, Norway, located high in the Arctic at 78.9° N. A state of the art radiative transfer model DISORT is used to analyze the radiometric measurements in order to understand the cloud microphysical properties in mixed phase clouds. The instruments deployed on the tethered balloon system including a radiometer, a cloud particle imager and a meteorological package provide information about the optical properties of mixed phase clouds in the Arctic. These measurements can, therefore, be used to investigate the vertical distribution of the mixed phase arctic clouds. This information will be useful to improve the description of mixed phase clouds in climate models, and thereby reduce the large uncertainty in such models associated with the current lack of data on mixed-phase clouds. The time evolution of cloud optical properties such as cloud optical depth is estimated by using a two layer cloud model based on cloud particle images. Our results show a unique vertical profile of mixed phase clouds as observed on 16 May, 2008 and 29 May, 2008. These results, derived from radiative transfer simulations, show how the vertical distribution of the mixed phase clouds evolves with time. This kind of unique information is difficult to retrieve from satellite observations, which are hampered by low visible contrast between cloud and snow-ice covered surfaces and temperature inversions in the infrared region as well as aircrafts limited by the time of flight. We have found that the mean intensity measured at the balloon is sensitive to the vertical structure of the cloud optical depth. We use the measured mean intensity to estimate the cloud optical depths at 500nm and 800nm

  15. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  16. 30 CFR 57.22312 - Distribution boxes (II-A and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distribution boxes (II-A and V-A mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22312 Distribution boxes (II-A and V-A mines). Distribution boxes containing short circuit protection for trailing cables...

  17. 30 CFR 57.22307 - Methane monitors (II-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (II-A mines). 57.22307 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22307 Methane monitors (II-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, bench and...

  18. 30 CFR 57.22311 - Electrical cables (II-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical cables (II-A mines). 57.22311... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22311 Electrical cables (II-A mines). Only jacketed electrical cables accepted or approved by MSHA as flame resistant shall be used to supply power...

  19. 30 CFR 57.22307 - Methane monitors (II-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (II-A mines). 57.22307 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22307 Methane monitors (II-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, bench and...

  20. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control unit, which shall be a unit under paragraph (a)(1) of this section and at which qualifying Phase I... (ii) A transfer unit, which shall be a unit under paragraph (a)(1)(i) of this section and whose Phase... Protection Agency, 501 3rd Street NW., 4th floor, Washington, DC; or send the application by regular...

  1. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control unit, which shall be a unit under paragraph (a)(1) of this section and at which qualifying Phase I... (ii) A transfer unit, which shall be a unit under paragraph (a)(1)(i) of this section and whose Phase... Protection Agency, 501 3rd Street NW., 4th floor, Washington, DC; or send the application by regular...

  2. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control unit, which shall be a unit under paragraph (a)(1) of this section and at which qualifying Phase I... (ii) A transfer unit, which shall be a unit under paragraph (a)(1)(i) of this section and whose Phase... Protection Agency, 501 3rd Street NW., 4th floor, Washington, DC; or send the application by regular...

  3. 40 CFR 72.42 - Phase I extension plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control unit, which shall be a unit under paragraph (a)(1) of this section and at which qualifying Phase I... (ii) A transfer unit, which shall be a unit under paragraph (a)(1)(i) of this section and whose Phase... Protection Agency, 501 3rd Street NW., 4th floor, Washington, DC; or send the application by regular...

  4. Moon Phases

    ERIC Educational Resources Information Center

    Riddle, Bob

    2010-01-01

    When teaching Moon phases, the focus seems to be on the sequence of Moon phases and, in some grade levels, how Moon phases occur. Either focus can sometimes be a challenge, especially without the use of models and observations of the Moon. In this month's column, the author describes some of the lessons that he uses to teach the phases of the Moon…

  5. A physically realistic approximate form for the redistribution function R(II-A)

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.

    1985-07-01

    An approximation is proposed to the redistribution function R(II-A) (coherent, isotropic scattering in the rest frame of the atom) which is fast to compute and attains much higher accuracy than previous approximations for the astrophysically important case of small Voigt parameters. Further, the new approximation permits the diffusion in frequency of wing photons ('Doppler drifting') which is lost in one of the widely-used versions of the R(II-A) approximation schemes: Kneer's normalization of the Jefferies-White formulation.

  6. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  7. Job Training Partnership Act PY '91 Title II-A Program Review.

    ERIC Educational Resources Information Center

    McDaniel, Sue; Riley, Dee Ann

    Management information system (MIS) data about women's participation in Missouri's job training system funded under Title II-A of the Job Training Partnership Act (JTPA) in program year 1992 were analyzed. Analysis of data from Missouri's 15 service delivery areas (SDAs) established the following: 75% of the state's 4,598 female JTPA participants…

  8. 30 CFR 57.22304 - Approved equipment (II-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 57.22304 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22304 Approved equipment (II-A mines)....

  9. 30 CFR 57.22304 - Approved equipment (II-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 57.22304 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22304 Approved equipment (II-A mines)....

  10. 30 CFR 57.22304 - Approved equipment (II-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 57.22304 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22304 Approved equipment (II-A mines)....

  11. 30 CFR 57.22304 - Approved equipment (II-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 57.22304 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22304 Approved equipment (II-A mines)....

  12. 30 CFR 57.22304 - Approved equipment (II-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 57.22304 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22304 Approved equipment (II-A mines)....

  13. An Analysis of a Finite Element Method for Convection-Diffusion Problems. Part II. A Posteriori Error Estimates and Adaptivity.

    DTIC Science & Technology

    1983-03-01

    AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for

  14. Tanshinone II A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7.

    PubMed

    Kaiser, M; Sobottka, H; Fischer, W; Schaefer, M; Nörenberg, W

    2014-09-01

    Tanshinone II A sulfonate (TIIAS) was identified as a potent, selective blocker of purinergic receptor P2X7 in a compound library screen. In this study, a detailed characterization of the pharmacologic effects of TIIAS on P2X7 is provided. Because TIIAS is a derivative of tanshinone II A (TIIA) and both compounds have been used interchangeably, TIIA was included in some assays. Fluorometric and electrophysiologic assays were used to characterize effects of TIIAS and TIIA on recombinantly expressed human, rat, and mouse P2X7. Results were confirmed in human monocyte-derived macrophages expressing native P2X7. In all experiments, involvement of P2X7 was verified using established P2X7 antagonists. TIIAS, but not TIIA, reduces Ca(2+) influx via human P2X7 (hP2X7) with an IC50 of 4.3 µM. TIIAS was less potent at mouse P2X7 and poorly inhibited rat P2X7. Monitoring of YO-PRO-1 uptake confirmed these findings, indicating that formation of the hP2X7 pore is also suppressed by TIIAS. Electrophysiologic experiments revealed a noncompetitive mode of action. TIIAS time-dependently inhibits hP2X7 gating, possibly by binding to the intracellular domain of the receptor. Inhibition of native P2X7 in macrophages by TIIAS was confirmed by monitoring Ca(2+) influx, YO-PRO-1 uptake, and release of the proinflammatory cytokine interleukin-1β. Fluorometric experiments involving recombinantly expressed rat P2X2 and human P2X4 were conducted and verified the compound's selectivity. Our data suggest that hP2X7 is a molecular target of TIIAS, but not of TIIA, a compound with different pharmacologic properties.

  15. Venus Phasing.

    ERIC Educational Resources Information Center

    Riddle, Bob

    1997-01-01

    Presents a science activity designed to introduce students to the geocentric and heliocentric models of the universe. Helps students discover why phase changes on Venus knocked Earth out of the center of the universe. (DKM)

  16. Madaline Rule II: A New Method for Training Networks of Adalines

    DTIC Science & Technology

    1989-01-01

    Classification) (UNCLASSIFIED) MASALINE RULV II: A NEW METHOD FOR TRAINING NETWORKS OF ADALINES A 12. PERSONAL AUTHOR(S) Rodney G. Winter 13a. TYPE OF REPORT...METHOD FOR TRAINING NETWORKS OF ADALINES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES... Adalines . An Adaline is a basic neuron-like processing element which forms a binary output determined by a weighted sum of its inputs. The algorithm is

  17. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Atmospheric monitoring systems (I-A, II-A, and... Atmospheric monitoring systems (I-A, II-A, and V-A mines). (a) An atmospheric monitoring system shall be... explosion-proof. (b) Atmospheric monitoring systems shall— (1) Give warnings on the surface and...

  18. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Atmospheric monitoring systems (I-A, II-A, and... Atmospheric monitoring systems (I-A, II-A, and V-A mines). (a) An atmospheric monitoring system shall be... explosion-proof. (b) Atmospheric monitoring systems shall— (1) Give warnings on the surface and...

  19. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Atmospheric monitoring systems (I-A, II-A, and... Atmospheric monitoring systems (I-A, II-A, and V-A mines). (a) An atmospheric monitoring system shall be... explosion-proof. (b) Atmospheric monitoring systems shall— (1) Give warnings on the surface and...

  20. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Atmospheric monitoring systems (I-A, II-A, and... Atmospheric monitoring systems (I-A, II-A, and V-A mines). (a) An atmospheric monitoring system shall be... explosion-proof. (b) Atmospheric monitoring systems shall— (1) Give warnings on the surface and...

  1. Conserved DNA motifs in the type II-A CRISPR leader region

    PubMed Central

    Babu, Kesavan; Najar, Fares Z.

    2017-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3′ end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3′ leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3′ leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci. PMID:28392985

  2. 30 CFR 57.22101 - Smoking (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking (I-A, II-A, III, and V-A mines). 57.22101 Section 57.22101 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Smoking (I-A, II-A, III, and V-A mines). Persons shall not smoke or carry smoking materials, matches,...

  3. 30 CFR 57.22101 - Smoking (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking (I-A, II-A, III, and V-A mines). 57.22101 Section 57.22101 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Smoking (I-A, II-A, III, and V-A mines). Persons shall not smoke or carry smoking materials, matches,...

  4. 30 CFR 57.22101 - Smoking (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking (I-A, II-A, III, and V-A mines). 57.22101 Section 57.22101 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Smoking (I-A, II-A, III, and V-A mines). Persons shall not smoke or carry smoking materials, matches,...

  5. 30 CFR 57.22101 - Smoking (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking (I-A, II-A, III, and V-A mines). 57.22101 Section 57.22101 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Smoking (I-A, II-A, III, and V-A mines). Persons shall not smoke or carry smoking materials, matches,...

  6. 30 CFR 57.22101 - Smoking (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking (I-A, II-A, III, and V-A mines). 57.22101 Section 57.22101 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Smoking (I-A, II-A, III, and V-A mines). Persons shall not smoke or carry smoking materials, matches,...

  7. 30 CFR 57.22103 - Open flames (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Open flames (I-A, II-A, III, and V-A mines). 57... Open flames (I-A, II-A, III, and V-A mines). Open flames shall not be permitted underground except for... I-A mine. When using open flames in other than fresh air, or in places where methane may enter...

  8. 30 CFR 57.22103 - Open flames (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Open flames (I-A, II-A, III, and V-A mines). 57... Open flames (I-A, II-A, III, and V-A mines). Open flames shall not be permitted underground except for... I-A mine. When using open flames in other than fresh air, or in places where methane may enter...

  9. 30 CFR 57.22103 - Open flames (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Open flames (I-A, II-A, III, and V-A mines). 57... Open flames (I-A, II-A, III, and V-A mines). Open flames shall not be permitted underground except for... I-A mine. When using open flames in other than fresh air, or in places where methane may enter...

  10. 30 CFR 57.22103 - Open flames (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Open flames (I-A, II-A, III, and V-A mines). 57... Open flames (I-A, II-A, III, and V-A mines). Open flames shall not be permitted underground except for... I-A mine. When using open flames in other than fresh air, or in places where methane may enter...

  11. 30 CFR 57.22103 - Open flames (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Open flames (I-A, II-A, III, and V-A mines). 57... Open flames (I-A, II-A, III, and V-A mines). Open flames shall not be permitted underground except for... I-A mine. When using open flames in other than fresh air, or in places where methane may enter...

  12. A physically realistic approximate form for the redistribution function R(II-A). [of small Voigt parameters

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1985-01-01

    An approximation is proposed to the redistribution function R(II-A) (coherent, isotropic scattering in the rest frame of the atom) which is fast to compute and attains much higher accuracy than previous approximations for the astrophysically important case of small Voigt parameters. Further, the new approximation permits the diffusion in frequency of wing photons ('Doppler drifting') which is lost in one of the widely-used versions of the R(II-A) approximation schemes: Kneer's normalization of the Jefferies-White formulation.

  13. Tanshinone II A, a multiple target neuroprotectant, promotes caveolae-dependent neuronal differentiation.

    PubMed

    Zhao, Yuming; Xu, Pingxiang; Hu, Shengquan; Du, Libo; Xu, Zhiqing; Zhang, Huan; Cui, Wei; Mak, Shinghung; Xu, Daping; Shen, Jianggang; Han, Yifan; Liu, Yang; Xue, Ming

    2015-10-15

    Neuron loss is one fundamental features of neurodegenerative diseases. Stimulating endogenous neurogenesis, especially neuronal differentiation, might potentially provide therapeutic effects to these diseases. In this study, tanshinone II A (TIIA), a multiple target neuroprotectant, was demonstrated to promote dose-dependent neuronal differentiation in three cell models of immortalized C17.2 neuronal stem cells, rat embryonic cortical neural stem cells (NSCs) and rat PC12 pheochromocytoma cells. In particular, TIIA exerted promising effects on NSCs even at the dose of 3 nM. In PC12 cells, TIIA activated mitogen-activated protein kinase 42/44 (MAPK42/44) and its downstream transcription factor, cAMP response element-binding protein (CREB). In addition, TIIA up-regulated the expressions of brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF). The MEK inhibitor and the antagonist to the receptors of NGF and BDNF could partially attenuate the differentiation effects, indicating that MAPK42/44 mediated BDNF and NGF signals were involved in TIIA's differentiation effects. Caveolin-1 (CAV-1), the major functional protein of membrane caveolae, plays critical roles in the endocytosis of exogenous materials. CAV1, which was activated by TIIA, might help TIIA transport across cell membrane to initiate its differentiation effects. It was proven by the evidences that suppressing the function of caveolin inhibited the differentiation effects of TIIA. Therefore, we concluded that TIIA promoted neuronal differentiation partially through MAPK42/44 mediated BDNF and NGF signals in a caveolae-dependent manner.

  14. Conditional deletion of nonmuscle myosin II-A in mouse tongue epithelium results in squamous cell carcinoma.

    PubMed

    Conti, Mary Anne; Saleh, Anthony D; Brinster, Lauren R; Cheng, Hui; Chen, Zhong; Cornelius, Shaleeka; Liu, Chengyu; Ma, Xuefei; Van Waes, Carter; Adelstein, Robert S

    2015-09-15

    To investigate the contribution of nonmuscle myosin II-A (NM II-A) to early cardiac development we crossed Myh9 floxed mice and Nkx2.5 cre-recombinase mice. Nkx2.5 is expressed in the early heart (E7.5) and later in the tongue epithelium. Mice homozygous for deletion of NM II-A (A(Nkx)/A(Nkx)) are born at the expected ratio with normal hearts, but consistently develop an invasive squamous cell carcinoma (SCC) of the tongue (32/32 A(Nkx)/A(Nkx)) as early as E17.5. To assess reproducibility a second, independent line of Myh9 floxed mice derived from a different embryonic stem cell clone was tested. This second line also develops SCC indistinguishable from the first (15/15). In A(Nkx)/A(Nkx) mouse tongue epithelium, genetic deletion of NM II-A does not affect stabilization of TP53, unlike a previous report for SCC. We attribute the consistent, early formation of SCC with high penetrance to the role of NM II in maintaining mitotic stability during karyokinesis.

  15. 30 CFR 57.22206 - Main ventilation failure (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22206..., tests for methane shall be conducted in affected active workings until normal air flow has resumed. (b... less than 1.0 percent methane. Persons other than examiners shall not reenter a Subcategory II-A...

  16. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  17. 30 CFR 57.22206 - Main ventilation failure (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22206..., tests for methane shall be conducted in affected active workings until normal air flow has resumed. (b... less than 1.0 percent methane. Persons other than examiners shall not reenter a Subcategory II-A...

  18. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  19. Implementation of Title I and Title II-A Program Initiatives: Results from 2013-14. NCEE 2017-4014

    ERIC Educational Resources Information Center

    Troppe, Patricia; Milanowski, Anthony T.; Heid, Camilla; Gill, Brian; Ross, Christine

    2017-01-01

    This report describes the implementation of policies and initiatives supported by Title I and Title II-A of the federal Elementary and Secondary Education Act (ESEA) during the 2013-14 school year. Title I is one of the U.S. Department of Education's largest programs, accounting for $15 billion in the 2016 federal budget. Historically, Title I has…

  20. Catalina Sky Survey II, a Next-Generation Survey with Small Binocular Telescopes

    NASA Astrophysics Data System (ADS)

    Larson, Stephen M.; Beshore, E. C.

    2010-10-01

    The Congress has directed NASA to develop a Near-Earth Object (NEO) survey program to detect, track, catalog, and characterize NEOs ≥ 140 meters in diameter by 2020. We are studying one possible approach, the Catalina Sky Survey II (CSS-II), a dedicated, low-cost, rapid-response, advanced survey that could be quickly deployed. CSS-II will dovetail with the planned capabilities of LSST and Pan-STARRS (PS), and add important new capabilities for NEO characterization and follow up that other surveys will not have. At the core of our proposal is three Small Binocular Telescopes (SBTs) using existing mirrors from the former Multiple Mirror Telescope. Working individually from a single observing site, each SBT will have the light grasp of a 2.4-meter telescope. Working together, they will be equivalent to a single telescope with a 4.2-meter mirror. Our approach has many advantages, including economy, 100 percent commitment to NEO search, low risk relative to other approaches, the ability to provide characterization of threatening objects, scalability, and the addition of significant new search capacity. The characterization potential of the mixed-use survey programs of LSST and PS will be valuable, but limited. Determining impact energy is vital to mitigation strategies. Impact energy follows from mass and velocity. Velocity is obtained from the orbital solution, but mass requires size and composition. Both size (through albedo) and composition can be significantly constrained with low-resolution spectroscopy covering the region from 0.35 to 2.4 microns. Shapes and rotation rates can best be obtained through time-series studies during close approaches. We will describe some preliminary designs for the CSS-II, the flexibility afforded by its multiple, independently-targeted mount design, freedom to adopt new observing strategies, and the potential for generating valuable science through a systematic spectrographic study of the asteroid population as part of its search

  1. Heparin-induced thrombocytopenia (HIT II) - a drug-associated autoimmune disease.

    PubMed

    Nowak, Götz

    2009-11-01

    Autoimmune thrombocytopenia (ITP) is an acquired autoimmune disease characterised by isolated persistent thrombocytopenia and normal megakaryopoiesis. This definition also applies to heparin-induced thrombocytopenia (HIT II), a frequent side effect of heparin treatment. In HIT II, the immunogen is a coagulation active complex of heparin and platelet factor 4 (PF4). By now, diagnostics of HIT II is often material and time consuming. Three groups of patients were investigated for HIT II antibodies (HIT II-AB): 54 hospitalised stroke patients, 87 hospitalised cardiac patients, and 71 patients on chronic haemodialysis, all treated with heparin. Furthermore, 100 healthy volunteers were investigated. For detection of HIT II-AB the innovative whole blood test PADA-HIT (PADA: platelet adhesion assay) was used. PADA-HIT quantifies the interaction of IgG antibodies with FcgammaIIA receptors by comparing the activation state of platelets in citrated and heparinised whole blood. The occurrence of HIT II-AB in blood was very high with 44 % of stroke patients, 69% of cardiac patients and 38% of haemodialysis patients compared to only 15% of healthy volunteers. This demonstrates a high incidence and a rapid onset of HIT II-AB in patients being acutely treated with heparin. HIT II is one of the most frequent and severe autoimmune diseases bearing a great thrombosis risk. PADA-HIT represents an innovative diagnostic method for detection of autoimmune antibodies of IgG type that are directed against platelet factor 4 (PF4)-heparin-complex. By early and fast diagnostics and appropriate treatment severe complications of HIT II can be prevented.

  2. Phase array calibration orthogonal phase sequence

    NASA Technical Reports Server (NTRS)

    Sorace, Ronald E. (Inventor); Reinhardt, Victor S. (Inventor); Chan, Clinton (Inventor)

    1999-01-01

    Methods and systems for calibrating an array antenna are described. The array antenna has a plurality of antenna elements each having a signal with a phase and an amplitude forming an array antenna signal. For calibration, the phase of each element signal is sequentially switched one at a time through four orthogonal phase states. At each orthogonal phase state, the power of the array antenna signal is measured. A phase and an amplitude error for each of the element signals is determined based on the power of the array antenna signal at each of the four orthogonal phase states. The phase and amplitude of each of the element signals is then adjusted by the corresponding phase and amplitude errors.

  3. Partial Synchronization in Pulse-Coupled Oscillator Networks II: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    We use high-precision numerical simulations, to compute the dynamics of N identical integrate and fire model neurons coupled in an all-to-all network through α-function pulses. In particular, we determine the discrete evolution of the state of our system from spike to spike. In addition to traditional fully synchronous and splay states, we exhibit multiple competing partially synchronized ordered states, which are fixed points and limit cycles in the phase space. Close examinations reveal the bifurcations among different states. By varying the parameters, we map out the phase diagram of stable fixed points. Our results illustrate the power of dimensional reduction in complex dynamical systems, and shed light on the collective behaviors of neural networks. Work supported by NSF DMS 1413020.

  4. Focus on Phase Electives.

    ERIC Educational Resources Information Center

    Jones, Victor H., Ed.

    1976-01-01

    In this thematic issue, articles focus on the use of phase electives in the English classroom. Discussions include "Death in the Classroom,""Soapbox Operas in the English Classroom,""Language and History in Phase-Elective Programs,""Phase Electives and the Problem of Composition," and "Phase Electives and College Preparation.""Phase Electives Are…

  5. Diagnosing development. II - A study of rapid cyclone development using analyzed data fields

    NASA Technical Reports Server (NTRS)

    Smith, Phillip; Lupo, Anthony; Zwack, Peter

    1991-01-01

    A diagnosis is presented of the explosive development phase of a cyclone that occurred over the southeastern U.S. during the 24 hour period 1200 GMT January 20 to 1200 GMT January 21, 1979. The Zwack-Osossi development equation is extended to incorporate geostrophic and ageostrophic forcing of the basic development parameter, geostrophic vorticity tendency. This equation yields reasonable comparability with observed geostrophic vorticity changes and shows positive vorticity advection, latent heat release and thermal advection to be the primary development mechanisms.

  6. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-06-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it

  7. Final Environmental Impact Statement (As Amended 18 January 1972) Minnesota River, Minnesota, Mankato-North Mankato-Le Hillier. Flood Control. Phase I. Final Supplement II-A.

    DTIC Science & Technology

    1982-10-01

    to avoid potential oil spills and to minimize disruption of bottom sediments and increased turbidity. Sediments exca- vated from the river bottom must...sulting from precipitation or spills , would not drain directly into the river but would be routed to points on land to the storm sewer system, where...South Bend Township Board Meeting 8:00 pm 13 Coffee Break Program KEYC-TV 9:15 am 16 North Mankato City Council Meeting 7:00 pm Taped conversation with

  8. Low-energy electron-induced dissociation in condensed-phase L-cysteine II: a comparative study on anion desorption from chemisorbed and physisorbed films

    NASA Astrophysics Data System (ADS)

    Alizadeh, Elahe; Massey, Sylvain; Sanche, Léon; Rowntree, Paul A.

    2016-04-01

    Due to its multifunctional structure, cysteine is becoming an ideal model molecule for investigating the complex interactions of proteins with metallic surfaces such as gold nanoparticles. We report herein the results of low-energy electron induced degradation of L-cysteine films, chemisorbed on a gold substrate via the thiol group or physisorbed into a clean gold surface. The data were recorded under ultra-high vacuum conditions at room temperature. Anion yields desorbed from these films by the impact of 0.5 to 19 eV electrons provide clear evidence of the efficient decomposition of this amino acid via dissociative electron attachment (i.e., from dissociation of intermediate transient anions located between 5 and 14 eV). The peaks in the desorbed-anion yield functions, associated with DEA, are superimposed on a continuously rising signal attributed to dipolar dissociation. Similar to the results previously observed from physisorbed films, light anionic species, with masses lower than 35 amu, have been detected. In addition, we measured for first time fragments at 14 amu (CH2-) and 15 amu (CH3-) desorbing from physisorbed films, as well as heavier fragments of mass 45 and 46 amu desorbing from chemisorbed films. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  9. 30 CFR 57.22204 - Main fan operation and inspection (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan operation and inspection (I-A, II-A... Main fan operation and inspection (I-A, II-A, III, and V-A mines). Main fans shall be— (a) Provided with a pressure-recording system; and (b) Inspected daily while operating if persons are...

  10. 30 CFR 57.22204 - Main fan operation and inspection (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Main fan operation and inspection (I-A, II-A... Main fan operation and inspection (I-A, II-A, III, and V-A mines). Main fans shall be— (a) Provided with a pressure-recording system; and (b) Inspected daily while operating if persons are...

  11. Adolescent dress, Part II: A qualitative study of suburban high school students.

    PubMed

    Eicher, J B; Baizerman, S; Michelman, J

    1991-01-01

    Through observation and interviews of high school students, the role of dress in a nonpsychiatric population was explored in order to provide data complementary to the first phase of a larger research project. Adolescent dress was examined in relation to three dimensions of the self: the public, private, and secret self. Due to the age of subjects and the length of contact with the interviewer, results provided most information about the public self, particularly descriptions of social types--categories based on appearance and behavior. These types included a modal, or "average," type and more extreme types including "punks," "freaks," and "nerds." Extreme social types appeared to offer valuable reference points for "average" adolescents in the development of their individual identities.

  12. CrowdPhase: crowdsourcing the phase problem

    PubMed Central

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-01-01

    The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing. PMID:24914965

  13. Nahal Ein Gev II, a Late Natufian Community at the Sea of Galilee

    PubMed Central

    Grosman, Leore; Munro, Natalie D.; Abadi, Itay; Boaretto, Elisabetta; Shaham, Dana; Belfer-Cohen, Anna; Bar-Yosef, Ofer

    2016-01-01

    The Natufian culture is of great importance as a starting point to investigate the dynamics of the transition to agriculture. Given its chronological position at the threshold of the Neolithic (ca. 12,000 years ago) and its geographic setting in the productive Jordan Valley, the site of Nahal Ein Gev II (NEG II) reveals aspects of the Late Natufian adaptations and its implications for the transition to agriculture. The size of the site, the thick archaeological deposits, invested architecture and multiple occupation sub-phases reveal a large, sedentary community at least on par with Early Natufian camps in the Mediterranean zone. Although the NEG II lithic tool kit completely lacks attributes typical of succeeding Pre Pottery Neolithic A (PPNA) assemblages, the artistic style is more closely related to the early PPNA world, despite clear roots in Early Natufian tradition. The site does not conform to current perceptions of the Late Natufians as a largely mobile population coping with reduced resource productivity caused by the Younger Dryas. Instead, the faunal and architectural data suggest that the sedentary populations of the Early Natufian did not revert back to a nomadic way of life in the Late Natufian in the Jordan Valley. NEG II encapsulates cultural characteristics typical of both Natufian and PPNA traditions and thus bridges the crossroads between Late Paleolithic foragers and Neolithic farmers. PMID:26815363

  14. Recent theoretical advances on superradiant phase transitions

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-03-01

    The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.

  15. Propagating phase interface with intermediate interfacial phase: Phase field approach

    NASA Astrophysics Data System (ADS)

    Momeni, Kasra; Levitas, Valery I.

    2014-05-01

    An advanced three-phase phase field approach (PFA) is suggested for a nonequilibrium phase interface that contains an intermediate phase, in particular, a solid-solid interface with a nanometer-sized intermediate melt (IM). A thermodynamic potential in the polar order parameters is developed that satisfies all thermodynamic equilibrium and stability conditions. The special form of the gradient energy allowed us to include the interaction of two solid-melt interfaces via an intermediate melt and obtain a well-posed problem and mesh-independent solutions. It is proved that for stationary 1D solutions to two Ginzburg-Landau equations for three phases, the local energy at each point is equal to the gradient energy. Simulations are performed for β ↔δ phase transformations (PTs) via IM in an HMX energetic material. The obtained energy IM width dependence is described by generalized force-balance models for short- and long-range interaction forces between interfaces but not far from the melting temperature. A force-balance model is developed that describes phase field results even 100 K below the melting temperature. The effects of the ratios of width and energies of solid-solid and solid-melt interfaces, temperature, and the parameter characterizing interaction of two solid-melt interfaces, on the structure, width, energy of the IM and interface velocity are determined by finite element method. Depending on parameters, the IM may appear by continuous or discontinuous barrierless disordering or via critical nucleus due to thermal fluctuations. The IM may appear during heating and persist during cooling at temperatures well below than it follows from sharp-interface approach. On the other hand, for some parameters when IM is expected, it does not form, producing an IM-free gap. The developed PFA represents a quite general three-phase model and can be extended to other physical phenomena, such as martensitic PTs, surface-induced premelting and PTs, premelting

  16. Digital quadrature phase detection

    DOEpatents

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  17. Digital quadrature phase detection

    DOEpatents

    Smith, James A.; Johnson, John A.

    1992-01-01

    A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.

  18. Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications

    NASA Astrophysics Data System (ADS)

    Petroff, Alexandre; Mailliat, Alain; Amielh, Muriel; Anselmet, Fabien

    2008-05-01

    This paper presents a new approach for the modelling of aerosol dry deposition on vegetation. It follows a companion article, in which a review of the current knowledge highlights the need for a better description of the aerosol behaviour within the canopy [Petroff, A., Mailliat, A., Amielh, M., Anselmet, F., 2008. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.09.043]. Concepts from multi-phase flow studies are used for describing the canopy medium and deriving a time and space-averaged aerosol balance equation and the associated deposition terms. The closure of the deposition terms follows an up-scaling procedure based on the statistical distribution of the collecting elements. This aerosol transport model is then applied in a stationary and mono-dimensional configuration and takes into account the properties of the vegetation, the aerosol and the turbulent flow. Deposition mechanisms are Brownian diffusion, interception, inertial and turbulent impactions, and gravitational settling. For each of them, a parameterisation of the particle collection is derived and the quality of their predictions is assessed by comparison with wind-tunnel deposition measurements on coniferous twigs [Belot, Y., Gauthier, D., 1975. Transport of micronic particles from atmosphere to foliar surfaces. In: De Vries, D.A., Afgan, N.H. (Eds.), Heat and Mass Transfer in the Biosphere. Scripta Book, Washington, DC, pp. 583-591; Belot, Y., 1977. Etude de la captation des polluants atmosphériques par les végétaux. CEA, R-4786, Fontenay-aux-Roses; Belot, Y., Camus, H., Gauthier, D., Caput, C., 1994. Uptake of small particles by canopies. The Science of the Total Environment 157, 1-6]. Under a real canopy configuration, the predictions of the aerosol transport model compare reasonably well with detailed on-site deposition measurements of Aitken mode particles [Buzorius, G., Rannik, Ü., M

  19. Wideband Linear Phase Modulator

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1994-01-01

    Phase modulator for transmission in X band provides large phase deviation that remains nearly linear with voltage over relatively wide range. Operates with low loss over wide frequency band and with stable characteristics over wide temperature range. Phase modulator contains two varactor-diode phase shifters coupled via circulators. Separate drive circuit applies modulating voltages to varactor diodes. Modulation voltages vary in accordance with input to drive circuit.

  20. Perceptions about Moon Phases.

    ERIC Educational Resources Information Center

    Rider, Steven

    2002-01-01

    Presents research on different techniques to determine the level of understanding among middle school students regarding the phases of the moon. Quotes student responses to provide some insight into students' level of understanding of general knowledge about the moon, moon phases, and modeling the phases. Presents implications for teachers. (KHR)

  1. Acute phase reaction and acute phase proteins*

    PubMed Central

    Gruys, E.; Toussaint, M.J.M.; Niewold, T.A.; Koopmans, S.J.

    2005-01-01

    A review of the systemic acute phase reaction with major cytokines involved, and the hepatic metabolic changes, negative and positive acute phase proteins (APPs) with function and associated pathology is given. It appears that APPs represent appropriate analytes for assessment of animal health. Whereas they represent non-specific markers as biological effect reactants, they can be used for assessing nutritional deficits and reactive processes, especially when positive and negative acute phase variables are combined in an index. When such acute phase index is applied to separate healthy animals from animals with some disease, much better results are obtained than with single analytes and statistically acceptable results for culling individual animals may be reached. Unfortunately at present no cheap, comprehensive and easy to use system is available for assessing various acute phase proteins in serum or blood samples at the same time. Protein microarray or fluid phase microchip technology may satisfy this need; and permit simultaneous analysis of numerous analytes in the same small volume sample and enable integration of information derived from systemic reactivity and nutrition with disease specific variables. Applying such technology may help to solve health problems in various countries not only in animal husbandry but also in human populations. PMID:16252337

  2. The phase 2 NRA

    NASA Technical Reports Server (NTRS)

    Chipman, Eric

    1992-01-01

    We present points of special interest to potential proposers for the Compton Observatory Phase 2 Guest Investigator (GI) program. A general summary of some of the most important details of the phase 2 NASA Research Announcement (NRA) is followed by an enumeration of the modes of participation and proposal types available to GI proposers. Finally, the method which is planned for the selection of the Phase 2 Guest Investigators in parallel with the development of a preliminary Phase 2 observing timeline is outlined. The ways in which the selection of targets by GI's could be affected by the Phase 2 timeline development procedure is described.

  3. 30 CFR 57.22222 - Ventilation materials (I-A, I-B, I-C, II-A, III, V-A, and V-B mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ventilation materials (I-A, I-B, I-C, II-A, III, V-A, and V-B mines). 57.22222 Section 57.22222 Mineral Resources MINE SAFETY AND HEALTH....22222 Ventilation materials (I-A, I-B, I-C, II-A, III, V-A, and V-B mines). Brattice cloth...

  4. 30 CFR 57.22222 - Ventilation materials (I-A, I-B, I-C, II-A, III, V-A, and V-B mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation materials (I-A, I-B, I-C, II-A, III, V-A, and V-B mines). 57.22222 Section 57.22222 Mineral Resources MINE SAFETY AND HEALTH....22222 Ventilation materials (I-A, I-B, I-C, II-A, III, V-A, and V-B mines). Brattice cloth...

  5. 30 CFR 57.22228 - Preshift examination (I-A, I-C, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Preshift examination (I-A, I-C, II-A, III, and... Preshift examination (I-A, I-C, II-A, III, and V-A mines). (a) Preshift examinations shall be conducted... each face blasted before work is started. (e) Except in Subcategory I-C or Category III......

  6. 30 CFR 57.22235 - Actions at 1.0 percent methane (I-C, II-A, II-B, and IV mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions at 1.0 percent methane (I-C, II-A, II-B... AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22235 Actions at 1.0 percent methane (I-C, II-A, II-B, and IV mines). (a) If methane reaches 1.0 percent in...

  7. 30 CFR 57.22232 - Actions at 0.5 percent methane (I-B, II-A, II-B, IV, V-B, and VI mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions at 0.5 percent methane (I-B, II-A, II-B...-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22232 Actions at 0.5 percent methane (I-B, II-A, II-B, IV, V-B, and VI mines). If methane reaches...

  8. 30 CFR 57.22220 - Air passing unsealed areas (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air passing unsealed areas (I-A, II-A, III, and V-A mines). 57.22220 Section 57.22220 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... passing unsealed areas (I-A, II-A, III, and V-A mines). Air that has passed by or through...

  9. 30 CFR 57.22235 - Actions at 1.0 percent methane (I-C, II-A, II-B, and IV mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 1.0 percent methane (I-C, II-A, II-B... AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22235 Actions at 1.0 percent methane (I-C, II-A, II-B, and IV mines). (a) If methane reaches 1.0 percent in...

  10. 30 CFR 57.22232 - Actions at 0.5 percent methane (I-B, II-A, II-B, IV, V-B, and VI mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 0.5 percent methane (I-B, II-A, II-B...-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22232 Actions at 0.5 percent methane (I-B, II-A, II-B, IV, V-B, and VI mines). If methane reaches...

  11. Evolution of the major histocompatibility complex: isolation of class II A cDNA clones from the cartilaginous fish.

    PubMed Central

    Kasahara, M; Vazquez, M; Sato, K; McKinney, E C; Flajnik, M F

    1992-01-01

    Along with the T-cell receptor and immunoglobulin, the major histocompatibility complex (MHC) plays a key role in mounting immune responses to foreign antigen. To gain insights into the evolution of the MHC, class II A cDNA clones were isolated from nurse sharks, a member of the class of cartilaginous fish. Two closely related cDNA clones, which might encode allelic products, were identified; of the three amino acid substitutions found in the alpha 1 domain, two were located at positions postulated to interact with processed peptides. The deduced nurse shark MHC class II alpha chains showed conspicuous structural similarity to their mammalian counterparts. Isolation of cDNA clones encoding typical MHC class II alpha chains was unexpected since no direct evidence for T-cell-mediated immune responses has been obtained in the cartilaginous fish. The cartilaginous fish is phylogenetically the most primitive class of vertebrates from which any MHC gene has been isolated. PMID:1495958

  12. Gymnastics in Phase Space

    SciTech Connect

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  13. PHASE DIFFERENTIAL INDICATING CIRCUIT

    DOEpatents

    Kirsten, F.A.

    1962-01-01

    An electronic circuit for totalizing the net phase difference between two alternating current signals is designed which responds to both increasing and decreasing phase changes. A phase comparator provldes an output pulse for each 360 deg of phase difference occurring, there being a negative pulse for phase shtft in one direction and a positive pulse for a phase shift in the opposite direction. A counting circuit utilizing glow discharge tubes receives the negative and positive pulses at a single input terminal and provides a running net total, pulses of one polarity dded and pulses of the opposite polarity being subtracted. The glow discharge tubes may be decaded to increase the total count capacity. (AEC)

  14. Quantum-phase synchronization

    NASA Astrophysics Data System (ADS)

    Fiderer, Lukas J.; Kuś, Marek; Braun, Daniel

    2016-09-01

    We study mechanisms that allow one to synchronize the quantum phase of two qubits relative to a fixed basis. Starting from one qubit in a fixed reference state and the other in an unknown state, we find that, contrary to the impossibility of perfect quantum cloning, the quantum phase can be synchronized perfectly through a joined unitary operation. When both qubits are initially in a pure unknown state, perfect quantum-phase synchronization through unitary operations becomes impossible. In this situation we determine the maximum average quantum-phase synchronization fidelity and the distribution of relative phases and fidelities, and we identify optimal quantum circuits that achieve this maximum fidelity. A subset of these optimal quantum circuits enable perfect quantum-phase synchronization for a class of unknown initial states restricted to the equatorial plane of the Bloch sphere.

  15. Active aperture phased arrays

    NASA Astrophysics Data System (ADS)

    Shenoy, R. P.

    1989-04-01

    Developments towards the realization of active aperture phased arrays are reviewed. The technology and cost aspects of the power amplifier and phase shifter subsystems are discussed. Consideration is given to research concerning T/R modules, MESFETs, side lobe control, beam steering, optical control techniques, and printed circuit antennas. Methods for configuring the array are examined, focusing on the tile and brick configurations. It is found that there is no technological impediment for introducing active aperture phased arrays.

  16. Cosmological phase transitions

    SciTech Connect

    Kolb, E.W. |

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  17. Crystal phase identification

    DOEpatents

    Michael, Joseph R.; Goehner, Raymond P.; Schlienger, Max E.

    2001-01-01

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  18. Phase Holograms In PMMA

    NASA Technical Reports Server (NTRS)

    Maker, Paul D.; Muller, Richard E.

    1994-01-01

    Complex, computer-generated phase holograms written in thin films of poly(methyl methacrylate) (PMMA) by process of electron-beam exposure followed by chemical development. Spatial variations of phase delay in holograms quasi-continuous, as distinquished from stepwise as in binary phase holograms made by integrated-circuit fabrication. Holograms more precise than binary holograms. Greater continuity and precision results in decreased scattering loss and increased imaging efficiency.

  19. Phase-Conjugated Fluorescence

    DTIC Science & Technology

    1991-01-01

    reverse if necessary and identify by block number)FIELD GROUP SUB-GROUP PHASE-CONJUGATED FLUORESCENCE EMITTED POWER FOUR -WAVE MIXING THREE CONTRIBUTIONS...atom near a phase conjugator (PC) based on four -wave mixing is studied from first principles. The MaxwellLeisenberg equations are solved for the...Fronczak Hall State University of New York at Buffalo Buffalo, New York 14260 Fluorescent emission by an atom near a phase conjugator (PC) based on four -wave

  20. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  1. Instantaneous phase shifting deflectometry.

    PubMed

    Trumper, Isaac; Choi, Heejoo; Kim, Dae Wook

    2016-11-28

    An instantaneous phase shifting deflectometry measurement method is presented and implemented by measuring a time varying deformable mirror with an iPhone ® 6. The instantaneous method is based on multiplexing phase shifted fringe patterns with color, and decomposing them in x and y using Fourier techniques. Along with experimental data showing the capabilities of the instantaneous deflectometry system, a quantitative comparison with the Fourier transform profilometry method, which is a distinct phase measuring method from the phase shifting approach, is presented. Sources of error, nonlinear color-multiplexing induced error correction, and hardware limitations are discussed.

  2. Nonlocal chaotic phase synchronization

    NASA Astrophysics Data System (ADS)

    Zhan, Meng; Zheng, Zhi-Gang; Hu, Gang; Peng, Xi-Hong

    2000-09-01

    A novel synchronization behavior, nonlocal chaotic phase synchronization, is investigated. For two coupled Rossler oscillators with only one forced by an injected periodic signal, the phase of the unforced oscillator can be locked to the phase of the periodic signal while the forced one is well unlocked by the signal; in a chain of coupled chaotic oscillators with nearest coupling, the phase of an oscillator (or a cluster) can be locked to another nonneighbor one. Moreover, the mechanism underlying the transition to nonlocal synchronization is discussed in detail.

  3. Holographic magnetic phase transition

    SciTech Connect

    Lifschytz, Gilad; Lippert, Matthew

    2009-09-15

    We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4- and D8-branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

  4. Phase Contrast Imaging

    SciTech Connect

    Menk, Ralf Hendrik

    2008-11-13

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift {phi} directly (using interference phenomena), the gradient {nabla}{sub {phi}}, or the Laplacian {nabla}{sup 2}{phi}. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1

  5. Dense Heterogeneous Continuum Model of Two-Phase Explosion Fields

    SciTech Connect

    Kuhl, A L; Bell, J B

    2010-04-07

    A heterogeneous continuum model is proposed to describe the dispersion of a dense Aluminum particle cloud in an explosion. Let {alpha}{sub 1} denote the volume fraction occupied by the gas and {alpha}{sub 2} the fraction occupied by the solid, satisfying the volume conservation relation: {alpha}{sub 1} + {alpha}{sub 2} = 1. When the particle phase occupies a non-negligible volume fraction (i.e., {alpha}{sub 2} > 0), additional terms, proportional to {alpha}{sub 2}, appear in the conservation laws for two-phase flows. These include: (i) a particle pressure (due to particle collisions), (ii) a corresponding sound speed (which produces real eigenvalues for the particle phase system), (iii) an Archimedes force induced on the particle phase (by the gas pressure gradient), and (iv) multi-particle drag effects (which enhance the momentum coupling between phases). These effects modify the accelerations and energy distributions in the phases; we call this the Dense Heterogeneous Continuum Model. A characteristics analysis of the Model equations indicates that the system is hyperbolic with real eigenvalues for the gas phase: {l_brace}v{sub 1}, v{sub 1} {+-} {alpha}{sub 1}{r_brace} and for the 'particle gas' phase: {l_brace}v{sub 2}, v{sub 2} {+-}{alpha}{sub 2}{r_brace} and the particles: {l_brace}v{sub 2}{r_brace}, where v{sub i} and {alpha}{sub i} denote the velocity vector and sound speed of phase i. These can be used to construct a high-order Godunov scheme to integrate the conservation laws of a dense heterogeneous continuum.

  6. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  7. Demonstrating Phase Changes.

    ERIC Educational Resources Information Center

    Rohr, Walter

    1995-01-01

    Presents two experiments that demonstrate phase changes. The first experiment explores phase changes of carbon dioxide using powdered dry ice sealed in a piece of clear plastic tubing. The second experiment demonstrates an equilibrium process in which a crystal grows in equilibrium with its saturated solution. (PVD)

  8. Simulation of phase structures

    SciTech Connect

    Lawson, J.

    1995-04-20

    This memo outlines a procedure developed by the author to extract information from phase measurements and produce a simulated phase structure for use in modeling optical systems, including characteristic optics for the Beamlet and NIF laser systems. The report includes an IDL program listing.

  9. A Phase Odyssey

    SciTech Connect

    Nugent, K.A.; Paganin, D.; Gureyev, T.E.

    2009-01-06

    We are introduced to the effects of phase from the earliest days of our childhood, from the nursery rhyme above (or its less verbose for 'Twinkle, Twinkle Little Star') to the shimmer over a hot road and the network of bright lines at the bottom of a swimming pool. These are all manifestations of phase. And there are many more.

  10. Lunar Phases Planisphere

    ERIC Educational Resources Information Center

    Shawl, Stephen J.

    2010-01-01

    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  11. UPVG phase 2 report

    SciTech Connect

    1995-08-01

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  12. Weyl semimetals and topological phase transitions

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    Weyl semimetals are semimetals with nondegenerate 3D Dirac cones in the bulk. We showed that in a transition between different Z2 topological phases, i.e. between the normal insulator (NI) and topological insulator (TI), the Weyl semimetal phase necessarily appears when inversion symmetry is broken. In the presentation we show that this scenario holds for materials with any space groups without inversion symmetry. Namely, let us take any band insulator without inversion symmetry, and assume that the gap is closed by a change of an external parameter. In such cases we found that the system runs either into (i) a Weyl semimetal or (ii) a nodal-line semimetal, but no insulator-to-insulator transition happens. This is confirmed by classifying the gap closing in terms of the space groups and the wavevector. In the case (i), the number of Weyl nodes produced at the gap closing ranges from 2 to 12 depending on the symmetry. In (ii) the nodal line is protected by mirror symmetry. In the presentation, we explain some Weyl semimetal and nodal-line semimetals which we find by using this classification. As an example, we explain our result on ab initio calculation on tellurium (Te). Tellurium consists of helical chains, and therefore lacks inversion and mirror symmetries. At high pressure the band gap of Te decreases and finally it runs into a Weyl semimetal phase, as confirmed by our ab initio calculation. In such chiral systems as tellurium, we also theoretically propose chiral transport in systems with such helical structures; namely, an orbital magnetization is induced by a current along the chiral axis, in analogy with a solenoid.

  13. Phase singularity diffusion.

    PubMed

    Cheng, Xiaojun; Lockerman, Yitzchak; Genack, Azriel Z

    2014-06-01

    We follow the trajectories of phase singularities at nulls of intensity in the speckle pattern of waves transmitted through random media as the frequency of the incident radiation is scanned in microwave experiments and numerical simulations. Phase singularities are observed to diffuse with a linear increase of the square displacement 〈R2〉 with frequency shift. The product of the diffusion coefficient of phase singularities in the transmitted speckle pattern and the photon diffusion coefficient through the random medium is proportional to the square of the effective sample length. This provides the photon diffusion coefficient and a method for characterizing the motion of dynamic material systems.

  14. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  15. Optical fiber phase discriminator.

    PubMed

    Danielson, B L

    1978-11-15

    Phase discriminators are devices widely used at rf and microwave frequencies to convert phase, or frequency, changes to amplitude changes. They find widespread use in generating audio feedback signals for frequency stabilization of oscillators and in angle demodulation applications. This paper demonstrates that similar devices, with similar functions, can be constructed in the visible region using optical fibers as delay-line elements. The operating principles of an optical-fiber delay-line phase discriminator are discussed. The sensitivity is shown to be proportional to the fiber propagation-delay time. A device working at 0.6328 microm is described and compared with predictions.

  16. The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world

    PubMed Central

    Ball, Rowena; Brindley, John

    2015-01-01

    It is now accepted that primordial non-cellular RNA communities must have been subject to a periodic drive in order to replicate and prosper. We have proposed the oxidation of thiosulfate by hydrogen peroxide as this drive. This reaction system behaves as (i) a thermochemical and (ii) a pH oscillator, and in this work, we unify (i) and (ii) for the first time. We report thermally self-consistent, dynamical simulations in which the system transitions smoothly from nearly isothermal pH to fully developed thermo-pH oscillatory regimes. We use this oscillator to drive simulated replication of a 39-bp RNA species. Production of replicated duplex under thermo-pH drive was significantly enhanced compared with that under purely thermochemical drive, effectively allowing longer strands to replicate. Longer strands are fitter, with more potential to evolve enzyme activity and resist degradation. We affirm that concern over the alleged toxicity of hydrogen peroxide to life is largely misplaced in the current context, we survey its occurrence in the solar system to motivate its inclusion as a biosignature in the search for life on other worlds and highlight that pH oscillations in a spatially extended, bounded system manifest as the fundamental driving force of life: a proton gradient. PMID:26202683

  17. The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world.

    PubMed

    Ball, Rowena; Brindley, John

    2015-08-06

    It is now accepted that primordial non-cellular RNA communities must have been subject to a periodic drive in order to replicate and prosper. We have proposed the oxidation of thiosulfate by hydrogen peroxide as this drive. This reaction system behaves as (i) a thermochemical and (ii) a pH oscillator, and in this work, we unify (i) and (ii) for the first time. We report thermally self-consistent, dynamical simulations in which the system transitions smoothly from nearly isothermal pH to fully developed thermo-pH oscillatory regimes. We use this oscillator to drive simulated replication of a 39-bp RNA species. Production of replicated duplex under thermo-pH drive was significantly enhanced compared with that under purely thermochemical drive, effectively allowing longer strands to replicate. Longer strands are fitter, with more potential to evolve enzyme activity and resist degradation. We affirm that concern over the alleged toxicity of hydrogen peroxide to life is largely misplaced in the current context, we survey its occurrence in the solar system to motivate its inclusion as a biosignature in the search for life on other worlds and highlight that pH oscillations in a spatially extended, bounded system manifest as the fundamental driving force of life: a proton gradient.

  18. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation

    PubMed Central

    Sabbir, Mohammad G.; Dillon, Rachelle; Mowat, Michael R. A.

    2016-01-01

    ABSTRACT The Deleted in liver cancer 1 (Dlc1) gene codes for a Rho GTPase-activating protein that also acts as a tumour suppressor gene. Several studies have consistently found that overexpression leads to excessive cell elongation, cytoskeleton changes and subsequent cell death. However, none of these studies have been able to satisfactorily explain the Dlc1-induced cell morphological phenotypes and the function of the different Dlc1 isoforms. Therefore, we have studied the interacting proteins associated with the three major Dlc1 transcriptional isoforms using a mass spectrometric approach in Dlc1 overexpressing cells. We have found and validated novel interacting partners in constitutive Dlc1-expressing cells. Our study has shown that Dlc1 interacts with non-muscle myosin heavy chain II-A (Myh9), plectin and spectrin proteins in different multiprotein complexes. Overexpression of Dlc1 led to increased phosphorylation of Myh9 protein and activation of Rac1 GTPase. These data support a role for Dlc1 in induced cell elongation morphology and provide some molecular targets for further analysis of this phenotype. PMID:26977077

  19. Antibodies against synthetic epitopes inhibit the enzymatic activity of mutalysin II, a metalloproteinase from bushmaster snake venom.

    PubMed

    Ferreira, R N; Machado de Avila, R A; Sanchez, E F; Maria, W S; Molina, F; Granier, C; Chávez-Olórtegui, C

    2006-12-15

    Mutalysin II (mut-II), a 22.5kDa zinc endopeptidase isolated from bushmaster (Lachesis muta muta) snake venom, is a direct acting fibrin(ogen)olytic proteinase. It induces monoclonal and polyclonal antibodies which efficiently neutralize the hemorrhagic effect of L. muta and several Bothrops whole venoms. To characterize epitopes of protective antibodies we have used the Spot method of multiple peptide synthesis to prepare 64 overlapping dodecapeptides frameshifted by three residues, covering the complete amino acid sequence of mut-II. The rabbit anti-mut-II antibodies binding pattern to peptides revealed several continuous antigenic regions: one in the N-terminal part, two in the central region and the other in the C-terminal of mut-II. By using homology modelling, a three-dimensional model of mut-II was built which showed that epitopes are surface exposed. Anti-peptide antibodies were raised against three peptides (one representative of each epitope region) covalently coupled as a mixture to keyhole limpet hemocyanin. Purified IgG from the resulting anti- peptide antibodies cross-reacted with mut-II and induced a dose-dependent inhibition of the mut-II catalyzed proteolysis of fibrinogen.

  20. Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cells.

    PubMed

    Cao, E H; Liu, X Q; Wang, J J; Xu, N F

    1996-01-01

    Tanshinone II-A (TSII-A) isolated from the root of Salvia miltorrhiza Bunge, a traditional medicine in China, is a derivative of phenanthrenequinone, which is known to have antioxidant properties. In the present study, effects of TSII-A on DNA damage by lipid peroxidation were investigated using liver cells, labeled with [3H] arachidonic acid, in the presence of FeCl2-DTPA. The results show that the nuclear DNA isolated from treated cells had higher radioactivity compared to controls and the radioactivity increased with longer incubation times. Purified lipid-DNA adducts had a characteristic fluorescent spectra and showed a decrease of hyperchromicity and melting point. TSII-A could inhibit the association of peroxidation products with DNA in liver cells and prevent a decrease in cell viability and in the the activity of O6-methylguanine acceptor protein with increasing incubation time. Compared with other antioxidants, TSII-A had a higher inhibitory ratio, which was similar to vitamin E and butylated hydroxy-toluene (BHT), but markedly stronger than NaN3, mannatol, and superoxide dismutase (SOD). These data suggest that TSII-A represents a new and effective antioxidant that inhibits the association of lipid peroxidation products with DNA. Its protective effect may be through breaking the chain reactions of peroxidation by scavenging lipid free radicals, thereby decreasing their cytotoxicity.

  1. Sliding Luttinger liquid phases

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ranjan; Kane, C. L.; Lubensky, T. C.

    2001-07-01

    We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can stabilize a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature T as T-->0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.

  2. ELECTRONIC PHASE CONTROL CIRCUIT

    DOEpatents

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  3. Dense Nonaqueous Phase Liquids

    EPA Pesticide Factsheets

    This issue paper is a literature evaluation focusing on DNAPLs and provides an overview from a conceptual fate and transport point of view of DNAPL phase distribution, monitoring, site characterization, remediation, and modeling.

  4. Wide deviation phase modulator

    NASA Technical Reports Server (NTRS)

    Couch, R. H.; Hearn, C. P.; Wilson, L. R.

    1974-01-01

    Modulator produces phase-modulated waveform having high modulating linearity. Technique is inherently wideband with respect to carrier frequency and can operate over decade carrier frequency range without adjustments. Circuit performance is both mathematically predictable and highly reproducible.

  5. Microfluidic binary phase flow

    NASA Astrophysics Data System (ADS)

    Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe

    2004-03-01

    We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.

  6. Geometry and Moon Phases.

    ERIC Educational Resources Information Center

    Thompson, Kenneth W.; Harrell, Marvin E.

    1997-01-01

    Describes an activity, designed to comply with the National Science Education Standards, that integrates science and mathematics concepts. Mathematical modeling of the moon's phases is employed to show students the role of mathematics in describing scientific phenomena. (DKM)

  7. Digital Receiver Phase Meter

    NASA Technical Reports Server (NTRS)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  8. Quantum Phase Transitions

    DTIC Science & Technology

    2011-05-01

    Park, NC 27709-2211 15. SUBJECT TERMS Quantum Thoery Phase transitions Subir Sachdev Harvard University Office of Sponsored Research 1350...magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical...students and researchers in condensed matter physics and particle and string theory. Print | Close Quantum Phase Transitions 2nd Edition Subir Sachdev

  9. Phases of the Moon

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The various aspects that the Moon presents to observers on the Earth as the proportion of its sunlit side which is visible changes in the course of its orbit around the Earth. There are four principle phases: new moon, first quarter, full moon and last quarter. One complete cycle of phases is termed a lunation, and is completed in just over 29½ days, the Moon's synodic period....

  10. Bigradient Phase Referencing

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Fujisawa, Kenta; Habe, Asao; Honma, Mareki; Kawaguchi, Noriyuki; Kobayashi, Hideyuki; Murata, Yasuhiro; Omodaka, Toshihiro; Sudou, Hiroshi; Takaba, Hiroshi

    2006-08-01

    We propose bigradient phase referencing (BPR), a new radio-observation technique, and report on its performance using the Japanese very-long-baseline-interferometry network (JVN). In this method, a weak source is detected by phase-referencing using a primary calibrator, in order to play a role as a secondary calibrator for phase-referencing to a weak target. We will be given the opportunity to select a calibrator from lots of milli-Jansky sources, one of which may be located at a position closer to the target. With such a smaller separation, high-quality phase-referencing can be achieved. A subsequent more-sophisticated calibration can relocate the array's focus to a hypothetical point much closer to the target; a higher quality of phase referencing is available. Our demonstrative observations with strong radio sources have proved the capabilities of the BPR in terms of the image dynamic ranges and astrometric reproducibility. The image dynamic range on a target has been improved by a factor of about six compared to that of normal phase-referencing; the resultant position difference of the target's emission between two epochs was only 62±50 microarcsecond, even with less than 2300-km baselines at 8.4GHz and fast-switching between a target-calibrator pair separated by a 2.°1.

  11. Electron microscope phase enhancement

    DOEpatents

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  12. Phased array ghost elimination

    PubMed Central

    Kellman, Peter; McVeigh, Elliot R.

    2007-01-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme

  13. Snapshots of America's Families II: A View of the Nation and 13 States from the National Survey of America's Families, 1997-1999.

    ERIC Educational Resources Information Center

    Koppelman, Jane, Ed.

    This collection of snapshots examines the well-being of America's children and adults through the lens of the 1999 National Survey of America's Families. Snapshots include: "Foreword: Snapshots of America's Families II: A View of the Nation and 13 States from the National Survey of America's Families" (Alyssa Wigton and Alan Weil);…

  14. 30 CFR 57.22205 - Doors on main fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Doors on main fans (I-A, II-A, III, and V-A... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22205 Doors on... installation shall be equipped with noncombustible doors. Such doors shall automatically close to prevent...

  15. 30 CFR 57.22205 - Doors on main fans (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Doors on main fans (I-A, II-A, III, and V-A... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22205 Doors on... installation shall be equipped with noncombustible doors. Such doors shall automatically close to prevent...

  16. Draft Genome Sequence of a 16SrII-A Subgroup Phytoplasma Associated with Purple Coneflower (Echinacea purpurea) Witches' Broom Disease in Taiwan.

    PubMed

    Chang, Shu-Heng; Cho, Shu-Ting; Chen, Chung-Li; Yang, Jun-Yi; Kuo, Chih-Horng

    2015-11-25

    The bacterial genus "Candidatus Phytoplasma" contains a group of insect-transmitted plant pathogens in the class Mollicutes. Here, we report a draft genome assembly and annotation of strain NCHU2014, which belongs to the 16SrII-A subgroup within this genus and is associated with purple coneflower witches' broom disease in Taiwan.

  17. Implementation of Title I and Title II-A Program Initiatives: Results from 2013-14. Executive Summary. NCEE 2017-4015

    ERIC Educational Resources Information Center

    Troppe, Patricia; Milanowski, Anthony T.; Heid, Camilla; Gill, Brian; Ross, Christine

    2017-01-01

    This report describes the implementation of policies and initiatives supported by Title I and Title II-A of the federal Elementary and Secondary Education Act (ESEA) during the 2013-14 school year. Title I is one of the U.S. Department of Education's largest programs, accounting for $15 billion in the 2016 federal budget. Historically, Title I has…

  18. Combustion 2000: Phase II

    SciTech Connect

    Unknown

    1999-11-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This Phase, Phase 2, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase 3. As part of a descoping initiative, the Phase 3 program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase 2 Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4,and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.1 HITAF Combustors; Task 2.2 HITAF Air Heaters; and Task 6 HIPPS Commercial Plant Design Update.

  19. Introduction to phasing.

    PubMed

    Taylor, Garry L

    2010-04-01

    When collecting X-ray diffraction data from a crystal, we measure the intensities of the diffracted waves scattered from a series of planes that we can imagine slicing through the crystal in all directions. From these intensities we derive the amplitudes of the scattered waves, but in the experiment we lose the phase information; that is, how we offset these waves when we add them together to reconstruct an image of our molecule. This is generally known as the 'phase problem'. We can only derive the phases from some knowledge of the molecular structure. In small-molecule crystallography, some basic assumptions about atomicity give rise to relationships between the amplitudes from which phase information can be extracted. In protein crystallography, these ab initio methods can only be used in the rare cases in which there are data to at least 1.2 A resolution. For the majority of cases in protein crystallography phases are derived either by using the atomic coordinates of a structurally similar protein (molecular replacement) or by finding the positions of heavy atoms that are intrinsic to the protein or that have been added (methods such as MIR, MIRAS, SIR, SIRAS, MAD, SAD or combinations of these). The pioneering work of Perutz, Kendrew, Blow, Crick and others developed the methods of isomorphous replacement: adding electron-dense atoms to the protein without disturbing the protein structure. Nowadays, methods from small-molecule crystallography can be used to find the heavy-atom substructure and the phases for the whole protein can be bootstrapped from this prior knowledge. More recently, improved X-ray sources, detectors and software have led to the routine use of anomalous scattering to obtain phase information from either incorporated selenium or intrinsic sulfurs. In the best cases, only a single set of X-ray data (SAD) is required to provide the positions of the anomalous scatters, which together with density-modification procedures can reveal the structure

  20. Characterizing the Lower Paleolithic bone industry from Schöningen 12 II: A multi-proxy study.

    PubMed

    Julien, Marie-Anne; Hardy, Bruce; Stahlschmidt, Mareike C; Urban, Brigitte; Serangeli, Jordi; Conard, Nicholas J

    2015-12-01

    Although preservation of Paleolithic faunal assemblages from open-air settings is often poor, the Lower Paleolithic sites of Schöningen provide exceptionally well-preserved mammalian faunal material for investigating hominin/animal relationships. Pleistocene fossil assemblages, however, usually reflect a complex taphonomic history in which natural and anthropogenic processes are often superimposed. A number of examples of osseous finds that resemble tools were recently discovered in the MIS 9 deposits of Schöningen 12 II. Non-anthropogenic agents are known to produce surface modifications mimicking human artifacts and the identification of osseous remains used and/or deliberately modified by ancient hominins is often controversial in such old contexts. Multiple lines of evidence are thus useful for distinguishing between osseous artifacts and "eco-facts". In this paper, the recognition of the use of bone for different technological purposes by late Middle Pleistocene hominins is addressed through a multi-proxy study combining geoarcheology, bone taphonomy, zooarcheology, and use-wear analysis. This allowed the identification of the processes and agents responsible for the formation and modification of the different bone assemblages of Schöningen 12 II. Our analysis points to different types of bones having been likely used as tools. These results expand the diversity of the organic technological repertoire of the Middle Pleistocene hominins, making Schöningen 12 II a remarkable new source of information on osseous technology long before the Upper Paleolithic, the period traditionally viewed as the start of the systematic use of bone tools. Together with other observations of bone tools documented during the Lower and Middle Paleolithic, the results from Schöningen show that archeologists may have underestimated the diversity and importance of osseous technology among archaic hominins.

  1. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  2. Progress in ferrite phase shifters

    NASA Astrophysics Data System (ADS)

    Boyd, C. R., Jr.

    1983-10-01

    Advances in the technology of reciprocal ferrite phase shifters are outlined. Nonlatching rotary-field phase shifters have been produced with enhanced phase accuracy and modest control power. A significant quantity of dual-mode latching units has been built at 35 GHz, with good results. Both types of phase shifter can be adapted to perform other functions in addition to phase shifting. Examples of phase shifters that perform duplexing and polarization switching functions are given.

  3. Single-phase to three-phase power conversion interface

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Wang, Yung-Shan; Jou, Hurng-Liahng; Lu, Wei-Tso

    2016-07-01

    This study proposes a single-phase to three-phase power conversion interface which converts the power from a single-phase utility to three-phase power for a three-phase load. The proposed single-phase to three-phase power conversion interface comprises a bridge-type switch set, a set of three-phase inductors, a transformer set and a set of three-phase capacitors. A current-mode control controls the switching of bridge-type switch set, to generate a set of nonzero-sequence (NZS) currents and a set of zero-sequence (ZS) currents. The transformer set is used to decouple the NZS currents and the ZS currents. The NZS currents are used to generate a high-quality three-phase voltage that supplies power to a three-phase load. The ZS currents flow to the single-phase utility so that the utility current is sinusoidal and in phase with the utility voltage. Accordingly, only a bridge-type switch set is used in the single-phase to three-phase power conversion interface to simply the power circuit. A prototype is developed and tested to verify the performance of the proposed single-phase to three-phase power conversion interface.

  4. Phase trombones with bending

    SciTech Connect

    Courant, E.D.; Garren, A.

    1985-10-01

    The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.

  5. Phases of unstable conifolds

    SciTech Connect

    Narayan, K.

    2007-03-15

    We explore the phase structure induced by closed string tachyon condensation of toric nonsupersymmetric conifold-like singularities described by an integral charge matrix Q=(n{sub 1}n{sub 2}-n{sub 3}-n{sub 4}), n{sub i}>0, iQ{sub i}{ne}0, initiated by Narayan [J. High Energy Phys. 03 (2006) 036]. Using gauged linear sigma model renormalization group flows and toric geometry techniques, we see a cascadelike phase structure containing decays to lower order conifold-like singularities, including, in particular, the supersymmetric conifold and the Y{sup pq} spaces. This structure is consistent with the Type II GSO projection obtained previously for these singularities. Transitions between the various phases of these geometries include flips and flops.

  6. Interferometric phase velocity measurements

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Labelle, J.; Kelley, M. C.; Cahill, L. J., Jr.; Moore, T.; Arnoldy, R.

    1984-01-01

    Phase velocities of plasma waves near the lower hybrid frequency were measured with an interferometer composed of two spatially separated electron-density probes. The plasma waves were produced in the F-region ionosphere by an argon ion beam. By calculating the normalized cross spectrum of the plasma waves a coherency of .98 was estimated along with a maximum phase difference of pi/3 radians between the two probes. This implies that the wavelength was 6 meters compared to an O(+) gyroradius of 3.8 meters, and that the phase velocity was 45 km/sec compared to an ion-beam velocity of 12.4 km/sec. These numbers compare favorably with recent predictions of a nonresonant mode produced by a dense ion beam.

  7. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  8. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  9. Quantum phase slip noise

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2016-07-01

    Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .

  10. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  11. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  12. Compressive Phase Contrast Tomography

    SciTech Connect

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-09-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  13. Noise and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Yu, Clare C.

    2006-03-01

    Noise is present in many physical systems and is often viewed as a nuisance. Yet it can also be a probe of microscopic fluctuations. There have been indications recently that the noise in the resistivity increases in the vicinity of the metal-insulator transition. But what are the characteristics of the noise associated with well-understood first and second order phase transitions? It is well known that critical fluctuations are associated with second order phase transitions, but do these fluctuations lead to enhanced noise? We have addressed these questions using Monte Carlo simulations to study the noise in the 2D Ising model which undergoes a second order phase transition, and in the 5-state Potts model which undergoes a first order phase transition. We monitor these systems as the temperature drops below the critical temperature. At each temperature, after equilibration is established, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization per site. We apply different methods, such as the noise power spectrum, the Detrended Fluctuation Analysis (DFA) and the second spectrum of the noise, to analyze the fluctuations in these quantities.

  14. Phase-contrast radiography.

    PubMed

    Gao, D; Pogany, A; Stevenson, A W; Wilkins, S W

    1998-01-01

    For the past 100 years, the paradigm for radiography has been premised on absorption as the sole means of contrast formation and on ray optics as the basis for image interpretation. A new conceptual approach to radiography has been developed that includes phase (ie, refractive) contrast and requires wave optics for proper treatment. This new approach greatly increases the amount of information that can be obtained with radiographic techniques and is particularly well suited to the imaging of soft tissue and of very small features in biologic samples. A key feature of the present technique of phase-contrast radiography is the use of a microfocus x-ray source about an order of magnitude (< or = 20 microm) smaller than that used in conventional radiography. Phase-contrast radiography offers a number of improvements over conventional radiography in a clinical setting, especially in soft-tissue imaging. These improvements include increased contrast resulting in improved visualization of anatomic detail, reduced absorbed dose to the patient, inherent image magnification and high spatial resolution, use of harder x rays, and relative ease of implementation. More technologically advanced detectors are currently being developed and commercialized, which will help fully realize the considerable potential of phase-contrast imaging.

  15. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  16. Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.; Bikkannavar, Siddarayappa; Cohen, David; Green, Joseph J.; Lou, John; Ohara, Catherine; Redding, David; Shi, Fang

    2008-01-01

    Adaptive MGS Phase Retrieval software uses the Modified Gerchberg-Saxton (MGS) algorithm, an image-based sensing method that can turn any focal plane science instrument into a wavefront sensor, avoiding the need to use external metrology equipment. Knowledge of the wavefront enables intelligent control of active optical systems.

  17. Phase change compositions

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  18. Phase change compositions

    DOEpatents

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  19. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  20. Linear Phase Modulator

    NASA Technical Reports Server (NTRS)

    Hesse, R. H.

    1986-01-01

    Circuit suppresses AM component while providing matched input impedance. Phase modulation uses reflective properties of series resonant tank to reflect all of signal except for small amount in unloaded Q of coils and varactor diode. Circuit used in payload integrator of Space Shuttle S-band communications and tracking equipment, has applications in other communications and tracking equipment.

  1. MAD phasing with krypton.

    PubMed

    Cohen, A; Ellis, P; Kresge, N; Soltis, S M

    2001-02-01

    Experiments demonstrating the feasibility of Kr-edge MAD on frozen crystals as a routine method for structure determination are reported. Approximately 50% of protein crystals can be successfully derivatized by pressurization with the noble gases xenon or krypton. While Xe has produced many useful derivatives for MIR phasing over the last several years, the Xe edges (K edge = 34.6 keV, L(I) = 5.5 keV) are not easily accessible for MAD studies. As the Kr K edge (14.3 keV) is accessible on most MAD beamlines, Kr derivatization provides the additional opportunity to conduct a MAD experiment and obtain phases using only a single crystal. This paper describes the phasing of two proteins using Kr MAD: the 17 kDa Fe protein myoglobin (Mb) from sperm whale (Physeter catodon) and an 18 kDa protein (SP18) from green abalone (Haliotis fulgens). Three-wavelength data were collected at SSRL beamline 9-2 from crystals of Mb and SP18 incubated in 2.76 MPa of Kr gas for 2 min, depressurized and then flash-frozen in a stream of nitrogen gas at 100 K. MAD phases were calculated using the program SHARP and the resulting density improved with wARP. The final maps for both Mb and SP18 were of excellent quality.

  2. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  3. Fun with Phase Changes

    ERIC Educational Resources Information Center

    Purvis, David

    2006-01-01

    A lot of good elementary science involves studying solids, liquids, and gases, and some inquiry-based activities that are easy to set up and do. In this article, the author presents activities pertaining to simple phase change. Using water as the example, these activities introduce upper-grade students to the idea of the arrangement of molecules…

  4. SSIP Phase I Roadmap

    ERIC Educational Resources Information Center

    Vinh, Megan; Lucas, Anne; Taylor, Cornelia; Kelley, Grace; Kasprzak, Christina

    2014-01-01

    This roadmap provides a description of the activities involved in the development of the State Systemic Improvement Plan (SSIP) (SPP/APR Indicators C11 and B17) due to the Office of Special Education Programs (OSEP) on April 1, 2015. The roadmap is intended to support states with completing Phase I of the SSIP process. This document provides…

  5. Apodized Phase Mask Coronagraphs

    NASA Astrophysics Data System (ADS)

    Carlotti, Alexis

    2013-01-01

    Among the optical instruments proposed to detect and characterize exoplanets, phase masks coronagraphs offer very small inner working angles. Designed for off-axis telescopes, their performance is greatly reduced when used with centrally obstructed apertures such as those of the Palomar telescope, the very large telescope, or the James Webb space telescope. However, a clear circular aperture is not the only pupil shape for which a phase mask coronagraph can work properly. In fact, for a given centrally obstructed aperture, we show that it is possible to compute optimal apodizers that help achieve stellar extinction levels similar to those obtained in the ideal case of an off-axis telescope. Trade-offs exist between these levels, the transmission of the apodizer, and the area covered by the Lyot stop. We detail the Fourier optics formalism that makes these optimizations possible, as well as a few examples of shaped pupils. Some are designed for a four-quadrants phase mask, and some others for a vortex phase mask. We also offer a comparison with a coronagraph solely composed of a shaped pupil.

  6. Digital Phase-Locked Loop With Phase And Frequency Feedback

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks

    1991-01-01

    Advanced design for digital phase-lock loop (DPLL) allows loop gains higher than those used in other designs. Divided into two major components: counterrotation processor and tracking processor. Notable features include use of both phase and rate-of-change-of-phase feedback instead of frequency feedback alone, normalized sine phase extractor, improved method for extracting measured phase, and improved method for "compressing" output rate.

  7. Large phase-by-phase modulations in atomic interfaces.

    PubMed

    Artoni, M; Zavatta, A

    2015-09-11

    Phase-resonant closed-loop optical transitions can be engineered to achieve broadly tunable light phase shifts. Such a novel phase-by-phase control mechanism does not require a cavity and is illustrated here for an atomic interface where a classical light pulse undergoes radian level phase modulations all-optically controllable over a few micron scale. It works even at low intensities and hence may be relevant to new applications of all-optical weak-light signal processing.

  8. Phase II Final Report

    SciTech Connect

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  9. An adiabatic linearized path integral approach for quantum time-correlation functions II: a cumulant expansion method for improving convergence.

    PubMed

    Causo, Maria Serena; Ciccotti, Giovanni; Bonella, Sara; Vuilleumier, Rodolphe

    2006-08-17

    Linearized mixed quantum-classical simulations are a promising approach for calculating time-correlation functions. At the moment, however, they suffer from some numerical problems that may compromise their efficiency and reliability in applications to realistic condensed-phase systems. In this paper, we present a method that improves upon the convergence properties of the standard algorithm for linearized calculations by implementing a cumulant expansion of the relevant averages. The effectiveness of the new approach is tested by applying it to the challenging computation of the diffusion of an excess electron in a metal-molten salt solution.

  10. Phase switching in population cycles

    PubMed Central

    Henson, S. M.; Cushing, J. M.; Costantino, R. F.; Dennis, B.; Desharnais, R. A.

    1998-01-01

    Oscillatory populations may exhibit a phase change in which, for example, a high–low periodic pattern switches to a low–high pattern. We propose that phase shifts correspond to stochastic jumps between basins of attraction in an appropriate phase space which associates the different phases of a periodic cycle with distinct attractors. This mechanism accounts for two-cycle phase shifts and the occurrence of asynchronous replicates in experimental cultures of Tribolium.

  11. Glass Ceramic Formulation Data Package

    SciTech Connect

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  12. High power phase shifter

    SciTech Connect

    Foster, B.; Gonin, I.; Khabiboulline, T.; Makarov, A.; Solyak, N.; Terechkine, I.; Wildman, D.; /Fermilab

    2005-05-01

    One of the approaches to power distribution system of a superconducting proton linac under discussion at FNAL requires development of a fast-action, megawatt-range phase shifter. Using a couple of this kind of devices with a waveguide hybrid junction can allow independent control of phase and amplitude of RF power at the input of each superconducting cavity, which will result in significant saving in number of klystrons and modulators required for the accelerator. A prototype of a waveguide version of the shifter that uses Yttrium-Iron Garnet (YIG) blocks was developed and tested. This report presents design concept of the device, and main results of simulation and proof-of-principle tests.

  13. Multipulse phase resetting curves

    NASA Astrophysics Data System (ADS)

    Krishnan, Giri P.; Bazhenov, Maxim; Pikovsky, Arkady

    2013-10-01

    In this paper, we introduce and study systematically, in terms of phase response curves, the effect of dual-pulse excitation on the dynamics of an autonomous oscillator. Specifically, we test the deviations from linear summation of phase advances resulting from two small perturbations. We analytically derive a correction term, which generally appears for oscillators whose intrinsic dimensionality is >1. The nonlinear correction term is found to be proportional to the square of the perturbation. We demonstrate this effect in the Stuart-Landau model and in various higher dimensional neuronal models. This deviation from the superposition principle needs to be taken into account in studies of networks of pulse-coupled oscillators. Further, this deviation could be used in the verification of oscillator models via a dual-pulse excitation.

  14. Phase calibration generator

    NASA Technical Reports Server (NTRS)

    Sigman, E. H.

    1988-01-01

    A phase calibration system was developed for the Deep Space Stations to generate reference microwave comb tones which are mixed in with signals received by the antenna. These reference tones are used to remove drifts of the station's receiving system from the detected data. This phase calibration system includes a cable stabilizer which transfers a 20 MHz reference signal from the control room to the antenna cone. The cable stabilizer compensates for delay changes in the long cable which connects its control room subassembly to its antenna cone subassembly in such a way that the 20 MHz is transferred to the cone with no significant degradation of the hydrogen maser atomic clock stability. The 20 MHz reference is used by the comb generator and is also available for use as a reference for receiver LO's in the cone.

  15. Spatial Phase Imaging

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.

  16. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  17. Measurement by phase severance

    SciTech Connect

    Noyes, H.P.

    1987-03-01

    It is claimed that the measurement process is more accurately described by ''quasi-local phase severance'' than by ''wave function collapse''. The approach starts from the observation that the usual route to quantum mechanics starting from the Hamilton-Jacobi equations throws away half the degrees of freedom, namely, the classical initial state parameters. To overcome this difficulty, the full set of Hamilton-Jacobi equations is interpreted as operator equations acting on a state vector. The measurement theory presented is based on the conventional S-matrix boundary condition of N/sub A/ free particles in the distant past and N/sub B/ free particles in the distant future and taking the usual free particle wave functions, multiplied by phase factors.

  18. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  19. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  20. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  1. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  2. Nucleosome phasing - new insights

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    2014-03-01

    Eukaryotic genomes are organized into arrays of nucleosomes, in which stretches of 147 base-pairs of DNA are wrapped around octameric histones. Recently, a new method of mapping nucleosome positions was developed, which gives a much higher accuracy than the typical MNase-seq method. I present a statistical mechanics model which is able to reproduce the high-resolution nucleosome positioning data. I show that the DNA sequence is not the main cause of the nucleosome phasing which is observed genome-wide, and I present the major nucleosome phasing elements. The statistical mechanics framework is general enough to be useful in explaining different experimental observations, and I present a few results of this model.

  3. Emergence and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Sikkema, Arnold

    2006-05-01

    Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.

  4. Phases and phase transitions in disordered quantum systems

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas

    2013-08-01

    These lecture notes give a pedagogical introduction to phase transitions in disordered quantum systems and to the exotic Griffiths phases induced in their vicinity. We first review some fundamental concepts in the physics of phase transitions. We then derive criteria governing under what conditions spatial disorder or randomness can change the properties of a phase transition. After introducing the strong-disorder renormalization group method, we discuss in detail some of the exotic phenomena arising at phase transitions in disordered quantum systems. These include infinite-randomness criticality, rare regions and quantum Griffiths singularities, as well as the smearing of phase transitions. We also present a number of experimental examples.

  5. Solid phase extraction membrane

    DOEpatents

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  6. Phase Conjugate Optics.

    DTIC Science & Technology

    1982-11-01

    multimode fibers. We have developed a detailed model of the photorefractive effect which will be used as a basis for comparing photorefractive materials...of our system. The preliminary results indicate that a resolution of 5 lines/mm was obtained ( compared with a resolution without the fiber of "u20...for comparing photorefractive materials for nonlinear phase conjugation. Preliminary results of four materials surveyed indicate that KNbO3 and BaTiO3

  7. Phase Field Fracture Mechanics.

    SciTech Connect

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  8. Phases, phase equilibria, and phase rules in low-dimensional systems

    SciTech Connect

    Frolov, T.; Mishin, Y.

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.

  9. Phases, phase equilibria, and phase rules in low-dimensional systems.

    PubMed

    Frolov, T; Mishin, Y

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.

  10. Compactification on phase space

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin; Wheeler, James

    2016-03-01

    A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.

  11. A scoring system based on artificial neural network for predicting 10-year survival in stage II A colon cancer patients after radical surgery.

    PubMed

    Peng, Jian-Hong; Fang, Yu-Jing; Li, Cai-Xia; Ou, Qing-Jian; Jiang, Wu; Lu, Shi-Xun; Lu, Zhen-Hai; Li, Pei-Xing; Yun, Jing-Ping; Zhang, Rong-Xin; Pan, Zhi-Zhong; Wan, De Sen

    2016-04-19

    Nearly 20% patients with stage II A colon cancer will develop recurrent disease post-operatively. The present study aims to develop a scoring system based on Artificial Neural Network (ANN) model for predicting 10-year survival outcome. The clinical and molecular data of 117 stage II A colon cancer patients from Sun Yat-sen University Cancer Center were used for training set and test set; poor pathological grading (score 49), reduced expression of TGFBR2 (score 33), over-expression of TGF-β (score 45), MAPK (score 32), pin1 (score 100), β-catenin in tumor tissue (score 50) and reduced expression of TGF-β in normal mucosa (score 22) were selected as the prognostic risk predictors. According to the developed scoring system, the patients were divided into 3 subgroups, which were supposed with higher, moderate and lower risk levels. As a result, for the 3 subgroups, the 10-year overall survival (OS) rates were 16.7%, 62.9% and 100% (P < 0.001); and the 10-year disease free survival (DFS) rates were 16.7%, 61.8% and 98.8% (P < 0.001) respectively. It showed that this scoring system for stage II A colon cancer could help to predict long-term survival and screen out high-risk individuals for more vigorous treatment.

  12. Viking Phase III

    NASA Technical Reports Server (NTRS)

    1978-01-01

    VIKING PHASE III - With the incredible success of the Viking missions on Mars, mission operations have progressed though a series of phases - each being funded as mission success dictated its potential. The Viking Primary Mission phase was concluded in November, 1976, when the reins were passed on to the second phase - the Viking Extended Mission. The Extended Mission successfully carried spacecraft operations through the desired period of time needed to provided a profile of a full Martian year, but would have fallen a little short of connecting and overlapping a full Martian year of Viking operations which scientists desired as a means of determining the degree of duplicity in the red planet's seasons - at least for the summer period. Without this continuation of spacecraft data acquisitions to and beyond the seasonal points when the spacecraft actually began their Mars observations, there would be no way of knowing whether the changing environmental values - such as temperatures and winds atmospheric dynamics and water vapor, surface thermal dynamics, etc. - would match up with those acquired as the spacecraft began investigations during the summer and fall of 1976. This same broad interest can be specifically pursued at the surface - where hundreds of rocks, soil drifts and other features have become extremely familiar during long-term analysis. This picture was acquired on the 690th Martian day of Lander 1 operations - 4009th picture sequence commanded of the two Viking Landers. As such, it became the first picture acquired as the third phase of Viking operations got under way - the Viking Continuation Mission. Between the start of the Continuation Mission in April, 1978, until spacecraft operations are concluded in November, the landers will acquire an additional 200 pictures. These will be used to monitor the two landscaped for the surface changes. All four cameras, two on Lander 1 and two on Lander 2, continue to operate perfectly. Both landers will also

  13. Helical phases in superconductors

    NASA Astrophysics Data System (ADS)

    Sandhu, Raminder P. Kaur

    In conventional superconductors, the Cooper pairs are formed from quasiparticles with opposite momentum and spins because of the degeneracy of the quasiparticles under time reversal and inversion. The absence of any of these symmetries will have pronounced effects on superconducting states. Time reversal symmetry can be broken in the presence of magnetic impurities or by the application of a magnetic field. Similarly, the dislocation of crystal ions from their higher symmetric positions can cause broken inversion symmetry. We studied the effects of broken time reversal and inversion symmetries on unconventional superconductors, such as high temperature cuprates, Sr2RuO 4, and CePt3Si. In the cuprates, the superconducting state exists near the antiferromagnetic order. Sr2RuO4 and CePt3Si do not have spatial inversion, and the superconducting states coexist with magnetic order. In cuprates, the broken time reversal symmetry has been reported in the pseudogap phase which will effect the d-wave superconducting state of underdoped regime. On the basis of symmetry analysis we found that a mixture of spin-singlet and -triplet state, d+ip, which is shown to give rise to a helical superconducting phase. Consequences of this d+ip state on Josephson experiments are also discussed. Sr2RuO 4 is known to be another broken time reversal superconductor with spin triplet superconductivity. The widely believed superconducting state, the chiral p wave state, has been extensively studied through Ginzburg Landau theory, but the predictions for this state contradict some experimental observations like anisotropy in the upper critical field, and the existence of a second vortex state. We have formalize quasiclassical theory to find the origin of these contradictions, and also extended the theory to study other possible super-conducting states. Surprisingly, we find that a superconducting state corresponding to freely rotating in-plane d-vector explains the existing experimental results

  14. Digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Cliff, R. A. (Inventor)

    1975-01-01

    An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.

  15. VRA Modeling, phase 1

    NASA Technical Reports Server (NTRS)

    Kindt, Louis M.; Mullins, Michael E.; Hand, David W.; Kline, Andrew A.

    1995-01-01

    The destruction of organic contaminants in waste water for closed systems, such as that of Space Station, is crucial due to the need for recycling the waste water. A co-current upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. The objective of this study is to develop a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate. To validate this model, a bench scale reactor has been tested at Michigan Technological University at elevated pressures (50-83 psig,) and a temperature range of 200 to 290 F. Feeds consisting of five dilute solutions of ethanol (approx. 10 ppm), chlorobenzene (approx. 20 ppb), formaldehyde (approx. 100 ppb), dimethyl sulfoxide (DMSO approx. 300 ppb), and urea (approx. 20 ppm) in water were tested individually with an oxygen mass flow rate of 0.009 lb/h. The results from these individual tests were used to develop the kinetic parameter inputs necessary for the computer model. The computer simulated results are compared to the experimental data obtained for all 5 components run in a mixture on the differential test column for a range of reactor contact times.

  16. FNAS phase partitions

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M.

    1993-01-01

    Project NAS8-36955 D.O. #100 initially involved the following tasks: (1) evaluation of various coatings' ability to control wall wetting and surface zeta potential expression; (2) testing various methods to mix and control the demixing of phase systems; and (3) videomicroscopic investigation of cell partition. Three complementary areas were identified for modification and extension of the original contract. They were: (1) identification of new supports for column cell partition; (2) electrokinetic detection of protein adsorption; and (3) emulsion studies related to bioseparations.

  17. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  18. Athena: Assessment Phase Activities

    NASA Astrophysics Data System (ADS)

    Lumb, David; Ayre, Mark

    2015-09-01

    The Athena mission concept has been proposed by the community in response to science themes of the Hot and Energetic Universe. Unlike other, competitive, mission selection exercises this "Large" class observatory mission has essentially been pre-selected. Nevertheless it has to be demonstrated that Athena meets the programmatic constraints of 1Bn euro cost cap, and a readiness level appropriate for formal mission adoption by the end 2019. This should be confirmed through a Phase A study conducted with two parallel industry activities. We describe the technical and programmatic content of these and latest progress in space and ground segment definition.

  19. Solid phases of tenoxicam.

    PubMed

    Cantera, Rodrigo G; Leza, María G; Bachiller, Carmen M

    2002-10-01

    In this report we describe the preparation and characterization of four polymorphic forms of tenoxicam; they are, three 1:1 stoichiometric solvates with acetonitrile, dioxane, and N,N-dimethylformamide, and an amorphous phase obtained by recrystallization in various solvents. Polymorph IV and solvates with dioxane and N,N-dimethylformamide are reported for the first time in this paper. In addition, three solvates were crystallized in acetone, ethyl acetate, and isopropyl alcohol. These solid forms were characterized by X-ray powder diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, optical microscopy, and elemental analysis. Solid-state properties, intrinsic dissolution rate, and dissolution kinetics from formulated tablets are also provided.

  20. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  1. Microcellular foams via phase separation

    SciTech Connect

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm/sup 3/ and cell sizes of 30..mu..m or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure.

  2. Cold Crucible Induction Melter Testing at The Idaho National Laboratory for the Advanced Remediation Technologies Program

    SciTech Connect

    Jay Roach; Nick Soelberg; Mike Ancho; Eric Tchemitcheff; John Richardson

    2009-03-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. This paper provides preliminary results of tests using the engineering-scale CCIM test system located at the INL. The CCIM test system was operated continuously over a time period of about 58 hours. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated semi-continuously because the glass drain rate was higher than the glass feedrate. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was

  3. Stationary phase analysis of generalized cubic phase mask wavefront coding

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Dong, Liquan; Zhao, Yuejin; Hui, Mei; Jia, Wei

    2013-07-01

    The modified generalized cubic phase mask (GCPM) has recently been applied in wavefront coding systems including infrared imaging and microscopy. In this paper, the stationary phase method is employed to analyze the GCPM characteristics. The SPA of the modulation transfer function (MTF) under misfocus aberration is derived for a wavefront coding system with a GCPM. The approximation corresponds with the Fast Fourier Transform (FFT) approach. On the basis of this approximation, we compare the characteristics of GCPM and cubic phase masks (CPM). A GCPM design approach based on stationary phase approximation is presented which helps to determine the initial parameter of phase mask, significantly decreasing the computational time required for numerical simulation.

  4. N-Consecutive-Phase Encoder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Lee, Ho-Kyoung; Weber, Charles

    1995-01-01

    N-consecutive-phase encoder (NCPE) is conceptual encoder for generating alphabet of N consecutive full-response continuous-phase-modulation (CPM) signals. Enables use of binary preencoder of higher rate than used with simple continuous-phase encoder (CPE). NCPE makes possible to achieve power efficiencies and bandwidth efficiencies greater than conventional trellis coders with continuous-phase frequency-shift keying (CPFSK).

  5. Calculation of Ceramic Phase Diagrams

    DTIC Science & Technology

    1979-11-30

    Parameters were derived covering the liquid, spinel , periclase, corundum alpha and beta. DD IJAN73 1413 EDITIOW OF I NOV4SS IS OSSOLETE (/Ai/Ec-;/ 5 - -rZ7 77...Lattice Stability, Solution and Compound Phase Parameters were derived covering the liquid, spinel , periclase, corundum alpha and beta quartz, crystobalite...and compound phase parameters for the liquid, spinel , corundum and periclase phases can be employed to calculate phase equilibria activity, vapor

  6. Multiple phases of protien gels

    NASA Astrophysics Data System (ADS)

    Annaka, Masahiko; Tanaka, Toyoichi

    1994-03-01

    A multiple phase transition was observed in gels made by covalently cross-linking proteins in either native or denatured state. The enzymatic activity of the gels prepared from native α-chymotrypsin was determined for each of the multiple phases. The reversibility of the swelling degrees and the enzymatic reaction rates upon phase transition suggests that the protein is at a free energy minimum and thus in a phase.

  7. Nonlinear phased array imaging

    NASA Astrophysics Data System (ADS)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  8. A cosmic superfluid phase

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami

    1991-01-01

    The universe may have undergone a superfluid-like phase during its evolution, resulting from the injection of nontopological charge into the spontaneously broken vacuum. In the presence of vortices this charge is identified with angular momentum. This leads to turbulent domains on the scale of the correlation length. By restoring the symmetry at low temperatures, the vortices dissociate and push the charges to the boundaries of these domains. The model can be scaled (phenomenologically) to very low energies, it can be incorporated in a late time phase transition and form large scale structure in the boundary layers of the correlation volumes. The novel feature of the model lies in the fact that the dark matter is endowed with coherent motion. The possibilities of identifying this flow around superfluid vortices with the observed large scale bulk motion is discussed. If this identification is possible, then the definite prediction can be made that a more extended map of peculiar velocities would have to reveal large scale circulations in the flow pattern.

  9. Process for phase separation

    DOEpatents

    Comolli, Alfred G.

    1979-01-01

    This invention provides a continuous process for separating a gaseous phase from a hydrocarbon liquid containing carbonaceous particulates and gases. The liquid is fed to a cylindrical separator, with the gaseous phase being removed therefrom as an overhead product, whereas the hydrocarbon liquid and the particulates are withdrawn as a bottoms product. By feeding the liquid tangentially to the separator and maintaining a particulate-liquid slurry downward velocity of from about 0.01 to about 0.25 fps in the separator, a total solids weight percent in the slurry of from about 0.1 to about 30%, a slurry temperature of from about 550.degree. to about 900.degree. F., a slurry residence time in the separator of from about 30 to about 360 seconds, and a length/diameter ratio for the separator of from about 20/1 to about 50/1, so that the characterization factor, .alpha., defined as ##STR1## DOES NOT EXCEED ABOUT 48 (.degree.R sec.sup.2)/ft, the deposit of carbonaceous materials on the interior surface of the separator may be substantially eliminated.

  10. Phase down of amalgam

    PubMed Central

    AL-Rabab’ah, Mohammad A.; Bustani, Mohammad A.; Khraisat, Ameen S.; Sawair, Faleh A.

    2016-01-01

    Objectives To assess the knowledge of Jordanian dentists toward phase down of dental amalgam as recommended by the Minamata Convention, and their training and competency in placing posterior composites. Methods This study was conducted through structured questionnaire interviews with randomly selected cohort of dentists in Jordan between March 2015 and June 2015. Out of 230 dentists who were invited, 196 (85.2%) agreed to participate. Dentists were asked if they know about the Minamata Convention. They were also asked about their training in placement of posterior composite. Results Out of the 196 interviewed, only 13.8% know about Minamata Convention and 17% had an undergraduate training in favor of placing composites in posterior teeth. Approximately 50% of those dentists were not trained in using rubber dam when placing posterior composites, while only 38.3% had training in sectional matrix placement. Undergraduate training did not influence (p=0.00) the dentists’ decision to remove old amalgam based on patient’s demands. Only 28.1% were of the opinion of discontinuing the use of amalgam due to its alleged health and environmental hazards. There was no general agreement on the type of composite, liner, and bonding strategy when placing posterior composites. Conclusion Dentists are not well informed on the Minamata Convention and the phase down of amalgam. Training in posterior composite placement should be given more room in undergraduate curriculum and continuous dental education. PMID:27874155

  11. Classification and properties of symmetry-enriched topological phases: Chern-Simons approach with applications to Z2 spin liquids

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming; Vishwanath, Ashvin

    2016-04-01

    We study (2+1)-dimensional phases with topological order, such as fractional quantum Hall states and gapped spin liquids, in the presence of global symmetries. Phases that share the same topological order can then differ depending on the action of symmetry, leading to symmetry-enriched topological (SET) phases. Here, we present a K -matrix Chern-Simons approach to identify distinct phases with Abelian topological order, in the presence of unitary or antiunitary global symmetries. A key step is the identification of a smooth edge sewing condition that is used to check if two putative phases are indeed distinct. We illustrate this method by classifying Z2 topological order (Z2 spin liquids) in the presence of an internal Z2 global symmetry for which we find six distinct phases. These include two phases with an unconventional action of symmetry that permutes anyons leading to symmetry-protected Majorana edge modes. Other routes to realizing protected edge states in SET phases are identified. Symmetry-enriched Laughlin states and double-semion theories are also discussed. Somewhat surprisingly, we observe that (i) gauging the global symmetry of distinct SET phases leads to topological orders with the same total quantum dimension, and (ii) a pair of distinct SET phases can yield the same topological order on gauging the symmetry.

  12. Three phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A power control circuit for a three phase induction motor is described. Power factors for the three phases are summed to provide a control signal, and this control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.

  13. Three phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1980-01-01

    A power control circuit for a three phase induction motor is described. The power factors for the three phases are summed to provide a control signal. This control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.

  14. Phase detector for three-phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.

  15. Mechanistic study of the hydrodesulfurization of methanethiol over tungsten disulfide. II. A survey of rare earth sulfides for hydrodesulfurization activity

    SciTech Connect

    Dowd, D.Q.

    1985-01-01

    I. Hydrodesulfurization is a process whereby sulfur bound in organic compounds is removed as hydrogen sulfide, and is important to the control of sulfur dioxide emissions in the combustion of petroleum and coal fuels. It involves the cleavage of carbon sulfur bonds, and is catalyzed by layered disulfides such as molybdenum and tungsten disulfide. The simplest example is the reaction CH/sub 3/SH + H/sub 2/ ..-->.. CH/sub 4/ + H/sub 2/S. The mechanism of even this prototypical reaction is unclear. In an effort to clarify it, the kinetics of methanethiol hydro desulfurization over tungsten disulfide at low pressures was established, with partial pressures of methanethiol and hydrogen varied over a hundred fold. The kinetic order in each reactant was positive when its partial pressure was low, negative when its partial pressure was high. The negative order in hydrogen had not been previously seen. The product gases, methane and hydrogen sulfide, each exhibited negative kinetic orders at high partial pressures, zero kinetic orders at low partial pressures. A dual site Langmuir-Hinshelwood type mechanism, which defines one active site as two adjacent edge sulfur vacancies and the second as a neighboring sulfur atom, describes these results quite well. II. Seventeen rare earth sulfides were surveyed for catalytic activity toward methanethiol hydrodesulfurization. These sulfides included both stoichiometric and nonstoichiometric compositions and four different morphologies. In general, nonconductors were inactive and conductors were active. This correlation extended to the nonstoichiometric ..gamma..-phase sesquisulfides which exhibit both insulating and conducting properties.

  16. Phase contrast MR angiography techniques.

    PubMed

    Dumoulin, C L

    1995-08-01

    Phase contrast MR methods encode information from macroscopic motion into the phase of the MR signal. Phase contrast methods can be applied with small and large fields-of-view, can give quantitative measures of velocity, and provide excellent suppression of signals from stationary tissue. Unlike time-of-flight methods, phase contrast methods directly measure flow and thus are not hindered by the artifactual appearance of tissue having short T1. Phase contrast angiograms can be two-dimensional (thin slice or projectile), three-dimensional, and/or time resolved and have applications throughout the body.

  17. Geometric phase shifting digital holography.

    PubMed

    Jackin, Boaz Jessie; Narayanamurthy, C S; Yatagai, Toyohiko

    2016-06-01

    A new phase shifting digital holographic technique using a purely geometric phase in Michelson interferometric geometry is proposed. The geometric phase in the system does not depend upon either optical path length or wavelength, unlike dynamic phase. The amount of geometric phase generated is controllable through a rotating wave plate. The new approach has unique features and major advantages in holographic measurement of transparent and reflecting three-dimensional (3D) objects. Experimental results on surface shape measurement and imaging of 3D objects are presented using the proposed method.

  18. Information encryption in phase space.

    PubMed

    Liu, Jun; Xu, Xiaobin; Wu, Quanying; Sheridan, John T; Situ, Guohai

    2015-03-15

    In this Letter, we propose an information encryption technique based on the theory of phase-space optics. We show that encoding the plaintext in phase space provides a higher level of security: first, the key-space is significantly enlarged. Second, it is immune to various known-plaintext (cyphertext) attacks to which the double-random phase encryption (DRPE) is vulnerable. Third, the bilinearity of phase-space distributions offers additional security. Theoretical analysis and numerical calculation results show that the proposed technique has significantly different responses to errors added to the cypheretext and the two phase keys in comparison to the classical DRPE.

  19. Identification of two major histocompatibility (MH) class II A genes and their association to Vibrio anguillarum infection in half-smooth tongue sole ( Cynoglossus semilaevis)

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Wang, Xubo; Zhang, Quanqi; Wang, Zhigang; Qi, Jie; Yi, Qilin; Liu, Zhipeng; Wang, Yanan; Yu, Haiyang

    2012-03-01

    Major histocompatibility complex class II antigens are important in vertebrate immune system. In the present study, the full cDNA sequence of class II A gene was synthesized by RACE-PCR from half-smooth tongue sole ( Cynoglossus semilaevis), and its open reading frame (ORF) polymorphism was studied. The whole cDNA sequence was 992 bp in length, including the ORF with 717 bp. Twenty-five alleles were identified and clustered into two distinct groups according to the specific nucleotides/ amino acids in specific positions. Eleven alleles belonged to Cyse-DAA while fourteen alleles belonged to Cyse-DBA. Four Cyse-DAA alleles were observed in one individual, and three to five Cyse-DBA alleles were observed in each of the three detected individuals, which indicated that at least two loci existed in each gene. Moreover, in order to study the function of the alleles in resistance to infection, 200 individuals were intraperitoneally injected with Vibrio anguillarum and the first 20 dead individuals and 20 surviving ones were selected for genotype analysis. Fifty-six alleles were identified among the 40 individuals. Twenty-nine alleles belonged to Cyse-DAA and the other 27 alleles belonged to Cyse-DBA. Eighteen alleles were selected for studying their function in resistance to infection. Alleles Cyse-DAA*0201, Cyse-DAA*1101, Cyse-DBA*0401, Cyse-DBA*1102, Cyse-DBA*1801 and Cyse-DBA*2201 were identified only in surviving individuals, while alleles Cyse- DAA*0901, Cyse-DBA*1101 and Cyse-DBA*1401 occurred more frequently in dead individuals. This study confirmed the existence and polymorphism of two class II A genes as well as the relationship between alleles of class II A genes and disease susceptibility/ resistance in half-smooth tongue sole.

  20. Phasing a segmented telescope

    NASA Astrophysics Data System (ADS)

    Paykin, Irina; Yacobi, Lee; Adler, Joan; Ribak, Erez N.

    2015-02-01

    A crucial part of segmented or multiple-aperture systems is control of the optical path difference between the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main advantage of this method over traditional correction methods is that wave-front-sensing hardware and software are no longer required, making the optical and mechanical system much simpler. The results of simulations and laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt errors.

  1. Helical Nanofilament Phases

    SciTech Connect

    L Hough; H Jung; D Kruerke; M Heberling; M Nakata; C Jones; D Chen; D Link; N Clark; et al.

    2011-12-31

    In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral - a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry - the appearance of macroscopic coherence of the filament twist-produces a liquid crystal phase of helically precessing layers.

  2. Friction and Phase Synchronization

    NASA Astrophysics Data System (ADS)

    Braiman, Y.; Protopopescu, V.; Family, F.; Hentschel, H. G. E.

    2000-03-01

    Spatiotemporal fluctuations in small discrete nonlinear arrays affect the dynamics of the center of mass. We derive the equations describing the dynamics of the center of mass and the spatial fluctuations for each coherent mode of the array. Analysis of these equations indicates that depending on array stiffness, size, and the external forcing - quantized jumps occur in the minimum friction (maximum velocity) of the array. We propose an analytical formalism to determine the occurrences of these jumps. We present numerical evidence indicating that phase synchronization is related to the frictional properties of sliding objects at the atomic scale and discuss mechanisms of tuning and controlling nanoscale friction. Y. Braiman, F. Family, H. G. E. Hentschel, C. Mak, and J. Krim, Phys. Rev. E 59, R4737 (1999). H. G. E. Hentschel, F. Family, and Y. Braiman, Phys. Rev. Lett. 83, 104 (1999).

  3. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  4. Options Study - Phase II

    SciTech Connect

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  5. Polarization phase shifting interferometric technique for phase calibration of a reflective phase spatial light modulator

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Somparna; Sarkar, Sanjukta; Bhattacharya, Kallol; Hazra, Lakshminarayan

    2013-03-01

    Calibration of phase in spatial light modulators is a prerequisite for applications where a prespecified phase distribution needs to be implemented over the surface of the modulator. The present work proposes a full-field polarization phase shifting interferometric technique, based on the Twyman-Green interferometer, for the purpose.

  6. Geometric phase in Bohmian mechanics

    SciTech Connect

    Chou, Chia-Chun; Wyatt, Robert E.

    2010-10-15

    Using the quantum kinematic approach of Mukunda and Simon, we propose a geometric phase in Bohmian mechanics. A reparametrization and gauge invariant geometric phase is derived along an arbitrary path in configuration space. The single valuedness of the wave function implies that the geometric phase along a path must be equal to an integer multiple of 2{pi}. The nonzero geometric phase indicates that we go through the branch cut of the action function from one Riemann sheet to another when we locally travel along the path. For stationary states, quantum vortices exhibiting the quantized circulation integral can be regarded as a manifestation of the geometric phase. The bound-state Aharonov-Bohm effect demonstrates that the geometric phase along a closed path contains not only the circulation integral term but also an additional term associated with the magnetic flux. In addition, it is shown that the geometric phase proposed previously from the ensemble theory is not gauge invariant.

  7. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics.

    PubMed

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A; Cox, Juergen; Mann, Matthias

    2015-07-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum-the highest proteome coverage reported with a QTOF instrument so far.

  8. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics*

    PubMed Central

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A.; Cox, Juergen; Mann, Matthias

    2015-01-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum—the highest proteome coverage reported with a QTOF instrument so far. PMID:25991688

  9. Outburst activity in comets - II. A multiband photometric monitoring of comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, Josep M.; García-Hernández, D. A.; Sánchez, Albert; Lacruz, Juan; Davidsson, Björn J. R.; Rodríguez, Diego; Pastor, Sensi; de Los Reyes, José A.

    2010-12-01

    We have carried out a continuous multiband photometric monitoring of the nuclear activity of comet 29P/Schwassmann-Wachmann 1 from 2008 to 2010. Our main aim has been to study the outburst mechanism on the basis of a follow-up of the photometric variations associated with the release of dust. We have used a standardized method to obtain the 10-arcsec nucleus photometry in the V, R and I filters of the Johnson-Kron-Cousins system, which are accurately calibrated with standard Landolt stars. The production of dust in the R and I bands during the 2010 February 3 outburst has been also computed. We conclude that the massive ejection of large (optically thin) particles from the surface at the time of the outburst is the triggering mechanism to produce the outburst. The ulterior sublimation of these ice-rich dust particles during the following days induces fragmentation, generating micrometre-sized grains, which increase the dust spatial density to produce the outburst in the optical range as a result of the scattering of sunlight. The material leaving the nucleus adopts a fan-like dust feature, formed by micrometre-sized particles that decay in brightness as it evolves outwards. By analysing the photometric signal measured in a standardized 10-arcsec aperture using the phase dispersion minimization technique, we have found a clear periodicity of 50 d. Remarkably, this value is also consistent with an outburst frequency of 7.4 outbursts per yr deduced from the number of outbursts noticed during the effective observing time.

  10. Joint estimation of phase and phase diffusion for quantum metrology.

    PubMed

    Vidrighin, Mihai D; Donati, Gaia; Genoni, Marco G; Jin, Xian-Min; Kolthammer, W Steven; Kim, M S; Datta, Animesh; Barbieri, Marco; Walmsley, Ian A

    2014-04-14

    Phase estimation, at the heart of many quantum metrology and communication schemes, can be strongly affected by noise, whose amplitude may not be known, or might be subject to drift. Here we investigate the joint estimation of a phase shift and the amplitude of phase diffusion at the quantum limit. For several relevant instances, this multiparameter estimation problem can be effectively reshaped as a two-dimensional Hilbert space model, encompassing the description of an interferometer phase probed with relevant quantum states--split single-photons, coherent states or N00N states. For these cases, we obtain a trade-off bound on the statistical variances for the joint estimation of phase and phase diffusion, as well as optimum measurement schemes. We use this bound to quantify the effectiveness of an actual experimental set-up for joint parameter estimation for polarimetry. We conclude by discussing the form of the trade-off relations for more general states and measurements.

  11. Phase diagrams of polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Mahdi, Khaled A.

    We study the phase diagram of polyelectrolyte solutions in salt and salt-free environments. We examine the phase behavior of polyelectrolyte solutions, in the semidilute regime, using different physical models, namely the Random Phase Approximation (RPA) and the cross-linked model. In the RPA, we calculate the electrostatic free energy by summing all the fluctuations of the chains and all present ionic species. Within this approximation, the phase diagrams of salt-free polyelectrolyte solutions show phase separation even without including short-range attractions or ion condensation. We find that the phase behavior of large chains resembles the phase diagram of polymer network solutions. That is, the equilibrium is established between a network phase and a chain-free phase. Upon the addition of salt, the dissociated ions increase the entropy of the system and overcome the energy from the electrostatic fluctuations. When the short-range attraction between monomers is included in the model, the free energy predicts phase segregation for all salt valences at high salt concentrations (1 mol/l and higher). The phenomenon is called salting-out and occurs simply because the addition of salt reduces the quality of the solvent and induces precipitation. However, phase segregation in the presence of multivalent ions in polyelectrolyte solutions occurs at low salt concentrations (less than 1 mol/l). We propose that this phase separation is due to polyions cross-linked by multivalent ions. We constructed a phenomenological two-state model to examine this phenomenon. The two phases coexisting in the solution are a network-like phase and a polymer-free phase. The polymer-free phase is modeled using Debye-Huckel theory. In the cross-linked phase, each condensed multivalent ion attracts an equal number of monomers creating a neutral cluster. The energy of the cluster is evaluated by a simple Coulombic energy. The bare monomer charges between the linkages are treated as line of

  12. About Phase: Synthetic Aperture Radar and the Phase Retrieval

    DTIC Science & Technology

    2014-03-01

    techniques also enables detection of sudden seismic activity and even volcanic bulging prior to the eruption of volcanoes [2, 48, 71]. Navigation and...in SAR could have a more systematic solution if only additional signal data were available for analysis. The desire for more information motivates...transform. This reduction implies that any method of phase retrieval is also a solution to the phase error problem. We note that phase retrieval is

  13. Ferrite Phase Shifters Using Stress Insensitive Materials. Phase 1

    DTIC Science & Technology

    1992-06-11

    PROGRAM OBJECTIVES 1.3 PROGRAM TECHNICAL TASKS (PHASE I) 2.0 BACKGROUND DISCUSSION 2.1 REMANENT STATE FERRITE PHASERS 2.2 REMANENT MAGNETIZATION 2.3... MAGNETIZATION AND MAGNETOSTRICTION 2.1 REMANENT STATE FERRITE PHASERS Microwave ferrite digital phase shifters utilize ferrite toroidal structures and the...The insertion phase length of the structure is dependent on the remanent magnetization of the ferrite (see the hysteresis loop shown in Figure 2-4

  14. Ion mixing and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  15. Simulation of Mission Phases

    NASA Technical Reports Server (NTRS)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  16. Phase-shifting point diffraction interferometer phase grating designs

    DOEpatents

    Naulleau, Patrick

    2001-01-01

    Diffraction phase gratings are employed in phase-shifting point diffraction interferometers to improve the interferometric fringe contrast. The diffraction phase grating diffracts a zeroth-order diffraction of light at a first power level to the test-beam window of a mask that is positioned at the image plane and a first-order diffraction at a second power to the reference-beam pinhole. The diffraction phase grating is preferably selected to yield a desired ratio of the first power level to second power level.

  17. Inhibition by Compound II, a sotalol analogue, of delayed rectifier current (iK) in rabbit isolated sino-atrial node cells.

    PubMed

    Lei, M; Brown, H F

    1998-03-01

    The effects of Compound II, a sotalol analogue, on spontaneous electrical activity and on three membrane currents (the delayed rectifier current, iK, the long-lasting inward calcium current, i(Ca,L) and hyperpolarization activated inward current, i(f)) were investigated in rabbit isolated sino-atrial node cells by whole cell clamp with amphotericin-permeabilised patches. A submaximal concentration of Compound II (50 nM) had a significant effect on the time and voltage dependent activation of iK and caused a positive shift of the iK activation curve. As well as blocking i(Kr), it caused some degree of block of i(Ks). Block of iK by Compound II was found to be concentration dependent with an IC50 of approximately 40 nM. 1 microM Compound II nearly completely blocked iK without significantly affecting the peak current or I/V relationships of i(Ca,L) or i(f). 50 nM Compound II caused a significant prolongation of APD100 and of cycle length. It also decreased diastolic depolarization rate without significantly affecting MDP and action potential amplitude. It is concluded that Compound II, a sotalol analogue, slows spontaneous activity of isolated rabbit SA node cells through a selective inhibition of iK.

  18. Dynamic phase separation: from coarsening to turbulence via structure formation.

    PubMed

    Golovin, A A; Pismen, L M

    2004-09-01

    We investigate some new two-dimensional evolution models belonging to the class of convective Cahn-Hilliard models: (i) a local model with a scalar order parameter, (ii) a nonlocal model with a scalar order parameter, and (iii) a model with a vector order parameter. These models are applicable to phase-separating system where concentration gradients cause hydrodynamic motion due to buoyancy or Marangoni effect. The numerical study of the models shows transition from coarsening, typical of Cahn-Hilliard systems, to spatiotemporally irregular behavior (turbulence), typical of the Kuramoto-Sivashinsky equation, which is obtained in the limit of very strong driving. The transition occurs not in a straightforward way, but through the formation of spatial patterns that emerge for intermediate values of the driving intensity. As in driven one-dimensional models studied before, the mere presence of the driving force, however small, breaks the symmetry between the two separating phases, as well as increases the coarsening rate. With increasing driving, coarsening stops. The dynamics is generally irregular at strong driving, but exhibits specific structural features.

  19. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  20. Impulsive phase transport

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Bely-Dubau, Francoise; Brown, John C.; Dulk, George A.; Emslie, A. Gordon; Enome, Shinzo; Gabriel, Alan H.; Kundu, Mukul R.; Melrose, Donald; Neidig, Donald F.

    1986-01-01

    The transport of nonthermal electrons is explored. The thick-target electron beam model, in which electrons are presumed to be accelerated in the corona and typically thermalized primarily in the chromosphere and photosphere, is supported by observations throughout the electromagnetic spectrum. At the highest energies, the anisotropy of gamma-ray emission above 10 MeV clearly indicates that these photons are emitted by anisotropically-directed particles. The timing of this high-energy gamma-radiation with respect to lower-energy hard X-radiation implies that the energetic particles have short life-times. For collisional energy loss, this means that they are stopped in the chromosphere or below. Stereoscopic (two-spacecraft) observations at hard X-ray energies (up to 350 keV) imply that these lower-energy (but certainly nonthermal) electrons are also stopped deep in the chromosphere. Hard X-ray images show that, in spatially resolved flares whose radiation consists of impulsive bursts, the impulsive phase starts with X-radiation that comes mostly from the foot-points of coronal loops whose coronal component is outlined by microwaves.

  1. Phased Array Feeds

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Bradley, Richard F.; Brisken, Walter F.; Cotton, William D.; Emerson, Darrel T.; Kerr, Anthony R.; Lacasse, Richard J.; Morgan, Matthew A.; Napier, Peter J.; Norrod, Roger D.; Payne, John M.; Pospieszalski, Marian W.; Symmes, Arthur; Thompson, A. Richard; Webber, John C.

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  2. Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.

  3. Phase change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  4. Berry phase in neutrino oscillations

    SciTech Connect

    He Xiaogang; McKellar, Bruce H.J.; Zhang Yue

    2005-09-01

    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation. If the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges, these conditions imply that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a nonzero Berry phase with just two generations.

  5. Phase-Oriented Gear Systems

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    2007-01-01

    Phase-oriented gear systems are differential planetary transmissions in which each planet gear has two sets of unequal numbers of teeth indexed at prescribed relative angles (phases). The figure illustrates an application of the phase-oriented gearing concept to a relatively simple speed-reducing differential planetary transmission that includes a sun gear, an idler gear, three identical planet gears, a ground internal ring gear, and an output internal ring gear. Typically, the ground internal ring gear and output internal ring gear have different numbers of teeth, giving rise to a progressive and periodic phase shift between the corresponding pairs of teeth engaged by each successive planet gear. To accommodate this phase shift, it is necessary to introduce a compensating phase shift between the ground-gear-engaging and output-gearengaging sections of each planet gear. This is done by individually orienting each planet gear

  6. Distributed phased array architecture study

    NASA Technical Reports Server (NTRS)

    Bourgeois, Brian

    1987-01-01

    Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.

  7. Digitally controlled distributed phase shifter

    SciTech Connect

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1992-12-31

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one of two discrete bias voltages. The application of the discrete bias voltages change the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  8. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  9. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  10. Oscillatory phase shapes syllable perception

    PubMed Central

    ten Oever, Sanne; Sack, Alexander T.

    2015-01-01

    The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences. PMID:26668393

  11. Phase-shift coherence holography.

    PubMed

    Naik, Dinesh N; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2010-05-15

    We propose and experimentally demonstrate a new reconstruction scheme for coherence holography using computer-generated phase-shift coherence holograms. A 3D object encoded into the spatial coherence function is reconstructed directly from a set of incoherently illuminated computer-generated holograms with numerically introduced phase shifts. Although a rotating ground glass is used to introduce spatially incoherent illumination, the phase-shifting portion of the system is simple and free from mechanically moving components.

  12. Compact optical microfiber phase modulator.

    PubMed

    Zhang, Xueliang; Belal, M; Chen, G Y; Song, Zhangqi; Brambilla, G; Newson, T P

    2012-02-01

    A compact optical microfiber phase modulator with MHz bandwidth is presented. A micrometer-diameter microfiber is wound on a millimeter-diameter piezoelectric ceramic rod with two electrodes. When a voltage is applied to the piezoelectric ceramic, the rod is strained, leading to a phase change along the microfiber; because of the small size, the optical microfiber phase modulator can have as high as a few MHz bandwidth response.

  13. Lunar and menstrual phase locking.

    PubMed

    Cutler, W B

    1980-08-01

    In a selected population of 312 women, prospective menses records were maintained during the autumn of 1977. Women whose menstrual cycle duration approaches the cycle duration of the earth's moon (29.5 days) tend to ovulate in the dark phase of the lunar period. The dark phase encompasses the half-cycle of the month from last quarter, through new moon, to first quarter. Women showing irregular menses also tended to ovulate during the dark phase of the lunar period.

  14. Phased Array Theory and Technology

    DTIC Science & Technology

    1981-07-01

    drive the ferrite magnetization to saturation as in a latching phase shifter, or to various points on the magnetization curve with flux drive...can vary from 1 kW to as much as 150 kW peak and average power levels to 400 W. Latching phase shifters have switching times un the order of one...Circuits , and Toroid Ferrite Phase Shifted SO. ode \\rrav Network 26. Dual Slat . 27. PA\\ E PAWS Array (Courtesy of Raytheon Company) 28. Patriot

  15. 30 CFR 57.22201 - Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mechanical ventilation (I-A, I-B, I-C, II-A, II...-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22201 Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). All mines...

  16. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved testing devices (I-A, I-B, I-C, II-A... Ventilation § 57.22227 Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). (a... be used in Subcategory I-C mines. (c)(1) If electrically......

  17. 30 CFR 57.22201 - Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22201 Section 57.22201 Mineral Resources MINE SAFETY AND HEALTH....22201 Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). All......

  18. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved testing devices (I-A, I-B, I-C, II-A... Ventilation § 57.22227 Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). (a... be used in Subcategory I-C mines. (c)(1) If electrically......

  19. 30 CFR 57.22201 - Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22201 Section 57.22201 Mineral Resources MINE SAFETY AND HEALTH....22201 Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). All mines...

  20. 30 CFR 57.22201 - Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22201 Section 57.22201 Mineral Resources MINE SAFETY AND HEALTH....22201 Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). All mines...

  1. 30 CFR 57.22201 - Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22201 Section 57.22201 Mineral Resources MINE SAFETY AND HEALTH....22201 Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). All mines...

  2. Going through a quantum phase

    NASA Technical Reports Server (NTRS)

    Shapiro, Jeffrey H.

    1992-01-01

    Phase measurements on a single-mode radiation field are examined from a system-theoretic viewpoint. Quantum estimation theory is used to establish the primacy of the Susskind-Glogower (SG) phase operator; its phase eigenkets generate the probability operator measure (POM) for maximum likelihood phase estimation. A commuting observables description for the SG-POM on a signal x apparatus state space is derived. It is analogous to the signal-band x image-band formulation for optical heterodyne detection. Because heterodyning realizes the annihilation operator POM, this analogy may help realize the SG-POM. The wave function representation associated with the SG POM is then used to prove the duality between the phase measurement and the number operator measurement, from which a number-phase uncertainty principle is obtained, via Fourier theory, without recourse to linearization. Fourier theory is also employed to establish the principle of number-ket causality, leading to a Paley-Wiener condition that must be satisfied by the phase-measurement probability density function (PDF) for a single-mode field in an arbitrary quantum state. Finally, a two-mode phase measurement is shown to afford phase-conjugate quantum communication at zero error probability with finite average photon number. Application of this construct to interferometric precision measurements is briefly discussed.

  3. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  4. Method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    2000-01-01

    A method for converting liquid organic material in a mixture into a product utilizing a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  5. MANUFACTURING METHODS FOR PHASE SHIFTERS.

    DTIC Science & Technology

    MANUFACTURING), (*PHASE SHIFT CIRCUITS, FERRITES , GARNET, DIGITAL SYSTEMS, X BAND, C BAND, S BAND, RADAR EQUIPMENT, MAGNETIC MATERIALS, YTTRIUM COMPOUNDS, GADOLINIUM COMPOUNDS, ALUMINUM COMPOUNDS, IRON COMPOUNDS, OXIDES.

  6. Topological phases of eternal inflation

    SciTech Connect

    Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard

    2010-06-15

    ''Eternal inflation'' is a term that describes a number of different phenomena that have been classified by Winitzki. According to Winitzki's classification, these phases can be characterized by the topology of the percolating structures in the inflating, 'white', region. In this paper we discuss these phases, the transitions between them, and the way they are seen by a 'Census Taker', a hypothetical observer inside the noninflating, 'black', region. We discuss three phases that we call 'black island', 'tubular', and 'white island'. The black island phase is familiar, composed of rare Coleman De Luccia bubble nucleation events. The Census Taker sees an essentially spherical boundary, described by the conformal field theory of the Friedmann-Robertson-Walker/conformal field theory (FRW/CFT) correspondence. In the tubular phase the Census Taker sees a complicated infinite genus structure composed of arbitrarily long tubes. The white island phase is even more mysterious from the black side. Surprisingly, when viewed from the noninflating region this phase resembles a closed, positively curved universe that eventually collapses to a singularity. Nevertheless, pockets of eternal inflation continue forever. In addition, there is an 'aborted' phase in which no eternal inflation takes place. Rigorous results of Chayes, Chayes, Grannan, and Swindle establish the existence of all of these phases, separated by first order transitions, in Mandelbrot percolation, a simple model of eternal inflation.

  7. Dual-Phase Nozzle Flow.

    DTIC Science & Technology

    1982-10-01

    Two-phase 20. A T RACT (0.31lmm 401 teV9 i 01 000* u...in #CMIdR@0fr &V WNHI& WARNeJ A revieW or the dual-phase -ower system was made. This study ...pr-et5 ._ lnering Dean of Science and Engineering J* ABSTRACT A review of the dual-phase power system was made. This study focused on the multi...be studied in detail, but first a review of the dual-phase cycle will be carried out from information obtained from References 1 and 2. Reference 1

  8. Topological phases of eternal inflation

    NASA Astrophysics Data System (ADS)

    Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard

    2010-06-01

    “Eternal inflation” is a term that describes a number of different phenomena that have been classified by Winitzki. According to Winitzki’s classification, these phases can be characterized by the topology of the percolating structures in the inflating, “white,” region. In this paper we discuss these phases, the transitions between them, and the way they are seen by a “Census Taker,” a hypothetical observer inside the noninflating, “black,” region. We discuss three phases that we call “black island,” “tubular,” and “white island.” The black island phase is familiar, composed of rare Coleman De Luccia bubble nucleation events. The Census Taker sees an essentially spherical boundary, described by the conformal field theory of the Friedmann-Robertson-Walker/conformal field theory (FRW/CFT) correspondence. In the tubular phase the Census Taker sees a complicated infinite genus structure composed of arbitrarily long tubes. The white island phase is even more mysterious from the black side. Surprisingly, when viewed from the noninflating region this phase resembles a closed, positively curved universe that eventually collapses to a singularity. Nevertheless, pockets of eternal inflation continue forever. In addition, there is an “aborted” phase in which no eternal inflation takes place. Rigorous results of Chayes, Chayes, Grannan, and Swindle establish the existence of all of these phases, separated by first order transitions, in Mandelbrot percolation, a simple model of eternal inflation.

  9. Phase structure of soliton molecules

    SciTech Connect

    Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Boehm, M.; Mitschke, F.

    2007-06-15

    Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E-fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

  10. Phase estimation for a phased array therapeutic interstitial ultrasound probe.

    PubMed

    Yang, Zhenya; Dillenseger, Jean-Louis

    2012-01-01

    This paper deals about high intensity ultrasound interstitial therapy simulation. The simulated phased array ultrasound probe allows a dynamic electronic focusing of the therapeutic beam. In order to maximize the power deposit at the focal point we propose a method which allows to optimally defining the phase shift of the electrical control signal for each individual element.

  11. Behavior and Sensitivity of Phase Arrival Times (PHASE)

    DTIC Science & Technology

    2014-09-30

    travel -time perturbations, and, further, to study the behavior of phase arrival times and its predictability, depending on propagation and signal...Using this definition, expressions for the corresponding travel -time perturbations are derived and the sensitivity behavior of phase arrival times...corresponding travel -time sensitivity kernels for peak arrivals. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

  12. Topology in Ordered Phases

    NASA Astrophysics Data System (ADS)

    Tanda, Satoshi; Matsuyama, Toyoki; Oda, Migaku; Asano, Yasuhiro; Yakubo, Kousuke

    2006-08-01

    .]. Nanofibers of hydrogen storage alloy / I. Saita ... [et al.]. Synthesis of stable icosahedral quasicrystals in Zn-Sc based alloys and their magnetic properties / S. Kashimoto and T. Ishimasa. One-armed spiral wave excited by eam pressure in accretion disks in Be/X-Ray binaries / K. Hayasaki and A. T. Okazaki -- IV. Topological defects and excitations. Topological excitations in the ground state of charge density wave systems / P. Monceau. Soliton transport in nanoscale charge-density-wave systems / K. Inagaki, T. Toshima and S. Tanda. Topological defects in triplet superconductors UPt3, Sr[symbol]RuO[symbol], etc. / K. Maki ... [et al.]. Microscopic structure of vortices in type II superconductors / K. Machida ... [et al.]. Microscopic neutron investigation of the Abrikosov state of high-temperature superconductors / J. Mesot. Energy dissipation at nano-scale topological defects of high-Tc superconductors: microwave study / A. Maeda. Pressure induced topological phase transition in the heavy Fermion compound CeAl[symbol] / H. Miyagawa ... [et al.]. Explanation for the unusual orientation of LSCO square vortex lattice in terms of nodal superconductivity / M. Oda. Local electronic states in Bi[symbol]Sr[symbol]CaCu[symbol]O[symbol] / A. Hashimoto ... [et al.] -- V. Topology in quantum phenomena. Topological vortex formation in a Bose-Einstein condensate of alkali-metal atoms / M. Nakahara. Quantum phase transition of [symbol]He confined in nano-porous media / K. Shirahama, K. Yamamoto and Y. Shibayama. A new mean-field theory for Bose-Einstein condensates / T. Kita. Spin current in topological cristals / Y. Asano. Antiferromagnetic defects in non-magnetic hidden order of the heavy-electron system URu[symbol]Si[symbol] / H. Amitsuka, K. Tenya and M. Yokoyama. Magnetic-field dependences of thermodynamic quantities in the vortex state of Type-II superconductors / K. Watanabe, T. Kita and M. Arai. Three-magnon-mediated nuclear spin relaxation in quantum ferrimagnets of topological

  13. Phase-locked loop with controlled phase slippage

    DOEpatents

    Mestha, Lingappa K.

    1994-01-01

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem.

  14. Phase-locked loop with controlled phase slippage

    DOEpatents

    Mestha, L.K.

    1994-03-29

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency is described. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem. 10 figures.

  15. PHASE CHANGE LIQUIDS

    SciTech Connect

    Susan S. Sorini; John F. Schabron

    2006-03-01

    Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

  16. Adaptive Phase Delay Generator

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence

    2013-01-01

    There are several experimental setups involving rotating machinery that require some form of synchronization. The adaptive phase delay generator (APDG) the Bencic-1000 is a flexible instrument that allows the user to generate pulses synchronized to the rising edge of a tachometer signal from any piece of rotating machinery. These synchronized pulses can vary by the delay angle, pulse width, number of pulses per period, number of skipped pulses, and total number of pulses. Due to the design of the pulse generator, any and all of these parameters can be changed independently, yielding an unparalleled level of versatility. There are two user interfaces to the APDG. The first is a LabVIEW program that has the advantage of displaying all of the pulse parameters and input signal data within one neatly organized window on the PC monitor. Furthermore, the LabVIEW interface plots the rpm of the two input signal channels in real time. The second user interface is a handheld portable device that goes anywhere a computer is not accessible. It consists of a liquid-crystal display and keypad, which enable the user to control the unit by scrolling through a host of command menus and parameter listings. The APDG combines all of the desired synchronization control into one unit. The experimenter can adjust the delay, pulse width, pulse count, number of skipped pulses, and produce a specified number of pulses per revolution. Each of these parameters can be changed independently, providing an unparalleled level of versatility when synchronizing hardware to a host of rotating machinery. The APDG allows experimenters to set up quickly and generate a host of synchronizing configurations using a simple user interface, which hopefully leads to faster results.

  17. Resolution Of Phase Ambiguities In QPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1992-01-01

    Report discusses several techniques for resolution of phase ambiguities in detection and decoding of radio signals modulated by coherent quadrature phase-shift keying (QPSK) and offset QPSK (OQPSK). Eight ambiguities: four associated with phase of carrier signal in absence of ambiguity in direction of rotation of carrier phase, and another four associated with carrier phase in presence of phase-rotation ambiguity.

  18. Oscillator With Low Phase Noise

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1987-01-01

    Phase errors cancelled for high frequency stability. Radio-frequency oscillator achieves high stability of frequency through parallel, two-amplifier configuration in which effects cause phase noise tend to cancel each other. Circuit includes two amplifiers with resonating elements, each constitutes part of feedback loop of other. Generate same frequency because each circuit provides other with conditions necessary for oscillation.

  19. 78 FR 33911 - Phased Retirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Management (OPM) is proposing to implement phased retirement, a new human resources tool that allows full...-21,'' Public Law 112-141. Background Phased retirement is a new human resources management tool made... Benefits (FEHB) and Federal Employees' Group Life Insurance (FEGLI) enrollment will stay with the...

  20. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface

  1. USArray Regional Phase Analysis

    NASA Astrophysics Data System (ADS)

    Buehler, J. S.; Shearer, P. M.

    2014-12-01

    The regional Pn and Sn phases, which are typically described as headwaves that propagate in the uppermost mantle, are sensitive to heterogeneities in the mantle lid and complement other seismic studies with poorer vertical resolution at this depth. We have experimented with a variety of approaches to image the velocity structure and anisotropy in the western U.S., starting with separate Pn and Sn time-term tomographies, but also localized cross-correlation and stacking approaches that benefit from the regular USArray station arrangement. Later we combined the data sets for joint Pn-Sn inversions and the resulting Vp/Vs maps provide further insight into the nature of the seismic anomalies. Now that USArray has reached the east coast, we are updating our models to include the cumulative station footprint. The sparser source distribution in the eastern U.S., and the resulting longer ray paths, provide new challenges and justify the inclusion of additional parameters that account for the velocity gradient in the mantle lid. Our results show generally higher Pn velocities in the eastern U.S., but we observe patches of lower velocities around the New Madrid seismic zone and below the eastern Appalachians. We find that the Pn fast axes generally do not agree with SKS splitting orientations, suggesting significant vertical changes in anisotropy in the upper mantle. For example, the circular pattern of the fast polarization direction of SKS in the western U.S. is much less pronounced in the Pn results, and in the eastern U.S. the dominant Pn fast direction is approximately north-south, whereas the SKS fast polarizations are oriented roughly parallel to the absolute plate motion direction. Since Pn and Sn travel through the crust, they can provide additional information on crustal thickness. In several regions our results and estimates from receiver function studies are inconsistent. For example, beneath the Colorado Plateau our crustal thickness estimates are about 35-40 km

  2. Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional

    NASA Astrophysics Data System (ADS)

    Gambacurta, D.; Grasso, M.; Engel, J.

    2015-09-01

    We make use of a subtraction procedure, introduced to overcome double-counting problems in beyond-mean-field theories, in the second random-phase-approximation (SRPA) for the first time. This procedure guarantees the stability of the SRPA (so that all excitation energies are real). We show that the method fits perfectly into nuclear density-functional theory. We illustrate applications to the monopole and quadrupole response and to low-lying 0+ and 2+ states in the nucleus 16O . We show that the subtraction procedure leads to (i) results that are weakly cutoff dependent and (ii) a considerable reduction of the SRPA downwards shift with respect to the random-phase approximation (RPA) spectra (systematically found in all previous applications). This implementation of the SRPA model will allow a reliable analysis of the effects of two particle-two hole configurations (2p2h) on the excitation spectra of medium-mass and heavy nuclei.

  3. Blue phases of cholesteryl nonanoate

    NASA Astrophysics Data System (ADS)

    Meiboom, S.; Sammon, M.

    1981-07-01

    The transformation on heating of an ordinary (helical) cholesteric liquid crystal (CHOL) into the isotropic phase (ISO) often occurs via a number of intermediate "blue" phases. We find the following scheme of phase transitions in cholesteryl nonanoate: CHOL-->91.35BPI-->91.76BPII-->91.84BPIII-->91.95ISO. Here BPI, BPII, and BPIII indicate three distinct, thermodynamically stable phases; transition temperatures are in °C. From observations of supercooling and coexistence, we conclude that all these transformations are first order, except possibly the BPIII-->ISO, the character of which remains in doubt. A similar behavior is found in cholesteryl myristate and in a mixture of cholesteryl nonanoate and cholesteryl chloride. A few observations having a bearing on the structure of the blue phases are reported.

  4. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  5. Phase comparator apparatus and method

    DOEpatents

    Coffield, Frederick E.

    1987-01-01

    The phase change to be measured is multiply measured at artificially incred and decreased values and then averaged to result in greater accuracy. Delayed versions of the reference and input signals are compared in dual channels to the undelayed input signal and the undelayed reference signal, respectively. Resulting time-lengthened and time-shortened phase measurement signals from the dual comparator channels are algebraically combined to provide an analog output signal having an average magnitude accurately proportional to the true phase difference between the undelayed reference and the undelayed input signals. Increased linearity/reproducibility results where relatively high frequency signals (e.g., up to 70 MHz or more) are to be phase compared. An optional voltage clamp on the comparator channel outputs further improves linearity/reproducibility where very small phase differences are being measured.

  6. Phase width reduction project summary

    SciTech Connect

    Clark, D.J.; Xie, Z.Q.; McMahan, M. A.

    1999-11-01

    The purpose of the phase width reduction project, 1993--96, was to reduce the phase width of the 88-Inch Cyclotron beam on target from 5--10 ns to 1--2 ns for certain experiments, such as Gammasphere, which use time-of-flight identification. Since reducing the phase width also reduces beam intensity, tuning should be done to also optimize the transmission. The Multi-turn Collimator slits in the cyclotron center region were used to collimate the early turns radially, thus reducing the phase width from about 5 ns to 1--2 ns FWHM for a Gammasphere beam. The effect of the slits on phase width was verified with a Fast Faraday Cup and with particle and gamma-ray detectors in the external beamline.

  7. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  8. Phase stable RF transport system

    DOEpatents

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  9. Phase-sensitive flow cytometer

    SciTech Connect

    Steinkamp, J.A.

    1992-12-31

    This report describes phase-sensitive flow cytometer (FCM) which provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  10. Octahedral tilting, monoclinic phase and the phase diagram of PZT

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.

    2011-10-01

    Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.

  11. {sup 129}I Interlaboratory comparison: phase I and phase II

    SciTech Connect

    Caffee, M W; Roberts, M L

    1999-09-30

    An interlaboratory comparison exercise for {sup 129}I was organized and conducted. Nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, 11 samples were measured. The suite of samples contained both synthetic ''standard type'' materials (i.e., AgI) and environmental materials. The isotopic {sup 129}I/{sup 127}I ratios of the samples varied from 10{sup {minus}8} to 10{sup {minus}14}. In this phase, each laboratory was responsible for its own chemical preparation of the samples. In Phase I, the {sup 129}I AMS measurements for prepared AgI were in good agreement. However, large discrepancies were seen in {sup 129}I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I {sup 129}I intercomparison, a subsequent study was conducted. In Phase II of the {sup 129}I intercomparison, three separate laboratories prepared AgI from two environmental samples (IAEA 375 soil and maples leaves). Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then re-distributed to the participating {sup 129}I AMS facilities and {sup 129}I/{sup 127}I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented.

  12. Double random phase encoding using phase reservation and compression

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2014-02-01

    In recent years, various studies have been conducted to illustrate the vulnerability of double random phase encoding (DRPE). In this paper, we propose a novel method via phase reservation and compression to enhance DRPE security. Only a compressed phase distribution is available in the CCD plane, and the amplitude component is not available or requested for optical decryption. Since only noise-like distributions can be obtained by using the correct security keys during optical decryption, a nonlinear correlation algorithm is further applied for authenticating the decrypted image. It is demonstrated that valid conditions for attack algorithms are broken and high security can be achieved for the DRPE system.

  13. Inhomogeneous phase shifting: an algorithm for nonconstant phase displacements

    SciTech Connect

    Tellez-Quinones, Alejandro; Malacara-Doblado, Daniel

    2010-11-10

    In this work, we have developed a different algorithm than the classical one on phase-shifting interferometry. These algorithms typically use constant or homogeneous phase displacements and they can be quite accurate and insensitive to detuning, taking appropriate weight factors in the formula to recover the wrapped phase. However, these algorithms have not been considered with variable or inhomogeneous displacements. We have generalized these formulas and obtained some expressions for an implementation with variable displacements and ways to get partially insensitive algorithms with respect to these arbitrary error shifts.

  14. Numerical Studies of Topological phases

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott

    The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases. Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of ''integer'' (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases. Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30

  15. Phase Noise in Photonic Phased-Array Antenna Systems

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T., Jr.; Maleki, Lute

    1998-01-01

    The total noise of a phased-array antenna system employing a photonic feed network is analyzed using a model for the individual component noise including both additive and multiplicative equivalent noise generators.

  16. Supercooling and phase coexistence in cosmological phase transitions

    SciTech Connect

    Megevand, Ariel; Sanchez, Alejandro D.

    2008-03-15

    Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.

  17. Phase shift estimation in interferograms with unknown phase step

    NASA Astrophysics Data System (ADS)

    Dalmau, Oscar; Rivera, Mariano; Gonzalez, Adonai

    2016-08-01

    We first present two closed formulas for computing the phase shift in interferograms with unknown phase step. These formulas obtain theoretically the exact phase step in fringe pattern without noise and only require the information in two pixels of the image. The previous formulas allows us to define a functional that yields an estimate of the phase step in interferograms corrupted by noise. In the experiment we use the standard Least Square formulation which also yields a closed formula, although the general formulation admits a robust potential. We provide two possible implementations of our approach, one in which the sites can be randomly selected and the other in which we can scan the whole image. The experiments show that the proposed algorithm presents the best results compared with state of the art algorithms.

  18. Phase in Optical Image Processing

    NASA Astrophysics Data System (ADS)

    Naughton, Thomas J.

    2010-04-01

    The use of phase has a long standing history in optical image processing, with early milestones being in the field of pattern recognition, such as VanderLugt's practical construction technique for matched filters, and (implicitly) Goodman's joint Fourier transform correlator. In recent years, the flexibility afforded by phase-only spatial light modulators and digital holography, for example, has enabled many processing techniques based on the explicit encoding and decoding of phase. One application area concerns efficient numerical computations. Pushing phase measurement to its physical limits, designs employing the physical properties of phase have ranged from the sensible to the wonderful, in some cases making computationally easy problems easier to solve and in other cases addressing mathematics' most challenging computationally hard problems. Another application area is optical image encryption, in which, typically, a phase mask modulates the fractional Fourier transformed coefficients of a perturbed input image, and the phase of the inverse transform is then sensed as the encrypted image. The inherent linearity that makes the system so elegant mitigates against its use as an effective encryption technique, but we show how a combination of optical and digital techniques can restore confidence in that security. We conclude with the concept of digital hologram image processing, and applications of same that are uniquely suited to optical implementation, where the processing, recognition, or encryption step operates on full field information, such as that emanating from a coherently illuminated real-world three-dimensional object.

  19. ALMA long baseline phase calibration using phase referencing

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Fomalont, Edward B.; Corder, Stuartt A.; Nyman, Lars-Åke; Dent, William R. F.; Philips, Neil M.; Hirota, Akihiko; Takahashi, Satoko; Vila-Vilaro, Baltasar; Nikolic, Bojan; Hunter, Todd R.; Remijan, Anthony; Vlahakis, Catherine

    2016-08-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/submillimeter telescope and provides unprecedented sensitivities and spatial resolutions. To achieve the highest imaging capabilities, interferometric phase calibration for the long baselines is one of the most important subjects: The longer the baselines, the worse the phase stability becomes because of turbulent motions of the Earth's atmosphere, especially, the water vapor in the troposphere. To overcome this subject, ALMA adopts a phase correction scheme using a Water Vapor Radiometer (WVR) to estimate the amount of water vapor content along the antenna line of sight. An additional technique is phase referencing, in which a science target and a nearby calibrator are observed by turn by quickly changing the antenna pointing. We conducted feasibility studies of the hybrid technique with the WVR phase correction and the antenna Fast Switching (FS) phase referencing (WVR+FS phase correction) for the ALMA 16 km longest baselines in cases that (1) the same observing frequency both for a target and calibrator is used, and (2) higher and lower frequencies for a target and calibrator, respectively, with a typical switching cycle time of 20 s. It was found that the phase correction performance of the hybrid technique is promising where a nearby calibrator is located within roughly 3◦ from a science target, and that the phase correction with 20 s switching cycle time significantly improves the performance with the above separation angle criterion comparing to the 120 s switching cycle time. The currently trial phase calibration method shows the same performance independent of the observing frequencies. This result is especially important for the higher frequency observations because it becomes difficult to find a bright calibrator close to an arbitrary sky position. In the series of our experiments, it is also found that phase errors affecting the image quality come from not only

  20. Phase transitions in disordered systems

    NASA Astrophysics Data System (ADS)

    Hrahsheh, Fawaz Y.

    Disorder can have a wide variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this thesis we study the effects of disorder on several classical and quantum phase transitions in condensed matter systems. After a brief introduction, we study the ferromagnetic phase transition in a randomly layered Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide numerical evidence for the exotic infinite-randomness scenario. We study classical and quantum smeared phase transitions in substitutional alloys A1-xBx. Our results show that the disorder completely destroys the phase transition with a pronounced tail of the ordered phase developing for all compositions x < 1. In addition, we find that short-ranged disorder correlations can have a dramatic effect on the transition. Moreover, we show an experimental realization of the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCa xRuO3. We investigate the effects of disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong disorder renormalization group, we demonstrate that disorder rounds the first-order transition to a continuous one for both weak and strong coupling between the colors. Finally, we investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder dependent critical behavior.

  1. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  2. Laparoscopic Radiofrequency Fibroid Ablation: Phase II and Phase III Results

    PubMed Central

    Pemueller, Rodolfo Robles; Garza Leal, José Gerardo; Abbott, Karen R.; Falls, Janice L.; Macer, James

    2014-01-01

    Background and Objectives: To review phase II and phase III treatments of symptomatic uterine fibroids (myomas) using laparoscopic radiofrequency volumetric thermal ablation (RFVTA). Methods: We performed a retrospective, multicenter clinical analysis of 206 consecutive cases of ultrasound-guided laparoscopic RFVTA of symptomatic myomas conducted on an outpatient basis under two phase II studies at 2 sites (n = 69) and one phase III study at 11 sites (n = 137). Descriptive and exploratory, general trend, and matched-pair analyses were applied. Results: From baseline to 12 months in the phase II study, the mean transformed symptom severity scores improved from 53.9 to 8.8 (P < .001) (n = 57), health-related quality-of-life scores improved from 48.5 to 92.0 (P < .001) (n = 57), and mean uterine volume decreased from 204.4 cm3 to 151.4 cm3 (P = .008) (n = 58). Patients missed a median of 4 days of work (range, 2–10 days). The rate of possible device-related adverse events was 1.4% (1 of 69). In the phase III study, approximately 98% of patients were assessed at 12 months, and their transformed symptom severity scores, health-related quality-of-life scores, mean decrease in uterine volume, and mean menstrual bleeding reduction were also significant. Patients in phase III missed a median of 5 days of work (range, 1–29 days). The rate of periprocedural device-related adverse events was 3.5% (5 of 137). Despite the enrollment requirement for patients in both phases to have completed childbearing, 4 pregnancies occurred within the first year after treatment. Conclusions: RFVTA does not require any uterine incisions and provides a uterine-sparing procedure with rapid recovery, significant reduction in uterine size, significant reduction or elimination of myoma symptoms, and significant improvement in quality of life. PMID:24960480

  3. Two-phase/two-phase heat exchanger analysis

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1992-01-01

    A capillary pumped loop (CPL) system with a condenser linked to a double two-phase heat exchanger is analyzed numerically to simulate the performance of the system from different starting conditions to a steady state condition based on a simplified model. Results of the investigation are compared with those of similar apparatus available in the Space Station applications of the CPL system with a double two-phase heat exchanger.

  4. Machine learning phases of matter

    NASA Astrophysics Data System (ADS)

    Carrasquilla, Juan; Stoudenmire, Miles; Melko, Roger

    We show how the technology that allows automatic teller machines read hand-written digits in cheques can be used to encode and recognize phases of matter and phase transitions in many-body systems. In particular, we analyze the (quasi-)order-disorder transitions in the classical Ising and XY models. Furthermore, we successfully use machine learning to study classical Z2 gauge theories that have important technological application in the coming wave of quantum information technologies and whose phase transitions have no conventional order parameter.

  5. Phase Instability in Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Gil, L.; Lippi, G. L.

    2014-11-01

    For many years, the apparent absence of a phase instability has characterized lasers as peculiar nonlinear oscillators. We show that this unusual feature is solely due to the approximations used in writing the standard models. A new, careful derivation of the fundamental equations, based on codimension 2 bifurcation theory, shows the possible existence of dynamical regimes displaying either a pure phase instability, or mixed phase-amplitude turbulence. A comparison to existing experimental results convincingly shows that the Benjamin-Feir instability, common to all nonlinear wave problems, is a fundamental, satisfactory interpretation for their deterministic multimode dynamics.

  6. Progress Report NORSAR Phase 3

    DTIC Science & Technology

    1974-10-11

    PHASE 3 1 July - 30 September 1974 1 AUTHOR’«; Prepared by K.A. Berteussen 9 PERFORMING ORGANIZATION NAME AND ADDRESS NTNF...30 June 1975 F08606-74-C-0049 Norwegian Seismic Array (NORSAR) Phase 3 $900 000.— II October 1974 1 July - 30 September 197 4 Nils Maräs, (02)71...Hi.»,«—, Hl .1 ii.li in im. UM;!..». .1.1 „IM I,„LWII ■Mtffll^ A D/A-00 2 25 2 PROGRESS REPORT NORSAR PHASE

  7. Progress Report NORSAR Phase 3

    DTIC Science & Technology

    1975-04-11

    1 A I)-A 010 5 86 PROGRriSS REPORT NORSAR PHASE 3 K . /\\ . B c r t c u s s e n Royal Norwegian Council for Scientific and...NORSAR ROYAl NORWEGIAN COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH <o<: 00 10’ o H O < F 8606-74-C-0049 PROGRESS REPORT - NORSAR PHASE 3 1...Report NORSAR Phase 3 1st Quarter 1975 5 TYPE OE REPORT « PERIOD COVERED Progress Report 1st Quarter 1975 6 PERFORMING ORG

  8. Geometrical Phases in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a

  9. Chromatography with two mobile phases.

    PubMed

    Wang, M; Hou, S; Parcher, J F

    2006-02-15

    Experimental results for the investigation of chromatographic columns containing two mobile phases are presented. The eluent was composed of mixtures of methanol and carbon dioxide. The column was an uncoated fused-silica-lined stainless steel capillary column. At certain experimental conditions, the eluent divided into two phases, both of which moved through the column. The predominant component of the liquid phase was methanol whereas the gas phase was composed of at least 93 mol % CO2. The columns were studied over a range of feed compositions (45-95 mol % CO2), pressures (61-101 bar), and temperatures (30-100 degrees C). The compositions and densities of each phase were calculated from the Peng-Robinson equation of state. The residence times of the two mobile phases were determined by tracer pulse chromatography. The partition coefficients of a probe solute, benzene, were measured along with the retention times of neon and the total volume of the chromatographic column as a function of temperature, pressure, and stoichiometric feed composition. The calculated column volumes, that is the volume of the liquid and gas, were constant over the full range of feed composition. The partition coefficient of benzene was constant at fixed pressure and temperature, varied logarithmically with density at fixed temperature and feed composition, and displayed a maximum at intermediate temperatures at fixed pressure and feed composition. The measured retention times of neon were consistently equivalent to the calculated residence times of the gas phase, indicating that neon did not dissolve in the liquid phase and could thus serve as an accurate dead time marker. The implementation of chromatography with two mobile phases produces a chromatographic "window". There is a lower limit for the retention volume of all solutes, viz., the residence time of the gas phase, exactly the same as normal chromatography. However, elimination of the stationary phase produces an upper limit to

  10. SNMR pulse sequence phase cycling

    DOEpatents

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  11. Multichannel Phase and Power Detector

    NASA Technical Reports Server (NTRS)

    Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy

    2006-01-01

    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals

  12. Wavelet phase synchronization and chaoticity.

    PubMed

    Postnikov, E B

    2009-11-01

    It has been shown that the so-called "wavelet phase" (or "time-scale") synchronization of chaotic signals is actually synchronization of smoothed functions with reduced chaotic fluctuations. This fact is based on the representation of the wavelet transform with the Morlet wavelet as a solution of the Cauchy problem for a simple diffusion equation with initial condition in a form of harmonic function modulated by a given signal. The topological background of the resulting effect is discussed. It is argued that the wavelet phase synchronization provides information about the synchronization of an averaged motion described by bounding tori instead of the fine-level classical chaotic phase synchronization.

  13. 129I interlaboratory comparison: phase I and phase II results

    SciTech Connect

    Roberts, M.I.; Caffee, M.W.; Proctor, I.D.

    1997-07-01

    An interlaboratory comparison exercise for 129I was organized and conducted. A total of nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, a suite of 11 samples were measured. The suite of samples contained both synthetic `standard type` materials (i.e., AgI) and environmental materials. The isotopic 129I/127I ratios of the samples varied from 10`-8 to 10`-14. In this phase, each laboratory was responsible for its own chemical preparation of the environmental samples. The 129I AMS measurements obtained at different laboratories for prepared AgI were in good agreement. However, large discrepancies were seen in 129I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I intercomparison, a subsequent study was conducted. In Phase II of the comparison, AgI was prepared from two environmental samples (IAEA 375 soil and maples leaves) by three separate laboratories. Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then redistributed to the participating 129I AMS facilities and 129I/127I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented.

  14. In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe–Cr–Ni alloys

    DOE PAGES

    Tan, L.; Yang, Y.

    2015-11-01

    For an in situ phase transformation of the Chi (χ) phase to the Laves phase we observed in a Fe–Cr–Ni–Mo model alloy. The morphology, composition, and crystal structure of the χ and Laves phases, and their orientation relationship with the matrix austenite phase were investigated. The resulted Laves phase has larger lattice mismatch with the matrix phase than the χ phase, leading to the increase of local strain fields and the formation of dislocations. Moreover, this finding is helpful to understand the precipitation behavior of the intermetallic phases in the Mo-containing austenitic stainless steels.

  15. BEATRIX-II, phase II: Data summary report

    SciTech Connect

    Slagle, O.D.; Hollenberg, G.W.

    1996-05-01

    The BEATRIX-II experimental program was an International Energy Agency sponsored collaborative effort between Japan, Canada, and the United States to evaluate the performance of ceramic solid breeder materials in a fast-neutron environment at high burnup levels. This report addresses the Phase II activities, which included two in situ tritium-recovery canisters: temperature-change and temperature-gradient. The temperature-change canister contained a Li{sub 2}O ring specimen that had a nearly uniform temperature profile and was capable of temperature changes between 530 and 640{degrees}C. The temperature-gradient canister contained a Li{sub 2}ZrO{sub 3} pebble bed operating under a thermal gradient of 440 to 1100{degrees}C. Postirradiation examination was carried out to characterize the Phase II in situ specimens and a series of nonvented capsules designed to address the compatibility of beryllium with lithium-ceramic solid-breeder materials. The results of the BEATRIX-II, Phase II, irradiation experiment provided an extensive data base on the in situ tritium-release characteristics of Li{sub 2}O and Li{sub 2}ZrO{sub 3} for lithium burnups near 5%. The composition of the sweep gas was found to be a critical parameter in the recovery of tritium from both Li{sub 2}O and Li{sub 2}ZrO{sub 3}. Tritium inventories measured confirmed that Li{sub 2}O and Li{sub 2}ZrO{sub 3} exhibited very low tritium retention during the Phase II irradiation. Tritium inventories in Li{sub 2}ZrO{sub 3} after Phase II tended to be larger than those found for Li{sub 2}ZrO{sub 3} in other in situ experiments, but the larger values may reflect the larger generation rates in BEATRIX-II. A series of 20 capsules was irradiated to determine the compatibility of lithium ceramics and beryllium under conditions similar to a fusion blanket. It is concluded that Li{sub 2}O and Li{sub 2}ZrO{sub 3} should remain leading candidates for use in a solid-breeder fusion-blanket application.

  16. Phase Change Material Heat Exchangers

    NASA Video Gallery

    NASA’s Game Changing Development is taking on a technologydevelopment and demonstration effort to design, build, and test the next generation of Phase Change Material Heat Exchangers (PCM HXs) on ...

  17. Phase retrieval in protein crystallography.

    PubMed

    Liu, Zhong Chuan; Xu, Rui; Dong, Yu Hui

    2012-03-01

    Solution of the phase problem is central to crystallographic structure determination. An oversampling method is proposed, based on the hybrid input-output algorithm (HIO) [Fienup (1982). Appl. Opt. 21, 2758-2769], to retrieve the phases of reflections in crystallography. This method can extend low-resolution structures to higher resolution for structure determination of proteins without additional sample preparation. The method requires an envelope of the protein which divides a unit cell into the density region where the proteins are located and the non-density region occupied by solvents. After a few hundred to a few thousand iterations, the correct phases and density maps are recovered. The method has been used successfully in several cases to retrieve the phases from the experimental X-ray diffraction data and the envelopes of proteins constructed from structure files downloaded from the Protein Data Bank. It is hoped that this method will greatly facilitate the ab initio structure determination of proteins.

  18. Integrated optical phase locked loop.

    SciTech Connect

    Lentine, Anthony L.; Kim, Jungwon; Trotter, Douglas Chandler; DeRose, Christopher T.; Kartner, Franz X.; Byun, Hyunil; Nejadmalayeri, Amir H.; Watts, Michael R.; Zortman, William A.

    2010-12-01

    A silicon photonics based integrated optical phase locked loop is utilized to synchronize a 10.2 GHz voltage controlled oscillator with a 509 MHz mode locked laser, achieving 32 fs integrated jitter over 300 kHz bandwidth.

  19. APPARATUS FOR LIQUID PHASE EXTRACTION

    DOEpatents

    Hicks, T.R.; Lehman, H.R.; Rubin, B.

    1958-09-16

    operation is described. It comprises a tubular colunm having upper and lower enlarged terminal portions, and a constricted central section containing fluid dispersal packing. Pulsing means are coupled to the upper portion of the column. The inlet for the less dense phase is located above the inlet for the denser phase and both are positioned so that liquids enter the constricted packingfilled central section. The apparatos also includes an interfacing level control, and means fer sensing the level of the interface actuate apparatus for controlling the rate of flow of input or discharge. The outlet for the less dense phase is located in the upper packing free portion of the colunm and that of the denser phase in the lower portion.

  20. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  1. Gas-phase chemical dynamics

    SciTech Connect

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  2. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  3. Guiding light via geometric phases

    NASA Astrophysics Data System (ADS)

    Slussarenko, Sergei; Alberucci, Alessandro; Jisha, Chandroth P.; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo

    2016-09-01

    All known methods for transverse confinement and guidance of light rely on modification of the refractive index, that is, on the scalar properties of electromagnetic radiation. Here, we disclose the concept of a dielectric waveguide that exploits vectorial spin-orbit interactions of light and the resulting geometric phases. The approach relies on the use of anisotropic media with an optic axis that lies orthogonal to the propagation direction but is spatially modulated, so that the refractive index remains constant everywhere. A spin-controlled cumulative phase distortion is imposed on the beam, balancing diffraction for a specific polarization. As well as theoretical analysis, we present an experimental demonstration of the guidance using a series of discrete geometric-phase lenses made from liquid crystal. Our findings show that geometric phases may determine the optical guiding behaviour well beyond a Rayleigh length, paving the way to a new class of photonic devices. The concept is applicable to the whole electromagnetic spectrum.

  4. Berry phase in Heisenberg representation

    NASA Technical Reports Server (NTRS)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  5. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  6. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  7. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  8. Phase nucleation in curved space

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega

    Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).

  9. Safety performance of traffic phases and phase transitions in three phase traffic theory.

    PubMed

    Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin

    2015-12-01

    Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways.

  10. Berry Phase in Lattice QCD.

    PubMed

    Yamamoto, Arata

    2016-07-29

    We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  11. AXKT Phase 3 Final Report

    DTIC Science & Technology

    1993-07-06

    AD-A275 236 - July 6 1993 AXKT PHASE 3 FINAL REPORT CONTRACT N00014-88-C-6027 CDRL A013 I NE * ,~ 9M SUBMITSED BY W80co 02 SIPPICAN, INC.I...Funding Numbers. AXKT Phase 3 Final Report Contract NOOQI 4-88-C-6027 PrOgram Elemeni No. 0603704N 6. Auw~) Project No. R01i180 Task fo. 300 Accession No

  12. Reinforced ceramics employing discontinuous phases

    SciTech Connect

    Becher, P.F.

    1990-01-01

    The fracture toughness of ceramics can be improved by the incorporation of a variety of discontinuous reinforcing phases and microstructures. Observations of crack paths in these systems indicate that these reinforcing phases bridge the crack tip wake region. Recent developments in micromechanics toughening models applicable to such systems are discussed and compared with experimental observations. Because material parameters and microstructural characteristics are considered, the crack bridging models provide a means to optimize the toughening effects. 18 refs., 2 figs.

  13. Interfacial phase-change memory.

    PubMed

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J

    2011-07-03

    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

  14. Resolving Phase Ambiguities In OQPSK

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1991-01-01

    Improved design for modulator and demodulator in offset-quaternary-phase-key-shifting (OQPSK) communication system enables receiver to resolve ambiguity in estimated phase of received signal. Features include unique-code-word modulation and detection and digital implementation of Costas loop in carrier-recovery subsystem. Enchances performance of carrier-recovery subsystem, reduces complexity of receiver by removing redundant circuits from previous design, and eliminates dependence of timing in receiver upon parallel-to-serial-conversion clock.

  15. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  16. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  17. Stochastic phase-change neurons

    NASA Astrophysics Data System (ADS)

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.

  18. Stochastic phase-change neurons.

    PubMed

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.

  19. Higher-dimensional phase imaging

    NASA Astrophysics Data System (ADS)

    Huntley, Jonathan M.

    2010-04-01

    Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.

  20. Phase modulation in RF tag

    DOEpatents

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2007-02-20

    A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.

  1. KERNEL PHASE IN FIZEAU INTERFEROMETRY

    SciTech Connect

    Martinache, Frantz

    2010-11-20

    The detection of high contrast companions at small angular separation appears feasible in conventional direct images using the self-calibration properties of interferometric observable quantities. The friendly notion of closure phase, which is key to the recent observational successes of non-redundant aperture masking interferometry used with adaptive optics, appears to be one example of a wide family of observable quantities that are not contaminated by phase noise. In the high-Strehl regime, soon to be available thanks to the coming generation of extreme adaptive optics systems on ground-based telescopes, and already available from space, closure phase like information can be extracted from any direct image, even taken with a redundant aperture. These new phase-noise immune observable quantities, called kernel phases, are determined a priori from the knowledge of the geometry of the pupil only. Re-analysis of archive data acquired with the Hubble Space Telescope NICMOS instrument using this new kernel-phase algorithm demonstrates the power of the method as it clearly detects and locates with milliarcsecond precision a known companion to a star at angular separation less than the diffraction limit.

  2. Phase Diagrams of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2016-03-01

    In the inner crust of neutrons stars, where matter is near the saturation density, protons and neutrons arrange themselves into complex structures called nuclear pasta. Early theoretical work predicted a simple graduated hierarchy of pasta phases, consisting of spheres, cylinders, slabs, and uniform matter with voids. Previous work has simulated these phases with a simple classical model and has shown that the formation of these structures is dependent on the temperature, density, and proton fraction. However, previous work only studied a limited range of these parameters due to computational limitations. Thanks to recent advances in computing it is now possible to survey the structure of nuclear pasta for a larger range of parameters. By simulating nuclear pasta with constant temperature and proton fraction in an expanding simulation volume we are able to study the phase transitions in nuclear pasta, and thus produce a set of phase diagrams. We report on these phase diagrams as well as newly identified phases of nuclear pasta and discuss their implications for neutron star observables.

  3. Phase variation of hadronic amplitudes

    SciTech Connect

    Dedonder, J.-P.; Gibbs, W. R.; Nuseirat, Mutazz

    2008-04-15

    The phase variation with angle of hadronic amplitudes is studied with a view to understanding the underlying physical quantities that control it and how well it can be determined in free space. We find that unitarity forces a moderately accurate determination of the phase in standard amplitude analyses but that the nucleon-nucleon analyses done to date do not give the phase variation needed to achieve a good representation of the data in multiple scattering calculations. Models are examined that suggest its behavior near forward angles is related to the radii of the real and absorptive parts of the interaction. The dependence of this phase on model parameters is such that if these radii are modified in the nuclear medium (in combination with the change due to the shift in energy of the effective amplitude in the medium) then the larger magnitudes of the phase needed to fit the data might be attainable but only for negative values of the phase variation parameter.

  4. Fiber optic phase stepping system for interferometry

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1991-01-01

    A closed loop phase control system using an all-fiber optical configuration has been developed for use in phase-stepping interferometry. This system drives the relative phase of two interfering beams through a sequence of pi/2 rad increments so that the initial relative phase of these beams can be determined. This phase-stepping system uses optical fibers to provide spatially uniform phase steps from a flexible, easily aligned optical configuration. In addition, this system uses phase feedback to eliminate phase modulator errors and to compensate for phase drifts caused by environmental disturbances.

  5. Tech Area II: A history

    SciTech Connect

    Ullrich, R.

    1998-07-01

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  6. Medulloblastoma: II. A pathobiologic overview.

    PubMed

    Tomlinson, F H; Scheithauer, B W; Jenkins, R B

    1992-07-01

    The pathobiology of medulloblastoma is reviewed in light of emerging data regarding its immunocytochemical and cytobiologic, as well as molecular biologic, characteristics. The nature of the lesion, particularly its nosologic relation to primitive neuroectodermal tumor, is discussed, as is its place in the World Health Organization classification of tumors of the central nervous system.

  7. Chameleon Chasing II: A Replication.

    ERIC Educational Resources Information Center

    Newsom, Doug A.; And Others

    1993-01-01

    Replicates a 1972 survey of students, educators, and Public Relations Society of America members regarding who the public relations counselor really serves. Finds that, in 1992, most respondents thought primary responsibility was to the client, then to the client's relevant publics, then to self, then to society, and finally to media. Compares…

  8. Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation

    PubMed Central

    Oton, E.; Netter, E.; Nakano, T.; D.-Katayama, Y.; Inoue, F.

    2017-01-01

    Liquid crystal “Blue Phases” (BP) have evolved, in the last years, from a scientific curiosity to emerging materials for new photonic and display applications. They possess attractive features over standard nematic liquid crystals, like submillisecond switching times and polarization- independent optical response. However, BPs still present a number of technical issues that prevent their use in practical applications: their phases are only found in limited temperature ranges, thus requiring stabilization of the layers; stabilized BP layers are inhomogeneous and not uniformly oriented, which worsen the optical performance of the devices. It would be essential for practical uses to obtain perfectly aligned and oriented monodomain BP layers, where the alignment and orientation of the cubic lattice are organized in a single 3D structure. In this work we have obtained virtually perfect monodomain BP layers and used them in devices for polarization independent phase modulation. We demonstrate that, under applied voltage, well aligned and oriented layers generate smoother and higher values of the phase shift than inhomogeneous layers, while preserving polarization independency. All BP devices were successfully stabilized in BPI phase, maintaining the layer monodomain homogeneity at room temperature, covering the entire area of the devices with a unique BP phase. PMID:28281691

  9. Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation

    NASA Astrophysics Data System (ADS)

    Oton, E.; Netter, E.; Nakano, T.; D.-Katayama, Y.; Inoue, F.

    2017-03-01

    Liquid crystal “Blue Phases” (BP) have evolved, in the last years, from a scientific curiosity to emerging materials for new photonic and display applications. They possess attractive features over standard nematic liquid crystals, like submillisecond switching times and polarization- independent optical response. However, BPs still present a number of technical issues that prevent their use in practical applications: their phases are only found in limited temperature ranges, thus requiring stabilization of the layers; stabilized BP layers are inhomogeneous and not uniformly oriented, which worsen the optical performance of the devices. It would be essential for practical uses to obtain perfectly aligned and oriented monodomain BP layers, where the alignment and orientation of the cubic lattice are organized in a single 3D structure. In this work we have obtained virtually perfect monodomain BP layers and used them in devices for polarization independent phase modulation. We demonstrate that, under applied voltage, well aligned and oriented layers generate smoother and higher values of the phase shift than inhomogeneous layers, while preserving polarization independency. All BP devices were successfully stabilized in BPI phase, maintaining the layer monodomain homogeneity at room temperature, covering the entire area of the devices with a unique BP phase.

  10. Combinatorial entropy and phase diagram of partially ordered ice phases.

    PubMed

    Macdowell, Luis G; Sanz, Eduardo; Vega, Carlos; Abascal, José Luis F

    2004-11-22

    A close analytical estimate for the combinatorial entropy of partially ordered ice phases is presented. The expression obtained is very general, as it can be used for any ice phase obeying the Bernal-Fowler rules. The only input required is a number of crystallographic parameters, and the experimentally observed proton site occupancies. For fully disordered phases such as hexagonal ice, it recovers the result deduced by Pauling, while for fully ordered ice it is found to vanish. Although the space groups determined for ice I, VI, and VII require random proton site occupancies, it is found that such random allocation of protons does not necessarily imply random orientational disorder. The theoretical estimate for the combinatorial entropy is employed together with free energy calculations in order to obtain the phase diagram of ice from 0 to 10 GPa. Overall qualitative agreement with experiment is found for the TIP4P model of water. An accurate estimate of the combinatorial entropy is found to play an important role in determining the stability of partially ordered ice phases, such as ice III and ice V.

  11. Phase-field crystal model with a vapor phase

    NASA Astrophysics Data System (ADS)

    Schwalbach, Edwin J.; Warren, James A.; Wu, Kuo-An; Voorhees, Peter W.

    2013-08-01

    Phase-field crystal (PFC) models are able to resolve atomic length scale features of materials during temporal evolution over diffusive time scales. Traditional PFC models contain solid and liquid phases, however many important materials processing phenomena involve a vapor phase as well. In this work, we add a vapor phase to an existing PFC model and show realistic interfacial phenomena near the triple point temperature. For example, the PFC model exhibits density oscillations at liquid-vapor interfaces that compare favorably to data available for interfaces in metallic systems from both experiment and molecular-dynamics simulations. We also quantify the anisotropic solid-vapor surface energy for a two-dimensional PFC hexagonal crystal and find well-defined step energies from measurements on the faceted interfaces. Additionally, the strain field beneath a stepped interface is characterized and shown to qualitatively reproduce predictions from continuum models, simulations, and experimental data. Finally, we examine the dynamic case of step-flow growth of a crystal into a supersaturated vapor phase. The ability to model such a wide range of surface and bulk defects makes this PFC model a useful tool to study processing techniques such as chemical vapor deposition or vapor-liquid-solid growth of nanowires.

  12. Phase-field crystal model with a vapor phase.

    PubMed

    Schwalbach, Edwin J; Warren, James A; Wu, Kuo-An; Voorhees, Peter W

    2013-08-01

    Phase-field crystal (PFC) models are able to resolve atomic length scale features of materials during temporal evolution over diffusive time scales. Traditional PFC models contain solid and liquid phases, however many important materials processing phenomena involve a vapor phase as well. In this work, we add a vapor phase to an existing PFC model and show realistic interfacial phenomena near the triple point temperature. For example, the PFC model exhibits density oscillations at liquid-vapor interfaces that compare favorably to data available for interfaces in metallic systems from both experiment and molecular-dynamics simulations. We also quantify the anisotropic solid-vapor surface energy for a two-dimensional PFC hexagonal crystal and find well-defined step energies from measurements on the faceted interfaces. Additionally, the strain field beneath a stepped interface is characterized and shown to qualitatively reproduce predictions from continuum models, simulations, and experimental data. Finally, we examine the dynamic case of step-flow growth of a crystal into a supersaturated vapor phase. The ability to model such a wide range of surface and bulk defects makes this PFC model a useful tool to study processing techniques such as chemical vapor deposition or vapor-liquid-solid growth of nanowires.

  13. EUVL alternating phase shift mask

    NASA Astrophysics Data System (ADS)

    Yan, Pei-Yang; Myers, Alan; Shroff, Yashesh; Chandhok, Manish; Zhang, Guojing; Gullikson, Eric; Salmassi, Farhad

    2011-04-01

    Extreme ultra-violet Lithography (EUVL) alternating phase shift mask (APSM) or other optical enhancement techniques are likely needed for 16nm (half pitch) technology generation and beyond. One possible option is the combination of EUVL and APSM. The fabrication of EUVL APSM is more difficult than either the fabrication of an EUVL binary mask or a conventional optical APSM mask. In the case of EUVL APSM, the phase difference in the two regions (0 and 180-degree phase regions) is created by a phase step in the substrate prior to the multilayer (ML) coating. The step height that induces 180-degree phase mismatch in the ML is determined by [λ/(4cosθ)](2m+1), where m are integers (0, 1, 2,...). In this experiment, we targeted for a step height with m=1. The same mask design also contains the standard binary structures so that the comparison between the EUVL APSM and the EUVL binary mask can be performed under the same illumination and wafer process conditions. The EUVL APSM mask was exposed using Nikon's EUV1 scanner in Kumagaya Japan. The wafer level results showed higher dense line resolution for EUVL APSM as compared to that of EUVL binary mask. APSM also showed improved line width roughness (LWR) and depth of focus (DoF) as compared to the best EUVL binary results obtained with C-dipole off-axis illumination (OAI). The wafer CD resolution improvement obtained by APSM in this experiment is partially limited by the resist resolution and the mask phase edge spread during ML deposition. We believe that wafer CD resolution and can further be improved with imaging imbalance compensation mask design and improvements in resist resolution and the phase generation portion of the mask fabrication process. In this paper, we will discuss in detail the mask fabrication process, wafer level data analysis, and our understanding of EUVL APSM related issues.

  14. Phases and phase transitions in the algebraic microscopic shell model

    NASA Astrophysics Data System (ADS)

    Georgieva, A. I.; Drumev, K. P.

    2016-01-01

    We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott's SU(3) basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3) basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  15. An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts

    PubMed Central

    Li, Jiaosheng; Zhong, Liyun; Liu, Shengde; Zhou, Yunfei; Xu, Jie; Tian, Jindong; Lu, Xiaoxu

    2017-01-01

    In phase-shifting interferometry with unknown phase shifts, a normalization and orthogonalization phase-shifting algorithm (NOPSA) is proposed to achieve phase retrieval. The background of interferogram is eliminated through using the orthogonality of complex sinusoidal function; and the influence of phase shifts deviation on accuracy of phase retrieval is avoided through both normalization and orthogonalization processing. Compared with the current algorithms with unknown phase shifts, the proposed algorithm reveals significantly faster computation speed, higher accuracy, better stability and non-sensitivity of phase shifts deviation. PMID:28290494

  16. An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts

    NASA Astrophysics Data System (ADS)

    Li, Jiaosheng; Zhong, Liyun; Liu, Shengde; Zhou, Yunfei; Xu, Jie; Tian, Jindong; Lu, Xiaoxu

    2017-03-01

    In phase-shifting interferometry with unknown phase shifts, a normalization and orthogonalization phase-shifting algorithm (NOPSA) is proposed to achieve phase retrieval. The background of interferogram is eliminated through using the orthogonality of complex sinusoidal function; and the influence of phase shifts deviation on accuracy of phase retrieval is avoided through both normalization and orthogonalization processing. Compared with the current algorithms with unknown phase shifts, the proposed algorithm reveals significantly faster computation speed, higher accuracy, better stability and non-sensitivity of phase shifts deviation.

  17. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    SciTech Connect

    Thacker, Timothy; Boroyevich, Dushan; Burgos, Rolando; Wang, Fei

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  18. The comfortable driving model revisited: traffic phases and phase transitions

    NASA Astrophysics Data System (ADS)

    Knorr, Florian; Schreckenberg, Michael

    2013-07-01

    We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast them with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner’s three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides ‘hard’ rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow to a wide moving jam often involves an intermediate transition: first from free flow to synchronized flow and then from synchronized flow to a wide moving jam. This is supported by the fact that the so-called F → S transition (from free flow to synchronized traffic) is much more likely than a direct F → J transition. The model under consideration has a functional relationship between traffic flow and traffic density. The fundamental hypothesis of the three-phase traffic theory, however, postulates that the steady states of synchronized flow occupy a two-dimensional region in the flow-density plane. Due to the obvious discrepancy between the model investigated here and the postulate of the three-phase traffic theory, the good agreement that we found could not be expected. For a more detailed analysis, we also studied vehicle dynamics at a microscopic level and provide a comparison of real detector data with simulated data of the identical highway segment.

  19. Phase Correction for GPS Antenna with Nonunique Phase Center

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Dobbins, Justin

    2005-01-01

    A method of determining the position and attitude of a body equipped with a Global Positioning System (GPS) receiver includes an accounting for the location of the nonunique phase center of a distributed or wraparound GPS antenna. The method applies, more specifically, to the case in which (1) the GPS receiver utilizes measurements of the phases of GPS carrier signals in its position and attitude computations and (2) the body is axisymmetric (e.g., spherical or round cylindrical) and wrapped at its equator with a single- or multiple-element antenna, the radiation pattern of which is also axisymmetric with the same axis of symmetry as that of the body.

  20. Phase measurement system using a dithered clock

    DOEpatents

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  1. What Phase Matters for Diffraction?

    NASA Astrophysics Data System (ADS)

    Jones, Eric; Bach, Roger; Batelaan, Herman

    2014-05-01

    Young's double-slit experiment for matter is often compared to that of optics. In rudimentary explanations of the locations of the diffraction maxima and minima far from the slits, paths are sometimes superimposed over waves drawn from the two slits to the detection screen, leading to a phase difference of Δϕ = 2 πΔL /λdB between paths. Despite the intuitive connection of the two kinds of wave phenomena, this approach can lead to a misunderstanding of the theory for matter waves. The Feynman path-integral formalism justifies the use of paths to determine the phase difference; however, the phase accumulated along single free-particle paths according to the formalism is not ϕ = 2 πL /λdB , even though the expression for the phase difference is correct. The resulting factor of 2 difference in the single path phase from the intuitive value arises from the particular treatment of time-dependence in interpreting the problem. The nature of this misunderstanding will be discussed, and a possible resolution proposed based on the quantum mechanical principle of indistinguishability: the time duration of all interfering paths must be equal. We gratefully acknowledge support from the NSF.

  2. Modeling of phased array transducers.

    PubMed

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  3. Compact nanomechanical plasmonic phase modulators

    SciTech Connect

    Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; Lopez, D.; Blumberg, G.; Aksyuk, V. A.

    2015-03-30

    Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.

  4. Phases of cannibal dark matter

    NASA Astrophysics Data System (ADS)

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-12-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  5. Closed Orbits in Phase Space

    NASA Astrophysics Data System (ADS)

    Murphy, Andrew; Haestad, Jace; Morgan, Thomas

    2015-09-01

    We report characteristics of closed classical orbits in an electric field in phase space produced in photoabsorption. Rydberg states of atomic and molecular hydrogen and helium are considered. The core potential used for the hydrogen molecule is an effective one electron one center core potential evaluated at the internuclear equilibrium distance. Poincare surfaces of section in phase space are generated by integrating the equations of motion in semiparabolic coordinates u = (r + z) 1 / 2 and v = (r - z) 1 / 2, and plotting the location in phase space (pv versus v) whenever u = 0, with the electric field in the z direction. Combination orbits produced by Rydberg electron core scattering are studied and the evolution in phase space of these combination orbits due to scattering from one closed orbit into another is investigated. Connections are made to measured laser photoabsorption experiments that excite Rydberg states (20 < n < 30) and produce accompanying scaled energy recurrence spectra. The phase space structures responsible for the spectra are identified.

  6. Optimal Electrodynamic Tether Phasing Maneuvers

    NASA Technical Reports Server (NTRS)

    Bitzer, Matthew S.; Hall, Christopher D.

    2007-01-01

    We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.

  7. 30 CFR 57.22501 - Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22501 Section 57.22501 Mineral Resources MINE SAFETY AND... Illumination § 57.22501 Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B......

  8. 30 CFR 57.22501 - Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22501 Section 57.22501 Mineral Resources MINE SAFETY AND... Illumination § 57.22501 Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B......

  9. Two-dimensional crystallization on lipid monolayers and three-dimensional structure of sticholysin II, a cytolysin from the sea anemone Stichodactyla helianthus.

    PubMed Central

    Martín-Benito, J; Gavilanes, F; de Los Ríos, V; Mancheño, J M; Fernández, J J; Gavilanes, J G

    2000-01-01

    Sticholysin II (Stn II), a potent cytolytic protein isolated from the sea anemone Stichodactyla helianthus, has been crystallized on lipid monolayers. With Fourier-based methods, a three-dimensional (3D) model of Stn II, up to a resolution of 15 A, has been determined. The two-sided plane group is p22(1)2, with dimensions a = 98 A, b = 196 A. The 3D model of Stn II displays a Y-shaped structure, slightly flattened, with a small curvature along its longest dimension (51 A). This protein, with a molecular mass of 19. 2 kDa, is one of the smallest structures reconstructed with this methodology. Two-dimensional (2D) crystals of Stn II on phosphatidylcholine monolayers present a unit cell with two tetrameric motifs, with the monomers in two different orientations: one with its longest dimension lying on the crystal plane and the other with this same axis leaning at an angle of approximately 60 degrees with the crystal plane. PMID:10827995

  10. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.

    PubMed

    Cress, Brady F; Toparlak, Ö Duhan; Guleria, Sanjay; Lebovich, Matthew; Stieglitz, Jessica T; Englaender, Jacob A; Jones, J Andrew; Linhardt, Robert J; Koffas, Mattheos A G

    2015-09-18

    Programmable control over an addressable global regulator would enable simultaneous repression of multiple genes and would have tremendous impact on the field of synthetic biology. It has recently been established that CRISPR/Cas systems can be engineered to repress gene transcription at nearly any desired location in a sequence-specific manner, but there remain only a handful of applications described to date. In this work, we report development of a vector possessing a CRISPathBrick feature, enabling rapid modular assembly of natural type II-A CRISPR arrays capable of simultaneously repressing multiple target genes in Escherichia coli. Iterative incorporation of spacers into this CRISPathBrick feature facilitates the combinatorial construction of arrays, from a small number of DNA parts, which can be utilized to generate a suite of complex phenotypes corresponding to an encoded genetic program. We show that CRISPathBrick can be used to tune expression of plasmid-based genes and repress chromosomal targets in probiotic, virulent, and commonly engineered E. coli strains. Furthermore, we describe development of pCRISPReporter, a fluorescent reporter plasmid utilized to quantify dCas9-mediated repression from endogenous promoters. Finally, we demonstrate that dCas9-mediated repression can be harnessed to assess the effect of downregulating both novel and computationally predicted metabolic engineering targets, improving the yield of a heterologous phytochemical through repression of endogenous genes. These tools provide a platform for rapid evaluation of multiplex metabolic engineering interventions.

  11. Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches'-broom group 16SrII-A.

    PubMed

    Li, Yong; Piao, Chun-gen; Tian, Guo-zhong; Liu, Zhi-xin; Guo, Min-wei; Lin, Cai-li; Wang, Xi-zhuo

    2014-08-01

    Four witches'-broom diseases associated with Arachis hypogaea (peanut), Crotalaria pallida, Tephrosia purpurea, and Cleome viscosa were observed in Hainan Province, China during field surveys in 2004, 2005, and 2007. In previously reported studies, we identified these four phytoplasmas as members of subgroup 16SrII-A, and discovered that their 16S rRNA gene sequences were 99.9-100% identical to one another. In this study, we performed extensive phylogenetic analyses to elucidate relationships among them. We analyzed sequences of the 16S rRNA gene and rplV-rpsC, rpoB, gyrB, dnaK, dnaJ, recA, and secY combined sequence data from two strains each of the four phytoplasmas from Hainan province, as well as strains of peanut witches'-broom from Taiwan (PnWB-TW), "Candidatus Phytoplasma australiense", "Ca. Phytoplasma mali AT", aster yellows witches'-broom phytoplasma AYWB, and onion yellows phytoplasma OY-M. In the 16S rRNA phylogenetic tree, the eight Hainan strains form a clade with PnWB-TW. Analysis of the seven concatenated gene regions indicated that the four phytoplasmas collected from Hainan province cluster most closely with one another, but are closely related to PnWB-TW. The results of field survey and phylogenetic analysis indicated that Cr. pallida, T. purpurea, and Cl. viscosa may be natural plant hosts of peanut witches'-broom phytoplasma.

  12. Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice

    PubMed Central

    Zhao, Dong; Tong, Lufang; Zhang, Lixin; Li, Hong; Wan, Yingxin; Zhang, Tiezhong

    2016-01-01

    Tanshinone II A (TSIIA) is a diterpene quinone extracted from the roots of Salvia miltiorrhiza with anti-inflammatory and anti-oxidant properties that is used to treat atherosclerosis. In the current study, morphological analyses were conducted to evaluate the effects of TSIIA on atherosclerotic vulnerable plaque stability. Additionally, receptor of advanced glycation end products (RAGE), adhesion molecule, and matrix-metalloproteinases (MMPs) expression, and nuclear factor-κB (NF-κB) activation were examined in apolipoprotein E (apoE)-deficient mice treated with TSIIA. Eight-week-old apoE−/− mice were administered TSIIA and fed an atherogenic diet for 8 weeks. TSIIA exhibited no effects on plaque size. Analysis of the vulnerable plaque composition demonstrated decreased numbers of macrophages and smooth muscle cells, and increased collagen content in apoE-deficient mice treated with TSIIA compared with untreated mice. Western blotting revealed that TSIIA downregulated the expression levels of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and MMP-2, −3, and −9, suppressed RAGE, and inhibited NF-κB, JNK and p38 activation. The present study demonstrated that the underlying mechanism of TSIIA stabilization of vulnerable plaques involves interfering with RAGE and NF-κB activation, and downregulation of downstream inflammatory factors, including ICAM-1, VCAM-1, and MMP-2, −3 and −9 in apoE−/− mice. PMID:27840935

  13. Origin and use of crystallization phase diagrams

    PubMed Central

    Rupp, Bernhard

    2015-01-01

    Crystallization phase diagrams are frequently used to conceptualize the phase relations and also the processes taking place during the crystallization of macromolecules. While a great deal of freedom is given in crystallization phase diagrams owing to a lack of specific knowledge about the actual phase boundaries and phase equilibria, crucial fundamental features of phase diagrams can be derived from thermodynamic first principles. Consequently, there are limits to what can be reasonably displayed in a phase diagram, and imagination may start to conflict with thermodynamic realities. Here, the commonly used ‘crystallization phase diagrams’ are derived from thermodynamic excess properties and their limitations and appropriate use is discussed. PMID:25760697

  14. Phase preservation in musical signals

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V.; Eswaran, C.

    2005-04-01

    The intensity variations of the harmonics of musical instruments in the frequency domain can be interpreted to store phase information. The motivation for this arises by considering the similarity of the timbre of in- struments to that obtained through a diffraction model proposed here. The intensity modifications of an input spectrum of discrete frequencies of unit intensity into the known spectra of different musical instruments have been found to match that of known instruments. According to diffraction theory, the modifying envelope encodes phase information. By considering the similarity, it is proposed that musical instrument timbre store phase information. It is suggested that timbre itself could have diffraction origins. Specific examples of musical instruments are considered to illustrate this intepretation.

  15. Propeller speed and phase sensor

    NASA Technical Reports Server (NTRS)

    Collopy, Paul D. (Inventor); Bennett, George W. (Inventor)

    1992-01-01

    A speed and phase sensor counterrotates aircraft propellers. A toothed wheel is attached to each propeller, and the teeth trigger a sensor as they pass, producing a sequence of signals. From the sequence of signals, rotational speed of each propeller is computer based on time intervals between successive signals. The speed can be computed several times during one revolution, thus giving speed information which is highly up-to-date. Given that spacing between teeth may not be uniform, the signals produced may be nonuniform in time. Error coefficients are derived to correct for nonuniformities in the resulting signals, thus allowing accurate speed to be computed despite the spacing nonuniformities. Phase can be viewed as the relative rotational position of one propeller with respect to the other, but measured at a fixed time. Phase is computed from the signals.

  16. Sub-Heisenberg phase uncertainties

    NASA Astrophysics Data System (ADS)

    Pezzé, Luca

    2013-12-01

    Phase shift estimation with uncertainty below the Heisenberg limit, ΔϕHL∝1/N¯T, where N¯T is the total average number of particles employed, is a mirage of linear quantum interferometry. Recently, Rivas and Luis, [New J. Phys.NJOPFM1367-263010.1088/1367-2630/14/9/093052 14, 093052 (2012)] proposed a scheme to achieve a phase uncertainty Δϕ∝1/N¯Tk, with k an arbitrary exponent. This sparked an intense debate in the literature which, ultimately, does not exclude the possibility to overcome ΔϕHL at specific phase values. Our numerical analysis of the Rivas and Luis proposal shows that sub-Heisenberg uncertainties are obtained only when the estimator is strongly biased. No violation of the Heisenberg limit is found after bias correction or when using a bias-free Bayesian analysis.

  17. Phase Transformations in Confined Nanosystems

    SciTech Connect

    Shield, Jeffrey E.; Belashchenko, Kirill

    2014-04-29

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  18. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  19. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO-AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N2, N2O, and H2O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV' transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  20. A UNIFIED MONTE CARLO TREATMENT OF GAS-GRAIN CHEMISTRY FOR LARGE REACTION NETWORKS. II. A MULTIPHASE GAS-SURFACE-LAYERED BULK MODEL

    SciTech Connect

    Vasyunin, A. I.; Herbst, Eric E-mail: eh2ef@virginia.edu

    2013-01-10

    The observed gas-phase molecular inventory of hot cores is believed to be significantly impacted by the products of chemistry in interstellar ices. In this study, we report the construction of a full macroscopic Monte Carlo model of both the gas-phase chemistry and the chemistry occurring in the icy mantles of interstellar grains. Our model treats icy grain mantles in a layer-by-layer manner, which incorporates laboratory data on ice desorption correctly. The ice treatment includes a distinction between a reactive ice surface and an inert bulk. The treatment also distinguishes between zeroth- and first-order desorption, and includes the entrapment of volatile species in more refractory ice mantles. We apply the model to the investigation of the chemistry in hot cores, in which a thick ice mantle built up during the previous cold phase of protostellar evolution undergoes surface reactions and is eventually evaporated. For the first time, the impact of a detailed multilayer approach to grain mantle formation on the warm-up chemistry is explored. The use of a multilayer ice structure has a mixed impact on the abundances of organic species formed during the warm-up phase. For example, the abundance of gaseous HCOOCH{sub 3} is lower in the multilayer model than in previous grain models that do not distinguish between layers (so-called two phase models). Other gaseous organic species formed in the warm-up phase are affected slightly. Finally, we find that the entrapment of volatile species in water ice can explain the two-jump behavior of H{sub 2}CO previously found in observations of protostars.

  1. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths.

    PubMed

    Bao, Peng; Situ, Guohai; Pedrini, Giancarlo; Osten, Wolfgang

    2012-08-01

    A phase retrieval method for microscopy using multiple illumination wavelengths is proposed. A fast algorithm suitable for calculations with high numerical aperture is used for the iterative retrieval of the object wavefront. The advantages and limitations of the technique are systematically analyzed and demonstrated by both simulation and experimental results.

  2. Scrutinizing the pion condensed phase

    NASA Astrophysics Data System (ADS)

    Carignano, Stefano; Lepori, Luca; Mammarella, Andrea; Mannarelli, Massimo; Pagliaroli, Giulia

    2017-02-01

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the "radial" fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition.

  3. EHF multifunction phased array antenna

    NASA Astrophysics Data System (ADS)

    Solbach, Klaus

    1986-07-01

    The design of a low cost demonstration EHF multifunction-phased array antenna is described. Both, the radiating elements and the phase-shifter circuits are realized on microstrip substrate material in order to allow photolithographic batch fabrication. Self-encapsulated beam-lead PIN-diodes are employed as the electronic switch elements to avoid expensive hermetic encapsulation of the semiconductors or complete circuits. A space-feed using a horn-radiator to illuminate the array from the front-side is found to be the simplest and most inexpensive feed. The phased array antenna thus operates as a reflect-array, the antenna elements employed in a dual role for the collection of energy from the feed-horn and for the re-radiation of the phase-shifted waves (in transmit-mode). The antenna is divided into modules containing the radiator/phase-shifter plate plus drive- and BITE-circuitry at the back. Both drive- and BITE-components use gate-array integrated circuits especially designed for the purpose. Several bus-systems are used to supply bias and logical data flows to the modules. The beam-steering unit utilizes several signal processors and high-speed discrete adder circuits to combine the pointing, frequency and beam-shape information from the radar system computer with the stored phase-shift codes for the array elements. Since space, weight and power consumption are prime considerations only the most advanced technology is used in the design of both the microwave and the digital/drive circuitry.

  4. Compressed sensing for phase retrieval.

    PubMed

    Newton, Marcus C

    2012-05-01

    To date there are several iterative techniques that enjoy moderate success when reconstructing phase information, where only intensity measurements are made. There remains, however, a number of cases in which conventional approaches are unsuccessful. In the last decade, the theory of compressed sensing has emerged and provides a route to solving convex optimisation problems exactly via ℓ(1)-norm minimization. Here the application of compressed sensing to phase retrieval in a nonconvex setting is reported. An algorithm is presented that applies reweighted ℓ(1)-norm minimization to yield accurate reconstruction where conventional methods fail.

  5. Phase behavior of methane haze.

    PubMed

    Signorell, R; Jetzki, M

    2007-01-05

    Methane aerosols play a fundamental role in the atmospheres of Neptune, Uranus, and Saturn's moon Titan as borne out by the recent Cassini-Huygens mission. Here we present the first study of the phase behavior of free methane aerosol particles combining collisional cooling with rapid-scan infrared spectroscopy in situ. We find fast (within minutes) phase transitions to crystalline states directly after particle formation and characteristic surface effects for nanometer-sized particles. From our results, we conclude that in atmospheric clouds solid methane particles are crystalline.

  6. Holographically Encoded Volume Phase Masks

    DTIC Science & Technology

    2015-07-13

    experiments have been performed using an HPM recorded in a 1.97-mm thick photo -thermo-refractive (PTR) glass sample as illustrated in Fig. 1. PTR glass is a...spiral phase plate,” Appl. Opt. 43(12), 2397–2399 (2004). 19. K. Peithmann et al., “Low-spatial-frequency refractive-index changes in iron- doped ...Binary volume phase masks in photo -thermo-refrac- tive glass,” Opt. Lett. 37(7), 1190–1192 (2012). 21. M. Bass, Handbook of Optics, 2nd ed., McGraw-Hill

  7. Closure phase and lucky imaging.

    PubMed

    Rhodes, William T

    2009-01-01

    Since its introduction by Jennison in 1958, the closure-phase method for removing the effects of electrical path-length errors in radio astronomy and of atmospheric turbulence in optical astronomy has been based on the non-redundant-spacing triple interferometer. It is shown that through application of lucky imaging concepts it is possible to relax this condition, making closure-phase methods possible with redundantly spaced interferometer configurations and thereby widening their range of application. In particular, a quadruple-interferometer can, under lucky imaging conditions, be treated as though it were a triple interferometer. The slit-annulus aperture is investigated as a special case.

  8. Phase transition in Liouville theory

    SciTech Connect

    Johnston, D. )

    1989-11-15

    We suggest that the vortices arising in a Kosterlitz-Thouless phase transition in Liouville theory correspond to transitions between different genera, producing the plumber's nightmare'' and other phases that have been predicted in fluid membrane theory from energetic considerations. This transition has previously been invoked by Cates to explain the degeneration of numerical simulations of Gaussian random surfaces into branched polymers. The difficulty in quantizing Liouville theory for {ital d}{gt}1 is conjectured to be due to our insistence on working at a fixed genus.

  9. Phase transition in Liouville theory

    NASA Astrophysics Data System (ADS)

    Johnston, D.

    1989-11-01

    We suggest that the vortices arising in a Kosterlitz-Thouless phase transition in Liouville theory correspond to transitions between different genera, producing the ``plumber's nightmare'' and other phases that have been predicted in fluid membrane theory from energetic considerations. This transition has previously been invoked by Cates to explain the degeneration of numerical simulations of Gaussian random surfaces into branched polymers. The difficulty in quantizing Liouville theory for d>1 is conjectured to be due to our insistence on working at a fixed genus.

  10. Moving walls and geometric phases

    NASA Astrophysics Data System (ADS)

    Facchi, Paolo; Garnero, Giancarlo; Marmo, Giuseppe; Samuel, Joseph

    2016-09-01

    We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.

  11. Design and development of Stirling engines for stationary-power-generation applications in the 500- to 3000-horsepower range. Phase I final report

    SciTech Connect

    1980-10-01

    A program plan and schedule for the implementation of the proposed conceptual designs through the remaining four phases of the overall large Stirling engine development program was prepared. The objective of Phase II is to prepare more detailed designs of the conceptual designs prepared in Phase I. At the conclusion of Phase II, a state-of-the-art design will be selected from the candidate designs developed in Phase I for development. The objective of Phase III is to prepare manufacturing drawings of the candidate engine design. Also, detailed manufacturing drawings of both 373 kW (500 hp) and 746 kW (1000 hp) power pack skid systems will be completed. The power pack skid systems will include the generator, supporting skid, controls, and other supporting auxiliary subsystems. The Stirling cycle engine system (combustion system, Stirling engine, and heat transport system) will be mounted in the power pack skid system. The objective of Phase IV is to procure parts for prototype engines and two power pack skid systems and to assemble Engines No. 1 and 2. The objective of Phase V is to perform extensive laboratory and demonstration testing of the Stirling engines and power pack skid systems, to determine the system performance and cost and commercialization strategy. Scheduled over a 6 yr period the cost of phases II through V is estimated at $22,063,000. (LCL)

  12. Hydrodynamics and phases of flocks

    SciTech Connect

    Toner, John; Tu Yuhai . E-mail: yuhai@us.ibm.com; Ramaswamy, Sriram

    2005-07-01

    We review the past decade's theoretical and experimental studies of flocking: the collective, coherent motion of large numbers of self-propelled 'particles' (usually, but not always, living organisms). Like equilibrium condensed matter systems, flocks exhibit distinct 'phases' which can be classified by their symmetries. Indeed, the phases that have been theoretically studied to date each have exactly the same symmetry as some equilibrium phase (e.g., ferromagnets, liquid crystals). This analogy with equilibrium phases of matter continues in that all flocks in the same phase, regardless of their constituents, have the same 'hydrodynamic'-that is, long-length scale and long-time behavior, just as, e.g., all equilibrium fluids are described by the Navier-Stokes equations. Flocks are nonetheless very different from equilibrium systems, due to the intrinsically nonequilibrium self-propulsion of the constituent 'organisms'. This difference between flocks and equilibrium systems is most dramatically manifested in the ability of the simplest phase of a flock, in which all the organisms are, on average moving in the same direction (we call this a 'ferromagnetic' flock; we also use the terms 'vector-ordered' and 'polar-ordered' for this situation) to exist even in two dimensions (i.e., creatures moving on a plane), in defiance of the well-known Mermin-Wagner theorem of equilibrium statistical mechanics, which states that a continuous symmetry (in this case, rotation invariance, or the ability of the flock to fly in any direction) can not be spontaneously broken in a two-dimensional system with only short-ranged interactions. The 'nematic' phase of flocks, in which all the creatures move preferentially, or are simply oriented preferentially, along the same axis, but with equal probability of moving in either direction, also differs dramatically from its equilibrium counterpart (in this case, nematic liquid crystals). Specifically, it shows enormous number fluctuations, which

  13. High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations

    PubMed Central

    Kim, Hyungjun; Su, Julius T.; Goddard, William A.

    2011-01-01

    We recently developed the electron force field (eFF) method for practical nonadiabatic electron dynamics simulations of materials under extreme conditions and showed that it gave an excellent description of the shock thermodynamics of hydrogen from molecules to atoms to plasma, as well as the electron dynamics of the Auger decay in diamondoids following core electron ionization. Here we apply eFF to the shock thermodynamics of lithium metal, where we find two distinct consecutive phase changes that manifest themselves as a kink in the shock Hugoniot, previously observed experimentally, but not explained. Analyzing the atomic distribution functions, we establish that the first phase transition corresponds to (i) an fcc-to-cI16 phase transition that was observed previously in diamond anvil cell experiments at low temperature and (ii) a second phase transition that corresponds to the formation of a new amorphous phase (amor) of lithium that is distinct from normal molten lithium. The amorphous phase has enhanced valence electron-nucleus interactions due to localization of electrons into interstitial locations, along with a random connectivity distribution function. This indicates that eFF can characterize and compute the relative stability of states of matter under extreme conditions (e.g., warm dense matter). PMID:21873210

  14. Small Business Innovation Research GRC Phase I, Phase II, and Post-Phase II Opportunity Assessment for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report outlines the 2015 Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Phase I, Phase II, and Post-Phase II opportunity contract award results associated with NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD) for NASA Glenn Research Center. The report also highlights the number of Phase I, Phase II, and Post-Phase II contracts awarded by mission directorate. The 2015 Phase I contract awards to companies in Ohio and their corresponding technologies are also discussed.

  15. Oregon Projections, Appendix C. Vol. II, A Plan for Managing the Development, Implementation and Operation of a Model Elementary Teacher Education Program.

    ERIC Educational Resources Information Center

    Buck, James E.

    The purpose of this report is to provide the ComField Project with realistic, current data for future Oregon elementary education contexts, which will serve as partial verification and support for the program, set procedure for future local predictions, and provide local projections for the Phase 2 final report. It covers nine general areas: 1)…

  16. Miniature Color Display Phase 4

    DTIC Science & Technology

    1993-05-01

    is used to generate full color. By spectral tuning of the xenon arc-lamp backlight and the color polarizers, a color gamut comparable to that of a...5 1.2 Phase IV Accom plishments ................................... 5 1.2.1 Subtractive Color Gamut ...Technical Achievem ents .............................................. 8 2.1 Subtractive Color Gamut 2.1.1 Sub Color LC Technology

  17. Phase multiplying electronic scanning array

    NASA Technical Reports Server (NTRS)

    Seaton, A. F.

    1969-01-01

    Scanning array was designed with properties of low RF loss and phase control. The array consists of a series of special waveguides, hybrids made up of two variable reactance branch arms for input signals, an edge slot for the difference port, and a sum arm for the unradiated signal.

  18. Phase Detection Using Neural Networks.

    DTIC Science & Technology

    1997-03-10

    A likelihood of detecting a reflected signal characterized by phase discontinuities and background noise is enhanced by utilizing neural networks to...identify coherency intervals. The received signal is processed into a predetermined format such as a digital time series. Neural networks perform

  19. Phase 1 Program Joint Report

    NASA Technical Reports Server (NTRS)

    Nield, George C. (Editor); Vorobiev, Pavel Mikhailovich (Editor)

    1999-01-01

    This report consists of inputs from each of the Phase I Program Joint Working Groups. The Working Groups were tasked to describe the organizational structure and work processes that they used during the program, joint accomplishments, lessons learned, and applications to the International Space Station Program. This report is a top-level joint reference document that contains information of interest to both countries.

  20. Mifepristone for luteal phase contraception.

    PubMed

    Croxatto, Horacio B

    2003-12-01

    The concept of luteal phase contraception and the use of mifepristone in clinical trials, which allows for testing of its validity, as well as clinical pharmacological research designed to understand its mode of action, are reviewed. Early luteal phase administration has a variety of morphological, physiological and biochemical effects on the endometrium that are likely to interfere with embryonic-endometrial interactions. In fact, specifically designed pilot clinical trials as well as data derived from emergency contraception studies indicate that early luteal phase administration of mifepristone is highly effective in preventing pregnancy, with minimal disturbance of hormonal parameters or menstrual cyclicity. Mid and late luteal phase administration of mifepristone at doses above 25 mg are highly effective in inducing endometrial bleeding in nonconceptional cycles. However, administration of mifepristone within the period between implantation and expected menses fails to induce bleeding in a significant proportion of cases, and furthermore the bleeding induced does not insure the termination of pregnancy. While the data suggest there is potential for a once-a-month contraceptive pill, it is likely that no molecule endowed with partial agonistic properties, like mifepristone, will completely and reliably suppress the essential functions of progesterone in order to achieve contraceptive efficacy comparable to that of modern contraceptive methods.

  1. Circadian phase relationships in monkeys

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Wekstein, D. R.

    1973-01-01

    Two adult male pigtail monkeys were placed in an isolated, soundproofed chamber (entered for cleaning only) for a period of six months, during which time their deep body temperatures T sub DB, telemetered from transmitters implanted in the abdominal cavity), fluid intake, urinary output (UV), urinary sodium and potassium were continuously monitored. During the first 3 1/2 months, lights (L) were turned on at 0000 hours, off at 1200 hours. Photoperiod phase was then delayed (light span prolonged) 6 hours to a new schedule: L on at 0600 hours, off at 1800 hours. Six weeks later, photoperiod phase was advanced 6 hours to return to the original schedule. Prior to shift, T sub DB typically began a steep rise 0-5 hours prior to L on, a steep fall 3-4 hours prior to L off, relative plateaus in between. Urinary Na typically peaks 2 hours prior to L off, has a minimum 2-4 hours prior to L on; K tends both to peak and show a minimum 2-8 hours earlier than Na; in contrast, UV peaks at L on, has a minimum 2-6 hours after L off. Upon delaying photoperiod phase, T sub DB shift was completed in 8 days. UV shifted more rapidly but tended to overshoot the new phase. Within 5 days, UV and K completed their shifts, although Na did not fully resynchronize within the 6 week period monitored.

  2. Shock dynamics of phase diagrams

    SciTech Connect

    Moro, Antonio

    2014-04-15

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gas–liquid phase transition. Nevertheless, below the critical temperature theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts. -- Highlights: •A new generalisation of van der Waals equation of state. •Description of phase transitions in terms of shock dynamics of state curves. •Proof of the universality of equations of state for a general class of models. •Interpretation of triple points as confluence of classical shock waves. •Correspondence table between thermodynamics and nonlinear conservation laws.

  3. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  4. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  5. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  6. Calibrating for Ionospheric Phase Delays

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1985-01-01

    Technique determines ionospheric phase delay on real-time universally applicable basis in terms of electrons per meter squared by coherently modulating two L-band carrier frequencies received from two Global Positioning System satelites. Two pseudorandom number sequences cross-correlated to derive delay time.

  7. Backyard Astronomy: Observing Moon Phases.

    ERIC Educational Resources Information Center

    Brandou, Bob

    1997-01-01

    Presents an activity involving the observation of moon phases that can provide a one-on-one learning experience and stimulate interaction between a child and an adult family member. This activity can also be initiated by teachers and outcomes can be integrated into the classroom science curriculum. (JRH)

  8. Gas phase chemistry in comets

    NASA Technical Reports Server (NTRS)

    Oppenheimer, M.

    1976-01-01

    The significance of gas phase reactions in determining the nuclear structure of comets is discussed. The sublimation of parent molecules such as H2O, CH4, CO2, and NH3 from the surface of the nucleus and their subsequent photodissociation and ionization in forming observed cometary molecular species are elaborated.

  9. Receiver Would Control Phasing of a Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Dunn, Charles E.; Young, Lawrence E.

    2006-01-01

    In a proposed digital signal-processing technique, a radio receiver would control the phasing of a phased-array antenna to aim the peaks of the antenna radiation pattern toward desired signal sources while aiming the nulls of the pattern toward interfering signal sources. The technique was conceived for use in a Global Positioning System (GPS) receiver, for which the desired signal sources would be GPS satellites and typical interference sources would be terrestrial objects that cause multipath propagation. The technique could also be used to optimize reception in spread-spectrum cellular-telephone and military communication systems. During reception of radio signals in a conventional phased-array antenna system, received signals at their original carrier frequencies are phase-shifted, then combined by analog circuitry. The combination signal is then subjected to down-conversion and demodulation. In a system according to the proposed technique (see figure), the signal received by each antenna would be subjected to down-conversion, spread-spectrum demodulation, and correlation; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. Following analog down-conversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudorandum-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be

  10. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ventilation § 57.22227 Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). (a) Methane monitoring devices and portable, battery-powered, self-contained devices used for...

  11. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ventilation § 57.22227 Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). (a) Methane monitoring devices and portable, battery-powered, self-contained devices used for...

  12. 30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ventilation § 57.22227 Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). (a) Methane monitoring devices and portable, battery-powered, self-contained devices used for...

  13. Condensing, Two-Phase, Contact Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Oren, J. A.; Sauer, L. W.

    1988-01-01

    Two-phase heat exchanger continuously separates liquid and vapor phases of working fluid and positions liquid phase for efficient heat transfer. Designed for zero gravity. Principle is adapted to other phase-separation applications; for example, in thermodynamic cycles for solar-energy conversion.

  14. Phase synchronization of a new chaotic system

    NASA Astrophysics Data System (ADS)

    Vahedi, Shahed; Md Noorani, Mohd Salmi

    2013-09-01

    In this paper, we are going to apply phase and anti-phase synchronization on a recently studied chaotic system by the authors. The technique we employ to extract the phase at each time is EMD and we show that the corresponding intrinsic modes of the two systems are well phase locked after activating the control functions.

  15. Phase Errors and the Capture Effect

    SciTech Connect

    Blair, J., and Machorro, E.

    2011-11-01

    This slide-show presents analysis of spectrograms and the phase error of filtered noise in a signal. When the filtered noise is smaller than the signal amplitude, the phase error can never exceed 90{deg}, so the average phase error over many cycles is zero: this is called the capture effect because the largest signal captures the phase and frequency determination.

  16. Nonclassicality in phase-number uncertainty relations

    SciTech Connect

    Matia-Hernando, Paloma; Luis, Alfredo

    2011-12-15

    We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.

  17. Fourier Phase Domain Steganography: Phase Bin Encoding Via Interpolation

    NASA Astrophysics Data System (ADS)

    Rivas, Edward

    2007-04-01

    In recent years there has been an increased interest in audio steganography and watermarking. This is due primarily to two reasons. First, an acute need to improve our national security capabilities in light of terrorist and criminal activity has driven new ideas and experimentation. Secondly, the explosive proliferation of digital media has forced the music industry to rethink how they will protect their intellectual property. Various techniques have been implemented but the phase domain remains a fertile ground for improvement due to the relative robustness to many types of distortion and immunity to the Human Auditory System. A new method for embedding data in the phase domain of the Discrete Fourier Transform of an audio signal is proposed. Focus is given to robustness and low perceptibility, while maintaining a relatively high capacity rate of up to 172 bits/s.

  18. Phase Length Optical Phase-Locked-Loop Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor)

    1988-01-01

    The invention is a device that provides a high resolution measurement of the change in optical phase length from the device optical system source to an optical reflector. The invention consists of a optical phase locked loop that uses a laser beam as a carrier of an intensity modulated energy source. The novelty of the invention appears to lie in the overall combination of elements which provide high resolution without loss of wide dynamic range. The invention does not depend on coherent reflection from a target, and thus can measure targets that do not have special preparation or corner reflectors. The use of carrier modulation achieves high resolution without the problems of high speed pulse duration systems. Thus the invention has the advantages of simplicity, low cost, and small size without sacrificing resolution.

  19. Doppler phase shifting using dual, switched phase shifting devices

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    2002-01-01

    A system of inducing a phase shift using moving reflector elements. The moving reflectors can be moving mirrors or an acousto-optical filter. The moving reflectors oscillate i.e. the move first in a first direction and then in a second direction. Two different reflectors are used so that the light can be switched between the reflectors. During a first portion of the cycle the light is coupled to the first modulator which moves the reflector in the first direction. The second modulator is out of phase with the first modulator, and the light is switched to that second modulator during a second portion of the cycle. The second modulator is also moving in the first direction when the light is applied thereto. In this way, the light obtains a constant direction Doppler shift.

  20. Direct phasing in femtosecond nanocrystallography. II. Phase retrieval.

    PubMed

    Chen, Joe P J; Spence, John C H; Millane, Rick P

    2014-03-01

    X-ray free-electron laser diffraction patterns from protein nanocrystals provide information on the diffracted amplitudes between the Bragg reflections, offering the possibility of direct phase retrieval without the use of ancillary experimental diffraction data [Spence et al. (2011). Opt. Express, 19, 2866-2873]. The estimated continuous transform is highly noisy however [Chen et al. (2014). Acta Cryst. A70, 143-153]. This second of a series of two papers describes a data-selection strategy to ameliorate the effects of the high noise levels and the subsequent use of iterative phase-retrieval algorithms to reconstruct the electron density. Simulation results show that employing such a strategy increases the noise levels that can be tolerated.

  1. Extracting Constitutive Stress-Strain Behavior of Microscopic Phases by Micropillar Compression

    NASA Astrophysics Data System (ADS)

    Williams, J. J.; Walters, J. L.; Wang, M. Y.; Chawla, N.; Rohatgi, A.

    2013-02-01

    The macroscopic behavior of metallic materials is a complex function of microstructure. The size, morphology, volume fraction, crystallography, and distribution of a 2nd phase within a surrounding matrix all control the mechanical properties. Understanding the contributions of the individual microconstituents to the mechanical behavior of multiphase materials has proven difficult due to the inability to obtain accurate constitutive relationships of each individual constituent. In dual-phase steels, for example, the properties of martensite or ferrite in bulk form are not representative of their behavior at the microscale. In this study, micropillar compression was employed to determine the mechanical properties of individual microconstituents in metallic materials with "composite" microstructures, consisting of two distinct microconstituents: (I) a Mg-Al alloy with pure Mg dendrites and eutectic regions and (II) a powder metallurgy steel with ferrite and martensite constituents. The approach is first demonstrated in a Mg-Al directionally solidified alloy where the representative stress-strain behavior of the matrix and eutectic phases was obtained. The work is then extended to a dual-phase steel where the constitutive behavior of the ferrite and martensite were obtained. Here, the results were also incorporated into a modified rule-of-mixtures approach to predict the composite behavior of the steel. The constitutive behavior of the ferrite and martensite phases developed from micropillar compression was coupled with existing strength-porosity models from the literature to predict the ultimate tensile strength of the steel. Direct comparisons of the predictions with tensile tests of the bulk dual-phase steel were conducted and the correlations were quite good.

  2. Linear phase distribution of acoustical vortices

    SciTech Connect

    Gao, Lu; Zheng, Haixiang; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2014-07-14

    Linear phase distribution of phase-coded acoustical vortices was theoretically investigated based on the radiation theory of point source, and then confirmed by experimental measurements. With the proposed criterion of positive phase slope, the possibility of constructing linear circular phase distributions is demonstrated to be determined by source parameters. Improved phase linearity can be achieved at larger source number, lower frequency, smaller vortex radius, and/or longer axial distance. Good agreements are observed between numerical simulations and measurement results for circular phase distributions. The favorable results confirm the feasibility of precise phase control for acoustical vortices and suggest potential applications in particle manipulation.

  3. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  4. Phase Analysis of Fringe Pattern In Shearography

    NASA Astrophysics Data System (ADS)

    Yusof, M. Y.; Abdullah, W. S. Wan

    2008-05-01

    This paper discusses the phase analysis of interference pattern from coherent light Nd:YAG 532 nm laser source. The Twyman-Green Interferometer set-up is used for generating the fringe pattern in the phase calibration. The piezoelectric transducer (PZT) is used to achieve the required phase shift of the fringe pattern. It was found that the system required 8.8 volts of out-put DC voltage to shift 2π radians phase. The accuracy of optical phase measurement of the interference pattern is analyzed by wrapped phases of three-phase stepping and four-phase stepping procedures. Comparison of the experimental phase measurement data and the theoretical phase calculations are also highlighted.

  5. Double reference pulsed phase locked loop

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1986-01-01

    A double reference pulse phase locked loop is described which measures the phase shift between tone burst signals initially derived from the same periodic signal source (voltage controlled oscillator) and delayed by different amounts because of two different paths. A first path is from the transducer to the surface of a sample and back. A second path is from the transducer to the opposite surface and back. A first pulse phase locked loop including a phase detector and a phase shifter forces the tone burst signal delayed by the second path in phase quadrature with the periodic signal source. A second pulse phase locked loop including a second phase detector forces the tone burst signals delayed by the first path into phase quadrature with the phase shifted periodic signal source.

  6. Randomized Grain Boundary Liquid Crystal Phase

    NASA Astrophysics Data System (ADS)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  7. Griffiths phase and temporal effects in phase separated manganites

    NASA Astrophysics Data System (ADS)

    Krivoruchko, V. N.; Marchenko, M. A.

    2016-08-01

    Phenomenological description of relaxation phenomena in magnetic and transport properties of perovskite manganites has been presented. The approach is based on generalization of some hypotheses appropriate to the Preisach picture of magnetization process for half-metallic ferromagnets and on an assumption that in doped manganites the phase separated state exists near the magnetic ordering temperature. For systems with the percolation type of a ferromagnet-paramagnet transition, distinctive features in relaxation of magnetization and resistivity have been found. The relaxation is shown to be most pronounced near the transition temperature, and to be an approximately logarithmic function of time. The theoretical results replicate a broad spectrum of behavior observed experimentally on time dependence of magnetization and resistivity of CMR systems and allow a direct comparison with available experimental data. We propose an additional experimental test to distinguish between the percolation scenario of magnetic and transport transitions in doped manganites, and the ferromagnetic polaron picture. In particular, an anomalously slow relaxation to zero of the order parameter can be considered as a key feature of the Griffiths-like phase transition in doped manganites. It is also shown that a system with the Griffiths-like state will exhibit nonequilibrium aging and rejuvenation phenomena, which in many aspects resemble that of a spin glass. We hope that experimental observation of a set of time decay properties will provide a settlement of apparently conflicting results obtained for different characteristics of phase-separated manganites.

  8. Magnetically ordered phase near transition to Bose-glass phase

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. V.; Sizanov, A. V.

    2017-01-01

    We discuss a magnetically ordered ("superfluid") phase near quantum transition to the Bose-glass phase in a simple modeling system, a Heisenberg antiferromagnet with spatial dimension d >2 in an external magnetic field with disorder in exchange coupling constants. Our analytical consideration is based on hydrodynamic description of long-wavelength excitations. Results obtained are valid in the entire critical region near the quantum critical point (QCP), allowing us to describe a possible crossover from one critical behavior to another. We demonstrate that the system behaves in full agreement with predictions by M. P. Fisher et al. [Phys. Rev. B 40, 546 (1989), 10.1103/PhysRevB.40.546] in close vicinity to the QCP. We find as an extension to that analysis that the anomalous dimension η =2 -d and β =ν d /2 , where β and ν are critical exponents of the order parameter and the correlation length, respectively. The density of states per spin of low-energy localized excitations is found to be independent of d ("superuniversal"). We show that many recent experimental and numerical results obtained in various three-dimensional (3D) systems can be described by our formulas using percolation critical exponents. Then, it is a possibility that a percolation critical regime arises in the ordered phase in some 3D systems not very close to the QCP.

  9. Generalized phase-shifting color digital holography

    NASA Astrophysics Data System (ADS)

    Nomura, Takanori; Kawakami, Takaaki; Shinomura, Kazuma

    2016-06-01

    Two methods to apply the generalized phase-shifting digital holography to color digital holography are proposed. One is wave-splitting generalized phase-shifting color digital holography. This is realized by using a color Bayer camera. Another is multiple exposure generalized phase-shifting color digital holography. This is realized by the wavelength-dependent phase-shifting devices. Experimental results for both generalized phase-shifting color digital holography are presented to confirm the proposed methods.

  10. Nonadditive Mixed State Phases in Neutron Optics

    SciTech Connect

    Klepp, J.; Sponar, S.; Filipp, S.; Lettner, M.; Badurek, G.; Hasegawa, Y.

    2009-03-10

    In a neutron polarimetry experiment mixed neutron spin phases are determined. We consider evolutions leading to purely geometric, purely dynamical and combined phases. It is experimentally demonstrated that the sum of the geometric and dynamical phases--both obtained in separate measurements--is not equal to the associated total phase as obtained from a third measurement, unless the system is in a pure state. In this sense, mixed state phases are not additive.

  11. The VLA Atmospheric Phase Interferometer

    NASA Astrophysics Data System (ADS)

    Morris, Keith

    2014-05-01

    The Atmospheric Phase Interferometer (API) is a two-element atmospheric seeing monitor located at the Very Large Array (VLA) site. The instrument measures turbulent refractive index variation through the atmosphere by examining phase differences in a satellite beacon signal detected at two (or more) antennas. With this measurement, the VLA scheduling software is able to consider atmospheric stability when determining which frequency observation to schedule next. We are in the process of extending this two-element interferometer to four elements, which will allow us to measure the turbulence in two dimensions and at multiple length scales. This thesis will look at some statistical properties of turbulence, the effects of atmospheric stability on radio interferometric observations, and discuss details of the instrument and the data that it collects. The thesis will also cover some techniques and principles of signal processing, and an analysis of some data from the instrument. The results demonstrate that other surface atmospheric variables (e.g. windspeed, water vapor pressure) show the same structure function exponent as the atmospheric phase fluctuations. In particular, the structure functions of water vapor partial pressure and wind speed show the same exponent as the phase. Though the agreement between meteorological variables and atmospheric phase is scientifically satisfying, these surface measurements are not nearly as sensitive as the API saturation phase measurement, and therefore cannot be used to schedule telescope time in its stead. What is informative about these results is that the similar structure functions for API and meteorological data are detecting reinforce the claim that both measurements represent turbulent transport, and not instrumental noise. Data from the instrument reveals that measurements are consistent with both Kolmogorov turbulence theory, and with prior observations. The API predominately measures three-dimensional isotropic

  12. Multiphase, multicomponent phase behavior prediction

    NASA Astrophysics Data System (ADS)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using

  13. Asteroid photometry: Phase-angle effects

    NASA Astrophysics Data System (ADS)

    Belskaya, I.; Shevchenko, V.

    2014-07-01

    We review available observational data on magnitude phase-angle dependencies of asteroids. The number of asteroids, for which good quality phase curves were measured, increases very slowly. At present, the data-set on magnitude-phase dependencies with a good phase-angle coverage and small scatter includes less than one hundred asteroids. Most part of these data is related to the ground-based observations of main-belt asteroids and covered the phase-angle range from 0.3--0.5 deg to 20--25 deg. The phase curves in the wider phase-angle range up to 120--140 deg were measured for ten asteroids observed by space missions and for several near-Earth asteroids. Ground-based and space-based observations are generally mutually consistent. For most of the observed phase-angle ranges, asteroid magnitude phase curves are found to be linear with a noticeable deviation at phase angles smaller than 5--7 deg due to the opposition effect and at phase angles larger than 70-80 deg due to the influence of large-scale surface features. The differences in the phase curves at large phase angles and their influence on the phase integral have not yet been thoroughly investigated. The measured linear phase coefficients of asteroids are in the range of 0.02--0.05 mag/deg. The opposition-effect amplitudes determined relatively to the extrapolation of the linear part of the phase curve do not exceeds 0.4 mag. Relatively small variations of asteroid phase curve parameters require accurate photometric observations and thorough account for lightcurve amplitude to distinguish phase-angle effects. The measured magnitude phase dependencies revealed essential differences in magnitude phase-angle behavior for asteroids of different surface composition both in the linear part and in the opposition effect range (Harris et al. 1989, Belskaya and Shevchenko 2000, Shevchenko et al. 2012). Maximal amplitude of the opposition effect occurs for moderate-albedo S- and M-type asteroids. Low-albedo asteroids

  14. Fiber bundle phase conjugate mirror

    DOEpatents

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  15. Phase diagram of Hertzian spheres

    NASA Astrophysics Data System (ADS)

    Pàmies, Josep C.; Cacciuto, Angelo; Frenkel, Daan

    2009-07-01

    We report the phase diagram of interpenetrating Hertzian spheres. The Hertz potential is purely repulsive, bounded at zero separation, and decreases monotonically as a power law with exponent 5/2, vanishing at the overlapping threshold. This simple functional describes the elastic interaction of weakly deformable bodies and, therefore, it is a reliable physical model of soft macromolecules, like star polymers and globular micelles. Using thermodynamic integration and extensive Monte Carlo simulations, we computed accurate free energies of the fluid phase and a large number of crystal structures. For this, we defined a general primitive unit cell that allows for the simulation of any lattice. We found multiple re-entrant melting and first-order transitions between crystals with cubic, trigonal, tetragonal, and hexagonal symmetries.

  16. Phase Aberrations in Diffraction Microscopy

    SciTech Connect

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  17. Minimally packed phases in holography

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2016-03-01

    We numerically construct asymptotically AdS black brane solutions of D = 4 Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to d = 3 CFTs at finite chemical potential and in a constant magnetic field, which spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show, for a specific value of the magnetic field, that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. We show that the average stress tensor for the thermodynamically preferred phase is that of a perfect fluid and that this result applies more generally to spontaneously generated periodic phases. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

  18. Undersampled Phase Retrieval with Outliers

    PubMed Central

    Weller, Daniel S.; Pnueli, Ayelet; Divon, Gilad; Radzyner, Ori; Eldar, Yonina C.; Fessler, Jeffrey A.

    2015-01-01

    This paper proposes a general framework for reconstructing sparse images from undersampled (squared)-magnitude data corrupted with outliers and noise. This phase retrieval method uses a layered approach, combining repeated minimization of a convex majorizer (surrogate for a nonconvex objective function), and iterative optimization of that majorizer using a preconditioned variant of the alternating direction method of multipliers (ADMM). Since phase retrieval is nonconvex, this implementation uses multiple initial majorization vectors. The introduction of a robust 1-norm data fit term that is better adapted to outliers exploits the generality of this framework. The derivation also describes a normalization scheme for the regularization parameter and a known adaptive heuristic for the ADMM penalty parameter. Both 1D Monte Carlo tests and 2D image reconstruction simulations suggest the proposed framework, with the robust data fit term, reduces the reconstruction error for data corrupted with both outliers and additive noise, relative to competing algorithms having the same total computation. PMID:26770999

  19. Two-phase potential flow

    NASA Technical Reports Server (NTRS)

    Wallis, Graham B.

    1989-01-01

    Some features of two recent approaches of two-phase potential flow are presented. The first approach is based on a set of progressive examples that can be analyzed using common techniques, such as conservation laws, and taken together appear to lead in the direction of a general theory. The second approach is based on variational methods, a classical approach to conservative mechanical systems that has a respectable history of application to single phase flows. This latter approach, exemplified by several recent papers by Geurst, appears generally to be consistent with the former approach, at least in those cases for which it is possible to obtain comparable results. Each approach has a justifiable theoretical base and is self-consistent. Moreover, both approaches appear to give the right prediction for several well-defined situations.

  20. Agent review phase one report.

    SciTech Connect

    Zubelewicz, Alex Tadeusz; Davis, Christopher Edward; Bauer, Travis LaDell

    2009-12-01

    This report summarizes the findings for phase one of the agent review and discusses the review methods and results. The phase one review identified a short list of agent systems that would prove most useful in the service architecture of an information management, analysis, and retrieval system. Reviewers evaluated open-source and commercial multi-agent systems and scored them based upon viability, uniqueness, ease of development, ease of deployment, and ease of integration with other products. Based on these criteria, reviewers identified the ten most appropriate systems. The report also mentions several systems that reviewers deemed noteworthy for the ideas they implement, even if those systems are not the best choices for information management purposes.

  1. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  2. Coherent phase argument for inflation

    SciTech Connect

    Scott Dodelson

    2004-03-17

    Cosmologists have developed a phenomenally successful picture of structure in the universe based on the idea that the universe expanded exponentially in its earliest moments. There are three pieces of evidence for this exponential expansion--inflation--from observations of anisotropies in the cosmic microwave background. First, the shape of the primordial spectrum is very similar to that predicted by generic inflation models. Second, the angular scale at which the first acoustic peak appears is consistent with the flat universe predicted by inflation. Here the author describes the third piece of evidence, perhaps the most convincing of all: the phase coherence needed to account for the clear peak/trough structure observed by the WMAP satellite and its predecessors. The author also discusses alternatives to inflation that have been proposed recently and explain how they produce coherent phases.

  3. Phase-domain photoacoustic sensing

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Ding, Ran; Kishor, Rahul; Qiu, Lei; Zheng, Yuanjin

    2017-01-01

    As one of the fastest-growing imaging modalities in recent years, photoacoustic imaging has attracted tremendous research interest for various applications including anatomical, functional, and molecular imaging. The majority of the photoacoustic imaging systems are based on the time-domain pulsed photoacoustic method, which utilizes a pulsed laser source to induce a wideband photoacoustic signal, revealing optical absorption contrast. An alternative way is the frequency-domain photoacoustic method utilizing the chirping modulation of laser intensity to achieve lower system cost. In this paper, we report another way of the photoacoustic method, called phase-domain photoacoustic sensing, which explores the phase difference between two consequent intensity-modulated laser pulse induced photoacoustic measurements to reveal the optical properties. The basic principle is introduced, modeled, and experimentally validated in this paper, which opens another potential pathway to perform photoacoustic sensing and imaging, eliminating acoustic detection variations beyond the conventional time-domain and frequency-domain photoacoustic methods.

  4. Quantitative phase imaging of arthropods

    PubMed Central

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  5. Phase Transitions in Brownian Pumps

    NASA Astrophysics Data System (ADS)

    Dierl, Marcel; Dieterich, Wolfgang; Einax, Mario; Maass, Philipp

    2014-04-01

    We study stochastic particle transport between two reservoirs along a channel, where the particles are pumped against a bias by a traveling wave potential. It is shown that phase transitions of period-averaged densities or currents occur inside the channel when exclusion interactions between the particles are taken into account. These transitions reflect those known for the asymmetric simple exclusion process. We argue that their occurrence is a generic feature of Brownian motors operating in open systems.

  6. Exotic Phases of Ultracold Atoms

    DTIC Science & Technology

    2011-11-18

    lattices". 5 10 July 2007 Henri Poincare Institute, Paris, France, Quantum Gases Program Seminar: “Some unconventional phases of cold atomic matter with or...Pittsburgh, PA. (Attended) 10. PI, Paris Program on “Quantum Gases”, Centre Emile Borel, Institut Henri Poincaré, April 23- July 20, 2007, Paris...Pittsburgh. Promoted to the rank of Associated Profes- sor, effective Sep 1, 2009. 7. Visiting Scientist, Centre Emile Borel, Institut Henri Poincaré

  7. Disposal phase experimental program plan

    SciTech Connect

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  8. Final Report: Sensorpedia Phase 3

    SciTech Connect

    Gorman, Bryan L; Resseguie, David R

    2011-02-01

    This report is a summary of the Oak Ridge National Laboratory s (ORNL s) Phase 3 development of Sensorpedia, a sensor information sharing platform. Sensorpedia is ORNL s Wikipedia for Sensors. The overall goal of Sensorpedia is to enable global scale sensor information sharing for scientific research, national security and defense, public health and safety, emergency preparedness and response, and general community awareness and outreach.

  9. Multicolor Holography With Phase Shifting

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1996-01-01

    Prototype apparatus constructed to test feasibility of two-color holographic interferometric scheme in which data for reconstructing holographic wavefront obtained with help of phase-shifting technique. Provides two sets of data needed to solve equations for effects of temperature and concentration. Concept extended to holography at three or more wavelengths to measure three or more phenomena associated with significant variations in index of refraction

  10. Cabling design for phased arrays

    NASA Technical Reports Server (NTRS)

    Kruger, I. D.; Turkiewicz, L.

    1972-01-01

    The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.

  11. Phase comparator apparatus and method

    DOEpatents

    Coffield, F.E.

    1985-02-01

    This invention finds especially useful application for interferometer measurements made in plasma fusion devices (e.g., for measuring the line integral of electron density in the plasma). Such interferometers typically use very high intermediate frequencies (e.g., on the order of 10 to 70 MHz) and therefore the phase comparison circuitry should be a high speed circuit with a linear transfer characteristic so as to accurately differentiate between small fractions of interference fringes.

  12. TDRSS telecommunications study, phase 2

    NASA Technical Reports Server (NTRS)

    Cahn, C. R.

    1974-01-01

    Providing an extension to parametric analysis of the telecommunications support capability of the Tracking and Data Relay Satellite System (TDRSS), this phase considers candidate modulation waveforms which could meet the shuttle telecommunications requirements and also be compatible with the TDRSS single access S-band service. In addition, it considers the feasibility of modifying a single access S-band user transponder for operation with conventional STDN signals emanating from remotely located ground stations.

  13. [Phase I cancer trials methodology].

    PubMed

    Le Tourneau, Christophe; Faivre, Sandrine; Raymond, Eric; Diéras, Véronique

    2007-11-01

    The main objective of phase I cancer trials is to determine precisely the recommended dose of an anticancer agent as a single agent or in a context of combinations of anticancer agents (including cytotoxic agents, immunotherapy, radiotherapy...), that is administered for the first time in man, to further proceed clinical development with phase II and III trials. The recommended dose must have the greatest efficiency with acceptable toxicity. For the anticancer agents, the ratio risk/benefit is high, since toxicities associated with many cancer therapeutic agents are substantial and because the efficacy is often limited. Thus, phase I cancer trials present unique challenges in comparison to other therapeutic areas. Indeed, it is essential to minimize the numbers of patients treated at subefficient dose levels, and in the same time not to expose the patients to unacceptable toxicity. Historically, the first method that has been used is the Fibonacci escalation. The major problems raised with this method have been the lengths of the trials and the risk to treat substantial numbers of patients at nontherapeutix doses. Thus, novel methods have been then developed modifying the numbers of patients included at each dose level and the rapidity of dose escalation. These methods include pharmacologically guided dose escalation, escalation with overdose control and the continual reassessment method which are both statistically based dose escalation methods, and the accelerated titration designs. Concerning the targeted anticancer therapies, the therapeutic effect on the target, due to their higher specificity, can be obtained using doses that have few toxicity. Using the toxicity to determine the recommended dose for phase II trials, as it is the case for "classical > anticancer agents, does not seem to be sufficient. Alternatives to determine the optimal biological dose include measurement of target inhibition, pharmacokinetic analysis and functional imaging.

  14. Quantum Dimer Model: Phase Diagrams

    NASA Astrophysics Data System (ADS)

    Goldstein, Garry; Chamon, Claudio; Castelnovo, Claudio

    We present new theoretical analysis of the Quantum Dimer Model. We study dimer models on square, cubic and triangular lattices and we reproduce their phase diagrams (which were previously known only numerically). We show that there are several types of dimer liquids and solids. We present preliminary analysis of several other models including doped dimers and planar spin ice, and some results on the Kagome and hexagonal lattices.

  15. Phase Behavior of Ionic Microgels

    NASA Astrophysics Data System (ADS)

    Gottwald, D.; Likos, C. N.; Kahl, G.; Löwen, H.

    2004-02-01

    We employ effective interaction potentials between spherical polyelectrolyte microgels in order to investigate theoretically the structure, thermodynamics, and phase behavior of ionic microgel solutions. Combining a genetic algorithm with accurate free energy calculations we are able to perform an unrestricted search of candidate crystal structures. Hexagonal, body-centered orthogonal, and trigonal crystals are found to be stable at high concentrations and charges of the microgels, accompanied by reentrant melting behavior and fluid-fcc-bcc transitions below the overlap concentration.

  16. Quantum shuttle in phase space.

    PubMed

    Novotný, Tomás; Donarini, Andrea; Jauho, Antti-Pekka

    2003-06-27

    We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus extending the previously found classical results to the quantum domain. Further, a new dynamical regime is discovered, where the shuttling is driven exclusively by the quantum noise.

  17. Phase behavior of ionic microgels.

    PubMed

    Gottwald, D; Likos, C N; Kahl, G; Löwen, H

    2004-02-13

    We employ effective interaction potentials between spherical polyelectrolyte microgels in order to investigate theoretically the structure, thermodynamics, and phase behavior of ionic microgel solutions. Combining a genetic algorithm with accurate free energy calculations we are able to perform an unrestricted search of candidate crystal structures. Hexagonal, body-centered orthogonal, and trigonal crystals are found to be stable at high concentrations and charges of the microgels, accompanied by reentrant melting behavior and fluid-fcc-bcc transitions below the overlap concentration.

  18. Quantum gates with topological phases

    SciTech Connect

    Ionicioiu, Radu

    2003-09-01

    We investigate two models for performing topological quantum gates with the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects. Topological one- and two-qubit Abelian phases can be enacted with the AB effect using charge qubits, whereas the AC effect can be used to perform all single-qubit gates (Abelian and non-Abelian) for spin qubits. Possible experimental setups suitable for a solid-state implementation are briefly discussed.

  19. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    SciTech Connect

    Johnson, F. C.; Stone, M. E.; Miller, D. H.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  20. Phase diagrams for sonoluminescing bubbles

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Lohse, Detlef; Brenner, Michael P.

    1996-11-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state space and also in the ambient radius versus gas concentration and versus forcing pressure state spaces. These phase diagrams are based on the thresholds for energy focusing in the bubble and two kinds of instabilities, namely (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude Pa˜1.2-1.5 atm and low gas concentration of less than 0.4% of the saturation. The upper concentration threshold becomes smaller with increased forcing. Our results quantitatively agree with experimental results of Putterman's UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. All statements are based on the Rayleigh-Plesset ODE approximation of the bubble dynamics, extended in an adiabatic approximation to include mass diffusion effects. This approximation is the only way to explore considerable portions of parameter space, as solving the full PDEs is numerically too expensive. Therefore, we checked the adiabatic approximation by comparison with the full numerical solution of the advection diffusion PDE and find good agreement.

  1. Spatial phase stepping wavelength meter

    NASA Astrophysics Data System (ADS)

    Surrel, Yves; García-Márquez, Jorge; Fodor, Jozsua; Juncar, Patrick

    2005-03-01

    A new way of evaluating the ratio between a reference wavelength radiation and an unknown wavelength radiation in a two-beam interferometer is proposed here. The advantage of two-beam interferometry is the sinusoidal fringe signal for which precise phase detection algorithms exist. Modern algorithms can cope with different sources of errors, and correct them. We recall the principle of the Michelson-type lambdameter using temporal interference and we introduce the Young-type lambdameter using spatial interference. The Young-type lambdameter is based on the acquisition of the interference pattern from two point sources (e.g. two ends of monomode fibres projected onto a CCD camera). The measurement of an unknown wavelength can be achieved by comparing with a reference wavelength. Accurate interference phase maps can be calculated using spatial phase shifting. In this way, each small group of contiguous pixels acts as a single interferometer, and the whole set of pixels corresponds to many hundreds or thousands of interferometric measurement system units. The analysis of uncertainties shows that resolutions better than 10-7 can be achieved. An advantage of the fibre wavelength metre described here is the measurement velocity that takes only a few seconds.

  2. Phase diagram of crushed powders

    NASA Astrophysics Data System (ADS)

    Bodard, Sébastien; Jalbaud, Olivier; Saurel, Richard; Burtschell, Yves; Lapebie, Emmanuel

    2016-12-01

    Compression of monodisperse powder samples in quasistatic conditions is addressed in a pressure range such that particles fragmentation occurs while the solid remains incompressible (typical pressure range of 1-300 MPa for glass powders). For a granular bed made of particles of given size, the existence of three stages is observed during compression and crush up. First, classical compression occurs and the pressure of the granular bed increases along a characteristic curve as the volume decreases. Then, a critical pressure is reached for which fragmentation begins. During the fragmentation process, the granular pressure stays constant in a given volume range. At the end of this second stage, 20%-50% of initial grains are reduced to finer particles, depending on the initial size. Then the compression undergoes the third stage and the pressure increases along another characteristic curve, in the absence of extra fragmentation. The present paper analyses the analogies between the phase transition in liquid-vapour systems and powder compression with crush-up. Fragmentation diagram for a soda lime glass is determined by experimental means. The analogues of the saturation pressure and latent heat of phase change are determined. Two thermodynamic models are then examined to represent the crush-up diagram. The first one uses piecewise functions while the second one is of van der Waals type. Both equations of state relate granular pressure, solid volume fraction, and initial particle diameter. The piecewise functions approach provides reasonable representations of the phase diagram while the van der Waals one fails.

  3. Phase change material storage heater

    DOEpatents

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  4. NIF optics phase gradient specfication

    SciTech Connect

    Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.

    1997-05-02

    A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of {approximately}80 {angstrom}/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS&T personnel.

  5. New 'phase' of quantum gravity.

    PubMed

    Wang, Charles H-T

    2006-12-15

    The emergence of loop quantum gravity over the past two decades has stimulated a great resurgence of interest in unifying general relativity and quantum mechanics. Among a number of appealing features of this approach is the intuitive picture of quantum geometry using spin networks and powerful mathematical tools from gauge field theory. However, the present form of loop quantum gravity suffers from a quantum ambiguity, owing to the presence of a free (Barbero-Immirzi) parameter. Following the recent progress on conformal decomposition of gravitational fields, we present a new phase space for general relativity. In addition to spin-gauge symmetry, the new phase space also incorporates conformal symmetry making the description parameter free. The Barbero-Immirzi ambiguity is shown to occur only if the conformal symmetry is gauge fixed prior to quantization. By withholding its full symmetries, the new phase space offers a promising platform for the future development of loop quantum gravity. This paper aims to provide an exposition, at a reduced technical level, of the above theoretical advances and their background developments. Further details are referred to cited references.

  6. Phase diagram of elastic spheres.

    PubMed

    Athanasopoulou, L; Ziherl, P

    2017-02-15

    Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.

  7. Phase diagram of ammonium nitrate

    SciTech Connect

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  8. QCD Phase Transitions, Volume 15

    SciTech Connect

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  9. Phase-preserved optical elevator

    PubMed Central

    Luo, Yuan; Zhang, Baile; Han, Tiancheng; Chen, Zhi; Duan, Yubo; Chu, Chia-Wei; Barbastathis, George; Qiu, Cheng Wei

    2013-01-01

    The unique superiority of transformation optics devices designed from coordinate transformation is their capability of recovering both ray trajectory and optical path length in light manipulation. However, very few experiments have been done so far to verify this dual-recovery property from viewpoints of both ray trajectory and optical path length simultaneously. The experimental difficulties arise from the fact that most previous optical transformation optics devices only work at the nano-scale; the lack of intercomparison between data from both optical path length and ray trajectory measurement in these experiments obscured the fact that the ray path was subject to a subwavelength lateral shift that was otherwise not easily perceivable and, instead, was pointed out theoretically [B. Zhang et al. Phys. Rev. Lett. 104, 233903, (2010)]. Here, we use a simple macroscopic transformation optics device of phase-preserved optical elevator, which is a typical birefringent optical phenomenon that can virtually lift an optical image by a macroscopic distance, to demonstrate decisively the unique optical path length preservation property of transformation optics. The recovery of ray trajectory is first determined with no lateral shift in the reflected ray. The phase preservation is then verified with incoherent white-light interferometry without ambiguity and phase unwrapping. PMID:23546046

  10. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  11. A study on phase-noise reduction method in phase-locked loop systems.

    PubMed

    Takagi, Keiji

    2003-09-01

    Experimental studies are carried out on phase noise and the correlation coefficient between the phase and average current noises of voltage-controlled oscillator in phased-locked loop (PLL) systems. The precise phase stabilization technique is discussed, and new methods to reduce the phase noise are described in PLL systems, using the correlation.

  12. Laser Phase Front Measurements Using a Phase Conjugate Twyman-Green Interferometer

    DTIC Science & Technology

    1992-12-01

    34 AD-A258 821 AFIT/GEP/ENP/92-D-08 LASER PHASE FRONT MEASUREMENTS USING A PHASE CONJUGATE TWYMAN -GREEN INTERFEROMETER THESIS William J. Mandeville...LASER PHASE FRONT MEASUREMENTS USING A PHASE CONJUGATE TWYMAN -GREEN INTERFEROMETER THESIS Presented to the Faculty of the School of Engineering of the... Interferometer .............................................. 19 8. Phase conjugate Twyman -Green Interferometer .................................. 21

  13. Thermophysical properties of coexistent phases of plutonium

    SciTech Connect

    Freibert, Franz J; Mitchell, Jeremy N; Saleh, Tarik A; Schwartz, Dan S

    2009-01-01

    Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutal in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature Martensitic phase transformation ({delta} {yields} {alpha}{prime}) in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.

  14. Metastable Phases in Ice Clouds

    NASA Astrophysics Data System (ADS)

    Weiss, Fabian; Baloh, Philipp; Kubel, Frank; Hoelzel, Markus; Parker, Stewart; Grothe, Hinrich

    2014-05-01

    Polar Stratospheric Clouds and Cirrus Clouds contain both, pure water ice and phases of nitric acid hydrates. Preferentially for the latter, the thermodynamically stable phases have intensively been investigated in the past (e.g. nitric acid trihydrate, beta-NAT). As shown by Peter et al. [1] the water activity inside clouds is higher than expected, which might be explained by the presence of metastable stable phases (e.g. cubic ice). However, also metastable nitric acid hydrates might be important due to the inherent non-equilibrium freezing conditions in the upper atmosphere. The delta ice theory of Gao et al. [2] presents a model approach to solve this problem by involving both metastable ice and NAT as well. So it is of high interest to investigate the metastable phase of NAT (i.e. alpha-NAT), the structure of which was unknown up to the presence. In our laboratory a production procedure for metastable alpha-NAT has been developed, which gives access to neutron diffraction and X-ray diffraction measurements, where sample quantities of several Gramm are required. The diffraction techniques were used to solve the unknown crystalline structure of metastable alpha-NAT, which in turn allows the calculation of the vibrational spectra, which have also been recorded by us in the past. Rerefences [1] Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop. When dry air is too humid. Science, 314:1399-1402, 2006. [2] Gao, R., P. Popp, D. Fahey, T. Marcy, R. L. Herman, E. Weinstock, D. Baumgardener, T. Garrett, K. Rosenlof, T. Thompson, T. P. Bui, B. Ridley, S. C. Wofsy, O. B. Toon, M. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. Weinheimer, and A. Heymsfield. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303:516-520, 2004. [3] Tizek, H., E. Knözinger, and H. Grothe. Formation and phase distribution of nitric acid hydrates in the mole fraction range xHNO3<0.25: A combined XRD and IR study, PCCP, 6

  15. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating

  16. Variable phase sine wave generator for active phased arrays

    NASA Astrophysics Data System (ADS)

    Waters, W. M.

    1992-09-01

    A waveform generator is provided for generating a high frequency waveform. A pulse generator provides a pulse train at a low frequency. A pulse converter converts the pulse train into an alternatingly positive and negative groups of pulses. A bandpass filter passes the alternatingly positive and negative groups of pulses in a frequency band centered at the high frequency to output the generated waveform at the high frequency. When the groups of pulses are a pair of pulses, a sine wave is output from the bandpass filter. A pulse delay circuit can be used to variably delay the pulse train and thereby cause a phase change in the generated waveform.

  17. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  18. Quantum gates and their coexisting geometric phases

    SciTech Connect

    Wu Lianao; Bishop, C. Allen; Byrd, Mark S.

    2011-08-15

    Geometric phases arise naturally in a variety of quantum systems with observable consequences. They also arise in quantum computations when dressed states are used in gating operations. Here we show how they arise in these gating operations and how one may take advantage of the dressed states producing them. Specifically, we show that for a given, but arbitrary Hamiltonian, and at an arbitrary time {tau}, there always exists a set of dressed states such that a given gate operation can be performed by the Hamiltonian up to a phase {phi}. The phase is a sum of a dynamical phase and a geometric phase. We illustrate the dressed phase for several systems.

  19. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  20. Phase and structural transformations in magnetorheological suspensions

    NASA Astrophysics Data System (ADS)

    Iskakova, L. Yu.; Romanchuk, A. P.; Zubarev, A. Yu.

    2006-07-01

    Particle condensation in magnetorheological suspensions (MRS) under external magnetic field is studied theoretically. It is shown that the bulk condensation of particles into dense phases is preceded by the formation of fairly long chain aggregates. Phase transition occurs as a condensation of such chains due to their magnetic interaction. In thin layers of MRS, placed into the normal magnetic field, scenario of the phase transition differs essentially from that in infinite volumes of these systems. Equilibrium state of the system after the phase transition corresponds to the formation of ensemble of discrete domains of the dense phase rather than to separation into two massive phases as it takes place in infinite media.