Sample records for ccim test system

  1. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maio, Vince

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are tomore » complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.« less

  2. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    DOE PAGES

    Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; ...

    2017-01-18

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. We identified primary hollandite,more » pyrochlore/zirconolite, and perovskite phases in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.« less

  3. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2018-02-13

    Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device chip, and therefore no additional materials or components are required to make the connection to the larger 3D printed interface chip. We demonstrate 121 chip-to-chip interconnections in an 11 × 11 array for both SIMs and CCIMs with an areal density of 53 interconnections per mm 2 and show that they withstand fluid pressures of 50 psi. We further demonstrate their reusability by testing the devices 100 times without seal failure. Scaling experiments show that 20 × 20 interconnection arrays are feasible and that the CCIM areal density can be increased to 88 interconnections per mm 2 . We then show the utility of spatially distributed discrete CCIMs by using an interconnection chip with 28 chip-to-world interconnects to test 45 3D printed valves in a 9 × 5 array. Each valve is only 300 μm in diameter (the smallest yet reported for 3D printed valves). Every row of 5 valves is tested to at least 10 000 actuations, with one row tested to 1 000 000 actuations. In all cases, there is no sign of valve failure, and the CCIM interconnections prove an effective means of using a single interface chip to test a series of valve array chips.

  4. Effectiveness of hands-on tutoring and guided self-directed learning versus self-directed learning alone to educate critical care fellows on mechanical ventilation - a pilot project.

    PubMed

    Ramar, Kannan; De Moraes, Alice Gallo; Selim, Bernardo; Holets, Steven; Oeckler, Richard

    2016-01-01

    Physicians require extensive training to achieve proficiency in mechanical ventilator (MV) management of the critically ill patients. Guided self-directed learning (GSDL) is usually the method used to learn. However, it is unclear if this is the most proficient approach to teaching mechanical ventilation to critical care fellows. We, therefore, investigated whether critical care fellows achieve higher scores on standardized testing and report higher satisfaction after participating in a hands-on tutorial combined with GSDL compared to self-directed learning alone. First-year Pulmonary and Critical Care Medicine (PCCM) fellows ( n =6) and Critical Care Internal Medicine (CCIM) ( n =8) fellows participated. Satisfaction was assessed using the Likert scale. MV knowledge assessment was performed by administering a standardized 25-question multiple choice pre- and posttest. For 2 weeks the CCIM fellows were exposed to GSDL, while the PCCM fellows received hands-on tutoring combined with GSDL. Ninety-three percentage (6 PCCM and 7 CCIM fellows, total of 13 fellows) completed all evaluations and were included in the final analysis. CCIM and PCCM fellows scored similarly in the pretest (64% vs. 52%, p =0.13). Following interventions, the posttest scores increased in both groups. However, no significant difference was observed based on the interventions (74% vs. 77%, p =0.39). The absolute improvement with the hands-on-tutoring and GSDL group was higher than GSDL alone (25% vs. 10%, p =0.07). Improved satisfaction scores were noted with hands-on tutoring. Hands-on tutoring combined with GSDL and GSDL alone were both associated with an improvement in posttest scores. Absolute improvement in test and satisfaction scores both trended higher in the hands-on tutorial group combined with GSDL group.

  5. THE DOE OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL COOPERATIVE PROGRAM: OVERVIEW OF TECHNICAL TASKS AND RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.; Fox, K.; Farfan, E.

    2009-12-08

    The DOE Office of Environmental Management (DOE-EM) Office of Engineering and Technology is responsible for implementing EM's International Cooperative Program. Over the past 15 years, collaborative work has been conducted through this program with researchers in Russia, Ukraine, France, United Kingdom and Republic of Korea. Currently, work is being conducted with researchers in Russia and Ukraine. Efforts aimed at evaluating and advancing technologies to support U.S. high-level waste (HLW) vitrification initiatives are being conducted in collaboration with Russian researchers. Work at Khlopin Radium Institute (KRI) is targeted at improving the throughput of current vitrification processes by increasing melting rate. Thesemore » efforts are specifically targeted at challenging waste types identified at the Savannah River Site (SRS) and Hanford Site. The objectives of current efforts at SIA Radon are to gain insight into vitrification process limits for the cold crucible induction melter (CCIM) technology. Previous demonstration testing has shown that the CCIM offers the potential for dramatic increases in waste loading and waste throughput. However, little information is known regarding operational limits that could affect long-term, efficient CCIM operations. Collaborative work with the Russian Electrotechnical University (ETU) 'LETI' is aimed at advancing CCIM process monitoring, process control and design. The goal is to further mature the CCIM technology and to establish it as a viable HLW vitrification technology. The greater than two year effort conducted with the International Radioecology Laboratory in the Ukraine recently completed. The objectives of this study were: to assess the long-term impacts to the environment from radiation exposure in the Chernobyl Exclusion Zone (ChEZ); and to provide information on remediation guidelines and ecological risk assessment within radioactively contaminated territories around the Chernobyl Nuclear Power Plant (ChNPP) based on the results of long-term field monitoring, analytical measurements, and numerical modeling of soils and groundwater radioactive contamination.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advancedmore » glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (also with high Al 2O 3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both the as poured state and after being slowly cooled according to the canister centerline cooling (CCC) profile. Glass formulation development was also completed on other Hanford tank wastes that were identified to further challenge waste loading due to the presence of appreciable quantities (>750 g) of plutonium in the waste tanks. In addition to containing appreciable Pu quantities, the C-102 waste tank and the 244-TX waste tank contain high concentrations of aluminum and iron, respectively that will further challenge vitrification processing. Glass formulation testing also demonstrated that high waste loadings could be achieved with these tank compositions using the attributes afforded by the CCIM technology.« less

  7. Simultaneous determination of residues of metalaxyl, cyazofamid and a cyazofamid metabolite in tobacco leaves and soil by liquid chromatography with tandem mass spectrometry.

    PubMed

    Wu, Sizhuo; Yu, Weiwei; Sun, Caiyuan; Zheng, Kunming; Zhang, Haizhen; Huang, Min; Hu, Deyu; Zhang, Kankan

    2018-04-01

    A simple method was developed and validated for the simultaneous determination of metalaxyl, cyazofamid and the cyazofamid metabolite 4-chloro-5-p-tolylimidazole-2-carbonitrile (CCIM) by liquid chromatography with tandem mass spectrometry. The three target compounds were extracted from tobacco and soil with acetonitrile containing 0.1% acetic acid, and the extracts were purified using octadecylsilane. The proposed method showed satisfactory linearity (R 2 ≥ 0.9985) for the target compounds. The limits of detection for metalaxyl, cyazofamid and CCIM were 0.006, 0.06 and 0.06 mg/kg in soil and green tobacco leaves and 0.03, 0.3 and 0.3 mg/kg in cured tobacco leaves, respectively. The limits of quantification for metalaxyl, cyazofamid and CCIM were 0.02, 0.2 and 0.2 mg/kg in soil and green tobacco leaves and 0.1, 1 and 1 mg/kg in cured tobacco leaves, respectively. The average recoveries from soil and tobacco were 72.91-98.40% for metalaxyl, 76.73-105.80% for cyazofamid and 74.48-106.45% for CCIM. The relative standard deviation range was 1.23-6.99%. The developed method was successfully applied to analysis of residues of metalaxyl, cyazofamid and CCIM in real soil and tobacco samples. The results indicated that the established method could meet the requirement for the analysis of trace amounts of all three analytes in soil and tobacco. Copyright © 2017 John Wiley & Sons, Ltd.

  8. World first in high level waste vitrification - A review of French vitrification industrial achievements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less

  9. 40 CFR 180.601 - Cyazofamid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of cyazofamid, 4-chloro-2-cyano-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazole-1-sulfonamide, and its metabolite CCIM, 4-chloro-5-(4-methylphenyl)-1H-imidazole-2-carbonitrile, expressed as cyazofamid... established for the combined residues of cyazofamid, 4-chloro-2-cyano- N,N-dimethyl-5-(4-methylphenyl)-1H...

  10. Imidazole-based deep eutectic solvents for starch dissolution and plasticization.

    PubMed

    Zdanowicz, Magdalena; Spychaj, Tadeusz; Mąka, Honorata

    2016-04-20

    Potato starch and high-amylose starch were treated with imidazole-based deep eutectic solvents (DESs) as dissolution and plasticization media. Beside imidazole (IM) for two-component DESs preparation choline chloride (CC), glycerol (G) or carboxylic acids (citric or malic) were used. An influence of water content in starch (as well as an extra water in the starch/DES system) on polymer dissolution and plasticization processes was investigated. Dissolution and gelatinization of starch in DESs were followed via DSC and laser scanning microscopy. A rheometric characteristics revealed an influence of starch/DES system storage time on the plasticization process. The tendency to recrystallization of compression-molded-starch films was evaluated using XRD technique. High dissolution and plasticization effectiveness of CC/IM and G/IM and a low tendency to film retrogradation of thermoplasticized starch were noted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Letter report on PCT/Monolith glass ceramic corrosion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline networkmore » while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).« less

  12. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  13. National Dam Inspection Program. Number 5 Dam (NDI ID Number PA-00375 DER ID Number 35-22), Susquehanna River Basin, Stafford Meadow Brook, Lackawanna County, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1979-04-01

    T- 8. A ~~3.1 _CS4 1;93. /7 (.., CIg*. ’~~~ 1 /18.3 4 3~o ~1,61 ),S V. rorr 3-L~’w 5^ Fb6L 0~’cr Qva )m4 - C 4 P7-7~c/ ~4 Sol$ SUSJCT P~~~ILE NO...GANNETT FLEMING CORDDRY AND CARPENTER, INc D 0 C Consulting Engineers C) Hanisburg, Pennsylvania 17105 LUFor - 1 ’ UL -3U lU W. DEPARTMENT OF THE ARMY A...LACKAWANNA COUNTY PENNSYLVANIA t\\)~Avv 2’oe 5 DAM (NDI IDA A-M𔄁 - DR LD Mw35-22)_. $Jac~wvn" cC Rsve-Aj s ; 1 4 C~cIM cAa PHASE I INSPEC TIONBEPORT NATIONAL

  14. Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides.

    PubMed

    Kim, Miae; Corkhill, Claire L; Hyatt, Neil C; Heo, Jong

    2018-03-28

    Calcium-aluminoborate (CAB) glasses were developed to sequester new waste compositions made of several rare-earth oxides generated from the pyrochemical reprocessing of spent nuclear fuel. Several important wasteform properties such as waste loading, processability and chemical durability were evaluated. The maximum waste loading of the CAB compositions was determined to be ~56.8 wt%. Viscosity and the electrical conductivity of the CAB melt at 1300 °C were 7.817 Pa·s and 0.4603 S/cm, respectively, which satisfies the conditions for commercial cold-crucible induction melting (CCIM) process. Addition of rare-earth oxides to CAB glasses resulted in dramatic decreases in the elemental releases of B and Ca in aqueous dissolution experiments. Normalized elemental releases from product consistency standard chemical durability test were <3.62·10 -5  g·m -2 for Nd, 0.009 g·m -2 for Al, 0.067 g·m -2 for B and 0.073 g·m -2 for Ca (at 90, after 7 days, for SA/V = 2000m -1 ); all meet European and US regulation limits. After 20 d of dissolution, a hydrated alteration layer of ~ 200-nm-thick, Ca-depleted and Nd-rich, was formed at the surface of CAB glasses with 20 mol% Nd 2 O 3 whereas boehmite [AlO(OH)] secondary crystalline phases were formed in pure CAB glass that contained no Nd 2 O 3 .

  15. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan tomore » conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.« less

  16. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    DOE PAGES

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (with higher Al 2O 3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  17. The U.S. Department of Energy - Office of Environmental Management Cooperation Program with the Russian Federal Atomic Energy Agency (ROSATOM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdes, K.D.; Holtzscheiter, E.W.

    2006-07-01

    The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with the Russian Federal Atomic Energy Agency - Rosatom (formerly Minatom) for 14 years on waste management challenges of mutual concern. Currently, EM is cooperating with Rosatom to explore issues related to high-level waste and investigate Russian experience and technologies that could support EM site cleanup needs. EM and Rosatom are currently implementing six collaborative projects on high-level waste issues: 1) Advanced Melter Technology Application to the U.S. DOE Defense Waste Processing Facility (DWPF) - Cold Crucible Induction Heated Melter (CCIM); 2) - Design Improvements to themore » Cold Crucible Induction Heated Melter; 3) Long-term Performance of Hanford Low-Activity Glasses in Burial Environments; 4) Low-Activity-Waste (LAW) Glass Sulfur Tolerance; 5) Improved Retention of Key Contaminants of Concern in Low Temperature Immobilized Waste Forms; and, 6) Documentation of Mixing and Retrieval Experience at Zheleznogorsk. Preliminary results and the path forward for these projects will be discussed. An overview of two new projects 7) Entombment technology performance and methodology for the Future 8) Radiation Migration Studies at Key Russian Nuclear Disposal Sites is also provided. The purpose of this paper is to provide an overview of EM's objectives for participating in cooperative activities with the Russian Federal Atomic Energy Agency, present programmatic and technical information on these activities, and outline specific technical collaborations currently underway and planned to support DOE's cleanup and closure mission. (authors)« less

  18. An approach to operating system testing

    NASA Technical Reports Server (NTRS)

    Sum, R. N., Jr.; Campbell, R. H.; Kubitz, W. J.

    1984-01-01

    To ensure the reliability and performance of a new system, it must be verified or validated in some manner. Currently, testing is the only resonable technique available for doing this. Part of this testing process is the high level system test. System testing is considered with respect to operating systems and in particular UNIX. This consideration results in the development and presentation of a good method for performing the system test. The method includes derivations from the system specifications and ideas for management of the system testing project. Results of applying the method to the IBM System/9000 XENIX operating system test and the development of a UNIX test suite are presented.

  19. Testing expert systems

    NASA Technical Reports Server (NTRS)

    Chang, C. L.; Stachowitz, R. A.

    1988-01-01

    Software quality is of primary concern in all large-scale expert system development efforts. Building appropriate validation and test tools for ensuring software reliability of expert systems is therefore required. The Expert Systems Validation Associate (EVA) is a validation system under development at the Lockheed Artificial Intelligence Center. EVA provides a wide range of validation and test tools to check correctness, consistency, and completeness of an expert system. Testing a major function of EVA. It means executing an expert system with test cases with the intent of finding errors. In this paper, we describe many different types of testing such as function-based testing, structure-based testing, and data-based testing. We describe how appropriate test cases may be selected in order to perform good and thorough testing of an expert system.

  20. A study of compositional verification based IMA integration method

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Zhang, Guoquan; Xu, Wanmeng

    2018-03-01

    The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.

  1. The General Mission Analysis Tool (GMAT) System Test Plan

    NASA Technical Reports Server (NTRS)

    Conway, Darrel J.; Hughes, Steven P.

    2007-01-01

    This document serves as the System Test Approach for the GMAT Project. Preparation for system testing consists of three major stages: 1) The Test Approach sets the scope of system testing, the overall strategy to be adopted, the activities to be completed, the general resources required and the methods and processes to be used to test the release. It also details the activities, dependencies and effort required to conduct the System Test. 2) Test Planning details the activities, dependencies and effort required to conduct the System Test. 3) Test Cases documents the tests to be applied, the data to be processed, the automated testing coverage and the expected results. This document covers the first two of these items, and established the framework used for the GMAT test case development. The test cases themselves exist as separate components, and are managed outside of and concurrently with this System Test Plan.

  2. Controllable Grid Interface Test System | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Controllable Grid Interface Test System Controllable Grid Interface Test System NREL's controllable grid interface (CGI) test system can reduce certification testing time and costs grid interface is the first test facility in the United States that has fault simulation capabilities

  3. Error response test system and method using test mask variable

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K. (Inventor)

    2006-01-01

    An error response test system and method with increased functionality and improved performance is provided. The error response test system provides the ability to inject errors into the application under test to test the error response of the application under test in an automated and efficient manner. The error response system injects errors into the application through a test mask variable. The test mask variable is added to the application under test. During normal operation, the test mask variable is set to allow the application under test to operate normally. During testing, the error response test system can change the test mask variable to introduce an error into the application under test. The error response system can then monitor the application under test to determine whether the application has the correct response to the error.

  4. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  5. NEXT Single String Integration Test Results

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.; Pinero, Luis; Herman, Daniel A.; Snyder, Steven John

    2010-01-01

    As a critical part of NASA's Evolutionary Xenon Thruster (NEXT) test validation process, a single string integration test was performed on the NEXT ion propulsion system. The objectives of this test were to verify that an integrated system of major NEXT ion propulsion system elements meets project requirements, to demonstrate that the integrated system is functional across the entire power processor and xenon propellant management system input ranges, and to demonstrate to potential users that the NEXT propulsion system is ready for transition to flight. Propulsion system elements included in this system integration test were an engineering model ion thruster, an engineering model propellant management system, an engineering model power processor unit, and a digital control interface unit simulator that acted as a test console. Project requirements that were verified during this system integration test included individual element requirements ; integrated system requirements, and fault handling. This paper will present the results of these tests, which include: integrated ion propulsion system demonstrations of performance, functionality and fault handling; a thruster re-performance acceptance test to establish baseline performance: a risk-reduction PMS-thruster integration test: and propellant management system calibration checks.

  6. Nemesis Autonomous Test System

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  7. Aviation System Analysis Capability (ASAC) Quick Response System (QRS) Test Report

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Ritter, Paul

    1997-01-01

    This document is the Aviation System Analysis Capability (ASAC) Quick Response System (QRS) Test Report. The purpose of this document is to present the results of the QRS unit and system tests in support of the ASAC QRS development effort. This document contains an overview of the project background and scope, defines the QRS system and presents the additions made to the QRS this year, explains the assumptions, constraints, and approach used to conduct QRS Unit and System Testing, and presents the schedule used to perform QRS Testing. The document also presents an overview of the Logistics Management Institute (LMI) Test Facility and testing environment and summarizes the QRS Unit and System Test effort and results.

  8. 21 CFR 866.5230 - Colostrum immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5230 Colostrum immunological test system. (a) Identification. A colostrum immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colostrum immunological test system. 866.5230...

  9. 21 CFR 866.5570 - Lactoferrin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5570 Lactoferrin immunological test system. (a) Identification. A lactoferrin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactoferrin immunological test system. 866.5570...

  10. 21 CFR 866.5340 - Ferritin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5340 Ferritin immunological test system. (a) Identification. A ferritin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ferritin immunological test system. 866.5340...

  11. 21 CFR 866.5735 - Prothrombin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5735 Prothrombin immunological test system. (a) Identification. A prothrombin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prothrombin immunological test system. 866.5735...

  12. 21 CFR 866.5680 - Myoglobin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5680 Myoglobin immunological test system. (a) Identification. A myoglobin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Myoglobin immunological test system. 866.5680...

  13. 21 CFR 866.5715 - Plasminogen immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5715 Plasminogen immunological test system. (a) Identification. A plasminogen immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plasminogen immunological test system. 866.5715...

  14. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5470 Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin immunological test system. 866.5470...

  15. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5880 Transferrin immunological test system. (a) Identification. A transferrin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transferrin immunological test system. 866.5880...

  16. 21 CFR 866.5060 - Prealbumin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5060 Prealbumin immunological test system. (a) Identification. A prealbumin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prealbumin immunological test system. 866.5060...

  17. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5460 Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Haptoglobin immunological test system. 866.5460...

  18. 21 CFR 866.5210 - Ceruloplasmin immunolog-ical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5210 Ceruloplasmin immunolog-ical test system. (a) Identification. A ceruloplasmin immunological test system is a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ceruloplasmin immunolog-ical test system. 866.5210...

  19. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urinary glucose (nonquantitative) test system. 862... Test Systems § 862.1340 Urinary glucose (nonquantitative) test system. (a) Identification. A urinary glucose (nonquantitative) test system is a device intended to measure glucosuria (glucose in urine...

  20. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urinary glucose (nonquantitative) test system. 862... Test Systems § 862.1340 Urinary glucose (nonquantitative) test system. (a) Identification. A urinary glucose (nonquantitative) test system is a device intended to measure glucosuria (glucose in urine...

  1. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Systemic lupus erythema-tosus immunological test... Systems § 866.5820 Systemic lupus erythema-tosus immunological test system. (a) Identification. A systemic lupus erythematosus (SLE) immunological test system is a device that consists of the reagents used to...

  2. A methodology of SiP testing based on boundary scan

    NASA Astrophysics Data System (ADS)

    Qin, He; Quan, Haiyang; Han, Yifei; Zhu, Tianrui; Zheng, Tuo

    2017-10-01

    System in Package (SiP) play an important role in portable, aerospace and military electronic with the microminiaturization, light weight, high density, and high reliability. At present, SiP system test has encountered the problem on system complexity and malfunction location with the system scale exponentially increase. For SiP system, this paper proposed a testing methodology and testing process based on the boundary scan technology. Combining the character of SiP system and referencing the boundary scan theory of PCB circuit and embedded core test, the specific testing methodology and process has been proposed. The hardware requirement of the under test SiP system has been provided, and the hardware platform of the testing has been constructed. The testing methodology has the character of high test efficiency and accurate malfunction location.

  3. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5170 Breast milk immunological test system. (a) Identification. A breast milk immunological test system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breast milk immunological test system. 866.5170...

  4. 21 CFR 866.5040 - Albumin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5040 Albumin immunological test system. (a) Identification. An albumin immunological test system is a device that consists of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Albumin immunological test system. 866.5040...

  5. 21 CFR 866.5160 - Beta-globulin immunolog-ical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5160 Beta-globulin immunolog-ical test system. (a) Identification. A beta-globulin immunological test system is a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-globulin immunolog-ical test system. 866.5160...

  6. 21 CFR 862.1040 - Aldolase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aldolase test system. 862.1040 Section 862.1040...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1040 Aldolase test system. (a) Identification. An aldolase test system is a device intended to measure...

  7. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  8. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  9. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  10. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests must...

  11. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests must...

  12. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests must...

  13. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests must...

  14. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests must...

  15. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests must...

  16. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests must...

  17. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests must...

  18. 21 CFR 862.3320 - Digoxin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Digoxin test system. 862.3320 Section 862.3320...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3320 Digoxin test system. (a) Identification. A digoxin test system is a device intended to measure...

  19. 21 CFR 862.3320 - Digoxin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Digoxin test system. 862.3320 Section 862.3320...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3320 Digoxin test system. (a) Identification. A digoxin test system is a device intended to measure...

  20. 21 CFR 862.3300 - Digitoxin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Digitoxin test system. 862.3300 Section 862.3300...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3300 Digitoxin test system. (a) Identification. A digitoxin test system is a device intended to measure...

  1. 21 CFR 862.3320 - Digoxin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Digoxin test system. 862.3320 Section 862.3320...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3320 Digoxin test system. (a) Identification. A digoxin test system is a device intended to measure...

  2. 21 CFR 862.3300 - Digitoxin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Digitoxin test system. 862.3300 Section 862.3300...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3300 Digitoxin test system. (a) Identification. A digitoxin test system is a device intended to measure...

  3. 21 CFR 862.3300 - Digitoxin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Digitoxin test system. 862.3300 Section 862.3300...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3300 Digitoxin test system. (a) Identification. A digitoxin test system is a device intended to measure...

  4. 21 CFR 862.3300 - Digitoxin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Digitoxin test system. 862.3300 Section 862.3300...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3300 Digitoxin test system. (a) Identification. A digitoxin test system is a device intended to measure...

  5. 21 CFR 862.3320 - Digoxin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Digoxin test system. 862.3320 Section 862.3320...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3320 Digoxin test system. (a) Identification. A digoxin test system is a device intended to measure...

  6. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  7. 21 CFR 862.3580 - Lysergic acid diethylamide (LSD) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lysergic acid diethylamide (LSD) test system. 862... Test Systems § 862.3580 Lysergic acid diethylamide (LSD) test system. (a) Identification. A lysergic acid diethylamide (LSD) test system is a device intended to measure lysergic acid diethylamide, a...

  8. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its isoenzymes...

  9. 21 CFR 862.3910 - Tricyclic antidepressant drugs test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tricyclic antidepressant drugs test system. 862... Test Systems § 862.3910 Tricyclic antidepressant drugs test system. (a) Identification. A tricyclic antidepressant drugs test system is a device intended to measure any of the tricyclic antidepressant drugs in...

  10. 21 CFR 862.3910 - Tricyclic antidepressant drugs test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tricyclic antidepressant drugs test system. 862... Test Systems § 862.3910 Tricyclic antidepressant drugs test system. (a) Identification. A tricyclic antidepressant drugs test system is a device intended to measure any of the tricyclic antidepressant drugs in...

  11. 21 CFR 862.3910 - Tricyclic antidepressant drugs test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tricyclic antidepressant drugs test system. 862... Test Systems § 862.3910 Tricyclic antidepressant drugs test system. (a) Identification. A tricyclic antidepressant drugs test system is a device intended to measure any of the tricyclic antidepressant drugs in...

  12. 21 CFR 862.3910 - Tricyclic antidepressant drugs test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tricyclic antidepressant drugs test system. 862... Test Systems § 862.3910 Tricyclic antidepressant drugs test system. (a) Identification. A tricyclic antidepressant drugs test system is a device intended to measure any of the tricyclic antidepressant drugs in...

  13. 21 CFR 862.3910 - Tricyclic antidepressant drugs test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tricyclic antidepressant drugs test system. 862... Test Systems § 862.3910 Tricyclic antidepressant drugs test system. (a) Identification. A tricyclic antidepressant drugs test system is a device intended to measure any of the tricyclic antidepressant drugs in...

  14. 21 CFR 862.3645 - Neuroleptic drugs radioreceptor assay test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Test Systems § 862.3645 Neuroleptic drugs radioreceptor assay test system. (a) Identification. A neuroleptic drugs radioceptor assay test system is a device intended to measure in serum or plasma the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neuroleptic drugs radioreceptor assay test system...

  15. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    NASA Technical Reports Server (NTRS)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  16. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...

  17. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...

  18. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  19. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  20. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  1. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  2. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  3. 21 CFR 862.1270 - Estrogens (total, in pregnancy) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Estrogens (total, in pregnancy) test system. 862... Test Systems § 862.1270 Estrogens (total, in pregnancy) test system. (a) Identification. As estrogens (total, in pregnancy) test system is a device intended to measure total estrogens in plasma, serum, and...

  4. 40 CFR 205.171-2 - Test exhaust system sample selection and preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Test exhaust system sample selection... Systems § 205.171-2 Test exhaust system sample selection and preparation. (a)(1) Exhaust systems comprising the sample which are required to be tested under a test request in accordance with this subpart...

  5. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false OTC test sample collection systems for drugs of... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  6. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  7. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...

  8. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...

  9. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...

  10. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...

  11. 16 CFR § 1203.16 - Dynamic strength of retention system test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Dynamic strength of retention system test. Â... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...

  12. A Description of the Development, Capabilities, and Operational Status of the Test SLATE Data Acquisition System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Cramer, Christopher J.; Wright, James D.; Simmons, Scott A.; Bobbitt, Lynn E.; DeMoss, Joshua A.

    2015-01-01

    The paper will present a brief background of the previous data acquisition system at the National Transonic Facility (NTF) and the reasoning and goals behind the upgrade to the current Test SLATE (Test Software Laboratory and Automated Testing Environments) data acquisition system. The components, performance characteristics, and layout of the Test SLATE system within the NTF control room will be discussed. The development, testing, and integration of Test SLATE within NTF operations will be detailed. The operational capabilities of the system will be outlined including: test setup, instrumentation calibration, automatic test sequencer setup, data recording, communication between data and facility control systems, real time display monitoring, and data reduction. The current operational status of the Test SLATE system and its performance during recent NTF testing will be highlighted including high-speed, frame-by-frame data acquisition with conditional sampling post-processing applied. The paper concludes with current development work on the system including the capability for real-time conditional sampling during data acquisition and further efficiency enhancements to the wind tunnel testing process.

  13. 39 CFR 501.9 - Demonstration or test Postage Evidencing Systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANUFACTURE AND DISTRIBUTE POSTAGE EVIDENCING SYSTEMS § 501.9 Demonstration or test Postage Evidencing Systems. (a) A demonstration or test postage evidencing system is any system that produces an image that... 39 Postal Service 1 2010-07-01 2010-07-01 false Demonstration or test Postage Evidencing Systems...

  14. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter

    2001-02-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .

  15. An introduction to testing techniques in the Intelsat TDMA/DSI system

    NASA Astrophysics Data System (ADS)

    Colby, R. J.; Parthasarathy, R.; Prouse, D. W.

    1983-09-01

    The testing methods developed for the Intelsat TDMA/DSI system (ITDS) are surveyed. The ITDS is briefly characterized, and the system features and the reference-station and traffic-terminal functions are listed in tables and illustrated with block diagrams. The primary differences between the ITDS testing and the testing of conventional satellite-communication systems are outlined. The ITDS tests for new systems, new services, and fault isolation and the ITDS test situations and test paths are explained.

  16. 21 CFR 866.6050 - Ovarian adnexal mass assessment score test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ovarian adnexal mass assessment score test system... immunological Test Systems § 866.6050 Ovarian adnexal mass assessment score test system. (a) Identification. An ovarian/adnexal mass assessment test system is a device that measures one or more proteins in serum or...

  17. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of angiotensin...

  18. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphorus (inorganic) test system. 862.1580... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test...

  19. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphorus (inorganic) test system. 862.1580... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test...

  20. LOX/GOX mechanical impact tester assessment

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Bryan, C. J.; Frye, G. W.; Stohler, S. L.

    1980-01-01

    The performances of three existing high pressure oxygen mechanical impact test systems were tested at two different test sites. The systems from one test site were fabricated from the same design drawing, whereas the system tested at the other site was of different design. Energy delivered to the test sample for each test system was evaluated and compared. Results were compared to the reaction rates obtained.

  1. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  2. Kilowatt Isotope Power System: component test report for the Ground Demonstration System Alternator Stator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, E.L.

    1978-04-25

    Results are presented of acceptance tests conducted on the Alternator Stator, S/N 002, for the Kilowatt Isotope Power System. These results show that the Alternator Stator, S/N 002 for the Kilowatt Isotope Power System has satisfactorily completed the testing set forth within Sundstrand Test Specification 2538. Test requirements of TS 2538 were extracted from the Kilowatt Isotope Power System, and Phase I Test Plan.

  3. 42 CFR 493.1255 - Standard: Calibration and calibration verification procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accuracy of the test system throughout the laboratory's reportable range of test results for the test system. Unless otherwise specified in this subpart, for each applicable test system the laboratory must... test system instructions, using calibration materials provided or specified, and with at least the...

  4. Slanted-edge MTF testing for establishing focus alignment at infinite conjugate of space optical systems with gravity sag effects

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon

    2017-09-01

    For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.

  5. Evaluation of the New B-REX Fatigue Testing System for Multi-Megawatt Wind Turbine Blades: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.; Musial, W.; Engberg, S.

    2004-12-01

    The National Renewable Energy Laboratory (NREL) recently developed a new hybrid fatigue testing system called the Blade Resonance Excitation (B-REX) test system. The new system uses 65% less energy to test large wind turbine blades in half the time of NREL's dual-axis forced-displacement test method with lower equipment and operating costs. The B-REX is a dual-axis test system that combines resonance excitation with forced hydraulic loading to reduce the total test time required while representing the operating strains on the critical inboard blade stations more accurately than a single-axis test system. The analysis and testing required to fully implement themore » B-REX was significant. To control unanticipated blade motion and vibrations caused by dynamic coupling between the flap, lead-lag, and torsional directions, we needed to incorporate additional test hardware and control software. We evaluated the B-REX test system under stable operating conditions using a combination of various sensors. We then compared our results with results from the same blade, tested previously using NREL's dual-axis forced-displacement test method. Experimental results indicate that strain levels produced by the B-REX system accurately replicated the forced-displacement method. This paper describes the challenges we encountered while developing the new blade fatigue test system and the experimental results that validate its accuracy.« less

  6. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    NASA Technical Reports Server (NTRS)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  7. Largo hot water system long range thermal performance test report, addendum

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency, temperature distribution, and system performance degradation.

  8. A pressure-packer system for conducting rising head tests in water table wells

    USGS Publications Warehouse

    Levy, Benjamin S.; Pannell, Lawrence J.; Dadoly, John P.

    1993-01-01

    The pressure system developed for fully-saturated well screens has been modified for conducting rising head tests in water table wells installed in highly permeable aquifers. The pressure system consists of a compressed air source and 1 inch diameter PVC piping with a packer attached at the end. The pressure system was evaluated in a series of rising head tests conducted in a well at a Superfund site in New England. The well was tested with slugs and with the pressure system. Within each technique, estimates of hydraulic conductivity showed no difference. Comparison of hydraulic conductivity estimates between techniques (slug test vs. pressure test) showed differences due to stratigraphy. The interval tested using slug tests crossed two stratigraphic units; the pressure system tested only one of these units. We conclude that the pressure system may be used to characterize the vertical hydraulic conductivity distribution in a series of successive tests by changing the packer position and the screened interval tested.

  9. Fluid infusion system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.

  10. First Generation Least Expensive Approach to Fission (FiGLEAF) Testing Results

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail. Pat; Ring, Peter; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. The paper describes the SAFE test series, which includes test article descriptions, test results and conclusions, and future test plans.

  11. AGARD Flight Test Techniques Series. Volume 18. Flight Testing of Radio Navigation Systems. (Les Essais en Vol des Systemes de Radionavigation)

    DTIC Science & Technology

    2000-04-01

    18 Flight Testing of Radio Navigation Systems (les Essais en vol des systemes de radionavigation) This AGARDograph has been sponsored by the Systems...Techniques Series - Volume 18 Flight Testing of Radio Navigation Systems (les Essais en vol des syst~mes de radionavigation) Edited by H. Bothe H.J...Landing Test and Other Short-Range 19853 Applications by P. de Benquoe D’Agut, H. Rieheek and A. Pool 17. Analogue Signal Conditioning for Flight Test

  12. Error analysis and system optimization of non-null aspheric testing system

    NASA Astrophysics Data System (ADS)

    Luo, Yongjie; Yang, Yongying; Liu, Dong; Tian, Chao; Zhuo, Yongmo

    2010-10-01

    A non-null aspheric testing system, which employs partial null lens (PNL for short) and reverse iterative optimization reconstruction (ROR for short) technique, is proposed in this paper. Based on system modeling in ray tracing software, the parameter of each optical element is optimized and this makes system modeling more precise. Systematic error of non-null aspheric testing system is analyzed and can be categorized into two types, the error due to surface parameters of PNL in the system modeling and the rest from non-null interferometer by the approach of error storage subtraction. Experimental results show that, after systematic error is removed from testing result of non-null aspheric testing system, the aspheric surface is precisely reconstructed by ROR technique and the consideration of systematic error greatly increase the test accuracy of non-null aspheric testing system.

  13. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiac allograft gene expression profiling test... Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a) Identification. A cardiac allograft gene expression profiling test system is a device that measures the...

  14. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to identify...

  15. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to identify...

  16. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to identify...

  17. 21 CFR 862.1645 - Urinary protein or albumin (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urinary protein or albumin (nonquantitative) test... Chemistry Test Systems § 862.1645 Urinary protein or albumin (nonquantitative) test system. (a) Identification. A urinary protein or albumin (nonquantitative) test system is a device intended to identify...

  18. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...

  19. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...

  20. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...

  1. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...

  2. Development of a Work Control System for Propulsion Testing at NASA Stennis

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth A.

    2005-01-01

    In 1996 Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. To construct, activate and operate these test facilities, a manual paper-based work control system was created. After utilizing this paper-based work control system for approximately three years, it became apparent that the research and development test area needed a better method to execute, monitor, and report on tasks required to further propulsion testing. The paper based system did not provide the engineers adequate visibility into work tasks or the tracking of testing or hardware discrepancies. This system also restricted the engineer s ability to utilize and access past knowledge and experiences given the severe schedule limitations for most R&D propulsion testing projects. Therefore a system was developed to meet the growing need of Test Operations called the Propulsion Test Directorate (PTD) Work Control System. This system is used to plan, perform, and track tasks that support testing and also to capture lessons learned while doing so.

  3. Method and system for an on-chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2008-09-30

    A method and system for performing AC self-test on an integrated circuit that includes a system clock for use during normal operation are provided. The method includes applying a long data capture pulse to a first test register in response to the system clock, applying an at speed data launch pulse to the first test register in response to the system clock, inputting the data from the first register to a logic path in response to applying the at speed data launch pulse to the first test register, applying an at speed data capture pulse to a second test register in response to the system clock, inputting the logic path output to the second test register in response to applying the at speed data capture pulse to the second test register, and applying a long data launch pulse to the second test register in response to the system clock.

  4. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Protein (fractionation) test system. 862.1630... Systems § 862.1630 Protein (fractionation) test system. (a) Identification. A protein (fractionation) test system is a device intended to measure protein fractions in blood, urine, cerebrospinal fluid, and other...

  5. 42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Test systems, equipment, instruments... REQUIREMENTS Quality System for Nonwaived Testing Analytic Systems § 493.1252 Standard: Test systems, equipment...) Temperature. (3) Humidity. (4) Protection of equipment and instruments from fluctuations and interruptions in...

  6. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements of...

  7. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements of...

  8. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known as...

  9. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing hormone...

  10. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing hormone...

  11. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma. Measurements...

  12. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma. Measurements...

  13. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known as...

  14. 21 CFR 886.1910 - Spectacle dissociation test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Spectacle dissociation test system. 886.1910... system. (a) Identification. A spectacle dissociation test system is an AC-powered or battery-powered device, such as a Lancaster test system, that consists of a light source and various filters, usually red...

  15. 21 CFR 886.1910 - Spectacle dissociation test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Spectacle dissociation test system. 886.1910... system. (a) Identification. A spectacle dissociation test system is an AC-powered or battery-powered device, such as a Lancaster test system, that consists of a light source and various filters, usually red...

  16. 21 CFR 886.1910 - Spectacle dissociation test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Spectacle dissociation test system. 886.1910... system. (a) Identification. A spectacle dissociation test system is an AC-powered or battery-powered device, such as a Lancaster test system, that consists of a light source and various filters, usually red...

  17. 21 CFR 886.1910 - Spectacle dissociation test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Spectacle dissociation test system. 886.1910... system. (a) Identification. A spectacle dissociation test system is an AC-powered or battery-powered device, such as a Lancaster test system, that consists of a light source and various filters, usually red...

  18. 21 CFR 886.1910 - Spectacle dissociation test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Spectacle dissociation test system. 886.1910... system. (a) Identification. A spectacle dissociation test system is an AC-powered or battery-powered device, such as a Lancaster test system, that consists of a light source and various filters, usually red...

  19. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphohexose isomerase test system. 862.1570... Systems § 862.1570 Phosphohexose isomerase test system. (a) Identification. A phosphohexose isomerase test system is a device intended to measure the activity of the enzyme phosphohexose isomerase in serum...

  20. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphohexose isomerase test system. 862.1570... Systems § 862.1570 Phosphohexose isomerase test system. (a) Identification. A phosphohexose isomerase test system is a device intended to measure the activity of the enzyme phosphohexose isomerase in serum...

  1. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    System analysis activities were directed toward refining the heating system parameters. Trade studies were performed to support hardware selections for all systems and for the heating only operational test sites in particular. The heating system qualification tests were supported by predicting qualification test component performance prior to conducting the test.

  2. 21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bicarbonate/carbon dioxide test system. 862.1160... Systems § 862.1160 Bicarbonate/carbon dioxide test system. (a) Identification. A bicarbonate/carbon dioxide test system is a device intended to measure bicarbonate/carbon dioxide in plasma, serum, and whole...

  3. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphohexose isomerase test system. 862.1570... Systems § 862.1570 Phosphohexose isomerase test system. (a) Identification. A phosphohexose isomerase test system is a device intended to measure the activity of the enzyme phosphohexose isomerase in serum...

  4. 21 CFR 862.1570 - Phosphohexose isomerase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphohexose isomerase test system. 862.1570... Systems § 862.1570 Phosphohexose isomerase test system. (a) Identification. A phosphohexose isomerase test system is a device intended to measure the activity of the enzyme phosphohexose isomerase in serum...

  5. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  6. 21 CFR 862.1175 - Cholesterol (total) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cholesterol (total) test system. 862.1175 Section... Systems § 862.1175 Cholesterol (total) test system. (a) Identification. A cholesterol (total) test system is a device intended to measure cholesterol in plasma and serum. Cholesterol measurements are used in...

  7. Space station data management system - A common GSE test interface for systems testing and verification

    NASA Technical Reports Server (NTRS)

    Martinez, Pedro A.; Dunn, Kevin W.

    1987-01-01

    This paper examines the fundamental problems and goals associated with test, verification, and flight-certification of man-rated distributed data systems. First, a summary of the characteristics of modern computer systems that affect the testing process is provided. Then, verification requirements are expressed in terms of an overall test philosophy for distributed computer systems. This test philosophy stems from previous experience that was gained with centralized systems (Apollo and the Space Shuttle), and deals directly with the new problems that verification of distributed systems may present. Finally, a description of potential hardware and software tools to help solve these problems is provided.

  8. System Testing of Ground Cooling System Components

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler Steven

    2014-01-01

    This internship focused primarily upon software unit testing of Ground Cooling System (GCS) components, one of the three types of tests (unit, integrated, and COTS/regression) utilized in software verification. Unit tests are used to test the software of necessary components before it is implemented into the hardware. A unit test determines that the control data, usage procedures, and operating procedures of a particular component are tested to determine if the program is fit for use. Three different files are used to make and complete an efficient unit test. These files include the following: Model Test file (.mdl), Simulink SystemTest (.test), and autotest (.m). The Model Test file includes the component that is being tested with the appropriate Discrete Physical Interface (DPI) for testing. The Simulink SystemTest is a program used to test all of the requirements of the component. The autotest tests that the component passes Model Advisor and System Testing, and puts the results into proper files. Once unit testing is completed on the GCS components they can then be implemented into the GCS Schematic and the software of the GCS model as a whole can be tested using integrated testing. Unit testing is a critical part of software verification; it allows for the testing of more basic components before a model of higher fidelity is tested, making the process of testing flow in an orderly manner.

  9. Module generation for self-testing integrated systems

    NASA Astrophysics Data System (ADS)

    Vanriessen, Ronald Pieter

    Hardware used for self test in VLSI (Very Large Scale Integrated) systems is reviewed, and an architecture to control the test hardware in an integrated system is presented. Because of the increase of test times, the use of self test techniques has become practically and economically viable for VLSI systems. Beside the reduction in test times and costs, self test also provides testing at operational speeds. Therefore, a suitable combination of scan path and macrospecific (self) tests is required to reduce test times and costs. An expert system that can be used in a silicon compilation environment is presented. The approach requires a minimum of testability knowledge from a system designer. A user friendly interface was described for specifying and modifying testability requirements by a testability expert. A reason directed backtracking mechanism is used to solve selection failures. Both the hierarchical testable architecture and the design for testability expert system are used in a self test compiler. The definition of a self test compiler was given. A self test compiler is a software tool that selects an appropriate test method for every macro in a design. The hardware to control a macro test will be included in the design automatically. As an example, the integration of the self-test compiler in a silicon compilation system PIRAMID was described. The design of a demonstrator circuit by self test compiler is described. This circuit consists of two self testable macros. Control of the self test hardware is carried out via the test access port of the boundary scan standard.

  10. An End-To-End Test of A Simulated Nuclear Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Hrbud, Ivana; Goddfellow, Keith; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  11. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  12. 40 CFR 1066.985 - Fuel storage system leak test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel storage system leak test... Refueling Emission Test Procedures for Motor Vehicles § 1066.985 Fuel storage system leak test procedure. (a... conditions. (3) Leak test equipment must have the ability to pressurize fuel storage systems to at least 4.1...

  13. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  14. 14 CFR 27.923 - Rotor drive system and control mechanism tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor drive system and control mechanism....923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section... affect test results may be conducted. (b) Each rotor drive system and control mechanism must be tested...

  15. 14 CFR 27.923 - Rotor drive system and control mechanism tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor drive system and control mechanism....923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section... affect test results may be conducted. (b) Each rotor drive system and control mechanism must be tested...

  16. Logistical Consideration in Computer-Based Screening of Astronaut Applicants

    NASA Technical Reports Server (NTRS)

    Galarza, Laura

    2000-01-01

    This presentation reviews the logistical, ergonomic, and psychometric issues and data related to the development and operational use of a computer-based system for the psychological screening of astronaut applicants. The Behavioral Health and Performance Group (BHPG) at the Johnson Space Center upgraded its astronaut psychological screening and selection procedures for the 1999 astronaut applicants and subsequent astronaut selection cycles. The questionnaires, tests, and inventories were upgraded from a paper-and-pencil system to a computer-based system. Members of the BHPG and a computer programmer designed and developed needed interfaces (screens, buttons, etc.) and programs for the astronaut psychological assessment system. This intranet-based system included the user-friendly computer-based administration of tests, test scoring, generation of reports, the integration of test administration and test output to a single system, and a complete database for past, present, and future selection data. Upon completion of the system development phase, four beta and usability tests were conducted with the newly developed system. The first three tests included 1 to 3 participants each. The final system test was conducted with 23 participants tested simultaneously. Usability and ergonomic data were collected from the system (beta) test participants and from 1999 astronaut applicants who volunteered the information in exchange for anonymity. Beta and usability test data were analyzed to examine operational, ergonomic, programming, test administration and scoring issues related to computer-based testing. Results showed a preference for computer-based testing over paper-and -pencil procedures. The data also reflected specific ergonomic, usability, psychometric, and logistical concerns that should be taken into account in future selection cycles. Conclusion. Psychological, psychometric, human and logistical factors must be examined and considered carefully when developing and using a computer-based system for psychological screening and selection.

  17. Reliability demonstration test for load-sharing systems with exponential and Weibull components

    PubMed Central

    Hu, Qingpei; Yu, Dan; Xie, Min

    2017-01-01

    Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn’t yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics. PMID:29284030

  18. Reliability demonstration test for load-sharing systems with exponential and Weibull components.

    PubMed

    Xu, Jianyu; Hu, Qingpei; Yu, Dan; Xie, Min

    2017-01-01

    Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn't yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics.

  19. Large-aperture space optical system testing based on the scanning Hartmann.

    PubMed

    Wei, Haisong; Yan, Feng; Chen, Xindong; Zhang, Hao; Cheng, Qiang; Xue, Donglin; Zeng, Xuefeng; Zhang, Xuejun

    2017-03-10

    Based on the Hartmann testing principle, this paper proposes a novel image quality testing technology which applies to a large-aperture space optical system. Compared with the traditional testing method through a large-aperture collimator, the scanning Hartmann testing technology has great advantages due to its simple structure, low cost, and ability to perform wavefront measurement of an optical system. The basic testing principle of the scanning Hartmann testing technology, data processing method, and simulation process are presented in this paper. Certain simulation results are also given to verify the feasibility of this technology. Furthermore, a measuring system is developed to conduct a wavefront measurement experiment for a 200 mm aperture optical system. The small deviation (6.3%) of root mean square (RMS) between experimental results and interferometric results indicates that the testing system can measure low-order aberration correctly, which means that the scanning Hartmann testing technology has the ability to test the imaging quality of a large-aperture space optical system.

  20. USL/DBMS NASA/PC R and D project system testing standards

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kavi, Srinu; Moreau, Dennis R.; Yan, Lin

    1984-01-01

    A set of system testing standards to be used in the development of all C software within the NASA/PC Research and Development Project is established. Testing will be considered in two phases: the program testing phase and the system testing phase. The objective of these standards is to provide guidelines for the planning and conduct of program and software system testing.

  1. Electronics systems test laboratory testing of shuttle communications systems

    NASA Technical Reports Server (NTRS)

    Stoker, C. J.; Bromley, L. K.

    1985-01-01

    Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.

  2. Lot-to-Lot Variability of Test Strips and Accuracy Assessment of Systems for Self-Monitoring of Blood Glucose according to ISO 15197

    PubMed Central

    Baumstark, Annette; Pleus, Stefan; Schmid, Christina; Link, Manuela; Haug, Cornelia; Freckmann, Guido

    2012-01-01

    Background Accurate and reliable blood glucose (BG) measurements require that different test strip lots of the same BG monitoring system provide comparable measurement results. Only a small number of studies addressing this question have been published. Methods In this study, four test strip lots for each of five different BG systems [Accu-Chek® Aviva (system A), FreeStyle Lite® (system B), GlucoCheck XL (system C), Pura™/mylife™ Pura (system D), and OneTouch® Verio™ Pro (system E)] were evaluated with procedures according to DIN EN ISO 15197:2003. The BG system measurement results were compared with the manufacturer’s measurement procedure (glucose oxidase or hexokinase method). Relative bias according to Bland and Altman and system accuracy according to ISO 15197 were analyzed. A BG system consists of the BG meter itself and the test strips. Results The maximum lot-to-lot difference between any two of the four evaluated test strip lots per BG system was 1.0% for system E, 2.1% for system A, 3.1% for system C, 6.9% for system B, and 13.0% for system D. Only two systems (systems A and B) fulfill the criteria of DIN EN ISO 15197:2003 with each test strip lot. Conclusions Considerable lot-to-lot variability between test strip lots of the same BG system was found. These variations add to other sources of inaccuracy with the specific BG system. Manufacturers should regularly and effectively check the accuracy of their BG meters and test strips even between different test strip lots to minimize risk of false treatment decisions. PMID:23063033

  3. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G [Lenexa, KS

    2007-08-21

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  4. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  5. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G [Lenexa, KS

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  6. 21 CFR 862.1640 - Protein-bound iodine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Protein-bound iodine test system. 862.1640 Section... Systems § 862.1640 Protein-bound iodine test system. (a) Identification. A protein-bound iodine test system is a device intended to measure protein-bound iodine in serum. Measurements of protein-bound...

  7. 21 CFR 862.1640 - Protein-bound iodine test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Protein-bound iodine test system. 862.1640 Section... Systems § 862.1640 Protein-bound iodine test system. (a) Identification. A protein-bound iodine test system is a device intended to measure protein-bound iodine in serum. Measurements of protein-bound...

  8. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth hormone...

  9. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth hormone...

  10. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...

  11. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...

  12. 21 CFR 862.1640 - Protein-bound iodine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Protein-bound iodine test system. 862.1640 Section... Systems § 862.1640 Protein-bound iodine test system. (a) Identification. A protein-bound iodine test system is a device intended to measure protein-bound iodine in serum. Measurements of protein-bound...

  13. 21 CFR 862.1640 - Protein-bound iodine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Protein-bound iodine test system. 862.1640 Section... Systems § 862.1640 Protein-bound iodine test system. (a) Identification. A protein-bound iodine test system is a device intended to measure protein-bound iodine in serum. Measurements of protein-bound...

  14. Test Facilities in Support of High Power Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  15. Simulating New Drop Test Vehicles and Test Techniques for the Orion CEV Parachute Assembly System

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Fraire, Usbaldo, Jr.; Bledsoe, Kristin J.; Ray, Eric; Moore, Jim W.; Olson, Leah M.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is engaged in a multi-year design and test campaign to qualify a parachute recovery system for human use on the Orion Spacecraft. Test and simulation techniques have evolved concurrently to keep up with the demands of a challenging and complex system. The primary simulations used for preflight predictions and post-test data reconstructions are Decelerator System Simulation (DSS), Decelerator System Simulation Application (DSSA), and Drop Test Vehicle Simulation (DTV-SIM). The goal of this paper is to provide a roadmap to future programs on the test technique challenges and obstacles involved in executing a large-scale, multi-year parachute test program. A focus on flight simulation modeling and correlation to test techniques executed to obtain parachute performance parameters are presented.

  16. Infrared detectors and test technology of cryogenic camera

    NASA Astrophysics Data System (ADS)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  17. Automated unit-level testing with heuristic rules

    NASA Technical Reports Server (NTRS)

    Carlisle, W. Homer; Chang, Kai-Hsiung; Cross, James H.; Keleher, William; Shackelford, Keith

    1990-01-01

    Software testing plays a significant role in the development of complex software systems. Current testing methods generally require significant effort to generate meaningful test cases. The QUEST/Ada system is a prototype system designed using CLIPS to experiment with expert system based test case generation. The prototype is designed to test for condition coverage, and attempts to generate test cases to cover all feasible branches contained in an Ada program. This paper reports on heuristics sued by the system. These heuristics vary according to the amount of knowledge obtained by preprocessing and execution of the boolean conditions in the program.

  18. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG testing will utilize a higher fidelity point kinetics model to control core power transients, and reactivity feedback will be based on localized feedback coefficients and several independent temperature measurements taken within the core block. This paper presents preliminary test results and discusses the methodology that will be implemented in follow-on DDG testing and the additional instrumentation required to implement high fidelity dynamic testing.

  19. System Testing of Desktop and Web Applications

    ERIC Educational Resources Information Center

    Slack, James M.

    2011-01-01

    We want our students to experience system testing of both desktop and web applications, but the cost of professional system-testing tools is far too high. We evaluate several free tools and find that AutoIt makes an ideal educational system-testing tool. We show several examples of desktop and web testing with AutoIt, starting with simple…

  20. How to Use the DX SYSTEM of Diagnostic Testing. Methodology Project.

    ERIC Educational Resources Information Center

    McArthur, David; Cabello, Beverly

    The DX SYSTEM of Diagnostic Testing is an easy-to-use computerized system for developing and administering diagnostic tests. A diagnostic test measures a student's mastery of a specific domain (skill or content area). It examines the necessary subskills hierarchically from the most to the least complex. The DX SYSTEM features tailored testing with…

  1. 21 CFR 862.1205 - Cortisol (hydrocortisone and hydroxycorticosterone) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cortisol (hydrocortisone and hydroxycorticosterone... Clinical Chemistry Test Systems § 862.1205 Cortisol (hydrocortisone and hydroxycorticosterone) test system. (a) Identification. A cortisol (hydrocortisone and hydroxycorticosterone) test system is a device...

  2. Data Link Test and Analysis System/ATCRBS Transponder Test System Technical Reference

    DOT National Transportation Integrated Search

    1990-05-01

    This document references material for personnel using or making software changes : to the Data Link Test and Analysis System (DATAS) for Air Traffic Control Radar : Beacon System (ATCRBS) transponder testing and data collection. This is one of : a se...

  3. 21 CFR 866.5180 - Fecal calprotectin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5180 Fecal calprotectin immunological test system. (a) Identification. A fecal calprotectin... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fecal calprotectin immunological test system. 866...

  4. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5560 Lactic dehydrogenase immunological test system. (a) Identification. A lactic dehydrogenase... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic dehydrogenase immunological test system...

  5. 21 CFR 866.5660 - Multiple autoantibodies immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5660 Multiple autoantibodies immunological test system. (a) Identification. A multiple autoantibodies... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Multiple autoantibodies immunological test system...

  6. 21 CFR 866.5870 - Thyroid autoantibody immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5870 Thyroid autoantibody immunological test system. (a) Identification. A thyroid autoantibody... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid autoantibody immunological test system...

  7. 21 CFR 866.5110 - Antiparietal antibody immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5110 Antiparietal antibody immunological test system. (a) Identification. An antiparietal antibody... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antiparietal antibody immunological test system...

  8. 21 CFR 866.5100 - Antinuclear antibody immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5100 Antinuclear antibody immunological test system. (a) Identification. An antinuclear antibody... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antinuclear antibody immunological test system...

  9. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5240 Complement components immunological test system. (a) Identification. A complement components... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement components immunological test system...

  10. Test Analysis Guidelines

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2007-01-01

    Development of analysis guidelines for Exploration Life Support (ELS) technology tests was completed. The guidelines were developed based on analysis experiences gained from supporting Environmental Control and Life Support System (ECLSS) technology development in air revitalization systems and water recovery systems. Analyses are vital during all three phases of the ELS technology test: pre-test, during test and post test. Pre-test analyses of a test system help define hardware components, predict system and component performances, required test duration, sampling frequencies of operation parameters, etc. Analyses conducted during tests could verify the consistency of all the measurements and the performance of the test system. Post test analyses are an essential part of the test task. Results of post test analyses are an important factor in judging whether the technology development is a successful one. In addition, development of a rigorous model for a test system is an important objective of any new technology development. Test data analyses, especially post test data analyses, serve to verify the model. Test analyses have supported development of many ECLSS technologies. Some test analysis tasks in ECLSS technology development are listed in the Appendix. To have effective analysis support for ECLSS technology tests, analysis guidelines would be a useful tool. These test guidelines were developed based on experiences gained through previous analysis support of various ECLSS technology tests. A comment on analysis from an experienced NASA ECLSS manager (1) follows: "Bad analysis was one that bent the test to prove that the analysis was right to begin with. Good analysis was one that directed where the testing should go and also bridged the gap between the reality of the test facility and what was expected on orbit."

  11. Shuttle orbiter Ku-band radar/communications system design evaluation. Deliverable test equipment evaluation

    NASA Technical Reports Server (NTRS)

    Maronde, R. G.

    1980-01-01

    The Ku-band test equipment, known as the Deliverable System Test equipment (DSTE), is reviewed and evaluated. The DSTE is semiautomated and computer programs were generated for 14 communication mode tests and 17 radar mode tests. The 31 test modules provide a good cross section of tests with which to exercise the Ku-band system; however, it is very limited when being used to verify Ku-band system performance. More detailed test descriptions are needed, and a major area of concern is the DSTE sell-off procedure which is inadequate.

  12. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system validation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.

  13. Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick

    2008-01-01

    To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.

  14. Sims Prototype System 2 test results: Engineering analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The testing, problems encountered, and the results and conclusions obtained from tests performed on the IBM Prototype System, 2, solar hot water system, at the Marshall Space Flight Center Solar Test Facility was described. System 2 is a liquid, non draining solar energy system for supplying domestic hot water to single residences. The system consists of collectors, storage tank, heat exchanger, pumps and associated plumbing and controls.

  15. Real time test bed development for power system operation, control and cyber security

    NASA Astrophysics Data System (ADS)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  16. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.

  17. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... abuse testing. 864.3260 Section 864.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  18. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... abuse testing. 864.3260 Section 864.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  19. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... abuse testing. 864.3260 Section 864.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  20. 21 CFR 864.3260 - OTC test sample collection systems for drugs of abuse testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... abuse testing. 864.3260 Section 864.3260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Instrumentation and Accessories § 864.3260 OTC test sample collection systems for drugs of abuse testing. (a) Identification. An over-the-counter (OTC) test sample collection system for drugs of abuse testing is a device...

  1. 30 CFR 250.449 - What additional BOP testing requirements must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...? You must meet the following additional BOP testing requirements: (a) Use water to test a surface BOP system; (b) Stump test a subsea BOP system before installation. You must use water to conduct this test. You may use drilling fluids to conduct subsequent tests of a subsea BOP system; (c) Alternate tests...

  2. 21 CFR 862.1120 - Blood gases (PCO2, PO2) and blood pH test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood gases (PCO2, PO2) and blood pH test system... Test Systems § 862.1120 Blood gases (PCO2, PO2) and blood pH test system. (a) Identification. A blood gases (PCO2, PO2) and blood pH test system is a device intended to measure certain gases in blood, serum...

  3. Frequency modulation system test procedure shuttle task 501 approach and landing test configuration

    NASA Technical Reports Server (NTRS)

    Doland, G. D.

    1976-01-01

    Shuttle Task 501 is an in-line task to test the performance and compatibility of radiofrequency links between the SSO and ground, and relay via a satellite. Under Shuttle Task 501 approach and landing test (ALT) phase only a limited portion of the communication and tracking (C&T) equipment is to be tested. The principal item to be tested is a frequency modulated (FM) data link. To test this RF link, an ALT FM System was designed, constructed, and the console wiring verified. A step-by-step procedure to be used to perform the ALT FM system is presented. The ALT FM system test is to be performed prior to delivery of the equipment to the Electronic Systems Test Laboratory (ESTL).

  4. A microcomputer-based testing station for dynamic and static testing of protective relay systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.J.; Li, R.J.; Gu, J.C.

    1995-12-31

    Dynamic and static relay performance testing before installation in the field is a subject of great interest to utility relay engineers. The common practice in utility testing of new relays is to put the new unit to be tested in parallel with an existing functioning relay in the system, wait until an actual transient occurs and then observe and analyze the performance of new relay. It is impossible to have a thorough test of the protective relay system through this procedure. An equipment, Microcomputer-Based Testing Station (or PC-Based Testing Station), that can perform both static and dynamic testing of themore » relay is described in this paper. The Power System Simulation Laboratory at the University of Texas at Arlington is a scaled-down, three-phase, physical power system which correlates well with the important components for a real power system and is an ideal facility for the dynamic and static testing of protective relay systems. A brief introduction to the configuration of this laboratory is presented. Test results of several protective functions by using this laboratory illustrate the usefulness of this test set-up.« less

  5. Black-Box System Testing of Real-Time Embedded Systems Using Random and Search-Based Testing

    NASA Astrophysics Data System (ADS)

    Arcuri, Andrea; Iqbal, Muhammad Zohaib; Briand, Lionel

    Testing real-time embedded systems (RTES) is in many ways challenging. Thousands of test cases can be potentially executed on an industrial RTES. Given the magnitude of testing at the system level, only a fully automated approach can really scale up to test industrial RTES. In this paper we take a black-box approach and model the RTES environment using the UML/MARTE international standard. Our main motivation is to provide a more practical approach to the model-based testing of RTES by allowing system testers, who are often not familiar with the system design but know the application domain well-enough, to model the environment to enable test automation. Environment models can support the automation of three tasks: the code generation of an environment simulator, the selection of test cases, and the evaluation of their expected results (oracles). In this paper, we focus on the second task (test case selection) and investigate three test automation strategies using inputs from UML/MARTE environment models: Random Testing (baseline), Adaptive Random Testing, and Search-Based Testing (using Genetic Algorithms). Based on one industrial case study and three artificial systems, we show how, in general, no technique is better than the others. Which test selection technique to use is determined by the failure rate (testing stage) and the execution time of test cases. Finally, we propose a practical process to combine the use of all three test strategies.

  6. 21 CFR 866.5080 - Alpha-1-antichymotrypsin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5080 Alpha-1-antichymotrypsin immunological test system. (a) Identification. An alpha-1... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-1-antichymotrypsin immunological test system...

  7. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine carbamyl transferase test system is a device intended to measure the activity of the enzyme ornithine... and treatment of liver diseases, such as infectious hepatitis, acute cholecystitis (inflammation of...

  8. 21 CFR 862.3660 - Phenobarbital test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phenobarbital test system. 862.3660 Section 862....3660 Phenobarbital test system. (a) Identification. A phenobarbitol test system is a device intended to measure phenobarbital, an antiepileptic and sedative-hypnotic drug, in human specimens. Measurements...

  9. 42 CFR 493.1256 - Standard: Control procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Systems § 493.1256 Standard: Control procedures. (a) For each test system, the laboratory is responsible... test system failure, adverse environmental conditions, and operator performance. (2) Monitor over time the accuracy and precision of test performance that may be influenced by changes in test system...

  10. 42 CFR 493.1256 - Standard: Control procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Systems § 493.1256 Standard: Control procedures. (a) For each test system, the laboratory is responsible... test system failure, adverse environmental conditions, and operator performance. (2) Monitor over time the accuracy and precision of test performance that may be influenced by changes in test system...

  11. 42 CFR 493.1256 - Standard: Control procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Systems § 493.1256 Standard: Control procedures. (a) For each test system, the laboratory is responsible... test system failure, adverse environmental conditions, and operator performance. (2) Monitor over time the accuracy and precision of test performance that may be influenced by changes in test system...

  12. 42 CFR 493.1256 - Standard: Control procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Systems § 493.1256 Standard: Control procedures. (a) For each test system, the laboratory is responsible... test system failure, adverse environmental conditions, and operator performance. (2) Monitor over time the accuracy and precision of test performance that may be influenced by changes in test system...

  13. Spacecraft Parachute Recovery System Testing from a Failure Rate Perspective

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2013-01-01

    Spacecraft parachute recovery systems, especially those with a parachute cluster, require testing to identify and reduce failures. This is especially important when the spacecraft in question is human-rated. Due to the recent effort to make spaceflight affordable, the importance of determining a minimum requirement for testing has increased. The number of tests required to achieve a mature design, with a relatively constant failure rate, can be estimated from a review of previous complex spacecraft recovery systems. Examination of the Apollo parachute testing and the Shuttle Solid Rocket Booster recovery chute system operation will clarify at which point in those programs the system reached maturity. This examination will also clarify the risks inherent in not performing a sufficient number of tests prior to operation with humans on-board. When looking at complex parachute systems used in spaceflight landing systems, a pattern begins to emerge regarding the need for a minimum amount of testing required to wring out the failure modes and reduce the failure rate of the parachute system to an acceptable level for human spaceflight. Not only a sufficient number of system level testing, but also the ability to update the design as failure modes are found is required to drive the failure rate of the system down to an acceptable level. In addition, sufficient data and images are necessary to identify incipient failure modes or to identify failure causes when a system failure occurs. In order to demonstrate the need for sufficient system level testing prior to an acceptable failure rate, the Apollo Earth Landing System (ELS) test program and the Shuttle Solid Rocket Booster Recovery System failure history will be examined, as well as some experiences in the Orion Capsule Parachute Assembly System will be noted.

  14. A performance evaluation of various coatings, substrate materials, and solar collector systems

    NASA Technical Reports Server (NTRS)

    Dolan, F. J.

    1976-01-01

    An experimental apparatus was constructed and utilized in conjunction with both a solar simulator and actual sunlight to test and evaluate various solar panel coatings, panel designs, and scaled-down collector subsystems. Data were taken by an automatic digital data acquisition system and reduced and printed by a computer system. The solar collector test setup, data acquisition system, and data reduction and printout systems were considered to have operated very satisfactorily. Test data indicated that there is a practical or useful limit in scaling down beyond which scaled-down testing cannot produce results comparable to results of larger scale tests. Test data are presented as are schematics and pictures of test equipment and test hardware.

  15. Spacecraft Data Simulator for the test of level zero processing systems

    NASA Technical Reports Server (NTRS)

    Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem

    1994-01-01

    The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.

  16. Diagnosis - Using automatic test equipment and artificial intelligence expert systems

    NASA Astrophysics Data System (ADS)

    Ramsey, J. E., Jr.

    Three expert systems (ATEOPS, ATEFEXPERS, and ATEFATLAS), which were created to direct automatic test equipment (ATE), are reviewed. The purpose of the project was to develop an expert system to troubleshoot the converter-programmer power supply card for the F-15 aircraft and have that expert system direct the automatic test equipment. Each expert system uses a different knowledge base or inference engine, basing the testing on the circuit schematic, test requirements document, or ATLAS code. Implementing generalized modules allows the expert systems to be used for any different unit under test. Using converted ATLAS to LISP code allows the expert system to direct any ATE using ATLAS. The constraint propagated frame system allows for the expansion of control by creating the ATLAS code, checking the code for good software engineering techniques, directing the ATE, and changing the test sequence as needed (planning).

  17. Design of efficient and simple interface testing equipment for opto-electric tracking system

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao

    2016-10-01

    Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.

  18. Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.

    1981-01-01

    The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.

  19. Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle

    NASA Technical Reports Server (NTRS)

    Block, H. Bruce; Bryant, Lively; Dicus, John H.; Moore, Allan S.; Burns, Maureen E.; Solomon, Robert F.; Sheer, Irving

    1988-01-01

    Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment.

  20. A System for the Automatic Assembly of Test Questions Using a No-SQL Database

    ERIC Educational Resources Information Center

    Shin, Sanggyu; Hashimoto, Hiroshi

    2014-01-01

    We describe a system that automatically assembles test questions from a set of examples. Our system can create test questions appropriate for each user's level at low cost. In particular, when a user review their lesson, our system provides new test questions which are assembled based on their previous test results and past mistakes, rather than a…

  1. System performance testing of the DSN radio science system, Mark 3-78

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Mehta, J. S.

    1978-01-01

    System performance tests are required to evaluate system performance following initial system implementation and subsequent modification, and to validate system performance prior to actual operational usage. Non-real-time end-to-end Radio Science system performance tests are described that are based on the comparison of open-loop radio science data to equivalent closed-loop radio metric data, as well as an abbreviated Radio Science real-time system performance test that validates critical Radio Science System elements at the Deep Space Station prior to actual operational usage.

  2. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human placental lactogen test system. 862.1585... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1585 Human placental lactogen test system. (a) Identification. A human placental lactogen...

  3. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Human placental lactogen test system. 862.1585... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1585 Human placental lactogen test system. (a) Identification. A human placental lactogen...

  4. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human placental lactogen test system. 862.1585... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1585 Human placental lactogen test system. (a) Identification. A human placental lactogen...

  5. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human placental lactogen test system. 862.1585... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1585 Human placental lactogen test system. (a) Identification. A human placental lactogen...

  6. 21 CFR 866.5630 - Beta-2-microglobulin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5630 Beta-2-microglobulin immunological test system. (a) Identification. A beta-2-microglobulin... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-microglobulin immunological test system...

  7. 21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) immunological test system. 866.5530 Section 866.5530 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5530 Immunoglobulin G (Fc fragment specific) immunological test system. (a...

  8. 21 CFR 866.5620 - Alpha-2-macroglobulin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5620 Alpha-2-macroglobulin immunological test system. (a) Identification. An alpha-2-macroglobulin... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-2-macroglobulin immunological test system...

  9. 21 CFR 866.5540 - Immunoglobulin G (Fd fragment specific) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) immunological test system. 866.5540 Section 866.5540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5540 Immunoglobulin G (Fd fragment specific) immunological test system. (a...

  10. 21 CFR 866.5130 - Alpha-1-antitrypsin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5130 Alpha-1-antitrypsin immunological test system. (a) Identification. An alpha-1-antitrypsin... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-1-antitrypsin immunological test system. 866...

  11. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Seminal fluid (sperm) immunological test system...

  12. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-density lipoprotein immunological test system...

  13. 21 CFR 866.5400 - Alpha-globulin immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5400 Alpha-globulin immuno-logical test system. (a) Identification. An alpha-globulin immunological... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-globulin immuno-logical test system. 866...

  14. 21 CFR 866.5065 - Human allotypic marker immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5065 Human allotypic marker immunological test system. (a) Identification. A human allotypic marker... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human allotypic marker immunological test system...

  15. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system...

  16. 21 CFR 866.6010 - Tumor-associated antigen immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tumor-associated antigen immunological test system... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Tumor Associated Antigen immunological Test Systems § 866.6010 Tumor-associated antigen immunological test system. (a) Identification. A...

  17. 21 CFR 866.5350 - Fibrinopeptide A immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5350 Fibrinopeptide A immuno-logical test system. (a) Identification. A fibrinopeptide A immunological... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fibrinopeptide A immuno-logical test system. 866...

  18. Open Architecture Data System for NASA Langley Combined Loads Test System

    NASA Technical Reports Server (NTRS)

    Lightfoot, Michael C.; Ambur, Damodar R.

    1998-01-01

    The Combined Loads Test System (COLTS) is a new structures test complex that is being developed at NASA Langley Research Center (LaRC) to test large curved panels and cylindrical shell structures. These structural components are representative of aircraft fuselage sections of subsonic and supersonic transport aircraft and cryogenic tank structures of reusable launch vehicles. Test structures are subjected to combined loading conditions that simulate realistic flight load conditions. The facility consists of two pressure-box test machines and one combined loads test machine. Each test machine possesses a unique set of requirements or research data acquisition and real-time data display. Given the complex nature of the mechanical and thermal loads to be applied to the various research test articles, each data system has been designed with connectivity attributes that support both data acquisition and data management functions. This paper addresses the research driven data acquisition requirements for each test machine and demonstrates how an open architecture data system design not only meets those needs but provides robust data sharing between data systems including the various control systems which apply spectra of mechanical and thermal loading profiles.

  19. Water monitor system: Phase 1 test report

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Jeffers, E. L.

    1976-01-01

    Automatic water monitor system was tested with the objectives of assuring high-quality effluent standards and accelerating the practice of reclamation and reuse of water. The NASA water monitor system is described. Various components of the system, including the necessary sensors, the sample collection system, and the data acquisition and display system, are discussed. The test facility and the analysis methods are described. Test results are reviewed, and recommendations for water monitor system design improvement are presented.

  20. Innovations in dynamic test restraint systems

    NASA Technical Reports Server (NTRS)

    Fuld, Christopher J.

    1990-01-01

    Recent launch system development programs have led to a new generation of large scale dynamic tests. The variety of test scenarios share one common requirement: restrain and capture massive high velocity flight hardware with no structural damage. The Space Systems Lab of McDonnell Douglas developed a remarkably simple and cost effective approach to such testing using ripstitch energy absorbers adapted from the sport of technical rockclimbing. The proven system reliability of the capture system concept has led to a wide variety of applications in test system design and in aerospace hardware design.

  1. Advanced NSTS propulsion system verification study

    NASA Technical Reports Server (NTRS)

    Wood, Charles

    1989-01-01

    The merits of propulsion system development testing are discussed. The existing data base of technical reports and specialists is utilized in this investigation. The study encompassed a review of all available test reports of propulsion system development testing for the Saturn stages, the Titan stages, and the Space Shuttle main propulsion system. The knowledge on propulsion system development and system testing available from specialists and managers was also 'tapped' for inclusion.

  2. Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  3. Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard

    2010-01-01

    This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.

  4. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  5. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  6. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...

  7. Controls in new construction reactors-factory testing of the non-safety portion of the Lungmen nuclear power plant distributed control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y. S.; Dick, J. W.; Tetirick, C. W.

    2006-07-01

    The construction permit for Taipower's Lungmen Nuclear Units 1 and 2, two ABWR plants, was issued on March 17, 1999[1], The construction of these units is progressing actively at site. The digital I and C system supplied by GE, which is designated as the Distributed Control and Information System (DCIS) in this project, is being implemented primarily at one vendor facility. In order to ensure the reliability, safety and availability of the DCIS, it is required to comprehensively test the whole DCIS in factory. This article describes the test requirements and acceptance criteria for functional testing of the Non-Safety Distributedmore » Control and Information system (DCIS) for Taiwan Power's Lungmen Units 1 and 2 GE selected Invensys as the equipment supplier for this Non-Safety portion of DCIS. The DCIS system of the Lungmen Units is a physically distributed control system. Field transmitters are connected to hard I/O terminal inputs on the Invensys I/A system. Once the signal is digitized on FBMs (Field Bus Modules) in Remote Multiplexing Units (RMUs), the signal is passed into an integrated control software environment. Control is based on the concept of compounds and blocks where each compound is a logical collection of blocks that performs a control function. Each point identified by control compound and block can be individually used throughout the DCIS system by referencing its unique name. In the Lungmen Project control logic and HSI (Human System Interface) requirements are divided into individual process systems called MPLs (Master Parts List). Higher-level Plant Computer System (PCS) algorithms access control compounds and blocks in these MPLs to develop functions. The test requirements and acceptance criteria for the DCIS system of the Lungmen Project are divided into three general categories (see 1,2,3 below) of verification, which in turn are divided into several specific tests: 1. DCIS System Physical Checks a) RMU Test - To confirm that the hard I/O database is installed on the DCIS and is physically addressed correctly. Test process is injecting a signal at each DCIS hard I/O terminal boundary and verifying correct receipt on the DCIS. b) DCIS Network Stress Test - Confirms system viability under extreme high load conditions beyond the plant could ever experience. Load conditions include alarm showers on the DCIS system to emulate plant upsets. c) System Hardware Configuration Test - These are typical checks of the DCIS system hardware including fault reporting, redundancy, and normal computer functions. d) Performance Test - Test confirms high level hardware and system capability attributes such as control system time response, 'cold start' reboots, and processor loading e) Electromagnetic compatibility tests - To verify the electromagnetic viability of the system and individual components 2. Implementation of Plant Systems and Systems Integration a) MPL Logic Tests -To confirm control functions implemented to system logic performs as expected, and that parameters are passed correctly between system control schemes. b) Data Link (Gateway) Tests- To verify third party interfaces to the DCIS. c) Plant Computer System (PCS) Logic Tests- Tests to verify that higher-level PCS logic is correctly implemented, performs as expected, and parameters are passed correctly between PCS sub-systems and MPL systems. Included the PCS sub-systems, Safety Parameter Display System, Historian, Alarms, Maintenance monitoring etc. 3. Unique Third Party Interfacing and Integration into the DCIS The set of controls for Automatic Power Regulation, Feedwater, and Recirculation Flow are specific in that these systems are implemented on third party Triple Modular Redundant (TMR) hardware, which was connected to the DCIS and are tested via full simulation. The TMR system is supplied by GE Control Solutions on the Mark Vie platform. (authors)« less

  8. Phase 1 Space Fission Propulsion System Testing and Development Progress

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)

    2001-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.

  9. The development of a multifunction lens test instrument by using computer aided variable test patterns

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-08-01

    A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.

  10. Test method research on weakening interface strength of steel - concrete under cyclic loading

    NASA Astrophysics Data System (ADS)

    Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan

    2018-02-01

    The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.

  11. General Vehicle Test Instrumentation Evaluation

    DOT National Transportation Integrated Search

    1977-03-01

    A General Vehicle Test System (GVTS) has been developed by the Transportation Systems Center, Cambridge, Massachusetts to facilitate rail transit vehicle testing at the Transportation Test Center (TTC), Pueblo, Colorado. This system was designed to b...

  12. An introduction to testing techniques in the Intelsat TDMA/DSI system. II - Satellite system operations guide (SSOG) tests

    NASA Astrophysics Data System (ADS)

    Colby, R. J.; Parthasarathy, R.; Stimson, A. L.

    1983-12-01

    The test methods and procedures of the Intelsat TDMA/DSI SSOG are summarized. The overall structure of the SSOG is outlined, and the operational procedures to be followed for joining a new terminal to the system and for normal operations are reviewed, with an emphasis on the roles of the IOC and the TDMA reference and monitoring stations. The testing philosophy (based on minimal interruptions) and the star-test method are explained and illustrated with diagrams, and the test procedures are examined, including modem tests, electrical-path-length equalization, RF/IF downchain tests, protocol tests, nontransmitting protocol tests, IF/RF upchain tests, transmitting protocol tests, baseband tests, and orderwire lineups. The fundamental access discipline of the TDMA system is presented in an appendix.

  13. Identification of Balance Deficits in People with Parkinson Disease; is the Sensory Organization Test Enough?

    PubMed

    Gera, G; Freeman, D L; Blackinton, M T; Horak, F B; King, L

    2016-02-01

    Balance deficits in people with Parkinson's disease can affect any of the multiple systems encompassing balance control. Thus, identification of the specific deficit is crucial in customizing balance rehabilitation. The sensory organization test, a test of sensory integration for balance control, is sometimes used in isolation to identify balance deficits in people with Parkinson's disease. More recently, the Mini-Balance Evaluations Systems Test, a clinical scale that tests multiple domains of balance control, has begun to be used to assess balance in patients with Parkinson's disease. The purpose of our study was to compare the use of Sensory Organization Test and Mini-Balance Evaluations Systems Test in identifying balance deficits in people with Parkinson's disease. 45 participants (27M, 18F; 65.2 ± 8.2 years) with idiopathic Parkinson's disease participated in the cross-sectional study. Balance assessment was performed using the Sensory Organization Test and the Mini-Balance Evaluations Systems Test. People were classified into normal and abnormal balance based on the established cutoff scores (normal balance: Sensory Organization Test >69; Mini-Balance Evaluations Systems Test >73). More subjects were classified as having abnormal balance with the Mini-Balance Evaluations Systems Test (71% abnormal) than with the Sensory Organization Test (24% abnormal) in our cohort of people with Parkinson's disease. There were no subjects with a normal Mini-Balance Evaluations Systems Test score but abnormal Sensory Organization Test score. In contrast, there were 21 subjects who had an abnormal Mini-Balance Evaluations Systems Test score but normal Sensory Organization Test scores. Findings from this study suggest that investigation of sensory integration deficits, alone, may not be able to identify all types of balance deficits found in patients with Parkinson's disease. Thus, a comprehensive approach should be used to test of multiple balance systems to provide customized rehabilitation.

  14. The first PANDA tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreier, J.; Huggenberger, M.; Aubert, C.

    1996-08-01

    The PANDA test facility at PSI in Switzerland is used to study the long-term Simplified Boiling Water Reactor (SBWR) Passive Containment Cooling System (PCCS) performance. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensables in the system. The PANDA facility has a 1:1 vertical scale, and 1:25 ``system`` scale (volume, power, etc.). Steady-state PCCS condenser performance tests and extensive facility characterization tests have been completed. Transient system behavior tests were conducted late in 1995; results from the first three transient tests (M3 series) aremore » reviewed. The first PANDA tests showed that the overall global behavior of the SBWR containment was globally repeatable and very favorable; the system exhibited great ``robustness.``« less

  15. 21 CFR 862.1680 - Testosterone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Testosterone test system. 862.1680 Section 862....1680 Testosterone test system. (a) Identification. A testosterone test system is a device intended to measure testosterone (a male sex hormone) in serum, plasma, and urine. Measurement of testosterone are...

  16. 21 CFR 862.1680 - Testosterone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Testosterone test system. 862.1680 Section 862....1680 Testosterone test system. (a) Identification. A testosterone test system is a device intended to measure testosterone (a male sex hormone) in serum, plasma, and urine. Measurement of testosterone are...

  17. 21 CFR 862.1680 - Testosterone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Testosterone test system. 862.1680 Section 862....1680 Testosterone test system. (a) Identification. A testosterone test system is a device intended to measure testosterone (a male sex hormone) in serum, plasma, and urine. Measurement of testosterone are...

  18. 21 CFR 862.3220 - Carbon monoxide test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon monoxide test system. 862.3220 Section 862....3220 Carbon monoxide test system. (a) Identification. A carbon monoxide test system is a device intended to measure carbon monoxide or carboxyhemoglobin (carbon monoxide bound to the hemoglobin in the...

  19. 21 CFR 862.1065 - Ammonia test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ammonia test system. 862.1065 Section 862.1065....1065 Ammonia test system. (a) Identification. An ammonia test system is a device intended to measure ammonia levels in blood, serum, and plasma, Ammonia measurements are used in the diagnosis and treatment...

  20. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Creatine phosphokinase/creatine kinase or... Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test system. (a) Identification. A creatine phosphokinase/creatine kinase or isoenzymes test system is a device...

  1. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Creatine test system. 862.1210 Section 862.1210....1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure creatine (a substance synthesized in the liver and pancreas and found in biological fluids) in plasma...

  2. 14 CFR 33.53 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.53... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system and component tests. (a) For those systems and components that cannot be adequately substantiated in accordance...

  3. 46 CFR 185.320 - Steering gear, controls, and communication system tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...

  4. 46 CFR 185.320 - Steering gear, controls, and communication system tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...

  5. 21 CFR 866.5270 - C-reactive protein immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5270 C-reactive protein immuno-logical test system. (a) Identification. A C-reactive protein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false C-reactive protein immuno-logical test system. 866...

  6. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5440 Beta-2-glycoprotein III immunological test system. (a) Identification. A beta-2-glycoprotein III... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein III immunological test system...

  7. 21 CFR 866.5360 - Cohn fraction IV immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5360 Cohn fraction IV immuno-logical test system. (a) Identification. A Cohn fraction IV immunological... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cohn fraction IV immuno-logical test system. 866...

  8. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems...

  9. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5430 Beta-2-glycoprotein I immunological test system. (a) Identification. A beta-2-glycoprotein I... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein I immunological test system...

  10. 21 CFR 866.5510 - Immunoglobulins A, G, M, D, and E immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... test system. 866.5510 Section 866.5510 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5510 Immunoglobulins A, G, M, D, and E immunological test system. (a) Identification...

  11. 21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alpha-1-lipoprotein immuno-logical test system...

  12. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...

  13. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...

  14. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...

  15. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...

  16. 21 CFR 862.1190 - Copper test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... nervous system). Test results are also used in monitoring patients with Hodgkin's disease (a disease... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Copper test system. 862.1190 Section 862.1190 Food... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1190...

  17. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and blood...

  18. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system. (a) Identification. A 6-phosphogluconate dehydrogenase test system is a device intended to measure the activity of the enzyme 6... are used in the diagnosis and treatment of certain liver diseases (such as hepatitis) and anemias. (b...

  19. 21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system. (a) Identification. A 6-phosphogluconate dehydrogenase test system is a device intended to measure the activity of the enzyme 6... are used in the diagnosis and treatment of certain liver diseases (such as hepatitis) and anemias. (b...

  20. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...-0061] Unmanned Aircraft System Test Site Program AGENCY: Federal Aviation Administration (FAA), DOT... Defense, develop a test site program for the integration of unmanned aircraft systems in to the National Airspace System. The overall purpose of this test site program is to develop a body of data and operational...

  1. 21 CFR 862.1705 - Triglyceride test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Triglyceride test system. 862.1705 Section 862....1705 Triglyceride test system. (a) Identification. A triglyceride test system is a device intended to measure triglyceride (neutral fat) in serum and plasma. Measurements obtained by this device are used in...

  2. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  3. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  4. 46 CFR 185.320 - Steering gear, controls, and communication system tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...

  5. 21 CFR 866.5230 - Colostrum immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Colostrum immunological test system. 866.5230... Colostrum immunological test system. (a) Identification. A colostrum immunological test system is a device... colostrum. Colostrum is a substance excreted by the mammary glands during pregnancy and until production of...

  6. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breast milk immunological test system. 866.5170... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b...

  7. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breast milk immunological test system. 866.5170... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b...

  8. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breast milk immunological test system. 866.5170... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b...

  9. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breast milk immunological test system. 866.5170... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b...

  10. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fab fragment specific... Test Systems § 866.5520 Immunoglobulin G (Fab fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fab fragment specific) immunological test system is a device that consists...

  11. 21 CFR 862.1665 - Sodium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sodium test system. 862.1665 Section 862.1665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Sodium test system. (a) Identification. A sodium test system is a device intended to measure sodium in...

  12. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  13. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  14. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  15. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  16. 21 CFR 862.1530 - Plasma oncometry test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Plasma oncometry test system. 862.1530 Section 862....1530 Plasma oncometry test system. (a) Identification. A plasma oncometry test system is a device intended to measure plasma oncotic pressure. Plasma oncotic pressure is that portion of the total fluid...

  17. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  18. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  19. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte...

  20. 21 CFR 862.1620 - Progesterone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Progesterone test system. 862.1620 Section 862....1620 Progesterone test system. (a) Identification. A progesterone test system is a device intended to measure progesterone (a female hormone) in serum and plasma. Measurements obtained by this device are used...

  1. 21 CFR 862.1620 - Progesterone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Progesterone test system. 862.1620 Section 862....1620 Progesterone test system. (a) Identification. A progesterone test system is a device intended to measure progesterone (a female hormone) in serum and plasma. Measurements obtained by this device are used...

  2. 21 CFR 862.1620 - Progesterone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Progesterone test system. 862.1620 Section 862....1620 Progesterone test system. (a) Identification. A progesterone test system is a device intended to measure progesterone (a female hormone) in serum and plasma. Measurements obtained by this device are used...

  3. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine...

  4. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1535 Ornithine carbamyl transferase test system. (a) Identification. An ornithine...

  5. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and treatment of patients with peptic ulcer, Zollinger-Ellison syndrome (peptic ulcer due to gastrin... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastric acidity test system. 862.1320 Section 862....1320 Gastric acidity test system. (a) Identification. A gastric acidity test system is a device...

  6. 21 CFR 862.1320 - Gastric acidity test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and treatment of patients with peptic ulcer, Zollinger-Ellison syndrome (peptic ulcer due to gastrin... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastric acidity test system. 862.1320 Section 862....1320 Gastric acidity test system. (a) Identification. A gastric acidity test system is a device...

  7. [Testing system design and analysis for the execution units of anti-thrombotic device].

    PubMed

    Li, Zhelong; Cui, Haipo; Shang, Kun; Liao, Yuehua; Zhou, Xun

    2015-02-01

    In an anti-thrombotic pressure circulatory device, relays and solenoid valves serve as core execution units. Thus the therapeutic efficacy and patient safety of the device will directly depend on their performance. A new type of testing system for relays and solenoid valves used in the anti-thrombotic device has been developed, which can test action response time and fatigue performance of relay and solenoid valve. PC, data acquisition card and test platform are used in this testing system based on human-computer interaction testing modules. The testing objectives are realized by using the virtual instrument technology, the high-speed data acquisition technology and reasonable software design. The two sets of the system made by relay and solenoid valve are tested. The results proved the universality and reliability of the testing system so that these relays and solenoid valves could be accurately used in the antithrombotic pressure circulatory equipment. The newly-developed testing system has a bright future in the aspects of promotion and application prospect.

  8. Field testing of a lightweight relocatable structure in a desert environment

    NASA Astrophysics Data System (ADS)

    Kao, A.; Lane, S.; Carr, J. S.; Wahlgren, L.; Klause, P.

    1984-09-01

    This report describes the field tests of a commercially available, off-the-shelf lightweight relocatable structure (LRS) systems selected for possible military application in a theater or operations. The structural system selected for the field tests was a panelized system manufactured by Kelly Klosure, Inc. The purpose of the tests was to determine the constructibility and habitability of the building system. The tests are being conducted in two stages: Stage 1 tests were conducted in a desert environment, and Stage 2 tests are being conducted in a temperate environment. This report documents the results of the Stage 1 tests. The test results showed that the 20-ft-wide and 8-ft-high building can be erected manually by unskilled troop labor using only hand tools. However, for a 12-ft-high building assembled using 4- x 8-ft panels, a crane is needed to help lift assembled components for the erection. Based on overall constructibility and environmental performance, the fiberboard panel system is the better choice. Several modifications were made to the system during the field tests. It is recommended that these modifications be incorporated into system design and further field tests conducted before making a final evaluation.

  9. Application of Simulated Reactivity Feedback in Nonnuclear Testing of a Direct-Drive Gas-Cooled Reactor

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Webster, K. L.

    2007-01-01

    Nonnuclear testing can be a valuable tool in the development of an in-space nuclear power or propulsion system. In a nonnuclear test facility, electric heaters are used to simulate heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response and response characteristics, and assess potential design improvements with a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE 100a heat pipe cooled, electrically heated reactor and heat exchanger hardware. This Technical Memorandum discusses the status of the planned dynamic test methodology for implementation in the direct-drive gas-cooled reactor testing and assesses the additional instrumentation needed to implement high-fidelity dynamic testing.

  10. A new approach for data acquisition at the JPL space simulators

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.

    1992-01-01

    In 1990, a personal computer based data acquisition system was put into service for the Space Simulators and Environmental Test Laboratory at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The new system replaced an outdated minicomputer system which had been in use since 1980. This new data acquisition system was designed and built by JPL for the specific task of acquiring thermal test data in support of space simulation and thermal vacuum testing at JPL. The data acquisition system was designed using powerful personal computers and local-area-network (LAN) technology. Reliability, expandability, and maintainability were some of the most important criteria in the design of the data system and in the selection of hardware and software components. The data acquisition system is used to record both test chamber operational data and thermal data from the unit under test. Tests are conducted in numerous small thermal vacuum chambers and in the large solar simulator and range in size from individual components using only 2 or 3 thermocouples to entire planetary spacecraft requiring in excess of 1200 channels of test data. The system supports several of these tests running concurrently. The previous data system is described along with reasons for its replacement, the types of data acquired, the new data system, and the benefits obtained from the new system including information on tests performed to date.

  11. Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2010/2011

    NASA Technical Reports Server (NTRS)

    Miller, Lee A.; Knox, James C.

    2012-01-01

    Spacecraft being developed for future exploration missions incorporate Environmental Control and Life Support Systems (ECLSS) that limit weight, power, and volume thus requiring systems with higher levels of efficiency while maintaining high dependability and robustness. For air revitalization, an approach that meets those goals utilizes a regenerative Vacuum-Swing Adsorption (VSA) system that removes 100% of the CO2 from the cabin atmosphere as well as 100% of the water. A Sorbent Based Atmosphere Revitalization (SBAR) system is a VSA system that utilizes standard commercial adsorbents that have been proven effective and safe in spacecraft including Skylab and the International Space Station. The SBAR system is the subject of a development, test, and evaluation program that is being conducted at NASA s Marshall Space Flight Center. While previous testing had validated that the technology is a viable option, potential improvements to system design and operation were identified. Modifications of the full-scale SBAR test articles and adsorption cycles have been implemented and have shown significant performance gains resulting in a decrease in the consumables required for a mission as well as improved mission safety. Previous testing had utilized single bed test articles, during this period the test facility was enhanced to allow testing on the full 2-bed SBAR system. The test facility simulates a spacecraft ECLSS and allows testing of the SBAR system over the full range of operational conditions using mission simulations that assess the real-time performance of the SBAR system during scenarios that include the metabolic transients associated with extravehicular activity. Although future manned missions are currently being redefined, the atmosphere revitalization requirements for the spacecraft are expected to be quite similar to the Orion and the Altair vehicles and the SBAR test program addressed validation to the defined mission requirements as well as operation in other potential vehicle architectures. The development program, including test articles, the test facility, and tests and results through early 2011 is discussed.

  12. Intensity measurement of automotive headlamps using a photometric vision system

    NASA Astrophysics Data System (ADS)

    Patel, Balvant; Cruz, Jose; Perry, David L.; Himebaugh, Frederic G.

    1996-01-01

    Requirements for automotive head lamp luminous intensity tests are introduced. The rationale for developing a non-goniometric photometric test system is discussed. The design of the Ford photometric vision system (FPVS) is presented, including hardware, software, calibration, and system use. Directional intensity plots and regulatory test results obtained from the system are compared to corresponding results obtained from a Ford goniometric test system. Sources of error for the vision system and goniometer are discussed. Directions for new work are identified.

  13. Universal test system for system embedded optical interconnect

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Immonen, M.; Schröder, H.; Neitz, M.

    2018-02-01

    We introduce a universal test and measurement system allowing comparative characterisation of optical transceivers, board-to-board optical connectors and both embedded and passive optical circuit boards. The system comprises a test enclosure with interlocking and interchangeable test cards, allowing different technologies spanning different Technology Readiness Levels to be both characterised alone and in combination with other technologies. They form part of the open test design standards portfolio developed on the FP7 PhoxTroT and H2020 COSMICC projects and allow testing on a common test platform.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawn Lenz; Raymond T. Lines; Darryl Murdock

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of betweenmore » 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.« less

  15. General Vehicle Test Instrumentation Manual.

    DOT National Transportation Integrated Search

    1977-09-01

    A General Vehicle Test System (GVTS) has been developed by the Transportation Systems Center to facilitate rail transit vehicle testing at the Transportation Test Center, Pueblo, Colorado. This system was designed to be responsive to requirements spe...

  16. 242A Distributed Control System Year 2000 Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEATS, M.C.

    1999-08-31

    This report documents acceptance test results for the 242-A Evaporator distributive control system upgrade to D/3 version 9.0-2 for year 2000 compliance. This report documents the test results obtained by acceptance testing as directed by procedure HNF-2695. This verification procedure will document the initial testing and evaluation of the potential 242-A Distributed Control System (DCS) operating difficulties across the year 2000 boundary and the calendar adjustments needed for the leap year. Baseline system performance data will be recorded using current, as-is operating system software. Data will also be collected for operating system software that has been modified to correct yearmore » 2000 problems. This verification procedure is intended to be generic such that it may be performed on any D/3{trademark} (GSE Process Solutions, Inc.) distributed control system that runs with the VMSTM (Digital Equipment Corporation) operating system. This test may be run on simulation or production systems depending upon facility status. On production systems, DCS outages will occur nine times throughout performance of the test. These outages are expected to last about 10 minutes each.« less

  17. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  18. Thermal Management Coating As Thermal Protection System for Space Transportation System

    NASA Technical Reports Server (NTRS)

    Kaul, Raj; Stuckey, C. Irvin

    2003-01-01

    This paper presents viewgraphs on the development of a non-ablative thermal management coating used as the thermal protection system material for space shuttle rocket boosters and other launch vehicles. The topics include: 1) Coating Study; 2) Aerothermal Testing; 3) Preconditioning Environments; 4) Test Observations; 5) Lightning Strike Test Panel; 6) Test Panel After Impact Testing; 7) Thermal Testing; and 8) Mechanical Testing.

  19. 30 CFR 250.616 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.616 Blowout preventer system testing, records, and drills. (a) BOP pressure tests. When you pressure test the BOP system you must conduct a low-pressure test and a high-pressure test for each...

  20. Test development for the thermionic system evaluation test (TSET) project

    NASA Astrophysics Data System (ADS)

    Morris, D. Brent; Standley, Vaughn H.; Schuller, Michael J.

    1992-01-01

    The arrival of a Soviet TOPAZ-II space nuclear reactor affords the US space nuclear power (SNP) community the opportunity to study an assembled thermionic conversion power system. The TOPAZ-II will be studied via the Thermionic System Evaluation Test (TSET) Project. This paper is devoted to the discussion of TSET test development as related to the objectives contained in the TSET Project Plan (Standley et al. 1991). The objectives contained in the Project Plan are the foundation for scheduled TSET tests on TOPAZ-II and are derived from the needs of the Air Force Thermionic SNP program. Our ability to meet the objectives is bounded by unique constraints, such as procurement requirements, operational limitations, and necessary interaction between US and Soviet Scientists and engineers. The fulfillment of the test objectives involves a thorough methodology of test scheduling and data managment. The overall goals for the TSET program are gaining technical understanding of a thermionic SNP system and demonstrating the capabilities and limitations of such a system while assisting in the training of US scientist and engineers in preparation for US SNP system testing. Tests presently scheduled as part of TSET include setup, demonstration, and verification tests; normal and off-normal operating test, and system and component performance tests.

  1. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  2. Test Operations Procedure (TOP) 02-1-100 Anthropomorphic Test Device Operation and Setup

    DTIC Science & Technology

    2016-02-09

    using the Data Acquisition for Anthropomorphic Test Devices (D4D) in vehicle vulnerability testing. The D4D is an onboard data acquisition system ( DAS ...for Anthropomorphic Test Devices (D4D)** in vehicle vulnerability testing. The D4D is an onboard data acquisition system ( DAS ) that is intended for...use with the Hybrid II/III ATD’s. The D4D was developed to augment the existing DAS system, the legacy Versatile Information Systems Integrated On

  3. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  4. 21 CFR 862.1815 - Vitamin E test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vitamin E test system. 862.1815 Section 862.1815....1815 Vitamin E test system. (a) Identification. A vitamin E test system is a device intended to measure vitamin E (tocopherol) in serum. Measurements obtained by this device are used in the diagnosis and...

  5. 21 CFR 862.1815 - Vitamin E test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vitamin E test system. 862.1815 Section 862.1815....1815 Vitamin E test system. (a) Identification. A vitamin E test system is a device intended to measure vitamin E (tocopherol) in serum. Measurements obtained by this device are used in the diagnosis and...

  6. 21 CFR 862.1815 - Vitamin E test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vitamin E test system. 862.1815 Section 862.1815....1815 Vitamin E test system. (a) Identification. A vitamin E test system is a device intended to measure vitamin E (tocopherol) in serum. Measurements obtained by this device are used in the diagnosis and...

  7. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  8. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  9. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  10. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  11. 21 CFR 862.1730 - Free tyrosine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Free tyrosine test system. 862.1730 Section 862....1730 Free tyrosine test system. (a) Identification. A free tyrosine test system is a device intended to measure free tyrosine (an amono acid) in serum and urine. Measurements obtained by this device are used in...

  12. 21 CFR 866.5330 - Factor XIII, A, S, immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5330 Factor XIII, A, S, immuno-logical test system. (a) Identification. A factor XIII, A, S... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor XIII, A, S, immuno-logical test system. 866...

  13. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure the...

  14. 21 CFR 862.1815 - Vitamin E test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vitamin E test system. 862.1815 Section 862.1815....1815 Vitamin E test system. (a) Identification. A vitamin E test system is a device intended to measure vitamin E (tocopherol) in serum. Measurements obtained by this device are used in the diagnosis and...

  15. 21 CFR 862.1130 - Blood volume test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood volume test system. 862.1130 Section 862....1130 Blood volume test system. (a) Identification. A blood volume test system is a device intended to measure the circulating blood volume. Blood volume measurements are used in the diagnosis and treatment of...

  16. 21 CFR 862.1470 - Lipid (total) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lipid (total) test system. 862.1470 Section 862....1470 Lipid (total) test system. (a) Identification. A lipid (total) test system is a device intended to measure total lipids (fats or fat-like substances) in serum and plasma. Lipid (total) measurements are...

  17. 21 CFR 862.1470 - Lipid (total) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lipid (total) test system. 862.1470 Section 862....1470 Lipid (total) test system. (a) Identification. A lipid (total) test system is a device intended to measure total lipids (fats or fat-like substances) in serum and plasma. Lipid (total) measurements are...

  18. 21 CFR 862.1470 - Lipid (total) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lipid (total) test system. 862.1470 Section 862....1470 Lipid (total) test system. (a) Identification. A lipid (total) test system is a device intended to measure total lipids (fats or fat-like substances) in serum and plasma. Lipid (total) measurements are...

  19. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  20. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  1. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  2. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  3. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  4. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  5. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  6. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  7. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  8. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  9. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  10. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  11. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  12. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in the...

  13. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in the...

  14. 21 CFR 864.9175 - Automated blood grouping and antibody test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Manufacture Blood and Blood Products § 864.9175 Automated blood grouping and antibody test system. (a) Identification. An automated blood grouping and antibody test system is a device used to group erythrocytes (red... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated blood grouping and antibody test system...

  15. 21 CFR 864.9175 - Automated blood grouping and antibody test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Manufacture Blood and Blood Products § 864.9175 Automated blood grouping and antibody test system. (a) Identification. An automated blood grouping and antibody test system is a device used to group erythrocytes (red... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood grouping and antibody test system...

  16. 21 CFR 864.9175 - Automated blood grouping and antibody test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Manufacture Blood and Blood Products § 864.9175 Automated blood grouping and antibody test system. (a) Identification. An automated blood grouping and antibody test system is a device used to group erythrocytes (red... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated blood grouping and antibody test system...

  17. 21 CFR 864.9175 - Automated blood grouping and antibody test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Manufacture Blood and Blood Products § 864.9175 Automated blood grouping and antibody test system. (a) Identification. An automated blood grouping and antibody test system is a device used to group erythrocytes (red... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated blood grouping and antibody test system...

  18. 21 CFR 864.9175 - Automated blood grouping and antibody test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Manufacture Blood and Blood Products § 864.9175 Automated blood grouping and antibody test system. (a) Identification. An automated blood grouping and antibody test system is a device used to group erythrocytes (red... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated blood grouping and antibody test system...

  19. Design of a Microcomputer-Based Adaptive Testing System.

    ERIC Educational Resources Information Center

    Vale, C. David

    This paper explores the feasibility of developing a single-user microcomputer-based testing system. Testing literature was surveyed to discover types of test items that might be used in the system and to compile a list of strategies that such a system might use. Potential users were surveyed. Several were interviewed, and a questionnaire was…

  20. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test...

  1. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test...

  2. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  3. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  4. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  5. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  6. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  7. 21 CFR 862.1770 - Urea nitrogen test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urea nitrogen test system. 862.1770 Section 862....1770 Urea nitrogen test system. (a) Identification. A urea nitrogen test system is a device intended to measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and urine...

  8. 49 CFR 325.57 - Location and operation of sound level measurement systems; stationary test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the vehicle at an angle that is consistent with the recommendation of the system's manufacturer. If... systems; stationary test. 325.57 Section 325.57 Transportation Other Regulations Relating to...; Stationary Test § 325.57 Location and operation of sound level measurement systems; stationary test. (a) The...

  9. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lipoprotein X immunolog-ical test system. 866.5590... Lipoprotein X immunolog-ical test system. (a) Identification. A lipoprotein X immunological test system is a device that consists of the reagents used to measure by immunochemical techniques lipoprotein X (a high...

  10. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lipoprotein X immunolog-ical test system. 866.5590... Lipoprotein X immunolog-ical test system. (a) Identification. A lipoprotein X immunological test system is a device that consists of the reagents used to measure by immunochemical techniques lipoprotein X (a high...

  11. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lipoprotein X immunolog-ical test system. 866.5590... Lipoprotein X immunolog-ical test system. (a) Identification. A lipoprotein X immunological test system is a device that consists of the reagents used to measure by immunochemical techniques lipoprotein X (a high...

  12. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lipoprotein X immunolog-ical test system. 866.5590... Lipoprotein X immunolog-ical test system. (a) Identification. A lipoprotein X immunological test system is a device that consists of the reagents used to measure by immunochemical techniques lipoprotein X (a high...

  13. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lipoprotein X immunolog-ical test system. 866.5590... Lipoprotein X immunolog-ical test system. (a) Identification. A lipoprotein X immunological test system is a device that consists of the reagents used to measure by immunochemical techniques lipoprotein X (a high...

  14. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  15. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  16. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  17. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  18. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  19. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device...

  20. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device...

  1. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device...

  2. 21 CFR 862.1410 - Iron (non-heme) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Iron (non-heme) test system. 862.1410 Section 862....1410 Iron (non-heme) test system. (a) Identification. An iron (non-heme) test system is a device...

  3. 77 FR 60678 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Navy Training and Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-submarine warfare; mine warfare; naval special warfare; Naval Air Systems Command (NAVAIR) testing; Naval Sea Systems Command (NAVSEA) testing; Space and Naval Warfare Systems Command (SPAWAR) testing; and Office of Naval Research (ONR) and Naval Research Laboratory (NRL) testing. Detailed descriptions of...

  4. Contractor point of view for system development and test program

    NASA Technical Reports Server (NTRS)

    Koide, F. K.; Ringer, D. E.; Earl, C. E.

    1981-01-01

    Industry's practice of testing space qualified hardware is examined. An overview of the Global Positioning System (GPS) Test Program is discussed from the component level to the sub-system compatibility tests with the space vehicle and finally to the launch site tests, all related to the Rubidium clock.

  5. airborne data analysis/monitor system

    NASA Technical Reports Server (NTRS)

    Stephison, D. B.

    1981-01-01

    An Airborne Data Analysis/Monitor System (ADAMS), a ROLM 1666 computer based system installed onboard test airplanes used during experimental testing is evaluated. In addition to the 1666 computer, the ADAMS hardware includes a DDC System 90 fixed head disk and a Miltape DD400 floppy disk. Boeing designed a DMA interface to the data acquisition system and an intelligent terminal to reduce system overhead and simplify operator commands. The ADAMS software includes RMX/RTOS and both ROLM FORTRAN and assembly language are used. The ADAMS provides real time displays that enable onboard test engineers to make rapid decisions about test conduct thus reducing the cost and time required to certify new model airplanes, and improved the quality of data derived from the test, leading to more rapid development of improvements resulting in quieter, safer, and more efficient airplanes. The availability of airborne data processing removes most of the weather and geographical restrictions imposed by telemetered flight test data systems. A data base is maintained to describe the airplane, the data acquisition system, the type of testing, and the conditions under which the test is performed.

  6. Method and system for an on-chip AC self-test controller

    DOEpatents

    Flanagan, John D.; Herring, Jay R.; Lo, Tin-Chee

    2006-06-06

    A method for performing AC self-test on an integrated circuit, including a system clock for use during normal operation. The method includes applying a long data capture pulse to a first test register in response to the system clock, and further applying at an speed data launch pulse to the first test register in response to the system clock. Inputting the data from the first register to a logic path in response to applying the at speed data launch pulse to the first test register. Applying at speed data capture pulse to a second test register in response to the system clock. Inputting the output from the logic path to the second test register in response to applying the at speed data capture pulse to the second register. Applying a long data launch pulse to the second test register in response to the system clock.

  7. Design and realization of test system for testing parallelism and jumpiness of optical axis of photoelectric equipment

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-bing; Chen, Zhen-xing; Qin, Shao-gang; Song, Chun-yan; Jiang, Yun-hong

    2014-09-01

    With the development of science and technology, photoelectric equipment comprises visible system, infrared system, laser system and so on, integration, information and complication are higher than past. Parallelism and jumpiness of optical axis are important performance of photoelectric equipment,directly affect aim, ranging, orientation and so on. Jumpiness of optical axis directly affect hit precision of accurate point damage weapon, but we lack the facility which is used for testing this performance. In this paper, test system which is used fo testing parallelism and jumpiness of optical axis is devised, accurate aim isn't necessary and data processing are digital in the course of testing parallelism, it can finish directly testing parallelism of multi-axes, aim axis and laser emission axis, parallelism of laser emission axis and laser receiving axis and first acuualizes jumpiness of optical axis of optical sighting device, it's a universal test system.

  8. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  9. Managing laboratory test ordering through test frequency filtering.

    PubMed

    Janssens, Pim M W; Wasser, Gerd

    2013-06-01

    Modern computer systems allow limits to be set on the periods allowed for repetitive testing. We investigated a computerised system for managing potentially overtly frequent laboratory testing, calculating the financial savings obtained. In consultation with hospital physicians, tests were selected for which 'spare periods' (periods during which tests are barred) might be set to control repetitive testing. The tests were selected and spare periods determined based on known analyte variations in health and disease, variety of tissues or cells giving rise to analytes, clinical conditions and rate of change determining analyte levels, frequency with which doctors need information about the analytes and the logistical needs of the clinic. The operation and acceptance of the system was explored with 23 analytes. Frequency filtering was subsequently introduced for 44 tests, each with their own spare periods. The proportion of tests barred was 0.56%, the most frequent of these being for total cholesterol, uric acid and HDL-cholesterol. The financial savings were 0.33% of the costs of all testing, with HbA1c, HDL-cholesterol and vitamin B12 yielding the largest savings. Following the introduction of the system the number of barred tests ultimately decreased, suggesting accommodation by the test requestors. Managing laboratory testing through computerised limits to prevent overtly frequent testing is feasible. The savings were relatively low, but sustaining the system takes little effort, giving little reason not to apply it. The findings will serve as a basis for improving the system and may guide others in introducing similar systems.

  10. Field joint protection system rain qualification test report

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    This report documents the procedures, performance, and results obtained from the Field Joint Protection System (FJPS) rain test. This test was performed to validate that the flight configuration FJPS prevents the accumulation of moisture in the redesigned solid rocket motor (RSRM) field joints when subjected to simulated prelaunch natural rain environments. The FJPS test article was exposed to rain simulation for approximately 50 minutes. During the test, water entered through the open upper end of the systems tunnel and was funneled down between the tunnel and case. A sealant void at the moisture seal butt splice allowed this water to flow underneath the FJPS. The most likely cause of voids was improper bondline preparation, particularly on the moisture seal surface. In total, water penetrated underneath approximately 60 percent of the FJPS circumference. Because the test article was substantially different from flight configuration (no systems tunnel closeout), results of this test will not affect current flight motors. Due to the omission of systems tunnel covers and systems tunnel floor plate closeout, the test assembly was not representative of flight hardware and resulted in a gross overtest. It is therefore recommended that the test be declared void. It is also recommended that the test be repeated with a complete closeout of the systems tunnel, sealed systems tunnel ends, and improved adhesive bondline preparation.

  11. Survival and growth of newly transformed Lampsilis cardium and Lampsilis siliquoidea in a flow-through, continuous feeding test system

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Schreier, Theresa M.; Hess, Karina R.; Bartsch, Michelle

    2011-01-01

    A test system was evaluated for assessing chronic toxicity of waterborne chemicals with early life stage mussels. To determine if the test system could result in ≥80% survival in a control (unexposed) group, fat mucket mussels (Lampsilis siliquoidea Barnes, 1823) and plain pocketbook mussels (L. cardium Rafinesque, 1820) 1 day post transformation were stocked into test chambers (250 mL beakers, water volume, 200 mL, 21 °C, 40 mussels of 1 species per chamber) within a test system constructed for conducting chronic, continuous exposure, flow-through toxicity tests. The test system contained 60 chambers containing silica sand, 30 chambers with L. siliquoidea, and 30 with L. cardium. Each chamber in the continuous feeding system received 1 of 6 food types prepared with concentrated algal products. After 28 days, mussels were harvested from chambers to assess survival and growth. For L. siliquoidea, mean survival ranged from 34 to 80% and mean shell length ranged from 464 to 643 µm. For L. cardium, mean survival ranged from 12 to 66% and mean shell length ranged from 437 to 612 µm. The maximum mean growth rate for L. siliquoidea was 12.7 µm/d and for L. cardium was 11.8 µm/d. When offered a continuous diet of Nannochloropsis, Tetraselmis, and Chlorella for 28 days in the test system, the survival of 1 day post transformation L. siliquoidea was 80%. The test system can be easily enhanced with a pumping system continuously delivering test chemical to the test system's flow stream allowing for chronic toxicity tests with 1 day post transformation mussels.

  12. 47 CFR 76.601 - Performance tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... television system shall be responsible for insuring that each such system is designed, installed, and... cable television system shall conduct complete performance tests of that system at least twice each... tests shall be directed at determining the extent to which the system complies with all the technical...

  13. End-to-End Demonstrator of the Safe Affordable Fission Engine (SAFE) 30: Power Conversion and Ion Engine Operation

    NASA Technical Reports Server (NTRS)

    Hrbud, Ivana; VanDyke, Melissa; Houts, Mike; Goodfellow, Keith; Schafer, Charles (Technical Monitor)

    2001-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  14. Testing of Hand-Held Mine Detection Systems

    DTIC Science & Technology

    2015-01-08

    ITOP 04-2-5208 for guidance on software testing . Testing software is necessary to ensure that safety is designed into the software algorithm, and that...sensor verification areas or target lanes. F.2. TESTING OBJECTIVES. a. Testing objectives will impact on the test design . Some examples of...overall safety, performance, and reliability of the system. It describes activities necessary to ensure safety is designed into the system under test

  15. Conduct and Results of YF-16 RPRV Stall/Spin Drop Model Tests

    DTIC Science & Technology

    1977-04-01

    Bomb Recovery System Tests Iron Bird Recovery System Tests Captive Flights Typical Flight Operations Flight Planning and Pilot Training...helicopter tow qualification test, one model tow qualification test, three Iron Bird parachute recovery system verification tests, three captive tests...Corresponding Full-Scale YF-16 Altitude -Reference 1: Woodcock , Robert J., Some Notes on Free-Flight Model Seal- ing, AFFDL-TM-73-123-FCC, Air Force Flight

  16. Assessing the suitability of a manometric test system for determining the biodegradability of volatile hydrocarbons.

    PubMed

    Brown, David M; Hughes, Christopher B; Spence, Michael; Bonte, Matthijs; Whale, Graham

    2018-03-01

    Manometric test systems, adapted from those used to measure biochemical oxygen demand (BOD), and the OxiTop ® test system in particular, are being increasingly used to determine the biodegradability of chemicals in accordance to OECD 301F guidelines. In this study, the suitability of the OxiTop ® test system for determining the biodegradability of volatile hydrophobic substances has been explored. Experiments in biotic and abiotic systems were conducted with readily biodegradable complex aliphatic hydrocarbons covering a range of volatilities. Results indicated that abiotic losses of test substances were occurring due to sorption of the test substance to plastic components used in the OxiTop ® system. A further 'plastic-free' biodegradation test system was designed using PreSens optical dissolved oxygen (DO) sensors. This significantly improved the measured biodegradation due to reduced abiotic losses and better retention of the test substance. These results highlight the importance of considering the physico-chemical properties of test substances when selecting test methods and equipment. They also highlight the value of incorporating chemical analysis and abiotic controls to improve the interpretation of biodegradation studies. Copyright © 2017. Published by Elsevier Ltd.

  17. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    In the Reliability and Quality Engineering Test Laboratory at the NASA Lewis Research Center a nondestructive, corona-vacuum test facility for testing power system components was developed using commercially available hardware. The test facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. This facility is being used to test various high voltage power system components.

  18. Conduct overall test operations and evaluate two Doppler systems to detect, track and measure velocities in aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Craven, C. E.; Edwards, B. B.; Coffey, E. W.; Huang, C. C.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A program plan for system evaluation of the two-dimensional Scanning Laser Doppler System (SLDS) is presented. In order to meet system evaluation and optimization objectives the following tests were conducted: (1) noise tests; (2) wind tests; (3) blower flowfield tests; (4) single unit (1-D) flyby tests; and (5) dual unit (2-D) flyby tests. Test results are reported. The final phase of the program included logistics preparation, equipment interface checkouts, and data processing. It is concluded that the SLDS is capable of accurately tracking aircraft wake vortices from small or large aircraft, and in any type of weather.

  19. Definition study for an extended manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.

  20. Developments in Test Facility and Data Networking for the Altitude Test Stand at the John C. Stennis Space Center: A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W.

    2008-01-01

    NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.

  1. On-Chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2009-09-29

    A system for performing AC self-test on an integrated circuit that includes a system clock for normal operation is provided. The system includes the system clock, self-test circuitry, a first and second test register to capture and launch test data in response to a sequence of data pulses, and a logic circuit to be tested. The self-test circuitry includes an AC self-test controller and a clock splitter. The clock splitter generates the sequence of data pulses including a long data capture pulse followed by an at speed data launch pulse and an at speed data capture pulse followed by a long data launch pulse. The at speed data launch pulse and the at speed data capture pulse are generated for a common cycle of the system clock.

  2. Photovoltaic-Powered Vaccine Refrigerator: Freezer Systems Field Test Results

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1985-01-01

    A project to develop and field test photovoltaic-powered refrigerator/freezers suitable for vaccine storage was undertaken. Three refrigerator/freezers were qualified; one by Solar Power Corp. and two by Solvolt. Follow-on contracts were awarded for 19 field test systems and for 10 field test systems. A total of 29 systems were installed in 24 countries between October 1981 and October 1984. The project, systems descriptions, installation experiences, performance data for the 22 systems for which field test data was reported, an operational reliability summary, and recommendations relative to system designs and future use of such systems are explained. Performance data indicate that the systems are highly reliable and are capable of maintaining proper vaccine storage temperatures in a wide range of climatological and user environments.

  3. ESTA Exit Report

    NASA Technical Reports Server (NTRS)

    Lundebjerg, Kristen

    2016-01-01

    The Energy Test System's Area (ESTA) provides test capabilities and facilities to develop, evaluate or certify hardware in support of human spaceflight. The branch has a few different technical areas including pyrotechnics, batteries, electrical systems, power systems, propulsion and fluids. I will be mainly worked in the propulsion and fluids area. The tests/activities include testing the fluid and energy conversion systems that are required for the exploration and development of space. This group includes function and vibration tests, as well as thermal and vacuum tests. I was trained and certified as an ESTA test director in order to work on tests and sub tests with my mentor as well as the rest of the ESTA team. As a test director, I had the responsibility and authority for planning, developing, safety, execution and reporting on assigned test programs.

  4. Test techniques for determining laser ranging system performance

    NASA Technical Reports Server (NTRS)

    Zagwodzki, T. W.

    1981-01-01

    Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level.

  5. Requirements-Based Conformance Testing of ARINC 653 Real-Time Operating Systems

    NASA Astrophysics Data System (ADS)

    Maksimov, Andrey

    2010-08-01

    Requirements-based testing is emphasized in avionics certification documents because this strategy has been found to be the most effective at revealing errors. This paper describes the unified requirements-based approach to the creation of conformance test suites for mission-critical systems. The approach uses formal machine-readable specifications of requirements and finite state machine model for test sequences generation on-the-fly. The paper also presents the test system for automated test generation for ARINC 653 services built on this approach. Possible application of the presented approach to various areas of avionics embedded systems testing is discussed.

  6. Test bed design for evaluating the Space Station ECLSS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Ezell, Timothy G.; Long, David A.

    1990-01-01

    The design of the Phase III Environmental Control and Life Support System (ECLSS) Water Recovery System (WRS) test bed is in progress at the Marshall Space Flight Center (MSFC), building 4755, in Huntsville, Alabama. The overall design for the ECLSS WRS test bed will be discussed. Described within this paper are the design, fabrication, placement, and testing of the supporting facility which will provide the test bed for the ECLSS subsystems. Topics to be included are sterilization system design, component selection, microbial design considerations, and verification of test bed design prior to initiating WRS testing.

  7. MIUS Integration and Subsystem Test (MIST) data system

    NASA Technical Reports Server (NTRS)

    Pringle, L. M.

    1977-01-01

    A data system for use in testing integrated subsystems of a modular integrated utility system (MIUS) is presented. The MIUS integration and subsystem test (MIST) data system is reviewed from its conception through its checkout and operation as the controlling portion of the MIST facility. The MIST data system provides a real time monitoring and control function that allows for complete evaluation of the performance of the mechanical and electrical subsystems, as well as controls the operation of the various components of the system. In addition to the aforementioned capabilities, the MIST data system provides computerized control of test operations such that minimum manpower is necessary to set up, operate, and shut down subsystems during test periods.

  8. 21 CFR 866.5500 - Hypersensitivity pneumonitis immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... system. 866.5500 Section 866.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Systems § 866.5500 Hypersensitivity pneumonitis immunological test system. (a) Identification. A hypersensitivity pneumonitis immunological test system is a device that consists of the reagents used to measure by...

  9. 21 CFR 866.5500 - Hypersensitivity pneumonitis immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... system. 866.5500 Section 866.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Systems § 866.5500 Hypersensitivity pneumonitis immunological test system. (a) Identification. A hypersensitivity pneumonitis immunological test system is a device that consists of the reagents used to measure by...

  10. 21 CFR 866.5500 - Hypersensitivity pneumonitis immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... system. 866.5500 Section 866.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Systems § 866.5500 Hypersensitivity pneumonitis immunological test system. (a) Identification. A hypersensitivity pneumonitis immunological test system is a device that consists of the reagents used to measure by...

  11. 21 CFR 866.5500 - Hypersensitivity pneumonitis immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... system. 866.5500 Section 866.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Systems § 866.5500 Hypersensitivity pneumonitis immunological test system. (a) Identification. A hypersensitivity pneumonitis immunological test system is a device that consists of the reagents used to measure by...

  12. 49 CFR 234.257 - Warning system operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Warning system operation. 234.257 Section 234.257... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.257 Warning system operation. (a) Each highway-rail crossing warning system shall be tested to determine that it...

  13. 49 CFR 234.257 - Warning system operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Warning system operation. 234.257 Section 234.257... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.257 Warning system operation. (a) Each highway-rail crossing warning system shall be tested to determine that it...

  14. 49 CFR 234.257 - Warning system operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Warning system operation. 234.257 Section 234.257... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.257 Warning system operation. (a) Each highway-rail crossing warning system shall be tested to determine that it...

  15. Development of a simple, self-contained flight test data acquisition system

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Shane, D.; Roskam, J.; Rummer, D. I.

    1982-01-01

    The flight test system described combines state-of-the-art microprocessor technology and high accuracy instrumentation with parameter identification technology which minimize data and flight time requirements. The system was designed to avoid permanent modifications of the test airplane and allow quick installation. It is capable of longitudinal and lateral-directional stability and control derivative estimation. Details of this system, calibration and flight test procedures, and the results of the Cessna 172 flight test program are presented. The system proved easy to install, simple to operate, and capable of accurate estimation of stability and control parameters in the Cessna 172 flight tests.

  16. 21 CFR 862.1805 - Vitamin A test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vitamin A test system. 862.1805 Section 862.1805....1805 Vitamin A test system. (a) Identification. A vitamin A test system is a device intended to measure vitamin A in serum or plasma. Measurements obtained by this device are used in the diagnosis and treatment...

  17. 21 CFR 862.1805 - Vitamin A test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vitamin A test system. 862.1805 Section 862.1805....1805 Vitamin A test system. (a) Identification. A vitamin A test system is a device intended to measure vitamin A in serum or plasma. Measurements obtained by this device are used in the diagnosis and treatment...

  18. 21 CFR 862.1805 - Vitamin A test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vitamin A test system. 862.1805 Section 862.1805....1805 Vitamin A test system. (a) Identification. A vitamin A test system is a device intended to measure vitamin A in serum or plasma. Measurements obtained by this device are used in the diagnosis and treatment...

  19. 21 CFR 862.1805 - Vitamin A test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vitamin A test system. 862.1805 Section 862.1805....1805 Vitamin A test system. (a) Identification. A vitamin A test system is a device intended to measure vitamin A in serum or plasma. Measurements obtained by this device are used in the diagnosis and treatment...

  20. 21 CFR 862.1825 - Vitamin D test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vitamin D test system. 862.1825 Section 862.1825....1825 Vitamin D test system. (a) Identification. A vitamin D test system is a device intended for use in... hydroxylated metabolites of vitamin D in serum or plasma to be used in the assessment of vitamin D sufficiency...

  1. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Newborn screening test system for amino acids... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a) Identification. A newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

  2. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Newborn screening test system for amino acids... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a) Identification. A newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

  3. Fixed Equipment in the Energy Systems Integration Facility | Energy Systems

    Science.gov Websites

    dynamic simulation of future energy systems. Photo of a robot used to test hydrogen coupling hardware. At test chambers (rated up to 60°C) for testing HVAC systems under simulated loading conditions Two bench performance Test stand for measuring performance of receiver tubes for concentrating solar power applications

  4. Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |

    Science.gov Websites

    Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics

  5. 21 CFR 862.1825 - Vitamin D test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vitamin D test system. 862.1825 Section 862.1825....1825 Vitamin D test system. (a) Identification. A vitamin D test system is a device intended for use in... hydroxylated metabolites of vitamin D in serum or plasma to be used in the assessment of vitamin D sufficiency...

  6. EXSPRT: An Expert Systems Approach to Computer-Based Adaptive Testing.

    ERIC Educational Resources Information Center

    Frick, Theodore W.; And Others

    Expert systems can be used to aid decision making. A computerized adaptive test (CAT) is one kind of expert system, although it is not commonly recognized as such. A new approach, termed EXSPRT, was devised that combines expert systems reasoning and sequential probability ratio test stopping rules. EXSPRT-R uses random selection of test items,…

  7. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure by...

  8. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure by...

  9. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure by...

  10. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure by...

  11. 21 CFR 866.5700 - Whole human plasma or serum immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Whole human plasma or serum immunological test... Systems § 866.5700 Whole human plasma or serum immunological test system. (a) Identification. A whole human plasma or serum immunological test system is a device that consists of reagents used to measure by...

  12. 21 CFR 862.1825 - Vitamin D test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vitamin D test system. 862.1825 Section 862.1825....1825 Vitamin D test system. (a) Identification. A vitamin D test system is a device intended for use in... hydroxylated metabolites of vitamin D in serum or plasma to be used in the assessment of vitamin D sufficiency...

  13. 21 CFR 862.1825 - Vitamin D test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vitamin D test system. 862.1825 Section 862.1825....1825 Vitamin D test system. (a) Identification. A vitamin D test system is a device intended for use in... hydroxylated metabolites of vitamin D in serum or plasma to be used in the assessment of vitamin D sufficiency...

  14. 21 CFR 862.1825 - Vitamin D test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vitamin D test system. 862.1825 Section 862.1825....1825 Vitamin D test system. (a) Identification. A vitamin D test system is a device intended for use in... hydroxylated metabolites of vitamin D in serum or plasma to be used in the assessment of vitamin D sufficiency...

  15. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  16. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  17. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  18. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  19. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Uric acid test system. 862.1775 Section 862.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. ...

  20. Aquatic information and retrieval (AQUIRE) database system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, R.; Niemi, G.; Pilli, A.

    The AQUIRE database system is one of the foremost international resources for finding aquatic toxicity information. Information in the system is organized around the concept of an 'aquatic toxicity test.' A toxicity test record contains information about the chemical, species, endpoint, endpoint concentrations, and test conditions under which the toxicity test was conducted. For the past 10 years aquatic literature has been reviewed and entered into the system. Currently, the AQUIRE database system contains data on more than 2,400 species, 160 endpoints, 5,000 chemicals, 6,000 references, and 104,000 toxicity tests.

  1. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System (Discussion on Test Hardware and Computer Model for a Dual Brayton System)

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber-Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  2. Galileo Parachute System modification program

    NASA Technical Reports Server (NTRS)

    Mcmenamin, H. J.; Pochettino, L. R.

    1984-01-01

    This paper discusses the development program conducted on the Galileo Parachute System following the slow opening performance of the main parachute during the first system drop test. The parachute system is part of the Galileo entry probe that will descend through the Jupiter atmosphere. The uncontrolled parachute opening experienced in this test was not acceptable for the probe system. Therefore, the main parachute design was modified and the system sequence was changed to prevent a recurrence. These alterations and their system effects were evaluated analytically, and in a ground test program. At the conclusion of this phase, the system drop test was successfully repeated.

  3. Prototype space erectable radiator system ground test article development

    NASA Technical Reports Server (NTRS)

    Alario, Joseph P.

    1988-01-01

    A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.

  4. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  5. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  6. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  7. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  8. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  9. 40 CFR 1037.550 - Special procedures for testing hybrid systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... simulating a chassis test with a pre-transmission or post-transmission hybrid system for A to B testing...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling...) Collect CO2 emissions while operating the system over the test cycles specified in § 1037.510. (c) Collect...

  10. Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.

    1999-01-01

    As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

  11. 21 CFR 866.5090 - Antimitochondrial antibody immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5090 Antimitochondrial antibody immunological test system. (a) Identification. An... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimitochondrial antibody immunological test...

  12. 21 CFR 866.5750 - Radioallergosorbent (RAST) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5750 Radioallergosorbent (RAST) immunological test system. (a) Identification. A... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radioallergosorbent (RAST) immunological test...

  13. 21 CFR 866.5500 - Hypersensitivity pneumonitis immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5500 Hypersensitivity pneumonitis immunological test system. (a) Identification. A... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hypersensitivity pneumonitis immunological test...

  14. Joint Test Report For Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    National Aeronautics and Space Administration (NASA) and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This joint Test Report (JTR) documents the results of the laboratory and field testing as well as any test modifications made during the execution of the testing. The technical stakeholders agreed upon test procedure modifications documented in this document. This JTR is made available as a reference for future pollution prevention endeavors by other NASA centers, the Department of Defense and commercial users to minimize duplication of effort. All coating system candidates were tested using approved NASA and AFSPC standard coating systems as experimental controls. This study looked at eight alternative coating systems and two control coating systems and was divided into Phase I Screening Tests, Phase II Tests, and Field Testing. The Phase I Screening Tests were preliminary tests performed on all the selected candidate coating systems. Candidate coating systems that did not meet the acceptance criteria of the screening tests were eliminated from further testing. Phase I Screening Tests included: Ease of Application, Surface Appearance, Dry-To-Touch (Sanding), Accelerated Storage Stability, Pot Life (Viscosity), Cure Time (Solvent Rubs), Cleanability, Knife Test, Tensile (pull-off) Adhesion, and X-Cut Adhesion by Wet Tape After a review of the Phase I test results, four of the alternative coating systems showed substandard performance in relation to the Control Systems and were eliminated from the Phase II testing. Due to the interest of stakeholders and time constraints, however, all eight alternatives were subjected to the following Phase II tests, along with field testing at Stennis Space Center (SSC), Mississippi: Hypergol Compatibility, Liquid Oxygen Compatibility, 18-Month Marine Exposure (Gloss Retention, Color Retention, Blistering, Visual Corrosion, Creepage from Scribe, Heat Adhesion), and Field Exposure (6- and 12-month Evaluation for Coating Condition, Color Retention, Gloss Retention). The remaining four alternative coating systems determined to be the best viable alternatives were carried on to Phase II testing that included: Removability, Repairability, Abrasion Resistance, Gravelometer, Fungus Resistance, Accelerated Weathering, Mandrel Bend Flexibility, and Cyclic Corrosion Resistance. Of the systems that continued to Phase II, three (3) alternative coating systems meet the performance requirements as identified by stakeholders. Two (2) other systems, that were not included in Phase II testing, performed well enough on the 18-Month Marine Exposure, the primary requirement for NASA technical standard NASA-STD-5008, Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment, that they were also considered to be successful candidates. In total, five (5) alternative coating systems were approved for inclusion in the NASA-STD- 5008 Qualified Products List (QPL). The standard is intended to provide a common framework for consistent practices across NASA and is often used by other entities. The standard's QPL does not connote endorsement of the products by NASA, but lists those products that have been tested and meet the requirements as specified.

  15. Lightning testing at the subsystem level

    NASA Technical Reports Server (NTRS)

    Luteran, Frank

    1991-01-01

    Testing at the subsystem or black box level for lightning hardness is required if system hardness is to be assured at the system level. The often applied philosophy of lighting testing only at the system level leads to extensive end of the line design changes which result in excessive costs and time delays. In order to perform testing at the subsystem level two important factors must be defined to make the testing simulation meaningful. The first factor is the definition of the test stimulus appropriate to the subsystem level. Application of system level stimulations to the subsystem level usually leads to significant overdesign of the subsystem which is not necessary and may impair normal subsystem performance. The second factor is the availability of test equipment needed to provide the subsystem level lightning stimulation. Equipment for testing at this level should be portable or at least movable to enable efficient testing in a design laboratory environment. Large fixed test installations for system level tests are not readily available for use by the design engineers at the subsystem level and usually require special operating skills. The two factors, stimulation level and test equipment availability, must be evaluated together in order to produce a practical, workable test standard. The neglect or subordination of either factor will guarantee failure in generating the standard. It is not unusual to hear that test standards or specifications are waived because a specified stimulation level cannot be accomplished by in-house or independent test facilities. Determination of subsystem lightning simulation level requires a knowledge and evaluation of field coupling modes, peak and median levels of voltages and currents, bandwidths, and repetition rates. Practical limitations on test systems may require tradeoffs in lightning stimulation parameters in order to build practical test equipment. Peak power levels that can be generated at specified bandwidths with standard electrical components must be considered in the design and costing of the test system. Stimulation tests equipment and test methods are closely related and must be considered a test system for lightning simulation. A non-perfect specification that can be reliably and repeatedly applied at the subsystem test level is more desirable than a perfect specification that cannot be applied at all.

  16. Cooperative system and method using mobile robots for testing a cooperative search controller

    DOEpatents

    Byrne, Raymond H.; Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.

    2002-01-01

    A test system for testing a controller provides a way to use large numbers of miniature mobile robots to test a cooperative search controller in a test area, where each mobile robot has a sensor, a communication device, a processor, and a memory. A method of using a test system provides a way for testing a cooperative search controller using multiple robots sharing information and communicating over a communication network.

  17. An Additive Manufacturing Test Artifact

    PubMed Central

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  18. Preparing to Test

    NASA Image and Video Library

    2015-03-26

    Stennis Space Center employees install a 96-inch valve during a recent upgrade of the high-pressure industrial water system that serves the site’s large rocket engine test stands. The upgraded system has a capacity to flow 335,000 gallons of water a minute, which is a critical element for testing. At Stennis, engines are anchored in place on large test stands and fired just as they are during an actual space flight. The fire and exhaust from the test is redirected out of the stand by a large flame trench. A water deluge system directs thousands of gallons of water needed to cool the exhaust. Water also must be available for fire suppression in the event of a mishap. The new system supports RS-25 engine testing on the A-1 Test Stand, as well as testing of the core stage of NASA’s new Space Launch System on the B-2 Test Stand at Stennis.

  19. Resource Prospector Propulsion Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Pederson, Kevin; Dervan, Melanie; Holt, Kimberly; Jernigan, Frankie; Trinh, Huu; Flores, Sam

    2014-01-01

    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.

  20. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  1. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the pressurization system, including regulator blowdown and propellant ullage performance, measure system pressure drops for comparison to analysis of tubing and components, and validate system activation and re-activation procedures for the helium pressurant system. Secondary objectives included: validating system processes for loading, unloading, and purging, validating procedures and system response for multiple failure scenarios, including relief valve operation, and evaluating system performance for contingency scenarios. The test results of the cold flow development test program are essential in validating the performance and interaction of the Roll Control System and anchoring analysis tools and results to a Critical Design Review level of fidelity.

  2. Coliform Bacteria Monitoring in Fish Systems: Current Practices in Public Aquaria.

    PubMed

    Culpepper, Erin E; Clayton, Leigh A; Hadfield, Catherine A; Arnold, Jill E; Bourbon, Holly M

    2016-06-01

    Public aquaria evaluate coliform indicator bacteria levels in fish systems, but the purpose of testing, testing methods, and management responses are not standardized, unlike with the coliform bacteria testing for marine mammal enclosures required by the U.S. Department of Agriculture. An online survey was sent to selected aquaria to document current testing and management practices in fish systems without marine mammals. The information collected included indicator bacteria species, the size and type of systems monitored, the primary purpose of testing, sampling frequency, test methods, the criteria for interpreting results, corrective actions, and management changes to limit human exposure. Of the 25 institutions to which surveys were sent, 19 (76%) responded. Fourteen reported testing for fecal indicator bacteria in fish systems. The most commonly tested indicator species were total (86%) and fecal (79%) coliform bacteria, which were detected by means of the membrane filtration method (64%). Multiple types and sizes of systems were tested, and the guidelines for testing and corrective actions were highly variable. Only three institutions performed additional tests to confirm the identification of indicator organisms. The results from this study can be used to compare bacterial monitoring practices and protocols in fish systems, as an aid to discussions relating to the accuracy and reliability of test results, and to help implement appropriate management responses. Received August 23, 2015; accepted December 29, 2015.

  3. Instrumentation and test methods of an automated radiated susceptibility system

    NASA Astrophysics Data System (ADS)

    Howard, M. W.; Deere, J.

    1983-09-01

    The instrumentation and test methods of an automated electromagnetic compatibility (EMC) system for performing radiated susceptibility tests from 14 kHz to 1000 MHz is described. Particular emphasis is given to the effectiveness of the system in the evaluation of electronic circuits for susceptibility to RF radiation. The system consists of a centralized data acquisition/control unit which interfaces with the equipment under test (EUT), the RF isolated field probes, and RF amplifier ALC output; four broadband linear RF amplifiers; and a frequency synthesizer with drive level increments in steps of 0.1 dB. Centralized control of the susceptibility test system is provided by a desktop computer. It is found that the system can reduce the execution time of RF susceptibility tests by as much as 70 percent. A block diagram of the system is provided.

  4. Analyses of the dynamic docking test system for advanced mission docking system test programs. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Williams, J. E.

    1974-01-01

    Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.

  5. 14 CFR 25.952 - Fuel system analysis and test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.952 Fuel system analysis and test. (a) Proper fuel system functioning under all probable operating conditions must be shown... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system analysis and test. 25.952...

  6. 14 CFR 25.952 - Fuel system analysis and test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.952 Fuel system analysis and test. (a) Proper fuel system functioning under all probable operating conditions must be shown... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system analysis and test. 25.952...

  7. 14 CFR 25.952 - Fuel system analysis and test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.952 Fuel system analysis and test. (a) Proper fuel system functioning under all probable operating conditions must be shown... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system analysis and test. 25.952...

  8. 14 CFR 25.952 - Fuel system analysis and test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.952 Fuel system analysis and test. (a) Proper fuel system functioning under all probable operating conditions must be shown... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system analysis and test. 25.952...

  9. 14 CFR 25.952 - Fuel system analysis and test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.952 Fuel system analysis and test. (a) Proper fuel system functioning under all probable operating conditions must be shown... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system analysis and test. 25.952...

  10. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  11. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  12. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  13. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  14. 21 CFR 862.1060 - Delta-aminolevulinic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... poisoning and certain porphyrias (diseases affecting the liver, gastrointestinal, and nervous systems that... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Delta-aminolevulinic acid test system. 862.1060... Systems § 862.1060 Delta-aminolevulinic acid test system. (a) Identification. A delta-aminolevulinic acid...

  15. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  16. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  17. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  18. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  19. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  20. Fabrication of titanium multi-wall Thermal Protection System (TPS) test panel arrays

    NASA Technical Reports Server (NTRS)

    Blair, W.; Meaney, J. E.; Rosenthal, H. A.

    1980-01-01

    Several arrays were designed and tested. Tests included vibrational and acoustical tests, radiant heating tests, and thermal conductivity tests. A feasible manufacturing technique was established for producing the protection system panels.

  1. NREL Tests Energy Storage System to Fill Renewable Gaps | News | NREL

    Science.gov Websites

    Tests Energy Storage System to Fill Renewable Gaps NREL Tests Energy Storage System to Fill -megawatt energy storage system from Renewable Energy Systems (RES) Americas will assist research that aims to optimize the grid for wind and solar plants. The system arrived at NREL's National Wind Technology

  2. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  3. The Design of Software for Three-Phase Induction Motor Test System

    NASA Astrophysics Data System (ADS)

    Haixiang, Xu; Fengqi, Wu; Jiai, Xue

    2017-11-01

    The design and development of control system software is important to three-phase induction motor test equipment, which needs to be completely familiar with the test process and the control procedure of test equipment. In this paper, the software is developed according to the national standard (GB/T1032-2005) about three-phase induction motor test method by VB language. The control system and data analysis software and the implement about motor test system are described individually, which has the advantages of high automation and high accuracy.

  4. Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  5. Input-output characterization of an ultrasonic testing system by digital signal analysis

    NASA Technical Reports Server (NTRS)

    Karaguelle, H.; Lee, S. S.; Williams, J., Jr.

    1984-01-01

    The input/output characteristics of an ultrasonic testing system used for stress wave factor measurements were studied. The fundamentals of digital signal processing are summarized. The inputs and outputs are digitized and processed in a microcomputer using digital signal processing techniques. The entire ultrasonic test system, including transducers and all electronic components, is modeled as a discrete-time linear shift-invariant system. Then the impulse response and frequency response of the continuous time ultrasonic test system are estimated by interpolating the defining points in the unit sample response and frequency response of the discrete time system. It is found that the ultrasonic test system behaves as a linear phase bandpass filter. Good results were obtained for rectangular pulse inputs of various amplitudes and durations and for tone burst inputs whose center frequencies are within the passband of the test system and for single cycle inputs of various amplitudes. The input/output limits on the linearity of the system are determined.

  6. Air Force Human Systems Integration (HSI) in Test and Evaluation (T&E)

    DTIC Science & Technology

    2012-08-01

    allow human aspects related to system design to be tested and evaluated. 15. SUBJECT TERMS Air Force, Human Systems Integration, HSI, Test and...Community that would allow human aspects related to system design to be tested and evaluated. The intent was to identify and develop means for greater...related documentation in order to monitor the human related aspects for system development and design . To address these work areas, the team adopted

  7. Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions

    NASA Technical Reports Server (NTRS)

    Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)

    2000-01-01

    With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.

  8. Thruster endurance test

    NASA Technical Reports Server (NTRS)

    Collett, C.

    1976-01-01

    A test system was built and several short term tests were completed. The test system included, in addition to the 30-cm ion thruster, a console for powering the thruster and monitoring performance, a vacuum facility for simulating a space environment, and a storage and feed system for the thruster propellant. This system was used to perform three short term tests (one 100-hour and two 500-hour tests), an 1108-hour endurance test which was aborted by a vacuum facility failure, and finally the 10,000-hour endurance test. In addition to the two 400 series thrusters which were used in the short term and 1100-hour tests, four more 400 series thrusters were fabricated, checked out, and delivered to NASA. Three consoles similar to the one used in the test program were also fabricated and delivered.

  9. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  10. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    NASA Astrophysics Data System (ADS)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  11. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  12. Combustion Stability of the Gas Generator Assembly from J-2X Engine E10001 and Powerpack Tests

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Kenny, R. L.; Casiano, M. J.

    2013-01-01

    Testing of a powerpack configuration (turbomachinery and gas generator assembly) and the first complete engine system of the liquid oxygen/liquid hydrogen propellant J-2X rocket engine have been completed at the NASA Stennis Space Center. The combustion stability characteristics of the gas generator assemblies on these two systems are of interest for reporting since considerable effort was expended to eliminate combustion instability during early development of the gas generator assembly with workhorse hardware. Comparing the final workhorse gas generator assembly development test data to the powerpack and engine system test data provides an opportunity to investigate how the nearly identical configurations of gas generator assemblies operate with two very different propellant supply systems one the autonomous pressure-fed test configuration on the workhorse development test stand, the other the pump-fed configurations on the powerpack and engine systems. The development of the gas generator assembly and the elimination of the combustion instability on the pressure-fed workhorse test stand have been reported extensively in the two previous Liquid Propulsion Subcommittee meetings 1-7. The powerpack and engine system testing have been conducted from mid-2011 through 2012. All tests of the powerpack and engine system gas generator systems to date have been stable. However, measureable dynamic behavior, similar to that observed on the pressure-fed test stand and reported in Ref. [6] and attributed to an injection-coupled response, has appeared in both powerpack and engine system tests. As discussed in Ref. [6], these injection-coupled responses are influenced by the interaction of the combustion chamber with a branch pipe in the hot gas duct that supplies gaseous helium to pre-spin the turbine during the start transient. This paper presents the powerpack and engine system gas generator test data, compares these data to the development test data, and provides additional combustion stability analyses of the configurations.

  13. Developments in Test Facility and Data Networking for the Altitude Test Stand at the John C. Stennis Space Center, MS - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.

    2008-01-01

    May 2007, NASA's Constellation Program selected John C Stennis Space Center (SSC) near Waveland Mississippi as the site to construct an altitude test facility for the developmental and qualification testing of the Ares1 upper stage (US) engine. Test requirements born out of the Ares1 US propulsion system design necessitate exceptional Data Acquisition System (DAS) design solutions that support facility and propellant systems conditioning, test operations control and test data analysis. This paper reviews the new A3 Altitude Test Facility's DAS design requirements for real-time deterministic digital data, DAS technology enhancements, system trades, technology validation activities, and the current status of this system's new architecture. Also to be discussed will be current network technologies to improve data transfer.

  14. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  15. Extinguishing agent for magnesium fire, phases 5 and 6

    NASA Astrophysics Data System (ADS)

    Beeson, H. D.; Tapscott, R. E.; Mason, B. E.

    1987-07-01

    This report documents the validation testing of the extinguishing system for metal fires developed as part of Phases 1 to 4. The results of this validation testing form the basis of information from which draft military specifications necessary to procure the agent and the agent delivery system may be developed. The developed system was tested against a variety of large-scale metal fire scenarios and the capabilities of the system were assessed. In addition the response of the system to storage and to changes in ambient conditions was tested. Results of this testing revealed that the developed system represented a reliable metal fire extinguishing system that could control and extinguish very large metal fires. The specifications developed for the agent and for the delivery system are discussed in detail.

  16. Development, installation, and testing services for an automatic, point type thermal sensor, fire protection system on a mining dozer. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lease, W.D.

    1976-08-01

    Lease AFEX, Inc., modified its standard design of an automatic fire protection system used in the past on logging equipment, and long-term, in-mine tested system on a Fiat-Alli's HD-41B dozer at the Lemmons and Company coal mine, Boonville, Ind. The modification of the standard AFEX system involved improving the actuation device. The AFEX system is called a point-type thermal sensor, automatic fire protection system. The in-mine test took place in late 1975, and early 1976. The system was then tested by simulating a fire on the dozer. The system operated successfully after the 4 months of in-mine endurance testing. (Colormore » illustrations reproduced in black and white.)« less

  17. A Comparison of Zero Mean Strain Rotating Beam Fatigue Test Methods for Nitinol Wire

    NASA Astrophysics Data System (ADS)

    Norwich, Dennis W.

    2014-07-01

    Zero mean strain rotating beam fatigue testing has become the standard for comparing the fatigue properties of Nitinol wire. Most commercially available equipment consists of either a two-chuck or a chuck and bushing system, where the wire length and center-to-center axis distance determine the maximum strain on the wire. For the two-chuck system, the samples are constrained at either end of the wire, and both chucks are driven at the same speed. For the chuck and bushing system, the sample is constrained at one end in a chuck and rides freely in a bushing at the other end. These equivalent systems will both be herein referred to as Chuck-to-Chuck systems. An alternate system uses a machined test block with a specific radius to guide the wire at a known strain during testing. In either system, the test parts can be immersed in a temperature-controlled fluid bath to eliminate any heating effect created in the specimen due to dissipative processes during cyclic loading (cyclic stress induced the formation of martensite) Wagner et al. ( Mater. Sci. Eng. A, 378, p 105-109, 1). This study will compare the results of the same starting material tested with each system to determine if the test system differences affect the final results. The advantages and disadvantages of each system will be highlighted and compared. The factors compared will include ease of setup, operator skill level required, consistency of strain measurement, equipment test limits, and data recovery and analysis. Also, the effect of test speed on the test results for each system will be investigated.

  18. 21 CFR 862.1560 - Urinary phenylketones (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1560 Urinary phenylketones (nonquantitative) test system. (a) Identification. A...

  19. 21 CFR 862.1810 - Vitamin B12 test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vitamin B12 test system. 862.1810 Section 862.1810....1810 Vitamin B12 test system. (a) Identification. A vitamin B12 test system is a device intended to measure vitamin B12 in serum, plasma, and urine. Measurements obtained by this device are used in the...

  20. 21 CFR 862.1810 - Vitamin B12 test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vitamin B12 test system. 862.1810 Section 862.1810....1810 Vitamin B12 test system. (a) Identification. A vitamin B12 test system is a device intended to measure vitamin B12 in serum, plasma, and urine. Measurements obtained by this device are used in the...

Top