Sample records for cck-a receptor antagonist

  1. Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of intervention in the treatment of schizophrenia.

    PubMed

    O'Connor, W T

    2001-08-15

    Microdialysis was employed to investigate the dopamine, cholecystokinin (CCK) and neurotensin receptor regulation of ventral striopallidal GABA transmission by intra-accumbens perfusion with selective receptor ligands and monitoring local or ipsilateral ventral pallidal GABA release. In the dual probe studies intra-accumbens perfusion with the dopamine D1 and D2 receptor agonists SKF28293 and pergolide had no effect on ventral pallidal GABA, while both the D1 and D2 receptor antagonists SCH23390 and raclopride increased ventral pallidal GABA release. In contrast, intra-accumbens CCK decreased ventral pallidal GABA release and this was reversed by local perfusion with the CCK2 receptor antagonist PD134308 but not the CCK1 receptor antagonist L-364,718. In a single probe study intra-accumbens neurotensin increased local GABA release, which was strongly potentiated when the peptidase inhibitor phosphodiepryl 08 was perfused together with neurotensin. In addition, the neurotensin receptor antagonist SR48692 counteracted this phosphodiepryl 08 induced potentiated increased in GABA release. Taken together, these findings indicate that mesolimbic dopamine and CCK exert a respective tonic and phasic inhibition of ventral pallidal GABA release while the antipsychotic activity associated with D1 and D2 receptor antagonists may be explained by their ability to increase ventral striopallidal GABA transmission. Furthermore, the findings suggest that CCK2 receptor antagonists and neurotensin endopeptidase inhibitors may be useful antipsychotics.

  2. Cholecystokinin receptors on gallbladder muscle and pancreatic acinar cells: a comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Schrenck, T.; Moran, T.H.; Heinz-Erian, P.

    1988-10-01

    To compare receptors for cholecystokinin (CCK) in pancreas and gallbladder, we measured binding of 125I-Bolton-Hunter-labeled CCK-8 (125I-BH-CCK-8) to tissue sections from guinea pig gallbladder and pancreas under identical conditions. In both tissues, binding had similar time-, temperature-, and pH dependence, was reversible, saturable and inhibited only by CCK related peptides or CCK receptor antagonists. Autoradiography localized 125I-BH-CCK-8 binding to the smooth muscle layer in the gallbladder. Binding of 125I-BH-CCK-8 to gallbladder sections was inhibited by various agonists with the following potencies (IC50):CCK-8 (0.4 nM) greater than des(SO3)CCK-8 (0.07 microM) greater than gastrin-17-I (1.7 +/- 0.3 microM) and by various receptormore » antagonists with the following potencies: L364,718 (1.5 nM) greater than CR 1409 (0.19 microM) greater than asperlicin = CBZ-CCK-(27-32)-NH2 (1 microM) greater than Bt2cGMP (120 microM). Similar potencies were found for the agonists and antagonists for pancreas sections. Inhibition of binding of 125I-BH-CCK-8 by 11 different analogues of proglumide gave similar potencies for both pancreas and gallbladder. The potencies of agonists in stimulating and antagonists in inhibiting CCK-stimulated contraction or amylase release correlated closely with their abilities to inhibit 125I-BH-CCK-8 binding to gallbladder or pancreas sections or acini, respectively. The present results demonstrate and characterize a method that can be used to compare the CCK receptors in guinea pig gallbladder and pancreas under identical conditions. Moreover, this study demonstrates that gallbladder and pancreatic CCK receptors have similar affinities for the various agonists and antagonists tested and, therefore, provides no evidence that they represent different subtypes of CCK receptors that can be distinguished pharmacologically.« less

  3. Cholecystokinin (CCK) and CCK receptor expression by human gliomas: Evidence for an autocrine/paracrine stimulatory loop.

    PubMed

    Oikonomou, Eftychia; Buchfelder, Michael; Adams, Eric F

    2008-06-01

    Cholecystokinin (CCK) is a gut-brain peptide has been described to be able to induce mitosis according to recent studies. Additionally, conflicting data has been published on whether tumours of the central and peripheral nervous system in general, and gliomas in particular, express CCK receptors. In the present in vitro study we employed reverse transcription followed by the polymerase chain reaction (RT-PCR) to investigate whether mRNA for CCK-A and CCK-B receptors as well as CCK peptide itself is present in primary human gliomas and the U-87 MG GBM cell line. The data show that 14/14 (100%) of the primary gliomas exhibited mRNA expression for the CCK peptide gene and the B receptor including the U-87 MG cells, whereas, only 2/14 (14%) showed presence of the CCK-A receptor. The presence of CCK receptors together with CCK peptide expression itself suggests presence of an autocrine loop controlling glioma cell growth. In support of this conclusion, a neutralizing antibody against the CCK peptide exhibited a dose dependent inhibition of cell growth whereas, antagonists to CCK caused a dose depend inhibition of exogenous stimulated glioma cell growth in vitro, via the CCK-B receptor which is PKC activated. Assessment of apoptosis and proteasome activity were undertaken and we report that treatment with CCK antagonists decreased proteasome and increased caspase-3 activity. These data indicate that CCK peptide and CCK-B are abundant in human gliomas and they act to stimulate cell growth in an autocrine manner, primarily via the high affinity CCK-B receptor, which was blocked by antagonists to CCK, perhaps via apoptosis.

  4. Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice.

    PubMed

    Smith, Jill P; Cooper, Timothy K; McGovern, Christopher O; Gilius, Evan L; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A; Gutkind, J Silvio; Matters, Gail L

    2014-10-01

    Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved in the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-Kras transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK receptor antagonist (proglumide, 0.1 mg/mL). Pancreas from the mice were removed and examined histologically for number and grade of PanINs after 1, 2, or 4 months of antagonist therapy. Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed, and progression to advanced lesions arrested in mice treated with proglumide compared with the controls (P = 0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared with vehicle (P < 0.001). These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. The use of CCK receptor antagonists may have a role in cancer prophylaxis in high-risk subjects and may reduce fibrosis in the microenvironment.

  5. CHOLECYSTOKININ RECEPTOR ANTAGONIST HALTS PROGRESSION OF PANCREATIC CANCER PRECURSOR LESIONS AND FIBROSIS IN MICE

    PubMed Central

    Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.

    2014-01-01

    Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882

  6. Dietary Fat Stimulates Pancreatic Cancer Growth and Promotes Fibrosis of the Tumor Microenvironment through the Cholecystokinin Receptor.

    PubMed

    Nadella, Sandeep; Burks, Julian; Al-Sabban, Abdulhameed; Inyang, Gloria; Wang, Juan; Tucker, Robin D; Zamanis, Marie E; Bukowski, William; Shivapurkar, Narayan; Smith, Jill P

    2018-06-21

    The gastrointestinal peptide cholecystokinin (CCK) is released from the duodenum in response to dietary fat to aid in digestion, and plasma CCK levels are elevated with the consumption of high fat diets. CCK is also a trophic peptide for the pancreas and has also been shown to stimulate growth of pancreatic cancer. In the current investigation, we studied the influence of a diet high in saturated fat on growth of pancreatic cancer in syngeneic murine models before the mice became obese to exclude the confounding factors associated with obesity. The high fat diet significantly increased growth and metastasis of pancreatic cancer compared to the control diet, and the stimulatory effect was blocked by the CCK-receptor antagonist proglumide. We then selectively knocked out the CCK receptor on the pancreatic cancer cells using CRISPR technology and showed that without CCK receptors, dietary fat was unable to stimulate cancer growth. Next we demonstrated that dietary fat failed to influence pancreatic cancer xenograft growth in genetically engineered CCK peptide knockout mice. The tumor associated fibrosis that is so prevalent in the pancreatic cancer microenvironment was significantly decreased with CCK receptor antagonist therapy since fibroblasts also have CCK receptors. The CCK receptor antagonist proglumide also altered tumor metalloprotease expression and increased tumor suppressor genes by a PCR array. Our studies confirm that a diet high in saturated fat promotes growth of pancreatic cancer and the action is mediated by the CCK- receptor pathway.

  7. Cholecystokinin type B receptor antagonist PD-136,450 is a partial secretory agonist in the stomach and a full agonist in the pancreas of the rat.

    PubMed Central

    Schmassmann, A; Garner, A; Flogerzi, B; Hasan, M Y; Sanner, M; Varga, L; Halter, F

    1994-01-01

    Gastrin (cholecystokinin type B (CCK-B)) receptor antagonists may help to elucidate the physiological role of gastrin, have therapeutic potential as acid antisecretory drugs, and may be of use as adjuvant therapy for gastrin sensitive tumours. In binding studies, the gastrin receptor antagonist PD-136,450 had at least 1000 fold greater affinity for gastrin (CCK-B) than CCK-A receptors. In this study the biological activity of PD-136,450 was evaluated in conscious and anaesthetised rats. PD-136,450 antagonised gastrin stimulated acid secretion after subcutaneous (IC50: 0.28 mumol/kg; conscious rats) and intravenous (IC50: 0.17 mumol/kg; anaesthetised rats) administration. In basal secreting fistula animals, the compound stimulated acid output to 30 (5)% of the maximal response to gastrin. Stimulant activity was not caused by gastrin release. As an agonist PD-136,450 was about 350 times less potent than gastrin-17 on a molar basis. In addition, PD-136,450 was a powerful agonist of pancreatic secretion in anaesthetised rats. The specific gastrin antagonist L-365,260 inhibited the (partial) agonist activity of PD-136,450 in the stomach and the specific CCK-A receptor antagonist L-364,718 inhibited the agonist activity of PD-136,450 in the pancreas. It is concluded that the agonist effect of PD-136,450 is mediated via interaction with the gastrin (CCK-B) receptor in the stomach and the CCK-A receptor in the pancreas. PMID:8307482

  8. Structure-Activity Relationships of Bifunctional Cyclic Disulfide Peptides Based on Overlapping Pharmacophores at Opioid and Cholecystokinin Receptors

    PubMed Central

    Agnes, Richard S.; Ying, Jinfa; Kövér, Katalin E.; Lee, Yeon Sun; Davis, Peg; Ma, Shou-wu; Badghisi, Hamid; Porreca, Frank; Lai, Josephine; Hruby, Victor J.

    2008-01-01

    Prolonged opioid exposure increases the expression of cholecystokinin (CCK) and its receptors in the central nervous system, where CCK may attenuate the antinociceptive effects of opioids. The complex interactions between opioid and CCK may play a role in the development of opioid tolerance. We designed and synthesized cyclic disulfide peptides and determined their agonist properties at opioid receptors and antagonist properties at CCK receptors. Compound 1 (Tyr-c[D-Cys-Gly-Trp-Cys]-Asp-Phe-NH2) showed potent binding and agonist activities at δ and µ opioid receptors while displaying some binding to CCK receptors. The NMR structure of the lead compound displayed similar conformational features of opioid and CCK ligands. PMID:18502541

  9. Pharmacological characterization of CCKB receptors in human brain: no evidence for receptor heterogeneity.

    PubMed

    Kinze, S; Schöneberg, T; Meyer, R; Martin, H; Kaufmann, R

    1996-10-11

    In this paper, cholecystokinin (CCK) B-type binding sites were characterized with receptor binding studies in different human brain regions (various parts of cerebral cortex, basal ganglia, hippocampus, thalamus, cerebellar cortex) collected from 22 human postmortem brains. With the exception of the thalamus, where no specific CCK binding sites were found, a pharmacological characterization demonstrated a single class of high affinity CCK sites in all brain areas investigated. Receptor densities ranged from 0.5 fmol/mg protein (hippocampus) to 8.4 fmol/mg protein (nucleus caudatus). These CCK binding sites displayed a typical CCKA binding profile as shown in competition studies by using different CCK-related compounds and non peptide CCK antagonists discriminating between CCKA and CCKB sites. The rank order of agonist or antagonist potency in inhibiting specific sulphated [propionyl-3H]cholecystokinin octapeptide binding was similar and highly correlated for the brain regions investigated as demonstrated by a computer-assisted analysis. Therefore it is concluded that CCKB binding sites in human cerebral cortex, basal ganglia, cerebellar cortex share identical ligand binding characteristics.

  10. Characterization of the three different states of the cholecystokinin (CCK) receptor in pancreatic acini.

    PubMed

    Talkad, V D; Patto, R J; Metz, D C; Turner, R J; Fortune, K P; Bhat, S T; Gardner, J D

    1994-10-20

    By measuring binding of [125I]CCK-8 and [3H]L-364,718 to rat pancreatic acini we demonstrated directly that the pancreatic CCK receptor can exist in three different affinity states with respect to CCK--high affinity, low affinity and very low affinity. Binding of [125I]CCK-8 reflects interaction of the tracer with the high and low affinity states, whereas binding of [3H]L-364,718 reflects interaction of the tracer with the low and very low affinity states. Treating acini with carbachol abolished the high affinity state of the CCK receptor and converted approximately 25% of the low affinity receptors to the very low affinity state. Carbachol treatment was particularly useful in establishing the values of Kd for the high and low affinity states for different CCK receptor agonists and antagonists. Of the various CCK receptor agonists tested, CCK-8 had the highest affinity for the high affinity state (Kd approximately 1 nM), whereas CCK-JMV-180 had the highest affinity for the low (Kd 7 nM) and very low affinity (Kd 200 nM) states. Gastrin and de(SO4)CCK-8 had affinities for the high and low affinity states of the receptor that were 100- to 400-fold less than those of CCK-8 but had affinities for the very low affinity state that were only 3- to 10-fold less than that of CCK-8. CCK receptor antagonists showed several patterns in interacting with the different states of the CCK receptor. L-364,718 had the same affinity for each state of the CCK receptor. CR1409 and Bt2cGMP each had similar affinities for the high and low affinity states and lower affinity for the very low affinity state. L-365,260 and CCK-JMV-179 had the highest affinity for the low affinity state and lower affinities for the high and very low affinity states. Different CCK receptor agonists caused the same maximal stimulation of amylase secretion but showed different degrees of amplification in terms of the relationship between their abilities to stimulate amylase secretion and their abilities to occupy the low affinity state of the CCK receptor. When amplification was expressed quantitatively as the value of Kd for the low affinity state divided by the corresponding EC50 for stimulating amylase secretion the values were CCK-8 (1000), de(SO)CCK-8 (1500), gastrin (100) and CCK-JMV-180 (Menozzi, D., Vinayek, R., Jensen, R.T. and Gardner, J.D. (1991) J. Biol. Chem. 266, 10385-1091).(ABSTRACT TRUNCATED AT 400 WORDS)

  11. The CCK(-like) receptor in the animal kingdom: functions, evolution and structures.

    PubMed

    Staljanssens, Dorien; Azari, Elnaz Karimian; Christiaens, Olivier; Beaufays, Jérôme; Lins, Laurence; Van Camp, John; Smagghe, Guy

    2011-03-01

    In this review, the cholecystokinin (CCK)(-like) receptors throughout the animal kingdom are compared on the level of physiological functions, evolutionary basis and molecular structure. In vertebrates, the CCK receptor is an important member of the G-protein coupled receptors as it is involved in the regulation of many physiological functions like satiety, gastrointestinal motility, gastric acid secretion, gall bladder contraction, pancreatic secretion, panic, anxiety and memory and learning processes. A homolog for this receptor is also found in nematodes and arthropods, called CK receptor and sulfakinin (SK) receptor, respectively. These receptors seem to have evolved from a common ancestor which is probably still closely related to the nematode CK receptor. The SK receptor is more closely related to the CCK receptor and seems to have similar functions. A molecular 3D-model for the CCK receptor type 1 has been built together with the docking of the natural ligands for the CCK and SK receptors in the CCK receptor type 1. These molecular models can help to study ligand-receptor interactions, that can in turn be useful in the development of new CCK(-like) receptor agonists and antagonists with beneficial health effects in humans or potential for pest control. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Cholecystokinin receptor antagonism by peptidergic and non-peptidergic agents in rat pancreas.

    PubMed Central

    Dembinski, A; Jaworek, J; Konturek, P K; Konturek, S J; Warzecha, Z

    1989-01-01

    1. Graded doses of bombesin infused I.V. into conscious rats with chronic pancreatic fistulae induced a dose-dependent stimulation of protein secretion, similar to that obtained with caerulein. This stimulation does not appear to be mediated by cholecystokinin (CCK) receptors because peptidergic (CR-1409) and non-peptidergic (L-364718) CCK antagonists failed to affect protein secretion at a dose range which caused almost complete suppression of caerulein-induced pancreatic secretion. 2. Studies in vitro on isolated rat pancreatic acini revealed that caerulein, pentagastrin and bombesin all showed the same efficacy in their ability to stimulate amylase release. In contrast, CCK antagonists competitively inhibited amylase release induced by caerulein and pentagastrin but not by bombesin or urecholine, indicating that the latter two agents act directly on acinar cells via receptors which are separate from those involved in stimulation induced by caerulein and pentagastrin. 3. DNA synthesis, measured by the incorporation of [3H]thymidine into DNA, was significantly stimulated by caerulein, soybean trypsin inhibitor (FOY 305), pentagastrin and by bombesin in a dose-dependent manner. CCK receptor antagonists prevented stimulation of DNA synthesis induced by caerulein, FOY 305 and pentagastrin but not by bombesin. 4. This study indicates that bombesin strongly stimulates pancreatic enzyme secretion, with an efficacy similar to that of caerulein, and also exerts a potent growth-promoting action on the pancreas, both effects appearing to be mediated by mechanisms independent of the CCK receptors. PMID:2614728

  13. Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells.

    PubMed

    Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D

    1993-03-10

    Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.

  14. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    PubMed Central

    Yoshida, Ryusuke; Shin, Misa; Yasumatsu, Keiko; Takai, Shingo; Inoue, Mayuko; Shigemura, Noriatsu; Takiguchi, Soichi; Nakamura, Seiji; Ninomiya, Yuzo

    2017-01-01

    Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues. PMID:29163209

  15. Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats: The role of cholecystokinin through CCK1 receptor-mediated pathway.

    PubMed

    Bülbül, Mehmet; Sinen, Osman; Birsen, İlknur; Nimet İzgüt-Uysal, V

    2017-06-01

    Apelin is the endogenous ligand of the G protein-coupled receptor APJ. The APJ receptor is widely expressed in gastrointestinal (GI) tissues including stomach and small intestine. Apelin administration was shown to induce the release of cholecystokinin (CCK) which is a well-known alimentary hormone with its inhibitory actions on GI motor functions through CCK 1 receptors on vagal afferent fibers. We investigated whether; (i) peripherally injected apelin-13 alters GI motor functions, (ii) apelin-induced changes are mediated by APJ receptor or CCK 1 receptor and (iii) vagal afferents are involved in inhibitory effects of apelin. Solid gastric emptying (GE) and colon transit (CT) were measured, whereas duodenal phase III-like contractions were recorded in rats administered with apelin-13 (300μg/kg, ip). CCK 1 receptor antagonist lorglumide (10mg/kg, ip) or APJ receptor antagonist F13A (300μg/kg, ip) was administered 30min prior to the apelin-13 injections. Vagal afferent denervation was achieved by systemic administration of vanilloid receptor agonist capsaicin (125mg/kg, sc). Apelin-13 administration significantly (p<0.01) increased the CCK level in portal venous plasma samples. Compared with vehicle-treated rats, apelin-13 significantly delayed both GE (p<0.001) and CT (p<0.01). Pretreatment of lorglumide or F13A completely abolished the apelin-13-induced inhibitory effects on GE and CT, moreover, apelin-13 was found ineffective in rats underwent afferent denervation. F13A administration alone significantly accelerated the basal CT. Apelin-13 noticeably disturbed the duodenal fasting motor pattern by impairing phase III-like contractions while increasing the amplitudes of phase II contractions which were prevented by pretreatment of lorglumide and capsaicin. Compared with vehicle-treated rats, lorglumide and capsaicin significantly (p<0.05) reduced the apelin-13-induced increases in phase II motility index. Peripherally administered apelin-13 inhibits GI motor functions through CCK-dependent pathway which appears to be mediated by CCK 1 receptors on vagal afferents. Peripheral apelin might contribute to the motility changes occurred in postprandial period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis, analytical analysis, and medicinal aspect of novel benzimidazoles and their metal complexes.

    PubMed

    Agrawal, Sangeeta; Bhatnagar, Rishi Raj; Tiwari, Anjani; Srivastava, Rakesh; Sharma, Upasana

    2013-11-01

    Benzimidazole and their metal analogs that can act as multimodal agent and have non-peptidic CCK-B receptor antagonist were synthesized and characterized on the basis of spectroscopic techniques such as FT-IR, NMR, FAB-MS and also evaluated for biologic efficacy. The ligands showed binding to most of the organs, known to express CCK receptors in biodistribution studies. Cholecystokinin (CCK1 and CCK2) receptor binding affinities of these analogs (IC50) are 0.802 ± 0.007 for compound C and 0.326 ± 0.012 for compound D in rat pancreatic acini. These studies have provided a new template for further development of novel agents for various related diseases.

  17. Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors

    PubMed Central

    Moran, Timothy H; Bi, Sheng

    2006-01-01

    The brain–gut peptide cholecystokinin (CCK) inhibits food intake following peripheral or site directed central administration. Peripheral exogenous CCK inhibits food intake by reducing the size and duration of a meal. Antagonist studies have demonstrated that the actions of the exogenous peptide mimic those of endogenous CCK. Antagonist administration results in increased meal size and meal duration. The feeding inhibitory actions of CCK are mediated through interactions with CCK-1 receptors. The recent identification of the Otsuka–Long–Evans–Tokushima Fatty (OLETF) rat as a spontaneous CCK-1 receptor knockout model has allowed a more comprehensive evaluation of the feeding actions of CCK. OLETF rats become obese and develop non-insulin dependent diabetes mellitus (NIDDM). Consistent with the absence of CCK-1 receptors, OLETF rats do not respond to exogenous CCK. OLETF rats are hyperphagic and their increased food intake is characterized by a large increase in meal size with a decrease in meal frequency that is not sufficient to compensate for the meal size increase. Deficits in meal size control are evident in OLETF rats as young as 2 days of age. OLETF obesity is secondary to the increased food intake. Pair feeding to amounts consumed by intact control rats normalizes body weight, body fat and elevated insulin and glucose levels. Hypothalamic arcuate nucleus peptide mRNA expression in OLETF rats is appropriate to their obesity and is normalized by pair feeding. In contrast, pair fed and young pre-obese OLETF rats have greatly elevated dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) mRNA expression. Elevated DMH NPY in OLETF rats appears to be a consequence of the absence of CCK-1 receptors. In intact rats NPY and CCK-1 receptors colocalize to neurons within the compact subregion of the DMH and local CCK administration reduces food intake and decreases DMH NPY mRNA expression. We have proposed that the absence of DMH CCK-1 receptors significantly contributes to the OLETF's inability to compensate for their meal size control deficit leading to their overall hyperphagia. Access to a running wheel and the resulting exercise normalizes food intake and body weight in OLETF rats. When given access to running wheels for 6 weeks shortly after weaning, OLETF rats do not gain weight to the same degree as sedentary OLETF rats and do not develop NIDDM. Exercise also prevents elevated levels of DMH NPY mRNA expression, suggesting that exercise exerts an alternative, non-CCK mediated, control on DMH NPY. The OLETF rat is a valuable model for characterizing actions of CCK in energy balance and has provided novel insights into interactions between exercise and food intake. PMID:16815799

  18. Involvement of endogenous cholecystokinin and somatostatin in gastroprotection induced by intraduodenal fat.

    PubMed

    Brzozowski, T; Konturek, P C; Konturek, S J; Kwiecién, S; Pajdo, R; Brzozowska, I; Hahn, E G

    1998-01-01

    Duodenal fat such as oleate is known to influence gut functions by release of cholecystokinin (CCK), but the contribution of CCK endogenously released by duodenal fat or by diversion of pancreatic juice from the duodenum in the mechanism of mucosal integrity and gastroprotection has been little studied. This study was designed to compare the effect of CCK-8 and intraduodenal (i.d.) instillation of sodium oleate, or diversion of the pancreatic biliary secretions that are known to release CCK, on the gastric mucosal lesions induced by topical application of 100% ethanol or acidified aspirin (ASA) in rats with or without the pretreatment with a CCK-A receptor antagonist, loxiglumide, or with L-365,260 to block CCK-B receptors. In addition, the effect of suppression of prostaglandin (PG) biosynthesis by indomethacin (5 mg/kg i.p.), inhibition of nitric oxide (NO)-synthase by L-NAME (5 mg/kg i.v.), or blockade of sensory nerves by capsaicin (125 mg/kg s.c.) on the protective activity of sodium oleate was determined. Sodium oleate (50-200 mM i.d.), or diversion of pancreatic juice from the duodenum for 3 h that produced significant rise in plasma CCK levels, significantly reduced gastric lesions induced by 100% ethanol to an extent similar to that induced by exogenous CCK-8 (5 nmol/kg s.c.). The protective effect of oleate or diversion of pancreatic juice was accompanied by an increase in gastric blood flow (GBF). Both protection and accompanying hyperemia were completely abolished by blockade of CCK-A receptors with loxiglumide, whereas L-365,260, an antagonist of CCK-B receptors, had no effect. Oleate given i.d. significantly attenuated acidified ASA-induced gastric lesions and gastric secretion while increasing the luminal concentration of somatostatin. These effects were significantly reduced by loxiglumide but not by L-365,260. In contrast, CCK-8, which stimulated gastric acid secretion, failed to affect the lesions induced by acidified ASA and the decrease in the GBF produced by this ulcerogen. Indomethacin, which suppressed PG generation by approximately 90%, failed to influence the protective activity of oleate or CCK-8 against ethanol-induced lesions, whereas L-NAME, vagotomy, or sensory denervation significantly attenuated this protection and accompanying hyperemia. Addition to L-NAME of L-arginine, but not D-arginine, restored the protective and hyperemic effects of CCK-8 and duodenal oleate against gastric lesions induced by ethanol or acidified ASA. We conclude that endogenous CCK released by oleate or diversion of pancreatic secretion exerts a potent gastroprotective action on the stomach involving predominantly CCK-A receptors and depending on vagal activity, and hyperemia mediated by NO and sensory nerves but unrelated to acid secretory effects and endogenous PG.

  19. Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones

    PubMed Central

    Li, Y; Wu, X Y; Owyang, C

    2004-01-01

    Recent studies indicate that cholecystokinin (CCK) and serotonin (5-hydroxytryptamine, 5-HT) act via vagal afferent fibres to mediate gastrointestinal functions. In the present study, we characterized the interaction between CCK and 5-HT in the vagal primary afferent neurones. Single neuronal discharges of vagal primary afferent neurones innervating the duodenum were recorded from rat nodose ganglia. Two groups of nodose ganglia neurones were identified: group A neurones responded to intra-arterial injection of low doses of cholecystokinin octapeptide (CCK-8; 10–60 pmol); group B neurones responded only to high doses of CCK-8 (120–240 pmol), and were also activated by duodenal distention. CCK-JMV-180, which acts as an agonist in high-affinity states and as an antagonist in low-affinity states, dose dependently stimulated group A neurones, but inhibited the effect of the high doses of CCK-8 on group B neurones. Duodenal perfusion of 5-HT evoked dose-dependent increases in nodose neuronal discharges. Some neurones that responded to 5-HT showed no response to either high or low doses of CCK-8. A separate group of nodose neurones that possessed high-affinity CCK type A (CCK-A) receptors also responded to luminal infusion of 5-HT. Further, a subthreshold dose of CCK-8 (i.e. 5 pmol) produced no measurable electrophysiological effects but it augmented the neuronal responses to 5-HT. This potentiation effect of CCK-8 was eliminated by CR 1409. From these results we concluded that the vagal nodose ganglion contains neurones that may possess only high- or low-affinity CCK-A receptors or 5-HT3 receptors. Some neurones that express high-affinity CCK-A receptors also express 5-HT3 receptors. Pre-exposure to luminal 5-HT may augment the subsequent response to a subthreshold dose of CCK. PMID:15235095

  20. Anorexia induction by the trichothecene deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY.

    PubMed

    Flannery, Brenna M; Clark, Erica S; Pestka, James J

    2012-12-01

    Consumption of deoxynivalenol (DON), a trichothecene mycotoxin known to commonly contaminate grain-based foods, suppresses growth of experimental animals, thus raising concerns over its potential to adversely affect young children. Although this growth impairment is believed to result from anorexia, the initiating mechanisms for appetite suppression remain unknown. Here, we tested the hypothesis that DON induces the release of satiety hormones and that this response corresponds to the toxin's anorectic action. Acute ip exposure to DON had no effect on plasma glucagon-like peptide-1, leptin, amylin, pancreatic polypeptide, gastric inhibitory peptide, or ghrelin; however, the toxin was found to robustly elevate peptide YY (PYY) and cholecystokinin (CCK). Specifically, ip exposure to DON at 1 and 5mg/kg bw induced PYY by up to 2.5-fold and CCK by up to 4.1-fold. These responses peaked within 15-120 min and lasted up to 120 min (CCK) and 240 min (PPY), corresponding with depressed rates of food intake. Direct administration of exogenous PYY or CCK similarly caused reduced food intake. Food intake experiments using the NPY2 receptor antagonist BIIE0246 and the CCK1A receptor antagonist devazepide, individually, suggested that PYY mediated DON-induced anorexia but CCK did not. Orolingual exposure to DON induced plasma PYY and CCK elevation and anorexia comparable with that observed for ip exposure. Taken together, these findings suggest that PYY might be one critical mediator of DON-induced anorexia and, ultimately, growth suppression.

  1. Effect of a low dose of intraduodenal fat on satiety in humans: studies using the type A cholecystokinin receptor antagonist loxiglumide.

    PubMed Central

    Lieverse, R J; Jansen, J B; Masclee, A A; Rovati, L C; Lamers, C B

    1994-01-01

    Satiation, the process that brings eating to an end, and satiety, the state of inhibition over further eating, may be influenced by cholecystokinin (CCK). In animal and human studies, it has been shown that infusion of exogenous CCK decreases food intake, but the doses given may well have led to supraphysiological plasma concentrations. This study was done to discover if a low dose of intraduodenal fat releasing physiological amounts of endogenous cholecystokinin exerts satiation or satiety effects, or both and if these effects could be inhibited by the CCK receptor antagonist loxiglumide. In 10 healthy lean volunteers (5 F, 5 M, mean age 26) three tests were performed in a randomised blind fashion. Intralipid 20% (6 g/h) (experiments A and C) or saline (experiment B) were given intraduodenally from 1030 until 1300. The subjects received saline (experiments A and B) or loxiglumide (experiment C) a specific CCK-receptor antagonist (10 mg/kg/h) intravenously from 0930 until 1300. At 1200 a meal was served. At regular time intervals hunger feelings were measured using visual analogue scales and food selection lists and plasma CCK was measured by radioimmunoassay. Food intake (mean (SEM)) during intraduodenal fat (206(35)g) was lower than in the control study (269(37)g, p = 0.09). Loxiglumide largely prevented the inhibitory effect of intraduodenal fat on food intake (245(30)g). From 1030 until the meal at 1200 there was a significant satiating effect of intraduodenal fat compared with the control and loxiglumide experiments according to the food selection lists, which was because of the satiating effect for the fat rich items (p<0.05). Also feelings of fullness were significantly higher during intraduodenal fat than in the control or loxiglumide experiments (p<0.05). During intraduodenal fat there was a significant increase of plasma CCK from 2.4(0.3) to 4.8(0.4) pM (p<0.001). Loxiglumide led to an exaggerated CCK release to a peak concentration of 16(2.4) pM before the meal. This study shows that in humans low dose intraduodenal fat increases satiety and satiation, mainly through the effect of CCK. PMID:8174988

  2. Role of Cholecystokinin in Anorexia Induction Following Oral Exposure to the 8-Ketotrichothecenes Deoxynivalenol, 15-Acetyldeoxynivalenol, 3-Acetyldeoxynivalenol, Fusarenon X, and Nivalenol

    PubMed Central

    Wu, Wenda; Zhou, Hui-Ren; He, Kaiyu; Pan, Xiao; Sugita-Konishi, Yoshiko; Watanabe, Maiko; Zhang, Haibin; Pestka, James J.

    2014-01-01

    Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY3–36 (PYY3–36), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY3–36 concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY3–36 was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY3–36 might play a lesser, congener-dependent role in this response. PMID:24385417

  3. Role of cholecystokinin in anorexia induction following oral exposure to the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol.

    PubMed

    Wu, Wenda; Zhou, Hui-Ren; He, Kaiyu; Pan, Xiao; Sugita-Konishi, Yoshiko; Watanabe, Maiko; Zhang, Haibin; Pestka, James J

    2014-04-01

    Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY₃₋₃₆ (PYY₃₋₃₆), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY₃₋₃₆ concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY₃₋₃₆ was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY₃₋₃₆ might play a lesser, congener-dependent role in this response.

  4. Anorexia Induction by the Trichothecene Deoxynivalenol (Vomitoxin) Is Mediated by the Release of the Gut Satiety Hormone Peptide YY

    PubMed Central

    Pestka, James J.

    2012-01-01

    Consumption of deoxynivalenol (DON), a trichothecene mycotoxin known to commonly contaminate grain-based foods, suppresses growth of experimental animals, thus raising concerns over its potential to adversely affect young children. Although this growth impairment is believed to result from anorexia, the initiating mechanisms for appetite suppression remain unknown. Here, we tested the hypothesis that DON induces the release of satiety hormones and that this response corresponds to the toxin’s anorectic action. Acute ip exposure to DON had no effect on plasma glucagon-like peptide-1, leptin, amylin, pancreatic polypeptide, gastric inhibitory peptide, or ghrelin; however, the toxin was found to robustly elevate peptide YY (PYY) and cholecystokinin (CCK). Specifically, ip exposure to DON at 1 and 5mg/kg bw induced PYY by up to 2.5-fold and CCK by up to 4.1-fold. These responses peaked within 15–120min and lasted up to 120min (CCK) and 240min (PPY), corresponding with depressed rates of food intake. Direct administration of exogenous PYY or CCK similarly caused reduced food intake. Food intake experiments using the NPY2 receptor antagonist BIIE0246 and the CCK1A receptor antagonist devazepide, individually, suggested that PYY mediated DON-induced anorexia but CCK did not. Orolingual exposure to DON induced plasma PYY and CCK elevation and anorexia comparable with that observed for ip exposure. Taken together, these findings suggest that PYY might be one critical mediator of DON-induced anorexia and, ultimately, growth suppression. PMID:22903826

  5. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud.

    PubMed

    Herness, Scott; Zhao, Fang-Li

    2009-07-14

    The evolving view of the taste bud increasingly suggests that it operates as a complex signal processing unit. A number of neurotransmitters and neuropeptides and their corresponding receptors are now known to be expressed in subsets of taste receptor cells in the mammalian bud. These expression patterns set up hard-wired cell-to-cell communication pathways whose exact physiological roles still remain obscure. As occurs in other cellular systems, it is likely that neuropeptides are co-expressed with neurotransmitters and function as neuromodulators. Several neuropeptides have been identified in taste receptor cells including cholecystokinin (CCK), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and glucagon-like peptide 1 (GLP-1). Of these, CCK and NPY are the best studied. These two peptides are co-expressed in the same presynaptic cells; however, their postsynaptic actions are both divergent and antagonistic. CCK and its receptor, the CCK-1 subtype, are expressed in the same subset of taste receptor cells and the autocrine activation of these cells produces a number of excitatory physiological actions. Further, most of these cells are responsive to bitter stimuli. On the other hand, NPY and its receptor, the NPY-1 subtype, are expressed in different cells. NPY, acting in a paracrine fashion on NPY-1 receptors, results in inhibitory actions on the cell. Preliminary evidence suggests the NPY-1 receptor expressing cell co-expresses T1R3, a member of the T1R family of G-protein coupled receptors thought to be important in detection of sweet and umami stimuli. Thus the neuropeptide expressing cells co-express CCK, NPY, and CCK-1 receptor. Neuropeptides released from these cells during bitter stimulation may work in concert to both modulate the excitation of bitter-sensitive taste receptor cells while concurrently inhibiting sweet-sensitive cells. This modulatory process is similar to the phenomenon of lateral inhibition that occurs in other sensory systems.

  6. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    PubMed

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  7. 2-Naphthalenesulphanyl-L-aspartyl-2-(phenethyl) amide (2-NAP) and food intake in rats: evidence that endogenous peripheral CCK does not play a major role as a satiety factor.

    PubMed Central

    Ebenezer, I. S.; Baldwin, B. A.

    1995-01-01

    1. The demonstration that systemic administration of the CCKA receptor antagonist, devazepide, increases food intake in rats has provided the strongest support for the hypothesis that endogenous peripherally released cholecystokinin (CCK) acts as a satiety factor. However, interpretation of these results has been confounded by the fact that devazepide can enter the brain from the systemic circulation and may increase food intake by a central action. The present study was therefore undertaken to confirm the hypothesis that endogenous peripheral CCK is a satiety factor by investigating the effects of a novel CCKA receptor antagonist, 2-NAP, which is unlikely to cross the blood brain barrier, on food intake in rats. 2. 2-NAP (1-16 mg kg-1, i.p.) had no significant effects on the intake of a test meal in rats. 3. Pretreatment of rats with 2-NAP (2 mg kg-1, s.c.) abolished the inhibitory effects of exogenous peripheral CCK (5 micrograms kg-1, i.p.) on food intake. 4. In agreement with previous results, devazepide (50-200 micrograms kg-1, i.p.) significantly increased the intake of a test meal in rats. 5. The observations that 2-NAP, which is unlikely to penetrate the blood brain barrier, had no effect on food intake, but that 2-NAP abolished the suppressant effect of exogenous peripheral CCK, suggest that endogenously released peripheral CCK is not important as a satiety factor in rats. PMID:8581271

  8. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    PubMed Central

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  10. Role of endogenously released cholecystokinin in determining postprandial insulin levels in man: effects of loxiglumide, a specific cholecystokinin receptor antagonist.

    PubMed

    Baum, F; Nauck, M A; Ebert, R; Cantor, P; Hoffmann, G; Choudhury, A R; Schmidt, W E; Creutzfeldt, W

    1992-01-01

    To estimate the contribution of postprandial cholecystokinin (CCK) responses to circulating insulin concentrations and insulin secretion, a specific CCK receptor antagonist (loxiglumide; 10 mg/kg body weight/h) or saline were infused intravenously in normal volunteers, beginning 90 min before insulin secretion was stimulated on separate occasions by the intraduodenal administrations of glucose, glucose and protein, and glucose plus protein with the admixture of pancreatin. The release of CCK (radioimmunoassay) was stimulated by the protein component of the nutrients from basal 2.4 +/- 0.4 to 8.0 +/- 1.2 pmol/l. CCK plasma levels were significantly higher with loxiglumide (p < 0.05). Glucose-dependent insulinotropic polypeptide (GIP) was also released by all nutrient mixtures. Loxiglumide significantly inhibited the amount of bilirubin and pancreatic enzymes recovered from duodenal aspirates. In contrast, in none of the experiments, C-peptide increments and hence insulin secretion rates were altered by loxiglumide. With glucose and protein as intraduodenal stimulus (no pancreatin added), the plasma amino acids rose significantly less (by approximately 50% of the control experiment) and the increment in insulin (but not C-peptide) concentrations was significantly reduced by loxiglumide. This is most likely explained by a change in insulin metabolic clearance. This effect cannot be a primary action of CCK because there was no similar effect of loxiglumide with the same intraduodenal stimulus plus added pancreatin. Pancreatic enzymes reduced maldigestion secondary to loxiglumide effects on pancreatic exocrine secretion: The increment in circulating amino acid concentrations was similar with and without loxiglumide. In conclusion, CCK does not alter insulin secretion and, therefore, is not an incretin hormone in man. Blocking CCK actions on the exocrine pancreas by loxiglumide, however, can secondarily cause reductions in postprandial insulin profiles by altering insulin clearance. These changes are possibly related to reductions in circulating amino acid concentrations.

  11. Alterations in activity and energy expenditure contribute to lean phenotype in Fischer 344 rats lacking the cholecystokinin-1 receptor gene.

    PubMed

    Blevins, James E; Moralejo, Daniel H; Wolden-Hanson, Tami H; Thatcher, Brendan S; Ho, Jacqueline M; Kaiyala, Karl J; Matsumoto, Kozo

    2012-12-15

    CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r(-/-)) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r(-/-) rats. Both Cck1r(+/+) and Cck1r(-/-) rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r(-/-) rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r(-/-) rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure.

  12. Alterations in activity and energy expenditure contribute to lean phenotype in Fischer 344 rats lacking the cholecystokinin-1 receptor gene

    PubMed Central

    Blevins, James E.; Wolden-Hanson, Tami H.; Thatcher, Brendan S.; Ho, Jacqueline M.; Kaiyala, Karl J.; Matsumoto, Kozo

    2012-01-01

    CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r−/−) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r−/− rats. Both Cck1r+/+ and Cck1r−/− rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r−/− rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r−/− rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure. PMID:23115121

  13. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    PubMed Central

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID:22125513

  14. Peptide YY3–36 and 5-Hydroxytryptamine Mediate Emesis Induction by Trichothecene Deoxynivalenol (Vomitoxin)

    PubMed Central

    Pestka, James J.

    2013-01-01

    Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3–36 (PYY3–36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15–30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3–36 (30–60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DON’s emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3–36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3–36 and 5-HT play contributory roles in DON-induced emesis. PMID:23457120

  15. Gastric emptying of hexose sugars: role of osmolality, molecular structure and the CCK₁ receptor.

    PubMed

    Little, T J; Gopinath, A; Patel, E; McGlone, A; Lassman, D J; D'Amato, M; McLaughlin, J T; Thompson, D G

    2010-11-01

    It is widely reported that hexose sugars slow gastric emptying (GE) via osmoreceptor stimulation but this remains uncertain. We evaluated the effects of a panel of hexoses of differing molecular structure, assessing the effects of osmolality, intra-individual reproducibility and the role of the CCK(1) receptor, in the regulation of GE by hexoses. Thirty one healthy non-obese male and female subjects were studied in a series of protocols, using a (13) C-acetate breath test to evaluate GE of varying concentrations of glucose, galactose, fructose and tagatose, with water, NaCl and lactulose as controls. GE was further evaluated following the administration of a CCK(1) receptor antagonist. Three subjects underwent repeated studies to evaluate intra-individual reproducibility. At 250 mOsmol, a hexose-specific effect was apparent: tagatose slowed GE more potently than water, glucose and fructose (P < 0.05). Fructose (P < 0.05) also slowed GE, but with substantial inter-, but not intra-, individual differences. As osmolality increased further the hexose-specific differences were lost. At 500 mOsmol, all hexoses slowed GE compared with water (P < 0.05), whereas lactulose and saline did not. The slowing of GE by hexose sugars appeared to be CCK(1) receptor-dependent. The effects of hexose sugars on GE appear related to their molecular structure rather than osmolality per se, and are, at least in part, CCK(1) receptor-dependent. © 2010 Blackwell Publishing Ltd.

  16. Effect of a new potent CCK antagonist, lorglumide, on caerulein- and bombesin-induced pancreatic secretion and growth in the rat.

    PubMed

    Scarpignato, C; Varga, G; Dobronyi, I; Papp, M

    1989-03-01

    1. The effect of lorglumide, a new potent cholecystokinin (CCK) antagonist, on pancreatic secretion and growth induced by caerulein and bombesin was studied in the rat. 2. Pancreatic exocrine secretion was studied both in vitro (isolated and perfused pancreatic segments) and in vivo (anaesthetized animals with cannulation of the common bile duct) whereas the trophic effect was investigated after short-term (5 days) administration of the peptides and/or lorglumide. 3. Both caerulein and bombesin stimulated amylase release from in vitro pancreatic segments in a concentration-dependent manner. Although the efficacy of both peptides was virtually identical, the potency of caerulein was higher than that of bombesin. Lorglumide displaced the concentration-response curves to caerulein to the right without affecting the maximum response, suggesting a competitive antagonism. The Schild plot analysis of data gave a straight line with a slope not significantly different from unity. The calculated pA2 for lorglumide was 7.31 +/- 0.45. The antagonist, however, was completely ineffective when tested against bombesin-induced amylase release. 4. In vivo experiments confirmed results from in vitro studies since lorglumide (5 and 10 mg kg-1) significantly reduced pancreatic exocrine secretion induced by caerulein without affecting the response to bombesin. 5. Administration of either peptide increased the weight of the pancreas, the total pancreatic protein and DNA, trypsin and amylase content. Lorglumide (10 mg kg-1), administered together with caerulein, reduced the peptide-induced increase in pancreatic weight, protein and enzyme content. On the contrary, when lorglumide was given together with bombesin, all the parameters that were examined were not altered by concomitant administration of the antagonist. 6. These results have demonstrated the ability of lorglumide to antagonize the effects on the pancreas of a CCK-analogue, caerulein, and its inability to affect bombesin-induced pancreatic secretion and growth, suggesting that lorglumide is a potent and selective antagonist of CCK-receptors in the pancreas.

  17. Ghrelin suppresses cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) in the intestine, and attenuates the anorectic effects of CCK, PYY and GLP-1 in goldfish (Carassius auratus).

    PubMed

    Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Valenciano, Ana Isabel; Delgado, María Jesús; Unniappan, Suraj

    2017-07-01

    Ghrelin is an important gut-derived hormone with an appetite stimulatory role, while most of the intestinal hormones, including cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), are appetite-inhibitors. Whether these important peptides with opposing roles on food intake interact to regulate energy balance in fish is currently unknown. The aim of this study was to characterize the putative crosstalk between ghrelin and CCK, PYY and GLP-1 in goldfish (Carassius auratus). We first determined the localization of CCK, PYY and GLP-1 in relation to ghrelin and its main receptor GHS-R1a (growth hormone secretagogue 1a) in the goldfish intestine by immunohistochemistry. Colocalization of ghrelin/GHS-R1a and CCK/PYY/GLP-1 was found primarily in the luminal border of the intestinal mucosa. In an intestinal explant culture, a significant decrease in prepro-cck, prepro-pyy and proglucagon transcript levels was observed after 60min of incubation with ghrelin, which was abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6 (except for proglucagon). The protein expression of PYY and GLP-1 was also downregulated by ghrelin. Finally, intraperitoneal co-administration of CCK, PYY or GLP-1 with ghrelin results in no modification of food intake in goldfish. Overall, results of the present study show for the first time in fish that ghrelin exerts repressive effects on enteric anorexigens. It is likely that these interactions mediate the stimulatory effects of ghrelin on feeding and metabolism in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Activation of cholecystokinin neurons in the dorsal pallium of the telencephalon is indispensable for the acquisition of chick imprinting behavior.

    PubMed

    Maekawa, Fumihiko; Nakamori, Tomoharu; Uchimura, Motoaki; Fujiwara, Ken; Yada, Toshihiko; Tsukahara, Shinji; Kanamatsu, Tomoyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2007-09-01

    Chick imprinting behavior is a good model for the study of learning and memory. Imprinting object is recognized and processed in the visual wulst, and the memory is stored in the intermediate medial mesopallium in the dorsal pallium of the telencephalon. We identified chicken cholecystokinin (CCK)-expressing cells localized in these area. The number of CCK mRNA-positive cells increased in chicks underwent imprinting training, and these cells expressed nuclear Fos immunoreactivity at high frequency in these regions. Most of these CCK-positive cells were glutamatergic and negative for parvalbumin immunoreactivity. Semi-quantitative PCR analysis revealed that the CCK mRNA levels were significantly increased in the trained chicks compared with untrained chicks. In contrast, the increase in CCK- and c-Fos-double-positive cells associated with the training was not observed after closure of the critical period. These results indicate that CCK cells in the dorsal pallium are activated acutely by visual training that can elicit imprinting. In addition, the CCK receptor antagonist significantly suppressed the acquisition of memory. These results suggest that the activation of CCK cells in the visual wulst as well as in the intermediate medial mesopallium by visual stimuli is indispensable for the acquisition of visual imprinting.

  19. Influences of cholecystokinin octapeptide on phosphoinositide turnover in neonatal-rat brain cells.

    PubMed Central

    Zhang, L J; Lu, X Y; Han, J S

    1992-01-01

    Cholecystokinin octapeptide (CCK-8) has been shown to be coupled to phosphoinositide turnover in pancreatic acini as well as in a kind of neuroblastoma cell and a human embryonic cell line. Little is known, however, about its link with phosphatidylinositol breakdown in the brain. The brains (minus cerebella) from 1-2-day-old neonatal rats were enzymically dissociated into single cells. The intact cells were prelabelled by incubation with myo-[3H]inositol for 3 h, and were then stimulated with agonists in the presence of 10 mM-LiCl. Carbachol at 1 mM induced an increase in InsP3 labelling in brain cells (peak at 30 min, and then a gradual decrease), and a static accumulation of InsP with time, whereas the labelling of InsP2 remained essentially unchanged. A very similar time-response curve was obtained for 10 nM-CCK-8 in stimulating phosphoinositide turnover. The dose-response curve for incubated brain cells revealed that the formation of InsP3 increased when the concentration of CCK-8 was increased from 0.1 to 10 nM. A further increase in CCK-8 concentration to 100-1000 nM resulted in a gradual decrease in InsP3 formation. InsP and InsP2 levels stayed relatively stable. The production of InsP3 stimulated by 10 nM-CCK-8 was dose-dependently suppressed by the CCK-A antagonist Devazepide in the concentration range 1-10 nM; the effect declined when the concentration was further increased to 100-1000 nM. In contrast, the CCK-B antagonist L365,260 showed a sustained suppression of InsP3 production at concentrations above 0.1 nM, i.e. in the range 1-1000 nM. The results provide evidence that CCK-8 stimulates the turnover of phosphoinositide and increases InsP3 labelling in dissociated neonatal-rat brain cells, in which both CCK-A and CCK-B receptors seem to be involved. PMID:1323276

  20. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats.

    PubMed

    Shen, Ling; Wang, David Q-H; Lo, Chunmin C; Arnold, Myrtha; Tso, Patrick; Woods, Stephen C; Liu, Min

    2015-12-01

    Ginsenoside Rb1 (Rb1) reduces food intake in both lean and high-fat diet induced-obese rats; however, the sites and/or mediation of the eating-suppressive effect of Rb1 have not previously been identified. We hypothesized that intraperitoneally (ip) administered Rb1 exerts its anorectic action by enhancing sensitivity to satiation signals, such as cholecystokinin (CCK), and/or that it acts through vagal afferent nerves that relay the satiating signaling to the hindbrain. To test these hypotheses, we gave ip bolus doses of Rb1 (2.5-10.0mg/kg) and CCK-8 (0.125-4.0μg/kg) alone or in combination and assessed food intake in rats. Low doses of Rb1 (2.5mg/kg) or CCK-8 (0.125μg/kg) alone had no effect on food intake whereas higher doses did. When these subthreshold doses of Rb1 and CCK-8 were co-administered, the combination significantly reduced food intake relative to saline controls, and this effect was attenuated by lorglumide, a selective CCK1-receptor antagonist. Interestingly, lorglumide blocked food intake induced by an effective dose of CCK-8 alone, but not by Rb1 alone, suggesting that Rb1's anorectic effect is independent of the CCK1 receptor. To determine whether peripherally administered Rb1 suppresses feeding via abdominal vagal nerves, we evaluated the effect of ip Rb1 injection in subdiaphragmatic vagal deafferentation (SDA) and control rats. Rb1's effect on food intake was significantly attenuated in SDA rats, compared with that in SHAM controls. These data indicate that the vagal afferent system is the major pathway conveying peripherally administered Rb1's satiation signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Bovine gallbladder muscularis: Source of a myogenic receptor for cholecystokinin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schjoldager, B.; Shaw, M.J.; Powers, S.P.

    1988-03-01

    Despite being a classic target for the gastrointestinal peptide hormone, cholecystokinin (CCK), the gallbladder CCK receptor is not well characterized. Pharmacological studies of small species suggest that CCK action can be mediated by direct myogenic or by both myogenic and neurogenic receptors. To prepare for the biochemical characterization of a gallbladder CCK receptor and to define the subtype of the receptor being studied. The authors have performed autoradiographic localization and pharmacological characterization of CCK receptors on bovine gallbladder. Autoradiography demonstrated high-affinity specific CCK-binding sites only on the muscularis. CCK-8 stimulated tonic contraction of longitudinal strips of gallbladder muscularis in amore » concentration-dependent manner. Antagonism at the cholinergic receptor with 1{mu}M atropine or axonal transmission with 1{mu}M tetrodotoxin did not modify CCK-induced contraction, supporting a direct myogenic effect of this hormone. Optimal electrical field stimulation to elicit a neuronal response resulted in muscle strip relaxation, which was abolished with adrenergic blockade. Although acetylcholine administration stimulated contraction, electrical field stimulation did not, even in the presence of phentolamine, propranolol, and/or CCK. Thus, in bovine gallbladder muscularis, there is evidence for a functional CCK receptor only on smooth muscle cells. Demonstration of a single, high-affinity specific CCK-binding site on an enriched plasma membrane preparation of bovine gallbladder muscularis is consistent with this representing a myogenic CCK receptor.« less

  2. Soybean beta-conglycinin peptone suppresses food intake and gastric emptying by increasing plasma cholecystokinin levels in rats.

    PubMed

    Nishi, Takashi; Hara, Hiroshi; Tomita, Fusao

    2003-02-01

    Cholecystokinin (CCK) is an important physiologic mediator that regulates satiety and gastric emptying. We demonstrated previously that soybean peptone acts directly on rat small intestinal mucosal cells to stimulate CCK release. In the present study, we examined the effects of beta-conglycinin, a major component of soy protein, and its peptone on food intake and gastric emptying after an intraduodenal infusion of beta-conglycinin peptone in relation to CCK release and interaction with the mucosal cell membrane. Intraduodenal infusion of beta-conglycinin peptone inhibited food intake in a dose-dependent manner, but that of whole soy peptone or camostat did not. The suppression of food intake by beta-conglycinin peptone was abolished by an intravenous injection of devazepide, a selective peripheral CCK receptor antagonist. The beta-conglycinin peptone infusion strongly suppressed gastric emptying with marked increases in portal CCK levels. We also observed that the beta-conglycinin peptone dose dependently and more potently stimulated CCK release from isolated dispersed mucosal cells of the rat jejunum than did beta-conglycinin itself. This stimulation corresponded to the binding activity of the peptide or protein to solubilized components of the rat jejunum membrane as evaluated by surface plasmon biosensor. These results indicate that beta-conglycinin peptone suppresses food intake, and this effect may be due to beta-conglycinin peptone in the lumen stimulating endogenous CCK release with direct acceptance to the intestinal cells.

  3. CCK receptors-related signaling involved in nitric oxide production caused by gastrin 17 in porcine coronary endothelial cells.

    PubMed

    Grossini, Elena; Caimmi, Philippe; Molinari, Claudio; Uberti, Francesca; Mary, David; Vacca, Giovanni

    2012-03-05

    In anesthetized pigs gastrin-17 increased coronary blood flow through CCK1/CCK2 receptors and β(2)-adrenoceptors-related nitric oxide (NO) release. Since the intracellular pathway has not been investigated the purpose of this study was to examine in coronary endothelial cells the CCK1/CCK2 receptors-related signaling involved in the effects of gastrin-17 on NO release. Gastrin-17 caused a concentration-dependent increase of NO production (17.3-62.6%; p<0.05), which was augmented by CCK1/CCK2 receptors agonists (p<0.05). The effect of gastrin-17 was amplified by the adenylyl-cyclase activator and β(2)-adrenoceptors agonist (p<0.05), abolished by cAMP/PKA and β(2)-adrenoceptors and CCK1/CCK2 receptors blockers, and reduced by PLC/PKC inhibitor. Finally, Western-blot revealed the preferential involvement of PKA vs. PKC as downstream effectors of CCK1/CCK2 receptors activation leading to Akt, ERK, p38 and endothelial NOS (eNOS) phosphorylation. In conclusion, in coronary endothelial cells, gastrin-17 induced eNOS-dependent NO production through CCK1/CCK2 receptors- and β(2)-adrenoceptors-related pathway. The intracellular signaling involved a preferential PKA pathway over PKC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    PubMed

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

  5. Refinement of the conformation of a critical region of charge-charge interaction between cholecystokinin and its receptor.

    PubMed

    Ding, Xi-Qin; Pinon, Delia I; Furse, Kristina E; Lybrand, Terry P; Miller, Laurence J

    2002-05-01

    Insight into the molecular basis of cholecystokinin (CCK) binding to its receptor has come from receptor mutagenesis and photoaffinity labeling studies, with both contributing to the current hypothesis that the acidic Tyr-sulfate-27 residue within the peptide is situated adjacent to basic Arg(197) in the second loop of the receptor. Here, we refine our understanding of this region of interaction by examining a structure-activity series of these positions within both ligand and receptor and by performing three-dimensional molecular modeling of key pairs of modified ligand and receptor constructs. The important roles of Arg(197) and Tyr-sulfate-27 were supported by the marked negative impact on binding and biological response with their natural partner molecule when the receptor residue was replaced by acidic Asp or Glu and when the peptide residue was replaced by basic Arg, Lys, p-amino-Phe, p-guanidino-Phe, or p-methylamino-Phe. Complementary ligand-receptor charge-exchange experiments were unable to regain the lost function. This was supported by the molecular modeling, which demonstrated that the charge-reversed double mutants could not form a good interaction without extensive rearrangement of receptor conformation. The models further predicted that R197D and R197E mutations would lead to conformational changes in the extracellular domain, and this was experimentally supported by data showing that these mutations decreased peptide agonist and antagonist binding and increased nonpeptidyl antagonist binding. These receptor constructs also had increased susceptibility to trypsin degradation relative to the wild-type receptor. In contrast, the relatively conservative R197K mutation had modest negative impact on peptide agonist binding, again consistent with the modeling demonstration of loss of a series of stabilizing inter- and intramolecular bonds. The strong correlation between predicted and experimental results support the reported refinement in the three-dimensional structure of the CCK-occupied receptor.

  6. Novel Mechanism of Fatty Acid Sensing in Enteroendocrine Cells: Specific Structures in Oxo-Fatty Acids Produced by Gut Bacteria are Responsible for CCK Secretion in STC-1 Cells via GPR40.

    PubMed

    Hira, Tohru; Ogasawara, Shono; Yahagi, Asuka; Kamachi, Minami; Li, Jiaxin; Nishimura, Saki; Sakaino, Masayoshi; Yamashita, Takatoshi; Kishino, Shigenobu; Ogawa, Jun; Hara, Hiroshi

    2018-06-25

    The secretion of gut hormones, such as cholecystokinin (CCK) is stimulated by fatty acids. Although a chain length-dependent mechanism has been proposed, other structural relationships to releasing activity remain unclear. We aimed to elucidate specific structures in fatty acids that are responsible for their CCK-releasing activity, and related sensing mechanisms in enteroendocrine cells. We examined CCK secretory activities in a murine CCK-producing cell line STC-1 by exposing the cells to various modified fatty acids produced by gut lactic acid bacteria. The effects of fatty acids on gastric emptying rate as a CCK-mediated function were examined using acetaminophen- and phenol red-methods in rats. Out of more than thirty octadecanoic (C18)-derived fatty acids tested, five oxo-fatty acids potently stimulated CCK secretion without cytotoxic effects in STC-1 cells. Three fatty acids had a distinct specific structure containing one double-bond, whereas the other two had two double-bonds, nearby an oxo residue. CCK secretion induced by representative fatty acids (10-oxo-trans-11-18:1 and 13-oxo-cis-9,cis-15-18:2) was attenuated by a fatty acid-receptor GPR40 antagonist. Oral administration of 13-oxo-cis-9,cis-15-18:2 lowered the gastric emptying rate in rats in a dose- and structure-dependent manner. These results revealed a novel fatty acid-sensing mechanism in enteroendocrine cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study.

    PubMed

    Faridi, Mohammad Shazib; Jaiswal, Mahabir Saran Das; Goel, Sudhir K

    2015-07-01

    Gastrin and cholecystokinin (CCK) receptors are trophic for various gastrointestinal malignancies. Their role in gallbladder cancer has not been widely studied. To identify expression of CCK-A and CCK-B receptors in the tissue and blood of patients suffering from carcinoma (CA) gallbladder and gallstone disease and to compare expression of CCK A and B receptors in the gall bladder tissue and blood of healthy individuals and patients of CA gallbladder, and gallstone diseases. Forty nine subjects of both genders were recruited, comprising of 22 patients of CA gall bladder, 19 cases of cholelithiasis and, 8 normal gallbladders obtained from patients operated for trauma of the biliary system or Whipple's procedure. RNA extraction and cDNA formation for CCK-A and CCK-B receptors were carried out. Real Time PCR was performed on cDNA and threshold cycle (Ct) value of each sample was obtained and ΔCt was calculated. Chi-square test for comparing two groups and ANOVA test for comparing multiple groups were applied and if p<0.05 then Dunnett-C test was performed. Both CCK-A and CCK-B receptors were expressed irrespective of its origin in all tissues and blood samples studied; be it normal, Cholelithiasis or CA gallbladder and there was no difference among them (p>0.05). This preliminary study showed higher expression of CCK-A receptors in patients of cholelithiasis and decreased expression of CCK-A receptors in patients of CA gallbladder as compared to normal gallbladder although it did not rise to statistical significance.

  8. Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study

    PubMed Central

    Jaiswal, Mahabir Saran Das; Goel, Sudhir K.

    2015-01-01

    Background: Gastrin and cholecystokinin (CCK) receptors are trophic for various gastrointestinal malignancies. Their role in gallbladder cancer has not been widely studied. Objectives: To identify expression of CCK-A and CCK-B receptors in the tissue and blood of patients suffering from carcinoma (CA) gallbladder and gallstone disease and to compare expression of CCK A and B receptors in the gall bladder tissue and blood of healthy individuals and patients of CA gallbladder, and gallstone diseases. Materials and Methods: Forty nine subjects of both genders were recruited, comprising of 22 patients of CA gall bladder, 19 cases of cholelithiasis and, 8 normal gallbladders obtained from patients operated for trauma of the biliary system or Whipple’s procedure. RNA extraction and cDNA formation for CCK-A and CCK-B receptors were carried out. Real Time PCR was performed on cDNA and threshold cycle (Ct) value of each sample was obtained and ΔCt was calculated. Chi-square test for comparing two groups and ANOVA test for comparing multiple groups were applied and if p<0.05 then Dunnett-C test was performed. Observation and Results: Both CCK-A and CCK-B receptors were expressed irrespective of its origin in all tissues and blood samples studied; be it normal, Cholelithiasis or CA gallbladder and there was no difference among them (p>0.05). Conclusion: This preliminary study showed higher expression of CCK-A receptors in patients of cholelithiasis and decreased expression of CCK-A receptors in patients of CA gallbladder as compared to normal gallbladder although it did not rise to statistical significance. PMID:26393162

  9. Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells.

    PubMed

    Ning, Shang-lei; Zheng, Wen-shuai; Su, Jing; Liang, Nan; Li, Hui; Zhang, Dao-lai; Liu, Chun-hua; Dong, Jun-hong; Zhang, Zheng-kui; Cui, Min; Hu, Qiao-Xia; Chen, Chao-chao; Liu, Chang-hong; Wang, Chuan; Pang, Qi; Chen, Yu-xin; Yu, Xiao; Sun, Jin-peng

    2015-11-01

    Cholecystokinin (CCK) is secreted by intestinal I cells and regulates important metabolic functions. In pancreatic islets, CCK controls beta cell functions primarily through CCK1 receptors, but the signalling pathways downstream of these receptors in pancreatic beta cells are not well defined. Apoptosis in pancreatic beta cell apoptosis was evaluated using Hoechst-33342 staining, TUNEL assays and Annexin-V-FITC/PI staining. Insulin secretion and second messenger production were monitored using ELISAs. Protein and phospho-protein levels were determined by Western blotting. A glucose tolerance test was carried out to examine the functions of CCK-8s in streptozotocin-induced diabetic mice. The sulfated carboxy-terminal octapeptide CCK26-33 amide (CCK-8s) activated CCK1 receptors and induced accumulation of both IP3 and cAMP. Whereas Gq -PLC-IP3 signalling was required for the CCK-8s-induced insulin secretion under low-glucose conditions, Gs -PKA/Epac signalling contributed more strongly to the CCK-8s-mediated insulin secretion in high-glucose conditions. CCK-8s also promoted formation of the CCK1 receptor/β-arrestin-1 complex in pancreatic beta cells. Using β-arrestin-1 knockout mice, we demonstrated that β-arrestin-1 is a key mediator of both CCK-8s-mediated insulin secretion and of its the protective effect against apoptosis in pancreatic beta cells. The anti-apoptotic effects of β-arrestin-1 occurred through cytoplasmic late-phase ERK activation, which activates the 90-kDa ribosomal S6 kinase-phospho-Bcl-2-family protein pathway. Knowledge of different CCK1 receptor-activated downstream signalling pathways in the regulation of distinct functions of pancreatic beta cells could be used to identify biased CCK1 receptor ligands for the development of new anti-diabetic drugs. © 2015 The British Pharmacological Society.

  10. Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB1 Receptors: Implications for Schizophrenia

    PubMed Central

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-01-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  11. Role of CCK-A receptor for pancreatic function in mice: a study in CCK-A receptor knockout mice.

    PubMed

    Takiguchi, Soichi; Suzuki, Shinji; Sato, Yuko; Kanai, Setsuko; Miyasaka, Kyoko; Jimi, Atsuo; Shinozaki, Hirotsugu; Takata, Yutaka; Funakoshi, Akihiro; Kono, Akira; Minowa, Osamu; Kobayashi, Tomoko; Noda, Tetsuo

    2002-04-01

    The cholecystokinin (CCK) family of peptides and receptors is present throughout the brain and gastrointestinal tract. The CCK receptors can be pharmacologically subdivided into two subtypes: CCK-A and CCK-B. CCK-A receptor is enriched in the pancreas of mice. To determine pancreatic functions in a CCK-A receptor deficient mouse mutant generated by gene targeting in embryonic stem cells. The targeting vector contained lacZ and neo insertions in exon 2. To examine exocrine functions, amylase release from the dispersed acini in vitro was examined. In the in vivo study, the mixture of bile-pancreatic juice was collected, and amylase, bicarbonate, and bile acid outputs were determined after the administration of various stimulants. The cystic duct of the gallbladder and the pylorus were ligated to exclude the involvement of gallbladder contraction and gastric acid. Pancreatic enzyme content was measured, and histologic examinations by HE and lacZ staining were conducted. To examine endocrine functions, oral glucose tolerance test (2 g/kg) was determined. The body weight, pancreatic wet weight, and enzyme content in the pancreas were similar among the three genotypes. Amylase release in vivo and in vitro and bicarbonate secretion in vivo were not stimulated by CCK-8 in CCK-AR (-/-) mice, whereas the responses to other stimulants were substantial in (-/-) mice. Administration of secretin did not increase bicarbonate secretion regardless of genotype. A normal glucose tolerance was observed in (-/-) mice. Acinar cells, islets, and duct cells were stained by lacZ, and HE staining revealed no pathologic findings. The CCK-A receptor is important for pancreatic exocrine secretion, but not essential for maintaining glucose concentration and pancreatic growth in mice.

  12. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function

    PubMed Central

    Desai, Aditya J.; Dong, Maoqing; Harikumar, Kaleeckal G.

    2015-01-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. PMID:26138469

  13. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function.

    PubMed

    Desai, Aditya J; Dong, Maoqing; Harikumar, Kaleeckal G; Miller, Laurence J

    2015-09-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. Copyright © 2015 the American Physiological Society.

  14. The role of CCK2 receptors in energy homeostasis: insights from the CCK2 receptor-deficient mouse.

    PubMed

    Weiland, Tracey J; Voudouris, Nicholas J; Kent, Stephen

    2004-09-15

    The present study explored the contribution of type 2 cholecystokinin (CCK) receptors in energy regulation. A total of 78 CCK2 receptor-deficient mice and 80 wild-type controls were acclimated to a 12:12 light-dark cycle at 30 +/- 1 degrees C. Using a computer-monitored biotelemetry system, circadian patterns of body temperature, food intake, and activity were monitored for 4 days. Body weight and water consumption were manually recorded during this period. Results indicate that CCK2 receptor invalidation produces elevated body temperature during both the photophase and scotophase (by 0.38 and 0.12 degrees C, respectively), increased body weight (29.3 +/- 0.2 vs. 26.8 +/- 0.2 g) and water consumption (4.1 +/- 0.1 vs. 3.2 +/- 0.1 ml), and decreased scotophase locomotor activity (WT: 7.0 +/- 0.2 vs. KO: 6.1 +/- 0.2 counts/min). These findings suggest an important role for CCK2 receptors in processes underlying energy regulation during basal and possibly pathological states.

  15. Different effects of oral administration of synthetic trypsin inhibitor on the pancreas between cholecystokinin-A receptor gene knockout mice and wild type mice.

    PubMed

    Sato, Norikazu; Suzuki, Shinji; Kanai, Setsuko; Ohta, Minoru; Jimi, Atsuo; Noda, Tetsuo; Takiguchi, Souichi; Funakoshi, Akihiro; Miyasaka, Kyoko

    2002-07-01

    The synthetic trypsin inhibitor camostat has been used for the treatment of acute and chronic pancreatitis in Japan based on the evidences obtained from a rat experimental model. However, rats differ from other rodents and from humans in terms of lacking a gallbladder and no response of pancreatic bicarbonate secretion to cholecystokinin (CCK). In the present study, we determined whether oral administration of camostat showed a trophic effect in mice as observed in rats and whether the trophic effect, if substantial, was mediated via the CCK-A receptor, using CCK-A receptor gene targeting mice. The chow containing 0.1% camostat was fed to 8-month-old mice. Three- and seven-day treatments with camostat did not affect pancreatic wet weight in CCK-A receptor (+/-) mice. After 14-day treatment, the ratio of pancreatic wet weight/body weight was significantly lower in CCK-A receptor (-/-) than (+/+) mice. The protein and chymotrypsin contents were lower and amylase content was higher in CCK-A receptor (-/-) mice, compared to (+/+) mice. No pathological findings were observed by histological examination. Camostat has a trophic effect on the pancreas in mice and this effect is mediated via the CCK-A receptor, but is less potent than in rats.

  16. Characterization of Ile-His-Arg-Phe, a novel rice-derived vasorelaxing peptide with hypotensive and anorexigenic activities.

    PubMed

    Kontani, Noriyasu; Omae, Ryo; Kagebayashi, Tomomi; Kaneko, Kentaro; Yamada, Yuko; Mizushige, Takafumi; Kanamoto, Ryuhei; Ohinata, Kousaku

    2014-02-01

    Recently, we found that dipeptide Arg-Phe (RF) had cholecystokinin (CCK)-dependent vasorelaxing activity. The RF sequence is often observed in the primary structure of natural food proteins. In the current study, we investigated enzymatic conditions for the release of RF-related peptides from rice glutelin, a major storage protein, using gastrointestinal proteases. RF-related peptides were then characterized. It was found that RF and Ile-His-Arg-Phe (IHRF) were released in the chymotrypsin digest of the partial structure of rice glutelin. We then focused on previously unidentified IHRF, corresponding to rice glutelin(155-158). IHRF had vasorelaxing activity in the mesenteric artery of spontaneous hypertensive rats (SHRs). Orally administered IHRF lowered systolic blood pressure in SHRs. The antihypertensive activity of IHRF was more potent and long-lasting than that of RF. IHRF-induced vasorelaxing activity was not blocked by inhibitors of nitric oxide synthase and cyclooxygenase, but by an antagonist for CCK₁ receptor. IHRF also had CCK-like suppressive activities in food intake and gastrointestinal transit. IHRF increased intracellular Ca²⁺ flux and CCK release in the enteroendocrine cell STC-1. IHRF, a novel CCK-dependent vasorelaxing peptide, decreases both blood pressure and food intake in rodents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway.

    PubMed

    Wen, Di; An, Meiling; Gou, Hongyan; Liu, Xia; Liu, Li; Ma, Chunling; Cong, Bin

    2016-12-01

    As a powerful addictive psychostimulant drug, coupled with its neurotoxicity, methamphetamine (METH) abuse may lead to long-lasting abnormalities in brain structure and function. We found that pretreatment of cholecystokinin-8 (CCK-8) inhibited METH-induced brain cellular dopaminergic (DA) damage in the striatum and substantia nigra, and related behavioural deficits and hyperthermia. However, the mechanism of CCK-8 action on METH-induced toxicity is not clear. The aim of this study was to explore whether the possible protective effect of CCK-8 on METH-induced neurotoxicity involved anti-oxidative stress mechanisms. The subtypes of CCK receptors mediating the regulatory action of CCK-8 were also investigated. The present results revealed that CCK-8 dose-dependently inhibited METH-induced cytotoxic effect by activating the CCK2 receptor subtype in PC12 cells and CCK2 receptor stable transfected-HEK293 cells. Pre-treatment of CCK-8 before METH stimulation significantly attenuated the generation of reactive oxygen species and NADPH oxidase activation in PC12 cells. In conclusion, our study demonstrated a protective effect of CCK-8 on METH-induced neurotoxicity in vitro and suggested that a possible mechanism of this action was dependent on the activation of the CCK2 receptor to reduce the neurotoxicity and oxidative stress induced by METH stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of the lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) on the alpha-amylase secretion of rat pancreas in vitro and in vivo.

    PubMed

    Mikkat, U; Damm, I; Schröder, G; Schmidt, K; Wirth, C; Weber, H; Jonas, L

    1998-05-01

    Lectins are able to bind to cholecystokinin (CCK) receptors and other glycosylated membrane proteins. The lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) are used for affinity chromatography to isolate the highly glycosylated CCK-A receptor of pancreatic acinar cells. According to the working hypothesis that lectin binding to the CCK receptor should alter the ligand-receptor interaction, the effect of WGA and UEA-I on CCK-8-induced enzyme secretion was studied on isolated rat pancreatic acini in vitro. In vitro both lectins showed a dosage-dependent inhibition of CCK-8-induced alpha-amylase secretion of acini over 60 min. WGA showed a strong inhibitory effect on amylase secretion, approximately 40%, in vitro. UEA-I caused a smaller, but significant decrease, approximately 20%, in enzyme secretion of isolated acini. Additionally, both lectins inhibited cerulein/secretin- or cerulein-induced pancreatic secretion of rats in vivo, but not after secretin alone. The results are discussed with respect to a possible influence of both lectins on the interaction of CCK or cerulein with the CCK-A receptor.

  19. Effects of cholesterol on CCK-1 receptors and caveolin-3 proteins recycling in human gallbladder muscle

    PubMed Central

    Cong, P.; Pricolo, V.; Biancani, P.

    2010-01-01

    The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors. Muscle cells from human and guinea pig GBs were studied. Antibodies were used to examine CCK-1R, antigens of early and recycling endosomes, and total (CAV-3) and phosphorylated caveolar-3 protein (pCAV-3) by Western blots. Contraction was measured in muscle cells transfected with CAV3 mRNA or clathrin heavy-chain small-interfering RNA (siRNA). CCK-1R returned back to the bulk plasma membrane (PM) 30 min after CCK-8 recycled by endosomes, peaking at 5 min in early endosomes and at 20 min in recycling endosomes. Pretreatment with cholesterol-rich liposomes inhibited the transfer of CCK-1R and of CAV-3 in the endosomes by blocking CAV-3 phosphorylation. 4-Amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (inhibitor of tyrosine kinase) reproduced these effects by blocking pCAV-3 formation, increasing CAV-3 and CCK-1R sequestration in the caveolae and impairing CCK-8-induced contraction. CAV-3 siRNA reduced CAV-3 protein expression, decreased CCK-8-induced contraction, and accumulated CCK-1R in the caveolae. Abnormal concentrations of caveolar cholesterol had no effect on met-enkephalin that stimulates a δ-opioid receptor that internalizes through clathrin. We found that impaired muscle contraction in GBs with cholesterol stones is due to high caveolar levels of cholesterol that inhibits pCAV-3 generation. Caveolar cholesterol increases the caveolar sequestration of CAV-3 and CCK-1R caused by their reduced recycling to the PM. PMID:20558763

  20. Cholecystokinin actions in the parabrachial nucleus: effects on thirst and salt appetite

    NASA Technical Reports Server (NTRS)

    Menani, J. V.; Johnson, A. K.

    1998-01-01

    The present study investigated the effects of bilateral injections of the nonselective CCK receptor antagonist proglumide or CCK-8 into the lateral parabrachial nuclei (LPBN) on the ingestion of 0.3 M NaCl and water induced by intracerebroventricular injection of ANG II or by a combined treatment with subcutaneous furosemide (Furo) + captopril (Cap). Compared with the injection of saline (vehicle), bilateral LPBN injections of proglumide (50 micrograms . 200 nl-1 . site-1) increased the intake of 0.3 M NaCl induced by intracerebroventricular ANG II (50 ng/1 microliter). Bilateral injections of proglumide into the LPBN also increased ANG II-induced water intake when NaCl was simultaneously available, but not when only water was present. Similarly, the ingestion of 0.3 M NaCl and water induced by the treatment with Furo (10 mg/kg) + Cap (5 mg/kg) was increased by bilateral LPBN proglumide pretreatment. Bilateral CCK-8 (0.5 microgram . 200 nl-1 . site-1) injections into the LPBN did not change Furo + Cap-induced 0.3 M NaCl intake but reduced water consumption. When only water was available after intracerebroventricular ANG II, bilateral LPBN injections of proglumide or CCK-8 had no effect or significantly reduced water intake compared with LPBN vehicle-treated rats. Taken together, these results suggest that CCK actions in the LPBN play a modulatory role on the control of NaCl and water intake induced by experimental treatments that induce hypovolemia and/or hypotension or that mimic those states.

  1. Germline Mutation of the CCK Receptor: A Novel Biomarker for Pancreas Cancer.

    PubMed

    Alsubai, Jelal; Matters, Gail L; McGovern, Christopher O; Liao, Jiangang; Gilius, Evan L; Smith, Jill P

    2016-01-07

    Today, genetic biomarkers have been demonstrated to play an important role in identifying at-risk subjects for familial or inherited cancers. We have identified a single-nucleotide polymorphism (SNP) that results in missplicing of the cholecystokinin (CCK) receptor gene and expressing a larger mutated receptor in pancreatic cancer. The purpose of this study was to evaluate the significance and specificity of this SNP as a potential biomarker in patients with pancreatic cancer compared with other gastrointestinal (GI) cancers that also have CCK receptors. DNA was isolated and genotyped for the CCK receptor SNP from frozen tumor tissue from banked specimens of patients with pancreas, gastric, or colon cancer and from human cancer cell lines. Genotype and allelic frequencies were compared between the cancer cohort and two normal control databases using Fisher's exact test and odds ratio (OR). The Kaplan-Meier method was used to estimate the survival for patients with the CCK-B receptor SNP compared with those with the wild-type genotype. Immunohistochemical staining of cancer cells was done to detect the mutated receptor. Colon and gastric cancer patients had similar genotype frequencies for the CCK receptor SNP as that reported in the normal population. In contrast, the prevalence of the SNP in subjects with pancreatic cancer was twice that of controls and other GI cancers. Survival was adversely affected by the presence of the SNP only in those with pancreatic cancer. Immunoreactivity for the mutated receptor was positive in pancreatic cancer tissues with the SNP but absent in other GI cancers. A SNP of the CCK receptor is significantly increased in patients with pancreatic cancer but not in those with other GI malignancies. Therefore, this SNP may be a potential biomarker for pancreatic cancer.

  2. Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis

    PubMed Central

    Fino, Kristin K.; Matters, Gail L.; McGovern, Christopher O.; Gilius, Evan L.

    2012-01-01

    Gastrin stimulates the growth of pancreatic cancer cells through the activation of the cholecystokinin-B receptor (CCK-BR), which has been found to be overexpressed in pancreatic cancer. In this study, we proposed that the CCK-BR drives growth of pancreatic cancer; hence, interruption of CCK-BR activity could potentially be an ideal target for cancer therapeutics. The effect of CCK-BR downregulation in the human pancreatic adenocarcinoma cells was examined by utilizing specific CCK-BR-targeted RNA interference reagents. The CCK-BR receptor expression was both transiently and stably downregulated by transfection with selective CCK-BR small-interfering RNA or short-hairpin RNA, respectively, and the effects on cell growth and apoptosis were assessed. CCK-BR downregulation resulted in reduced cancer cell proliferation, decreased DNA synthesis, and cell cycle arrest as demonstrated by an inhibition of G1 to S phase progression. Furthermore, CCK-BR downregulation increased caspase-3 activity, TUNEL-positive cells, and decreased X-linked inhibitor of apoptosis protein expression, suggesting apoptotic activity. Pancreatic cancer cell mobility was decreased when the CCK-BR was downregulated, as assessed by a migration assay. These results show the importance of the CCK-BR in regulation of growth and apoptosis in pancreatic cancer. Strategies to decrease the CCK-BR expression and activity may be beneficial for the development of new methods to improve the treatment for patients with pancreatic cancer. PMID:22442157

  3. Cholecystokinin 1 Receptor - A Unique G Protein-Coupled Receptor Activated by Singlet Oxygen (GPCR-ABSO).

    PubMed

    Jiang, Hong Ning; Li, Yuan; Jiang, Wen Yi; Cui, Zong Jie

    2018-01-01

    Plasma membrane-delimited generation of singlet oxygen by photodynamic action with photosensitizer sulfonated aluminum phthalocyanine (SALPC) activates cholecystokinin 1 receptor (CCK1R) in pancreatic acini. Whether CCK1R retains such photooxidative singlet oxygen activation properties in other environments is not known. Genetically encoded protein photosensitizers KillerRed or mini singlet oxygen generator (miniSOG) were expressed in pancreatic acinar tumor cell line AR4-2J, CCK1R, KillerRed or miniSOG were expressed in HEK293 or CHO-K1 cells. Cold light irradiation (87 mW⋅cm -2 ) was applied to photosensitizer-expressing cells to examine photodynamic activation of CCK1R by Fura-2 fluorescent calcium imaging. When CCK1R was transduced into HEK293 cells which lack endogenous CCK1R, photodynamic action with SALPC was found to activate CCK1R in CCK1R-HEK293 cells. When KillerRed or miniSOG were transduced into AR4-2J which expresses endogenous CCK1R, KillerRed or miniSOG photodynamic action at the plasma membrane also activated CCK1R. When fused KillerRed-CCK1R was transduced into CHO-K1 cells, light irradiation activated the fused CCK1R leading to calcium oscillations. Therefore KillerRed either expressed independently, or fused with CCK1R can both activate CCK1R photodynamically. It is concluded that photodynamic singlet oxygen activation is an intrinsic property of CCK1R, independent of photosensitizer used, or CCK1R-expressing cell types. Photodynamic singlet oxygen CCK1R activation after transduction of genetically encoded photosensitizer in situ may provide a convenient way to verify intrinsic physiological functions of CCK1R in multiple CCK1R-expressing cells and tissues, or to actuate CCK1R function in CCK1R-expressing and non-expressing cell types after transduction with fused KillerRed-CCK1R.

  4. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    PubMed

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  5. Electroacupuncture modulation of reflex hypertension in rats: role of cholecystokinin octapeptide

    PubMed Central

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Longhurst, John C.

    2013-01-01

    Acupuncture or electroacupuncture (EA) potentially offers a nonpharmacological approach to reduce high blood pressure (BP). However, ∼70% of the patients and animal subjects respond to EA, while 30% do not. EA acts, in part, through an opioid mechanism in the rostral ventrolateral medulla (rVLM) to inhibit sympathoexcitatory reflexes induced by gastric distention. CCK-8 opposes the action of opioids during analgesia. Therefore, we hypothesized that CCK-8 in the rVLM antagonizes EA modulation of sympathoexcitatory cardiovascular reflex responses. Male rats anesthetized with ketamine and α-chloralose subjected to repeated gastric distension every 10 min were examined for their responsiveness to EA (2 Hz, 0.5 ms, 1–4 mA) at P5-P6 acupoints overlying median nerve. Repeated gastric distension every 10 min evoked consistent sympathoexcitatory responses. EA at P5-P6 modulated gastric distension-induced responses. Microinjection of CCK-8 in the rVLM reversed the EA effect in seven responders. The CCK1 receptor antagonist devazepide microinjected into the rVLM converted six nonresponders to responders by lowering the reflex response from 21 ± 2.2 to 10 ± 2.9 mmHg (first vs. second application of EA). The EA modulatory action in rats converted to responders with devazepide was reversed with rVLM microinjection of naloxone (n = 6). Microinjection of devazepide in the absence of a second application of EA did not influence the primary pressor reflexes of nonresponders. These data suggest that CCK-8 antagonizes EA modulation of sympathoexcitatory cardiovascular responses through an opioid mechanism and that inhibition of CCK-8 can convert animals that initially are unresponsive to EA to become responsive. PMID:23785073

  6. Cholecystokinin octapeptide analogues stable to brain proteolysis.

    PubMed

    Knight, M; Barone, P; Tamminga, C A; Steardo, L; Chase, T N

    1985-01-01

    Based on recent findings identifying the initial degradative cleavage of CCK-8 at the Met3-Gly4 bond by a metalloendopeptidase, two analogues of CCK-8 with D-Ala and D-Trp substitutions at the Gly4 position were synthesized as stable analogues. Their stability to proteolysis by brain membranes and their binding potency at central CCK receptors were quantified. Both peptides are stable to degradation by peptidases in cortical synaptic membrane preparations. The analogues are nearly equipotent to CCK-8 in their affinities for inhibition of 125I-CCK-33 binding to guinea pig cortical membranes. L-Ala and L-Trp substituted peptides were synthesized for comparison. Both these peptides are degraded by synaptic membranes and the L-Trp substituted peptide possesses a greatly reduced affinity for central CCK receptors. Therefore, the structure of CCK due to the D conformation of Gly is more capable of interacting with brain CCK receptors. Further conformational analysis will establish whether the stabilized structure is a beta-bend or a beta-turn. Since these peptides are highly potent and stable to brain proteolysis they may be useful as stable CCK analogues for in vivo application.

  7. Interaction of serotonin and cholecystokinin in the lateral parabrachial nucleus to control sodium intake.

    PubMed

    Fratucci De Gobbi, J I; De Luca, L A; Johnson, A K; Menani, J V

    2001-05-01

    Serotonin [5-hydroxytryptamine (5-HT)] and CCK injected into the lateral parabrachial nucleus (LPBN) inhibit NaCl and water intake. In this study, we investigated interactions between 5-HT and CCK into the LPBN to control water and NaCl intake. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were treated with furosemide + captopril to induce water and NaCl intake. Bilateral LPBN injections of high doses of the 5-HT antagonist methysergide (4 microg) or the CCK antagonist proglumide (50 microg), alone or combined, produced similar increases in water and 1.8% NaCl intake. Low doses of methysergide (0.5 microg) + proglumide (20 microg) produced greater increases in NaCl intake than when they were injected alone. The 5-HT(2a/2c) agonist 2,5-dimetoxy-4-iodoamphetamine hydrobromide (DOI; 5 microg) into the LPBN reduced water and NaCl intake. After proglumide (50 microg) + DOI treatment, the intake was not different from vehicle treatment. CCK-8 (1 microg) alone produced no effect. CCK-8 combined with methysergide (4 microg) reduced the effect of methysergide on NaCl intake. The data suggest that functional interactions between 5-HT and CCK in the LPBN may be important for exerting inhibitory control of NaCl intake.

  8. ACE-like hydrolysis of gastrin analogs and CCK-8 by fundic mucosal cells of different species with release of the amidated C-terminal dipeptide.

    PubMed

    Dubreuil, P; Fulcrand, P; Rodriguez, M; Laur, J; Bali, J P; Martinez, J

    1990-06-19

    Various gastrin analogues and CCK-8 (Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2) are hydrolyzed in vitro by angiotensin-converting enzyme (ACE), the main and initial cleavage occurring at the Met-Asp (or Leu-Asp) bond, releasing the C-terminal dipeptide amide Asp-Phe-NH2. Tetragastrin analogues (e.g., Boc-Trp-Leu-Asp-Phe-NH2) are degraded by a vesicular membrane fraction from rat gastric mucosa, yielding the C-terminal dipeptide Asp-Phe-NH2. We report here on the degradation of gastrin analogues and CCK-8 by a gastric mucosal cell preparation containing specific gastrin receptors. We have shown that gastrin analogues were specifically degraded by gastric mucosal cells from different species (e.g., rabbit and dog) at 37 degrees C (pH 7.4), releasing the C-terminal dipeptide Asp-Phe-NH2, similarly to ACE. This cleavage was found to be temperature and pH sensitive, and was inhibited by metalloproteinase inhibitors and by captopril, strongly suggesting that this enzymatic system closely resembles ACE. We have also demonstrated that a close correlation seems to exist between the apparent affinity of the gastrin analogues for gastrin receptors on gastric mucosal cells, and their ability of being hydrolyzed by this cell preparation. Moreover, all gastrin analogues which have been demonstrated to act as gastrin antagonists remained unaffected in the incubation conditions.

  9. Products of cholecystokinin (CCK)-octapeptide proteolysis interact with central CCK receptors.

    PubMed

    Steardo, L; Knight, M; Tamminga, C A; Chase, T N

    1985-03-15

    Peptidases present in central nervous system (CNS) synaptic membranes, hydrolyze the neuroactive peptide cholecystokinin-octapeptide (CCK-8; Asp-Tyr-SO3H-Met-Gly-Trp-Met-Asp-Phe-NH2). In order to determine the pathway of degradation, synthetic CCK-8 was incubated at 37 degrees C with purified synaptic membranes; at various intervals reaction samples were removed from the reaction mixture and analysed by high-performance liquid chromatography to identify and quantify the peptide fragments. The results indicate an initial endopeptidase cleavage at the Met-Gly bond producing CCK-5 (Gly-Trp-Met-Asp-Phe-NH2). The carboxyl-terminal pentapeptide is further proteolysed to CCK-4 (Trp-Met-Asp-Phe-NH2) by a puromycin-sensitive aminopeptidase and to CCK-3 (Met-Asp-Phe-NH2) and Gly-Trp by an endopeptidase action. CCK-3 and CCK-2 appear to be relatively stable end-products. Moreover, these proteolytic fragments are shown to bind to the CCK receptor in brain with varying potencies.

  10. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex

    PubMed Central

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-01-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex. PMID:24343575

  11. New advances in cell physiology and pathophysiology of the exocrine pancreas.

    PubMed

    Mössner, Joachim

    2010-01-01

    This review provides some aspects on the physiology of stimulation and inhibition of pancreatic digestive enzyme secretion and the pathophysiology of pancreatic acinar cell function leading to pancreatitis. Cholecystokinin (CCK) stimulates both directly via CCK-A receptors on acinar cells and indirectly via CCK-B receptors on nerves, followed by acetylcholine release, pancreatic enzyme secretion. It is still not known whether CCK-A receptors exist in human acinar cells, in contrast to acinar cells of rodents where CCK-A receptors have been well described. CCK has numerous actions both in the periphery and in the central nervous systems. CCK inhibits gastric motility and regulates satiety. Another major function of CCK is stimulation of gallbladder contraction. This function enables that bile acids act simultaneously with pancreatic lipolytic enzymes. Secretin is a major stimulator of bicarbonate secretion. Trypsinogen is activated by the gut mucosal enzyme enterokinase. The other pancreatic proenzymes are activated by trypsin. Termination of enzyme secretion may be regulated by negative feedback mechanisms via destruction of CCK-releasing peptides by trypsin. Furthermore, the ileum may act as a brake by release of inhibitory hormones such as PYY and somatostatin. In the pathophysiology of acute pancreatitis, fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen is regarded as an initiation step. This activation of trypsinogen may be caused by the lysosomal enzyme cathepsin B. However, autoactivation of trypsinogen itself may be a possibility in pathogenesis. Autoactivation is enhanced in certain mutations of trypsinogen. Furthermore, an imbalance of protease inhibitors and active proteases may be involved. The role of pancreatic lipolytic enzymes, the role of bicarbonate secretion, and toxic Ca(2+) signals by excessive liberation from the endoplasmic reticulum have to be discussed in the pathogenesis of acute pancreatitis. Copyright © 2011 S. Karger AG, Basel.

  12. In vivo and in vitro characterization of CCK8 bearing a histidine-based chelator labeled with 99mTc-tricarbonyl.

    PubMed

    D'Andrea, Luca D; Testa, Irma; Panico, Mariarosaria; Di Stasi, Rossella; Caracò, Corradina; Tarallo, Laura; Arra, Claudio; Barbieri, Antonio; Romanelli, Alessandra; Aloj, Luigi

    2008-01-01

    The development of receptor targeting radiolabeled ligands has gained much interest in recent years for diagnostic and therapeutic applications in nuclear medicine. Cholecystokinin (CCK) receptors have been shown to be overexpressed in a subset of neuroendocrine and other tumors. We are evaluating binding and biodistribution properties of a CCK8 peptide derivative labeled with (99m)Tc(I)-tricarbonyl. The CCK8 peptide was modified at its N-terminus by adding to its N-terminus two lysine-histidine modules (KH), where histidine is coupled to the side chain of the lysine ((KH)(2)-CCK8). (99m)Tc(I)-tricarbonyl was generated with the IsoLinktrade mark kit. A431 cells stably transfected with a cDNA encoding for the human CCK2 receptor were utilized to determine binding affinity, internalization, and retention of the labeled peptide, in comparison with wild-type A431 cells. A nude mouse tumor model was obtained by generating A431-CCK2R and A431-control tumors in opposite flanks of the animals. High specific activity labeling with (99m)Tc was achieved. In A431-CCK2R cells, specific saturable binding was observed as well as evident internalization of the radiolabeled peptide after binding. Biodistribution experiments showed rapid, specific localization of (KH)(2)-CCK8 on A431-CCK2R xenografts compared with control tumors, although absolute uptake values were not markedly higher compared with background activity. Clearance of unbound radioactivity was both urinary and hepatobiliary. In imaging experiments, while targeting to CCK2R positive tumors could be appreciated, there was poor contrast between target and nontarget areas. (KH)(2)-CCK8 shows adequate in vitro and in vivo properties for CCK2R targeting although improvement of biodistribution warrant further development. (c) 2008 Wiley Periodicals, Inc.

  13. Evidence for a regulatory loop between cholecystokinin (CCK) and tryptic enzyme activity in Atlantic cod larvae (Gadus morhua).

    PubMed

    Tillner, Robert; Rønnestad, Ivar; Harboe, Torstein; Ueberschär, Bernd

    2013-11-01

    In order to maximize protein digestion, the release of enzymes into the gut lumen is closely controlled by a regulatory loop. Cholecystokinin (CCK) is among the enteric hormones that play a key role in the control of digestive enzyme secretion, but its role in first-feeding larvae is still unclear and may differ between species. However, in all marine fish larvae that have not developed a stomach by first-feeding, trypsin is the most important proteolytic enzyme. In order to examine the regulation and feedback mechanisms in the gut of larval cod, we therefore studied the interactions between cholecystokinin and tryptic enzyme activity following the administration of solutions containing test substances directly into the gut. We tube-fed a single dose of physiological saline solution containing either CCK, CCK antagonist, trypsin inhibitor, phytohemagglutinin (PHA; a possible trigger for the digestive response) or physiological saline alone, while a further control group was left untreated. We then followed the response in CCK and tryptic enzyme activity for 0.5-8h after the administration. We performed the experiment on larvae at 26day post first-feeding, which is before the stomach has evolved and the size of the larvae allows easier handling. Individual larvae were analyzed for CCK and tryptic enzyme activity using radioimmunoassay and fluorimetric techniques respectively. Both factors varied over time in the untreated control group, possibly due to an endogenous daily rhythm. The higher CCK levels at 4h and 8h in the saline-injected group may be caused by reflexes initiated by distension of the gut. An increase in tryptic enzyme activity after injection of CCK supports the hypothesis that this hormone plays a part in the release of pancreatic enzymes in larval cod at this developmental stage. However, administration of a CCK antagonist and a trypsin inhibitor did not reveal conclusive results, probably due to the relatively low concentrations used. The response in tryptic activity in the PHA group was similar to the administration of CCK, pointing towards a stimulatory effect of PHA on the proteolytic enzyme capacity of cod larvae. © 2013.

  14. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to l-phenylalanine in acutely isolated intestinal I cells

    PubMed Central

    Liou, Alice P.; Sei, Yoshitatsu; Zhao, Xilin; Feng, Jianying; Lu, Xinping; Thomas, Craig; Pechhold, Susanne; Raybould, Helen E.

    2011-01-01

    The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an l-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of l-phenylalanine (l-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for l-Phe over d-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to l-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of l-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca2+, evoked an unexpected 20–30% decrease in CCK secretion compared with basal secretion in CaSR−/− CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to l-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR. PMID:21252045

  15. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    PubMed Central

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological techniques, we show that ghrelin hyperpolarizes neurons and inhibits currents evoked by leptin and CCK-8. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition. The inhibitory actions of ghrelin were also abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. PMID:26174421

  16. Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention.

    PubMed

    Bowers, Mallory E; Ressler, Kerry J

    2015-02-01

    Post-traumatic stress disorder (PTSD) is thought to develop, in part, from improper inhibition of fear. Accordingly, one of the most effective treatment strategies for PTSD is exposure-based psychotherapy. Ideally, neuroscience would inform adjunct therapies that target the neurotransmitter systems involved in extinction processes. Separate studies have implicated the cholecystokinin (CCK) and endocannabinoid systems in fear; however, there is a high degree of anatomical colocalization between the cannabinoid 1 receptor (Cnr1) and CCK in the basolateral amygdala (BLA), a brain region critical for emotion regulation. Although most research has focused on GABA and GABAergic plasticity as the mechanism by which Cnr1 mediates fear inhibition, we hypothesize that a functional interaction between Cnr1 and CCKB receptor (CCKBR) is critical for fear extinction processes. In this study, systemic pharmacological manipulation of the cannabinoid system modulated cued fear expression in C57BL/6J mice after consolidation of auditory fear conditioning. Knockout of the CCKBR, however, had no effect on fear- or anxiety-like behaviors. Nonetheless, administration of a Cnr1 antagonist increased freezing behavior during a cued fear expression test in wild-type subjects, but had no effect on freezing behavior in CCKBR knockout littermates. In addition, we found that Cnr1-positive fibers form perisomatic clusters around CCKBR-positive cell bodies in the BLA. These CCKBR-positive cells comprise a molecularly heterogenous population of excitatory and inhibitory neurons. These findings provide novel evidence that Cnr1 contributes to cued fear expression via an interaction with the CCK system. Dysfunctional Cnr1-CCKBR interactions might contribute to the etiology of, or result from, fear-related psychiatric disease.

  17. Regulation of muscarinic acetylcholine receptors in cultured guinea pig pancreatic acini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hootman, S.R.; Brown, M.E.; Williams, J.A.

    1986-07-01

    Regulation of muscarinic receptors in cultured guinea pig pancreatic acini was investigated by assessing the effects of cholinergic agonists on binding of (N-methyl-TH)scopolamine ((TH)NMS) and on amylase release. Freshly dispersed acini bound (TH)NMS with a K/sub d/ of 74 pM and a maximal binding level (B/sub max/) of 908 fmol/mg DNA. Carbachol (CCh) stimulated amylase secretion and inhibited (TH)NMS binding. Incubation of acini for 30 min with 0.1 mM CCh decreased the subsequent efficacy of CCh in stimulating amylase release by threefold but had no effect on its potency. In contrast, amylase release in response to cholecystokinin octapeptide (CCK-8) wasmore » not altered by CCh preincubation. (TH)NMS binding to acini was decreased only 15-20% after 30-min incubation with CCh. However, culture of acini with 0.1 mM CCh decreased (TH)NMS binding by 50% at 3-4 h and by 85-90% at 24 h. This decrease was attributable primarily to a reduction in B/sub max/ (TH)NMS binding also was decreased to a similar extent by the cholinergic agonists bethanechol and methacholine but not by other secretagogues. The decrease in antagonist binding induced by CCh was dose dependent, with the IC50, 5.8 M, approximating the EC50 for amylase release, 4.3 M. Cultured of acini for 24 h with CCh abolished subsequent amylase release in response to CCh but not to CCK-8. The results indicate that muscarinic receptor turnover in the pancreatic acinus is regulated by receptor activation and that both a decease in receptor numbers and sensitivity to agonists follows prolonged cholinergic agonist exposure.« less

  18. Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells.

    PubMed Central

    Gardner, J D; Conlon, T P; Kleveman, H L; Adams, T D; Ondetti, M A

    1975-01-01

    COOH-terminal octapeptide of cholecystokinin (CCK-octapeptide) and the cholinergic agent carbamylcholine each produced a fourfold stimulation of calcium outflux in guinea pig isolated pancreatic acinar cells. Neither agent altered calcium influx. Stimulation of calcium outflux was rapid and specific, was abolished by reducing the incubation temperature to 4 degrees C, and was a saturable function of the secretagogue concentration. The concentrations of CCK-octapeptide and carbamylcholine that produced half-maximal stimulation of calcium outflux were 3.1 x 10(-10) M and 4.9 x 10(-5) M, respectively. The cholinergic antagonist antropine competitively inhibited carbamylcholine stimulation of calcium outflux but did not alter stimulation produced by CCK-octapeptide. Stimulation of calcium outflux by maximal concentrations of carbamycholine plus CCK-octapeptide was the same as that produced by a maximal concentration of either agent alone.Calcium outflux became refractory to stimulation by secretagogues, and incubation with either CCK-ostapeptide or carbamylcholine produced a refractoriness to both agents. The relative potencies with CCK and its related fragments stimulated calcium outflux were CCK-octapeptide greater than heptapeptide greater than CCK greater than hexapeptide = gastrin. Secretin, glucagon, and vasoactive intestinal peptide, at concentrations as high as 10(-5) M, failed to alter calcium outflux and did not affect stimulation by CCK-octapeptide or by carbamycholine. Images PMID:1150877

  19. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats.

    PubMed

    Fujitani, Mina; Mizushige, Takafumi; Bhattarai, Keshab; Iwahara, Asami; Aida, Ryojiro; Kishida, Taro

    2015-01-01

    We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.

  20. Eradication of Helicobacter pylori restores the inhibitory effect of cholecystokinin on postprandial gastrin release in duodenal ulcer patients.

    PubMed Central

    Konturek, J W; Gillessen, A; Konturek, S J; Domschke, W

    1995-01-01

    Helicobacter pylori infection may be associated with duodenal ulcer (DU) and accompanied by enhanced gastrin release but the mechanism of this H pylori related hypergastrinaemia in DU patients is unclear. Cholecystokinin (CCK) has been implicated in the feedback control of gastrin release and gastric acid secretion in healthy subjects. This study therefore investigated if CCK participates in the impairment of postprandial gastrin release and gastric secretion in six DU patients. Tests were undertaken with and without elimination of endogenous CCK by loxiglumide, a selective CCK-A receptors antagonist, before and after eradication of H pylori with triple therapy (omeprazole, amoxicyllin, bismuth). In H pylori positive DU patients, the post-prandial decline in pH (with median pH 3.5) was accompanied by a pronounced increment in plasma gastrin but the administration of loxiglumide did not affect significantly this postprandial rise in plasma gastrin and gastric pH profile. After eradication of H pylori, the plasma gastrin concentration was reduced while the median postprandial pH was significantly increased (median pH 4.3). The administration of loxiglumide resulted in significantly greater increase in postprandial plasma gastrin and greater decrease in pH (median pH 3.1) in these patients. This study shows that (a) infection with H pylori is accompanied by an enhanced gastrin release and gastric acidity in DU patients, (b) the failure of loxiglumide to affect plasma gastrin or gastric acid secretion in H pylori infected DU patients could be attributed, at least in part, to the failure of endogenous CCK to control gastrin release and gastric secretion by releasing somatostatin, and (c) the test with loxiglumide may be useful in the identification of patients with impaired feedback control of gastrin release and gastric secretion resulting from infection with H pylori. PMID:7489932

  1. The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release.

    PubMed

    Seillier, Alexandre; Giuffrida, Andrea

    2018-03-01

    Experimental evidence suggests that the transport of endocannabinoids might work bi-directionally. Accordingly, it is possible that pharmacological blockade of the latter affects not only the re-uptake, but also the release of endocannabinoids, thus preventing them from stimulating CB 1 receptors. We used biochemical, pharmacological, and behavioral approaches to investigate the effects of the transporter inhibitor OMDM-2 on social interaction, a behavioral assay that requires activation of CB 1 receptors. The underlying mechanisms of OMDM-2 were compared with those of the Fatty Acid Amide Hydrolase (FAAH) inhibitor URB597. Systemic administration of OMDM-2 reduced social interaction, but in contrast to URB597-induced social deficit, this effect was not reversed by the TRPV1 antagonist capsazepine. The CB 1 antagonist AM251, which did not affect URB597-induced social withdrawal, exacerbated OMDM-2 effect. In addition, the potent CB 1 agonist CP55,940 reversed OMDM-2-, but not URB597-, induced social withdrawal. Blockade of CB 1 receptor by AM251 reduced social interaction and the cholecystokinin CCK2 antagonist LY225910 reversed this effect. Similarly, OMDM-2-induced social withdrawal was reversed by LY225910, whereas URB597 effect was not. Elevation of endocannabinoid levels by URB597 or JZL184, an inhibitor of 2-AG degradation, failed to reverse OMDM-2-induced social withdrawal, and did not show additive effects on cannabinoid measurements when co-administered with OMDM-2. Taken together, these findings indicate that OMDM-2 impaired social interaction in a manner that is consistent with reduced activation of presynaptic CB 1 receptors. As cannabinoid reuptake inhibitors may impair endocannabinoid release, caution should be taken when using these drugs to enhance endocannabinoid tone in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cell-specific targeting by heterobivalent ligands.

    PubMed

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  3. Cell-Specific Targeting by Heterobivalent Ligands

    PubMed Central

    Josan, Jatinder S.; Handl, Heather L.; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M.; Vagner, Josef; Mash, Eugene A.; Hruby, Victor J.; Gillies, Robert J.

    2012-01-01

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach—to specifically target combinations of cell-surface receptors using heteromultivalent ligands (“receptor combination approach”). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle4, DPhe7]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20–50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH2. Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging. PMID:21639139

  4. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    PubMed

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK. Copyright © 2015 the authors 0270-6474/15/3513160-11$15.00/0.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T.; Adachi, H.; Noguchi, M.

    The authors have examined the effect of carbamylcholine on the binding of cholecystokinin (CCK) to dispersed acini from rat pancreas. The CCK receptor on pancreatic acini possesses two classes of binding sites. Simultaneous addition of carbamylcholine inhibited binding of CCK binding sites. Atropine prevented the inhibitory effect of carbamylcholine, whereas calcium ionophore A23187 did not alter binding of CCK. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited binding of CCK in the same manner as carbamylcholine. Inhibition by carbamylcholine was reversible and the recovery was time dependent. By contrast, inhibition of binding of CCK by TPA did not reverse after a 60-min incubation without themore » agent. These findings, at least in part, account for the inhibition of the CCK-induced stimulation of amylase secretion by carbamylcholine. The action of TPA on binding of CCK suggests the possible involvement of the activation of protein kinase C in the inhibition of binding.« less

  6. Molecular Mechanisms Underlying Individual Differences in Response to Stress in a Previously Validated Animal Model of PTSD

    DTIC Science & Technology

    2009-09-01

    al., 1996; Cohen, Kaplan & Kotler , 1999; Cohen & Zohar, 2004; Cohen, Zohar and Matar, 2003; Cohen et al., 2005; Cohen et al. 2004), the proportion...2), 245-253. Cohen, H., Friedberg, S., Michael, M., Kotler , M., & Zeev, K. (1996). Interaction of CCK-4 induced anxiety and post-cat exposure...anxiety in rats. Depress Anxiety, 4(3), 144-145. Cohen, H., Kaplan, Z., & Kotler , M. (1999). CCK-antagonists in a rat exposed to acute stress

  7. Gastric Expression of Plasminogen Activator Inhibitor (PAI)-1 Is Associated with Hyperphagia and Obesity in Mice

    PubMed Central

    Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatković, Nikolina; Dimaline, Rod; Varro, Andrea

    2013-01-01

    The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H+/K+β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1–null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake. PMID:23254194

  8. Gastric expression of plasminogen activator inhibitor (PAI)-1 is associated with hyperphagia and obesity in mice.

    PubMed

    Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatkovic, Nikolina; Dimaline, Rod; Varro, Andrea; Dockray, Graham J

    2013-02-01

    The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H(+)/K(+)β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1-null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake.

  9. Carbachol does not down-regulate substance P receptors in pancreatic acini.

    PubMed

    Patto, R J; Vinayek, R; Jensen, R T; Gardner, J D

    1992-01-01

    In a previous study, we found that first incubating guinea pig pancreatic acini with carbachol caused desensitization of the enzyme secretory response to cholecystokinin-octapeptide (CCK-8), bombesin, and carbachol but not that to substance P. This carbachol-induced desensitization could be accounted for by carbachol-induced down-regulation of receptors for CCK-8, bombesin, and carbachol. Although carbachol did not desensitize the enzyme secretory response to substance P, an effect of carbachol on substance P receptors was not examined. In the present study, in dispersed acini from guinea pig pancreas, substance P caused a twofold increase in amylase secretion. Stimulation was half-maximal at 0.7 nM and was maximal at 10 nM. Analysis of the ability of substance P to inhibit binding of 125I-substance P to substance P receptors indicated that acini possess a single class of receptors for substance P (Kd = 0.8 +/- 0.1 nM; Bmax = 1,037 +/- 145 fmol/mg of DNA). There was a close correlation between the relative potency with which substance P stimulated amylase secretion (0.7 nM) and the potency for inhibiting binding of 125I-substance P (Kd = 0.8 nM). First incubating pancreatic acini with carbachol did not alter either substance P-stimulated enzyme secretion or binding of 125I-substance P to substance P receptors, whereas in the same experiments, carbachol reduced binding of 125I-CCK-8 to cholecystokinin receptors by 50% and decreased in CCK-8-stimulated enzyme secretion by 50%.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Effects of guanyl nucleotides on CCKB receptor binding in brain tissue and continuous cell lines: a comparative study.

    PubMed

    Kaufmann, R; Schöneberg, T; Henklein, P; Meyer, R; Martin, H; Ott, T

    1995-07-01

    The effects of non-hydrolyzable guanyl nucleotide analogue GTP-gamma S on CCKB receptor binding in human and guinea-pig cortex, Jurkat T-cells, rat pituitary GH3 cells, rat glioma C6 cells and human small cell lung cancer NCI-H69 cells were investigated by using [3H]CCK-8S saturation and competition binding studies. GTP-gamma S caused inhibition of specific [3H]CCK-8S binding in a concentration dependent manner with a plateau at 10-25 microM. 25 microM GTP-gamma S resulted in a small but significant increase in Kd and IC50 values with amount very similar in all CCKB receptor models tested. However, the maximal number of specific [3H]CCK-8S binding sites (Bmax) was unaffected. Results suggest that CCKB receptors are G-protein coupled in a similar way to human and guinea-pig cortex, Jurkat cells, GH3 cells, C6 cells and NCI-H69 cells.

  11. Preclinical evaluation of 68Ga-DOTA-minigastrin for the detection of cholecystokinin-2/gastrin receptor-positive tumors.

    PubMed

    Brom, Maarten; Joosten, Lieke; Laverman, Peter; Oyen, Wim J G; Béhé, Martin; Gotthardt, Martin; Boerman, Otto C

    2011-04-01

    In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor-positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET-computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor-mediated uptake (p  =  .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor-positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor-positive tumors in humans.

  12. Involvement of endogenous opiates in regulation of gastric emptying of fat test meals in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fioramonti, J.; Fargeas, M.J.; Bueno, L.

    1988-08-01

    The role of endogenous opioids and cholecystokinin (CCK) in gastric emptying was investigated in mice killed 30 min after gavage with /sup 51/Cr-radiolabeled liquid meals. The meals consisted of 0.5 ml of milk or one of five synthetic meals containing arabic gum, glucose and/or arachis oil and/or casein. Naloxone (0.1 mg/kg sc) significantly (P less than 0.01) accelerated gastric emptying of milk and meals containing fat but did not modify gastric emptying of nonfat meals. The CCK antagonist asperlicin (0.1 mg/kg ip) increased by 25% gastric emptying of milk. The gastric emptying of meals containing glucose and casein but notmore » fat was reduced after administration of the COOH-terminal octapeptide of cholecystokinin (CCK-8, 4 micrograms/kg ip). This decrease was antagonized by both asperlicin (10 mg/kg ip) and naloxone (0.1 mg/kg sc). Intracerebroventricular (icv) administration of an opiate antagonist that poorly crosses the blood-brain barrier, methyl levallorphan (10 micrograms/kg), did not modify gastric emptying of milk but accelerated it when peripherally administered (0.1 mg/kg sc). Similarly, asperlicin (icv) administered at a dose of 1 mg/kg did not affect milk emptying. These results indicate that endogenous opiates are involved at peripheral levels in the regulation of gastric emptying of fat meals only and that such regulation involves release of CCK.« less

  13. Changes in cholecystokinin and peptide Y gene expression with feeding in yellowtail (Seriola quinqueradiata): relation to pancreatic exocrine regulation.

    PubMed

    Murashita, Koji; Fukada, Haruhisa; Hosokawa, Hidetsuyo; Masumoto, Toshiro

    2007-03-01

    In fish, the regulation of digestive enzyme secretion by hormonal control such as cholecystokinin (CCK) and neuropeptide Y (NPY)-related peptide is not well understood. To investigate the roles of fish CCK and peptide Y (PY) in digestive enzyme secretion, mRNA levels of CCK and PY, pyloric caeca enzyme activities and mRNA levels of pancreatic digestive enzymes (lipase, trypsin and amylase) were measured at pre- and post-prandial stages in yellowtail. Pyloric caeca were sampled at 0, 0.5, 1.5, 3, 6, 12, 24 and 48 h after feeding. The mRNA levels of trypsin and amylase increased after feeding, suggesting that transcription was induced by feed ingestion. Digestive enzyme activities decreased in exocrine pancreas after feeding, suggesting the stored enzyme was secreted from pancreas post-prandially. mRNA levels for CCK displayed a time-dependent increase, peaking between 1.5 and 3 h after-feeding followed by a rapid decrease 3 to 6 h after feeding. The mRNA expression pattern of PY was inverse to the pattern of CCK, decreasing until 1.5 h after feeding and then rising to initial levels by 12 h after feeding. These results suggest that CCK and PY work antagonistically in the exocrine pancreas of yellowtail.

  14. Cholecystokinin Plays a Novel Protective Role in Diabetic Kidney Through Anti-inflammatory Actions on Macrophage

    PubMed Central

    Miyamoto, Satoshi; Shikata, Kenichi; Miyasaka, Kyoko; Okada, Shinichi; Sasaki, Motofumi; Kodera, Ryo; Hirota, Daisho; Kajitani, Nobuo; Takatsuka, Tetsuharu; Kataoka, Hitomi Usui; Nishishita, Shingo; Sato, Chikage; Funakoshi, Akihiro; Nishimori, Hisakazu; Uchida, Haruhito Adam; Ogawa, Daisuke; Makino, Hirofumi

    2012-01-01

    Inflammatory process is involved in the pathogenesis of diabetic nephropathy. In this article, we show that cholecystokinin (CCK) is expressed in the kidney and exerts renoprotective effects through its anti-inflammatory actions. DNA microarray showed that CCK was upregulated in the kidney of diabetic wild-type (WT) mice but not in diabetic intracellular adhesion molecule-1 knockout mice. We induced diabetes in CCK-1 receptor (CCK-1R) and CCK-2R double-knockout (CCK-1R−/−,-2R−/−) mice, and furthermore, we performed a bone marrow transplantation study using CCK-1R−/− mice to determine the role of CCK-1R on macrophages in the diabetic kidney. Diabetic CCK-1R−/−,-2R−/− mice revealed enhanced albuminuria and inflammation in the kidney compared with diabetic WT mice. In addition, diabetic WT mice with CCK-1R−/− bone marrow–derived cells developed more albuminuria than diabetic CCK-1R−/− mice with WT bone marrow–derived cells. Administration of sulfated cholecystokinin octapeptide (CCK-8S) ameliorated albuminuria, podocyte loss, expression of proinflammatory genes, and infiltration of macrophages in the kidneys of diabetic rats. Furthermore, CCK-8S inhibited both expression of tumor necrosis factor-α and chemotaxis in cultured THP-1 cells. These results suggest that CCK suppresses the activation of macrophage and expression of proinflammatory genes in diabetic kidney. Our findings may provide a novel strategy of therapy for the early stage of diabetic nephropathy. PMID:22357963

  15. Cholecystokinin octa- and tetrapeptide degradation by synaptic membranes. II. Solubilization and separation of membrane-bound CCK-8 cleaving enzymes.

    PubMed

    Deschodt-Lanckman, M; Bui, N D; Koulischer, D; Paroutaud, P; Strosberg, A D

    1983-01-01

    Solubilization of rat synaptic membranes by Triton X-100, followed by DEAE-cellulose chromatography allowed the identification of different CCK-8 cleaving enzymes. The first one (in the order of elution) removed the N-terminal aspartic acid residue of CCK-8 and was active on L-aspartic acid beta naphtylamide, suggesting that a corresponded to an aminopeptidase A. Two aminopeptidases of broad specificity hydrolyzed sequentially all the peptide bonds of CCK-8 as far as the release of free tryptophan. The removal of the sulfated tyrosine residue of CCK-8 occurred at a slower rate than that of the unsulfated residue. Another peptidase converted CCK-8 into its C-terminal heptapeptide. This enzyme had a lower affinity for the sulfated octapeptide in comparison with the unsulfated form (app Km of respectively 180 and 40 muM). The CCK-7 generating proteases displayed a moderate regional variation in five rat brain areas, with the highest activity in olfactory bulbs membranes and the lowest in cerebellar membranes. This distribution followed (with a lower amplitude) that of the CCK receptors.

  16. Pain management by a new series of dual inhibitors of enkephalin degrading enzymes: long lasting antinociceptive properties and potentiation by CCK2 antagonist or methadone.

    PubMed

    Le Guen, Stéphanie; Mas Nieto, Magdalena; Canestrelli, Corinne; Chen, Huixiong; Fournié-Zaluski, Marie-Claude; Cupo, Annie; Maldonado, Rafaël; Roques, Bernard P; Noble, Florence

    2003-07-01

    The discovery that the endogenous morphine-like peptides named enkephalins are inactivated by two metallopeptidases, neutral endopeptidase and aminopeptidase N, which can be blocked by dual inhibitors, represents a promising way to develop 'physiological' analgesics devoid of the side effects of morphine. A new series of dual aminophosphinic inhibitors of the two enkephalin-catabolizing enzymes has been recently designed. In this study, one of these inhibitors, RB3007, was tested in various assays commonly used to select analgesics (mouse hot-plate test, rat tail-flick test, writhing and formalin tests in mice, and paw pressure test in rats), and the extracellular levels of the endogenous enkephalins in the ventrolateral periaqueductal grey have been measured by microdialysis after systemic administration of RB3007. In the mouse hot-plate test, the dual inhibitor induced long-lasting (2 h) antinociceptive effects with a maximum of 35% analgesia 60 min after i.v. or i.p. administration. These antinociceptive responses were antagonized by prior injection of naloxone (0.1 mg/kg, s.c.). Similar long lasting effects were observed in the other animal models used. Very interestingly, injection of RB3007 (50 mg/kg, i.p.) significantly increased (82%) the extracellular levels of Met-enkephalin with a peak 60 min after i.p. injection. This increase parallels the antinociceptive responses observed. In addition, strong facilitatory effects of subanalgesic doses of the CCK(2) receptor antagonist, PD-134,308 or the synthetic opioid agonist, methadone on RB3007-induced antinociceptive responses were observed. These findings may constitute promising data for future development of a new class of analgesics that could be of major interest in a number of severe and persistent pain syndromes.

  17. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion.

    PubMed

    Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao

    2005-08-01

    To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  18. PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with (64)Cu, (68)Ga, and (111)In.

    PubMed

    Roosenburg, S; Laverman, P; Joosten, L; Cooper, M S; Kolenc-Peitl, P K; Foster, J M; Hudson, C; Leyton, J; Burnet, J; Oyen, W J G; Blower, P J; Mather, S J; Boerman, O C; Sosabowski, J K

    2014-11-03

    Cholecystokinin-2 (CCK-2) receptors, overexpressed in cancer types such as small cell lung cancers (SCLC) and medullary thyroid carcinomas (MTC), may serve as targets for peptide receptor radionuclide imaging. A variety of CCK and gastrin analogues has been developed, but a major drawback is metabolic instability or high kidney uptake. The minigastrin analogue PP-F11 has previously been shown to be a promising peptide for imaging of CCK-2 receptor positive tumors and was therefore further evaluated. The peptide was conjugated with one of the macrocyclic chelators DOTA, NOTA, or NODAGA. The peptide conjugates were then radiolabeled with either (68)Ga, (64)Cu, or (111)In. All (radio)labeled compounds were evaluated in vitro (IC50) and in vivo (biodistribution and PET/CT and SPECT/CT imaging). IC50 values were in the low nanomolar range for all compounds (0.79-1.51 nM). In the biodistribution studies, (68)Ga- and (111)In-labeled peptides showed higher tumor-to-background ratios than the (64)Cu-labeled compounds. All tested radiolabeled compounds clearly visualized the CCK2 receptor positive tumor in PET or SPECT imaging. The chelator did not seem to affect in vivo behavior of the peptide for (111)In- and (68)Ga-labeled peptides. In contrast, the biodistribution of the (64)Cu-labeled peptides showed high uptake in the liver and in other organs, most likely caused by high blood levels, probably due to dissociation of (64)Cu from the chelator and subsequent transchelation to proteins. Based on the present study, (68)Ga-DOTA-PP-F11 might be a promising radiopharmaceutical for PET/CT imaging of CCK2 receptor expressing tumors such as MTC and SCLC. Clinical studies are warranted to investigate the potential of this tracer.

  19. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell

    PubMed Central

    1995-01-01

    Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell could be particularly effective to protect the cell from processes which might initiate pancreatitis, while providing for the rapid resensitization of this receptor to ensure appropriate pancreatic secretion to aid in nutrient assimilation for the organism. PMID:7622559

  20. Vasoactive intestinal polypeptide mediates cholecystokinin-induced relaxation of the sphincter of Oddi.

    PubMed Central

    Wiley, J W; O'Dorisio, T M; Owyang, C

    1988-01-01

    This study evaluates the hypothesis that cholecystokinin (CCK) relaxes the sphincter of Oddi via vasoactive intestinal polypeptide (VIP). Isolated canine sphincter of Oddi were suspended in organ baths under standard conditions. Responses to cholecystokinin octapeptide (CCK-8) and VIP were recorded on a pen recorder via an isometric transducer. 10(-11)-10(-7) M CCK-8 and 4 X 10(-11)-5 X 10(-7) M VIP generated dose-related sphincter of Oddi relaxation, which was unaffected by atropine, propranolol, and phentolamine. The effect of CCK-8 was antagonized by dibutyryl cGMP (Bt2 cGMP) (10(-3) M), the VIP-antagonist (N-Ac-Tyr1, D-Phe2)-growth hormone-releasing factor-(1-29)-NH2, and abolished by tetrodotoxin. In contrast, VIP's relaxing action was tetrodotoxin insensitive. 10(-11)-10(-7) M CCK-8 stimulated dose-dependent release of VIP (0.5-2.2 fm/ml.mg tissue), which was not inhibited by atropine, propranolol, and phentolamine, but was antagonized by 10(-3) M Bt2 cGMP and tetrodotoxin. In addition CCK-8 and VIP generated dose-related (10(-10)-10(-7) M) increases in sphincter of Oddi cAMP levels that were not affected by atropine, propranolol, and phentolamine. Furthermore, 10(-5)-10(-2) M 8-bromo-cAMP caused dose-dependent relaxation of the sphincter of Oddi. In separate studies, a 2-h incubation in physiological solution containing 12 parts/1,000 of rabbit VIP antiserum antagonized sphincter relaxation caused by 4 nM CCK-8 and 6 nM VIP. The antiserum also significantly decreased the sphincter of Oddi cAMP level stimulated by 4 nM CCK-8 by 48 +/- 15%. These studies demonstrate that CCK-8 relaxes the canine sphincter of Oddi via a noncholinergic, nonadrenergic neural pathway involving VIP. The intracellular mechanism mediating CCK/VIP relaxation involves generation of cAMP. Images PMID:3384954

  1. Overlapping regional distribution of CCK and TPPII mRNAs in Cynomolgus monkey brain and correlated levels in human cerebral cortex (BA 10).

    PubMed

    Radu, Diana; Tomkinson, Birgitta; Zachrisson, Olof; Weber, Günther; de Belleroche, Jacqueline; Hirsch, Steven; Lindefors, Nils

    2006-08-09

    Tripeptidyl peptidase II (TPPII) is a high molecular weight exopeptidase important in inactivating extracellular cholecystokinin (CCK). Our aims were to study the anatomical localization of TPPII and CCK mRNA in the Cynomolgus monkey brain as a basis for a possible functional anatomical connection between enzyme (TPPII) and substrate (CCK) and examine if indications of changes in substrate availability in the human brain might be reflected in changes of levels of TPPII mRNA. mRNA in situ hybridization on postmortem brain from patients having had a schizophrenia diagnosis as compared to controls and on monkey and rat brain slices. overlapping distribution patterns of mRNAs for TPPII and CCK in rat and monkey. High amounts of TPPII mRNA are seen in the neocortex, especially in the frontal region and the hippocampus. TPPII mRNA is also present in the basal ganglia and cerebellum where CCK immunoreactivity and/or CCK B receptors have been found in earlier studies, suggesting presence of CCK-ergic afferents from other brain regions. Levels of mRNAs for CCK and TPPII show a positive correlation in postmortem human cerebral cortex Brodmann area (BA) 10. TPPII mRNA might be affected following schizophrenia. overall TPPII and CCK mRNA show a similar distribution in rat and monkey brain, confirming and extending earlier studies in rodents. In addition, correlated levels of TPPII and CCK mRNA in human BA 10 corroborate a functional link between CCK and TPPII in the human brain.

  2. The stomach, cholecystokinin, and satiety.

    PubMed

    McHugh, P R; Moran, T H

    1986-04-01

    The stomach of the rhesus monkey empties liquids in a fashion that varies with the character of the solutions. Physiological saline empties exponentially. Glucose solutions empty biphasically--rapidly for the first minutes, then slowly and proportionately to glucose concentration to deliver glucose calories through the pylorus at a regulated rate (0.4 kcal/min). This prolonged and regulated second phase of gastric emptying depends on intestinal inhibition of the stomach. Cholecystokinin (CCK), a hormone released by food in the intestine, is an inhibitor of gastric emptying. In vitro receptor autoradiography demonstrates CCK receptors to be clustered on the circular muscle of the pylorus. Exogenous CCK, in doses that inhibit gastric emptying, will reduce food intake only if combined with an infusion of saline in the stomach. These observations indicate how gastric distension can be a means for provoking satiety. The variably sustained distension produced by the stomach's slow, calorically regulated emptying could prolong intermeal intervals and thus permit high-calorie meals to inhibit further caloric intake over time. CCK, by directly inhibiting gastric emptying during a meal, could promote gastric distension and so restrict the duration and size of individual meals.

  3. Long-term proton pump induced hypergastrinaemia does induce lineage-specific restitution but not clonal expansion in benign Barrett's oesophagus in vivo.

    PubMed

    Obszynska, Jolanta A; Atherfold, Paul A; Nanji, Manoj; Glancy, Deborah; Santander, Sonia; Graham, Trevor A; Otto, William R; West, Kevin; Harrison, Rebecca F; Jankowski, Janusz A Z

    2010-02-01

    Barrett's oesophagus is a common premalignant lesion caused partly by acid reflux. Although the requisite therapy, proton pump inhibitors (PPIs), have been implicated in the progression of Barrett's oesophagus in animal models, harmful effects of prolonged PPI therapy in Barrett's oesophagus is both inconclusive and controversial. We therefore aimed to test the role of PPI-induced hypergastrinaemia in vitro and see whether any biological parameters were useful surrogates of long-term therapy in man. We undertook detailed serological and tissue assessment of gastrin and CCK(2) receptors in 90 patients randomised to different doses of PPI therapy during a detailed 2-year follow-up. We also undertook a comprehensive study of cell models to study the consequential biological effects of gastrin on the mucosa. Gastrin and its cognate receptor CCK(2)R were expressed highest in the stomach, then less in Barrett's oesophagus and least in squamous oesophagus (SqE) (n=20 paired t-test, p<0.01). Analysis of the change in Barrett's oesophagus segment length change in 70 patients who were randomised to high or low PPI dose showed no difference over 2 years (n=70 t-test, p=0.8). Prolonged PPI use did, however, increase the serum gastrin, (36 pg/ml+/-57 pg/ml to 103 pg/ml+/-94 pg/ml (paired t test, p<0.05)). In vitro gastrin also induced changes in OE33(E)(cckr) Barrett's oesophagus cells, but not OE21(E)(cckr) squamous cells, transfected with CCK(2)R; migration was induced by 1 ng/ml of gastrin but proliferation only increased with 100 ng/ml (paired t-test, p<0.01) and both were abolished by antagonists. While the short-term effects of gastrin enhance epithelial restitution in Barrett's oesophagus (but not squamous mucosa) there is no clinical evidence that Barrett's oesophagus length expands over time. This study, which is the largest and longest term randomised controlled trial of gastrin biology in Barrett's oesophagus, is further proof of the clinical safety of PPI therapy.

  4. Progression from homologous to heterologous desensitization of contraction in gastric smooth muscle cells.

    PubMed

    Severi, C; Carnicelli, V; di Giulio, A; Romano, G; Bozzi, A; Oratore, A; Strom, R; delle Fave, G

    1999-02-01

    Acute desensitization of contraction and its relative mechanisms have been studied in smooth muscle cells isolated from guinea pig stomach. Desensitization was induced by pre-exposure of the cells to one of the excitatory neuropeptides linked to the phospholipase C intracellular cascade, i.e., cholecystokinin (CCK), gastrin-releasing peptide, and Substance P. Desensitization was homologous after a 30-s pre-exposure and heterologous if pre-exposure lasted for 5 min or longer. Homologous desensitization was studied in a more detailed way after pre-exposure to CCK. Preincubation with increasing concentrations of CCK (10 pM-1 microM) induced a progressive rightward shift of the dose-response curves associated with both a decrease in potency (ED50 4.5 pM-2.2 nM) and a maximum response that were not related to a modification of response kinetics. After brief pre-exposure to 1 nM CCK (Dmax), an inhibition of contraction was observed in response to an identical dose of CCK (45.1 +/- 8.6%), the decreased response being associated with an inhibition of inositol phosphates and [Ca++]i mobilization. Both inositol trisphosphate (InsP3)-induced contraction and [Ca++]i mobilization were inhibited to a lesser extent than CCK-induced responses. Any longer pre-exposure of cells to one of the above-mentioned neuropeptides caused heterologous desensitization, with an observed inhibition of contraction in response to all tested agonists (CCK, 60.3 +/- 5.9%; gastrin-releasing peptide: 56.7 +/- 3. 5%; Substance P, 60.6 +/- 6.5%). A similar decrease was observed in InsP3-induced contractions resulting in a desensitization of the InsP3 response as well. Full recovery of contractile responses appeared within 30 min from the end of preincubation, thus indicating that degradation of membrane receptors did not occur. Although pre-exposure of the cells to protein kinase C inhibitor GF109203X did not modify CCK-induced homologous desensitization, it blocked CCK-induced heterologous desensitization. This study demonstrates that excitatory phospholipase C-coupled enteric neuropeptides induce a time-dependent homologous as well as heterologous desensitization of smooth muscle contraction occurring at receptor and postreceptor levels.

  5. Cholecystokinin in the control of gastric acid and plasma gastrin and somatostatin secretion in healthy subjects and duodenal ulcer patients before and after eradication of Helicobacter pylori.

    PubMed

    Konturek, J W

    1994-12-01

    Exogenous cholecystokinin (CCK) is known to effect gastric secretory and motor functions but its physiological role in the control of these functions in healthy subjects and duodenal ulcer (DU) patients is unknown. In this study involving four series of young healthy normal and DU subjects, the gastric secretory tests were performed under basal conditions and following stimulation by modified sham-feeding (MSF), i.v. infusion of caerulein, gastrin releasing peptide (GRP) or pentagastrin (p-gastrin) (series A), after 500 ml of standard meal without or with addition of 15% soybean oil (series B) or acidification of meal to pH 2.5 (series C), and finally after eradication of Helicobacter pylori (HP) (series D). Studies were carried out without or with the pretreatment with placebo or loxiglumide, a specific antagonist of type A CCK receptors. In series A, the gastric secretion obtained by aspiration technique was measured after secretagogues (MSF, caerulein, GRP or p-gastrin), whereas in series B, C, and D intragastric pH was measured before and after test meal and plasma gastrin, CCK and somatostatin were assayed by specific radioimmunoassays. In healthy subjects, MSF increased gastric acid outputs to about 36% of p-gastrin maximum and treatment with loxiglumide failed to affect this secretion. Standard meal enhanced acid output to about 50% of p-gastrin maximum and raised plasma levels of gastrin, CCK but not somatostatin. The pretreatment with loxiglumide resulted in further increase both in gastric acid secretion and plasma gastrin and CCK, while somatostatin level was significantly reduced. Infusion of graded doses of caerulein or GRP resulted in dose-dependent stimulation of gastric acid secretion reaching, respectively, 35% and 25% of p-gastrin maximum. When loxiglumide was added, the acid responses to caerulein and GRP were further increased by 2-3 folds, attaining a peak similar to the p-gastrin maximum. Administration of loxiglumide resulted in a significant increase in plasma gastrin and CCK responses to GRP, whereas plasma somatostatin was not significantly altered. Addition of fat to standard meal prolonged gastric emptying of this meal by about 50% both in healthy subjects and DU patients (series B). Fat in healthy subjects significantly increased and prolonged intragastric pH after the meal while reducing the increments in plasma gastrin and enhancing plasma CCK without alteration of plasma somatostatin. Pretreatment with loxiglumide significantly reduced postprandial pH from control 4.8 to 2.5 and reversed the changes in pH caused by addition of fat. The increments in plasma gastrin and CCK were markedly augmented, whereas those of somatostatin were attenuated. DU patients showed lower postprandial pH (3.0) in tests with or without fat and higher increments in plasma gastrin. CCK antagonism failed to affect significantly the pH profile or the increments in plasma gastrin or CCK. CCK antagonism failed to affect significantly the pH profile or the increments in plasma gastrin. Intragastric application of standard meal of pH 3.0 in healthy subjects and DU patients (series C) resulted in significantly lower median 3 h intragastric pH as compared to that after meal of pH 6.5. After pretreatment with loxiglumide, the median pH after meals of both pHs was significantly lower in healthy subjects but not in DU patients. This reduction in pH was accompanied by more pronounced increase in plasma gastrin response to a meal of pH 6.5 only in healthy controls but not in DU subjects and by a significant increase in plasma CCK and decrease in plasma somatostatin.

  6. Increased cholecystokinin labeling in the hippocampus of a mouse model of epilepsy maps to spines and glutamatergic terminals

    PubMed Central

    Wyeth, Megan S.; Zhang, Nianhui; Houser, Carolyn R.

    2011-01-01

    The neuropeptide cholecystokinin (CCK) is abundant in the central nervous system and expressed in a subset of inhibitory interneurons, particularly in their axon terminals. The expression profile of CCK undergoes numerous changes in several models of temporal lobe epilepsy. Previous studies in the pilocarpine model of epilepsy have shown that CCK immunohistochemical labeling is substantially reduced in several regions of the hippocampal formation, consistent with decreased CCK expression as well as selective neuronal degeneration. However, in a mouse pilocarpine model of recurrent seizures, increases in CCK-labeling also occur and are especially striking in the hippocampal dendritic layers of strata oriens and radiatum. Characterizing these changes and determining the cellular basis of the increased labeling were the major goals of the current study. One possibility was that the enhanced CCK labeling could be associated with an increase in GABAergic terminals within these regions. However, in contrast to the marked increase in CCK-labeled structures, labeling of GABAergic axon terminals was decreased in the dendritic layers. Likewise, cannabinoid receptor 1-labeled axon terminals, many of which are CCK-containing GABAergic terminals, were also decreased. These findings suggested that the enhanced CCK labeling was not due to an increase in GABAergic axon terminals. The subcellular localization of CCK immunoreactivity was then examined using electron microscopy, and the identities of the structures that formed synaptic contacts were determined. In pilocarpine-treated mice, CCK was observed in dendritic spines and these were proportionally increased relative to controls, whereas the proportion of CCK-labeled terminals forming symmetric synapses was decreased. In addition, CCK-positive axon terminals forming asymmetric synapses were readily observed in these mice. Double labeling with vesicular glutamate transporter 1 and CCK revealed co-localization in numerous terminals forming asymmetric synapses, confirming the glutamatergic identity of these terminals. These data raise the possibility that expression of CCK is increased in hippocampal pyramidal cells in mice with recurrent, spontaneous seizures. PMID:22155653

  7. Expression of cholecystokinin2-receptor in rat and human L cells and the stimulation of glucagon-like peptide-1 secretion by gastrin treatment.

    PubMed

    Cao, Yang; Cao, Xun; Liu, Xiao-Min

    2015-03-01

    Gastrin is a gastrointestinal hormone secreted by G cells. Hypergastrinemia can improve blood glucose and glycosylated hemoglobin levels. These positive effects are primarily due to the trophic effects of gastrin on β-cells. In recent years, many receptors that regulate secretion of glucagon-like peptide 1 (GLP-1) have been identified in enteroendocrine L cell lines. This led us to hypothesize that, in addition to the trophic effects of gastrin on β-cells, L cells also express cholecystokinin2-receptor (CCK2R), which may regulate GLP-1 secretion and have synergistic effects on glucose homeostasis. Our research provides a preliminary analysis of CCK2R expression and the stimulating effect of gastrin treatment on GLP-1 secretion in a human endocrine L cell line, using RT-PCR, Western blot, immunocytochemistry, and ELISA analyses. The expression of proglucagon and prohormone convertase 3, which regulate GLP-1 biosynthesis, were also analyzed by real-time PCR. Double immunofluorescence labeling was utilized to assess the intracellular localization of CCK2R and GLP-1 in L cells harvested from rat colon tissue. Our results showed that CCK2R was expressed in both the human L cell line and the rat L cells. We also showed that treatment with gastrin, a CCK2R agonist, stimulated the secretion of GLP-1, and that this effect was likely due to increased expression of proglucagon and PCSK1 (also known as prohormone convertase 3 (PC3 gene)). These results not only provide a basis for the role gastrin may play in intestinal L cells, and may also provide the basis for the development of a method of gastrin-mediated glycemic regulation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Radiolabeled gastrin/CCK analogs in tumor diagnosis: towards higher stability and improved tumor targeting.

    PubMed

    Kaloudi, A; Nock, B A; Krenning, E P; Maina, T; De Jong, M

    2015-09-01

    Cholecystokinin subtype 2 receptors (CCK2R) are overexpressed in several human cancers, including medullary thyroid carcinoma. Gastrin and cholecystokinin (CCK) peptides that bind with high affinity and specificity to CCK2R can be used as carriers of radioactivity to CCK2R-expressing tumor sites. Several gastrin and CCK related peptides have been proposed for diagnostic imaging and radionuclide therapy of primary and metastatic CCK2R-positive human tumors. Their clinical application has been restricted to a great extent by their fast in vivo degradation that eventually compromises tumor uptake. This problem has been addressed by structural modifications of gastrin and CCK motifs, which, however, often lead to suboptimal pharmacokinetic profiles. A major enzyme implicated in the catabolism of gastrin and CCK based peptides is neutral endopeptidase (NEP), which is widely distributed in the body. Coinjection of the NEP inhibitor phosphoramidon (PA) with radiolabeled gastrin and other peptide analogs has been recently proposed as a new promising strategy to increase bioavailability and tumor-localization of radiopeptides in tumor sites. Specifically, co-administration of PA with the truncated gastrin analog [(111)In-DOTA]MG11 ([((111)In-DOTA)DGlu(10)]gastrin(10-17)) impressively enhanced the levels of intact radiopeptide in mouse circulation and has led to an 8-fold increase of CCK2R-positive tumor uptake in SCID mice. This increased tumor uptake, visualized also by SPECT/CT imaging, is expected to eventually translate into higher diagnostic sensitivity and improved therapeutic efficacy of radiolabeled gastrin analogs in CCK2R-expressing cancer patients.

  9. Beneficial effects of (pGlu-Gln)-CCK-8 on energy intake and metabolism in high fat fed mice are associated with alterations of hypothalamic gene expression.

    PubMed

    Montgomery, I A; Irwin, N; Flatt, P R

    2013-06-01

    Cholecystokinin (CCK) is a gastrointestinal hormone with potential therapeutic promise for obesity-diabetes. The present study examined the effects of twice daily administration of the N-terminally modified stable CCK-8 analogue, (pGlu-Gln)-CCK-8, on metabolic control and hypothalamic gene expression in high fat fed mice. Sub-chronic twice daily injection of (pGlu-Gln)-CCK-8 for 16 days significantly decreased body weight (p<0.05), energy intake (p<0.01), circulating blood glucose (p<0.001), and plasma insulin (p<0.001) compared to high fat controls. Furthermore, (pGlu-Gln)-CCK-8 markedly improved glucose tolerance (p<0.05) and insulin sensitivity (p<0.05). Assessment of hypothalamic gene expression on day 16 revealed significantly elevated NPY (p<0.05) and reduced POMC (p<0.05) and MC4R (p<0.05) mRNA expression in (pGlu-Gln)-CCK-8 treated mice. High fat feeding or (pGlu-Gln)-CCK-8 treatment had no significant effects on hypothalamic gene expression of receptors for leptin, CCK₁ and GLP-1. These studies underscore the potential of (pGlu-Gln)-CCK-8 for the treatment of obesity-diabetes and suggest modulation of NPY and melanocortin related pathways may be involved in the observed beneficial effects. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Cholecystokinin-8 induces brain-derived neurotrophic factor expression in noradrenergic neuronal cells.

    PubMed

    Hwang, Cheol Kyu; Kim, Do Kyung; Chun, Hong Sung

    2013-08-01

    The sulfated cholecystokinin octapeptide (CCK-8S) is one of the most abundant CCK fragment in the brain, but the effects of CCK-8S on locus coeruleus (LC) noradrenergic (NA) neuronal cells activity have not been studied. In this study, we investigated the effects of CCK-8S on the expression of brain-derived neurotrophic factor (BDNF) in LC NA neuronal cell line, LC3541. Results showed that CCK-8S (10 nM) elevates BDNF levels time-dependently and by 1.82-fold after 4h of incubation. In addition, pretreatment with CCK-8S reversed H₂O₂ (100 μM)-mediated down-regulation of BDNF expression, and effectively suppressed H₂O₂-induced caspase-3 activation. Furthermore, CCK-8S markedly induced expression of neuronal survival markers, such as extracellular signal-regulated kinase 1/2 (ERK 1/2), Akt/protein kinase B (PKB), Bcl-2, and peroxisome proliferators-activated receptor gamma coactivator-1α (PGC-1α). Pharmacological inhibitors of ERK 1/2, Akt/PKB, and protein kinase A (PKA) reversed CCK-8S-mediated BDNF induction in LC3541 cells. These results suggest the first evidence that CCK-8S can protect noradrenergic neurons and enhance the expression of BDNF via ERK 1/2-Akt/PKB-PKA-dependent pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours.

    PubMed

    von Guggenberg, E; Dietrich, H; Skvortsova, I; Gabriel, M; Virgolini, I J; Decristoforo, C

    2007-08-01

    Different attempts have been made to develop a suitable radioligand for targeting CCK-2 receptors in vivo, for staging of medullary thyroid carcinoma (MTC) and other receptor-expressing tumours. After initial successful clinical studies with [DTPA(0),D: Glu(1)]minigastrin (DTPA-MG0) radiolabelled with (111)In and (90)Y, our group developed a (99m)Tc-labelled radioligand, based on HYNIC-MG0. A major drawback observed with these derivatives is their high uptake by the kidneys. In this study we describe the preclinical evaluation of the optimised shortened peptide analogue, [HYNIC(0),D: Glu(1),desGlu(2-6)]minigastrin (HYNIC-MG11). (99m)Tc labelling of HYNIC-MG11 was performed using tricine and EDDA as coligands. Stability experiments were carried out by reversed phase HPLC analysis in PBS, PBS/cysteine and plasma as well as rat liver and kidney homogenates. Receptor binding and cell uptake experiments were performed using AR4-2J rat pancreatic tumour cells. Animal biodistribution was studied in AR4-2J tumour-bearing nude mice. Radiolabelling was performed at high specific activities and radiochemical purity was >90%. (99m)Tc-EDDA-HYNIC-MG11 showed high affinity for the CCK-2 receptor and cell internalisation comparable to that of (99m)Tc-EDDA-HYNIC-MG0. Despite high stability in solution, a low metabolic stability in rat tissue homogenates was found. In a nude mouse tumour model, very low unspecific retention in most organs, rapid renal excretion with reduced renal retention and high tumour uptake were observed. (99m)Tc-EDDA-HYNIC-MG11 shows advantages over (99m)Tc-EDDA-HYNIC-MG0 in terms of lower kidney retention with unchanged uptake in tumours and CCK-2 receptor-positive tissue. However, the lower metabolic stability and impurities formed in the labelling process still leave room for further improvement.

  12. Experimental pancreatic hyperplasia and neoplasia: effects of dietary and surgical manipulation.

    PubMed Central

    Watanapa, P.; Williamson, R. C.

    1993-01-01

    Several studies carried out during the past two decades have investigated the effect of dietary and surgical manipulation on pancreatic growth and carcinogenesis. Diets high in trypsin inhibitor stimulate pancreatic growth and increase the formation of preneoplastic lesions and carcinomas in the rat pancreas. Cholecystokinin (CCK) is the key intermediary in this response, since both natural and synthetic trypsin inhibitors increase circulating levels of the hormone and CCK antagonists largely prevent these changes. Fatty acids enhance pancreatic carcinogenesis in both rats and hamsters, whereas protein appears to have a protective role in the rat, but to increase tumour yields in the hamster. Several surgical operations affect the pancreas. Pancreatobiliary diversion and partial gastrectomy stimulate pancreatic growth and enhance carcinogenesis, probably by means of increased CCK release. Complete duodenogastric reflux has similar effects on the pancreas but the gut peptide involved is gastrin. Although massive small bowel resection increases pancreatic growth, the marked reduction in caloric absorption probably explains its failure to enhance carcinogenesis. CCK and enteroglucagon might work in concert to modulate the tropic response of the pancreas to small bowel resection. In the pancreas, as in the large intestine, hyperplasia appears to precede and predispose to neoplasia. PMID:8494719

  13. Bombesin-like peptides stimulate somatostatin release from rat fundic D cells in primary culture.

    PubMed

    Schaffer, K; Herrmuth, H; Mueller, J; Coy, D H; Wong, H C; Walsh, J H; Classen, M; Schusdziarra, V; Schepp, W

    1997-09-01

    In several species, bombesin-like neuropeptides stimulate somatostatin release in in vitro preparations of gastric mucosa. We sought to determine if this response is due to a direct effect on fundic D cells. Rat fundic mucosal cells were isolated by pronase E (1% D cells). D cells were separated by counterflow elutriation and subsequent density-gradient centrifugation (Nycodenz) (15% D cells) and grown in primary culture for 48 h (46% D cells). Cultured cells were double stained with affinity-purified rabbit-anti-gastrin-releasing peptide (GRP) receptor antibody and mouse monoclonal antibody to human somatostatin. After incubation with rhodamine-labeled anti-rabbit and fluorescein isothiocyanate-labeled anti-mouse antibodies, reactions were visualized by fluorescence microscopy. All cells positive for somatostatin had GRP receptors, whereas all non-D cells showed no expression in this G cell-free culture system. Somatostatin release from cultured cells was stimulated by sulfated cholecystokinin octapeptide (CCK-8; EC50 3 X 10(-10) M) and epinephrine (EC50 4 X 10(-8) M), which are established stimuli for canine fundic D cells. Bombesin (EC50 6 X 10(-11) M), its mammalian analog GRP-27, and neuromedin C (GRP-10) (EC50 1 X 10(-10) M, for both) were almost equally potent stimuli of somatostatin release, eliciting maximal response at 10(-9) M (400-550% above basal). Neuromedin B was less potent and effective (maximal response at 10(-8) M, 230% above basal). [D-Phe6]bombesin-(6-13)-OMe, a specific bombesin receptor antagonist, inhibited bombesin-stimulated somatostatin release in a competitive manner (IC50 9 X 10(-8) M). Potentiating interactions were observed between bombesin and dibutyryladenosine 3',5'-cyclic monophosphate (DBcAMP) or epinephrine, but not between bombesin and CCK-8. We conclude that bombesin-like peptides directly stimulate somatostatin release by interacting with specific receptors on rat fundic D cells. Bombesin-like peptides appear to induce Ca(2+)-phospholipid-dependent signal-response transduction, as is indirectly suggested by potentiating interactions with DBcAMP or epinephrine.

  14. Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice

    PubMed Central

    Ceci, Angelo; Strassmaier, Timothy; Chong, Jayhong A.; Blair, Nathaniel T.; Gallaschun, Randall J.; del Camino, Donato; Cantin, Susan; D’Amours, Marc; Eickmeier, Christian; Fanger, Christopher M.; Hecker, Carsten; Hessler, David P.; Hengerer, Bastian; Kroker, Katja S.; Malekiani, Sam; Mihalek, Robert; McLaughlin, Joseph; Rast, Georg; Witek, JoAnn; Sauer, Achim; Pryce, Christopher R.

    2018-01-01

    Background Forty million adults in the US suffer from anxiety disorders, making these the most common forms of mental illness. Transient receptor potential channel canonical subfamily (TRPC) members 4 and 5 are non-selective cation channels highly expressed in regions of the cortex and amygdala, areas thought to be important in regulating anxiety. Previous work with null mice suggests that inhibition of TRPC4 and TRPC5 may have anxiolytic effects. HC-070 in vitro To assess the potential of TRPC4/5 inhibitors as an avenue for treatment, we invented a highly potent, small molecule antagonist of TRPC4 and TRPC5 which we call HC-070. HC-070 inhibits recombinant TRPC4 and TRPC5 homomultimers in heterologous expression systems with nanomolar potency. It also inhibits TRPC1/5 and TRPC1/4 heteromultimers with similar potency and reduces responses evoked by cholecystokinin tetrapeptide (CCK-4) in the amygdala. The compound is >400-fold selective over a wide range of molecular targets including ion channels, receptors, and kinases. HC-070 in vivo Upon oral dosing in mice, HC-070 achieves exposure levels in the brain and plasma deemed sufficient to test behavioral activity. Treatment with HC-070 attenuates the anxiogenic effect of CCK-4 in the elevated plus maze (EPM). The compound recapitulates the phenotype observed in both null TRPC4 and TRPC5 mice in a standard EPM. Anxiolytic and anti-depressant effects of HC-070 are also observed in pharmacological in vivo tests including marble burying, tail suspension and forced swim. Furthermore, HC-070 ameliorates the increased fear memory induced by chronic social stress. A careful evaluation of the pharmacokinetic-pharmacodynamic relationship reveals that substantial efficacy is observed at unbound brain levels similar to, or even lower than, the 50% inhibitory concentration (IC50) recorded in vitro, increasing confidence that the observed effects are indeed mediated by TRPC4 and/or TRPC5 inhibition. Together, this experimental data set introduces a novel, high quality, small molecule antagonist of TRPC4 and TRPC5 containing channels and supports the targeting of TRPC4 and TRPC5 channels as a new mechanism of action for the treatment of psychiatric symptoms. PMID:29385160

  15. Tripeptidyl peptidase-I is essential for the degradation of sulphated cholecystokinin-8 (CCK-8S) by mouse brain lysosomes.

    PubMed

    Warburton, Michael J; Bernardini, Francesca

    2002-10-11

    Tripeptidyl peptidase-I (TPP-I) is a lysosomal exopeptidase which removes tripeptides from the N-terminus of small proteins. Mutations in the TPP-I gene result in a lethal neurodegenerative disease, late infantile neuronal ceroid lipofuscinosis. The pathological consequences of loss of activity are only manifested in neuronal cells suggesting that TPP-I may be involved in the lysosomal degradation of neuropeptides. We have investigated the degradation of the C-terminal octapeptide of sulphated cholecystokinin (CCK-8S) by a lysosomal fraction purified from mouse brain. Degradation products were characterised by reversed phase HPLC and mass spectrometry. Incubation of CCK-8S with brain lysosomes results in the sequential removal of the tripeptides DY(SO(3)H)M and Glycl-Tryptophanyl-Methionine from the N-terminus of CCK-8S. Degradation of CCK-8S in the isolated lysosomal fraction is completely prevented by Ala-Ala-Phe-chloromethyl ketone, an inhibitor of TPP-I. Butabindide, a specific inhibitor of TPP-II, a cell surface peptidase which also cleaves CCK-8S, inhibits TPP-I but kinetic studies indicate that the Ki for inhibition of TPP-I is 1000-fold higher than the Ki for the inhibition of TPP-II. Consequently, higher concentrations of butabindide are required for the inhibition of CCK-8S degradation by TPP-I than by TPP-II. These results indicate that whereas cell surface TPP-II is responsible for regulating extracellular CCK-8S levels, lysosomal TPP-I is largely responsible for the degradation of CCK-8S which enters the cell by receptor-mediated endocytosis.

  16. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis.

    PubMed

    Linnemann, Amelia K; Neuman, Joshua C; Battiola, Therese J; Wisinski, Jaclyn A; Kimple, Michelle E; Davis, Dawn Belt

    2015-07-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis.

  17. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis

    PubMed Central

    Linnemann, Amelia K.; Neuman, Joshua C.; Battiola, Therese J.; Wisinski, Jaclyn A.; Kimple, Michelle E.

    2015-01-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptinob/ob) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, G.Z.; Lu, L.; Qian, J.

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 ..mu..M, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. /sup 45/Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated /sup 45/Ca outflux. BPP was also capable of displacing the specific binding of (/sup 3/H)-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8more » ..mu..M) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.« less

  19. Analogs of sulfakinin-related peptides demonstrate reduction in food intake in the red flour beetle, Tribolium castaneum, while putative antagonists increase consumption

    USDA-ARS?s Scientific Manuscript database

    The insect sulfakinins (SKs) constitute a family of neuropeptides that display both structural and functional similarities to the mammalian hormones gastrin and cholecystokinin (CCK). As a multifunctional neuropeptide, SKs are involved in muscle contractions as well as food intake regulation in many...

  20. Pancreatitis-Induced Depletion of Syntaxin 2 Promotes Autophagy and Increases Basolateral Exocytosis.

    PubMed

    Dolai, Subhankar; Liang, Tao; Orabi, Abrahim I; Holmyard, Douglas; Xie, Li; Greitzer-Antes, Dafna; Kang, Youhou; Xie, Huanli; Javed, Tanveer A; Lam, Patrick P; Rubin, Deborah C; Thorn, Peter; Gaisano, Herbert Y

    2018-05-01

    Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-μm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2 +/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca 2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of supramaximal caerulein or a 6-week ethanol diet compared with control. Acini from STX2-KO mice had increased apical exocytosis after exposure to CCK-8, as well as increased basolateral exocytosis, which led to ectopic release of proteases. These increases in apical and basolateral exocytosis required increased formation of fusogenic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes, mediated by STX3 and STX4. STX2 bound ATG16L1 and prevented it from binding clathrin. Deletion of STX2 from acini increased binding of AT16L1 to clathrin, increasing formation of pre-autophagosomes and inducing autophagy. Induction of autophagy promoted the CCK-8-induced increase in autolysosome formation and the activation of trypsinogen. In studies of human pancreatic tissues and pancreata from STX2-KO and control mice, we found STX2 to block STX3- and STX4-mediated fusion of zymogen granules with the plasma membrane and exocytosis and prevent binding of ATG16L1 to clathrin, which contributes to induction of autophagy. Exposure of pancreatic tissues to CCK-8 or ethanol depletes acinar cells of STX2, increasing basolateral exocytosis and promoting autophagy induction, leading to activation of trypsinogen. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal “bitter taste” cue

    PubMed Central

    Davidson, Terry L.; Powley, Terry L.

    2011-01-01

    The discovery that cells in the gastrointestinal (GI) tract express the same molecular receptors and intracellular signaling components known to be involved in taste has generated great interest in potential functions of such post-oral “taste” receptors in the control of food intake. To determine whether taste cues in the GI tract are detected and can directly influence behavior, the present study used a microbehavioral analysis of intake, in which rats drank from lickometers that were programmed to simultaneously deliver a brief yoked infusion of a taste stimulus to the intestines. Specifically, in daily 30-min sessions, thirsty rats with indwelling intraduodenal catheters were trained to drink hypotonic (0.12 M) sodium chloride (NaCl) and simultaneously self-infuse a 0.12 M NaCl solution. Once trained, in a subsequent series of intestinal taste probe trials, rats reduced licking during a 6-min infusion period, when a bitter stimulus denatonium benzoate (DB; 10 mM) was added to the NaCl vehicle for infusion, apparently conditioning a mild taste aversion. Presentation of the DB in isomolar lithium chloride (LiCl) for intestinal infusions accelerated the development of the response across trials and strengthened the temporal resolution of the early licking suppression in response to the arrival of the DB in the intestine. In an experiment to evaluate whether CCK is involved as a paracrine signal in transducing the intestinal taste of DB, the CCK-1R antagonist devazepide partially blocked the response to intestinal DB. In contrast to their ability to detect and avoid the bitter taste in the intestine, rats did not modify their licking to saccharin intraduodenal probe infusions. The intestinal taste aversion paradigm developed here provides a sensitive and effective protocol for evaluating which tastants—and concentrations of tastants—in the lumen of the gut can control ingestion. PMID:21865540

  2. Effect of a new potent CCK antagonist, lorglumide, on caerulein- and bombesin-induced pancreatic secretion and growth in the rat.

    PubMed Central

    Scarpignato, C.; Varga, G.; Dobronyi, I.; Papp, M.

    1989-01-01

    1. The effect of lorglumide, a new potent cholecystokinin (CCK) antagonist, on pancreatic secretion and growth induced by caerulein and bombesin was studied in the rat. 2. Pancreatic exocrine secretion was studied both in vitro (isolated and perfused pancreatic segments) and in vivo (anaesthetized animals with cannulation of the common bile duct) whereas the trophic effect was investigated after short-term (5 days) administration of the peptides and/or lorglumide. 3. Both caerulein and bombesin stimulated amylase release from in vitro pancreatic segments in a concentration-dependent manner. Although the efficacy of both peptides was virtually identical, the potency of caerulein was higher than that of bombesin. Lorglumide displaced the concentration-response curves to caerulein to the right without affecting the maximum response, suggesting a competitive antagonism. The Schild plot analysis of data gave a straight line with a slope not significantly different from unity. The calculated pA2 for lorglumide was 7.31 +/- 0.45. The antagonist, however, was completely ineffective when tested against bombesin-induced amylase release. 4. In vivo experiments confirmed results from in vitro studies since lorglumide (5 and 10 mg kg-1) significantly reduced pancreatic exocrine secretion induced by caerulein without affecting the response to bombesin. 5. Administration of either peptide increased the weight of the pancreas, the total pancreatic protein and DNA, trypsin and amylase content. Lorglumide (10 mg kg-1), administered together with caerulein, reduced the peptide-induced increase in pancreatic weight, protein and enzyme content. On the contrary, when lorglumide was given together with bombesin, all the parameters that were examined were not altered by concomitant administration of the antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2470456

  3. Preclinical Evaluation of 68Ga-DOTA-Minigastrin for the Detection of Cholecystokinin-2/Gastrin Receptor–Positive Tumors

    PubMed Central

    Brom, Maarten; Joosten, Lieke; Laverman, Peter; Oyen, Wim J.G.; Béhé, Martin; Gotthardt, Martin; Boerman, Otto C.

    2011-01-01

    In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor–positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET–computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor–mediated uptake (p = .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor–positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor–positive tumors in humans. PMID:21439259

  4. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    PubMed

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration.

    PubMed

    Meyer, Nuala J; Reilly, John P; Anderson, Brian J; Palakshappa, Jessica A; Jones, Tiffanie K; Dunn, Thomas G; Shashaty, Michael G S; Feng, Rui; Christie, Jason D; Opal, Steven M

    2018-01-01

    Plasma interleukin-1 beta may influence sepsis mortality, yet recombinant human interleukin-1 receptor antagonist did not reduce mortality in randomized trials. We tested for heterogeneity in the treatment effect of recombinant human interleukin-1 receptor antagonist by baseline plasma interleukin-1 beta or interleukin-1 receptor antagonist concentration. Retrospective subgroup analysis of randomized controlled trial. Multicenter North American and European clinical trial. Five hundred twenty-nine subjects with sepsis and hypotension or hypoperfusion, representing 59% of the original trial population. Random assignment of placebo or recombinant human interleukin-1 receptor antagonist × 72 hours. We measured prerandomization plasma interleukin-1 beta and interleukin-1 receptor antagonist and tested for statistical interaction between recombinant human interleukin-1 receptor antagonist treatment and baseline plasma interleukin-1 receptor antagonist or interleukin-1 beta concentration on 28-day mortality. There was significant heterogeneity in the effect of recombinant human interleukin-1 receptor antagonist treatment by plasma interleukin-1 receptor antagonist concentration whether plasma interleukin-1 receptor antagonist was divided into deciles (interaction p = 0.046) or dichotomized (interaction p = 0.028). Interaction remained present across different predicted mortality levels. Among subjects with baseline plasma interleukin-1 receptor antagonist above 2,071 pg/mL (n = 283), recombinant human interleukin-1 receptor antagonist therapy reduced adjusted mortality from 45.4% to 34.3% (adjusted risk difference, -0.12; 95% CI, -0.23 to -0.01), p = 0.044. Mortality in subjects with plasma interleukin-1 receptor antagonist below 2,071 pg/mL was not reduced by recombinant human interleukin-1 receptor antagonist (adjusted risk difference, +0.07; 95% CI, -0.04 to +0.17), p = 0.230. Interaction between plasma interleukin-1 beta concentration and recombinant human interleukin-1 receptor antagonist treatment was not statistically significant. We report a heterogeneous effect of recombinant human interleukin-1 receptor antagonist on 28-day sepsis mortality that is potentially predictable by plasma interleukin-1 receptor antagonist in one trial. A precision clinical trial of recombinant human interleukin-1 receptor antagonist targeted to septic patients with high plasma interleukin-1 receptor antagonist may be worthy of consideration.

  6. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found inmore » only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.« less

  7. Emodin Inhibits ATP-Induced Proliferation and Migration by Suppressing P2Y Receptors in Human Lung Adenocarcinoma Cells.

    PubMed

    Wang, Xia; Li, Long; Guan, Ruijuan; Zhu, Danian; Song, Nana; Shen, Linlin

    2017-01-01

    Extracellular ATP performs multiple important functions via activation of P2 receptors on the cell surface. P2Y receptors play critical roles in ATP evoked response in human lung adenocarcinoma cells (A549 cells). Emodin is an anthraquinone derivative originally isolated from Chinese rhubarb, possesses anticancer properties. In this study we examined the inhibiting effects of emodin on proliferation, migration and epithelial-mesenchymal transition (EMT) by suppressing P2Y receptors-dependent Ca2+ increase and nuclear factor-κB (NF-KB) signaling in A549 cells. A549 cells were pretreated with emodin before stimulation with ATP for the indicated time. Then, intracellular Ca2+ concentration ([Ca2+]i) was measured by Fluo-8/AM staining. Cell proliferation and cell cycle progression were tested by CCK8 assay and flow cytometry In addition, wound healing and western blot were performed to determine cell migration and related protein levels (Bcl-2, Bax, claudin-1, NF-κB). Emodin blunted ATP/UTP-induced increase of [Ca2+]i and cell proliferation concentration-dependently Meanwhile, it decreased ATP-induced cells accumulation in the S phase. Furthermore, emodin altered protein abundance of Bcl-2, Bax and claudin-1 and attenuated EMT caused by ATP. Such ATP-induced cellular reactions were also inhibited by a nonselective P2Y receptors antagonist, suramin, in a similar way to emodin. Besides, emodin could inhibit activation of NF-κB, thus suppressed ATP-induced proliferation, migration and EMT. Our results demonstrated that emodin inhibits ATP-induced proliferation, migration, EMT by suppressing P2Y receptors-mediated [Ca2+]i increase and NF-κB signaling in A549 cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Attenuation of stress-induced gastric lesions by lansoprazole, PD-136450 and ranitidine in rats.

    PubMed

    Chandranath, S I; Bastaki, S M A; D'Souza, A; Adem, A; Singh, J

    2011-03-01

    Combining restraint with cold temperature (4°C) consistently induces gastric ulceration in rats after 3.5 h. The cold restraint-stress (CRS) method provides a suitable model for acute ulcer investigations. This study compares the antiulcer activities of lansoprazole (a proton pump inhibitor), PD-136450 (CCK(2)/gastrin receptor antagonist) and ranitidine (histamine H(2) receptor antagonist) on CRS-induced gastric ulcers in rats. The results have shown that lansoprazole, which is a potent anti-secretory agent, provides complete protection in this model of ulcer formation. The use of indomethacin pretreatment to inhibit the prostaglandin (PG) synthesis and N(G)-nitro L-arginine methyl ester (L-NAME) pretreatment to inhibit nitric oxide synthase did not alter the lansoprazole-induced inhibition of ulcer index obtained in the untreated Wistar rats indicating that these two systems were not involved in the activation of lansoprazole. PD-136450, an effective anti-secretory agent against gastrin- but not dimaprit-induced stimulation, evoked a dose-dependent inhibition of CRS-induced gastric ulcers. The results show that both PG and nitric oxide pathways can influence the inhibitory effect of PD-136450 against CRS-induced gastric ulcer. The antiulcer activities of both lansoprazole and PD-136450 were compared to that of ranitidine. The results showed that ranitidine was more potent than lansoprazole and PD-136450 in inhibiting CRS-induced gastric ulcers and its effect was shown to be influenced by PG as well as nitric oxide synthase. The results of this study have demonstrated that although lansoprazole, PD-136450 and ranitidine were protective against CRS-induced gastric ulcers, the antiulcer activities of PD-136450 and ranitidine involved both PG and nitric oxide pathways, while lansoprazole acted independently of these two systems during CRS.

  9. A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent Caenorhabditis elegans Behavior

    PubMed Central

    Bhattacharya, Raja; Touroutine, Denis; Barbagallo, Belinda; Climer, Jason; Lambert, Christopher M.; Clark, Christopher M.; Alkema, Mark J.; Francis, Michael M.

    2014-01-01

    An organism's ability to thrive in changing environmental conditions requires the capacity for making flexible behavioral responses. Here we show that, in the nematode Caenorhabditis elegans, foraging responses to changes in food availability require nlp-12, a homolog of the mammalian neuropeptide cholecystokinin (CCK). nlp-12 expression is limited to a single interneuron (DVA) that is postsynaptic to dopaminergic neurons involved in food-sensing, and presynaptic to locomotory control neurons. NLP-12 release from DVA is regulated through the D1-like dopamine receptor DOP-1, and both nlp-12 and dop-1 are required for normal local food searching responses. nlp-12/CCK overexpression recapitulates characteristics of local food searching, and DVA ablation or mutations disrupting muscle acetylcholine receptor function attenuate these effects. Conversely, nlp-12 deletion reverses behavioral and functional changes associated with genetically enhanced muscle acetylcholine receptor activity. Thus, our data suggest that dopamine-mediated sensory information about food availability shapes foraging in a context-dependent manner through peptide modulation of locomotory output. PMID:25167143

  10. Ex vivo human pancreatic slice preparations offer a valuable model for studying pancreatic exocrine biology.

    PubMed

    Liang, Tao; Dolai, Subhankar; Xie, Li; Winter, Erin; Orabi, Abrahim I; Karimian, Negar; Cosen-Binker, Laura I; Huang, Ya-Chi; Thorn, Peter; Cattral, Mark S; Gaisano, Herbert Y

    2017-04-07

    A genuine understanding of human exocrine pancreas biology and pathobiology has been hampered by a lack of suitable preparations and reliance on rodent models employing dispersed acini preparations. We have developed an organotypic slice preparation of the normal portions of human pancreas obtained from cancer resections. The preparation was assessed for physiologic and pathologic responses to the cholinergic agonist carbachol (Cch) and cholecystokinin (CCK-8), including 1) amylase secretion, 2) exocytosis, 3) intracellular Ca 2+ responses, 4) cytoplasmic autophagic vacuole formation, and 5) protease activation. Cch and CCK-8 both dose-dependently stimulated secretory responses from human pancreas slices similar to those previously observed in dispersed rodent acini. Confocal microscopy imaging showed that these responses were accounted for by efficient apical exocytosis at physiologic doses of both agonists and by apical blockade and redirection of exocytosis to the basolateral plasma membrane at supramaximal doses. The secretory responses and exocytotic events evoked by CCK-8 were mediated by CCK-A and not CCK-B receptors. Physiologic agonist doses evoked oscillatory Ca 2+ increases across the acini. Supraphysiologic doses induced formation of cytoplasmic autophagic vacuoles and activation of proteases (trypsin, chymotrypsin). Maximal atropine pretreatment that completely blocked all the Cch-evoked responses did not affect any of the CCK-8-evoked responses, indicating that rather than acting on the nerves within the pancreas slice, CCK cellular actions directly affected human acinar cells. Human pancreas slices represent excellent preparations to examine pancreatic cell biology and pathobiology and could help screen for potential treatments for human pancreatitis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A new genetic variant in the Sp1 binding cis-element of cholecystokinin gene promoter region and relationship to alcoholism.

    PubMed

    Harada, S; Okubo, T; Tsutsumi, M; Takase, S; Muramatsu, T

    1998-05-01

    Neuropeptide cholecystokinin (CCK) and the CCK receptors in the central nervous system mediate actions on increasing firings, anxiety, and nociceptions. Furthermore, CCK modulates the release of dopamine and dopamine-related behaviors in the mesolimbic pathway. In our study, genetic variation in the promoter and coding regions of the prepro-CCK gene were analyzed among 66 Japanese, 66 American Whites, 54 Chinese, and 41 Colombian natives. Two nucleotide sequence variants were found: a frequent mutation at nucleotide position -45 C to T involved in core sequence of Sp1 binding cis-element of the promoter region, and a C to T substitution at the 1662 position in intron 2. Analysis for the segregation study in 10 families of twins confirmed codominant heredity of two alleles. Distribution of genotypes and gene frequencies of 66 controls and 108 alcoholics in Japan presented that allelic variant T type in alcoholics was found in higher frequencies than that of controls, and distribution of these genotypes was significantly different between the both groups.

  12. Reduced mechanosensitivity of duodenal vagal afferent neurons after an acute switch from milk-based to plant-based diets in anaesthetized pigs.

    PubMed

    Bligny, D; Blat, S; Chauvin, A; Guérin, S; Malbert, C-H

    2005-06-01

    Acute changes in diet composition and/or origin alter gastric emptying and gastrointestinal motility. One of the hypotheses explaining these alterations involves changes in the sensitivity of duodenal vagal sensory neurons. The aim of this study was to evaluate the characteristics of multimodal duodenal vagal sensory neurons in 20 pigs feed either with milk-based or plant-based diets of identical caloric content. Twenty duodenal vagal afferents were recorded in anesthetized animal from the cervical vagus using the single fiber method. 10 pigs were fed with a milk-based diet (MD) for one month while the diet of the 10 other pigs was changed for plant-based diet (PD) the day preceding the recording session. The behavior of the receptors was tested in basal resting conditions and after challenges with duodenal intralipid and close intra-arterial injection of CCK, 5-HT or capsaicin with and without isovolumetric duodenal distensions at 20, 40 and 60 mmHg. All receptors were slowly adapting C type fiber with a receptor field located 6-7 cm distal to the pylorus. The rate of discharge during distension (20, 40 and 60 mmHg) combined with duodenal intralipid was significantly larger for MD compared with PD. Similarly, the rate of discharge observed during distensions performed with CCK and with 5-HT were greater for MD compared with PD while CCK and 5-HT without distension were equally stimulating for MD and PD. No significant difference was found between groups during capsaicin infusion irrespective of the stimulating pressure. In conclusion, a switch to plant-based diet, when compared to a milk-based diet, results in an overall decrease in mechanical sensitivity of duodenal neurons during lipid, 5HT and CCK challenges, but not in basal conditions or after capsaicin. This reduced sensitivity to distension may explain the diet-induced alteration of gastric emptying that is controlled primarily through a vago-vagal reflex.

  13. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    PubMed

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  14. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    PubMed

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  15. Effect of Roux-en-Y gastric bypass on the distribution and hormone expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes.

    PubMed

    Rhee, Nicolai A; Wahlgren, Camilla D; Pedersen, Jens; Mortensen, Brynjulf; Langholz, Ebbe; Wandall, Erik P; Friis, Steffen U; Vilmann, Peter; Paulsen, Sarah J; Kristiansen, Viggo B; Jelsing, Jacob; Dalbøge, Louise S; Poulsen, Steen S; Holst, Jens J; Vilsbøll, Tina; Knop, Filip K

    2015-10-01

    We studied the impact of Roux-en-Y gastric bypass (RYGB) on the density and hormonal gene expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes. Twelve patients with diabetes and 11 age- and BMI-matched controls underwent RYGB followed by enteroscopy ~10 months later. Mucosal biopsies taken during surgery and enteroscopy were immunohistochemically stained for glucagon-like peptide-1 (GLP-1), peptide YY (PYY), cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP) and prohormone convertase 2 (PC2) and the expression of GCG (encoding preproglucagon), PYY, CCK, GIP, GHRL (encoding ghrelin), SCT (encoding secretin), NTS (encoding neurotensin) and NR1H4 (encoding farnesoid X receptor) was evaluated. The density of cells immunoreactive for GLP-1, CCK and GIP increased in patients after RYGB and the density of those immunoreactive for GLP-1, PYY, CCK and PC2 increased in controls. In both groups, GHRL, SCT and GIP mRNA was reduced after RYGB while PYY, CCK, NTS and NR1H4 gene expression was unaltered. GCG mRNA was upregulated in both groups. Numerous alterations in the distribution of enteroendocrine cells and their expression of hormonal genes are seen after RYGB and include increased density of GLP-1-, PYY-, CCK-, GIP- and PC2-positive cells, reduced gene expression of GHRL, SCT and GIP and increased expression of GCG.

  16. Orexins control intestinal glucose transport by distinct neuronal, endocrine, and direct epithelial pathways.

    PubMed

    Ducroc, Robert; Voisin, Thierry; El Firar, Aadil; Laburthe, Marc

    2007-10-01

    Orexins are neuropeptides involved in energy homeostasis. We investigated the effect of orexin A (OxA) and orexin B (OxB) on intestinal glucose transport in the rat. Injection of orexins led to a decrease in the blood glucose level in oral glucose tolerance tests (OGTTs). Effects of orexins on glucose entry were analyzed in Ussing chambers using the Na(+)-dependent increase in short-circuit current (Isc) to quantify jejunal glucose transport. The rapid and marked increase in Isc induced by luminal glucose was inhibited by 10 nmol/l OxA or OxB (53 and 59%, respectively). Response curves to OxA and OxB were not significantly different with half-maximal inhibitory concentrations at 0.9 and 0.4 nmol/l, respectively. On the one hand, OxA-induced inhibition of Isc was reduced by the neuronal blocker tetrodotoxin (TTX) and by a cholecystokinin (CCK) 2R antagonist, indicating involvement of neuronal and endocrine CCK-releasing cells. The OX(1)R antagonist SB334867 had no effect on OxA-induced inhibition, which is likely to occur via a neuronal and/or endocrine OX(2)R. On the other hand, SB334867 induced a significant right shift of the concentration-effect curve for OxB. This OxB-preferring OX(1)R pathway was not sensitive to TTX or to CCKR antagonists, suggesting that OxB may act directly on enterocytic OX(1)R. These distinct effects of OxA and OxB are consistent with the expression of OX(1)R and OX(2)R mRNA in the epithelial and nonepithelial tissues, respectively. Our data delineate a new function for orexins as inhibitors of intestinal glucose absorption and provide a new basis for orexin-induced short-term control of energy homeostasis.

  17. Neurotransmitter-mediated anxiogenic action of PACAP-38 in rats.

    PubMed

    Telegdy, G; Adamik, A

    2015-03-15

    The action of PACAP-38 was studied by measuring the anxiogenic-anxiolytic behavior of rats in an elevated plus maze. PACAP-38 was administered into the lateral brain ventricle and the behavior of the animals was measured 3h later. The possible involvement of transmitters was measured by pretreating the animals with receptor blockers which alone did not influence the task, but in the doses used were effective with other neuropeptides. The receptor antagonist PACAP 6-38 (a PAC 1/VPAC2 receptor antagonist of PACAP-38 receptor), haloperidol (a non-selective dopamine receptor antagonist), phenoxybenzamine (an α1/α2β-adrenergic receptor antagonist), propranolol(a β-adrenergic receptor antagonist), bicuculline (a gamma-aminobutyric acid subunit A receptor antagonist), methysergide (a nonselective 5-HT2 serotonergic receptor antagonist), atropine (a nonselective muscarinic acetylcholine receptor antagonist), naloxone (a nonselective opioid receptor antagonist) and nitro-l-arginine which acts by blocking the enzyme nitric oxide synthase, thereby blocking the nitric oxide synthesis, were tested. The following parameters were measured: the time spent in open arms/the time spent in total entries. PACAP-38 decreased the ratio of time spent in open arms to the time spent in total entries, indicating anxiogenic action. The total number of entries was not altered significantly either by PACAP-38 or by the receptor blockers. The following receptor blockers diminished the action of PACAP-38: PACAP 6-38,haloperidol, methysergide, naloxone and nitro-l-arginine. Pretreatment with atropine, phenoxybenzamine, propranolol and bicuculline did not influence the action of PACAP-38 on the time spent in open arms. The results demonstrate that PACAP-38 administered into the lateral brain ventricle exerted anxiogenic action at 3 h following treatment. Pretreatment of the animals with various receptor blockers indicated that a nonselective dopaminergic receptor antagonist, 5HT2 serotonergic and opioid receptors, nitric oxide and PAC1 receptors are involved in the anxiogenic action induced by PACAP-38. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Molecular Mechanisms Underlying Individual Differences in Response to Stress in a Previously Validated Animal Model of PTSD

    DTIC Science & Technology

    2010-09-01

    Kaplan & Kotler , 1999; Cohen & Zohar, 2004; Cohen, Zohar and Matar, 2003; Cohen et al., 2005; Cohen et al. 2004), the proportion of...behavior in rats following chronic treatment with imipramine. Psychopharmacology (Berl), 110(1-2), 245-253. Cohen, H., Friedberg, S., Michael, M., Kotler ...Kaplan, Z., & Kotler , M. (1999). CCK-antagonists in a rat exposed to acute stress: implication for anxiety associated with post-traumatic stress disorder

  19. Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors.

    PubMed

    Darling, Rebecca A; Zhao, Huan; Kinch, Dallas; Li, Ai-Jun; Simasko, Steven M; Ritter, Sue

    2014-07-01

    β-mercaptoacetate (MA) is a drug known to block mitochondrial oxidation of medium- and long-chain fatty acids (FAs) and to stimulate feeding. Because MA-induced feeding is vagally dependent, it has been assumed that the feeding response is mediated by MA's antimetabolic action at a peripheral, vagally innervated site. However, MA's site of action has not yet been identified. Therefore, we used fluorescent calcium measurements in isolated neurons from rat nodose ganglia to determine whether MA has direct effects on vagal sensory neurons. We found that MA alone did not alter cytosolic calcium concentrations in nodose neurons. However, MA (60 μM to 6 mM) significantly decreased calcium responses to both linoleic acid (LA; 10 μM) and caprylic acid (C8; 10 μM) in all neurons responsive to LA and C8. GW9508 (40 μM), an agonist of the FA receptor, G protein-coupled receptor 40 (GPR40), also increased calcium levels almost exclusively in FA-responsive neurons. MA significantly inhibited this response to GW9508. MA did not inhibit calcium responses to serotonin, high K(+), or capsaicin, which do not utilize GPRs, or to CCK, which acts on a different GPR. GPR40 was detected in nodose ganglia by RT-PCR. Results suggest that FAs directly activate vagal sensory neurons via GPR40 and that MA antagonizes this effect. Thus, we propose that MA's nonmetabolic actions on GPR40 membrane receptors, expressed by multiple peripheral tissues in addition to the vagus nerve, may contribute to or mediate MA-induced stimulation of feeding. Copyright © 2014 the American Physiological Society.

  20. Chemokine receptor antagonists: part 2.

    PubMed

    Pease, James E; Horuk, Richard

    2009-02-01

    The first part of this two-part review discussed approaches to generating antagonists for some of the CC chemokine receptors, including CCR1, CCR2, CCR3, and CCR4. This second part of the series concludes the review by describing antagonists for CCR5, CCR8, CCR9, CXCR3, CXCR4, and promiscuous antagonists. Chemokine receptor antagonists have found mixed success as therapeutics. Although one antagonist--maraviroc, a CCR5 inhibitor to treat AIDS--has been registered as an approved drug, this is the only success so far. There have been many failures in the clinic and we discuss the idea of promiscuous receptor antagonists as an alternative approach.

  1. Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population.

    PubMed

    Miyasaka, K; Hosoya, H; Sekime, A; Ohta, M; Amono, H; Matsushita, S; Suzuki, K; Higuchi, S; Funakoshi, A

    2006-09-01

    Eating disorders (EDs) have a highly heterogeneous etiology and multiple genetic factors might contribute to their pathogenesis. Ghrelin, a novel growth hormone-releasing peptide, enhances appetite and increases food intake, and human ghrelin plasma levels are inversely correlated with body mass index. In the present study, we examined the 171T/C polymorphism of the ghrelin receptor (growth hormone secretagogue receptor, GHSR) gene in patients diagnosed with EDs, because the subjects having ghrelin gene polymorphism (Leu72Met) was not detected in a Japanese population, previously. In addition, beta3 adrenergic receptor gene polymorphism (Try64Arg) and cholecystokinin (CCK)-A receptor (R) gene polymorphism (-81A/G, -128G/T), which are both associated with obesity, were investigated. The subjects consisted of 228 Japanese patients with EDs [96 anorexia nervosa (AN), 116 bulimia nervosa (BN) and 16 not otherwise specified (NOS)]. The age- and gender-matched control group consisted of 284 unrelated Japanese subjects. The frequency of the CC type of the GHSR gene was significantly higher in BN subjects than in control subjects (chi(2) = 4.47, p = 0.035, odds ratio = 2.05, Bonferroni correction: p = 0.070), while the frequency in AN subjects was not different from that in controls. The distribution of neither beta3 adrenergic receptor gene nor CCK-AR polymorphism differed between EDs and control subjects. Therefore, the CC type of GHSR gene polymorphism (171T/C) is a risk factor for BN, but not for AN.

  2. Development of a cell-based qualitative assay for detection of neutralizing anti-human interleukin-1 receptor antagonist (hIL-1Ra) antibodies in rats.

    PubMed

    Gao, Jin; Li, Jingjing; Yang, Minmin; Wu, Mingyuan; Tu, Ping; Yu, Yan; Han, Wei

    2015-01-01

    To determine the incidence of the positive neutralizing anti-human interleukin receptor antagonist (anti-IL-1Ra), a novel assay based on the proliferation of human melanoma A375.S2 cells was developed and validated. In the presence of a growth-limiting concentration of IL-1β, A375.S2 cells were able to regain proliferation following the addition of IL-1Ra in a concentration-dependent manner. This dose-response effect enabled the validation of a standard curve for calculation of the concentration of IL-1Ra or, inversely, the concentration of neutralizing anti-IL-1Ra antibodies in cell culture medium or sera. The assay used CCK-8 as an indicator of proliferation. The dose-response relationship between rhIL-1Ra (dose range of 5-75 ng/ml rhIL-1Ra) and A375.S2 cell proliferation was sigmoidal and fitted a four-parameter logistic model. The percent coefficients of variation (%CVs) of quality control samples were 12.5 and 11.9% for intra-assay repeatability and 14.5 and 19.5% for inter-assay repeatability, while the total accuracy was in the range of 97.2-103.6%. For the neutralization assay, the optimal sample dilution factor was found to be 40-fold and the reasonable standard for positive and negative decision was calculated to be 59.4% neutralization rate. The %CVs of quality control samples were 12.7 and 24.0% for intra-assay repeatability and 11.6 and 30.0% for inter-assay repeatability. Analysis using the assay showed that rats could produce neutralizing anti-IL-1Ra antibodies after repeated intramuscular injection with rhIL-1Ra, and this response was not significantly dependent on the dose injected.

  3. Antagonist interaction with the human 5-HT7 receptor mediates the rapid and potent inhibition of non-G-protein-stimulated adenylate cyclase activity: a novel GPCR effect

    PubMed Central

    Klein, MT; Teitler, M

    2011-01-01

    BACKGROUND AND PURPOSE The human 5-hydroxytryptamine7 (h5-HT7) receptor is Gs-coupled and stimulates the production of the intracellular signalling molecule cAMP. Previously, we reported a novel property of the h5-HT7 receptor: pseudo-irreversible antagonists irreversibly inhibit forskolin-stimulated (non-receptor-mediated) cAMP production. Herein, we sought to determine if competitive antagonists also affect forskolin-stimulated activity and if this effect is common among other Gs-coupled receptors. EXPERIMENTAL APPROACH Recombinant cell lines expressing h5-HT7 receptors or other receptors of interest were briefly exposed to antagonists; cAMP production was then stimulated by forskolin and quantified by an immunocompetitive assay. KEY RESULTS In human embryonic kidney 293 cells stably expressing h5-HT7 receptors, all competitive antagonists inhibited nearly 100% of forskolin-stimulated cAMP production. This effect was insensitive to pertussis toxin, that is, not Gi/o-mediated. Potency to inhibit forskolin-stimulated activity strongly correlated with h5-HT7 binding affinity (r2= 0.91), indicating that the antagonists acted through h5-HT7 receptors to inhibit forskolin. Potency and maximal effects of clozapine, a prototypical competitive h5-HT7 antagonist, were unaffected by varying forskolin concentration. Antagonist interaction with h5-HT6, human β1, β2, and β3 adrenoceptors did not inhibit forskolin's activity. CONCLUSIONS AND IMPLICATIONS The inhibition of adenylate cyclase, as measured by forskolin's activity, is an underlying property of antagonist interaction with h5-HT7 receptors; however, this is not a common property of other Gs-coupled receptors. This phenomenon may be involved in the roles played by h5-HT7 receptors in human physiology. Development of h5-HT7 antagonists that do not elicit this effect would aid in the elucidation of its mechanisms and shed light on its possible physiological relevance. PMID:21198551

  4. The utility of ionotropic glutamate receptor antagonists in the treatment of nociception induced by epidural glutamate infusion in rats.

    PubMed

    Osgood, Doreen B; Harrington, William F; Kenney, Elizabeth V; Harrington, J Frederick

    2013-01-01

    The authors have previously demonstrated that human herniated disc material contains high concentrations of free glutamate. In an experimental model, elevated epidural glutamate concentrations in the lumbar spine can cause a focal hyperesthetic state. Rats underwent epidural glutamate infusion in the lumbar spine by a miniosmotic pump over a 72-hour period. Some rats underwent coinfusion with glutamate and ionotropic glutamate antagonists. Nociception was assessed by von Frey fibers and by assessment of glutamate receptor expression in the corresponding dorsal horn of the spinal cord. The kainic acid antagonist, UBP 301, decreased epidural glutamate-based hyperesthesia in a dose dependent manner. Concordant with these findings, there was significant decrease in kainate receptor expression in the dorsal horn. The N-Methyl-4-isoxazoleproionic acid (NMDA) antagonist Norketamine also significantly diminished hyperesthesia and decreased receptor expression in the dorsal horn. Both UBP 301, the kainic acid receptor antagonist and Norketamine, an NMDA receptor antagonist, dampened epidural glutamate-based nociception. Focal epidural injections of Kainate or NMDA receptor antagonists could be effective treatments for disc herniation-based lumbar radiculopathy.

  5. σ Receptor antagonist attenuation of methamphetamine-induced neurotoxicity is correlated to body temperature modulation.

    PubMed

    Robson, Matthew J; Seminerio, Michael J; McCurdy, Christopher R; Coop, Andrew; Matsumoto, Rae R

    2013-01-01

    Methamphetamine (METH) causes hyperthermia and dopaminergic neurotoxicity in the rodent striatum. METH interacts with σ receptors and σ receptor antagonists normally mitigate METH-induced hyperthermia and dopaminergic neurotoxicity. The present study was undertaken because in two experiments, pretreatment with σ receptor antagonists failed to attenuate METH-induced hyperthermia in mice. This allowed us to determine whether the ability of σ receptor antagonists (AZ66 and AC927) to mitigate METH-induced neurotoxicity depends upon their ability to modulate METH-induced hyperthermia. Mice were treated using a repeated dosing paradigm and body temperatures recorded. Striatal dopamine was measured one week post-treatment. The data indicate that the ability of σ receptor antagonists to attenuate METH-induced dopaminergic neurotoxicity is linked to their ability to block METH-induced hyperthermia. The ability of σ receptor antagonists to mitigate METH-induced hyperthermia may contribute to its neuroprotective actions.

  6. Anorexic action of deoxynivalenol in hypothalamus and intestine.

    PubMed

    Tominaga, Misa; Momonaka, Yuka; Yokose, Chihiro; Tadaishi, Miki; Shimizu, Makoto; Yamane, Takumi; Oishi, Yuichi; Kobayashi-Hattori, Kazuo

    2016-08-01

    Although deoxynivalenol (DON) suppresses food intake and subsequent weight gain, its contribution to anorexia mechanisms has not been fully clarified. Thus, we investigated the anorexic actions of DON in the hypothalamus and intestine, both organs related to appetite. When female B6C3F1 mice were orally exposed to different doses of DON, a drastic anorexic action was observed at a dose of 12.5 mg/kg body weight (bw) from 0 to 3 h after administration. Exposure to DON (12.5 mg/kg bw) for 3 h significantly increased the hypothalamic mRNA levels of anorexic pro-opiomelanocortin (POMC) and its downstream targets, including melanocortin 4 receptor, brain-derived neurotrophic factor, and tyrosine kinase receptor B; at the same time, orexigenic hormones were not affected. In addition, exposure to DON significantly elevated the hypothalamic mRNA levels of proinflammatory cytokines (IL-1β, TNF-α, and IL-6) and activated nuclear factor-kappa B (NF-κB), an upstream factor of POMC. These results suggest that DON-induced proinflammatory cytokines increased the POMC level via NF-κB activation. Moreover, exposure to DON significantly enhanced the gastrointestinal mRNA levels of anorexic cholecystokinin (CCK) and transient receptor potential ankyrin-1 channel (TRPA1), a possible target of DON; these findings suggest that DON induced anorexic action by increasing CCK production via TRPA1. Taken together, these results suggest that DON induces anorexic POMC, perhaps via NF-κB activation, by increasing proinflammatory cytokines in the hypothalamus and brings about CCK production, possibly through increasing intestinal TRPA1 expression, leading to anorexic actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. In vitro effects of bethanechol on specimens of intestinal smooth muscle obtained from the duodenum and jejunum of healthy dairy cows

    PubMed Central

    Pfeiffer, Julia B. R.; Mevissen, Meike; Steiner, Adrian; Portier, Christopher J.; Meylan, Mireille

    2009-01-01

    Objective To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. Sample Population Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. Procedures Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (Amax), and area under the curve (AUC) were evaluated. Results Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M3 antagonists (more commonly for basal tone than for Amax and AUC). The M2 receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M3 receptor antagonists were generally more potent than the M2 receptor antagonists. In a protection experiment, an M3 receptor antagonist was less potent than when used in combination with an M2 receptor antagonist. Receptor antagonists for M1 and M4 did not affect contractility variables. Conclusions and Clinical Relevance Bethanechol acting on muscarinic receptor subtypes M2 and M3 may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows. PMID:17331022

  8. Atypical sympathomimetic drug lerimazoline mediates contractile effects in rat aorta predominantly by 5-HT2A receptors.

    PubMed

    Rizvić, Eldina; Janković, Goran; Kostić-Rajačić, Slađana; Savić, Miroslav M

    2017-08-20

    Lerimazoline is a sympathomimetic drug that belongs to the imidazoline class of compounds, and is used as a nasal decongestant. Studies on lerimazoline are rare, and its pharmacological profile is not completely understood. Here, we analyzed the affinity of lerimazoline for dopamine receptor D2, serotonin 5-HT1A and 5-HT2A receptors and α1-adrenoceptor, and investigated lerimazoline contractile effects in isolated rat thoracic aorta. We also determined the effect of several antagonists on the contractile response to lerimazoline, including prazosin (α1-adrenoceptor antagonist), RX 821002 and rauwolscine (α2-adrenoceptor antagonists), JP 1302 (α2C-adrenoceptor antagonist), methiothepin (non-selective 5-HT receptor antagonist), SB 224289 (5-HT1B receptor antagonist), BRL 15572 (5-HT1D receptor antagonist), and ketanserin (5-HT2A receptor antagonist). Lerimazoline displayed high affinity for the 5-HT1A receptor (Ki = 162.5 nM), similar to the previously reported affinity for the 5-HT1D receptor. Binding affinity estimates (Ki) for α1, 5-HT2A, and D2 receptors were 6656, 4202 and 3437.5 nM, respectively (the literature reported Ki for 5-HT1B receptor is 3480 nM). Lerimazoline caused concentration-dependent contractions in 70% of preparations, varying in the range between 40% and 55% of the maximal contraction elicited by phenylephrine. While prazosin reduced the maximum contractile response to lerimazoline, rauwolscine showed a non-significant trend in reduction of the response. Both ketanserin (10 nM and 1 µM) and methiothepin strongly suppressed the maximum response to lerimazoline. Overall, our results suggest that 5-HT2A and, less distinctly, α1-adrenergic receptors are involved in the lerimazoline-induced contractions, which makes lerimazoline an "atypical" decongestant.

  9. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  10. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease

    PubMed Central

    Feng, Hong-Qiang; Weymouth, Nate D.; Rockey, Don C.

    2009-01-01

    Endothelin-1 (ET-1), a potent vasoactive peptide, plays an important role in the pathogenesis of liver disease and portal hypertension. Two major endothelin receptors (ET-A and ET-B) mediate biological effects, largely on the basis of their known downstream signaling pathways. We hypothesized that the different receptors are likely to mediate divergent effects in portal hypertensive mice. Liver fibrosis and cirrhosis and portal hypertension were induced in 8-wk-old male BALB/c mice by gavage with carbon tetrachloride (CCl4). Portal pressure was recorded acutely during intravenous infusion of endothelin receptor antagonists in normal or portal hypertensive mice. In vivo microscopy was used to monitor sinusoidal dynamics. Additionally, the effect of chronic exposure to endothelin antagonists was assessed in mice during induction of fibrosis and cirrhosis with CCl4 for 8 wk. Intravenous infusion of ET-A receptor antagonists into normal and cirrhotic mice reduced portal pressure whereas ET-B receptor antagonism increased portal pressure. A mixed endothelin receptor antagonist also significantly reduced portal pressure. Additionally, the ET-A receptor antagonist caused sinusoidal dilation, whereas the ET-B receptor antagonist caused sinusoidal constriction. Chronic administration of each the endothelin receptor antagonists during the induction of fibrosis and portal hypertension led to reduced fibrosis, a significant reduction in portal pressure, and altered sinusoidal dynamics relative to controls. Acute effects of endothelin receptor antagonists are likely directly on the hepatic and sinusoidal vasculature, whereas chronic endothelin receptor antagonism appears to be more complicated, likely affecting fibrogenesis and the hepatic microcirculation. The data imply a relationship between hepatic fibrogenesis or fibrosis and vasomotor responses. PMID:19299580

  11. Pancreatic acini possess endothelin receptors whose internalization is regulated by PLC-activating agents.

    PubMed

    Hildebrand, P; Mrozinski, J E; Mantey, S A; Patto, R J; Jensen, R T

    1993-05-01

    Endothelin-1 (ET-1) and ET-3 mRNA have been found in the pancreas. We investigated the ability of ET-1, ET-2, and ET-3 to interact with and alter dispersed rat pancreatic acinar cell function. Radiolabeled ETs bound in a time- and temperature-dependent fashion, which was specific and saturable. Analysis demonstrated two classes of receptors, one class (ETA receptor) had a high affinity for ET-1 but a low affinity for ET-3, and the other class (ETB receptor) had equally high affinities for ET-1 and ET-3. No specific receptor for ET-2 was identified. Pancreatic secretagogues that activate phospholipase C (PLC) inhibited binding of 125I-labeled ET-1 (125I-ET-1) or 125I-ET-3, whereas agents that act through adenosine 3',5'-cyclic monophosphate (cAMP) did not. A23187 had no effect on 125I-ET-1 or 125I-ET-3 binding, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate reduced binding. The effect of cholecystokinin octapeptide (CCK-8) was mediated through its own receptor. Stripping of surface bound ligand studies demonstrated that both 125I-labeled ET-1 and 125I-labeled ET-3 were rapidly internalized. CCK-8 decreased the internalization but did not change the amount of surface bound ligand. Endothelins neither stimulate nor alter changes in enzyme secretion, intracellular calcium, cAMP, or [3H]inositol trisphosphate (IP3). This study demonstrates the presence of ETA and ETB receptors on rat pancreatic acini; occupation of both receptors resulted in rapid internalization, which is regulated by PLC-activating secretagogues. Occupation of either ET receptor did not alter intracellular calcium, cAMP, IP3, or stimulate amylase release.

  12. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  14. Emerging drugs for neuropathic pain.

    PubMed

    Gilron, Ian; Dickenson, Anthony H

    2014-09-01

    Neuropathic pain is a costly and disabling condition, which affects up to 8% of the population. Available therapies often provide incomplete pain relief and treatment-related side effects are common. Preclinical neuropathic pain models have facilitated identification of several promising targets, which have progressed to human clinical phases of evaluation. A systematic database search yielded 25 new molecular entities with specified pharmacological mechanisms that have reached Phase II or III clinical trials. These include calcium channel antagonists, vanilloid receptor antagonists, potassium channel agonists, NMDA antagonists, novel opioid receptor agonists, histamine H3 receptor antagonists, a novel sodium channel antagonist, serotonin modulators, a novel acetylcholine receptor agonist, α-2b adrenoreceptor agonist, cannabinoid CB2 receptor agonist, nitric oxide synthase inhibitor, orexin receptor antagonist, angiotensin II 2 antagonist, imidazoline I2 receptor agonist, apoptosis inhibitor and fatty acid amide hydrolase inhibitor. Although the diversity of pharmacological mechanisms of interest emphasise the complexity of neuropathic pain transmission, the considerable number of agents under development reflect a continued enthusiasm in drug development for neuropathic pain. Ongoing enhancements in methodology of both preclinical and clinical research and closer translation in both directions are expected to more efficiently identify new agents, which will improve the management of neuropathic pain.

  15. Intragastric nutrient infusion reduces motivation for food in male and female rats.

    PubMed

    Maske, Calyn B; Loney, Gregory C; Lilly, Nicole; Terrill, Sarah J; Williams, Diana L

    2018-03-13

    The idea that gut-derived satiation signals influence food reward has recently gained traction, but this hypothesis is largely based on studies focused on neural circuitry, not the peripherally released signals. Here, we directly tested the hypothesis that intragastric (IG) nutrient infusion can suppress motivation for food. In a series of experiments, IG sucrose infusion (15 kcal) significantly and reliably reduced operant responding for a sucrose reward on a progressive ratio (PR) schedule. Moreover, food deprivation for 24 h before the test session did not prevent the suppressive effect of nutrients. The suppressive effect of IG sucrose on fixed ratio 5 (FR5) operant responding was also assessed as a comparison. The effect of IG nutrients to reduce motivation was not limited to sucrose; IG Ensure infusion (9.3 kcal) also significantly reduced PR operant responding for sucrose pellets. To verify that these effects are not secondary to the osmotic challenge of concentrated nutrients, we tested IG infusion of non-caloric saline solutions equiosmolar to 40% sucrose or Ensure, and found no effect. Finally, we focused on glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK) as candidate mediators for the effect of IG nutrients. Pretreatment with Exendin-9, a GLP-1R antagonist, delivered IP, significantly attenuated the ability of IG nutrients to suppress PR responding and breakpoint in males, but not females, whereas pretreatment with Devazepide, a CCKA receptor antagonist, failed to do so in both sexes. Together, these data support the idea that nutrient-induced satiation signals influence food reward, and may implicate GLP-1 in this process.

  16. Nonpeptide vasopressin antagonists: a new group of hormone blockers entering the scene.

    PubMed

    Mayinger, B; Hensen, J

    1999-01-01

    After the story of success of hormone blockers for catecholamines, aldosterone and angiotensin II and their successful implementation into clinical practice another endocrine cardiovascular system has come into focus. It has long been known, that the hormone vasopressin plays an important role in peripheral vasoconstriction, hypertension and in several disease conditions with dilutional hyponatremia in edematous disorders, like congestive heart failure, liver cirrhosis, SIADH and nephrotic syndrome. A series of orally active nonpeptide antagonists against the vasopressin receptor subtypes has recently been synthesized and is now under intensive examination. Nonpeptide V1a-receptor specific antagonists, OPC 21268 and SR 49059, nonpeptide V2-receptor specific antagonists, SR 121463 A and VPA 985, and combined V1a-/V2-receptor antagonists, OPC 31260 and YM 087, have become available for clinical research. AVP-V2-receptor antagonists lead to a dose-dependent diabetes insipidus in animals and man. The term aquaretic drugs (aquaretics) has been coined for these drugs to highlight their different mechanism compared to the saluretic diuretic furosemide. V1a-receptor antagonists might offer new therapeutic advantages in the treatment of vasoconstriction and hypertension. Combined V1a-/V2-receptor antagonists might be beneficial in the treatment of congestive heart failure. Early results are promising and now need to be confirmed in large clinical studies.

  17. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  18. CCK-58 Elicits Both Satiety and Satiation in Rats while CCK-8 Elicits Only Satiation

    PubMed Central

    Overduin, Joost; Gibbs, James; Cummings, David E.; Reeve, Joseph R.

    2014-01-01

    Reduction of food intake by exogenous cholecystokinin (CCK) has been demonstrated primarily for its short molecular form, CCK-8. Mounting evidence, however, implicates CCK-58 as a major physiologically active CCK form, with different neural and exocrine response profiles than CCK-8. In three studies, we compared meal-pattern effects of intraperitoneal injections CCK-8 vs. CCK-58 in undeprived male Sprague-Dawley rats consuming sweetened condensed milk. In study one, rats (N=10) received CCK-8, CCK-58 (0.45, 0.9, 1.8 and 3.6 nmole/kg) or vehicle before a 4-hour test-food presentation. At most doses, both CCK-8 and CCK-58 reduced meal size relative to vehicle. Meal-size reduction prompted a compensatory shortening of the intermeal interval (IMI) after CCK-8, but not after CCK-58, which uniquely increased the satiety ratio (IMI/size of the preceding meal). In the second study, lick patterns were monitored after administration of 0.9nmole/kg CCK-58, CCK-8 or vehicle. Lick cluster size, lick efficiency and interlick-interval distribution remained unaltered compared to vehicle, implying natural satiation, rather than illness, following both CCK forms. In study 3, threshold satiating doses of the two CCK forms were given at 5 and 30 minutes after meal termination, respectively. CCK 58, but not CCK-8 increased the intermeal interval and satiety ratio compared to vehicle. In conclusion, while CCK 58 and CCK-8 both stimulate satiation, thereby reducing meal size, CCK-58 consistently exerts a satiety effect, prolonging IMI. Given the physiological prominence of CCK-58, these results suggest that CCK’s role in food intake regulation may require reexamination. PMID:24468546

  19. The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist- than dopamine agonist-induced hyperactivity in mice.

    PubMed

    Carlsson, M L; Martin, P; Nilsson, M; Sorensen, S M; Carlsson, A; Waters, S; Waters, N

    1999-01-01

    The purpose of the present study was to compare the effectiveness of the selective 5-HT2A antagonist M100907 in different psychosis models. The classical neuroleptic haloperidol was used as reference compound. Two hyperdopaminergia and two hypoglutamatergia mouse models were used. Hyperdopaminergia was produced by the DA releaser d-amphetamine or the DA uptake inhibitor GBR 12909. Hypoglutamatergia was produced by the un-competitive NMDA receptor antagonist MK-801 or the competitive NMDA receptor antagonist D-CPPene. M100907 was found to counteract the locomotor stimulant effects of the NMDA receptor antagonists MK-801 and D-CPPene, but spontaneous locomotion, d-amphetamine- and GBR-12909-induced hyperactivity were not significantly affected. Haloperidol, on the other hand, antagonized both NMDA antagonist- and DA agonist-induced hyperactivity, as well as spontaneous locomotion in the highest dose used. Based on the present and previous results we draw the conclusion that 5-HT2A receptor antagonists are particularly effective against behavioural anomalies resulting from hypoglutamatergia of various origins. The clinical implications of our results and conclusions would be that a 5-HT2A receptor antagonist, due to i a the low side effect liability, could be the preferable treatment strategy in various disorders associated with hypoglutamatergia; such conditions might include schizophrenia, childhood autism and dementia disorders.

  20. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus.

    PubMed

    Dodd, Garron T; Worth, Amy A; Nunn, Nicolas; Korpal, Aaron K; Bechtold, David A; Allison, Margaret B; Myers, Martin G; Statnick, Michael A; Luckman, Simon M

    2014-10-07

    Leptin is a critical regulator of metabolism, which acts on brain receptors (Lepr) to reduce energy intake and increase energy expenditure. Some of the cellular pathways mediating leptin's anorectic actions are identified, but those mediating the thermogenic effects have proven more difficult to decipher. We define a population of neurons in the dorsomedial hypothalamic nucleus (DMH) containing the RFamide PrRP, which is activated by leptin. Disruption of Lepr selectively in these cells blocks thermogenic responses to leptin and causes obesity. A separate population of leptin-insensitive PrRP neurons in the brainstem is required, instead, for the satiating actions of the gut-derived hormone cholecystokinin (CCK). Global deletion of PrRP (in a loxSTOPlox-PrRP mouse) results in obesity and attenuated responses to leptin and CCK. Cre-recombinase-mediated reactivation of PrRP in brainstem rescues the anorectic actions of CCK, but reactivation in the hypothalamus is required to re-establish the thermogenic effect of leptin. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Cathepsin L plays a major role in cholecystokinin production in mouse brain cortex and in pituitary AtT-20 cells: protease gene knockout and inhibitor studies.

    PubMed

    Beinfeld, Margery C; Funkelstein, Lydiane; Foulon, Thierry; Cadel, Sandrine; Kitagawa, Kouki; Toneff, Thomas; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian

    2009-10-01

    Cholecystokinin (CCK) is a peptide neurotransmitter whose production requires proteolytic processing of the proCCK precursor to generate active CCK8 neuropeptide in brain. This study demonstrates the significant role of the cysteine protease cathepsin L for CCK8 production. In cathepsin L knockout (KO) mice, CCK8 levels were substantially reduced in brain cortex by an average of 75%. To evaluate the role of cathepsin L in producing CCK in the regulated secretory pathway of neuroendocrine cells, pituitary AtT-20 cells that stably produce CCK were treated with the specific cathepsin L inhibitor, CLIK-148. CLIK-148 inhibitor treatment resulted in decreased amounts of CCK secreted from the regulated secretory pathway of AtT-20 cells. CLIK-148 also reduced cellular levels of CCK9 (Arg-CCK8), consistent with CCK9 as an intermediate product of cathepsin L, shown by the decreased ratio of CCK9/CCK8. The decreased CCK9/CCK8 ratio also suggests a shift in the production to CCK8 over CCK9 during inhibition of cathepsin L. During reduction of the PC1/3 processing enzyme by siRNA, the ratio of CCK9/CCK8 was increased, suggesting a shift to the cathepsin L pathway for the production of CCK9. The changes in ratios of CCK9 compared to CCK8 are consistent with dual roles of the cathepsin L protease pathway that includes aminopeptidase B to remove NH2-terminal Arg or Lys, and the PC1/3 protease pathway. These results suggest that cathepsin L functions as a major protease responsible for CCK8 production in mouse brain cortex, and participates with PC1/3 for CCK8 production in pituitary cells.

  2. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  3. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  4. Chronic restraint stress impairs endocannabinoid mediated suppression of GABAergic signaling in the hippocampus of adult male rats.

    PubMed

    Hu, Wen; Zhang, Mingyue; Czéh, Boldizsár; Zhang, Weiqi; Flügge, Gabriele

    2011-07-15

    Chronic stress, a risk factor for the development of psychiatric disorders, is known to induce alterations in neuronal networks in many brain areas. Previous studies have shown that chronic stress changes the expression of the cannabinoid receptor 1 (CB1) in the brains of adult rats, but neurophysiological consequences of these changes remained unclear. Here we demonstrate that chronic restraint stress causes a dysfunction in CB1 mediated modulation of GABAergic transmission in the hippocampus. Using an established protocol, adult male Sprague Dawley rats were daily restrained for 21 days and whole-cell voltage clamp was performed at CA1 pyramidal neurons. When recording carbachol-evoked inhibitory postsynaptic currents (IPSCs) which presumably originate from CB1 expressing cholecystokinin (CCK) interneurons, we found that depolarization-induced suppression of inhibition (DSI) was impaired by the stress. DSI is a form of short-term plasticity at GABAergic synapses that is known to be CB1 mediated and has been suggested to be involved in hippocampal information encoding. Chronic stress attenuated the depolarization-induced suppression of the frequency of carbachol-evoked IPSCs. Incubation with a CB1 receptor antagonist prevented this DSI effect in control but not in chronically stressed animals. The stress-induced impairment of CB1-mediated short-term plasticity at GABAergic synapses may underlie cognitive deficits which are commonly observed in animal models of stress as well as in patients with stress-related psychiatric disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Pro12Ala PPAR γ2 gene polymorphism in PCOS women: the role of compounds regulating satiety.

    PubMed

    Bidzińska-Speichert, Bożena; Lenarcik, Agnieszka; Tworowska-Bardzińska, Urszula; Slęzak, Ryszard; Bednarek-Tupikowska, Grażyna; Milewicz, Andrzej

    2012-03-01

    Five to ten percent of women of reproductive age suffer from polycystic ovary syndrome (PCOS). Leptin, NPY, galanin, cholecystokinin (CCK) are involved in the regulation of eating behavior. PPARγ are receptors that are probably involved in hyperandrogenism. This study was designed to assess associations between the Pro12Ala PPARγ2 gene polymorphism and satiety factors in PCOS. Fifty-four PCOS women and 51 healthy women were studied. Leptin, NPY, galanin, CCK levels, and genetic studies to detect Pro12Ala PPARγ2 gene polymorphism were assessed. The leptin levels in the PCOS women carrying Pro12Ala genotype were higher than in those with Pro12Pro and Ala12Ala. The PCOS women had higher leptin and NPY levels and lower galanin levels. Obese PCOS patients had lower CCK levels. In the PCOS women, a single Ala allele may have a protective role as far as hyperleptinemia is concerned. The PCOS women may reveal a disrupted central leptin/NPY feedback loop with some shifts in food intake.

  6. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260).

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J M; Risvanis, J; Johnston, C I

    1994-03-01

    The development of nonpeptide orally active AVP analogues has provided a new tool with which to assess the physiological and pathophysiological role of vasopressin (AVP). We have previously characterised the nonpeptide vasopressin V1 receptor antagonist OPC-21268, and now report the in vitro characterisation of the nonpeptide V2 receptor antagonist OPC-31260 in the rat. OPC-31260 caused a concentration-dependent displacement of the selective AVP V2 receptor antagonist radioligand, [3H]desGly-NH2(9)[d(CH2)5, D-Ile2,Ile4]AVP from V2 receptors in rat kidney medulla membranes. The concentration of OPC-31260 that displaced 50% of specific AVP binding (IC50) was 20 +/- 2 nmol/l for renal V2 receptors. OPC-31260 also caused a concentration-dependent displacement of the selective AVP V1 receptor antagonist radioligand, [125I]-[d(CH2)5,sarcosine7]AVP from V1 receptors in both rat liver and kidney medulla membranes. The IC50 was 500 +/- 30 nmol/l for both renal and liver V1 receptors. After oral administration to rats, OPC-31260 was an effective inhibitor of AVP at renal V2 and liver V1 receptors in a time-dependent manner. In vitro binding kinetic studies showed that OPC-31260 was a competitive antagonist at both the renal V2 receptor and the hepatic V1 receptor. OPC-31260 is a nonpeptide, orally effective competitive inhibitor of AVP with a V2:V1 receptor selectivity ratio of 25:1 indicating relative V2 receptor selectivity.

  7. Opiate antagonist prevents μ- and δ-opiate receptor dimerization to facilitate ability of agonist to control ethanol-altered natural killer cell functions and mammary tumor growth.

    PubMed

    Sarkar, Dipak K; Sengupta, Amitabha; Zhang, Changqing; Boyadjieva, Nadka; Murugan, Sengottuvelan

    2012-05-11

    In the natural killer (NK) cells, δ-opiate receptor (DOR) and μ-opioid receptor (MOR) interact in a feedback manner to regulate cytolytic function with an unknown mechanism. Using RNK16 cells, a rat NK cell line, we show that MOR and DOR monomer and dimer proteins existed in these cells and that chronic treatment with a receptor antagonist reduced protein levels of the targeted receptor but increased levels of opposing receptor monomer and homodimer. The opposing receptor-enhancing effects of MOR and DOR antagonists were abolished following receptor gene knockdown by siRNA. Ethanol treatment increased MOR and DOR heterodimers while it decreased the cellular levels of MOR and DOR monomers and homodimers. The opioid receptor homodimerization was associated with an increased receptor binding, and heterodimerization was associated with a decreased receptor binding and the production of cytotoxic factors. Similarly, in vivo, opioid receptor dimerization, ligand binding of receptors, and cell function in immune cells were promoted by chronic treatment with an opiate antagonist but suppressed by chronic ethanol feeding. Additionally, a combined treatment of an MOR antagonist and a DOR agonist was able to reverse the immune suppressive effect of ethanol and reduce the growth and progression of mammary tumors in rats. These data identify a role of receptor dimerization in the mechanism of DOR and MOR feedback interaction in NK cells, and they further elucidate the potential for the use of a combined opioid antagonist and agonist therapy for the treatment of immune incompetence and cancer and alcohol-related diseases.

  8. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  9. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  10. Blunted sympathoinhibitory responses in obesity-related hypertension are due to aberrant central but not peripheral signalling mechanisms

    PubMed Central

    How, Jackie M Y; Wardak, Suhail A; Ameer, Shaik I; Davey, Rachel A; Sartor, Daniela M

    2014-01-01

    The gut hormone cholecystokinin (CCK) acts at subdiaphragmatic vagal afferents to induce renal and splanchnic sympathoinhibition and vasodilatation, via reflex inhibition of a subclass of cardiovascular-controlling neurons in the rostroventrolateral medulla (RVLM). These sympathoinhibitory and vasodilator responses are blunted in obese, hypertensive rats and our aim in the present study was to determine whether this is attributable to (i) altered sensitivity of presympathetic vasomotor RVLM neurons, and (ii) aberrant peripheral or central signalling mechanisms. Using a diet-induced obesity model, male Sprague–Dawley rats exhibited either an obesity-prone (OP) or obesity-resistant (OR) phenotype when placed on a medium high fat diet for 13–15 weeks; control animals were placed on a low fat diet. OP animals had elevated resting arterial pressure compared to OR/control animals (P < 0.05). Barosensitivity of RVLM neurons was significantly attenuated in OP animals (P < 0.05), suggesting altered baroreflex gain. CCK induced inhibitory responses in RVLM neurons of OR/control animals but not OP animals. Subdiaphragmatic vagal nerve responsiveness to CCK and CCK1 receptor mRNA expression in nodose ganglia did not differ between the groups, but CCK induced significantly less Fos-like immunoreactivity in both the nucleus of the solitary tract and the caudal ventrolateral medulla of OP animals compared to controls (P < 0.05). These results suggest that blunted sympathoinhibitory and vasodilator responses in obesity-related hypertension are due to alterations in RVLM neuronal responses, resulting from aberrant central but not peripheral signalling mechanisms. In obesity, blunted sympathoinhibitory mechanisms may lead to increased regional vascular resistance and contribute to the development of hypertension. PMID:24492842

  11. Lesions of the area postrema and underlying solitary nucleus fail to attenuate the inhibition of feeding produced by systemic injections of cholecystokinin in Syrian hamsters.

    PubMed

    Miceli, M O; Post, C A; van der Kooy, D

    1986-01-01

    A large body of evidence indicates that the intestinal hormone cholecystokinin (CCK) may serve as a signal for satiety. The abdominal vagus has been shown to be important for the satiety response to exogenous, and by inference, endogenous, CCK in rats and hamsters. Thus, it appears that stimulation of CCK receptors on afferent fibers of the abdominal vagus activates a gut-brain pathway to signal satiety. The present study was undertaken to further trace this viscerosensory pathway by examining food intake after administration of one of two doses (2.0 and 8.0 micrograms/kg) of CCK-octapeptide to intact hamsters and to hamsters sustaining lesions of the area postrema (AP) and underlying nucleus of the solitary tract (NST), regions containing neurons postsynaptic to vagal afferent fibers. As lesions of the AP/NST result in many alterations in ingestive behaviour and body weight regulation in rats, various aspects of feeding and drinking behaviour (spontaneous food intake, body weight maintenance, and responsiveness to a palatable drinking solution and osmotic stimulation) were also examined in lesioned hamsters. Aside from producing transient hypophagia and weight loss immediately after surgery, AP/NST lesions had no effects on these various parameters of ingestive behaviour. The lack of lesion effects on these particular parameters may be explained on the basis that hamsters are generally unresponsive to many of the stimuli for feeding and drinking which purportedly act on the vagus and/or AP/NST. Hamsters with AP/NST lesions were as responsive to the two tested doses of CCK as intact animals.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  13. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    PubMed Central

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT2A/C antagonist ritanserin and the selective 5-HT2A antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT2A receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. PMID:20361986

  14. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  15. Melanocortin Antagonist Tetrapeptides with Minimal Agonist Activity at the Mouse Melanocortin-3 Receptor

    PubMed Central

    2014-01-01

    The melanocortin system regulates many important functions in the body. There are five melanocortin G protein-coupled receptor subtypes known to date. Herein, we report a structure–activity relationship (SAR) study of a tetrapeptide lead discovered through a double substitution strategy at the melanocortin core His-Phe-Arg-Trp sequence. Several compounds were identified with micromolar agonist activity at the mouse melanocortin-1 (mMC1R) and mouse melanocortin-5 receptor (mMC5R) subtypes, weak antagonist activity at the mouse melanocortin-3 receptor (mMC3R), and potent antagonist activity at the mouse melanocortin-4 receptor (mMC4R). Two compounds (2 and 3) were nanomolar mMC4R antagonists with no mMC3R antagonist activity observed. Additionally, we identified three tetrapeptide MC3R antagonists (1, 6, and 7) that possess minimal mMC3R agonist activity only at 100 μM, not commonly observed for mMC3R/mMC4R antagonists. These novel molecular templates have the potential as molecular probes to better differentiate the roles of the centrally expressed MC3 and MC4 receptors. PMID:25699138

  16. Shifting physician prescribing to a preferred histamine-2-receptor antagonist. Effects of a multifactorial intervention in a mixed-model health maintenance organization.

    PubMed

    Brufsky, J W; Ross-Degnan, D; Calabrese, D; Gao, X; Soumerai, S B

    1998-03-01

    This study was undertaken to determine whether a program of education, therapeutic reevaluation of eligible patients, and performance feedback could shift prescribing to cimetidine from other histamine-2 receptor antagonists, which commonly are used in the management of ulcers and reflux, and reduce costs without increasing rates of ulcer-related hospital admissions. This study used an interrupted monthly time series with comparison series in a large mixed-model health maintenance organization. Physicians employed in health centers (staff model) and physicians in independent medical groups contracting to provide health maintenance organization services (group model) participated. The comparative percentage prescribed of specific histamine-2 receptor antagonists (market share), total histamine-2 receptor antagonist prescribing, cost per histamine-2 receptor antagonist prescription, and the rate of hospitalization for gastrointestinal illness were assessed. In the staff model, therapeutic reevaluation resulted in a sudden increase in market share of the preferred histamine-2 receptor antagonist cimetidine (+53.8%) and a sudden decrease in ranitidine (-44.7%) and famotidine (-4.8%); subsequently, cimetidine market share grew by 1.1% per month. In the group model, therapeutic reevaluation resulted in increased cimetidine market share (+9.7%) and decreased prescribing of other histamine-2 receptor antagonists (ranitidine -11.6%; famotidine -1.2%). Performance feedback did not result in further changes in prescribing in either setting. Use of omeprazole, an expensive alternative, essentially was unchanged by the interventions, as were overall histamine-2 receptor antagonist prescribing and hospital admissions for gastrointestinal illnesses. This intervention, which cost approximately $60,000 to implement, resulted in estimated annual savings in histamine-2 receptor antagonist expenditures of $1.06 million. Annual savings in histamine-2 receptor antagonist expenditures after this multifaceted intervention were more than implementation costs, with no discernible effects on numbers of hospitalizations. The magnitude of effect and cost savings were much greater in the staff model; organizational factors and economic incentives may have contributed to these differences. More research is needed to determine the generalizability of this approach to other technologies and managed care settings.

  17. The Effect of Estradiol on the Growth Plate Chondrocytes of Limb and Spine from Postnatal Mice in vitro: The Role of Estrogen-Receptor and Estradiol Concentration.

    PubMed

    Shi, Sheng; Zheng, Shuang; Li, Xin-Feng; Liu, Zu-De

    2017-01-01

    Objectives: Skeletal development is a complex process. Little is known about the different response of limb or spine growth plate chondrocytes (LGP or SGP) to the estrogen level and the role of estrogen receptor (ER) during postnatal stage. Methods: LGP and SGP chondrocytes were isolated from 50 one-week mice and treated with different concentrations of 17β-estradiol. Cell viability was measured by cell counting kit-8 (CCK-8). The expression of collagen II and X were evaluated by real-time PCR and Western blotting. Then, the response of LGP or SGP chondrocyte after with or without estradiol and specific ER antagonists to block the effect of ERs were also measured by Western blotting and immunofluorescence. Results: Estradiol promoted the chondrogensis of the chondrocytes in vitro and achieved the maximal expression of type II collagen at the dose of 10 -7 M. Additionally, the regulatory effect of estradiol on the chondrogenesis can be mainly relied on ERα. The LGP chondrocytes were more sensitive to the estradiol treatment than SGP in the expression of type II collagen. Conclusions: Estrogen at a pharmacological concentration (10 -7 M) could stimulate the maximal production of type II collagen in the growth plate chondrocytes in vitro, which exerts its activity mainly through ERα in the chondrogenesis. Furthermore, the LGP chondrocytes were more sensitive to the estradiol treatment than SGP in the chondrogenesis.

  18. Endothelin ETA Receptor Blockade, by Activating ETB Receptors, Increases Vascular Permeability and Induces Exaggerated Fluid Retention.

    PubMed

    Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine

    2017-05-01

    Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease even in the absence of signs of fluid retention. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  20. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    PubMed

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine receptor-2 antagonists, but the survival benefit of 0.0167% favored proton pump inhibitors. Histamine receptor-2 antagonist therapy appears to reduce costs with survival benefit comparable to proton pump inhibitor therapy for stress ulcer prophylaxis. Ventilator-associated pneumonia and bleed are the variables most affecting these outcomes. The uncertainty in the findings justifies a prospective trial.

  1. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide.

    PubMed

    Sanna, Fabrizio; Bratzu, Jessica; Argiolas, Antonio; Melis, Maria Rosaria

    2017-11-01

    Oxytocin (5-100ng), but not Arg 8 -vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH 2 ) 5 Tyr(Me) 2 -Orn 8 -vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABA A receptor antagonist, phaclofen (5μg), a GABA B receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5-HT3A receptors due to the action of flavonoids

    PubMed Central

    Herbrechter, Robin; Ziemba, Paul M.; Hoffmann, Katrin M.; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-01-01

    The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g., setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3Areceptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonism of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (-)-liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (-)-liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito. PMID:26191003

  3. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  4. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  5. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews.

    PubMed

    Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 µL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development.

  6. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews

    PubMed Central

    Ward, Alexander H.; Siegwart, John T.; Frost, Michael R.; Norton, Thomas T.

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 μL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development. PMID:28304244

  7. The Affinity of D2-Like Dopamine Receptor Antagonists Determines the Time to Maximal Effect on Cocaine Self-Administration

    PubMed Central

    Tabet, Michael R.; Norman, Mantana K.; Fey, Brittney K.; Tsibulsky, Vladimir L.; Millard, Ronald W.

    2011-01-01

    Differences in the time to maximal effect (Tmax) of a series of dopamine receptor antagonists on the self-administration of cocaine are not consistent with their lipophilicity (octanol-water partition coefficients at pH 7.4) and expected rapid entry into the brain after intravenous injection. It was hypothesized that the Tmax reflects the time required for maximal occupancy of receptors, which would occur as equilibrium was approached. If so, the Tmax should be related to the affinity for the relevant receptor population. This hypothesis was tested using a series of nine antagonists having a 2500-fold range of Ki or Kd values for D2-like dopamine receptors. Rats self-administered cocaine at regular intervals and then were injected intravenously with a dose of antagonist, and the self-administration of cocaine was continued for 6 to 10 h. The level of cocaine at the time of every self-administration (satiety threshold) was calculated throughout the session. The satiety threshold was stable before the injection of antagonist and then increased approximately 3-fold over the baseline value at doses of antagonists selected to produce this approximately equivalent maximal magnitude of effect (maximum increase in the equiactive cocaine concentration, satiety threshold; Cmax). Despite the similar Cmax, the mean Tmax varied between 5 and 157 min across this series of antagonists. Furthermore, there was a strong and significant correlation between the in vivo Tmax values for each antagonist and the affinity for D2-like dopamine receptors measured in vitro. It is concluded that the cocaine self-administration paradigm offers a reliable and predictive bioassay for measuring the affinity of a competitive antagonist for D2-like dopamine receptors. PMID:21606176

  8. External pH changes affect NMDA-evoked and spontaneous release of cholecystokinin, somatostatin and noradrenaline from rat cerebrocortical nerve endings.

    PubMed

    Gemignani, Anita; Paudice, Paolo; Longordo, Fabio; Raiteri, Maurizio

    2004-10-01

    It was previously reported that the K+-evoked release of somatostatin-like immunoreactivity (SRIF-LI) and of cholecystokinin-like immunoreactivity (CCK-LI) from superfused rat cerebrocortical synaptosomes can be enhanced by NMDA or D-serine alone. We here studied the effects of extraterminal pH changes on SRIF-LI and CCK-LI release. Lowering pH from 7.4 to 6.9 or 6.4 abolished the effects of NMDA or D-serine on the K+-evoked peptide release. Identical results were obtained when external pH was raised to 8 or 8.7. Sudden alkalinization of the superfusion medium, in absence of K+-depolarization, induced SRIF-LI or CCK-LI release which was insensitive to NMDA. Based on experiments in Ca2+-free medium and with voltage-sensitive Ca2+ channel (VSCC) blockers, the pH 8.7-induced release of SRIF-LI and CCK-LI was only in part (30-50%) dependent on external Ca2+ and Ca2+ channel activation. In contrast, the alkalinization-evoked release of [3H]noradrenaline was highly sensitive to external Ca2+ removal and to blockade of Ca2+ channels with omega-conotoxins. The pH 8.7-evoked SRIF-LI and CCK-LI was about halved in synaptosomes intoxicated with botulinum toxin C1. The results suggest that the pH-sensitive NMDA receptors mediating somatostatin and cholecystokinin release contain NR1 subunits lacking the exon-5 cassette. Alkalinization represents a novel releasing stimulus which elicits neuropeptide release in part by conventional exocytosis and largely by an external Ca2+-independent mechanism. Differently, the release of noradrenaline provoked by alkalinization occurs entirely by conventional exocytosis.

  9. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia.

    PubMed

    Jentsch, J D; Roth, R H

    1999-03-01

    Administration of noncompetitive NMDA/glutamate receptor antagonists, such as phencyclidine (PCP) and ketamine, to humans induces a broad range of schizophrenic-like symptomatology, findings that have contributed to a hypoglutamatergic hypothesis of schizophrenia. Moreover, a history of experimental investigations of the effects of these drugs in animals suggests that NMDA receptor antagonists may model some behavioral symptoms of schizophrenia in nonhuman subjects. In this review, the usefulness of PCP administration as a potential animal model of schizophrenia is considered. To support the contention that NMDA receptor antagonist administration represents a viable model of schizophrenia, the behavioral and neurobiological effects of these drugs are discussed, especially with regard to differing profiles following single-dose and long-term exposure. The neurochemical effects of NMDA receptor antagonist administration are argued to support a neurobiological hypothesis of schizophrenia, which includes pathophysiology within several neurotransmitter systems, manifested in behavioral pathology. Future directions for the application of NMDA receptor antagonist models of schizophrenia to preclinical and pathophysiological research are offered.

  10. A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1.

    PubMed

    Patterson, James T; Ottaway, Nickki; Gelfanov, Vasily M; Smiley, David L; Perez-Tilve, Diego; Pfluger, Paul T; Tschöp, Matthias H; Dimarchi, Richard D

    2011-02-18

    Ex-4 (9-39)a is a well characterized GLP-1 receptor antagonist that suffers from two notable limitations, its nonhuman amino acid sequence and its relatively short in vivo duration of action. Comparable N-terminal shortening of human GLP-1 lessens agonism but does not provide a high potency antagonist. Through a series of GLP-1/Ex-4 hybrid peptides, the minimal structural changes required to generate a pure GLP-1-based antagonist were identified as Glu16, Val19, and Arg20, yielding an antagonist of approximately 3-fold greater in vitro potency compared with Ex-4 (9-39)a. The structural basis of antagonism appears to result from stabilization of the α helix combined with enhanced electrostatic and hydrophobic interactions with the extracellular domain of the receptor. Site-specific acylation of the human-based antagonist yielded a peptide of increased potency as a GLP-1 receptor antagonist and 10-fold greater selectivity relative to the GIP receptor. The acylated antagonist demonstrated sufficient duration of action to maintain inhibitory activity when administered as a daily subcutaneous injection. The sustained pharmacokinetics and enhanced human sequence combine to form an antagonist optimized for clinical study. Daily administration of this antagonist by subcutaneous injection to diet-induced obese mice for 1 week caused a significant increase in food intake, body weight, and glucose intolerance, demonstrating endogenous GLP-1 as a relevant hormone in mammalian energy balance in the obese state.

  11. Adenosinergic modulation of the discriminative-stimulus effects of methamphetamine in rats.

    PubMed

    Munzar, Patrik; Justinova, Zuzana; Kutkat, Scott W; Ferré, Sergi; Goldberg, Steven R

    2002-06-01

    A(1) and A(2A) adenosine receptors are co-localized with dopamine D(1) and D(2) receptors, respectively, and their stimulation attenuates dopaminergic functioning. To test whether adenosine antagonists with different selectivities for A(1) and A(2A) receptors mimic the discriminative-stimulus effects of dopamine releaser methamphetamine. Effects of the A(1) antagonist DPCPX, the preferential A(2A) antagonist DMPX and the non-selective adenosine antagonist caffeine were evaluated in Sprague-Dawley rats trained to discriminate 1.0 mg/kg, IP, methamphetamine from saline under a fixed-ratio 10 schedule of food presentation. The A(1) antagonist DPCPX (1.0-10.0 mg/kg) failed to substitute for methamphetamine. However, 5.6 mg/kg DPCPX shifted the methamphetamine dose-response curve to the left. The A(2A) antagonist DMPX (1.8-18.0 mg/kg) produced about 70% methamphetamine-appropriate responding and the non-selective antagonist caffeine (3.0-56.0 mg/kg) about 50% methamphetamine-appropriate responding at the highest tested doses. Both DMPX (5.6 mg/kg) and caffeine (30.0 mg/kg) shifted the methamphetamine dose-response curve to the left. Methamphetamine-like effects of DMPX were blocked fully by the D(2) antagonist spiperone (0.18 mg/kg) and partially by the D(1) antagonist SCH-23390 (0.018 mg/kg). Antagonism at A(2A) adenosine receptors directly mimics the discriminative-stimulus effects of methamphetamine through the interaction with dopamine receptors. Antagonism at A(1) adenosine receptors potentiates effects of lower methamphetamine doses and thus plays a rather indirect, modulatory role.

  12. Preclinical and clinical characterization of the selective 5-HT(1A) receptor antagonist DU-125530 for antidepressant treatment.

    PubMed

    Scorza, M C; Lladó-Pelfort, L; Oller, S; Cortés, R; Puigdemont, D; Portella, M J; Pérez-Egea, R; Alvarez, E; Celada, P; Pérez, V; Artigas, F

    2012-11-01

    The antidepressant efficacy of selective 5-HT reuptake inhibitors (SSRI) and other 5-HT-enhancing drugs is compromised by a negative feedback mechanism involving 5-HT(1A) autoreceptor activation by the excess 5-HT produced by these drugs in the somatodendritic region of 5-HT neurones. 5-HT(1A) receptor antagonists augment antidepressant-like effects in rodents by preventing this negative feedback, and the mixed β-adrenoceptor/5-HT(1A) receptor antagonist pindolol improves clinical antidepressant effects by preferentially interacting with 5-HT(1A) autoreceptors. However, it is unclear whether 5-HT(1A) receptor antagonists not discriminating between pre- and post-synaptic 5-HT(1A) receptors would be clinically effective. We characterized the pharmacological properties of the 5-HT(1A) receptor antagonist DU-125530 using receptor autoradiography, intracerebral microdialysis and electrophysiological recordings. Its capacity to accelerate/enhance the clinical effects of fluoxetine was assessed in a double-blind, randomized, 6 week placebo-controlled trial in 50 patients with major depression (clinicaltrials.gov identifier NCT01119430). DU-125530 showed equal (low nM) potency to displace agonist and antagonist binding to pre- and post-synaptic 5-HT(1A) receptors in rat and human brain. It antagonized suppression of 5-hydroxytryptaminergic activity evoked by 8-OH-DPAT and SSRIs in vivo. DU-125530 augmented SSRI-induced increases in extracellular 5-HT as effectively as in mice lacking 5-HT(1A) receptors, indicating a silent, maximal occupancy of pre-synaptic 5-HT(1A) receptors at the dose used. However, DU-125530 addition to fluoxetine did not accelerate nor augment its antidepressant effects. DU-125530 is an excellent pre- and post-synaptic 5-HT(1A) receptor antagonist. However, blockade of post-synaptic 5- HT(1A) receptors by DU-125530 cancels benefits obtained by enhancing pre-synaptic 5-hydroxytryptaminergic function. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.

    PubMed

    Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L

    2015-10-08

    Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.

  14. Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT₁ receptor antagonists.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Zhou, Zhi-Ming; Li, Zhi-Huai; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2012-07-15

    A series of 6-substituted carbamoyl benzimidazoles were designed and synthesised as new nonpeptidic angiotensin II AT(1) receptor antagonists. The preliminary pharmacological evaluation revealed a nanomolar AT(1) receptor binding affinity for all compounds in the series, and a potent antagonistic activity in an isolated rabbit aortic strip functional assay for compounds 6f, 6g, 6h and 6k was also demonstrated. Furthermore, evaluation in spontaneous hypertensive rats and a preliminary toxicity evaluation showed that compound 6g is an orally active AT(1) receptor antagonist with low toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics.

    PubMed

    Bradford, Andrea M; Savage, Kevin M; Jones, Declan N C; Kalinichev, Mikhail

    2010-10-01

    We evaluated locomotor hyperactivity induced in BALB/C mice by an N-methyl-D-aspartate receptor antagonist MK-801 as an assay for the detection of antipsychotic drugs. We assessed the effects of antipsychotic drugs to validate the assay (study 1), selective dopamine and serotonin ligands for pharmacological characterisation of the model (study 2) and a number of compounds with efficacy in models of schizophrenia to understand the predictive validity of the model (study 3). Adult males (n  = 9/group) were pretreated with a test compound, habituated to locomotor activity cages before receiving MK-801 (0.32 mg/kg) and activity recorded for a further 75 or 120 min. In study 1, we tested haloperidol, clozapine, olanzapine, risperidone, ziprasidone, aripiprazole, sertindole and quetiapine. In study 2, we tested SCH23390 (D(1) antagonist), sulpiride (D(2)/D(3) antagonist), raclopride (D(2)/D(3) antagonist), SB-277011 (D(3) antagonist), L-745,870 (D(4) antagonist), WAY100635 (5-HT(1A) antagonist), 8-OH-DPAT (5-HT(1A) agonist), ketanserin (5-HT(2A)/5-HT(2C) antagonist) and SB-242084 (5-HT(2C) antagonist). In study 3, we tested xanomeline (M(1)/M(4) receptor agonist), LY379268 (mGluR2/3 receptor agonist), diazepam (GABA(A) modulator) and thioperamide (H(3) receptor antagonist). All antipsychotics suppressed MK-801-induced hyperactivity in a dose-dependent and specific manner. The effects of antipsychotics appear to be mediated via dopamine D(1), D(2) and 5-HT(2) receptors. Xanomeline, LY379268 and diazepam were active in this assay while thioperamide was not. MK-801-induced hyperactivity in BALB/C mice model of positive symptoms has shown predictive validity with novel compounds acing at M(1)/M(4), mGluR2/3 and GABA(A) receptors and can be used as a screening assay for detection of novel pharmacotherapies targeting those receptors.

  16. Tachykinin-induced contraction of the guinea-pig isolated oesophageal mucosa is mediated by NK2 receptors

    PubMed Central

    Kerr, Karen P; Thai, Binh; Coupar, Ian M

    2000-01-01

    The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121

  17. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists

    PubMed Central

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-01-01

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. PMID:24534492

  18. Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells.

    PubMed

    El-Kassas, Seham; Odemuyiwa, Solomon; Hajishengallis, George; Connell, Terry D; Nashar, Toufic O

    2016-12-01

    Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca 2+ , indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection.

  19. Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells

    PubMed Central

    El-Kassas, Seham; Odemuyiwa, Solomon; Hajishengallis, George; Connell, Terry D; Nashar, Toufic O

    2017-01-01

    Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca2+, indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection. PMID:28149670

  20. Sex differences and serotonergic mechanisms in the behavioural effects of psilocin.

    PubMed

    Tylš, Filip; Páleníček, Tomáš; Kadeřábek, Lukáš; Lipski, Michaela; Kubešová, Anna; Horáček, Jiří

    2016-06-01

    Psilocybin has recently attracted a great deal of attention as a clinical research and therapeutic tool. The aim of this paper is to bridge two major knowledge gaps regarding its behavioural pharmacology - sex differences and the underlying receptor mechanisms. We used psilocin (0.25, 1 and 4 mg/kg), an active metabolite of psilocybin, in two behavioural paradigms - the open-field test and prepulse inhibition (PPI) of the acoustic startle reaction. Sex differences were evaluated with respect to the phase of the female cycle. The contribution of serotonin receptors in the behavioural action was tested in male rats with selective serotonin receptor antagonists: 5-HT1A receptor antagonist (WAY100635 1 mg/kg), 5-HT2A receptor antagonist (MDL100907 0.5 mg/kg), 5-HT2B receptor antagonist (SB215505 1 mg/kg) and 5-HT2C receptor antagonist (SB242084 1 mg/kg). Psilocin induced dose-dependent inhibition of locomotion and suppression of normal behaviour in rats (behavioural serotonin syndrome, impaired PPI). The effects were more pronounced in male rats than in females. The inhibition of locomotion was normalized by 5-HT1A and 5-HT2B/C antagonists; however, PPI was not affected significantly by these antagonists. Our findings highlight an important issue of sex-specific reactions to psilocin and that apart from 5-HT2A-mediated effects 5-HT1A and 5-HT2C/B receptors also play an important role. These findings have implications for recent clinical trials.

  1. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  2. Prohormone convertase 1 (PC1) when expressed with pro cholecystokinin (pro CCK) in L cells performs three endoproteolytic cleavages which are observed in rat brain and in CCK-expressing endocrine cells in culture, including the production of glycine and arginine extended CCK8.

    PubMed

    Wang, W; Birch, N P; Beinfeld, M C

    1998-07-30

    Pro CCK was expressed in an L cell line engineered to express PC1 and the products secreted into the media were characterized by a combination of RIA, gel filtration and HPLC. PC1 released from L cells, cleaved pro CCK generating the amino terminal pro peptide. PC1 also generated a peptide which after carboxypeptidase B treatment, was detected with an antiserum specific for CCK Gly. Neither of these peptides was found in media from L cells expressing pro CCK alone. This CCK Gly immunoreactive peptide was similar in size to CCK 8, and after treatment with arylsulfatase and carboxypeptidase B, it co-eluted on HPLC with unsulfated CCK 8 Gly. These results agree with previous studies which support a role for PC1 in generation of CCK 8. This is the first demonstration that PC1 acting alone is able to cleave pro CCK liberating the amino terminal pro peptide and a glycine and arginine extended CCK 8 which is the immediate precursor of CCK 8 amide.

  3. Effects of Cannabinoid Agonists and Antagonists on Sleep and Breathing in Sprague-Dawley Rats.

    PubMed

    Calik, Michael W; Carley, David W

    2017-09-01

    There are no pharmacological treatments for obstructive sleep apnea syndrome, but dronabinol showed promise in a small pilot study. In anesthetized rats, dronabinol attenuates reflex apnea via activation of cannabinoid (CB) receptors located on vagal afferents; an effect blocked by cannabinoid type 1 (CB1) and/or type 2 (CB2) receptor antagonists. Here, using a natural model of central sleep apnea, we examine the effects of dronabinol, alone and in combination with selective antagonists in conscious rats chronically instrumented to stage sleep and measure cessation of breathing. Adult male Sprague-Dawley rats were anesthetized and implanted with bilateral stainless steel screws into the skull for electroencephalogram recording and bilateral wire electrodes into the nuchal muscles for electromyogram recording. Each animal was recorded by polysomnography on multiple occasions separated by at least 3 days. The study was a fully nested, repeated measures crossover design, such that each rat was recorded following each of 8 intraperitoneal injections: vehicle; vehicle and CB1 antagonist (AM 251); vehicle and CB2 antagonist (AM 630); vehicle and CB1/CB2 antagonist; dronabinol; dronabinol and CB1 antagonist; dronabinol and CB2 antagonist; and dronabinol and CB1/CB2 antagonist. Dronabinol decreased the percent time spent in rapid eye movement (REM) sleep. CB receptor antagonists did not reverse this effect. Dronabinol also decreased apneas during sleep, and this apnea suppression was reversed by CB1 or CB1/CB2 receptor antagonism. Dronabinol's effects on apneas were dependent on CB1 receptor activation, while dronabinol's effects on REM sleep were CB receptor-independent. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning.

    PubMed

    Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K

    2003-11-01

    Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.

  5. Nonpeptidic angiotensin II AT₁ receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Yu, Wei-Fa; Zhou, Zhi-Ming; Tao, Wen-Chang; Wang, Yi-Cheng; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2013-11-01

    Both 6-substituted aminocarbonyl and acylamino benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT₁ receptor antagonists. Compounds 6f, 6g, 11e, 11f, 11g, and 12 showed nanomolar AT₁ receptor binding affinity and high AT₁ receptor selectivity over AT₂ receptor in a preliminary pharmacological evaluation. Among them, the two most active compounds 6f (AT₁ IC₅₀ = 3 nM, AT₂ IC₅₀ > 10,000 nM, PA₂ = 8.51) and 11g (AT₁ IC₅₀ = 0.1 nM, AT₂ IC₅₀ = 149 nM, PA₂ = 8.43) exhibited good antagonistic activity in isolated rabbit aortic strip functional assay. In addition, they were orally active AT₁ receptor antagonists in spontaneous hypertensive rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems.

    PubMed

    Pesarico, Ana Paula; Sampaio, Tuane Bazanella; Stangherlin, Eluza Curte; Mantovani, Anderson C; Zeni, Gilson; Nogueira, Cristina Wayne

    2014-10-03

    The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Could the 5-HT1B receptor inverse agonism affect learning consolidation?

    PubMed

    Meneses, A

    2001-03-01

    Diverse evidence indicates that, the 5-HT system might play a role in learning and memory, since it occurs in brain areas mediating such processes and 5-HT drugs modulate them. Hence in this work, in order to explore further 5-HT involvement on learning and memory 5-HT1B receptors' role is investigated. Evidence indicates that SB-224289 (a 5-HT1B receptor inverse agonist) post-training injection facilitated learning consolidation in an associative autoshaping learning task, this effect was partially reversed by GR 127935 (a 5-HT1B/1D receptor antagonist), but unaffected by MDL 100907 (a 5-HT2A receptor antagonist) or ketanserin (a 5-HT1D/2A/7 receptor antagonist) at low doses. Moreover, SB-224289 antagonized the learning deficit produced by TFMPP (a 5-HT1A/1B/1D/2A/2C receptor agonist), GR 46611 (a 5-HT1A/1B/1D receptor agonist), mCPP (a 5-HT2A/2C/3/7 receptor agonist/antagonist) or GR 127935 (at low dose). SB-224289 did not alter the 8-OH-DPAT (a 5-HT1A/7 receptor agonist) learning facilitatory effect. SB-224289 eliminated the deficit learning produced by the anticholinergic muscarinic scopolamine or the glutamatergic antagonist dizocilpine. Administration of both, GR 127935 (5mg/kg) plus ketanserin (0.01 mg/kg) did not modify learning consolidation; nevertheless, when ketanserin dose was increased (0.1-1.0mg/kg) and SB-224289 dose was maintained constant, a learning facilitation effect was observed. Notably, SB-224289 at 1.0mg/kg potentiated a subeffective dose of the 5-HT1B/1D receptor agonist/antagonist mixed GR 127935, which facilitated learning consolidation and this effect was abolished by ketanserin at a higher dose. Collectively, the data confirm and extend the earlier findings with GR 127935 and the effects of non-selective 5-HT(1B) receptor agonists. Clearly 5-HT1B agonists induced a learning deficit which can be reversed with SB-224289. Perhaps more importantly, SB-224289 enhances learning consolidation when given alone and can reverse the deficits induced by both cholinergic and glutamatergic antagonist. Hence, 5-HT1B receptor inverse agonists or antagonists could represent drugs for the treatment of learning and memory dysfunctions.

  8. Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory.

    PubMed

    Alaghband, Yasaman; Marshall, John F

    2013-04-01

    Environmental stimuli or contexts previously associated with rewarding drugs contribute importantly to relapse among addicts, and research has focused on neurobiological processes maintaining those memories. Much research shows contributions of cell surface receptors and intracellular signaling pathways in maintaining associations between rewarding drugs (e.g., cocaine) and concurrent cues/contexts; these memories can be degraded at the time of their retrieval through reconsolidation interference. Much less studied is the consolidation of drug-cue memories during their acquisition. The present experiments use the cocaine-conditioned place preference (CPP) paradigm in rats to directly compare, in a consistent setting, the effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists MK-801 and memantine on the consolidation and reconsolidation of cocaine-cue memories. For the consolidation studies, animals were systemically administered MK-801 or memantine immediately following training sessions. To investigate the effects of these NMDA receptor antagonists on the retention of previously established cocaine-cue memories, animals were systemically administered MK-801 or memantine immediately after memory retrieval. Animals given either NMDA receptor antagonist immediately following training sessions did not establish a preference for the cocaine-paired compartment. Post-retrieval administration of either NMDA receptor antagonist attenuated the animals' preference for the cocaine-paired compartment. Furthermore, animals given NMDA receptor antagonists post-retrieval showed a blunted response to cocaine-primed reinstatement. Using two distinct NMDA receptor antagonists in a common setting, these findings demonstrate that NMDA receptor-dependent processes contribute both to the consolidation and reconsolidation of cocaine-cue memories, and they point to the potential utility of treatments that interfere with drug-cue memory reconsolidation.

  9. Non-selectivity of new bradykinin antagonists for B1 receptors.

    PubMed

    Rhaleb, N E; Gobeil, F; Regoli, D

    1992-01-01

    Two new B1 receptor antagonists, [Hyp3,Thi5,DTic7,Oic8]desArg9-BK and DArg[Hyp3,Thi5,DTic7,Oic8]desArg9-BK were tested in vitro on the rabbit jugular vein and the guinea pig ileum (preparations containing B2 receptors) and on the rabbit aorta (preparation containing B1 receptors) for pharmacological characterization. The results indicate that both compounds are antagonists on both B1 and B2 receptors, are competitive and discriminate between B2A and B2B receptor subtypes.

  10. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine

    PubMed Central

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Background: Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. Objective: The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Materials and Methods: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. Results: In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did. Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca2+-free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Conclusion: These results suggest that DKT depolarizes ICC PPs in an internal or external Ca2+-dependent manner by stimulating 5-HT4 and M3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. SUMMARY Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) didMethoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-DAMP (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarizationGinseng radix and Zingiberis rhizomes depolarized PPswhereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Abbreviation used: DKT: Daikenchuto, GI: Gastrointestinal, ICCs: Interstitial cells of Cajal, PPs: Pacemaker Potentials. PMID:28216898

  11. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine.

    PubMed

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) did. Methoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca 2+ -free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. These results suggest that DKT depolarizes ICC PPs in an internal or external Ca 2+ -dependent manner by stimulating 5-HT 4 and M 3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) didMethoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-DAMP (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarizationGinseng radix and Zingiberis rhizomes depolarized PPswhereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Abbreviation used: DKT: Daikenchuto, GI: Gastrointestinal, ICCs: Interstitial cells of Cajal, PPs: Pacemaker Potentials.

  12. Molecular recognition at adenine nucleotide (P2) receptors in platelets.

    PubMed

    Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano

    2005-04-01

    Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.

  13. Rat immunoreactive cholecystokinin (CCK): characterization using two chromatographic techniques.

    PubMed

    Bacarese-Hamilton, A J; Adrian, T E; Chohan, P; Bloom, S R

    1985-06-01

    Acid and neutral extracts of rat cerebral cortex and upper small intestine were prepared and the endogenous concentrations of cholecystokinin-like immunoreactivity (CCK-LI) measured by three new CCK-specific radioimmunoassays. The characterization of the immunoreactive CCK molecular forms was undertaken using gel permeation chromatography in the presence of 6 M urea to minimise problems relating to peptide adsorption or aggregation. Reverse-phase high-performance liquid chromatography (HPLC) was also performed on the rat tissue extracts. Rat cortex contained 268 +/- 12 pmol/g CCK-LI, and over 90% resembled the sulphated CCK-8, which was preferentially extracted at neutral pH. In contrast, the rat upper small intestine (97 +/- 8 pmol/g of CCK-LI) contained less than 20% CCK-8, the majority of immunoreactive CCK being of larger molecular size and being preferentially extracted at acid pH. In the small intestine the predominant molecular form(s) was intermediate in size between CCK-33 and CCK-8. Large amounts of CCK-33 and of a molecular form larger than CCK-33 were also detected. It is concluded that post-translational cleavage of CCK differs in rat brain and gut.

  14. Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications.

    PubMed

    Lambrecht, G

    2000-11-01

    P2X receptors are nucleotide-gated cation channels composed of homomeric or heteromeric assemblies of three subunits. In the past 7 years, an extended series (P2X1-7) of P2X subunits has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2X receptor subtypes to the diverse physiological responses mediated by the native P2X receptors. However, the paucity of useful ligands, especially subtype-selective agonists and antagonists as well as radioligands, acts as a considerable impediment to progress. Most of the ligands available are highly limited in terms of their kinetics of action, receptor-affinity, subtype-selectivity and P2X receptor-specificity. Their suspected ability to be a substrate for ecto-nucleotidases or to inhibit these enzymes also complicates their use. A number of new antagonists at P2X receptors have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl 2',4'-disulfonate (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2X receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2X receptors. It then focuses on the pharmacological properties of a series of key P2 receptor agonists and antagonists and will finish with the discussion of some related therapeutic possibilities.

  15. In vitro contractile effects of neurokinin receptor blockade in the human ureter.

    PubMed

    Nakada, S Y; Jerde, T J; Bjorling, D E; Saban, R

    2001-10-01

    We identified the predominance of neurokinin-2 receptors and evaluated the inhibition of spontaneous contraction via the blockade of neurokinin-2 receptors in human ureteral segments. Excess ureteral segments from human subjects undergoing donor nephrectomy or reconstructive procedures were suspended in tissue baths containing Krebs buffer. After spontaneous contractions were recorded, tissues were incubated with 1 microM. solutions of phosphoramidon and captopril (to inhibit peptide degradation) and either the neurokinin-1 receptor antagonist CP 99,994, the neurokinin-2 receptor antagonist SR 48,968, the neurokinin-3 receptor antagonist SR 142,801 or dimethyl sulfoxide (control) for 1 hour. Contraction magnitude and frequency were again recorded and compared with spontaneous levels. Concentration-response curves to the tachykinins substance P, and neurokinins A and B were determined in the presence and absence of antagonists. Neurokinin A increased contractility at lower concentrations than substance P or neurokinin B (p <0.013). Neurokinin-2 receptor blockade produced a 100-fold rightward shift of the concentration-response curves (p <0.013), while neurokinins 1 and 3 receptor blockade had no effect. SR 48,968 significantly reduced contractility during the 1-hour incubation period, causing a 97% reduction in spontaneous rates compared with a 29% reduction in control tissues. CP 99,994 and SR 142,801 had no significant effect. Neurokinin-2 is the predominant receptor subtype responsible for tachykinin induced contraction of human ureteral smooth muscle. In vitro treatment with the neurokinin-2 antagonist SR 48,968 reduces the spontaneous contraction rate by 97% in vitro. Neurokinin-2 receptor antagonists may have clinical applications for ureteral disease.

  16. Discovery of spiropiperidine-based potent and selective Orexin-2 receptor antagonists.

    PubMed

    Fujimoto, Tatsuhiko; Tomata, Yoshihide; Kunitomo, Jun; Hirozane, Mariko; Marui, Shogo

    2011-11-01

    To generate novel human Orexin-2 Receptor (OX2R) antagonists, a spiropiperidine based scaffold was designed and a SAR study was carried out. Compound 4f possessed the highest OX2R antagonistic activity with an IC(50) value of 3nM with 450-fold selectivity against Orexin-1 Receptor (OX1R). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Dopamine D2 Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents

    PubMed Central

    Maheux, Jérôme; St-Hilaire, Michel; Voyer, David; Tirotta, Emanuele; Borrelli, Emiliana; Rouillard, Claude; Rompré, Pierre-Paul; Lévesque, Daniel

    2012-01-01

    Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists. PMID:22912617

  18. Antagonism of human CC-chemokine receptor 4 can be achieved through three distinct binding sites on the receptor

    PubMed Central

    Slack, Robert J; Russell, Linda J; Barton, Nick P; Weston, Cathryn; Nalesso, Giovanna; Thompson, Sally-Anne; Allen, Morven; Chen, Yu Hua; Barnes, Ashley; Hodgson, Simon T; Hall, David A

    2013-01-01

    Chemokine receptor antagonists appear to access two distinct binding sites on different members of this receptor family. One class of CCR4 antagonists has been suggested to bind to a site accessible from the cytoplasm while a second class did not bind to this site. In this report, we demonstrate that antagonists representing a variety of structural classes bind to two distinct allosteric sites on CCR4. The effects of pairs of low-molecular weight and/or chemokine CCR4 antagonists were evaluated on CCL17- and CCL22-induced responses of human CCR4+ T cells. This provided an initial grouping of the antagonists into sets which appeared to bind to distinct binding sites. Binding studies were then performed with radioligands from each set to confirm these groupings. Some novel receptor theory was developed to allow the interpretation of the effects of the antagonist combinations. The theory indicates that, generally, the concentration-ratio of a pair of competing allosteric modulators is maximally the sum of their individual effects while that of two modulators acting at different sites is likely to be greater than their sum. The low-molecular weight antagonists could be grouped into two sets on the basis of the functional and binding experiments. The antagonistic chemokines formed a third set whose behaviour was consistent with that of simple competitive antagonists. These studies indicate that there are two allosteric regulatory sites on CCR4. PMID:25505571

  19. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  20. Efficacy and safety of 5-hydroxytryptamine 3 receptor antagonists in irritable bowel syndrome: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Tang, Yurong; Xiong, Wenjie; Shen, Xiaoxue; Jiang, Ling; Lin, Lin

    2017-01-01

    Aim We assessed the efficacy and safety of 5-hydroxytryptamine (5-HT3) receptor antagonists in adults with non-constipated irritable bowel syndrome (IBS) or diarrhea-predominant IBS (IBS-D). Methods We searched PubMed, MEDLINE, EMBASE, and the Cochrane Controlled Trials Register for randomized controlled trials (RCTs) involving adults with non-constipated IBS or IBS-D that compared 5-HT3 receptor antagonists with placebo or other conventional treatment. Dichotomous symptom data were pooled to obtain the relative risk (RR) and 95% confidence intervals (CIs) for improving global IBS symptoms, abdominal pain and abnormal bowel habits, or stool consistency symptoms after therapy, and adverse events, including constipation. Meta- analysis was performed with Mantel Haenszel method using Revman 5.3 software. Results We included 21 RCTs; 16 were high quality (Jadad score ≥ 4). The pooled RR of global IBS symptoms improved by 5-HT3 receptor antagonists versus placebo or mebeverine was 1.56 (95% CI: 1.43–1.71); alosetron, ramosetron, and cilansetron had similar treatment effects. The pooled RR of abdominal pain relieved by 5-HT3 receptor antagonists versus placebo was 1.33 (95% CI: 1.26–1.39). The pooled RR showed that 5-HT3 receptor antagonists improved abnormal bowel habits or stool consistency symptoms (RR = 1.63, 95% CI: 1.33, 1.99). The pooled RR of adverse events following 5-HT3 receptor antagonist treatment was 1.15 (95% CI: 1.08, 1.22). Subgroup analysis indicated that alosetron had a high rate of adverse effects (RR = 1.16, 95% CI: 1.08, 1.25); adverse events following ramosetron treatment were not statistically significantly different. 5-HT3 receptor antagonists were likelier to cause constipation: the pooled RR of constipation developing with 5-HT3 receptor antagonist versus placebo was 3.71 (95% CI: 2.98–4.61). However, constipation was likelier in patients with non-constipated IBS after taking 5-HT3 receptor antagonists than in patients with IBS-D only (non-constipated IBS and IBS-D: RR = 5.28 [95% CI: 3.93, 7.08] vs. IBS-D only 3.24 [2.54, 4.12]). Conclusions Ramosetron, cilansetron, ondansetron, and alosetron are effective for treating non-constipated IBS and IBS-D. Our systematic review found rare serious adverse events. PMID:28291778

  1. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    PubMed Central

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  2. Genetic inactivation of prohormone convertase (PC1) causes a reduction in cholecystokinin (CCK) levels in the hippocampus, amygdala, pons and medulla in mouse brain that correlates with the degree of colocalization of PC1 and CCK mRNA in these structures in rat brain.

    PubMed

    Cain, B M; Connolly, K; Blum, A C; Vishnuvardhan, D; Marchand, J E; Zhu, X; Steiner, D F; Beinfeld, M C

    2004-04-01

    Prohormone convertase (PC1) is found in endocrine cell lines that express cholecystokinin (CCK) mRNA and process pro CCK to biologically active products. Other studies have demonstrated that PC1 may be a one of the enzymes responsible for the endoproteolytic cleavages that occur in pro CCK during its biosynthesis and processing. Prohormone convertase 1 (PC1) has a distribution that is similar to cholecystokinin (CCK) in rat brain. A moderate to high percentage of CCK mRNA-positive neurons express PC1 mRNA. CCK levels were measured in PC1 knockout and control mice to assess the degree to which loss of PC1 changed CCK content. CCK levels were decreased 62% in hippocampus, 53% in amygdala and 57% in pons-medulla in PC1 knockout mice as compared to controls. These results are highly correlated with the colocalization of CCK and PC1. The majority of CCK mRNA-positive neurons in the pyramidal cell layer of the hippocampus express PC1 mRNA and greater than 50% of CCK mRNA-positive neurons in several nuclei of the amygdala also express PC1. These results demonstrate that PC1 is important for CCK processing. PC2 and PC5 are also widely colocalized with CCK. It may be that PC2, PC5 or another non-PC enzyme are able to substitute for PC1 and sustain production of some amidated CCK. Together these enzymes may represent a redundant system to insure the production of CCK.

  3. Improvement of nonsuicidal self-injury following treatment with antipsychotics possessing strong D1 antagonistic activity: evidence from a report of three cases.

    PubMed

    Wollweber, Bastian; Keck, Martin E; Schmidt, Ulrike

    2015-08-01

    There is no drug treatment for nonsuicidal self-injury (NSSI), a highly prevalent and burdensome symptom of several psychiatric diseases like posttraumatic stress disorder (PTSD), personality disorders, and major depression (MD). Here, we present a retrospective series of three patients demonstrating a persistent remission in MD-associated NSSI in response to treatment with antipsychotics possessing marked D1 receptor antagonistic activity. To the best of the authors' knowledge, the case series presented is only the second clinical paper suggesting a role for D1 antagonists in NSSI drug therapy. Together with previously published data from rodent models, the findings suggest a role for D1 antagonists in NSSI drug therapy and hence for the D1 receptor in NSSI pathogenesis. This conclusion is limited by the facts that the patients presented here received polypharmacy and that the D1 receptor antagonistic antipsychotics suggested here as effective 'anti-auto-aggressants' do not address D1 receptors only but multiple neurotransmitter receptors/systems.

  4. The evolution and functional characterization of lined seahorse (Hippocampus erectus) CCKs involved in fasting and thermal stress response.

    PubMed

    Zhang, Huixian; Qin, Geng; Sun, Jinhui; Zhang, Bo; Lin, Qiang

    2018-01-01

    The peptide cholecystokinin (CCK) plays an important role in the regulation of vertebrate appetite and feeding behaviour. In the present study, the full-length cDNA and genomic DNA sequences of two CCK precursors were cloned and analysed in the Syngnathidae fish, the lined seahorse (Hippocampus erectus). Both CCK1 and CCK2 in the seahorse consist of four exons. The sequence of the octapeptide of seahorse CCK1 (DYMGWMDF) was the same as that of the chicken and human, while the octapeptide of seahorse CCK2 (DYEGWMDF) was unique among vertebrates. According to the phylogenetic analysis, two types of CCKs were produced by teleost-specific genome duplication (TGD). Both CCK1 and CCK2 were highly expressed in the brain, while detectable amounts of CCK1 mRNA in the brood pouch and CCK2 mRNA in the intestine were also found. Both CCK1 and CCK2 mRNA levels significantly increased during the transition from endogenous to exogenous nutrition. Additionally, fasting induced a significant increase in the CCK1 mRNA expression in the brain of juvenile seahorses but had no effect on CCK2 transcript levels. In addition, the CCK1 and CCK2 mRNA levels in the seahorse brain significantly increased after a high-temperature treatment. Thus, the mRNA expression of CCK had obvious tissue specificities and this preliminary study opens new avenues for further functional studies on the endocrine regulations of CCK in the transition from endogenous to exogenous nutrition, food intake regulation and metabolism in the seahorse. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Design and Synthesis of a Series of l-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Delgar, Claudia G; Koch, Karina; Brown, Patricia M G E; Møller, Charlotte; Han, Liwei; Huynh, Tri H V; Hansen, Stinne W; Nielsen, Birgitte; Bowie, Derek; Pickering, Darryl S; Kastrup, Jette Sandholm; Frydenvang, Karla; Bunch, Lennart

    2017-01-12

    Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid (1b), for cloned homomeric kainic acid receptors subtype 1 (GluK1) was attained (K i = 4 μM). In a functional assay, 1b displayed full antagonist activity with IC 50 = 6 ± 2 μM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C, O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents on the phenyl ring are well accommodated by the GluK1 receptor.

  6. Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP1 receptor antagonists.

    PubMed

    Atobe, Masakazu; Naganuma, Kenji; Kawanishi, Masashi; Morimoto, Akifumi; Kasahara, Ken-ichi; Ohashi, Shigeki; Suzuki, Hiroko; Hayashi, Takahiko; Miyoshi, Shiro

    2013-11-15

    We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats.

    PubMed

    Lamonte, Nicole; Echo, Joyce A; Ackerman, Tsippa F; Christian, Garrison; Bodnar, Richard J

    2002-03-01

    The present study examined opioid receptor(s) mediation of feeding elicited by mu opioid agonists in the ventral tegmental area using general or selective opioid antagonist pretreatment. Naltrexone as well as equimolar doses of selective mu and kappa, but not delta opioid antagonists in the ventral tegmental area significantly reduced mu agonist-induced feeding, indicating a pivotal role for these receptor subtypes in the full expression of this response.

  8. Measurement and characterisation of human cholecystokinin-like immunoreactivity (CCK-LI) in tissues by radioimmunoassay.

    PubMed

    Bacarese-Hamilton, A J; Adrian, T E; Bloom, S R

    1984-12-29

    Two radioimmunoassays specific for cholecystokinin-like immunoreactivity (CCK-LI) in human tissue are described. The first assay employed an antiserum (Z-69) directed to the sulphated tyrosine at the C-terminal end of CCK-33 and measured all biologically active molecular forms of CCK except the controversial C-terminal tetrapeptide amide (CCK4). The sensitivity of this assay was 0.6 pmol/g. A second assay (employing antiserum Z-91) measured CCK-LI forms larger than the octapeptide and had a sensitivity of 0.2 pmol/g. Both assays were characterised with endogenous human peptides. Acid (pH 2.5) and neutral extracts (pH 6.5) of human intestine and brain were assessed for CCK-LI concentrations and gel chromatography performed in the presence of 6 mol/l urea to elucidate the various molecular forms. Human cerebral cortex CCK-LI was almost all sulphated CCK-8, but large molecular mass forms were present, particularly in acid extracts, forming about 10% of the whole. Human duodenum and jejunum contained approximately equal amounts of large CCK, CCK 33/39 and of CCK-8. Both intestine and brain possess not yet isolated sulphated molecular forms which eluted between the pure CCK-8 and CCK-33/39 standards. The results obtained from this study indicate that the biosynthesis of CCK in human brain and gut is quantitatively different.

  9. Role of glutamate receptors in the dorsal reticular nucleus in formalin-induced secondary allodynia.

    PubMed

    Ambriz-Tututi, Mónica; Palomero-Rivero, Marcela; Ramirez-López, Fernanda; Millán-Aldaco, Diana; Drucker-Colín, And René

    2013-10-01

    The role of glutamate receptors present in the medullary dorsal reticular nucleus (DRt) in the formalin test and formalin-induced secondary nociception was studied in rats. Secondary mechanical allodynia was assessed with von Frey filaments applied to the rat's hindpaw, and secondary thermal hyperalgesia was evaluated with the tail-immersion test. The selective glutamate receptor antagonists MK801 (N-methyl-D-aspartate receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (AMPA/KA receptor antagonist) and A841720 (metabotropic glutamate 1 receptor antagonist) were injected into the DRt before or 6 days after formalin injection in the rat. In the formalin test, the three antagonists significantly reduced the number of flinches in both phases of the test. DRt microinjection of MK801 or A841720, but not of CNQX, reduced both secondary nociceptive behaviors. Moreover, pre-treatment with the three antagonists injected into the DRt prevented the development of secondary mechanical allodynia and secondary thermal hyperalgesia. Similarly, in these rats, the number of c-Fos-like immunoreactive neurons were markedly reduced in both the superficial and deep lamina of the dorsal horn. Our findings support the role of DRt as a pain facilitator in acute and chronic pain states, and suggest a key role of glutamate receptors during the development and maintenance of formalin-induced secondary allodynia. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Crosstalk between the angiotensin and endothelin system in the cerebrovasculature after experimental induced subarachnoid hemorrhage.

    PubMed

    Wanderer, Stefan; Mrosek, Jan; Vatter, Hartmut; Seifert, Volker; Konczalla, Juergen

    2018-04-01

    Under physiologic conditions, losartan showed a dose-dependent antagonistic effect to the endothelin-1 (ET-1)-mediated vasoconstriction. This reduced vasoconstriction was abolished after preincubation with an endothelin B 1 receptor (ET(B 1 )-receptor) antagonist. Also, an increased ET(B 1 )-receptor-dependent relaxation to sarafotoxin S6c (S6c; an ET(B 1 )-receptor agonist) was detected by preincubation with losartan. Investigations after experimental induced subarachnoid hemorrhage (SAH) are still missing. Therefore, we analyzed losartan in a further pathological setup. Cerebral vasospasm was induced by a modified double hemorrhage model. Rats were sacrificed on day 3 and isometric force of basilar artery ring segments was measured. Parallel to physiological conditions, after SAH, the ET-1-induced vasoconstriction was decreased by preincubation with losartan. This reduced contraction has been abolished after preincubation with BQ-788, an ET(B 1 )-receptor antagonist. In precontracted vessels, ET-1 induced a higher vasorelaxation under losartan and the endothelin A receptor (ET(A)-receptor) antagonist BQ-123. After SAH, losartan caused a modulatory effect on the ET(B 1 )-receptor-dependent vasorelaxation. It further induced an upregulation of the NO pathway. Under losartan, the formerly known loss of the ET(B 1 )-receptor vasomotor function was abolished and a significantly increased relaxation, accompanied with an enhanced sensitivity of the ET(B 1 )-receptor, has been detected. Also, the dose-dependent antagonistic effect to the ET-1-induced contraction can be effected by angiotensin II type 1 receptor (AT 1 -receptor) antagonism due to losartan directly via the ET(B 1 )-receptor.

  11. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?

    PubMed

    Riese, David J

    2011-02-01

    INTRODUCTION: Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. AREAS COVERED: Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. EXPERT OPINION: While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and -independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics.

  12. Physician response to a medication alert system in inpatients with levodopa-treated diseases

    PubMed Central

    Morris, Marie; Willis, Allison W.; Searles Nielsen, Susan; McCann, Franklin; Birke, Angela

    2015-01-01

    Objective: To evaluate the appropriateness of dopamine receptor antagonist prescriptions in hospitalized patients with dopamine-requiring diseases after implementation of an automated prescription alert system. Methods: We examined dopamine receptor antagonist prescriptions in hospitalized patients with dopamine-requiring diseases and physician response to an automated drug contraindication alert system at Barnes-Jewish Hospital from 2009 to 2013. A detailed review of patient medical records was performed for all alert events generated when a physician prescribed a dopamine receptor antagonist concurrently with a dopamine receptor agonist in hospitalized patients. Two movement disorders neurologists determined the appropriateness of each prescription, based on patient medical history, through consensus. Physician response to alert was compared by indication for the prescription and physician specialty. Results: Of 237 orders, 197 (83.1%) prescriptions for dopamine receptor antagonists were considered inappropriate. The prevalence of inappropriate dopamine receptor antagonist prescriptions per levodopa prescriptions was 16.10% (95% confidence interval 9.47, 22.73) in psychiatry, 7.51% (6.16, 8.86) in general medicine, 6.14% (4.49, 7.79) in the surgical specialties, and 0.85% (0.46, 1.25) in the neurologic/neurosurgical specialties. Of the inappropriate prescriptions, 146 (74.1%) were continued despite the alert. The strongest predictor of discontinuation of dopamine receptor antagonist medications was use of the medication to treat nausea or emesis (p < 0.001). Conclusions: Despite successfully identifying instances when dopamine antagonists were prescribed to patients with dopamine-requiring diseases, the alert system modestly affected physician prescribing behavior, highlighting the need for improved education of health care providers. PMID:26092916

  13. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.

  14. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    PubMed

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  15. Cholecystokinin in White Sea Bream: Molecular Cloning, Regional Expression, and Immunohistochemical Localization in the Gut after Feeding and Fasting

    PubMed Central

    D’Ascola, Angela; Guerrera, M. Cristina; Levanti, M. Beatrice; Germanà, Antonino; Muglia, Ugo

    2012-01-01

    Background The peptide hormone cholecystokinin (CCK), secreted by the midgut, plays a key role in digestive physiology of vertebrates including teleosts, by stimulating pancreatic secretion, gut motility, and gallbladder contraction, as well as by delaying gastric emptying. Moreover, CCK is involved in the regulation of food intake and satiation. Secretion of CCK by the hindgut is controversial, and its biological activity remains to be elucidated. The present paper addresses the regional distribution of intestinal CCK in the white sea bream, Diplodus sargus, as well as the possible involvement of hindgut CCK in digestive processes. Methodology/Principal Findings Full-lengths mRNAs encoding two CCK isoforms (CCK-1 and CCK-2) were sequenced and phylogenetically analyzed. CCK gene and protein expression levels in the different gut segments were measured 3 h and 72 h after feeding, by quantitative real-time RT-PCR and Western blot, respectively. Moreover, endocrine CCK cells were immunoistochemically detected. Fasting induced a significant decrease in CCK-2 in all intestinal segments, including the hindgut. On the other hand, no significant difference was induced by fasting on hindgut CCK-1. Conclusions/Significance The results demonstrated two CCK isoforms in the hindgut of D.sargus, one of which (CCK-2) may be involved in the feedback control of uncompleted digestive processes. On the other hand, a functional role alternative to regulation of digestive processes may be inferred for D.sargus CCK-1, since its expression was unaffected by feeding or fasting. PMID:23285038

  16. Cholecystokinin in white sea bream: molecular cloning, regional expression, and immunohistochemical localization in the gut after feeding and fasting.

    PubMed

    Micale, Valeria; Campo, Salvatore; D'Ascola, Angela; Guerrera, M Cristina; Levanti, M Beatrice; Germanà, Antonino; Muglia, Ugo

    2012-01-01

    The peptide hormone cholecystokinin (CCK), secreted by the midgut, plays a key role in digestive physiology of vertebrates including teleosts, by stimulating pancreatic secretion, gut motility, and gallbladder contraction, as well as by delaying gastric emptying. Moreover, CCK is involved in the regulation of food intake and satiation. Secretion of CCK by the hindgut is controversial, and its biological activity remains to be elucidated. The present paper addresses the regional distribution of intestinal CCK in the white sea bream, Diplodus sargus, as well as the possible involvement of hindgut CCK in digestive processes. Full-lengths mRNAs encoding two CCK isoforms (CCK-1 and CCK-2) were sequenced and phylogenetically analyzed. CCK gene and protein expression levels in the different gut segments were measured 3 h and 72 h after feeding, by quantitative real-time RT-PCR and Western blot, respectively. Moreover, endocrine CCK cells were immunoistochemically detected. Fasting induced a significant decrease in CCK-2 in all intestinal segments, including the hindgut. On the other hand, no significant difference was induced by fasting on hindgut CCK-1. The results demonstrated two CCK isoforms in the hindgut of D.sargus, one of which (CCK-2) may be involved in the feedback control of uncompleted digestive processes. On the other hand, a functional role alternative to regulation of digestive processes may be inferred for D.sargus CCK-1, since its expression was unaffected by feeding or fasting.

  17. [The potential of group II metabotropic glutamate receptor antagonists as a novel antidepressant].

    PubMed

    Chaki, Shigeyuki

    2012-08-01

    Recently, abnormalities of glutamatergic transmission have been implicated in the pathophysiology of depression. Moreover, both ketamine, an NMDA receptor antagonist, and riluzole, a modulator of glutamatergic, transmission have been reported to be effective for the treatment of patients with treatment-refractory depression. Based on these findings, extensive studies to develop agents acting on glutamatergic transmission have been conducted. Glutamate receptors are divided into two main subtypes, ionotropic glutamate receptors and metabotropic glutamate (mGlu) receptors, both of which have subtypes. Of these, much attention has been paid to mGlu2/3 receptors. mGlu2/3 receptor antagonists such as MGS0039 and LY341495 have been reported to exert antidepressant effects in animal models of depression including the forced swim test, tail suspension test, learned helplessness paradigm, olfactory bulmectomy model and isolation rearing model, and to enhance serotonin release in the prefrontal cortex and dopamine release in the nucleus accumbens. Moreover, activation of AMPA receptor and mTOR signaling have been suggested to be involved in the antidepressant effects of mGlu2/3 receptor antagonists, as demonstrated in the actions of ketamine. Thus, mGlu2/3 receptor antagonists may share some neural networks with ketamine in exerting their antidepressant effects. In addition, the potential of other agents targeting glutamatergic transmission for novel antidepressants is being investigated.

  18. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  19. Tranylcypromine Substituted cis-Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D3 Receptor Antagonists

    PubMed Central

    2015-01-01

    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (Ki = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has Ki values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor. PMID:24848155

  20. Taking The Time To Study Competitive Antagonism

    PubMed Central

    Wyllie, D J A; Chen, P E

    2007-01-01

    Selective receptor antagonists are one of the most powerful resources in a pharmacologist's toolkit and are essential for the identification and classification of receptor subtypes and dissecting their roles in normal and abnormal body function. However, when the actions of antagonists are measured inappropriately and misleading results are reported, confusion and wrong interpretations ensue. This article gives a general overview of Schild analysis and the method of determining antagonist equilibrium constants. We demonstrate why this technique is preferable in the study of competitive receptor antagonism than the calculation of antagonist concentration that inhibit agonist-evoked responses by 50%. In addition we show how the use of Schild analysis can provide information on the outcome of single amino acid mutations in structure-function studies of receptors. Finally, we illustrate the need for caution when studying the effects of potent antagonists on synaptic transmission where the timescale of events under investigation is such that ligands and receptors never reach steady-state occupancy. PMID:17245371

  1. 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms

    PubMed Central

    Woods, S; Clarke, NN; Layfield, R; Fone, KCF

    2012-01-01

    BACKGROUND AND PURPOSE 5-HT6 receptors are abundant in the hippocampus, nucleus accumbens and striatum, supporting their role in learning and memory. Selective 5-HT6 receptor antagonists produce pro-cognitive effects in several learning and memory paradigms while 5-HT6 receptor agonists have been found to enhance and impair memory. EXPERIMENTAL APPROACH The conditioned emotion response (CER) paradigm was validated in rats. Then we examined the effect of the 5-HT6 receptor antagonist, EMD 386088 (10 mg·kg−1, i.p.), and agonists, E-6801 (2.5 mg·kg−1, i.p.) and EMD 386088 (5 mg·kg−1, i.p.) on CER-induced behaviour either alone or after induction of memory impairment by the muscarinic receptor antagonist, scopolamine (0.3 mg·kg−1, i.p) or the NMDA receptor antagonist, MK-801 (0.1 mg·kg−1, i.p). KEY RESULTS Pairing unavoidable foot shocks with a light and tone cue during CER training induced a robust freezing response, providing a quantitative index of contextual memory when the rat was returned to the shock chamber 24 h later. Pretreatment (−20 min pre-training) with scopolamine or MK-801 reduced contextual freezing 24 h after CER training, showing production of memory impairment. Immediate post-training administration of 5-HT6 receptor antagonist, SB-270146, and agonists, EMD 386088 and E-6801, had little effect on CER freezing when given alone, but all significantly reversed scopolamine- and MK-801-induced reduction in freezing. CONCLUSION AND IMPLICATIONS Both the 5-HT6 receptor agonists and antagonist reversed cholinergic- and glutamatergic-induced deficits in associative learning. These findings support the therapeutic potential of 5-HT6 receptor compounds in the treatment of cognitive dysfunction, such as seen in Alzheimer's disease and schizophrenia. PMID:22568655

  2. The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease☆

    PubMed Central

    Dale, Philippa R; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R; Charlton, Steven J; Pieper, Michael P; Michel, Martin C

    2014-01-01

    Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder. Muscarinic agonism may attenuate β-adrenoceptor-mediated relaxation more than other contractile stimuli. Chronic treatment with one drug class may regulate expression of the target receptor but also that of the opposing receptor. Prejunctional β2-adrenoceptors can enhance neuronal acetylcholine release. Moreover, at least in the airways, muscarinic receptors and β-adrenoceptors are expressed in different locations, indicating that only a combined modulation of both systems may cause dilatation along the entire bronchial tree. While all of these factors contribute to a rationale for a combination of muscarinic receptor antagonists and β-adrenoceptor agonists, the full value of such combination as compared to monotherapy can only be determined in clinical studies. PMID:24682092

  3. Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking.

    PubMed

    Bäckström, Pia; Hyytiä, Petri

    2006-04-01

    Neuroanatomical and pharmacological evidence implicates glutamate transmission in drug-environment conditioning that partly controls drug seeking and relapse. Glutamate receptors could be targets for pharmacological attenuation of the motivational properties of drug-paired cues and for relapse prevention. The purpose of the present study was therefore to investigate the involvement of ionotropic and metabotropic glutamate receptor subtypes in cue-induced reinstatement of cocaine-seeking behavior. Rats were trained to self-administer cocaine using a second-order schedule of reinforcement (FR4(FR5:S)) under which a compound stimulus (light and tone) associated with cocaine infusions was presented contingently. Following extinction, the effects of the competitive NMDA receptor antagonist CGP 39551 (0, 2.5, 5, 10 mg/kg intraperitoneally (i.p.)), two competitive AMPA/kainate antagonists, CNQX (0, 0.75, 1.5, 3 mg/kg i.p.) and NBQX (0, 1.25, 2.5, 5 mg/kg i.p.), the NMDA/glycine site antagonist L-701,324 (0, 0.63, 1.25, 2.5 mg/kg i.p.), and the mGluR5 antagonist MPEP (0, 1.25, 2.5, 5 mg/kg i.p.) on cue-induced reinstatement of cocaine seeking were examined. The AMPA/kainate receptor antagonists CNQX and NBQX, the NMDA/glycine site antagonist L-701,324, and the mGluR5 antagonist MPEP attenuated significantly cue-induced reinstatement. The NMDA antagonist CGP 39551 failed to affect reinstatement. Additional control experiments indicated that attenuation of cue-induced reinstatement by CNQX, NBQX, L-701,324, and MPEP was not accompanied by significant suppression of spontaneous locomotor activity. These results suggest that conditioned influences on cocaine seeking depend on glutamate transmission. Accordingly, drugs with antagonist properties at various glutamate receptor subtypes could be useful in prevention of relapse induced by conditioned stimuli.

  4. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    PubMed Central

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where high intensity stimuli are prevalent. PMID:17532111

  5. Expression of IGF-1, IL-27 and IL-35 Receptors in Adjuvant Induced Rheumatoid Arthritis Model.

    PubMed

    Abdi, Elham; Najafipour, Hamid; Joukar, Siyavash; Dabiri, Shahriar; Esmaeli-Mahani, Saeed; Abbasloo, Elham; Houshmandi, Nasrin; Afsharipour, Abbas

    2018-03-01

    IGF-1 and certain other cytokines have been shown to exert inflammatory/anti-inflammatory roles in chronic joint diseases. To assess the effect of IGF-1, IL-27 and IL-35, their interaction and their receptor expression in a rheumatoid arthritis model. Freund's adjuvant-induced chronic joint inflammation was operated on 160 male rats. Animals were divided into histopathology and receptor expression groups, each composed of 10 subgroups including; control, vehicle, IGF-1, IL-27, IL-35, their antagonists, IGF-1+IL-27 antagonist and IGF-1+IL-35 antagonist. After two weeks, vehicle or agonist/antagonists were injected into the joint space every other day until day 28 where joint histopathology was performed. The expression of IGF-1, IL-27 and IL-35 receptors were assessed by western blot analysis. IGF-1 did not show pro- or anti- inflammatory functions; endogenous IL-27 and IL-35, on the other hand, exerted inflammatory effects. IL-27 and IL-35 antagonists exerted the highest anti-inflammatory effects. The total inflammation scores were 0.55 ± 0.06, 4.63 ± 0.40, 3.63 ± 0.60, 2.50 ± 0.38 and 1.63 ± 0.40 regarding control, vehicle, IGF-1 Ant., IL-27 Ant. and IL-35 Ant., respectively. IGF-1 receptor expression was reduced in chronic joint inflammation and all three antagonists augmented the IGF-1 receptor expression. IL-27 and IL-35 receptors were up-regulated by chronic joint inflammation. Overall, the results demonstrated the pro-inflammatory role of endogenous IL-27 and IL-35 along with the over expression of their receptors in chronic joint inflammation. IL-27 and IL-35 antagonists exerted the most anti-inflammatory effects and increased IGF-1 receptor expression. These two antagonists may be potential agents for new treatment strategies in chronic joint inflammatory diseases.

  6. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    PubMed

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  7. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    PubMed

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  8. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression

    PubMed Central

    López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2018-01-01

    Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression. PMID:29910727

  9. Tachykinin-mediated respiratory effects in conscious guinea pigs: modulation by NK1 and NK2 receptor antagonists.

    PubMed

    Kudlacz, E M; Logan, D E; Shatzer, S A; Farrell, A M; Baugh, L E

    1993-09-07

    Tachykinins, in particular neurokinin A and substance P, produce a number of airway effects which may contribute to respiratory diseases such as asthma. We examined the ability of aerosolized substance P, neurokinin A or capsaicin to produce respiratory alterations in conscious guinea pigs using modified whole body plethysmography. Substance P-mediated dyspnea and significant respiratory events were inhibited by the NK1 receptor antagonist, CP-96,345. Neurokinin A-mediated respiratory effects were ablated by the NK2 receptor antagonists: MEN 10207, MDL 29,913 and SR 48,968, the latter being the most potent. The peptide-based antagonist, MEN 10207, produced respiratory effects itself suggesting partial agonist activity. The cyclic hexapeptide, MDL 29,913, relaxed airway smooth muscle via mechanisms other than tachykinin antagonism. NK2 but not NK1 receptor antagonists were able to delay the onset of capsaicin-induced dyspnea, although alone they did not usually (in approximately 10% of the animals) eliminate the response. However, when NK2 receptor antagonists were combined with CP-96,345, the incidence of dyspnea induced by capsaicin decreased significantly (40%) suggesting that both tachykinins contribute to dyspnea in this system.

  10. 5-HT7 Receptor Antagonists with an Unprecedented Selectivity Profile.

    PubMed

    Ates, Ali; Burssens, Pierre; Lorthioir, Olivier; Lo Brutto, Patrick; Dehon, Gwenael; Keyaerts, Jean; Coloretti, Francis; Lallemand, Bénédicte; Verbois, Valérie; Gillard, Michel; Vermeiren, Céline

    2018-04-23

    Selective leads: In this study, we generated a new series of serotonin 5-HT 7 receptor antagonists. Their synthesis, structure-activity relationships, and selectivity profiles are reported. This series includes 5-HT 7 antagonists with unprecedented high selectivity for the 5-HT 7 receptor, setting the stage for lead optimization of drugs acting on a range of neurological targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Effect of Sympathetic Antagonists on the Antidepressant Action of Alprazolam

    PubMed Central

    Al-Tubuly, RA; Aburawi, SM; Alghzewi, EA; Gorash, ZM; Errwami, S

    2008-01-01

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor antagonists with benzodiazepines, which may impact the clinical use of alprazolam, was also studied. Behavioral despair was examined in six groups of albino mice. Drugs were administered intraperitoneally. The control group received only a single dose of 1% Tween 80. The second group received a single dose of alprazolam, and the third group received an antagonist followed by alprazolam. The fourth group was treated with imipramine, and the fifth group received an antagonist followed by imipramine. The sixth group was treated with a single dose of an antagonist alone (atenolol, a β1-selective adrenoceptor antagonist; propranolol, a non selective β-adrenoceptor antagonist; and prazocin, an α1-adrenoceptor antagonist). Results confirmed the antidepressant action of alprazolam and imipramine. Prazocin treatment alone produced depression, but it significantly potentiated the antidepressant actions of imipramine and alprazolam. Atenolol alone produced an antidepressant effect and potentiated the antidepressant action of alprazolam. Propranolol treatment alone produced depression, and antagonized the effects of alprazolam and imipramine, even producing depression in combined treatments.In conclusion, our results reveal that alprazolam may produce antidepressant effects through the release of noradrenaline, which stimulates β2 receptors to produce an antidepressant action. Imipramine may act by activating β2 receptors by blocking or down-regulating β1 receptors. PMID:21499463

  12. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    PubMed

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Continuous delivery of naltrexone and nalmefene leads to tolerance in reducing alcohol drinking and to supersensitivity of brain opioid receptors.

    PubMed

    Korpi, Esa R; Linden, Anni-Maija; Hytönen, Heidi R; Paasikoski, Nelli; Vashchinkina, Elena; Dudek, Mateusz; Herr, Deron R; Hyytiä, Petri

    2017-07-01

    Opioid antagonist treatments reduce alcohol drinking in rodent models and in alcohol-dependent patients, with variable efficacy across different studies. These treatments may suffer from the development of tolerance and opioid receptor supersensitivity, as suggested by preclinical models showing activation of these processes during and after subchronic high-dose administration of the short-acting opioid antagonist naloxone. In the present study, we compared equipotent low and moderate daily doses of naltrexone and nalmefene, two opioid antagonists in the clinical practice for treatment of alcoholism. The antagonists were given here subcutaneously for 7 days either as daily injections or continuous osmotic minipump-driven infusions to alcohol-preferring AA rats having trained to drink 10% alcohol in a limited access protocol. One day after stopping the antagonist treatment, [ 35 S]GTPγS autoradiography on brain cryostat sections was carried out to examine the coupling of receptors to G protein activation. The results prove the efficacy of repeated injections over infused opioid antagonists in reducing alcohol drinking. Tolerance to the reducing effect on alcohol drinking and to the enhancement of G protein coupling to μ-opioid receptors in various brain regions were consistently detected only after infused antagonists. Supersensitivity of κ-opioid receptors was seen in the ventral and dorsal striatal regions especially by infused nalmefene. Nalmefene showed no clear agonistic activity in rat brain sections or at human recombinant κ-opioid receptors. The findings support the as-needed dosing practice, rather than the standard continual dosing, in the treatment of alcoholism with opioid receptor antagonists. © 2016 Society for the Study of Addiction.

  14. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test.

    PubMed

    Filho, Carlos B; Del Fabbro, Lucian; de Gomes, Marcelo G; Goes, André T R; Souza, Leandro C; Boeira, Silvana P; Jesse, Cristiano R

    2013-01-05

    The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders. Published by Elsevier B.V.

  15. Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics

    PubMed Central

    Manning, M; Misicka, A; Olma, A; Bankowski, K; Stoev, S; Chini, B; Durroux, T; Mouillac, B; Corbani, M; Guillon, G

    2012-01-01

    We recently reviewed the status of peptide and nonpeptide agonists and antagonists for the V1a, V1b and V2 receptors for arginine vasopressin (AVP) and the oxytocin receptor for oxytocin (OT). In the present review, we update the status of peptides and nonpeptides as: (i) research tools and (ii) therapeutic agents. We also present our recent findings on the design of fluorescent ligands for V1b receptor localisation and for OT receptor dimerisation. We note the exciting discoveries regarding two novel naturally occurring analogues of OT. Recent reports of a selective VP V1a agonist and a selective OT agonist point to the continued therapeutic potential of peptides in this field. To date, only two nonpeptides, the V2/V1a antagonist, conivaptan and the V2 antagonist tolvaptan have received Food and Drug Administration approval for clinical use. The development of nonpeptide AVP V1a, V1b and V2 antagonists and OT agonists and antagonists has recently been abandoned by Merck, Sanofi and Pfizer. A promising OT antagonist, Retosiban, developed at Glaxo SmithKline is currently in a Phase II clinical trial for the prevention of premature labour. A number of the nonpeptide ligands that were not successful in clinical trials are proving to be valuable as research tools. Peptide agonists and antagonists continue to be very widely used as research tools in this field. In this regard, we present receptor data on some of the most widely used peptide and nonpeptide ligands, as a guide for their use, especially with regard to receptor selectivity and species differences. PMID:22375852

  16. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells

    PubMed Central

    Tahara, Atsuo; Tsukada, Junko; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Tanaka, Akihiro

    2000-01-01

    [3H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [3H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (Kd) of 0.76 nM and a maximum receptor density (Bmax) of 153 fmol mg−1 protein. The Hill coefficient (nH) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [3H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [3H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu1,6]-oxytocin>AVP= atosiban>d(CH2)5Tyr(Me)AVP>[Thr4,Gly7]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca2+]i increase and hyperplasia. In contrast, the V1A receptor selective antagonist, SR 49059, and the V2 receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca2+]i increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca2+]i increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [3H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca2+]i increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. PMID:10694212

  17. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of pulmonary resistance arteries ETB receptor may contribute to this finding. PMID:19489130

  18. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    PubMed Central

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  19. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    NASA Astrophysics Data System (ADS)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  20. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  1. Pharmacological lineage analysis revealed the binding affinity of broad-spectrum substance P antagonists to receptors for gonadotropin-releasing peptide.

    PubMed

    Arai, Kazune; Kashiwazaki, Aki; Fujiwara, Yoko; Tsuchiya, Hiroyoshi; Sakai, Nobuya; Shibata, Katsushi; Koshimizu, Taka-aki

    2015-02-15

    A group of synthetic substance P (SP) antagonists, such as [Arg(6),D-Trp(7,9),N(Me)Phe(8)]-substance P(6-11) and [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, bind to a range of distinct G-protein-coupled receptor (GPCR) family members, including V1a vasopressin receptors, and they competitively inhibit agonist binding. This extended accessibility enabled us to identify a GPCR subset with a partially conserved binding site structure. By combining pharmacological data and amino acid sequence homology matrices, a pharmacological lineage of GPCRs that are sensitive to these two SP antagonists was constructed. We found that sensitivity to the SP antagonists was not limited to the Gq-protein-coupled V1a and V1b receptors; Gs-coupled V2 receptors and oxytocin receptors, which couple with both Gq and Gi, also demonstrated sensitivity. Unexpectedly, a dendrogram based on the amino acid sequences of 222 known GPCRs showed that a group of receptors sensitive to the SP antagonists are located in close proximity to vasopressin/oxytocin receptors. Gonadotropin-releasing peptide receptors, located near the vasopressin receptors in the dendrogram, were also sensitive to the SP analogs, whereas α1B adrenergic receptors, located more distantly from the vasopressin receptors, were not sensitive. Our finding suggests that pharmacological lineage analysis is useful in selecting subsets of candidate receptors that contain a conserved binding site for a ligand with broad-spectrum binding abilities. The knowledge that the binding site of the two broad-spectrum SP analogs partially overlaps with that of distinct peptide agonists is valuable for understanding the specificity/broadness of peptide ligands. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Induction of θ-frequency oscillations in the rat medial septal diagonal band slice by metabotropic glutamate receptor agonists.

    PubMed

    Lu, C B; Ouyang, G; Henderson, Z; Li, X

    2011-03-17

    The aim of this study was to examine the role of metabotropic glutamate receptors (mGluR) in the generation of oscillatory field activity at theta frequency (4-12 Hz) in the medial septal slice prepared from rat brain. Bath application of mGluR agonists and antagonists showed that activation of mGluR1-type receptors produces persistent theta frequency oscillations in a dose-responsive manner. This activity, induced by the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), was reduced by ionotropic glutamate receptor antagonists and abolished by further addition of a GABAA receptor antagonist. However, addition of a GABAA receptor antagonist on its own converted the DHPG-induced oscillations to intermittent episodes of accentuated theta frequency activity following a burst. In a proportion of slices, DHPG induced large amplitude field population spiking activity (100-300 μV) which is correlated linearly with the field theta oscillations and is sensitive to glutamate receptor antagonists, suggesting a role of this type of spikes in theta generation induced by DHPG. These data demonstrate that DHPG-sensitive neuronal networks within medial septum generate theta rhythmic activity and are differentially modulated by excitatory and inhibitory ionotropic neurotransmissions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Inhibition of prohormone convertase 1 (PC1) expression in cholecystokinin (CCK) expressing At-T20 cells decreased cellular content and secretion of CCK and caused a shift in molecular forms of CCK secreted.

    PubMed

    Beinfeld, Margery C; Vishnuvardhan, Daesety; Blum, Alissa; Reynolds, Nicole; Fannous, Sanya; Kitagawa, Kouki; Marchand, James E

    2006-04-01

    Two different RNAi methods were used to inhibit the expression of prohormone convertase 1 (PC1) in At-T20 cells. Transient transfection of double stranded RNA and stable expression of a vector expressing hairpin-loop RNA targeting PC1 reduced cholecystokinin (CCK) secretion from At-T20 cells. PC1 mRNA and protein were also decreased in the vector transfected cells. This treatment caused a shift in the forms of cholecystokinin (CCK) secreted, decreasing CCK 22 and increasing CCK 8. Stable expression of RNAi effectively decreased PC1 expression. The observed decrease in CCK seen with these RNAi treatments further supports a role for PC1 in CCK processing in these cells.

  4. Serotonin (1A) receptor involvement in acute 3,4-methylenedioxymethamphetamine (MDMA) facilitation of social interaction in the rat.

    PubMed

    Morley, Kirsten C; Arnold, Jonathon C; McGregor, Iain S

    2005-06-01

    The current study assessed whether various co-administered serotonin (5-HT) receptor antagonists could prevent some of the acute behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") in rats. In the social interaction test, MDMA (5 mg/kg) significantly increased the duration of total social interaction between two conspecifics meeting for the first time. Microanalysis showed that MDMA increased adjacent lying and approach behaviours while reducing anogenital sniffing. MDMA (5 mg/kg) also caused elements of the serotonin syndrome including low body posture and piloerection. In the emergence test, MDMA significantly increased hide time and emergence latency indicating increased anxiety-like behavior. Pretreatment with the 5HT 1A receptor antagonist, WAY 100635 (1 mg/kg), prevented MDMA-induced increases in social interaction and markers of the serotonin syndrome while the 5-HT 1B receptor antagonist GR 55562 (1 mg/kg) and 5-HT 2A receptor antagonist ketanserin (1 mg/kg) were ineffective. The 5-HT 2B/2C receptor antagonist, SB 206553 (2 mg/kg), prevented MDMA-induced prosocial effects but caused pronounced thigmotaxis (hyperactivity at the periphery of the testing chamber). The anxiogenic effect of MDMA on the emergence test was not prevented by pretreatment with any of the 5-HT receptor antagonists tested. These results indicate that prosocial effect of MDMA may involve 5-HT 1A and possibly 5-HT 2B/2C receptors. In contrast, MDMA-induced generalised anxiety, as measured by the emergence test, seems unlikely to involve the 5-HT 1A, 5-HT 1B or 5-HT 2A, 5-HT 2B or 5-HT 2C receptors.

  5. Antagonism of bromocriptine-induced cage climbing behaviour in mice by the selective D-2 dopamine receptor antagonists, metoclopramide and molindone.

    PubMed

    Balsara, J J; Nandal, N V; Gada, V P; Bapat, T R; Chandorkar, A G

    1986-01-01

    Bromocriptine (5-30 mg/kg, ip), 2 hr after administration, induced cage climbing behaviour in mice. Pretreatment with haloperidol, an antagonist of both D-1 and D-2 dopamine receptors, metoclopramide and molindone, the selective D-2 dopamine receptor antagonists, effectively antagonised bromocriptine-induced climbing behaviour. The results indicate that bromocriptine most probably induces climbing behaviour in mice by stimulating the postsynaptic striatal D-2 dopamine receptors.

  6. Ontogeny of cholecystokinin-like immunoreactivity in the Brazilian opossum brain.

    PubMed

    Fox, C A; Jeyapalan, M; Ross, L R; Jacobson, C D

    1991-12-17

    We have studied the anatomical distribution of cholecystokinin-like immunoreactive (CCK-IR) somata and fibers in the brain of the adult and developing Brazilian short-tailed opossum, Monodelphis domestica. Animals ranged in age from the day of birth (1PN) to young adulthood (180PN). A nickel enhanced, avidin-biotin, indirect immunohistochemical technique was used to identify CCK-IR structures. Somata containing CCK immunoreactivity were observed in the cerebral cortex, hippocampus, hypothalamus, thalamus, midbrain, and brainstem in the adult. Cholecystokinin immunoreactive fibers had a wide distribution in the adult Monodelphis brain. The only major region of the brain that did not contain CCK-IR fibers was the cerebellum. The earliest expression of CCK immunoreactivity was found in fibers in the dorsal brainstem of 5-day-old opossum pups. It is possible that the CCK-IR fibers in the brainstem at 5PN are of vagal origin. Cholecystokinin immunoreactive somata were observed in the brainstem on 10PN. The CCK-IR cell bodies observed in the brainstem at 10PN may mark the first expression of CCK-IR elements intrinsic to the brain. A broad spectrum of patterns of onset of CCK expression was observed in the opossum brain. The early occurrence and varied ontogenesis of CCK-IR structures indicates CCK may be involved in the function of a variety of circuits from the brainstem to the cerebral cortex. The early expression of CCK-IR structures in the dorsal brainstem suggests that CCK may modulate feeding behavior in the Monodelphis neonate. Cholecystokinin immunoreactivity in forebrain structures such as the suprachiasmatic nucleus, medial preoptic area, thalamus and cortical structures indicates that CCK may also be involved in circadian rhythmicity, reproductive functions, as well as the state of arousal of the Brazilian opossum. The ontogenic timing of CCK immunoreactivity in specific circuitry also indicates that CCK expression does not occur simultaneously throughout the brain. This pattern of CCK onset may relate to the temporal need for CCK in specific circuits of the central nervous system (CNS) during development.

  7. Release of digestive enzymes from the crustacean hepatopancreas: effect of vertebrate gastrointestinal hormones.

    PubMed

    Resch-Sedlmeier, G; Sedlmeier, D

    1999-06-01

    Vertebrate gastrointestinal hormones were tested on their ability to liberate digestive enzymes from the crustacean midgut gland. CCK-8 (desulfated form), gastrin, bombesin, secretin, and substance P were detected to release enzymes. Maximal concentrations observed were 5 nM CCK for protease release, 1 nM gastrin for protease and 100 nM for amylase release, 100 nM bombesin for protease release, 10 nM secretin for amylase and protease release, and 100 nM substance P for protease release. Unlike in vertebrates, glucagon was unable to stimulate enzyme release in crustaceans, this also applies to the counterpart insulin. These results may support the assumption that Crustacea possess endogenous factors resembling the above mentioned vertebrate hormones, at least in such a way that the appropriate receptors have the capacity to accept these hormones.

  8. Mechanism of action of a nanomolar potent, allosteric antagonist of the thyroid-stimulating hormone receptor

    PubMed Central

    van Koppen, Chris J; de Gooyer, Marcel E; Karstens, Willem-Jan; Plate, Ralf; Conti, Paolo GM; van Achterberg, Tanja AE; van Amstel, Monique GA; Brands, Jolanda HGM; Wat, Jesse; Berg, Rob JW; Lane, J Robert D; Miltenburg, Andre MM; Timmers, C Marco

    2012-01-01

    BACKGROUND AND PURPOSE Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO. Here, we determined the molecular pharmacology of a prototypic, nanomolar potent LMW TSH receptor antagonist, Org 274179-0. EXPERIMENTAL APPROACH Using CHO cells heterogeneously expressing human TSH receptors and rat FRTL-5 cells endogenously expressing rat TSH receptors, we determined the potency and efficacy of Org 274179-0 at antagonizing TSH- and TSI-induced TSH receptor signalling and its cross-reactivity at related follicle-stimulating hormone and luteinizing hormone receptors. We analysed the allosteric mode of interaction of Org 274179-0 and determined whether it is an inverse agonist at five naturally occurring, constitutively active TSH receptor mutants. KEY RESULTS Nanomolar concentrations of Org 274179-0 completely inhibited TSH (and TSI)-mediated TSH receptor activation with little effect on the potency of TSH, in accordance with an allosteric mechanism of action. Conversely, increasing levels of TSH receptor stimulation only marginally reduced the antagonist potency of Org 274179-0. Org 274179-0 fully blocked the increased basal activity of all the constitutively active TSH receptor mutants tested with nanomolar potencies. CONCLUSIONS AND IMPLICATIONS Nanomolar potent TSH receptor antagonists like Org 274179-0 have therapeutic potential for the treatment of GD and GO. PMID:22014107

  9. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice.

    PubMed

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan; Rehfeld, Jens F; Friis-Hansen, Lennart

    2010-09-01

    The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons of the mammalian SCN, but its role in circadian timing is not known. In the present study, CCK was demonstrated in a distinct population of neurons located in the shell region of the SCN and in a few cells in the core region. The CCK neurons did not express vasopressin or vasoactive intestinal peptide. However, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of cFOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting of the clock or in regulating core clock function. The expression of CCK in a subpopulation of neurons, which do not belonging to either the VIP or AVP cells but which have synaptic contacts to both cell types and reverse innervation of CCK neurons from VIP neurons, suggests that the CCK neurons may act in non-photic regulation within the clock and/or, via CCK projections, mediate clock information to hypothalamic nuclei. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  11. Oxidation/reduction of methionine residues in CCK: a study by radioimmunoassay and isocratic reverse phase high pressure liquid chromatography.

    PubMed

    Bacarese-Hamilton, A J; Adrian, T E; Chohan, P; Antony, T; Bloom, S R

    1985-01-01

    The study was undertaken to investigate the oxidation and reduction of cholecystokinin (CCK) both as pure standards and as endogenous porcine peptides. Furthermore an attempt was made to prevent oxidation of the endogenous porcine peptides in the extraction procedure. CCK-8 and CCK-33 standards were always oxidized in weak solutions, CCK-8 varying from 26% to 67% oxidized and CCK-33 from 18% to 70%. Similarly, tissue extracts of porcine brain and duodenum contained oxidized forms of the peptide. CCK standards were readily oxidized in the presence of hydrogen peroxide. Oxidized CCK-8 standard and CCK-8 in porcine brain was 90% reduced and oxidized CCK-33 standard and in duodenal extracts was reduced by 70% by a 40 hour incubation with 0.725 mol/l dithiothreitol at 37 degrees C. Extraction of CCK peptides in the presence of 65 mmol/l dithiothreitol resulted in almost complete prevention of oxidation with over 95% of the peptides being obtained in the reduced state. This additive is therefore recommended for all tissue quantitation studies.

  12. Effect of Combined Treatment with AT1 Receptor Antagonists and Tiagabine on Seizures, Memory and Motor Coordination in Mice.

    PubMed

    Łukawski, Krzysztof; Janowska, Agnieszka; Czuczwar, Stanisław J

    2015-01-01

    Losartan and telmisartan, angiotensin AT1 receptor antagonists, are widely used antihypertensive drugs in patients. It is also known that arterial hypertension is often present in people with epilepsy, therefore, drug interactions between AT1 receptor antagonists and antiepileptic drugs can occur in clinical practice. The aim of the current study was to assess the effect of losartan and telmisartan on the anticonvulsant activity of tiagabine, a second-generation antiepileptic drug, in mice. Additionally, the effect of the combined treatment with AT1 receptor antagonists and TGB on long-term memory and motor coordination has been assessed in animals. The study was performed on male Swiss mice. Convulsions were examined in the maximal electroshock seizure threshold test. Long-term memory was measured in the passive-avoidance task and motor coordination was evaluated in the chimney test. AT1 receptor antagonists and TGB were administered intraperitoneally. Losartan (50 mg/kg) or telmisartan (30 mg/kg) did not influence the anticonvulsant activity of TGB applied at doses of 2, 4 and 6 mg/kg. However, both AT1 receptor antagonists in combinations with TGB (6 mg/kg) impaired motor coordination in the chimney test. The concomitant treatment of the drugs did not decrease retention in the passive avoidance task. It is suggested that losartan and telmisartan should not affect the anticonvulsant action of TGB in people with epilepsy. Because the combined treatment with AT1 receptor antagonists and TGB led to neurotoxic effects in animals, caution is advised during concomitant use of these drugs in patients.

  13. Effects of endothelin receptor antagonists on renal hemodynamics in angiotensin II-infused rats on high NaCl intake.

    PubMed

    Saeed, Aso; Dibona, Gerald F; Guron, Gregor

    2012-01-01

    The aim was to investigate effects of selective endothelin (ET) receptor antagonists on renal hemodynamics and dynamic renal blood flow autoregulation (RBFA) in angiotensin II (Ang II)-infused rats on a high NaCl intake. Sprague-Dawley rats received Ang II (250 ng/kg/min, s.c.) and an 8% NaCl diet for 14 days after which renal clearance experiments were performed. After baseline measurements animals were administered either: (a) saline vehicle; (b) ETA receptor antagonist BQ-123 (30 nmol/kg/min); (c) ETB receptor antagonist BQ-788 (30 nmol/kg/min); or (d) BQ-123 + BQ-788, for six consecutive 20-minute clearance periods. BQ-123 reduced arterial pressure (AP) and selectively increased outer medullary perfusion versus vehicle (p<0.05). These effects were attenuated or abolished by combined BQ-123 and BQ-788. BQ-788 reduced renal blood flow and increased renovascular resistance (p<0.05). Ang II-infused rats on high NaCl intake showed abnormalities in dynamic RBFA characterized by an impaired myogenic response that were not significantly affected by ET receptor antagonists. In hypertensive Ang II-infused rats on a high-NaCl intake selective ETA antagonism with BQ-123 reduced AP and specifically increased OM perfusion and these effects were dependent on intact ETB receptor stimulation. Furthermore, ET receptor antagonists did not attenuate abnormalities in dynamic RBFA. Copyright © 2012 S. Karger AG, Basel.

  14. Non-specific actions of the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, on neurotransmission.

    PubMed Central

    Wang, Z. Y.; Tung, S. R.; Strichartz, G. R.; Håkanson, R.

    1994-01-01

    1. Three non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, were found to inhibit the electrically-evoked, tachykinin-mediated contractile responses of the rabbit iris sphincter in a concentration-dependent fashion; the pIC50 values were 5.6 +/- 0.01, 5.4 +/- 0.07 and 4.8 +/- 0.03, respectively. 2. These antagonists also inhibited the electrically-evoked, parasympathetic response of the rabbit iris sphincter and the sympathetic response of the guinea-pig vas deferens in a concentration-dependent manner; the pIC50 values were 0.3-1.2 log units lower than those recorded for the tachykinin-mediated responses. 3. Two local anaesthetics, bupivacaine and oxybuprocaine, were also found to inhibit the tachykinin-mediated, cholinergic and sympathetic contractile responses in these tissues in a concentration-dependent manner; the concentration ranges for producing the inhibition were similar to those of the non-peptide tachykinin receptor antagonists. 4. On the sciatic nerves of frogs, the tachykinin receptor antagonists inhibited action potentials in a concentration-dependent manner; the potency of the three drugs was similar to that of bupivacaine. 5. Our results suggest that, in addition to blocking tachykinin receptors, the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, may exert non-specific inhibitory effects on neurotransmission. PMID:8012694

  15. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but not much Y295W), were crucial for the high affinity of MEN16132. In conclusion, MEN16132 is a new, potent, and selective nonpeptide bradykinin B2 receptor antagonist.

  16. Kinin B1 receptor antagonists containing alpha-methyl-L-phenylalanine: in vitro and in vivo antagonistic activities.

    PubMed

    Gobeil, F; Charland, S; Filteau, C; Perron, S I; Neugebauer, W; Regoli, D

    1999-03-01

    -To protect from metabolism and to improve potency of the AcLys-[D-betaNal7,Ile8]desArg9-bradykinin (BK) (R 715), we prepared and tested 3 analogues containing alpha-methyl-L-Phe ([alphaMe]Phe) in position 5: these are the AcLys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 892), Lys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 913), and AcLys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 914). The new compounds were tested against the contractile effect induced by desArg9BK on 2 B1 receptor bioassays, the human umbilical vein, and the rabbit aorta. Their antagonistic activities were compared with those of the early prototypes (Lys-[Leu8]desArg9BK and [Leu8]desArg9BK) and with other recently described peptide antagonists. The 3 (alphaMe)Phe analogues showed high antagonistic potencies (pA2) at both the human (8.8, 7.7, and 8. 7, respectively) and rabbit (8.6, 7.8, and 8.6, respectively) B1 receptors. No antagonistic effects (pA2<5) were observed on the B2 receptors that mediate the contractile effects of BK on the human umbilical vein, the rabbit jugular vein, and the guinea pig ileum. Moreover, these new B1 antagonists were found to be resistant to in vitro degradation by purified angiotensin-converting enzyme from rabbit lung. The Nalpha-acetylated forms, R 892 and R 914, were resistant to aminopeptidases from human plasma. In vivo antagonistic potencies (ID50) of B1 receptor antagonists were evaluated in anesthetized lipopolysaccharide-treated (for B1 receptor) and nontreated (for B2 receptor) rabbits against the hypotensive effects of exogenous desArg9BK and BK. R 892 efficiently inhibited (ID50 2.8 nmol/kg IV) hypotension induced by desArg9BK without affecting that evoked by BK (ID50 >600 nmol/kg IV). Conversely, the peptide antagonists Lys-Lys-[Hyp3,Igl5,D-Igl7,Oic8]desArg9BK (B 9858) and DArg-[Hyp3,Thi5,D-Tic7,Oic8] desArg9BK (S 0765) showed dual B1/B2 receptor antagonism in vitro and in vivo. It is concluded that R 892 and congeners provide selective, highly potent, and metabolically stable B1 kinin receptor antagonists that can be useful for the assessment of the physiological and pathological roles of kinin B1 receptors.

  17. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  18. Effects of the noncompetitive N-methyl-d-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats.

    PubMed

    Hillhouse, T M; Negus, S S

    2016-09-01

    Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-d-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague-Dawley rats. Ketamine (1.0-10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01-0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. © 2016 European Pain Federation - EFIC®

  19. Effects of the noncompetitive N-methyl-D-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats

    PubMed Central

    Hillhouse, T.M.; Negus, S.S.

    2017-01-01

    Background Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-D-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. Methods This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague–Dawley rats. Results Ketamine (1.0–10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01–0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. Conclusion These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. What does this study add? NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. PMID:26914635

  20. Complement Depletion Protects Lupus-prone Mice from Ischemia-reperfusion-initiated Organ Injury

    DTIC Science & Technology

    2012-10-25

    injury, we sought to evaluate whether complement inhibition mitigates organ damage. We found that complement deple- tion with cobra venom factor... venom factor and C5a receptor antagonist were able to protect mice from local tissue damage, treatment with C5a receptor antagonist was not able to...Complement depletion or blockage of the complement pathway using molecules such as cobra venom factor (CVF) (24, 33) and C5a receptor antagonists (C5aRA

  1. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism.

    PubMed

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-02-01

    The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). The two isomers showed similar affinity and selectivity for κ receptors (K(i)  30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  3. Tryptophanol-derived oxazolopiperidone lactams: identification of a hit compound as NMDA receptor antagonist.

    PubMed

    Pereira, Nuno A L; Sureda, Francesc X; Esplugas, Roser; Pérez, Maria; Amat, Mercedes; Santos, Maria M M

    2014-08-01

    N-Methyl-D-aspartate receptors (NMDAR) exacerbated activation leads to neuron death through a phenomenon called excitotoxicity. These receptors are implicated in several neurological diseases (e.g., Alzheimer and Parkinson) and thus represent an important therapeutic target. We herein describe the study of enantiopure tryptophanol-derived oxazolopiperidone lactams as NMDA receptor antagonists. The most active hit exhibited an IC50 of 63.4 μM in cultured rat cerebellar granule neurons thus being 1.5 fold more active than clinically approved NMDA antagonist amantadine (IC50=92 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    NASA Astrophysics Data System (ADS)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  5. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1.

    PubMed

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-28

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr(6.63) forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr(6.63) to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr356(6.63) allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  6. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors.

    PubMed

    Andreou, Anna P; Holland, Philip R; Lasalandra, Michele P; Goadsby, Peter J

    2015-03-01

    Migraine is a common and disabling neurologic disorder, with important psychiatric comorbidities. Its pathophysiology involves activation of neurons in the trigeminocervical complex (TCC). Kainate receptors carrying the glutamate receptor subunit 5 (GluK1) are present in key brain areas involved in migraine pathophysiology. To study the influence of kainate receptors on trigeminovascular neurotransmission, we determined the presence of GluK1 receptors within the trigeminal ganglion and TCC with immunohistochemistry. We performed in vivo electrophysiologic recordings from TCC neurons and investigated whether local or systemic application of GluK1 receptor antagonists modulated trigeminovascular transmission. Microiontophoretic application of a selective GluK1 receptor antagonist, but not of a nonspecific ionotropic glutamate receptor antagonist, markedly attenuated cell firing in a subpopulation of neurons activated in response to dural stimulation, consistent with selective inhibition of postsynaptic GluK1 receptor-evoked firing seen in all recorded neurons. In contrast, trigeminovascular activation was significantly facilitated in a different neuronal population. The clinically active kainate receptor antagonist LY466195 attenuated trigeminovascular activation in all neurons. In addition, LY466195 demonstrated an N-methyl-d-aspartate receptor-mediated effect. This study demonstrates a differential role of GluK1 receptors in the TCC, antagonism of which can inhibit trigeminovascular activation through postsynaptic mechanisms. Furthermore, the data suggest a novel, possibly presynaptic, modulatory role of trigeminocervical kainate receptors in vivo. Differential activation of kainate receptors suggests unique roles for this receptor in pro- and antinociceptive mechanisms in migraine pathophysiology.

  7. Nondopaminergic treatments for Parkinson's disease: current and future prospects

    PubMed Central

    Freitas, Maria Eliza; Fox, Susan H

    2016-01-01

    Parkinson's disease is primarily caused by dysfunction of dopaminergic neurons, however, nondopaminergic (ND) systems are also involved. ND targets are potentially useful to reduce doses of levodopa or to treat nonlevodopa-responsive symptoms. Recent studies have investigated the role of ND drugs for motor and nonmotor symptoms. Adenosine A2A receptor antagonists, mixed inhibitors of sodium/calcium channels and monoamine oxidase-B have recently been found to improve motor fluctuations. N-methyl-d-aspartate receptor antagonists and serotonin 5HT1B receptor agonists demonstrated benefit in levodopa-induced dyskinesia. Conversely, studies using antiepileptic drugs and adrenoreceptor antagonist had conflicting results. Moreover, metabotropic glutamate receptor antagonists also failed to improve symptoms. The current review summarizes the most recent findings on ND drugs over the last 2 years. PMID:27230697

  8. Ranakinestatin-PPF from the skin secretion of the Fukien gold-striped pond frog, Pelophylax plancyi fukienensis: a prototype of a novel class of bradykinin B2 receptor antagonist peptide from ranid frogs.

    PubMed

    Ma, Jie; Luo, Yu; Ge, Lilin; Wang, Lei; Zhou, Mei; Zhang, Yingqi; Duan, Jinao; Chen, Tianbao; Shaw, Chris

    2014-01-01

    The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin-a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10(-6)M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10(-11)M and 10(-5)M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin-PPF-thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

  9. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  10. The effect of the sigma-1 receptor selective compound LS-1-137 on the DOI-induced head twitch response in mice.

    PubMed

    Malik, Maninder; Rangel-Barajas, Claudia; Mach, Robert H; Luedtke, Robert R

    2016-09-01

    Several receptor mediated pathways have been shown to modulate the murine head twitch response (HTR). However, the role of sigma receptors in the murine (±)-2,5-dimethoxy-4-iodoamphetamine (DOI)-induced HTR has not been previously investigated. We examined the ability of LS-1-137, a novel sigma-1 vs. sigma-2 receptor selective phenylacetamide, to modulate the DOI-induced HTR in DBA/2J mice. We also assessed the in vivo efficacy of reference sigma-1 receptor antagonists and agonists PRE-084 and PPCC. The effect of the sigma-2 receptor selective antagonist RHM-1-86 was also examined. Rotarod analysis was performed to monitor motor coordination after LS-1-137 administration. Radioligand binding techniques were used to determine the affinity of LS-1-137 at 5-HT2A and 5-HT2C receptors. LS-1-137 and the sigma-1 receptor antagonists haloperidol and BD 1047 were able to attenuate a DOI-induced HTR, indicating that LS-1-137 was acting in vivo as a sigma-1 receptor antagonist. LS-1-137 did not compromise rotarod performance within a dose range capable of attenuating the effects of DOI. Radioligand binding studies indicate that LS-1-137 exhibits low affinity binding at both 5-HT2A and 5-HT2C receptors. Based upon the results from these and our previous studies, LS-1-137 is a neuroprotective agent that attenuates the murine DOI-induced HTR independent of activity at 5-HT2 receptor subtypes, D2-like dopamine receptors, sigma-2 receptors and NMDA receptors. LS-1-137 appears to act as a sigma-1 receptor antagonist to inhibit the DOI-induced HTR. Therefore, the DOI-induced HTR can be used to assess the in vivo efficacy of sigma-1 receptor selective compounds. Copyright © 2016. Published by Elsevier Inc.

  11. Distortion of KB estimates of endothelin-1 ETA and ETB receptor antagonists in pulmonary arteries: Possible role of an endothelin-1 clearance mechanism.

    PubMed

    Angus, James A; Hughes, Richard J A; Wright, Christine E

    2017-12-01

    Dual endothelin ET A and ET B receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ET B receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ET B agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ET A receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L -1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ET B receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC 50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ET A receptor antagonism. In rat trachea (ET B ), bosentan was a competitive ET B antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ET A to ET B antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ET B antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ET B -mediated endothelin-1 clearance located on smooth muscle and antagonism of ET A - and ET B -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  12. PGE2 maintains the tone of the guinea pig trachea through a balance between activation of contractile EP1 receptors and relaxant EP2 receptors

    PubMed Central

    Säfholm, J; Dahlén, S-E; Delin, I; Maxey, K; Stark, K; Cardell, L-O; Adner, M

    2013-01-01

    Background and Purpose The guinea pig trachea (GPT) is commonly used in airway pharmacology. The aim of this study was to define the expression and function of EP receptors for PGE2 in GPT as there has been ambiguity concerning their role. Experimental Approach Expression of mRNA for EP receptors and key enzymes in the PGE2 pathway were assessed by real-time PCR using species-specific primers. Functional studies of GPT were performed in tissue organ baths. Key Results Expression of mRNA for the four EP receptors was found in airway smooth muscle. PGE2 displayed a bell-shaped concentration–response curve, where the initial contraction was inhibited by the EP1 receptor antagonist ONO-8130 and the subsequent relaxation by the EP2 receptor antagonist PF-04418948. Neither EP3 (ONO-AE5-599) nor EP4 (ONO-AE3-208) selective receptor antagonists affected the response to PGE2. Expression of COX-2 was greater than COX-1 in GPT, and the spontaneous tone was most effectively abolished by selective COX-2 inhibitors. Furthermore, ONO-8130 and a specific PGE2 antibody eliminated the spontaneous tone, whereas the EP2 antagonist PF-04418948 increased it. Antagonists of other prostanoid receptors had no effect on basal tension. The relaxant EP2 response to PGE2 was maintained after long-term culture, whereas the contractile EP1 response showed homologous desensitization to PGE2, which was prevented by COX-inhibitors. Conclusions and Implications Endogenous PGE2, synthesized predominantly by COX-2, maintains the spontaneous tone of GPT by a balance between contractile EP1 receptors and relaxant EP2 receptors. The model may be used to study interactions between EP receptors. PMID:22934927

  13. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist.

    PubMed

    Yoshida, Yu; Naoe, Yoshimitsu; Terauchi, Taro; Ozaki, Fumihiro; Doko, Takashi; Takemura, Ayumi; Tanaka, Toshiaki; Sorimachi, Keiichi; Beuckmann, Carsten T; Suzuki, Michiyuki; Ueno, Takashi; Ozaki, Shunsuke; Yonaga, Masahiro

    2015-06-11

    The orexin/hypocretin receptors are a family of G protein-coupled receptors and consist of orexin-1 (OX1) and orexin-2 (OX2) receptor subtypes. Orexin receptors are expressed throughout the central nervous system and are involved in the regulation of the sleep/wake cycle. Because modulation of these receptors constitutes a promising target for novel treatments of disorders associated with the control of sleep and wakefulness, such as insomnia, the development of orexin receptor antagonists has emerged as an important focus in drug discovery research. Here, we report the design, synthesis, characterization, and structure-activity relationships (SARs) of novel orexin receptor antagonists. Various modifications made to the core structure of a previously developed compound (-)-5, the lead molecule, resulted in compounds with improved chemical and pharmacological profiles. The investigation afforded a potential therapeutic agent, (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006), an orally active, potent orexin antagonist. The efficacy was demonstrated in mice in an in vivo study by using sleep parameter measurements.

  14. Identification of an antagonist that selectively blocks the activity of prostamides (prostaglandin-ethanolamides) in the feline iris.

    PubMed

    Woodward, D F; Krauss, A H; Wang, J W; Protzman, C E; Nieves, A L; Liang, Y; Donde, Y; Burk, R M; Landsverk, K; Struble, C

    2007-02-01

    The prostamides (prostaglandin-ethanolamides) and prostaglandin (PG) glyceryl esters are biosynthesized by COX-2 from the respective endocannabinoids anandamide and 2-arachidonyl glycerol. Agonist studies suggest that their pharmacologies are unique and unrelated to prostanoid receptors. This concept was further investigated using antagonists. The isolated feline iris was used as a key preparation, where prostanoid FP receptors and prostamide activity co-exist. Activity at human recombinant FP and other prostanoid receptors was determined using stable transfectants. In the feline iris, AGN 204396 produced a rightward shift of the dose-response curves for prostamide F2alpha and the prostamide F2alpha analog bimatoprost but did not block the effects of PGF2alpha and synthetic FP receptor agonists. Studies on human recombinant prostanoid receptors confirmed that AGN 204396 did not behave as a prostanoid FP receptor antagonist. AGN 204396 exhibited no antagonism at DP and EP1-4, but was a highly effective TP receptor antagonist. Contrary to expectation, the FP receptor antagonist AL-8810 efficaciously contracted the cat iris. AGN 204396 did not affect AL-8810 induced contractions, demonstrating that AL-8810 and AGN 204396 are pharmacologically distinct. Unlike AL-8810, the ethylamide derivate of AL-8810 was not an agonist. Al-8810 did not block prostamide F2alpha activity. Finally, AGN 204396 did not block PGE2-glyceryl ester activity. The ability of AGN 204396 to selectively block prostamide responses suggests the existence of prostamide sensitive receptors as entities distinct from receptors recognizing PGF2alpha and PGE2-glyceryl ester.

  15. An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function.

    PubMed

    Fone, Kevin C F

    2008-11-01

    As the 5-hydroxytryptamine(6) (5-HT(6)) receptor is almost exclusively expressed in the CNS, particularly in areas associated with learning and memory, many studies have examined its role in cognitive function in the rodent, as reviewed herein. Most studies, in healthy adult rats, report that 5-HT(6) receptor antagonists enhance retention of spatial learning in the Morris water maze, improve consolidation in autoshaping tasks and reverse natural forgetting in object recognition. Antagonists appear to facilitate both cholinergic and glutamatergic neurotransmission, reversing scopolamine- and NMDA receptor antagonist-induced memory impairments. Recent reports show that the 5-HT(6) receptor antagonist, PRX-07034, restores the impairment of novel object recognition produced in rats reared in social isolation, a neurodevelopmental model producing behavioural changes similar to several core symptoms seen in schizophrenia. The 5-HT(6) receptor antagonist, Ro 04-6790, modestly improved reversal learning in isolation reared but not group-housed controls in the water maze. Ro 04-6790 also improved novel object discrimination both in adult rats that received chronic intermittent phencyclidine and drug-naïve 18-month-old rats. However, more information on their effect in animal models of schizophrenia and Alzheimer's disease is required. Several selective high-affinity 5-HT(6) receptor agonists developed recently also improve object discrimination and extra-dimensional set-shifting behaviour. Thus both 5-HT(6) receptor agonist and antagonist compounds show promise as pro-cognitive agents in pre-clinical studies but the explanation for their paradoxical analogous effect is currently unclear, and is discussed in this article.

  16. Role of Endogenous Cholecystokinin on Growth of Human Pancreatic Cancer

    PubMed Central

    Matters, Gail L.; McGovern, Christopher; Harms, John F.; Markovic, Kevin; Anson, Krystal; Jayakumar, Calpurnia; Martenis, Melissa; Awad, Christina; Smith, Jill P.

    2012-01-01

    Cholecystokinin (CCK) and gastrin stimulate growth of pancreatic cancer. Although down regulation of gastrin inhibits growth of pancreatic cancer, the contribution of endogenous CCK to tumor growth is unknown. The purpose of this study was to evaluate the role of endogenous CCK on autocrine growth of pancreatic cancer. Pancreatic cancer cell lines were analyzed for CCK mRNA and peptide expression by real time RT-PCR and radioimmunoassay, respectively. The effect of endogenous CCK on growth was evaluated by treating cancer cells with CCK neutralizing antibodies and by down regulating CCK mRNA by RNAi. Wild type pancreatic cancer cells expressed significantly lower CCK mRNA and peptide levels than gastrin. Neither treatment of pancreatic cancer cells with CCK antibodies nor the down regulation of CCK mRNA and peptide by shRNAs altered growth in vitro or in vivo. Conversely, when gastrin mRNA expression was down regulated, the same cells failed to produce tumors in spite of having sustained levels of endogenous CCK. Pancreatic cancer cells produce CCK and gastrin; however, the autocrine production of gastrin is more important for stimulating tumor growth. PMID:21186400

  17. Involvement of histaminergic and noradrenergic receptors in the oxytocin-induced food intake in neonatal meat-type chicks.

    PubMed

    Mirnaghizadeh, Seyed Vahid; Zendehdel, Morteza; Babapour, Vahab

    2017-03-01

    Oxytocin neurons have a physiological role in food intake and energy balance. Several studies have shown that central histaminergic and adrenergic systems synapse on oxytocin neurons but there is no information for their interaction on food intake regulation in birds. The purpose of this study was to examine the effects of intracerebroventricular (ICV) injection of α-fluoromethylhistidine (α-FMH, histidine decarboxylase inhibitor), chlorpheniramine (histamine H1 receptors antagonist), famotidine (histamine H2 receptors antagonist), thioperamide (histamine H3 receptors antagonist), prazosin (α1 receptor antagonist), yohimbine (α2 receptor antagonist), metoprolol (β1 adrenergic receptor antagonist), ICI 118,551 (β2 adrenergic receptor antagonist) and SR59230R (β3 adrenergic receptor antagonist) on oxytocin-induced hypophagia in 3-h food-deprived (FD 3 ) neonatal broiler chicken. In Experiment 1, 3 h-fasted chicks were given an ICV injection of saline, α-FMH (250 nmol), oxytocin (10 μg) and co-injection of α-FMH + oxytocin. Experiments 2-9 were similar to experiment 1 except birds were injected with chlorpheniramine (300 nmol), famotidine (82 nmol), thioperamide (300 nmol), prazosin (10 nmol), yohimbine (13 nmol), metoprolol (24 nmol), ICI 118,551(5 nmol) and SR59230R (20 nmol) instead of α-FMH, respectively. After injection cumulative food intake was measured until 120 min post injection. According to the results, ICV injection of oxytocin significantly decreased food intake in broiler chickens (P < 0.001). ICV injection of α-FMH significantly attenuated hypophagic effect of oxytocin (P < 0.001). Also, co-injection of chlorpheniramine plus oxytocin significantly decreased the effect of oxytocin on food intake (P < 0.001). Co-administration of thioperamide and oxytocin significantly amplified hypophagic effect of oxytocin in chickens (P < 0.001). In addition, ICI 118,551 attenuated hypophagic effect of oxytocin (P < 0.001); while famotidine, prazosin, yohimbine, metoprolol and SR59230R had no effect on oxytocin- induced food intake in FD3 broiler chickens. These results suggest that the effect of oxytocin on food intake is probably mediated by histaminergic (via H1 and H3 receptors) and noradrenergic (via β2 receptors) systems in broiler chickens.

  18. Dietary trace amine-dependent vasoconstriction in porcine coronary artery

    PubMed Central

    Herbert, A A; Kidd, E J; Broadley, K J

    2008-01-01

    Background and purpose: The dietary trace amines tyramine and β-phenylethylamine (β-PEA) can increase blood pressure. However, the mechanisms involved in the vascular effect of trace amines have not been fully established. The purpose of this study was to evaluate whether trace amine-dependent vasoconstriction was brought about by tyramine and β-PEA acting as indirect sympathomimetic agents, as previously assumed, or whether trace amine-dependent vasoconstriction could be mediated by recently discovered trace amine-associated (TAA) receptors. Experimental approach: The responses to p-tyramine and β-PEA were investigated in vitro in rings of the left anterior descending coronary arteries of pigs. Key results: p-Tyramine induced a concentration-dependent (0.1–3 mM) vasoconstriction. The maximum response and pD2 value for p-tyramine was unaffected by endothelium removal or pre-treatment with antagonists for adrenoceptors, histamine, dopamine or 5-HT receptors. β-PEA also produced a concentration-dependent (0.3–10 mM) vasoconstriction which was unaffected by endothelium removal, β-adrenoceptor or 5-HT receptor antagonists. A substantial, but reduced, response to β-PEA was obtained in the presence of prazosin (α1-adrenoceptor antagonist), haloperidol (D2/D3 dopamine receptor antagonist) or mepyramine (H1 histamine receptor antagonist). The pD2 value for β-PEA was unaffected by any of the antagonists tested. Conclusions and implications: Vasoconstriction induced by p-tyramine does not involve an indirect sympathomimetic effect, although vasoconstriction caused by β-PEA may occur, in part, by this mechanism. We therefore propose that trace amine-dependent vasoconstriction is mediated by phenylethylamine-specific receptors, which are closely related to or identical to TAA receptors. These receptors could provide a target for new antihypertensive therapies. PMID:18604230

  19. [Comparative analysis of metabotropic and ionotropic glutamate striatal receptors blockade influence on rats locomotor behaviour].

    PubMed

    Iakimovskiĭ, A F; Kerko, T V

    2013-02-01

    The influence of NMDA and metabotropic neostriatal glutamate receptors blockade to avoidance conditioning (in shuttle box) and free locomotor behavior (in open field) in chronic experiments in rats were investigated. The glutamate receptor antagonists were injected bilateral into striatum separately and with the GABA-A receptor antagonist picrotoxin (2 microg), that produced in rats the impairment of avoidance conditioning and choreo-myoklonic hyperkinesis. The most effective in preventing of negative picrotoxin influence on behavior was 5-type metabotropic glutamate receptors antagonist MTEP (3 microg). Separately injected MTEP did not influence on avoidance conditioning and free locomotor behavior. Unlike that, 1-type metabotropic glutamate receptors antagonist EMQMCM (3 microg) impaired normal locomotor behavior and did not prevent the picrotoxin effects. The NMDA glutamate receptors MK 801 (disocilpin--1 and 5 microg) impaired the picrotoxin-induced hyperkinesis, but did not to prevent the negative effects on avoidance conditioning; separately injected MK 801 reduced free locomotor activity. Based on location of investigated receptor types in neostriatal neurons membranes, we proposed that the most effective influence on 5-type metabotropic glutamate receptors is associated with their involvement in "indirect" efferent pathway, suffered in hyperkinetic extrapyramidal motor dysfunction--Huntington's chorea in human.

  20. Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations.

    PubMed

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2007-05-25

    It was previously reported that brain areas containing serotonin (5-hydroxytryptamine, 5-HT) receptors mediate memory consolidation as well as short (STM)- and long-term memory (LTM). Here the effects of systemic and intrahippocampal administration of 5-HT agonists and antagonists on an autoshaping learning task were explored, which requires hippocampal translation and transduction as well as 5-HT receptors expression. As previously reported ketamine (glutamatergic antagonist) and two well-known amnesic drugs, scopolamine (cholinergic antagonist) and dizocilpine (NMDA antagonist) impaired STM but not LTM; dizocilpine even improved the latter. Since ketamine produces hallucinations and impairs memory in humans, we address the question if well-known antipsychotic haloperidol and clozapine might affect STM deficit. Indeed, systemic administration of clozapine

  1. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing effect of adenosine A2A agonists is most probably mediated in the periphery.

  2. Antidepressant and anxiolytic properties of the methanolic extract of Momordica charantia Linn (Cucurbitaceae) and its mechanism of action.

    PubMed

    Ishola, I O; Akinyede, A A; Sholarin, A M

    2014-07-01

    The whole plant of Momordica charantia Linn (Cucurbitaceae) is used in traditional African medicine in the management of depressive illness. Momordica charantia (MC) (50-400 mg/kg, p.o.) was administered 1 h before behavioural studies using the forced swimming test (FST) and tail suspension test (TST) to investigate antidepressant-like effect while the anxiolytic-like effect was evaluated with elevated plus maze test (EPM), hole-board test (HBT), and light-dark test (LDT). Acute treatment with MC (50-400 mg/kg) significantly increased swimming time (86.51%) and reduced the duration of immobility (52.35%) in FST and TST with peak effects observed at 200 mg/kg, respectively, in comparison to control. The pretreatment of mice with either sulpiride (dopamine D2 receptor antagonist), or metergoline (5-HT2 receptor antagonist), or cyproheptadine (5-HT2 receptor antagonist), or prazosin (α1-adrenoceptor antagonist), or yohimbine (α2-adrenoceptor antagonist), and atropine (muscarinic cholinergic receptor antagonist) 15 min before oral administration of MC (200 mg/kg) significantly blocked its anti-immobility effect. Similarly, MC (200 mg/kg) significantly reduced anxiety by increasing the open arm exploration (64.27%) in EPM, number of head-dips in HBT (34.38%), and time spent in light compartment (29.38%) in the LDT. However, pretreatment with flumazenil (GABAA receptor antagonist) 15 min before MC (200 mg/kg) significantly blocked (54.76%) its anxiolytic effect. The findings in this study showed that MC possesses antidepressant-like effect that is dependent on the serotonergic (5-HT2 receptor), noradrenergic (α1- and α2-adrenoceptors), dopaminergic (D2 receptor), and muscarinic cholinergic systems and an anxiolytic-like effect that might involve an action on benzodiazepine-type receptor. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Involvement of Prolactin-Releasing Peptide in the Activation of Oxytocin Neurones in Response to Food Intake

    PubMed Central

    Yamashita, M; Takayanagi, Y; Yoshida, M; Nishimori, K; Kusama, M; Onaka, T

    2013-01-01

    Food intake activates neurones expressing prolactin-releasing peptide (PrRP) in the medulla oblongata and oxytocin neurones in the hypothalamus. Both PrRP and oxytocin have been shown to have an anorexic action. In the present study, we investigated whether the activation of oxytocin neurones following food intake is mediated by PrRP. We first examined the expression of PrRP receptors (also known as GPR10) in rats. Immunoreactivity of PrRP receptors was observed in oxytocin neurones and in vasopressin neurones in the paraventricular and supraoptic nuclei of the hypothalamus and in the bed nucleus of the stria terminalis. Application of PrRP to isolated supraoptic nuclei facilitated the release of oxytocin and vasopressin. In mice, re-feeding increased the expression of Fos protein in oxytocin neurones of the hypothalamus and bed nucleus of the stria terminalis. The increased expression of Fos protein in oxytocin neurones following re-feeding or i.p. administration of cholecystokinin octapeptide (CCK), a peripheral satiety factor, was impaired in PrRP-deficient mice. CCK-induced oxytocin increase in plasma was also impaired in PrRP-deficient mice. Furthermore, oxytocin receptor-deficient mice showed an increased meal size, as reported in PrRP-deficient mice and in CCKA receptor-deficient mice. These findings suggest that PrRP mediates, at least in part, the activation of oxytocin neurones in response to food intake, and that the CCK–PrRP–oxytocin pathway plays an important role in the control of the termination of each meal. PMID:23363338

  4. Minoxidil-induced hair growth is mediated by adenosine in cultured dermal papilla cells: possible involvement of sulfonylurea receptor 2B as a target of minoxidil.

    PubMed

    Li, M; Marubayashi, A; Nakaya, Y; Fukui, K; Arase, S

    2001-12-01

    The mechanism by which minoxidil, an adenosine-triphosphate-sensitive potassium channel opener, induces hypertrichosis remains to be elucidated. Minoxidil has been reported to stimulate the production of vascular endothelial growth factor, a possible promoter of hair growth, in cultured dermal papilla cells. The mechanism of production of vascular endothelial growth factor remains unclear, however. We hypothesize that adenosine serves as a mediator of vascular endothelial growth factor production. Minoxidil-induced increases in levels of intracellular Ca(2+) and vascular endothelial growth factor production in cultured dermal papilla cells were found to be inhibited by 8-sulfophenyl theophylline, a specific antagonist for adenosine receptors, suggesting that dermal papilla cells possess adenosine receptors and sulfonylurea receptors, the latter of which is a well-known target receptor for adenosine-triphosphate-sensitive potassium channel openers. The expression of sulfonylurea receptor 2B and of the adenosine A1, A2A, and A2B receptors was detected in dermal papilla cells by means of reverse transcription polymerase chain reaction analysis. In order to determine which of the adenosine receptor subtypes contribute to minoxidil-induced hair growth, the effects of subtype-specific antagonists for adenosine receptors were investigated. Significant inhibition in increase in intracellular calcium level by minoxidil or adenosine was observed as the result of pretreatment with 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptor, but not by 3,7-dimethyl-1-propargyl-xanthine, an antagonist for adenosine A2 receptor, whereas vascular endothelial growth factor production was blocked by both adenosine A1 and A2 receptor antagonists. These results indicate that the effect of minoxidil is mediated by adenosine, which triggers intracellular signal transduction via both adenosine A1 and A2 receptors, and that the expression of sulfonylurea receptor 2B in dermal papilla cells might play a role in the production of adenosine.

  5. Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus

    PubMed Central

    Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.

    2013-01-01

    Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced doseand time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression. PMID:22820108

  6. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    PubMed

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  7. Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn.

    PubMed

    Carey, A N; Borozny, K; Aldrich, J V; McLaughlin, J P

    2007-08-13

    Stress contributes to the reinstatement of cocaine-seeking behavior in abstinent subjects. Kappa-opioid receptor antagonists attenuate the behavioral effects of stress, potentially providing therapeutic value in treating cocaine abuse. Presently, the peptide arodyn produced long-lasting kappa-opioid receptor antagonism, suppressing kappa-opioid receptor agonist-induced antinociception at least 3 days after intracerebroventricular administration of 0.3 nmol. C57Bl/6J mice demonstrated cocaine-conditioned place preference, extinction over 3 weeks, and a subsequent reinstatement of place preference. Arodyn pretreatment suppressed stress-induced, but not cocaine-exposed, reinstatement of cocaine place preference. These results verify that arodyn and other kappa-opioid receptor antagonists may be useful therapeutics for cocaine abuse.

  8. Decrement in operant performance produced by NMDA receptor antagonists in the rat: tolerance and cross-tolerance.

    PubMed

    Dravolina, O A; Zvartau, E E; Bespalov, A Y

    2000-04-01

    Current perspectives on the clinical use of NMDA receptor antagonists infer repeated administration schedules for the management of different pathological states. The development of tolerance and cross-tolerance between different NMDA receptor antagonists may be an important factor contributing to the clinical efficacy of these drugs. The present study aimed to characterize the development of tolerance and cross-tolerance to the ability of various site-selective NMDA receptor antagonists to produce a decrement of operant responding (multiple extinction 9 s fixed-interval 1-s schedule of water reinforcement). Acute administration of D-CPPen (SDZ EAA 494; 1-5.6 mg/kg), dizocilpine (MK-801; 0.03-0.3 mg/kg), memantine (0.3-17 mg/kg), ACEA-1021 (10-56 mg/kg), and eliprodil (1-30 mg/kg) differentially affected operant responding. Both increases and decreases in response rates and accuracy of responding were observed. Repeated preexposure to D-CPPen (5.6 mg/kg, once a day for 7 days) attenuated a behavioral disruption produced by an acute challenge with D-CPPen or ACEA-1021, but potentiated the effects of dizocilpine, memantine, and eliprodil. Based on the present results, one can suggest that the repeated administration of a competitive NMDA receptor antagonist differentially affects the functional activity of various sites on NMDA receptor complex.

  9. A new serotonin 5-HT6 receptor antagonist with procognitive activity - Importance of a halogen bond interaction to stabilize the binding

    NASA Astrophysics Data System (ADS)

    González-Vera, Juan A.; Medina, Rocío A.; Martín-Fontecha, Mar; Gonzalez, Angel; de La Fuente, Tania; Vázquez-Villa, Henar; García-Cárceles, Javier; Botta, Joaquín; McCormick, Peter J.; Benhamú, Bellinda; Pardo, Leonardo; López-Rodríguez, María L.

    2017-01-01

    Serotonin 5-HT6 receptor has been proposed as a promising therapeutic target for cognition enhancement though the development of new antagonists is still needed to validate these molecules as a drug class for the treatment of Alzheimer’s disease and other pathologies associated with memory deficiency. As part of our efforts to target the 5-HT6 receptor, new benzimidazole-based compounds have been designed and synthesized. Site-directed mutagenesis and homology models show the importance of a halogen bond interaction between a chlorine atom of the new class of 5-HT6 receptor antagonists identified herein and a backbone carbonyl group in transmembrane domain 4. In vitro pharmacological characterization of 5-HT6 receptor antagonist 7 indicates high affinity and selectivity over a panel of receptors including 5-HT2B subtype and hERG channel, which suggests no major cardiac issues. Compound 7 exhibited in vivo procognitive activity (1 mg/kg, ip) in the novel object recognition task as a model of memory deficit.

  10. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.

    PubMed

    Rose, C; Camus, A; Schwartz, J C

    1988-11-01

    A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide.

  11. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.

    PubMed Central

    Rose, C; Camus, A; Schwartz, J C

    1988-01-01

    A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide. PMID:3186727

  12. Neuropeptide S attenuates neuropathological, neurochemical and behavioral changes induced by the NMDA receptor antagonist MK-801

    PubMed Central

    Okamura, Naoe; Reinscheid, Rainer K.; Ohgake, Shintaro; Iyo, Masaomi; Hashimoto, Kenji

    2009-01-01

    Neuropeptide S (NPS) and its cognate receptor were reported to mediate anxiolytic-like and arousal effects. NPS receptors are predominantly expressed in the brain, especially in limbic structures, including amygdala, olfactory nucleus, subiculum and retrosplenial cortex. In contrast, the NPS precursor is expressed in only a few brainstem nuclei where it is co-expressed with various excitatory transmitters, including glutamate. The current study investigates interactions of the NPS system with glutamatergic neurotransmission. It has been suggested that dysfunctions in glutamatergic neurotransmission via N-methyl-D-aspartate (NMDA) receptors might be involved in the pathophysiology of schizophrenia since NMDA receptor antagonists, such as MK-801, have been shown to induce psychotic-like behavior in humans and animal models. Also, MK-801 is known to produce histological changes such as cytoplasmic vacuoles in retrosplenial cortex neurons where NPS receptors are highly expressed. In this study we show that NPS is able to alleviate neuropathological, neurochemical and behavioral changes produced by NMDA receptor antagonists. NPS treatment attenuated MK-801-induced vacuolization in the rat retrosplenial cortex in a dose dependent manner that can be blocked by an NPS receptor-selective antagonist. NPS also suppressed MK-801-induced increases of extracellular acetylcholine levels in the retrosplenial cortex. In the prepulse inhibition (PPI) assay, animals pretreated with NPS recovered significantly from MK-801-induced disruption of PPI. Our study suggests that NPS may have protective effects against the neurotoxic and behavioral changes produced by NMDA receptor antagonists and that NPS receptor agonists may elicit antipsychotic effects. PMID:19576911

  13. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells.

    PubMed

    Tahara, A; Tsukada, J; Tomura, Y; Wada, K i; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Tanaka, A

    2000-01-01

    [(3)H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [(3)H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (K(d)) of 0.76 nM and a maximum receptor density (B(max)) of 153 fmol mg(-1) protein. The Hill coefficient (n(H)) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [(3)H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [(3)H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu(1,6)]-oxytocin>AVP= atosiban>d(CH(2))(5)Tyr(Me)AVP>[Thr(4),Gly(7)]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca(2+)](i) increase and hyperplasia. In contrast, the V(1A) receptor selective antagonist, SR 49059, and the V(2) receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca(2+)](i) increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca(2+)](i) increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [(3)H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca(2+)](i) increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. British Journal of Pharmacology (2000) 129, 131 - 139

  14. Synthesis, structure-activity relationships, and in vivo evaluation of N3-phenylpyrazinones as novel corticotropin-releasing factor-1 (CRF1) receptor antagonists.

    PubMed

    Hartz, Richard A; Ahuja, Vijay T; Arvanitis, Argyrios G; Rafalski, Maria; Yue, Eddy W; Denhart, Derek J; Schmitz, William D; Ditta, Jonathan L; Deskus, Jeffrey A; Brenner, Allison B; Hobbs, Frank W; Payne, Joseph; Lelas, Snjezana; Li, Yu-Wen; Molski, Thaddeus F; Mattson, Gail K; Peng, Yong; Wong, Harvey; Grace, James E; Lentz, Kimberley A; Qian-Cutrone, Jingfang; Zhuo, Xiaoliang; Shu, Yue-Zhong; Lodge, Nicholas J; Zaczek, Robert; Combs, Andrew P; Olson, Richard E; Bronson, Joanne J; Mattson, Ronald J; Macor, John E

    2009-07-23

    Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.

  15. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis.

    PubMed

    Mirshafiey, Abbas; Jadidi-Niaragh, Farhad

    2010-06-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that involves central nervous system, and is generally associated with demyelination and axonal lesion. The effective factors for initiation of the inflammatory responses have not been known precisely so far. Leukotrienes (LTs) are inflammatory mediators with increased levels in the cerebrospinal fluid of MS patients and in experimental models of multiple sclerosis. Inhibition of LT receptors with specific antagonists can decrease inflammatory responses. In this review article we try to clarify the role of LT receptor antagonists and also inhibitors of enzymes which are involved in LTs generating pathway for treating multiple sclerosis as new targets for MS therapy. Moreover, we suggest that blockage of LT receptors by potent specific antagonists and/or agonists can be as a novel useful method in treatment of MS.

  16. Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: evidence for the involvement of the monoaminergic system.

    PubMed

    Machado, Daniele G; Kaster, Manuella P; Binfaré, Ricardo W; Dias, Munique; Santos, Adair R S; Pizzolatti, Moacir G; Brighente, Inês M C; Rodrigues, Ana Lúcia S

    2007-03-30

    Schinus molle L. (Anacardiaceae), among other uses, is popularly employed for the treatment of depression. In this study, the antidepressant-like effect of the hexanic extract from leaves of S. molle was investigated in the mouse tail suspension test (TST), a predictive model of depression. The immobility time in the TST was significantly reduced by the extract (dose range 30-600 mg/kg, p.o.), without accompanying changes in ambulation when assessed in an open-field test. The efficacy of extract was found to be comparable to that of fluoxetine (10 mg/kg, p.o.). The anti-immobility effect of the extract (100 mg/kg, p.o.) was prevented by pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, for four consecutive days), NAN-190 (0.5 mg/kg, i.p., a 5-HT(1A) receptor antagonist), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), MDL72222 (0.1 mg/kg, i.p., a 5-HT(3) receptor antagonist), prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a D(2) receptor antagonist). It may be concluded that the hexanic extract of S. molle produces an antidepressant-like effect that seems to be dependent on its interaction with the serotonergic, noradrenergic and dopaminergic systems. These results provide evidence that the extract from S. molle shares with established antidepressants some pharmacological effects, at least at a preclinical level.

  17. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  18. The mGlu5 receptor antagonist MPEP activates specific stress-related brain regions and lacks neurotoxic effects of the NMDA receptor antagonist MK-801: significance for the use as anxiolytic/antidepressant drug.

    PubMed

    Inta, Dragos; Filipovic, Dragana; Lima-Ojeda, Juan M; Dormann, Christof; Pfeiffer, Natascha; Gasparini, Fabrizio; Gass, Peter

    2012-04-01

    Glutamatergic agents have been conceptualized as powerful, fast-acting alternatives to monoaminergic-based antidepressants. NMDA receptor antagonists such as ketamine or MK-801 are therapeutically effective, but their clinical use is hampered by psychotomimetic effects, accompanied by neurotoxicity in the retrosplenial and cingulate cortex. Antagonists of metabotropic mGlu5 receptors like MPEP elicit both robust antidepressant and anxiolytic effects; however, the underlying mechanisms are yet unknown. mGlu5 receptors closely interact with NMDA receptors, but whether MPEP induces neurotoxicity similar to NMDA receptor antagonists has not been elucidated. We show here using c-Fos brain mapping that MPEP administration results in a restricted activation of distinct stress-related brain areas, including the bed nucleus of stria terminalis (BNST), central nucleus of the amygdala, and paraventricular nucleus of the hypothalamus (PVNH), in a pattern similar to that induced by classical antidepressants and anxiolytics. Unlike the NMDA antagonist MK-801, MPEP does not injure the adult retrosplenial cortex, in which it fails to induce heat shock protein 70 (Hsp70). Moreover, MPEP does not elicit to the same extent as MK-801 apoptosis in cortical areas at perinatal stages, as revealed by caspase 3 expression. These data identify new cellular targets for the anxiolytic and antidepressant effect of MPEP, indicating also in addition that in contrast to MK-801, it lacks the cortical neurotoxicity associated with psychotomimetic side-effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Sigma1 receptor antagonists determine the behavioral pattern of the methamphetamine-induced stereotypy in mice

    PubMed Central

    Kitanaka, J.; Kitanaka, N.; Tatsuta, T.; Hall, F.S.; Uhl, G.R.; Tanaka, K.; Nishiyama, N.; Morita, Y.; Takemura, M.

    2011-01-01

    Objective The effects of sigma receptor antagonists on methamphetamine (METH)-induced stereotypy have not been examined. We examined the effects of sigma antagonists on METH-induced stereotypy in mice. Results The administration of METH (10 mg/kg) to male ddY mice induced stereotyped behavior consisting of biting (90.1%), sniffing (4.2%), head bobbing (4.1%), and circling (1.7%) during an observation period of 1 h. Pretreatment of the mice with BMY 14802 (α-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazinebutanol; 1, 5, and 10 mg/kg), a non-specific sigma receptor antagonist, significantly increased METH-induced sniffing (19.2, 30.5, and 43.8% of total stereotypical behavior) but decreased biting (76.6, 66.9, and 49.3% of total stereotypical behavior) in a dose-dependent manner. This response was completely abolished by (+)-SKF 10,047 ([2S-(2α,6α,11R)]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol; 4 and 10 mg/kg), a putative sigma1 receptor agonist, and partially by PB 28 (1-cyclohexyl-4-[3-(1,2,3,4-tetrahydro-5-methoxy-1-naphthalen-1-yl)-n-propyl]piperazine; 1 and 10 mg/kg), a putative sigma2 receptor agonist. The BMY 14802 action on METH-induced stereotypy was mimicked by BD 1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine; 10 mg/kg), a putative sigma1 receptor antagonist, but not by SM-21 ((±)-tropanyl 2-(4-chlorophenoxy)butanoate; 1 mg/kg), a putative sigma2 receptor antagonist. The BD 1047 effect on METH-induced stereotypy was also abolished completely by (+)-SKF 10,047 and partially by PB 28. The overall frequency of METH-induced stereotypical behavior was unchanged with these sigma receptor ligands, despite the alteration in particular behavioral patterns. The BMY 14802 action on METH-induced stereotypy was unaffected by pretreatment with centrally acting histamine H1 receptor antagonists (pyrilamine or ketotifen, 10 mg/kg), suggesting that these effects are independent of histamine H1 receptor signaling systems. Conclusion In summary, modulation of central sigma1 receptors alters the pattern of METH-induced stereotypy, producing a shift from stereotypical biting to stereotypical sniffing, without affecting the overall frequency of stereotypical behavior. PMID:19052726

  20. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats.

    PubMed

    Antuschevich, H; Kapica, M; Krawczynska, A; Herman, A; Kato, I; Kuwahara, A; Zabielski, R

    2016-06-01

    Apelin is considered as important gut regulatory peptide ligand of APJ receptor with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behavior. Circulating apelin inhibits secretion of pancreatic juice through vagal- cholecystokinin-dependent mechanism and reduces local blood flow. Our study was aimed to determine the effect of fundectomy and intraperitoneal or intragastric administration of apelin-13 on pancreatic and gastric enzymes activities in adult rats. Fundectomy is a surgical removal of stomach fundus - maine site apelin synthesis. Three independent experiments were carried out on Wistar rats. In the first and second experiment apelin-13 was given by intragastric or intraperitoneal way twice a day for 10 days (100 nmol/kg b.w.). Control groups received the physiological saline respectively. In the third experiment the group of rats after fundectomy were used. Fundectomized rats did not receive apelin and the rats from control group were 'sham operated'. At the end of experiment rats were sacrificed and blood from rats was withdrawn for apelin and CCK (cholecystokinin) radioimmunoassay analysis and pancreas and stomach tissues were collected for enzyme activity analyses. Intragastric and intraperitoneal administrations of apelin-13 increased basal plasma CCK level and stimulated gastric and pancreatic enzymes activity in rats. In animals after fundectomy decreased activity of studied enzymes was observed, as well as basal plasma apelin and CCK levels. In conclusion, apelin can effects on CCK release and stimulates some gastric and pancreatic enzymes activity in adult rats while fudectomy suppresses those processes. Changes in the level of pancreatic lipase activity point out that apelin may occurs as a regulator of lipase secretion.

  1. Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.

    PubMed

    Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A

    1997-10-15

    Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.

  2. A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors And Controls Bacterial Pathogenicity

    PubMed Central

    Swem, Lee R.; Swem, Danielle L.; O’Loughlin, Colleen T.; Gatmaitan, Raleene; Zhao, Bixiao; Ulrich, Scott M.; Bassler, Bonnie L.

    2009-01-01

    Summary Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene-expression changes. Here we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development. PMID:19647512

  3. Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists

    PubMed Central

    Kleschevnikov, A.M.; Belichenko, P.V.; Faizi, M.; Jacobs, L.F.; Htun, K.; Shamloo, M.; Mobley, W.C.

    2012-01-01

    Cognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes. We have recently shown that signaling through postsynaptic GABAB receptors is significantly increased in the dentate gyrus (DG) of Ts65Dn mice, a genetic model of DS. Here we examined a role for GABAB receptors in cognitive deficits in DS by defining the effect of selective GABAB receptor antagonists on behavior and synaptic plasticity of adult Ts65Dn mice. Treatment with the GABAB receptor antagonist CGP55845 restored memory of Ts65Dn mice in the novel place recognition, novel object recognition and contextual fear conditioning tasks, but did not affect locomotion and performance in T-maze. The treatment increased hippocampal levels of brain-derived neurotrophic factor (BDNF), equally in 2N and Ts65Dn mice. In hippocampal slices, treatment with the GABAB receptor antagonists CGP55845 or CGP52432 enhanced long-term potentiation (LTP) in the Ts65Dn DG. The enhancement of LTP was accompanied by an increase in the NMDA receptor-mediated component of the tetanus-evoked responses. These findings are evidence for a contribution of GABAB receptors to changes in hippocampal-based cognition in the Ts65Dn mouse. The ability to rescue cognitive performance through treatment with selective GABAB receptor antagonists motivates studies to further explore the therapeutic potential of these compounds in people with DS. PMID:22764230

  4. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine.

    PubMed

    Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark Jeremy

    2010-12-17

    Altered functioning of the nucleus accumbens (NAc) has been implicated in the psychotomimetic actions of NMDA receptor (NMDAR) antagonists and the pathophysiology of schizophrenia. We have shown previously that NMDAR antagonists enhance the power of high-frequency oscillations (HFO) in the NAc in a dose-dependent manner, as well as increase locomotor activity. Systemic administration of NMDAR antagonists is known to increase the release of dopamine in the NAc and dopamine antagonists can reduce ketamine-induced hyperactivity. In this study, we examined the effect of 0.5 μl intra-NAc infusion of 3.2 μg SCH23390 (D1 antagonist), 10 μg raclopride (D2 antagonist) and saline on ketamine-induced changes in motor and oscillatory activity. We found that local blockade of D1 receptors attenuated ketamine-induced increases in motor activity and blockade of D2 receptors produced a much weaker effect, with respect to saline-infused control groups. In contrast, none of the antagonists, infused separately or together, significantly modified the power or dominant frequency of ketamine-induced increases in HFO, but changes in delta and theta frequency bands were observed. Together, these findings suggest, that, in contrast to delta and theta frequency bands, the generation of ketamine enhanced-HFO in the NAc is not causally related to locomotor activation and occurs largely independently of local changes in dopamine receptor activation. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Cholecystokinin octa- and tetrapeptide degradation by synaptic membranes. I. Evidence for competition with enkephalins for in vitro common degradation pathways.

    PubMed

    Deschodt-Lanckman, M; Bui, N D

    1981-01-01

    Degradation of CCK-4 and -8 by purified synaptic membranes was followed by measuring the fluorescence of tryptophan released from the peptides after separation of degradation products by HPLC. For enkephalins and related fragments, the release of tyrosine was monitored using the same method. Kinetics of hydrolysis of CCK-like peptides indicated a rapid processing of CCK-4 and a slower breakdown of CCK-8 (with a greater resistance of the sulfated form of CCK-8 as compared to the unsulfated peptide). Leu- and met-enkephalins were degraded at the same rate while their N-terminal tri- and dipeptides were hydrolysed more slowly. When CCK-4 or CCK-8 were incubated in the presence of leu-enkephalin, a dose-dependent inhibition of the release of tryptophan was observed. Enkaphalin fragments do not modify the kinetics of degradation of CCK-4. The degradation of leu-enkephalin was inhibited in a dose-dependent manner by the presence of CCK-related peptides in the medium. After solubilization of membrane-bound enzymes by Triton X-100 followed by chromatography on DEAE cellulose, five peaks of CCK-4 degrading activity were detected (two minor and three major peaks). With enkephalin as substrate, five peaks were also observed; the three major activities were the same as those detected for CCK-4.

  7. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats.

    PubMed

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-11-01

    Rimonabant (Acomplia, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPgammaS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPgammaS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist.

  8. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats

    PubMed Central

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-01-01

    Background and purpose: Rimonabant (AcompliaTM, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. Experimental approach: A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPγS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. Key results: In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPγS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. Conclusions and implications: PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist. PMID:17592509

  9. Effects of tachykinin receptor agonists and antagonists on the guinea-pig isolated oesophagus.

    PubMed

    Kerr, K P

    2000-11-01

    1. Vagal nerve stimulation of the guinea-pig isolated oesophagus produced a triphasic tetrodotoxin (TTX)-sensitive contractile response. The third phase, which was resistant to ganglion blocking drugs, was selectively abolished by capsaicin, suggesting the involvement of one or more neuropeptides released from afferent neurons. Receptors on cholinergic neurons were subsequently activated because the response was atropine sensitive. Contractile responses resulting from exogenous substance P were abolished by atropine and TTX and enhanced by physostigmine. These findings suggest that the third phase may be mediated by the action of a substance P-like neuropeptide released from sensory nerve endings that subsequently activated cholinergic neurons. 2. The tachykinin receptors in the body of the guinea-pig oesophagus were characterized by determining the relative agonist potencies of natural tachykinins as well as tachykinin receptor-selective analogues. Antagonist affinities were also determined. The results indicated the presence of both NK2 and NK3 receptors. In addition, the effects of a cocktail of peptidase inhibitors (captopril, thiorphan and amastatin) on responses to various tachykinins and synthetic analogues were determined. The results indicate that one or more peptidases are present in this preparation. 3. Experiments using various tachykinin receptor antagonists were performed to determine whether the activation of tachykinin receptors played a role in the mediation of the third phase of the response to vagal nerve stimulation. While this response was unaffected by NK1 and NK2 receptor-selective antagonists, it was only partially inhibited (23%) by the NK3 receptor antagonist SR 142801. Thus, in the guinea-pig oesophagus, it appears that NK3 receptors play only a minor role in mediating a contractile response when afferent neurons are excited by vagal nerve stimulation.

  10. Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro.

    PubMed

    Place, Robert F; Krieger, Christine C; Neumann, Susanne; Gershengorn, Marvin C

    2017-02-01

    Crosstalk between thyrotropin (TSH) receptors and insulin-like growth factor 1 (IGF-1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF-1 receptor-dependent and -independent pathways. Although an anti-IGF-1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF-1 versus TSH receptor signalling in GO pathogenesis. TSH and IGF-1 receptor antagonists were used to probe TSH/IGF-1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF-1 receptor -dependent and -independent pathways at all doses of M22; whereas IGF-1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF-1 receptor antagonists exhibited Loewe additivity within the IGF-1 receptor-dependent component of the M22 concentration-response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Our data support TSH and IGF-1 receptors as therapeutic targets for GO, but reveal putative conditions for anti-IGF-1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti-IGF-1 receptor efficacy. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    PubMed Central

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R. PMID:25628267

  12. Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in the brain of the CCK-1 receptor deficient obese OLETF rat

    PubMed Central

    Abraham, Hajnalka; Covasa, Mihai; Hajnal, Andras

    2013-01-01

    Cocaine- and amphetamine regulated transcript (CART) peptide is expressed in brain areas involved in homeostatic regulation and reward. CART has been shown to reduce food intake but the underlying mechanisms and the relevance of this effect to obesity yet remain unknown. Therefore, we used immunohistochemistry to investigate expression of CART peptide in various brain regions of the obese Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking the CCK-1 receptor. Analysis revealed that whereas the distribution of CART peptide-immunoreactive neurons and axonal networks was identical in OLETF rats and lean controls, intensity of CART immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens (p<0.01), the basolateral complex of the amygdala (p<0.05), and the rostro-medial nucleus of solitary tract (p<0.001) of the OLETF rats. These areas are involved in reward and integration of taste and viscerosensory information and have been previously associated with altered functions in this strain. The findings suggest that in addition to previously described deficits in peripheral satiety signals and augmented orexigenic regulation, the anorectic effect of CART peptide may also be diminished in OLETF rats. PMID:19533109

  13. Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain.

    PubMed

    Cain, Brian M; Connolly, Kelly; Blum, Alissa; Vishnuvardhan, Daesety; Marchand, James E; Beinfeld, Margery C; Vishnuvardham, Daesety

    2003-12-15

    During posttranslational processing to generate CCK 8, pro-cholecystokinin (CCK) undergoes endoproteolytic cleavage at three sites. Several studies using endocrine and neuronal tumor cells in culture and recombinant enzymes and synthetic substrates in vitro have pointed to the subtilisin/kexin-like enzymes prohormone convertase (PC) 1, PC2, and PC5 as potential candidates for these endoproteolytic cleavages. In these experimental models, they all appear to be able to cleave pro-CCK to make the correct products. One rodent model has provided information about the role of PC2. PC2 knockout mouse brains had less CCK 8 than wild-type, although a substantial amount of CCK was still present. The degree to which CCK levels were reduced in these mice was regionally specific. These data indicated that PC2 is important for normal production of CCK but that it is not the only endoprotease that is involved in CCK processing. To evaluate whether PC1 and PC5 are possible candidates for the other enzymes involved in CCK processing, the distribution of PC1, PC2, and PC5 mRNA was studied in rat brain. Their colocalization with CCK mRNA was examined using double-label in situ hybridization. PC2 was the most abundant of these enzymes in terms of the intensity and number of cells labeled. It was widely colocalized with CCK. PC1 and PC5 mRNA-positive cells were less abundant, but they were also widely distributed and strongly colocalized with CCK in the cerebral cortex, hippocampus, amygdala, ventral tegmental area, and substantia nigra zona compacta. The degree of colocalization of the enzymes with CCK was regionally specific. It is clear that PC1 and PC5 are extensively colocalized with CCK and could be participating in CCK processing in the rat brain and may be able to substitute for PC2 in its absence. These three enzymes may represent a redundant system to ensure production of biologically active CCK. Copyright 2003 Wiley-Liss, Inc.

  14. Generation Z: Adolescent Xenobiotic Abuse in the 21st Century.

    PubMed

    Eggleston, William; Stork, Christine

    2015-12-01

    NMDA receptor antagonists include the prescription medication ketamine, the illicit xenobiotics PCP, MXE, and other novel PCP analogs, and the OTC medication DXM. The NMDA receptor antagonist most commonly abused by adolescents in the United States is DXM. These xenobiotics cause dissociative effects by non-competitively inhibiting the action of glutamate at the NMDA receptor. Additionally, these agents modulate the actions of monoamine neurotransmitters, agonize opioid receptors, and inhibit nitric oxide synthase. Patients typically present with sympathomimetic and neuropsychiatric clinical manifestations after abuse of NMDA receptor antagonists. Treatment is generally symptomatic and supportive. Interventions include benzodiazepines, propofol, fluids, antiemetics, aggressive cooling, and respiratory support.

  15. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist.

    PubMed

    Yamamura, Y; Ogawa, H; Chihara, T; Kondo, K; Onogawa, T; Nakamura, S; Mori, T; Tominaga, M; Yabuuchi, Y

    1991-04-26

    An orally effective, nonpeptide, vasopressin V1 receptor antagonist, OPC-21268, has been identified. This compound selectively antagonized binding to the V1 subtype of the vasopressin receptor in a competitive manner. In vivo, the compound acted as a specific antagonist of arginine vasopressin (AVP)-induced vasoconstriction. After oral administration in conscious rats, the compound also antagonized pressor responses to AVP. OPC-21268 can be used to study the physiological role of AVP and may be therapeutically useful in the treatment of hypertension and congestive heart failure.

  16. Identification of an antagonist that selectively blocks the activity of prostamides (prostaglandin-ethanolamides) in the feline iris

    PubMed Central

    Woodward, D F; Krauss, A H; Wang, J W; Protzman, C E; Nieves, A L; Liang, Y; Donde, Y; Burk, R M; Landsverk, K; Struble, C

    2006-01-01

    Background and Purpose: The prostamides (prostaglandin-ethanolamides) and prostaglandin (PG) glyceryl esters are biosynthesized by COX-2 from the respective endocannabinoids anandamide and 2-arachidonyl glycerol. Agonist studies suggest that their pharmacologies are unique and unrelated to prostanoid receptors. This concept was further investigated using antagonists. Experimental Approach: The isolated feline iris was used as a key preparation, where prostanoid FP receptors and prostamide activity co-exist. Activity at human recombinant FP and other prostanoid receptors was determined using stable transfectants. Key Results: In the feline iris, AGN 204396 produced a rightward shift of the dose-response curves for prostamide F2α and the prostamide F2α analog bimatoprost but did not block the effects of PGF2α and synthetic FP receptor agonists. Studies on human recombinant prostanoid receptors confirmed that AGN 204396 did not behave as a prostanoid FP receptor antagonist. AGN 204396 exhibited no antagonism at DP and EP1-4, but was a highly effective TP receptor antagonist. Contrary to expectation, the FP receptor antagonist AL-8810 efficaciously contracted the cat iris. AGN 204396 did not affect AL-8810 induced contractions, demonstrating that AL-8810 and AGN 204396 are pharmacologically distinct. Unlike AL-8810, the ethylamide derivate of AL-8810 was not an agonist. Al-8810 did not block prostamide F2α activity. Finally, AGN 204396 did not block PGE2-glyceryl ester activity. Conclusions and Implications: The ability of AGN 204396 to selectively block prostamide responses suggests the existence of prostamide sensitive receptors as entities distinct from receptors recognizing PGF2α and PGE2-glyceryl ester. PMID:17179945

  17. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding

    PubMed Central

    2017-01-01

    Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting. PMID:28462989

  18. AVP and Glu systems interact to regulate levels of anxiety in BALB/cJ mice.

    PubMed

    An, Xiao-Lei; Tai, Fa-Dao

    2014-07-01

    Whilethe roles of glutamic acid (Glu), arginine vasopressin (AVP) and their respective receptors in anxiety have been thoroughly investigated, the effects of interactions among Glu, N-methyl-D-aspartic acid (NMDA) receptor, AVP and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor on anxiety are still unclear. In the present study, the agonist and antagonist of the NMDA receptor and AMPA receptor, as well as the antagonist of AVP V1 receptor (V1aR) were introduced into BALB/cJ mice by intracerebroventricular microinjection, and the anxiety-like behaviors of the mice were evaluated by open field and elevated plus-maze tests. Compared with C57BL/6 mice, BALB/cJ mice displayed higher levels of anxiety-like behavior. Significant anxiolytic effects were found in the NMDA receptor antagonist (MK-801) and the AMPA receptor or V1aR antagonist (SSRI49415), as well as combinations of AVP/MK-801 and SSRI49415/DNQX. These results indicated that anxiety-like behaviors expressed in BALB/CJ mice may be due to a coordination disorder among glutamate, NMDA receptor, AMPA receptor, AVP and V1aR, resulting in the up-regulation of the NMDA receptor and V1aR and down-regulation of the AMPA receptor. However, because the AMPA receptor can execute its anxiolytic function by suppressing AVP and V1aR, we cannot exclude the possibility of the NMDA receptor being activated by AVP acting on V1aR.

  19. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

    PubMed Central

    Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.

    2015-01-01

    ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. Our results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. PMID:26202243

  20. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

    PubMed

    Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun

    2015-10-01

    Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. Our results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task.

    PubMed

    Perez-García, Georgina S; Meneses, A

    2005-08-30

    This work aimed to evaluate further the role of 5-HT7 receptors during memory formation in an autoshaping Pavlovian/instrumental learning task. Post-training administration of the potential 5-HT7 receptor agonist AS 19 or antagonist SB-269970 enhanced memory formation or had no effect, respectively. The AS 19 facilitatory effect was reversed by SB-269970, but not by the selective 5-HT1A antagonist WAY100635. Amnesia induced by scopolamine (cholinergic antagonist) or dizocilpine (NMDA antagonist) was also reversed by AS 19. Certainly, reservations regarding the selectivity of AS 19 for 5-HT7 and other 5-HT receptors in vivo are noteworthy and, therefore, its validity for use in animal models as a pharmacological tool. Having mentioned that, it should be noticed that together these data are providing further support to the notion of the 5-HT7 receptors role in memory formation. Importantly, this 5-HT7 receptor agonist AS 19 appears to represent a step forward respect to the notion that potent and selective 5-HT7 receptor agonists can be useful in the treatment of dysfunctional memory in aged-related decline and Alzheimer's disease.

  2. Effect of Prazosin and Naltrexone on Script Induced Alcohol Craving in Veterans with Alcohol Use Disorders with and without Co-occurring PTSD

    DTIC Science & Technology

    2015-01-01

    status, moderate medication response. 15. SUBJECT TERMS Alcohol Drinking, Drinking Behavior, Naltrexone, Prazosin, Adrenergic Agents, Adrenergice ...primates and humans express α1 adrenergic receptors. Given the interplay of the noradrenergic system with craving-related brain systems, blocking α1...Antagonists, Adrenergic alpha-1 receptor antagonists, Adrenergic alpha- antagonists, Antihypertensive agents, Narcotic antagonists, Therapeutic uses

  3. Differential effects of the new glucocorticoid receptor antagonist ORG 34517 and RU486 (mifepristone) on glucocorticoid receptor nuclear translocation in the AtT20 cell line.

    PubMed

    Peeters, B W M M; Ruigt, G S F; Craighead, M; Kitchener, P

    2008-12-01

    Glucocorticoid agonists bind to cytoplasmic glucocorticoid receptors (GRs) and subsequently translocate as an agonist-GR complex into the nucleus. In the nucleus the complex regulates the transcription of target genes. A number of GR antagonists (RU486, progesterone, RU40555) have also been shown to induce receptor translocation. These compounds should be regarded as partial agonists. For the nonselective progesterone receptor antagonists, RTI3021-012 and RTI3021-022, it was shown that GR antagonism is possible without the induction of GR translocation. In the present studies, the new GR antagonist, ORG 34517, was investigated for its potential to induce GR translocation and to antagonize corticosterone-induced GR translocation in the AtT20 (mouse pituitary) cell line. ORG 34517 was compared to RU486. In contrast to RU486, ORG 34517 (at doses up to 3 x 10(-7) M) did not induce GR translocation, but was able to block corticosterone (3 x 10(-8) M) induced GR translocation. ORG 34517 can be regarded as a true competitive GR antagonist without partial agonistic activities.

  4. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats.

    PubMed

    Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E

    2001-04-01

    Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.

  5. Distribution and heterogeneity of immunoreactive cholecystokinin (CCK) in the mucosa of the porcine gastrointestinal tract.

    PubMed

    Bacarese-Hamilton, A J; Adrian, T E; Bloom, S R

    1984-11-01

    The concentration and molecular nature of cholecystokinin-like immunoreactivity (CCK-LI) in extracts of porcine intestinal mucosa were determined using sequence-specific radioimmunoassays. Highest CCK concentrations were measured in duodenal mucosa (258 +/- 60 pmol/g in the distal duodenum) followed by jejunal mucosa (204 +/- 36 pmol/g in the proximal jejunum) and pylorus (51 +/- 9 pmol/g). All other gastrointestinal regions proximal to the pylorus and distal to the jejunum contained less than 20 pmol/g. Pancreas contained less than 1 pmol/g. Gel chromatography in 6 M urea revealed four immunoreactive forms and this was confirmed by reverse-phase high-pressure liquid chromatography (HPLC). The predominant molecular form in acid extracts of duodenal mucosa resembled CCK-33 although high concentrations of the larger CCK form ('CCK-58') and of the form intermediate in size between CCK-33 and CCK-8 were measured. A molecular form resembling CCK-8 was the principal form in neutral extracts of the duodenum.

  6. Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats

    PubMed Central

    Thorn, David A; An, Xiao-Fei; Zhang, Yanan; Pigini, Maria; Li, Jun-Xu

    2012-01-01

    BACKGROUND AND PURPOSE Imidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists. KEY RESULTS All the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2–56 mg·kg–1, i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ α2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, α2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands. PMID:22324428

  7. Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related Receptor α Antagonist in MCF-7 Breast Cancer Cells

    PubMed Central

    Chisamore, Michael J.; Cunningham, Michael E.; Flores, Osvaldo; Wilkinson, Hilary A.; Chen, J. Don

    2009-01-01

    Background The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome-dependent ERRα protein degradation. Additionally, we confirmed that knocking-down ERRα lead to similar genomic effects demonstrated in vitro when treated with the ERRα specific antagonist. PMID:19462000

  8. Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    PubMed Central

    Meens, Merlijn J. P. M. T.; Compeer, Matthijs G.; Hackeng, Tilman M.; van Zandvoort, Marc A.; Janssen, Ben J. A.; De Mey, Jo G. R.

    2010-01-01

    Background Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. Methodology/Principal findings In isolated rat mesenteric resistance arteries, ETA-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1 but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene-related peptide (CGRP). Using 2-photon laser scanning microscopy in vital intact arteries, capsaicin and CGRP, but not ETA-antagonism, were observed to promote dissociation of pre-existing ET-1/ETA-receptor complexes. Conclusions Irreversible binding and activation of ETA-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1. PMID:20532232

  9. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  10. Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing.

    PubMed

    Shirazi-Beechey, Soraya P; Daly, Kristian; Al-Rammahi, Miran; Moran, Andrew W; Bravo, David

    2014-06-01

    Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2-T1R3, in association with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number of studies have demonstrated that activation of T1R2-T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2 increases intestinal growth and glucose absorption. T1R1-T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK) expressing cells is a luminal sensor for a number of L-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and L-amino acid sensing. The impact of exploiting T1R2-T1R3 as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighted.

  11. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats

    PubMed Central

    McDougall, Sanders A.; Rudberg, Krista N.; Veliz, Ana; Dhargalkar, Janhavi M.; Garcia, Aleesha S.; Romero, Loveth C.; Gonzalez, Ashley E.; Mohd-Yusof, Alena; Crawford, Cynthia A.

    2017-01-01

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. PMID:28284952

  12. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    PubMed

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Characterization of the tachykinin neurokinin-2 receptor in the human urinary bladder by means of selective receptor antagonists and peptidase inhibitors.

    PubMed

    Giuliani, S; Patacchini, R; Barbanti, G; Turini, D; Rovero, P; Quartara, L; Giachetti, A; Maggi, C A

    1993-11-01

    The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to NKA was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear peptides, cyclic peptides and pseudopeptides, nonpeptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin captopril and thiorphan, 1 microM each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing preparation. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of linear antagonists bearing an N-terminal Asp residue MEN 10,207 and MEN 10,376 were significantly enhanced and these pA2 values were used for analysis; a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564 which also bears a N-terminal Asp residue behaved as an agonist and its action was enhanced by amastatin. We conclude that the NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biological activity of linear peptide derivatives of NKA bearing a N-terminal Asp residue.

  14. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    PubMed

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release.

  15. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine

    PubMed Central

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H.; Alhaj, Mazin; Cooke, Helen J.; Grants, Iveta; Ren, Tianhua

    2009-01-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl− secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (Isc, Cl− secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC50 for IB-MECA was 0.8 μM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex Isc responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release. PMID:19808660

  16. Targeting of glycine site on NMDA receptor as a possible new strategy for autism treatment.

    PubMed

    Ghanizadeh, Ahmad

    2011-05-01

    The exact pathophysiology of the neurodevelopment disorder of autism is not clear and there is not any curative approach for it. There is only one FDA-approved medication for its management. Therefore, providing of novel treatments is highly required. The hypofunction of GABAergic system and glutamate toxicity are generally believed to have a causal role for autism. The antagonist of the N-methyl-D-aspartic acid (NMDA) glutamate receptor improves autism. Glycine is required for the activation of NMDA receptor. The antagonist of glycine site decreases NMDA receptor conductance. It is hypothesis that glycine site antagonists can be tested as a new strategy for the management of autism.

  17. Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system.

    PubMed

    Shamima, Abdul Rahman; Fakurazi, Sharida; Hidayat, Mohamad Taufik; Hairuszah, Ithnin; Moklas, Mohamad Aris Mohd; Arulselvan, Palanisamy

    2012-01-01

    Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ(1)-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor.

  18. In vitro histamine H/sub 2/-antagonist activity of the novel compound HUK 978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coombes, J.D.; Norris, D.B.; Rising, T.J.

    1985-11-04

    Histamine stimulated adenylate cyclase from guinea-pig fundic mucosa and /sup 3/H-tiotidine binding in guinea-pig cerebral cortex were used to assess the in-vitro histamine H/sub 2/-activity of the novel H/sub 2/-antagonist HUK 978. The results showed that HUK 978 was a more potent H/sub 2/-antagonist than either cimetidine or ranitidine. HUK 978 was also shown to be devoid of activity at the histamine H-/sub 1/-receptor, the muscarinic receptor and the ..cap alpha.. and ..beta..-adrenergic receptors.

  19. CCK processing by pituitary GH3 cells, human teratocarcinoma cells NT2 and hNT differentiated human neuronal cells evidence for a differentiation-induced change in enzyme expression and pro CCK processing.

    PubMed

    Beinfeld, Margery C; Wang, Wenge

    2002-02-01

    Human teratocarcinoma Ntera2/c 1.D1 (NT2) cells express very low levels of the prohormone convertase enzyme PC1, moderate levels of PC2 and significant levels of PC5. When infected with an adenovirus which expresses rat CCK mRNA, several glycine-extended forms were secreted that co-eluted with CCK 33, 22 and 12. Amidated CCK is not produced because these cells appear to lack the amidating enzyme. Pituitary GH3 cells express high levels of PC2 and PC5. CCK adenovirus-infected GH3 cells secrete amidated versions of the same peptides as NT2 cells. Differentiation of NT2 cells into hNT cells with retinoic acid and mitotic inhibitors increased expression of PC5 and decreased expression of PCI and PC2. CCK adenovirus-infected differentiated hNT cells also secrete glycine extended CCK products and the major molecular form produced co-eluted with CCK 8 Gly. These experiments demonstrate that the state of differentiation of this neuronal cell line influences its expression of PC 1,2, and 5 and its cleavage of pro CCK and suggests that these cells may make an interesting model to study how differentiation alters prohormone processing. These results also support the hypothesis that PC5 in differentiated neuronal cells is capable of processing pro CCK to glycine-extended CCK 8.

  20. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo

    PubMed Central

    Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H

    2011-01-01

    BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919

  1. Painful purinergic receptors.

    PubMed

    Donnelly-Roberts, Diana; McGaraughty, Steve; Shieh, Char-Chang; Honore, Prisca; Jarvis, Michael F

    2008-02-01

    Multiple P2 receptor-mediated mechanisms exist by which ATP can alter nociceptive sensitivity following tissue injury. Evidence from a variety of experimental strategies, including genetic disruption studies and the development of selective antagonists, has indicated that the activation of P2X receptor subtypes, including P2X(3), P2X(2/3), P2X(4) and P2X(7), and P2Y (e.g., P2Y(2)) receptors, can modulate pain. For example, administration of a selective P2X(3) antagonist, A-317491, has been shown to effectively block both hyperalgesia and allodynia in different animal models of pathological pain. Intrathecally delivered antisense oligonucleotides targeting P2X(4) receptors decrease tactile allodynia following nerve injury. Selective antagonists for the P2X(7) receptor also reduce sensitization in animal models of inflammatory and neuropathic pain, providing evidence that purinergic glial-neural interactions are important modulators of noxious sensory neurotransmission. Furthermore, activation of P2Y(2) receptors leads to sensitization of polymodal transient receptor potential-1 receptors. Thus, ATP acting at multiple purinergic receptors, either directly on neurons (e.g., P2X(3), P2X(2/3), and P2Y receptors) or indirectly through neural-glial cell interactions (P2X(4) and P2X(7) receptors), alters nociceptive sensitivity. The development of selective antagonists for some of these P2 receptors has greatly aided investigations into the nociceptive role of ATP. This perspective highlights some of the recent advances to identify selective P2 receptor ligands, which has enhanced the investigation of ATP-related modulation of pain sensitivity.

  2. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  3. Inhibition of the renin-angiotensin-aldosterone system: is there room for dual blockade in the cardiorenal continuum?

    PubMed

    Volpe, Massimo; Danser, A H Jan; Menard, Joël; Waeber, Bernard; Mueller, Dominik N; Maggioni, Aldo P; Ruilope, Luis M

    2012-04-01

    Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.

  4. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Wu, Wei; Saunders, Richard C.; Mishkin, Mortimer; Turchi, Janita

    2012-01-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. PMID:22561485

  5. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    PubMed

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  6. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Multiple opioid receptors in endotoxic shock: evidence for delta involvement and mu-delta interactions in vivo.

    PubMed Central

    D'Amato, R; Holaday, J W

    1984-01-01

    The use of selective delta and mu opioid antagonists has provided evidence that delta opioid receptors within the brain mediate the endogenous opioid component of endotoxic shock hypotension. The selectivity of these delta and mu antagonists was demonstrated by their differing effects upon morphine analgesia and endotoxic hypotension. The mu antagonist beta-funaltrexamine, at doses that antagonized morphine analgesia, failed to alter shock, whereas the delta antagonist M 154,129: [N,N-bisallyl-Tyr-Gly-Gly-psi-(CH2S)-Phe-Leu-OH] (ICI) reversed shock at doses that failed to block morphine analgesia. Therefore, selective delta antagonists may have therapeutic value in reversing circulatory shock without altering the analgesic actions of endogenous or exogenous opioids. Additional data revealed that prior occupancy of mu binding sites by irreversible opioid antagonists may allosterically attenuate the actions of antagonists with selectivity for delta binding sites. For endogenous opioid systems, this observation provides an opportunity to link in vivo physiological responses with receptor-level biochemical interactions. PMID:6326151

  8. Inhibiting thyrotropin/insulin‐like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro

    PubMed Central

    Place, Robert F; Neumann, Susanne; Gershengorn, Marvin C

    2017-01-01

    Background and Purpose Crosstalk between thyrotropin (TSH) receptors and insulin‐like growth factor 1 (IGF‐1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF‐1 receptor‐dependent and ‐independent pathways. Although an anti‐IGF‐1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF‐1 versus TSH receptor signalling in GO pathogenesis. Experimental Approach TSH and IGF‐1 receptor antagonists were used to probe TSH/IGF‐1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. Key Results TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF‐1 receptor ‐dependent and ‐independent pathways at all doses of M22; whereas IGF‐1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF‐1 receptor antagonists exhibited Loewe additivity within the IGF‐1 receptor‐dependent component of the M22 concentration‐response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Conclusions and Implications Our data support TSH and IGF‐1 receptors as therapeutic targets for GO, but reveal putative conditions for anti‐IGF‐1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti‐IGF‐1 receptor efficacy. PMID:27987211

  9. N-Substituted cis-4a-(3-Hydroxyphenyl)-8a-methyloctahydroisoquinolines Are Opioid Receptor Pure Antagonists

    PubMed Central

    Carroll, F. Ivy; Chaudhari, Sachin; Thomas, James B.; Mascarella, S. Wayne; Gigstad, Kenneth M.; Deschamps, Jeffrey; Navarro, Hernán A.

    2008-01-01

    N-Substituted cis-4a-(3-hydroxyphenyl)-8a-methyloctahydroisoquinolines (6a–g) were designed and synthesized as conformationally constrained analogues of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (4) class of opioid receptor pure antagonists. The methyloctahydroisoquinolines 6a–g can exist in conformations where the 3-hydroxyphenyl substituent is either axial or equatorial similar to the (3-hydroxyphenyl)piperidines 4. The 3-hydroxyphenyl equatorial conformation is responsible for the antagonist activity observed in the (3-hydroxyphenyl)piperidine antagonists. Single crystal X-ray analysis of 6a shows that the 3-hydroxyphenyl equatorial conformation is favored in the solid state. Molecular modeling studies also suggest that the equatorial conformation has the lower potential energy relative to the axial conformation. Evaluation of compounds 6a–g in the [35S]GTP-γ-S in vitro functional assay showed that they were opioid receptor pure antagonists. N-[4a-(3-Hydroxyphenyl)-8a-methyl-2-(3-phenylpropyl)octahydroisoquinoline-6-yl]-3-(piperidin-1-yl)propionamide (6d) with a Ke of 0.27 nM at the κ opioid receptor with 154- and 46-fold selectively relative to the μ and δ receptors, respectively, possessed the best combination of κ potency and selectivity. PMID:16366600

  10. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    PubMed

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  11. Effective cross-over to granisetron after failure to ondansetron, a randomized double blind study in patients failing ondansetron plus dexamethasone during the first 24 hours following highly emetogenic chemotherapy

    PubMed Central

    de Wit, R; de Boer, A C; vd Linden, G H M; Stoter, G; Sparreboom, A; Verweij, J

    2001-01-01

    In view of the similarity in chemical structure of the available 5HT3-receptor antagonists it is assumed, whilst these agents all act at the same receptor, that failure to one agent would predict subsequent failure to all 5HT3-receptor antagonists. We conducted a randomized double blind trial of granisetron 3 mg plus dexamethasone 10 mg versus continued treatment with ondansetron 8 mg plus dexamethasone 10 mg in patients with protection failure on ondansetron 8 mg plus dexamethasone 10 mg during the first 24 hours following highly emetogenic chemotherapy. Of 40 eligible patients, 21 received ondansetron + dexamethasone and 19 received granisetron + dexamethasone. We found a significant benefit from crossing-over to granisetron after failure on ondansetron. Of the 19 patients who crossed over to granisetron, 9 patients obtained complete protection, whereas this was observed in 1 of the 21 patients continuing ondansetron, P = 0.005. These results indicate that there is no complete cross-resistance between 5HT3-receptor antagonists, and that patients who have acute protection failure on one 5HT3-receptor antagonist should be offered cross-over to another 5HT3-receptor antagonist. © 2001 Cancer Research Campaign  http://www.bjcancer.com PMID:11710819

  12. Effect of bombesin and cholecystokinin on plasma immunoreactive trypsin in humans.

    PubMed

    de Jong, A J; Klamer, M; Jansen, J B; Hopman, W P; Lamers, C B

    1987-01-01

    Since bombesin is a potent stimulus of the release of cholecystokinin (CCK), it has been suggested that the stimulatory effect of bombesin on pancreatic enzyme secretion is mediated by CCK. The present study was undertaken to determine the role of CCK in the bombesin-induced stimulation of plasma immunoreactive trypsin. Plasma CCK was measured by radioimmunoassay using the antibody T204, which binds to all biologically active sulfated COOH-terminal CCK-peptides. Plasma trypsin was also measured by radioimmunoassay. Infusion of 5 ng/kg/min bombesin in 6 healthy volunteers increased plasma CCK from 1.2 +/- 0.2-8.9 +/- 0.7 pM (p less than 0.0001). The peak increment in plasma CCK during bombesin (9.3 +/- 0.6 pM) was accompanied by a significant rise in plasma trypsin from 206 +/- 21-334 +/- 44 ng/ml (p less than 0.01). However, when similar increases in plasma CCK were achieved by infusion of 0.018 CU/kg/min CCK-33 (9.9 +/- 0.8 pM) or by intraduodenal instillation of 250 ml 20% Intralipid (9.7 +/- 1.9 pM), no significant changes in plasma trypsin were observed. It is therefore concluded that the stimulatory effect of bombesin on plasma immunoreactive trypsin is not mediated by CCK.

  13. Synthesis and characterization of potent and selective mu-opioid receptor antagonists, [Dmt(1), D-2-Nal(4)]endomorphin-1 (Antanal-1) and [Dmt(1), D-2-Nal(4)]endomorphin-2 (Antanal-2).

    PubMed

    Fichna, Jakub; do-Rego, Jean-Claude; Chung, Nga N; Lemieux, Carole; Schiller, Peter W; Poels, Jeroen; Broeck, Jozef Vanden; Costentin, Jean; Janecka, Anna

    2007-02-08

    To synthesize potent antagonists of the mu-opioid receptor, we prepared a series of endomorphin-1 and endomorphin-2 analogues with 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal) in position 4. Some of these analogues displayed weak antagonist properties. We tried to strengthen these properties by introducing the structurally modified tyrosine residue 2,6-dimethyltyrosine (Dmt) in place of Tyr1. Among the synthesized compounds, [Dmt1, d-2-Nal4]endomorphin-1, designated antanal-1, and [Dmt1, d-2-Nal4]endomorphin-2, designated antanal-2, turned out to be highly potent and selective mu-opioid receptor antagonists, as judged on the basis of two functional assays, the receptor binding assay and the hot plate test of analgesia. Interestingly, another analogue of this series, [Dmt1, d-1-Nal4]endomorphin-1, turned out to be a moderately potent mixed mu-agonist/delta-antagonist.

  14. Effects of histamine and 5-hydroxytryptamine on the growth rate of xenografted human bronchogenic carcinomas.

    PubMed

    Sheehan, P F; Baker, T; Tutton, P J; Barkla, D H

    1996-01-01

    1. The influence of histamine and 5-hydroxytryptamine (5-HT) antagonists and agonists on the volume doubling times (Td) of human bronchogenic carcinomas propagated as s.c. xenografts in immunosuppressed mice was examined. 2. The H2-receptor antagonists, cimetidine and ranitidine, increased Td. 3. Treatment with the H2-receptor agonist, 4-methyl histamine, had no effect on Td. 4. Co-administration of 4-methyl histamine and cimetidine abolished the effects of cimetidine. 5. The 5-HT2-receptor antagonists, cinanserin and ketanserin, both increased Td. 6. Treatment with the 5-HT1/2-receptor agonist quipazine (0.1 mg/kg, reflecting 5-HT2 agonist activity) decreased Td, while a higher dose (10.0 mg/kg) had no effect. 7. The 5-HT1/2-receptor antagonist, methiothepin, decreased Td. 8. The 5-HT uptake inhibitor, fluoxetine, increased Td in one tumour line but not in another, while the 5-HT releaser/depletor, fenfluramine, increased Td. 9. Histamine may stimulate tumour growth through the histamine H2-receptor, while the dominant effect of 5-HT is 5-HT1-receptor inhibition. 10. Tumour growth in some bronchogenic carcinomas may involve 5-HT uptake mechanisms.

  15. Combined administration of buprenorphine and naltrexone produces antidepressant-like effects in mice

    PubMed Central

    Almatroudi, Abdulrahman; Husbands, Stephen M.; Bailey, Christopher P.; Bailey, Sarah J.

    2016-01-01

    Opiates have been used historically for the treatment of depression. Renewed interest in the use of opiates as antidepressants has focussed on the development of kappa opioid receptor (κ-receptor) antagonists. Buprenorphine acts as a partial μ-opioid receptor agonist and a κ-receptor antagonist. By combining buprenorphine with the opioid antagonist naltrexone, the activation of μ-opioid receptors would be reduced and the κ-antagonist properties enhanced. We have established that a combination dose of buprenorphine (1mg/kg) with naltrexone (1mg/kg) functions as a short-acting κ-antagonist in the mouse tail withdrawal test. Furthermore, this dose combination is neither rewarding nor aversive in the conditioned place preference paradigm and is without significant locomotor effects. We have shown for the first time that systemic co-administration of buprenorphine (1mg/kg) with naltrexone (1mg/kg) in CD-1 mice produced significant antidepressant-like responses in behaviours in both the forced swim test and novelty induced hypophagia task. Behaviours in the elevated plus maze and light dark box were not significantly altered by treatment with buprenorphine alone, or in combination with naltrexone. We propose that the combination of buprenorphine with naltrexone represents a novel, and potentially a readily translatable approach, to the treatment of depression. PMID:26045511

  16. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart.

    PubMed

    Liu, G S; Richards, S C; Olsson, R A; Mullane, K; Walsh, R S; Downey, J M

    1994-07-01

    Agonists selective for the A1 adenosine receptor mimic the protective effect of ischaemic preconditioning against infarction in the rabbit heart. Unselective adenosine antagonists block this protection but, paradoxically, the A1 adenosine receptor selective antagonist 8-cyclopentyl- 1,3-dipropylxanthine (DPCPX) does not. The aim of this study was to test the hypothesis that the newly described A3 adenosine receptor, which has an agonist profile similar to the A1 receptor but is insensitive to DPCPX, might mediate preconditioning. Isolated rabbit hearts perfused with Krebs buffer experienced 30 min of regional ischaemia followed by 120 min of reperfusion. Infarct size was measured by tetrazolium staining. In control hearts infarction was 32.2(SEM 1.5)% of the risk zone. Preconditioning by 5 min ischaemia and 10 min reperfusion reduced infarct size to 8.8(2.3)%. Replacing the regional ischaemia with 5 min perfusion with 10 microM adenosine or 65 nM N6-[2-(4-aminophenyl)ethyl]adenosine (APNEA), an adenosine A3 receptor agonist, was equally protective. The unselective antagonist 8-p-sulphophenyl theophylline at 100 microM abolished protection by preconditioning, adenosine, and APNEA, but 200 nM DPCPX did not block protection by any of the interventions. Likewise the potent but unselective A3 receptor antagonist 8-(4-carboxyethenylphenyl)-1,3-dipropylxanthine (BW A1433) completely blocked protection from ischaemic preconditioning. Because protection against infarction afforded by ischaemic preconditioning, adenosine, or the A3 receptor agonist APNEA could not be blocked by DPCPX and because the potent A3 receptor antagonist BW A1433 blocked protection from ischaemic preconditioning, these data indicate that the protection of preconditioning is not exclusively mediated by the adenosine A1 receptor in rabbit heart and could involve the A3 receptor.

  17. The effects of exogenous CCK-8 on the acquisition and expression of morphine-induced CPP.

    PubMed

    Wen, Di; Cong, Bin; Ma, Chunling; Yang, Shengchang; Yu, Hailei; Ni, Zhiyu; Li, Shujin

    2012-02-21

    Cholecystokinin octapeptide (CCK-8) is the most potent endogenous anti-opioid peptide and regulates a variety of physiological processes. In our previous study, we found that exogenous CCK-8 attenuated naloxone-induced withdrawal symptoms, but the possible regulative effects of CCK-8 on the rewarding effects of morphine were not examined. In the present study, we aimed to determine the exact effects of exogenous CCK-8 at various doses on the rewarding action of morphine by utilizing the unbiased conditioned place preference (CPP) paradigm. We therefore examined the effects of CCK-8 on the acquisition, expression and extinction of morphine-induced CPP and on locomotor activity. The results showed that CCK-8 (0.01-1μg, i.c.v.), administered alone, induced neither CPP nor place aversion, but blocked the acquisition of CPP when administered with 10mg/kg morphine. The highest dose of CCK-8 (1μg) administered before CPP testing increased CPP and, along with lower doses (0.1μg), reduced its extinction. In addition, the highest dose (1μg) of CCK-8 suppressed locomotor activity. Our study provides the first behavioral evidence for the inhibitory effects of exogenous CCK-8 on rewarding activity and reveals significant effects of exogenous CCK-8 on various stages of place preference and the development of opioid dependence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Non-peptidic antagonists of the CGRP receptor, BIBN4096BS and MK-0974, interact with the calcitonin receptor-like receptor via methionine-42 and RAMP1 via tryptophan-74.

    PubMed

    Miller, Philip S; Barwell, James; Poyner, David R; Wigglesworth, Mark J; Garland, Stephen L; Donnelly, Dan

    2010-01-01

    The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Selectivity of antagonists for the Cys-loop native receptors for ACh, 5-HT and GABA in guinea-pig myenteric neurons.

    PubMed

    Juárez, E H; Ochoa-Cortés, F; Miranda-Morales, M; Espinosa-Luna, R; Montaño, L M; Barajas-López, C

    2014-01-01

    The three most common Cys-loop receptors expressed by myenteric neurons are nACh, 5-HT3 and GABAA . To investigate the function of these proteins researchers have used channel inhibitors such as hexamethonium (antagonist of nACh receptors), ondansetron (antagonist of 5-HT3 receptors), picrotoxin and bicuculline (both antagonists of GABAA receptors). The aim of this study was to investigate the specificity of these inhibitors on Cys-loop receptors of primary cultured neurons obtained from the guinea-pig small intestine. The whole-cell configuration of the patch clamp techniques was used to record membrane currents induced by ACh (IACh ), 5-HT (I5-HT ) and GABA (IGABA ) in the absence and the presence of various concentrations of hexamethonium, ondansetron, picrotoxin or bicuculline. The three Cys-loop receptors present in enteric neurons are expressed independently and they do not cross-desensitized. Hexamethonium inhibited IACh without affecting I5-HT and IGABA . Ondansetron inhibited I5-HT and also IACh but did not affect IGABA . Picrotoxin and bicuculline inhibited I5-HT , IACh and IGABA with different potency, being the lowest potency on 5-HT3 receptors. All these inhibitory effects were concentration dependent and reversible. Our observations showed that except for hexamethonium, all other inhibitors used here show different degrees of selectivity, which has to be considered when these antagonists are used in experimental studies aimed to investigate the functions of these receptors. In particular, in tissues expressing nACh receptors because these are the targets of all other inhibitors used here. The low potency of picrotoxin and bicuculline to inhibit 5-HT3 receptors suggests that these receptors are heteromeric proteins. © 2013 John Wiley & Sons Ltd.

  20. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  1. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    PubMed

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  2. Solid-phase synthesis and structure-activity relationships of novel biarylethers as melanin-concentrating hormone receptor-1 antagonists.

    PubMed

    Ma, Vu; Bannon, Anthony W; Baumgartner, Jamie; Hale, Clarence; Hsieh, Faye; Hulme, Christopher; Rorrer, Kirk; Salon, John; van Staden, Carlo; Tempest, Paul

    2006-10-01

    Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity. This communication reports the discovery of a novel MCH-R1 receptor antagonist, the biarylether 7, identified through high throughput screening. The solid-phase synthesis and structure-activity relationship of related analogs is described.

  3. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis

    PubMed Central

    Jenkinson, Karl M; Southwell, Bridget R; Furness, John B

    1999-01-01

    In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r.We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum.SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis.The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leuψ[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-βAla) were both more potent in inhibiting endocytosis (50× and 8× greater respectively) against septide than against SP.The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor. PMID:10051129

  4. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

    PubMed

    Jenkinson, K M; Southwell, B R; Furness, J B

    1999-01-01

    1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.

  5. A cross-laboratory preclinical study on the effectiveness of interleukin-1 receptor antagonist in stroke

    PubMed Central

    Maysami, Samaneh; Wong, Raymond; Pradillo, Jesus M; Denes, Adam; Dhungana, Hiramani; Malm, Tarja; Koistinaho, Jari; Orset, Cyrille; Rahman, Mahbubur; Rubio, Marina; Schwaninger, Markus; Vivien, Denis; Bath, Philip M; Rothwell, Nancy J

    2015-01-01

    Stroke represents a global challenge and is a leading cause of permanent disability worldwide. Despite much effort, translation of research findings to clinical benefit has not yet been successful. Failure of neuroprotection trials is considered, in part, due to the low quality of preclinical studies, low level of reproducibility across different laboratories and that stroke co-morbidities have not been fully considered in experimental models. More rigorous testing of new drug candidates in different experimental models of stroke and initiation of preclinical cross-laboratory studies have been suggested as ways to improve translation. However, to our knowledge, no drugs currently in clinical stroke trials have been investigated in preclinical cross-laboratory studies. The cytokine interleukin 1 is a key mediator of neuronal injury, and the naturally occurring interleukin 1 receptor antagonist has been reported as beneficial in experimental studies of stroke. In the present paper, we report on a preclinical cross-laboratory stroke trial designed to investigate the efficacy of interleukin 1 receptor antagonist in different research laboratories across Europe. Our results strongly support the therapeutic potential of interleukin 1 receptor antagonist in experimental stroke and provide further evidence that interleukin 1 receptor antagonist should be evaluated in more extensive clinical stroke trials. PMID:26661169

  6. The 5-HT₂C receptor agonist, lorcaserin, and the 5-HT₆ receptor antagonist, SB-742457, promote satiety; a microstructural analysis of feeding behaviour.

    PubMed

    Higgs, Suzanne; Cooper, Alison J; Barnes, Nicholas M

    2016-02-01

    Whilst the FDA-approved anorectic, lorcaserin and various 5-hydroxytryptamine (5-HT)6 receptor antagonists reduce feeding, a direct assessment of their impact upon feeding behaviour is less clear. We therefore examined the action of lorcaserin and the clinical-stage developmental candidate 5-HT6 receptor antagonist, SB-742457, upon microstructural analysis of licking behaviour. Such analysis provides a rich source of information about the mechanisms controlling food intake. The objective of the present study was to gain insight into the influence upon feeding behaviour of the 5-HT2C receptor agonist, lorcaserin and the developmental 5-HT6 receptor antagonist, SB-742457. The impact of lorcaserin and SB-742457 upon licking behaviour of non-deprived rats for a glucose solution was assessed using microstructural analysis. Lorcaserin (0.1-3.0 mg/kg) displayed a dose-dependent ability to reduce glucose consumption via reduction in the number of bouts of licking. A similar action was evident with SB-742457, but only at the lowest dose tested (3.0 mg/kg). The behavioural actions of both lorcaserin and SB-742457 demonstrate they directly promote satiety.

  7. Adenosine triphosphate induces P2Y2 activation and interleukin-8 release in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2017-07-01

    Immune-mediated mucosal inflammation characterized by the release of interleukin (IL)-8 is associated with gastroesophageal reflux disease. ATP released by human esophageal epithelial cells (HEECs) mediates the release of cytokines through P2 nucleotide receptors that are present on various cells, including HEECs. This study characterized and identified human esophageal epithelial P2 receptors that are responsible for ATP-mediated release of IL-8 by using a human esophageal stratified squamous epithelial model. Primary HEECs were cultured with the use of an air-liquid interface (ALI) system. The ATP analogue adenosine 5'-O-3-thiotriphosphate (ATP-γ-S) was added to the basolateral compartment, and IL-8 release was measured. Involvement of the P2Y2 receptor was assessed with the use of selective and non-selective receptor antagonists and a P2Y2 receptor agonist. Expression of the P2Y2 receptor was assessed using western blotting and immunohistochemistry. Adenosine triphosphate-γ-S induced IL-8 release through the P2Y2 receptor. A P2Y2 receptor antagonist but not a P2X3 receptor antagonist or a P2Y1 receptor antagonist blocked ATP-γ-S-mediated IL-8 release. Conversely, a P2Y2 receptor agonist induced IL-8 release. Western blotting and immunohistochemistry of the P2Y2 receptor showed strong expression of the P2Y2 receptor on ALI-cultured HEECs and in human esophagus. Inhibition of extracellular signal-regulated kinase but not of protein kinase C blocked the ATP-mediated release of IL-8. ATP-γ-S induced phosphorylation of extracellular signal-regulated kinase, and a P2Y2 receptor antagonist blocked this phosphorylation. Interleukin-8 release after purinergic stimulation in ALI-cultured HEECs is mediated through P2Y2 receptor activation. ATP-induced IL-8 release maybe involved in the pathogenesis of refractory gastroesophageal reflux disease. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  8. Effects of CCK-8 on the reinstatement of morphine-induced CPP and expression of behavioral sensitization in rats.

    PubMed

    Wen, D; Zang, G; Sun, D; Yang, S; Yu, F; Li, S; Ma, C; Cong, B

    2013-05-15

    Cholecystokinin octapeptide (CCK-8), a neuropeptide, plays an important role in morphine dependence and several addictive behaviors. We have previously reported that CCK-8 attenuates the acquisition of morphine-induced conditioned place preference (CPP), but the possible functions of CCK-8 on drug relapse remain unclear. Here we evaluated the effects of CCK-8 on the reinstatement of extinguished morphine-induced CPP and behavioral sensitization. A single injection of 0.1 and 1μg CCK-8 (i.c.v.) significantly attenuated both drug- (morphine) and stress- (foot shock) primed reinstatement of CPP and reduced the escalated locomotor activity in reinstatement tests. Additionally, CCK-8 blocked the expression of morphine-induced behavioral sensitization. However, administration of CCK-8 (0.01, 0.1 and 1μg) alone to morphine-pretreated rats could not trigger reinstatement of CPP and had no significant effect on threshold sensitivity to foot shock. In conclusion, our study identifies a distinct inhibitory effect of CCK-8 on the reinstatement of drug-seeking behavior and provides a potential application to the medication of drug relapse. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. New targets for rapid antidepressant action.

    PubMed

    Machado-Vieira, Rodrigo; Henter, Ioline D; Zarate, Carlos A

    2017-05-01

    Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: (1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); (2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); (3) NMDA receptor glycine-site partial agonists (GLYX-13); and (4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others. Published by Elsevier Ltd.

  10. New Targets for Rapid Antidepressant Action

    PubMed Central

    Machado-Vieira, Rodrigo; Henter, Ioline D; Zarate, Carlos A.

    2016-01-01

    Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-D-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: 1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); 2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); 3) NMDA receptor glycine-site partial agonists (GLYX-13); and 4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others. PMID:26724279

  11. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    PubMed

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  12. (D-Phe/sup 12/)bombesin analogues: a new class of bombesin receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz-Erian, P.; Coy, D.H.; Tamura, M.

    1987-03-01

    Previous attempts to develop analogues of bombesin that function as specific receptor antagonists have been unsuccessful. Alteration of the histidine in luteinizing hormone releasing factor has resulted in analogues that function as competitive antagonists. In the present study the authors have used a similar strategy and altered the histidine in bombesin. (D-Phe/sup 12/)bombesin, (D-Phe/sup 12/,Leu/sup 14/)bombesin, and (Try/sup 4/, D-)je/sup 12/) bombesin did not stimulate amylase release from guinea pig pancreatic acini when present alone, but each analog inhibited bombesin-stimulated secretion. For each analog, detectable inhibition occurred at 1 ..mu..M and half-maximal inhibition at 4 ..mu..M. Each analog inhibited amylasemore » release by bombesin and other agonists that stimulate secretion by interacting with bombesin receptors. The analogues of bombesin did not alter stimulation by substance P or other agonists that interact with other receptors. The inhibition of the action of bombesin was competitive with Schild plots having slopes of 1.0. Each analog also inhibited binding of /sup 125/I-labeled (Try/sup 4/) bombesin but not /sup 125/I-labeled substance P. These results demonstrate that (D-Phe/sup 12/) analogues of bombesin function as bombesin receptor antagonists and are the only bombesin receptor antagonists that interact only with the bombesin receptor. Because of their specificity, these analogues may prove useful for defining the role of bombesin in various physiological or pathological processes.« less

  13. Antagonists for the orphan G-protein-coupled receptor GPR55 based on a coumarin scaffold.

    PubMed

    Rempel, Viktor; Volz, Nicole; Gläser, Franziska; Nieger, Martin; Bräse, Stefan; Müller, Christa E

    2013-06-13

    The orphan G-protein-coupled receptor GPR55, which is activated by 1-lysophosphatidylinositol and interacts with cannabinoid (CB) receptor ligands, has been proposed as a new potential drug target for the treatment of diabetes, Parkinson's disease, neuropathic pain, and cancer. We applied β-arrestin assays to identify 3-substituted coumarins as a novel class of antagonists and performed an extensive structure-activity relationship study for GPR55. Selectivity versus the related receptors CB1, CB2, and GPR18 was assessed. Among the 7-unsubstituted coumarins selective, competitive GPR55 antagonists were identified, such as 3-(2-hydroxybenzyl)-5-isopropyl-8-methyl-2H-chromen-2-one (12, PSB-SB-489, IC50 = 1.77 μM, pA2 = 0.547 μM). Derivatives with long alkyl chains in position 7 were potent, possibly allosteric GPR55 antagonists which showed ancillary CB receptor affinity. 7-(1,1-Dimethyloctyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (69, PSB-SB-487, IC50 = 0.113 μM, KB = 0.561 μM) and 7-(1,1-dimethylheptyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (67, PSB-SB-1203, IC50 = 0.261 μM) were the most potent GPR55 antagonists of the present series.

  14. Unique action mechanisms of tramadol in global cerebral ischemia-induced mechanical allodynia.

    PubMed

    Matsuura, Wataru; Kageyama, Erika; Harada, Shinichi; Tokuyama, Shogo

    2016-06-15

    Central poststroke pain is associated with specific somatosensory abnormalities, such as neuropathic pain syndrome. Although central poststroke pain is a serious condition, details pertaining to underlying mechanisms are not well established, making current standard treatments only partially effective. Here, we assessed the effects of tramadol, an analgesic drug mediated by opioid receptors, using a mouse model of global cerebral ischemia. Ischemia was induced by bilateral carotid artery occlusion (30 min) in male ddY mice. Development of hind-paw mechanical allodynia was measured 3 days after bilateral carotid artery occlusion using the von Frey test. Mechanical allodynia was significantly and dose dependently suppressed by intraperitoneal tramadol (10 or 20 mg/kg). These effects, which peaked at 10 min and continued for at least 60 min, were inhibited by naloxone (nonselective opioid receptor antagonist, 1 mg/kg, intraperitoneal). Tramadol antinociception was significantly negated by β-funaltrexamine (selective μ-opioid receptor antagonist, 20 mg/kg, intraperitoneal), but not naltrindole (selective δ-opioid receptor antagonist, 5 mg/kg, intraperitoneal) or nor-binaltorphimine (selective κ-opioid receptor antagonist, 10 mg/kg, intraperitoneal) after 5 min, by β-funaltrexamine and nor-binaltorphimine but not naltrindole after 10 min, and by all selective opioid receptor antagonists at 15 and 30 min after tramadol treatment. These results suggested that antinociception induced by tramadol through various opioid receptors was time dependent. Furthermore, it is possible that the opioid receptors involved in tramadol-induced antinociception change over time with the metabolism of this drug.

  15. Design and synthesis of N-(3,3-diphenylpropenyl)alkanamides as a novel class of high-affinity MT2-selective melatonin receptor ligands.

    PubMed

    Bedini, Annalida; Spadoni, Gilberto; Gatti, Giuseppe; Lucarini, Simone; Tarzia, Giorgio; Rivara, Silvia; Lorenzi, Simone; Lodola, Alessio; Mor, Marco; Lucini, Valeria; Pannacci, Marilou; Scaglione, Francesco

    2006-12-14

    A novel series of melatonin receptor ligands was discovered by opening the cyclic scaffolds of known classes of high affinity melatonin receptor antagonists, while retaining the pharmacophore elements postulated by previously described 3D-QSAR and receptor models. Compounds belonging to the classes of 2,3- and [3,3-diphenylprop(en)yl]alkanamides and of o- or [(m-benzyl)phenyl]ethyl-alkanamides were synthesized and tested on MT(1) and MT(2) receptors. The class of 3,3-diphenyl-propenyl-alkanamides was the most interesting one, with compounds having MT(2) receptor affinity similar to that of MLT, remarkable MT(2) selectivity, and partial agonist or antagonist behavior. In particular, the (E)-m-methoxy cyclobutanecarboxamido derivative 18f and the di-(m-methoxy) acetamido one, 18g, have sub-nM affinity for the MT(2) subtype, with more than 100-fold selectivity over MT(1), 18f being an antagonist and 18g a partial agonist on GTPgammaS test. Docking of 18g into a previously developed MT(2) receptor model showed a binding scheme consistent with that of other antagonists. The MT(2) expected binding affinities of the new compounds were calculated by a previously developed 3D-QSAR CoMFA model, giving satisfactory predictions.

  16. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    PubMed

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  17. Antagonist effects of seglitide (MK 678) at somatostatin receptors in guinea-pig isolated right atria.

    PubMed Central

    Dimech, J.; Feniuk, W.; Humphrey, P. P.

    1993-01-01

    Somatostatin (SS) exerts a negative inotropic effect in isolated atria. Here we report that in guinea-pig isolated right atria, seglitide, a potent cyclic hexapeptide somatostatin agonist, behaves as a competitive somatostatin receptor antagonist with pA2 values against SS14, SS25 and SS28, of 6.50 +/- 0.40, 6.24 +/- 0.08 and 6.09 +/- 0.06, respectively. Seglitide had little or no effect on the negative inotropic action of carbachol or N6-cyclohexyladenosine. Our findings indicate that the receptor-response coupling characteristics of guinea-pig atria are such that in this preparation seglitide has low intrinsic activity and behaves specifically as a somatostatin receptor antagonist. PMID:8104651

  18. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    PubMed

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Purinergic Signalling: Therapeutic Developments

    PubMed Central

    Burnstock, Geoffrey

    2017-01-01

    Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer. PMID:28993732

  20. Design, synthesis and biological evaluation of a bivalent micro opiate and adenosine A1 receptor antagonist.

    PubMed

    Mathew, Smitha C; Ghosh, Nandita; By, Youlet; Berthault, Aurélie; Virolleaud, Marie-Alice; Carrega, Louis; Chouraqui, Gaëlle; Commeiras, Laurent; Condo, Jocelyne; Attolini, Mireille; Gaudel-Siri, Anouk; Ruf, Jean; Parrain, Jean-Luc; Rodriguez, Jean; Guieu, Régis

    2009-12-01

    The cross talk between different membrane receptors is the source of increasing research. We designed and synthesized a new hetero-bivalent ligand that has antagonist properties on both A(1) adenosine and mu opiate receptors with a K(i) of 0.8+/-0.05 and 0.7+/-0.03 microM, respectively. This hybrid molecule increases cAMP production in cells that over express the mu receptor as well as those over expressing the A(1) adenosine receptor and reverses the antalgic effects of mu and A(1) adenosine receptor agonists in animals.

  1. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    PubMed

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bidirectional modulation of visual plasticity by cholinergic receptor subtypes in the frog optic tectum

    PubMed Central

    Yu, Chuan-Jiang; Butt, Christopher M.; Debski, Elizabeth A.

    2008-01-01

    Cholinergic input to the optic tectum is necessary for visual map maintenance. To understand why, we examined the effects of activation of the different cholinergic receptor subtypes in tectal brain slices and determined whether the retinotectal map was affected by manipulations of their activity in vivo. Both α-bungarotoxin sensitive and insensitive nicotinic receptor agonists increased spontaneous postsynaptic currents (sPSCs) in a subpopulation of patch-clamped tectal cells; application of subtype selective receptor antagonists reduced nicotine-induced increases in sPSCs. Activation of α-bungarotoxin insensitive nicotinic receptors also induced substantial inward current in some cells. Muscarinic receptor mediated outward current responses were blocked by the M2-like muscarinic receptor antagonists himbacine or AF-DX 384 and mimicked by application of the M2-like agonist oxotremorine. A less frequently observed muscarinic response involving a change in sPSC frequency appeared to be mediated by M1-like muscarinic receptors. In separate experiments, pharmacological manipulation of cholinergic receptor subtype activation led to changes in the activity-dependent visual map created in the tectum by retinal ganglion cell terminals. Chronic exposure of the tectum to either α-bungarotoxin insensitive, α-bungarotoxin sensitive or M1-like receptor antagonists resulted in map disruption. However, treatment with the M2-like receptor antagonist, AF-DX 384, compressed the map. We conclude that nicotinic or M1-like muscarinic receptors control input to tectal cells while α-bungarotoxin insensitive nicotinic receptors and M2-like muscarinic receptors change tectal cell responses to that input. Blockade of the different cholinergic receptor subtypes can have opposing effects on map topography that are consistent with expected effects on tectal cell activity levels. PMID:12670313

  3. Molecular cloning, characterization, and expression analysis of ghrelin and cholecystokinin in the pigeon (Columba livia).

    PubMed

    Xie, P; Wan, X P; Bu, Z; Zou, X T

    2016-11-01

    Ghrelin and cholecystokinin (CCK) are multifunctional peptides. In the current study, complete sequences of ghrelin (800 bp) and CCK (739 bp) were firstly cloned in Columba livia by using rapid amplification of cDNA ends (RACE) method. The open reading frames of ghrelin (351bp) and CCK (393bp) encoded 116 amino acids and 130 amino acids, respectively. Sequence comparison indicated that pigeon ghrelin and CCK shared high identity with those reported in other avian species. Quantitative real-time PCR analysis found that ghrelin and CCK mRNAs expressed in three intestinal segments of pigeon during development. Both ghrelin and CCK showed generally higher expressions at days posthatch than embryonic periods regardless of intestinal segments. In duodenum and ileum, the expressions of ghrelin and CCK mRNA reached the peak values at 8 d posthatch. Jejunum CCK mRNA level increased linearly after hatching, and reached the highest point at posthatch 28 d. Based on documented effects of long chain fatty acids (LCFAs) on pigeon ghrelin and CCK expression were also investigated in vitro. Higher concentrations (50 μM or 250 μM) of linoleic acid, α-linolenic acid or arachidonic acid can significantly increase ghrelin mRNA level in pigeon jejunum. However, for oleic acid, the induction of ghrelin gene expressions needed a lower concentration (5 μM). 5 μM of linoleic acid, α-linolenic acid or arachidonic acid and 250 μM palmitic acid repressed CCK expression significantly. A higher concentration (250 μM) of oleic acid or α-linolenic acid can up-regulate CCK mRNA level significantly. Our results indicated that ghrelin and CCK may act key functions in pigeon intestine development and their expressions could be regulated by LCFAs. © 2016 Poultry Science Association Inc.

  4. Opposing effects of AMPA and 5-HT1A receptor blockade on passive avoidance and object recognition performance: correlation with AMPA receptor subunit expression in rat hippocampus.

    PubMed

    Schiapparelli, L; Simón, A M; Del Río, J; Frechilla, D

    2006-06-01

    It has been suggested that antagonists at serotonin 5-HT1A receptors may exert a procognitive effect by facilitating glutamatergic neurotransmission. Here we further explored this issue by looking for the ability of a 5-HT1A antagonist to prevent the learning deficit induced by AMPA receptor blockade in two behavioural procedures in rats, and for concomitant molecular changes presumably involved in memory formation in the hippocampus. Pretraining administration of the competitive AMPA receptor antagonist, NBQX, produced a dose-related retention impairment in a passive avoidance task 24h later, and also impaired retention in a novel object recognition test when an intertrial interval of 3h was selected. Pretreatment with the selective 5-HT1A receptor antagonist, WAY-100635, prevented the learning deficit induced by NBQX in the two behavioural procedures. In biochemical studies performed on rat hippocampus after the retention tests, we found that learning increased the membrane levels of AMPA receptor GluR1 and GluR2/3 subunits, as well as the phosphorylated forms of GluR1, effects that were abolished by NBQX administration before the training session. Pretreatment with WAY-100635 counteracted the NBQX effects and restored the initial learning-specific increase in Ca2+/calmodulin-dependent protein kinase II (CaMKII) function and the later increase in GluR2/3 and phosphorylated GluR1 surface expression. Moreover, administration of WAY-100635 before object recognition training improved recognition memory 24h later and potentiated the learning-associated increase in AMPA receptor subunits. The results support the proposed utility of 5-HT1A antagonists in the treatment of cognitive disorders.

  5. Endothelin-1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention.

    PubMed

    Lohsiriwat, Varut; Scholefield, John H; Wilson, Vincent G; Dashwood, Michael R

    2017-04-01

    Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin-1 (ET-1) and the role of endothelin ET A and ET B receptors in haemorrhoid tissue. Protein expression of ET-1, ET A and ET B receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET-1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. Dense binding of [ 125 I]-ET-1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ET B than ET A receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ET A and ET B receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ET B receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET-1 and affected by the ET A selective antagonist, but sarafotoxin S6a-induced contractions were more pronounced in veins and antagonized by a selective ET B receptor antagonist. ET A and ET B receptors are present in human haemorrhoids with ET B receptors predominating. ET A receptors are activated by ET-1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a - a response that involves ET B receptors at low concentrations. Selective ET B agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids. © 2017 The British Pharmacological Society.

  6. Effect of intraperitoneal and intravenous administration of cholecystokinin-8 and apolipoprotein AIV on intestinal lymphatic CCK-8 and apo AIV concentration

    PubMed Central

    Lo, Chun-Min; Xu, Min; Yang, Qing; Zheng, Shuqin; Carey, Katherine M.; Tubb, Matthew R.; Davidson, W. Sean; Liu, Min; Woods, Stephen C.; Tso, Patrick

    2009-01-01

    CCK and apolipoprotein AIV (apo AIV) are gastrointestinal satiety signals whose synthesis and secretion by the gut are stimulated by fat absorption. Intraperitoneally administered CCK-8 is more potent in suppressing food intake than a similar dose administered intravenously, but the reason for this disparity is unclear. In contrast, both intravenous and intraperitoneally administered apo AIV are equally as potent in inhibiting food intake. When we compared the lymphatic concentration of CCK-8 and apo AIV, we found that neither intraperitoneally nor intravenously administered CCK-8 or apo AIV altered lymphatic flow rate. Interestingly, intraperitoneal administration of CCK-8 produced a significantly higher lymphatic concentration at 15 min than did intravenous administration. Intraperitoneal injection of apo AIV also yielded a higher lymphatic concentration at 30 min than did intravenous administration. Intraperitoneal administration of CCK-8 and apo AIV also resulted in a much longer period of elevated CCK-8 and apo AIV peptide concentration in lymph than intravenous administration. Furthermore, enzymatic activity of dipeptidyl peptidase IV (DPPIV) and aminopeptidase was higher in plasma than in lymph during fasting, and so, satiation peptides, such as CCK-8 and apo AIV in the lymph, are protected from degradation by the significantly lower DPPIV and aminopeptidase activity levels in lymph than in plasma. Therefore, the higher potency of intraperitoneally administered CCK-8 compared with intravenously administered CCK-8 in inhibiting food intake may be explained by both its higher concentration in lymph and the prolonged duration of its presence in the lamina propria. PMID:19020287

  7. Effect of intraperitoneal and intravenous administration of cholecystokinin-8 and apolipoprotein AIV on intestinal lymphatic CCK-8 and apo AIV concentration.

    PubMed

    Lo, Chun-Min; Xu, Min; Yang, Qing; Zheng, Shuqin; Carey, Katherine M; Tubb, Matthew R; Davidson, W Sean; Liu, Min; Woods, Stephen C; Tso, Patrick

    2009-01-01

    CCK and apolipoprotein AIV (apo AIV) are gastrointestinal satiety signals whose synthesis and secretion by the gut are stimulated by fat absorption. Intraperitoneally administered CCK-8 is more potent in suppressing food intake than a similar dose administered intravenously, but the reason for this disparity is unclear. In contrast, both intravenous and intraperitoneally administered apo AIV are equally as potent in inhibiting food intake. When we compared the lymphatic concentration of CCK-8 and apo AIV, we found that neither intraperitoneally nor intravenously administered CCK-8 or apo AIV altered lymphatic flow rate. Interestingly, intraperitoneal administration of CCK-8 produced a significantly higher lymphatic concentration at 15 min than did intravenous administration. Intraperitoneal injection of apo AIV also yielded a higher lymphatic concentration at 30 min than did intravenous administration. Intraperitoneal administration of CCK-8 and apo AIV also resulted in a much longer period of elevated CCK-8 and apo AIV peptide concentration in lymph than intravenous administration. Furthermore, enzymatic activity of dipeptidyl peptidase IV (DPPIV) and aminopeptidase was higher in plasma than in lymph during fasting, and so, satiation peptides, such as CCK-8 and apo AIV in the lymph, are protected from degradation by the significantly lower DPPIV and aminopeptidase activity levels in lymph than in plasma. Therefore, the higher potency of intraperitoneally administered CCK-8 compared with intravenously administered CCK-8 in inhibiting food intake may be explained by both its higher concentration in lymph and the prolonged duration of its presence in the lamina propria.

  8. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body.

    PubMed

    Xiaopeng, Bai; Tanaka, Yoshimasa; Ihara, Eikichi; Hirano, Katsuya; Nakano, Kayoko; Hirano, Mayumi; Oda, Yoshinao; Nakamura, Kazuhiko

    2017-02-15

    Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH 2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK 1 ) and NK 2 antagonists, but not by an NK 3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK 1 , NK 2 and NK 3 ) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK 1 and NK 2 antagonists, but not by the NK 3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK 1/2 . Gap junctions were indispensable in this tachykinin-induced response. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    PubMed

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  10. Endothelin A receptor antagonists in congestive heart failure: blocking the beast while leaving the beauty untouched?

    PubMed

    Spieker, L E; Noll, G; Ruschitzka, F T; Lüscher, T F

    2001-12-01

    Congestive heart failure (CHF) is a disease process characterized by impaired left ventricular function, increased peripheral and pulmonary vascular resistance and reduced exercise tolerance and dyspnea. Thus, mediators involved in the control of myocardial function and vascular tone may be involved in its pathophysiology. The family of endothelins (ET) consists of four closely related peptides, ET-1, ET-2, ET-3, and ET-4, which cause vasoconstriction, cell proliferation, and myocardial effects through activation of ET(A) receptors. In contrast, endothelial ET(B) receptors mediate vasodilation via release of nitric oxide and prostacyclin. In addition, ET(B) receptors in the lung are a major pathway for the clearance of ET-1 from plasma. Thus, infusion of an ET(A) receptor antagonist into the brachial artery in healthy humans leads to vasodilation whereas infusion of an ET(B) receptor antagonist causes vasoconstriction. ET-1 plasma levels are elevated in CHF and correlate both with the hemodynamic severity and with symptoms. Plasma levels of ET-1 and its precursor, big ET-1, are strong independent predictors of death in patients after myocardial infarction and with CHF. ET-1 contributes to increased systemic and pulmonary vascular resistance, vascular dysfunction, myocardial ischemia, and renal impairment in CHF. Selective ET(A) as well as combined ET(A/B) receptor antagonists have been studied in patients with CHF showing impressive hemodynamic improvements (i.e. reduced peripheral vascular and pulmonary resistance as well as increased cardiac output). These results indicate that ET receptor antagonists indeed have a potential to improve hemodynamics, symptoms, and potentially prognosis of CHF which still carries a high mortality.

  11. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats.

    PubMed

    Stojicić, S; Milutinović-Smiljanić, S; Sarenac, O; Milosavljević, S; Paton, J F R; Murphy, D; Japundzić-Zigon, N

    2008-04-01

    To investigate the contribution of central vasopressin receptors to blood pressure (BP) and heart rate (HR) response to stress we injected non-peptide selective V(1a) (SR49059), V(1b) (SSR149415), V(2) (SR121463) receptor antagonists, diazepam or vehicle in the lateral cerebral ventricle of conscious freely moving rats stressed by blowing air on their heads for 2 min. Cardiovascular effects of stress were evaluated by analyzing maximum increase of BP and HR (MAX), latency of maximum response (LAT), integral under BP and HR curve (integral), duration of their recovery and spectral parameters of BP and HR indicative of increased sympathetic outflow (LF(BP) and LF/HF(HR)). Moreover, the increase of serum corticosterone was measured. Exposure to air-jet stress induced simultaneous increase in BP and HR followed by gradual decline during recovery while LF(BP) oscillation remained increased as well as serum corticosterone level. Rats pre-treated with vasopressin receptor antagonists were not sedated while diazepam induced sedation that persisted during exposure to stress. V(1a), V(1b) and V(2) receptor antagonists applied separately did not modify basal values of cardiovascular parameters but prevented the increase in integral(BP). In addition, V(1b) and V(2) receptor antagonists reduced BP(MAX) whereas V(1a), V(1b) antagonist and diazepam reduced HR(MAX) induced by exposure to air-jet stress. All drugs shortened the recovery period, prevented the increase of LF(BP) without affecting the increase in serum corticosterone levels. Results indicate that vasopressin receptors located within the central nervous system mediate, in part, the cardiovascular response to air-jet stress without affecting either the neuroendocrine component or inducing sedation. They support the view that the V(1b) receptor antagonist may be of potential therapeutic value in reducing arterial pressure induced by stress-related disorders.

  12. Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors.

    PubMed

    Lu, J; Goula, D; Sousa, N; Almeida, O F X

    2003-01-01

    Glutamate receptors have been proposed to mediate the apoptotic actions of glucocorticoids in hippocampal cells. To further analyze the role of glutamate receptors in this process, we pretreated primary hippocampal cells from neonatal (postnatal day 4) rats with antagonists of ionotropic glutamate receptor (iGluR) and metabotropic glutamate receptor (mGluR) antagonists before exposure to the specific glucocorticoid receptor agonist dexamethasone (DEX) at a dose of 1 microM. Dizocilpine (MK801; a general N-methyl-D-aspartic acid [NMDA] receptor antagonist, NMDAR antagonist) and ifenprodil (a specific ligand of the NMDAR 2B subunit, NR2B), were used to block iGluR; (RS)-alpha-ethyl-4-carboxyphenylglycine (E4CPG) and (RS)-alpha-cyclopropyl-4-phosphonophenyl-glycine (CPPG) were employed as I/II (E4CPG) and II/III (CPPG) mGluR antagonists. Blockade of iGluR resulted in a significant attenuation of DEX-induced cell death; the finding that ifenprodil exerted a similar potency to MK801 demonstrates the involvement of NR2B receptors in glucocorticoid-induced cell death. Apoptosis accounted for a significant amount of the cell loss observed, as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling histochemistry for the in situ labeling of DNA breaks; apoptotic cells were distinguished from necrosis on the basis of morphological criteria, including chromatin condensation, membrane blebbing and presence of apoptotic bodies. Treatment with E4CPG and CPPG completely abolished the apoptotic response to DEX, thus showing the additional contribution of mGluR to the phenomenon. Further, dose-response studies with NMDA revealed that whereas high (10 microM) doses of NMDA themselves elicit cytotoxic responses, low (1-5 microM) concentrations of NMDA can effectively oppose DEX-induced cell death. Interestingly, the neuroprotective actions of low dose NMDA stimulation were abolished when either synaptic or extrasynaptic NMDA receptors were blocked with MK801 in combination with the GABA receptor antagonist bicuculline (synaptic) or ifenprodil (extrasynaptic). In summary, the present data show that both iGluR and mGluR mediate the neurotoxic effects of glucocorticoids on hippocampal cells and that pre-treatment with low doses of NMDA, by acting on synaptic and extrasynaptic receptors, render hippocampal cells less vulnerable to glucocorticoid insults.

  13. Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli

    PubMed Central

    2010-01-01

    Background Unilateral constrictive sciatic nerve injury (uCCI) is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI) model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing. Results All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK) staining at all times after bCCI, decreased mu opiate receptor (MOR) staining, maximal at 15 days, increased neuropeptide Y (NPY) staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R) staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY. Conclusions These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain. PMID:20105332

  14. Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli.

    PubMed

    Datta, Sukdeb; Chatterjee, Koel; Kline, Robert H; Wiley, Ronald G

    2010-01-27

    Unilateral constrictive sciatic nerve injury (uCCI) is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI) model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing. All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK) staining at all times after bCCI, decreased mu opiate receptor (MOR) staining, maximal at 15 days, increased neuropeptide Y (NPY) staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R) staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY. These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain.

  15. Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice.

    PubMed

    Palotai, Miklós; Telegdy, Gyula; Tanaka, Masaru; Bagosi, Zsolt; Jászberényi, Miklós

    2014-11-01

    Little is known about the action of neuropeptide AF (NPAF) on anxiety and depression. Only our previous study provides evidence that NPAF induces anxiety-like behavior in rats. Therefore, the aim of the present study was to investigate the action of NPAF on depression-like behavior and the underlying neurotransmissions in mice. In order to determine whether there are species differences between rats and mice, we have investigated the action of NPAF on anxiety-like behavior in mice as well. A modified forced swimming test (mFST) and an elevated plus maze test (EPMT) were used to investigate the depression and anxiety-related behaviors, respectively. Mice were treated with NPAF 30min prior to the tests. In the mFST, the animals were pretreated with a non-selective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2/D3/D4 dopamine receptor antagonist, haloperidol, a α1/α2β-adrenergic receptor antagonist, prazosin or a non-selective β-adrenergic receptor antagonist, propranolol 30min before the NPAF administration. In the mFST, NPAF decreased the immobility time and increased the climbing and swimming times. This action was reversed completely by methysergide and partially by atropine, whereas cyproheptadine, haloperidol, prazosin and propranolol were ineffective. In the EPMT, NPAF decreased the time spent in the arms (open/open+closed). Our results demonstrate that NPAF induces anti-depressant-like behavior in mice, which is mediated, at least in part, through 5HT2-serotonergic and muscarinic cholinergic neurotransmissions. In addition, the NPAF-induced anxiety is species-independent, since it develops also in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion.

    PubMed

    Dill, M Joelle; Shaw, Janice; Cramer, Jeff; Sindelar, Dana K

    2013-11-01

    Serotonin acts through receptors controlling several physiological functions, including energy homeostasis regulation and food intake. Recent experiments demonstrated that 5-HT1A receptor antagonists reduce food intake. We sought to examine the microstructure of feeding with 5-HT1A receptor antagonists using a food intake monitoring system. We also examined the relationship between food intake, inhibition of binding and pharmacokinetic (PK) profiles of the antagonists. Ex vivo binding revealed that, at doses used in this study to reduce food intake, inhibition of binding of a 5-HT1A agonist by ~40% was reached in diet-induced obese (DIO) mice with a trend for higher binding in DIO vs. lean animals. Additionally, PK analysis detected levels from 2 to 24h post-compound administration. Male DIO mice were administered 5-HT1A receptor antagonists LY439934 (10 or 30 mg/kg, p.o.), WAY100635 (3 or 10mg/kg, s.c.), SRA-333 (10 or 30 mg/kg, p.o.), or NAD-299 (3 or 10mg/kg, s.c.) for 3 days and meal patterns were measured. Analyses revealed that for each antagonist, 24-h food intake was reduced through a specific decrease in the total number of meals. Compared to controls, meal number was decreased 14-35% in the high dose. Average meal size was not changed by any of the compounds. The reduction in food intake reduced body weight 1-4% compared to Vehicle controls. Subsequently, a conditioned taste aversion (CTA) assay was used to determine whether the feeding decrease might be an indicator of aversion, nausea, or visceral illness caused by the antagonists. Using a two bottle preference test, it was found that none of the compounds produced a CTA. The decrease in food intake does not appear to be a response to nausea or malaise. These results indicate that 5-HT1A receptor antagonist suppresses feeding, specifically by decreasing the number of meals, and induce weight loss without an aversive side effect. © 2013 Elsevier Inc. All rights reserved.

  17. Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes.

    PubMed

    Papke, Roger L; Wecker, Lynn; Stitzel, Jerry A

    2010-05-01

    Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.

  18. Activation and Inhibition of Mouse Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    PubMed Central

    Wecker, Lynn; Stitzel, Jerry A.

    2010-01-01

    Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric α7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-β-erythroidine as selective antagonists in mouse models of α3β4 and α4β2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal α and β subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse α5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse α4β2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity. PMID:20100906

  19. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer

    PubMed Central

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I.; Lluís, Carme; Cortés, Antoni; Volkow, Nora D.; Schiffmann, Serge N.; Ferré, Sergi; Casadó, Vicent

    2015-01-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  20. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  1. Effect of Dai-kenchu-to (Da-Jian-Zhong-Tang) on the delayed intestinal propulsion induced by chlorpromazine in mice.

    PubMed

    Satoh, Kazuko; Kase, Yoshio; Yuzurihara, Mitsutoshi; Mizoguchi, Kazushige; Kurauchi, Kouji; Ishige, Atsushi

    2003-05-01

    This study was conducted to evaluate the effect of Dai-kenchu-to on chlorpromazine-induced hypoperistalsis in mice. Oral administration of Dai-kenchu-to (30-300 mg/kg) dose-dependently improved small intestinal and distal colonic propulsion decreased by chlorpromazine (3 mg/kg, p.o.). Although the improvement of small intestinal propulsion due to Dai-kenchu-to was partially inhibited by atropine (1 mg/kg, s.c.), this action was completely inhibited by the concomitant administration of lorglumide (10 mg/kg, i.p.), a CCKA receptor antagonist. The distal colonic propulsion-improving effect of Dai-kenchu-to was abolished by atropine (1 mg/kg, s.c.). When the effects of the respective components of Dai-kenchu-to were evaluated, oral administration of Zanthoxylum Fruit improved both delayed small intestinal and distal colonic propulsion caused by chlorpromazine. On the other hand, Malt Sugar was effective against only delayed small intestinal propulsion. The action of Zanthoxylum Fruit was completely inhibited by atropine (1 mg/kg, s.c.), and the effect of Malt Sugar was inhibited by lorglumide (10 mg/kg, i.p.). These results demonstrated that Dai-kenchu-to improves chlorpromazine-induced hypoperistalsis via cholinergic systems and that Zanthoxylum Fruit is the main contributor to this action of Dai-kenchu-to. In addition, endogenous CCK due to Malt Sugar may also contribute to this effect of Dai-kenchu-to.

  2. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    PubMed Central

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. PMID:21163582

  3. Endothelin‐1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention

    PubMed Central

    Lohsiriwat, Varut; Scholefield, John H; Wilson, Vincent G

    2017-01-01

    Background and Purpose Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin‐1 (ET‐1) and the role of endothelin ETA and ETB receptors in haemorrhoid tissue. Experimental Approach Protein expression of ET‐1, ETA and ETB receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET‐1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. Key Results Dense binding of [125I]‐ET‐1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ETB than ETA receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ETA and ETB receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ETB receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET‐1 and affected by the ETA selective antagonist, but sarafotoxin S6a‐induced contractions were more pronounced in veins and antagonized by a selective ETB receptor antagonist. Conclusions and Implications ETA and ETB receptors are present in human haemorrhoids with ETB receptors predominating. ETA receptors are activated by ET‐1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a – a response that involves ETB receptors at low concentrations. Selective ETB agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids. PMID:28095606

  4. Measurement of cholecystokinin octapeptide using a new specific radioimmunoassay.

    PubMed

    Adrian, T E; Bacarese-Hamilton, A J; Bloom, S R

    1985-01-01

    A peptide analogue of CCK-8 (Tyroc) which has a tyrosine in place of the amide group in the C-terminal end, has been used both for raising antisera and for iodination. The antisera produced by immunisation with Tyroc are directed towards the N-terminal end of the CCK-8 molecule. The assay system appears totally specific for the CCK-8 sulphated molecule and shows no significant cross-reaction with other molecular forms of CCK, or with the gastrins. The assay can detect changes between adjacent tubes of 0.25 fmol/tube CCK-8 with 95% confidence. The assay is robust, reliable and reproducible and can be used to measure tissue and plasma levels of CCK-8.

  5. The antinociceptive effect of intravenous imipramine in colorectal distension-induced visceral pain in rats: the role of serotonergic and noradrenergic receptors.

    PubMed

    İlkaya, Fatih; Bilge, S Sırrı; Bozkurt, Ayhan; Baş, Duygu B; Erdal, Arzu; Çiftçioğlu, Engin; Kesim, Yüksel

    2014-07-01

    It has been shown that imipramine, a tricyclic antidepressant (TCA), is a potent analgesic agent. However, the effect of imipramine on visceral pain has not been extensively investigated. In the current study, our aim was to characterise the putative analgesic effect of intravenous imipramine on visceral pain in rats. Our second aim was to assess the involvement of serotonergic (5-HT₂,₃,₄) and noradrenergic (α(2A, 2B, 2C)) receptor subtypes in this putative antinociceptive effect of imipramine. Male Sprague Dawley rats (250-300 g) were implanted with venous catheters for drug administration and implanted with enamelled nichrome electrodes for electromyography of the external oblique muscles. Noxious visceral stimulation was applied via by colorectal distension (CRD). The visceromotor responses (VMRs) to CRD were quantified electromyographically before and after imipramine administration at 5, 15, 30, 60, 90 and 120 min. In the antagonist groups, the agents were administered 10 min before imipramine. The administration of imipramine (5-40 mg/kg) produced a dose-dependent reduction in VMR. The administration of yohimbine (a nonselective α₂-adrenoceptor antagonist, 1 mg/kg), BRL-44408 (an α(2A)-adrenoceptor antagonist, 1 mg/kg) or MK-912 (an α2C-adrenoceptor antagonist, 300 μg/kg) but not imiloxan (an α(2B)-adrenoceptor antagonist, 1 mg/kg) inhibited the antinociceptive effect of imipramine (20 mg/kg). Additionally, ketanserin (a 5-HT₂ receptor antagonist, 0.5, 1, and 2 mg/kg) and GR113808 (a 5-HT₄ receptor antagonist, 1 mg/kg) enhanced, and ondansetron (a 5-HT₃ receptor antagonist, 0.5, 1, and 2 mg/kg) failed to alter the imipramine-induced antinociceptive effect. Our data demonstrated that, in the CDR-induced rat visceral pain model, intravenous imipramine appeared to have antinociceptive potential and that α(2A)-/α(2C)-adrenoceptors and 5-HT₂/5-HT₄ receptors may be responsible for the antinociceptive effect of imipramine on visceral pain in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats.

    PubMed

    Sadeghi, Malihe; Reisi, Parham; Radahmadi, Maryam

    2017-12-01

    Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long-term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. Stress impaired spatial memory significantly ( P <0.01). CCK in the control rats improved memory ( P <0.05), and prevented the impairments in the stress group. With respect to the control group, both fEPSP amplitude and slope were significantly ( P <0.05) decreased in the stress group. However, there were no differences between responses of the control-CCK and Stress-CCK groups compared to the control group. The present results suggest that high levels of CCK-8S during induction of stress can modulate the destructive effects of stress on hippocampal synaptic plasticity and memory. Therefore, the mediatory effects of CCK in stress are likely as compensatory responses.

  7. The pressor effect of angiotensin-(1-7) in the rat rostral ventrolateral medulla involves multiple peripheral mechanisms.

    PubMed

    Oliveira, Rita C; Campagnole-Santos, Maria J; Santos, Robson A S

    2013-01-01

    In the present study, the peripheral mechanism that mediates the pressor effect of angiotensin-(1-7) in the rostral ventrolateral medulla was investigated. Angiotensin-(1-7) (25 pmol) was bilaterally microinjected in the rostral ventrolateral medulla near the ventral surface in urethane-anesthetized male Wistar rats that were untreated or treated (intravenously) with effective doses of selective autonomic receptor antagonists (atenolol, prazosin, methyl-atropine, and hexamethonium) or a vasopressin V1 receptor antagonist [d(CH2)5 -Tyr(Me)-AVP] given alone or in combination. Unexpectedly, the pressor response produced by angiotensin-(1-7) (16 ± 2 mmHg, n = 12), which was not associated with significant changes in heart rate, was not significantly altered by peripheral treatment with prazosin, the vasopressin V1 receptor antagonist, hexamethonium or methyl-atropine. Similar results were obtained in experiments that tested the association of prazosin and atenolol; methyl-atropine and the vasopressin V1 antagonist or methyl-atropine and prazosin. Peripheral treatment with the combination of prazosin, atenolol and the vasopressin V1 antagonist abolished the pressor effect of glutamate; however, this treatment produced only a small decrease in the pressor effect of angiotensin-(1-7) at the rostral ventrolateral medulla. The combination of hexamethonium with the vasopressin V1 receptor antagonist or the combination of prazosin, atenolol, the vasopressin V1 receptor antagonist and methyl-atropine was effective in blocking the effect of angiotensin-(1-7) at the rostral ventrolateral medulla. These results indicate that angiotensin-(1-7) triggers a complex pressor response at the rostral ventrolateral medulla that involves an increase in sympathetic tonus, release of vasopressin and possibly the inhibition of a vasodilatory mechanism.

  8. Substituted pyrrolidin-2-ones: Centrally acting orexin receptor antagonists promoting sleep. Part 2.

    PubMed

    Sifferlen, Thierry; Boller, Amandine; Chardonneau, Audrey; Cottreel, Emmanuelle; Gatfield, John; Treiber, Alexander; Roch, Catherine; Jenck, Francois; Aissaoui, Hamed; Williams, Jodi T; Brotschi, Christine; Heidmann, Bibia; Siegrist, Romain; Boss, Christoph

    2015-05-01

    Starting from advanced pyrrolidin-2-one lead compounds, this novel series of small-molecule orexin receptor antagonists was further optimized by fine-tuning of the C-3 substitution at the γ-lactam ring. We discuss our design to align in vitro potency with metabolic stability and improved physicochemical/pharmacokinetic properties while avoiding P-glycoprotein-mediated efflux. These investigations led to the identification of the orally active 3-hydroxypyrrolidin-2-one 46, a potent and selective orexin-2 receptor antagonist, that achieved good brain exposure and promoted physiological sleep in rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy.

    PubMed

    Sato, Atsuhisa

    2015-06-01

    Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain 'long-term' antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy. However, many studies have shown promise of better renoprotective effects if mineralocorticoid receptor antagonists are appropriately used.

  10. Diadenosine polyphosphates as antagonists of the endogenous P2Y1 receptor in rat brain capillary endothelial cells of the B7 and B10 clones

    PubMed Central

    Vigne, Paul; Breittmayer, Jean Philippe; Frelin, Christian

    2000-01-01

    Diadenosine polyphosphates (ApnAs, n=2–7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of ApnAs in clones of rat brain capillary endothelial cells that express P2Y1 receptors (B10 cells) or both P2Y1 and P2Y2 receptors (B7 cells).B10 cells responded to Ap3A with rises in intracellular Ca2+ concentration ([Ca2+]i). This response was prevented by adenosine-3′-phosphate-5′-phosphate, an antagonist of P2Y1 receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP.ApnAs inhibited ADP induced increases in [Ca2+]i mediated by P2Y1 receptors by shifting ADP concentration-response curves to larger concentrations. Apparent Ki values were estimated to be 6 μM for Ap4A, 10 μM for Ap5A and 47 μM for Ap6A. Ap2A and Ap3A were much less active.ApnAs were neither agonists nor antagonists of the endogenous P2Y2 receptor in B7 cells.ApnAs are neither agonists nor antagonists of the Gi-coupled, ADP receptor in B10 cells.The results suggest that most actions of ApnAs in B7 and B10 cells can be accounted for by endogenous P2Y1 receptors. Ap4A, Ap5A and Ap6A are specific antagonists of endogenous Ca2+-coupled P2Y1 receptors. PMID:10742308

  11. Use of Chimeras, Point Mutants, and Molecular Modeling to Map the Antagonist-binding Site of 4,4′,4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic Acid (NF449) at P2X1 Receptors for ATP*

    PubMed Central

    Farmer, Louise K.; Schmid, Ralf; Evans, Richard J.

    2015-01-01

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. PMID:25425641

  12. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.

    PubMed

    Farmer, Louise K; Schmid, Ralf; Evans, Richard J

    2015-01-16

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. CCK response in bulimia nervosa and following remission

    PubMed Central

    Hannon-Engel, Sandra L.; Filin, Evgeniy E.; Wolfe, Barbara E.

    2013-01-01

    The core defining features of bulimia nervosa (BN) are repeated binge eating episodes and inappropriate compensatory (e.g. purging) behavior. Previous studies suggest an abnormal postprandial response in the satiety-signaling peptide cholecystokinin (CCK) in persons with BN. It is unknown whether this altered response persists following remission or if it may be a potential target for the development of clinical treatment strategies. To examine the nature of this altered response, this study assessed whether CCK normalizes following remission from BN (RBN). This study prospectively evaluated the plasma CCK response and corresponding eating behavior-related ratings (e.g. satiety, fullness, hunger, urge to binge and vomit) in individuals with BN-purging subtype (n=10), RBN-purging subtype (n =14), and healthy controls (CON, n=13) at baseline, +15, +30, and +60 minutes following the ingestion of a standardized liquid test meal. Subject groups did not significantly differ in CCK response to the test meal. A significant relationship between CCK response and satiety ratings was observed in the RBN group (r=.59, p<.05 two-tailed). A new and unanticipated finding in the BN group was a significant relationship between CCK response and ratings of “urge to vomit” (r=.86, p < .01, two-tailed). Unlike previous investigations CCK response did not differ in BN and CON groups. Thus the role of symptom severity remains an area of further investigation. Additionally, findings suggest that in this sample, CCK functioning following remission from BN-purging subtype is not different from controls. It remains unknown whether or not CCK functioning may be a protective or liability factor in the stabilization and recovery process. Replication studies utilizing a larger sample size are needed to further elucidate the role of CCK in recovery from BN and its potential target of related novel treatment strategies. PMID:23988345

  14. Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation

    PubMed Central

    Nagahama, Masahiro; Morimitsu, Shinsuke; Kihara, Atsushi; Akita, Masahiko; Setsu, Koujun; Sakurai, Jun

    2003-01-01

    Clostridium perfringens beta-toxin causes dermonecrosis and oedema in the dorsal skin of animals. In the present study, we investigated the mechanisms of oedema induced by the toxin. The toxin induced plasma extravasation in the dorsal skin of Balb/c mice. The extravasation was significantly inhibited by diphenhydramine, a histamine 1 receptor antagonist. However, the toxin did not cause the release of histamine from mouse mastocytoma cells. Tachykinin NK1 receptor antagonists, [D-Pro2, D-Trp7,9]-SP, [D-Pro4, D-Trp7,9]-SP and spantide, inhibited the toxin-induced leakage in a dose-dependent manner. Furthermore, the non-peptide tachykinin NK1 receptor antagonist, SR140333, markedly inhibited the toxin-induced leakage. The leakage induced by the toxin was markedly reduced in capsaicin-pretreated mouse skin but the leakage was not affected by systemic pretreatment with a calcitonin gene-related peptide receptor antagonist (CGRP8-37). The toxin-induced leakage was significantly inhibited by the N-type Ca2+ channel blocker, ω-conotoxin MVIIA, and the bradykinin B2 receptor antagonist, HOE140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin), but was not affected by the selective L-type Ca2+ channel blocker, verapamil, the P-type Ca2+ channel blocker, ω-agatoxin IVA, tetrodotoxin (TTX), the TTX-resistant Na+ channel blocker, carbamazepine, or the sensory nerve conduction blocker, lignocaine. These results suggest that plasma extravasation induced by beta-toxin in mouse skin is mediated via a mechanism involving tachykinin NK1 receptors. PMID:12522069

  15. A novel urotensin II receptor antagonist, KR-36996, improved cardiac function and attenuated cardiac hypertrophy in experimental heart failure.

    PubMed

    Oh, Kwang-Seok; Lee, Jeong Hyun; Yi, Kyu Yang; Lim, Chae Jo; Park, Byung Kil; Seo, Ho Won; Lee, Byung Ho

    2017-03-15

    Urotensin II and its receptor are thought to be involved in various cardiovascular diseases such as heart failure, pulmonary hypertension and atherosclerosis. Since the regulation of the urotensin II/urotensin II receptor offers a great potential for therapeutic strategies related to the treatment of cardiovascular diseases, the study of selective and potent antagonists for urotensin II receptor is more fascinating. This study was designed to determine the potential therapeutic effects of a newly developed novel urotensin II receptor antagonist, N-(1-(3-bromo-4-(piperidin-4-yloxy)benzyl)piperidin-4-yl)benzo[b]thiophene-3-carboxamide (KR-36996), in experimental models of heart failure. KR-36996 displayed a high binding affinity (Ki=4.44±0.67nM) and selectivity for urotensin II receptor. In cell-based study, KR-36996 significantly inhibited urotensin II-induced stress fiber formation and cellular hypertrophy in H9c2 UT cells. In transverse aortic constriction-induced cardiac hypertrophy model in mice, the daily oral administration of KR-36996 (30mg/kg) for 14 days significantly decreased left ventricular weight by 40% (P<0.05). In myocardial infarction-induced chronic heart failure model in rats, repeated echocardiography and hemodynamic measurements demonstrated remarkable improvement of the cardiac performance by KR-36996 treatment (25 and 50mg/kg/day, p.o.) for 12 weeks. Moreover, KR-36996 decreased interstitial fibrosis and cardiomyocyte hypertrophy in the infarct border zone. These results suggest that potent and selective urotensin II receptor antagonist could efficiently attenuate both cardiac hypertrophy and dysfunction in experimental heart failure. KR-36996 may be useful as an effective urotensin II receptor antagonist for pharmaceutical or clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  17. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their functional profiles in vivo.

  18. Pathogenesis-based treatment of chemotherapy-induced nausea and vomiting--two new agents.

    PubMed

    Navari, Rudolph M

    2003-01-01

    Chemotherapy-induced nausea and vomiting (CINV) is associated with a significant deterioration in quality of life. The emetogenicity of the chemotherapeutic agents, repeated chemotherapy cycles, and patient risk factors (female gender, younger age, alcohol consumption, history of motion sickness) are the major risk factors for CINV. The use of 5-hydroxytryptamine3 (5-HT3) receptor antagonists plus dexamethasone has significantly improved the control of acute CINV, but delayed nausea and vomiting remains a significant clinical problem. Although the 5-HT3 receptor antagonists, dexamethasone, and metoclopramide have been used to prevent delayed CINV, only dexamethasone appears to have much efficacy with acceptable toxicity. Recent studies have introduced two new agents, palonosetron and aprepitant, for the prevention of both acute and delayed CINV. Palonosetron is a new 5-HT3 receptor antagonist with a longer half life and a higher binding affinity than older 5-HT3 receptor antagonists. It improves the complete response rate (no emesis, no need for rescue) of acute and delayed CINV in patients receiving moderately emetogenic chemotherapy compared to the older 5-HT3 receptor antagonists. The other agent, aprepitant, is the first agent available in the new drug class of neurokinin-1 receptor antagonists. When added to a standard regimen of a 5-HT3 receptor antagonist and dexamethasone in patients receiving highly emetogenic chemotherapy, it improves the complete response rate of acute CINV. Aprepitant also improves the complete response of delayed CINV when compared to placebo and when used in combination with dexamethasone compared to dexamethasone alone. Acute and delayed nausea may also be improved by aprepitant when used in combination with a 5-HT3 and dexamethasone prechemotherapy or with daily dosing for 3-5 days following chemotherapy. Based on these studies, new guidelines for the prevention of CINV are proposed. Future studies may consider the use of palonosetron and aprepitant with current and other new agents (olanzapine, gabapentin) in moderately and highly emetogenic chemotherapy, as well in the clinical settings of multiple-day chemotherapy and bone marrow transplantation.

  19. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    PubMed

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  20. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  1. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Franceschi; Almada, Rafael Carvalho; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2017-10-01

    Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. Blockade of GABA A receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ 1 -opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.

  2. Vorapaxar: The Current Role and Future Directions of a Novel Protease-Activated Receptor Antagonist for Risk Reduction in Atherosclerotic Disease.

    PubMed

    Gryka, Rebecca J; Buckley, Leo F; Anderson, Sarah M

    2017-03-01

    Despite the current standard of care, patients with cardiovascular disease remain at a high risk for recurrent events. Inhibition of thrombin-mediated platelet activation through protease-activated receptor-1 antagonism may provide reductions in atherosclerotic disease beyond those achievable with the current standard of care. Our primary objective is to evaluate the clinical literature regarding the role of vorapaxar (Zontivity™) in the reduction of cardiovascular events in patients with a history of myocardial infarction and peripheral artery disease. In particular, we focus on the potential future directions for protease-activating receptor antagonists in the treatment of a broad range of atherosclerotic diseases. A literature search of PubMed and EBSCO was conducted to identify randomized clinical trials from August 2005 to June 2016 using the search terms: 'vorapaxar', 'SCH 530348', 'protease-activated receptor-1 antagonist', and 'Zontivity™'. Bibliographies were searched and additional resources were obtained. Vorapaxar is a first-in-class, protease-activated receptor-1 antagonist. The Thrombin Receptor Antagonist for Clinical Event Reduction (TRACER) trial did not demonstrate a significant reduction in a broad primary composite endpoint. However, the Thrombin-Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events (TRA 2°P-TIMI 50) trial examined a more traditional composite endpoint and found a significant benefit with vorapaxar. Vorapaxar significantly increased bleeding compared with standard care. Ongoing trials will help define the role of vorapaxar in patients with peripheral arterial disease, patients with diabetes mellitus, and other important subgroups. The use of multivariate modeling may enable the identification of subgroups with maximal benefit and minimal harm from vorapaxar. Vorapaxar provides clinicians with a novel mechanism of action to further reduce the burden of ischemic heart disease. Identification of patients with a high ischemic risk and low bleeding risk would enable clinicians to maximize the utility of this unique agent.

  3. Discovery of an Orally Bioavailable Gonadotropin-Releasing Hormone Receptor Antagonist.

    PubMed

    Kim, Seon-Mi; Lee, Minhee; Lee, So Young; Park, Euisun; Lee, Soo-Min; Kim, Eun Jeong; Han, Min Young; Yoo, Taekyung; Ann, Jihyae; Yoon, Suyoung; Lee, Jiyoun; Lee, Jeewoo

    2016-10-13

    We developed a compound library for orally available gonadotropin-releasing hormone (GnRH) receptor antagonists that were based on a uracil scaffold. On the basis of in vitro activity and CYP inhibition profile, we selected 18a (SKI2496) for further in vivo studies. Compound 18a exhibited more selective antagonistic activity toward the human GnRH receptors over the GnRHRs in monkeys and rats, and this compound also showed inhibitory effects on GnRH-mediated signaling pathways. Pharmacokinetic and pharmacodynamic evaluations of 18a revealed improved bioavailability and superior gonadotropic suppression activity compared with Elagolix, the most clinically advanced compound. Considering that 18a exhibited highly potent and selective antagonistic activity toward the hGnRHRs along with favorable pharmacokinetic profiles, we believe that 18a may represent a promising candidate for an orally available hormonal therapy.

  4. Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Amato, Antonella; Serio, Rosa

    2016-08-01

    Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2'-deoxy-N 6 -methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is questioned.

  5. Electrophysiological evidence showing muscarinic agonist-antagonist activities of N-desmethylclozapine using hippocampal excitatory and inhibitory neurons.

    PubMed

    Sugawara, Yuto; Kikuchi, Yui; Yoneda, Mitsugu; Ohno-Shosaku, Takako

    2016-07-01

    The atypical antipsychotic clozapine is widely used for treatment-resistant schizophrenic patients. Clozapine and its major active metabolite, N-desmethylclozapine (NDMC), have complex pharmacological properties, and interact with various neurotransmitter receptors. There are several biochemical studies reporting that NDMC exhibits a partial agonist profile at the human recombinant M1 muscarinic receptors. However, direct electrophysiological evidence showing the ability of NDMC to activate native M1 receptors in intact neurons is poor. Using rat hippocampal neurons, we previously demonstrated that activation of muscarinic receptors by a muscarinic agonist, oxotremorine M (oxo-M), induces a decrease in outward K(+)current at -40mV. In the present study, using this muscarinic current response we assessed agonist and antagonist activities of clozapine and NDMC at native muscarinic receptors in intact hippocampal excitatory and inhibitory neurons. Suppression of the oxo-M-induced current response by the M1 antagonist pirenzepine was evident only in excitatory neurons, while the M3 antagonist darifenacin was effective in both types of neurons. Muscarinic agonist activity of NDMC was higher than that of clozapine, higher in excitatory neurons than in inhibitory neurons, sensitive to pirenzepine, and partially masked when co-applied with clozapine. Muscarinic antagonist activity of clozapine as well as NDMC was not different between excitatory and inhibitory neurons, but clozapine was more effective than NDMC. These results demonstrate that NDMC has the ability to activate native M1 receptors expressed in hippocampal excitatory neurons, but its agonist activity might be limited in clozapine-treated patients because of the presence of excessive clozapine with muscarinic antagonist activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of the NMDA receptor antagonist memantine on the expression and development of acute opiate dependence as assessed by withdrawal-potentiated startle and hyperalgesia.

    PubMed

    Harris, Andrew C; Rothwell, Patrick E; Gewirtz, Jonathan C

    2008-03-01

    While the N-methyl-D: -aspartate (NMDA) glutamate receptor has been strongly implicated in chronic opiate dependence, relatively few studies have examined the effects of NMDA receptor antagonists on withdrawal from acute opiate exposure. The current study examined the effects of memantine, a well-tolerated NMDA receptor antagonist, on acute opiate dependence as assessed by elevations in rodent startle responding (i.e., "withdrawal-potentiated startle") and increased pain sensitivity (i.e., hyperalgesia). Administration of memantine either attenuated (5 mg/kg) or blocked (10 mg/kg) the expression of withdrawal-potentiated startle during naloxone (2.5 mg/kg)-precipitated withdrawal from a single dose of morphine sulfate (10 mg/kg). Pre-treatment with the NMDA receptor antagonist also inhibited the exacerbation of withdrawal-potentiated startle across repeated acute opiate exposures. Memantine blocked the expression of acute dependence, but was less effective in inhibiting its escalation, when hyperalgesia was used as a measure of withdrawal. These doses of memantine did not affect startle responding or nociception in otherwise drug-free animals. Data from additional control groups indicated that the effects of memantine on the expression of withdrawal were not influenced by nonspecific interactions between the NMDA antagonist and either morphine or naloxone. These findings suggest that the NMDA receptor may play a key role in the earliest stages of opiate dependence and provide further evidence that memantine may be useful for the treatment of opiate withdrawal.

  7. In vivo effects of a GPR30 antagonist.

    PubMed

    Dennis, Megan K; Burai, Ritwik; Ramesh, Chinnasamy; Petrie, Whitney K; Alcon, Sara N; Nayak, Tapan K; Bologa, Cristian G; Leitao, Andrei; Brailoiu, Eugen; Deliu, Elena; Dun, Nae J; Sklar, Larry A; Hathaway, Helen J; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R

    2009-06-01

    Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30 (also known as GPER), in addition to classical nuclear estrogen receptors (ER and ER), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized G-1 (1), a selective agonist of GPR30. To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of G15 (2), a G-1 analog that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 revealed that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.

  8. Postprandial profiles of CCK after high fat and high carbohydrate meals and the relationship to satiety in humans.

    PubMed

    Gibbons, Catherine; Finlayson, Graham; Caudwell, Phillipa; Webb, Dominic-Luc; Hellström, Per M; Näslund, Erik; Blundell, John E

    2016-03-01

    CCK is understood to play a major role in appetite regulation. Difficulties in measuring CCK have limited the potential to assess its profile in relation to food-induced satiety. Improvements in methodology and progress in theoretical understanding of satiety/satiation make it timely for this to be revisited. First, examine how physiologically relevant postprandial CCK8/33(s) profiles are influenced by fat (HF) or carbohydrate (HCHO) meals. Second, to examine relationships between postprandial CCK and profiles of satiety (hunger/fullness) and satiation (meal size). Sixteen overweight/obese adults (11 females/5 males) participated in a randomised-crossover study (46 years, 29.8 kg/m(2)) in a university research centre. Plasma was collected preprandially and for 180 min postprandially. Simultaneously, ratings of hunger/fullness were tracked for 180 min before an ad libitum lunch was provided. CCK8/33(s) levels increased more rapidly and reached a higher peak following HF compared to HCHO breakfast (F(1,15)=14.737, p<0.01). Profiles of hunger/fullness did not differ between conditions (F(1,15)=0.505, p=0.488; F(1,15)=2.277, p=0.152). There was no difference in energy intake from the ad libitum meal (HF-3958 versus HCHO-3925 kJ; t(14)=0.201, p=0.844). CCK8/33(s) profiles were not associated with subjective appetite during early and late phases of satiety; nor was there an association between CCK8/33(s) and meal size. These results demonstrate CCK levels were higher after HF meal compared to HCHO isocaloric meal. There was no association between CCK levels and intensity of satiety, or with meal size. Under these circumstances, CCK does not appear to play a unique independent role in satiety/satiation. CCK probably acts in conjunction with other peptides and the action of the stomach. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  9. Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists.

    PubMed

    Rivera, Alicia

    2007-09-01

    Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg.kg(-1).day(-1) intraperitoneally for 14 days), an ET-1 receptor B (ET(B)) antagonist, induced a significant decrease in Gardos channel activity (1.7 +/- 0.1 to 1.0 +/- 0.4 mmol.10(13) cell(-1).h(-1), n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D(50); n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ET(A)) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ET(B)/ET(A) antagonists but not by ET(A) antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ET(B) receptor, leading to Gardos channel modulation in SCD.

  10. A Time-course Study with the Androgen Receptor Antagonist Flutamide in Fish

    EPA Science Inventory

    Flutamide, a drug registered to treat some types of prostate cancer in humans, has been used for many years as a model androgen receptor (AR) antagonist in studies aimed at characterizing disruption of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis. Various studies hav...

  11. Identification of key residues involved in adrenomedullin binding to the AM1 receptor

    PubMed Central

    Watkins, HA; Au, M; Bobby, R; Archbold, JK; Abdul-Manan, N; Moore, JM; Middleditch, MJ; Williams, GM; Brimble, MA; Dingley, AJ; Hay, DL

    2013-01-01

    Background and Purpose Adrenomedullin (AM) is a peptide hormone whose receptors are members of the class B GPCR family. They comprise a heteromer between the GPCR, the calcitonin receptor-like receptor and one of the receptor activity-modifying proteins 1–3. AM plays a significant role in angiogenesis and its antagonist fragment AM22–52 can inhibit blood vessel and tumour growth. The mechanism by which AM interacts with its receptors is unknown. Experimental Approach We determined the AM22–52 binding epitope for the AM1 receptor extracellular domain using biophysical techniques, heteronuclear magnetic resonance spectroscopy and alanine scanning. Key Results Chemical shift perturbation experiments located the main binding epitope for AM22–52 at the AM1 receptor to the C-terminal 8 amino acids. Isothermal titration calorimetry of AM22–52 alanine-substituted peptides indicated that Y52, G51 and I47 are essential for AM1 receptor binding and that K46 and P49 and R44 have a smaller role to play. Characterization of these peptides at the full-length AM receptors was assessed in Cos7 cells by cAMP assay. This confirmed the essential role of Y52, G51 and I47 in binding to the AM1 receptor, with their substitution resulting in ≥100-fold reduction in antagonist potency compared with AM22–52. R44A, K46A, S48A and P49A AM22–52 decreased antagonist potency by approximately 10-fold. Conclusions and Implications This study localizes the main binding epitope of AM22–52 to its C-terminal amino acids and distinguishes essential residues involved in this binding. This will inform the development of improved AM receptor antagonists. PMID:23351143

  12. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    PubMed

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  13. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Eplerenone: a selective aldosterone receptor antagonist for patients with heart failure.

    PubMed

    Barnes, Brian J; Howard, Patricia A

    2005-01-01

    To evaluate the pharmacology, pharmacokinetics, safety, and clinical use of eplerenone in heart failure (HF). English-language MEDLINE searches were performed from 1966 to May 2004. Key words included eplerenone, aldosterone receptor antagonist, heart failure, myocardial infarction, left-ventricular dysfunction, and cost-effectiveness. Additional references were identified from bibliographies of selected articles. Human trials evaluating the efficacy, safety, and cost-effectiveness of aldosterone receptor antagonists in HF were evaluated. Eplerenone is the first selective aldosterone receptor antagonist. The drug is indicated to improve the survival of stable patients with left-ventricular systolic dysfunction (ejection fraction <40%) and clinical evidence of HF following acute myocardial infarction. Efficacy and safety in this population have been demonstrated in a large, randomized clinical trial. Eplerenone is associated with severe and sometimes life-threatening hyperkalemia. Patients with reduced renal function and diabetes, as well as those on other drugs that increase potassium levels, are at highest risk. Eplerenone is metabolized by the cytochrome P450 system and may interact with drugs that interfere with this system. A major advantage of eplerenone over the nonselective aldosterone receptor antagonist spironolactone is lack of binding to progesterone and androgen receptors, which is associated with drug-induced gynecomastia, breast pain, and impotence. The addition of eplerenone to traditional HF therapy has been shown to reduce morbidity and mortality in patients who develop left-ventricular dysfunction after acute myocardial infarction. Eplerenone's selectivity reduces sex hormone-related adverse effects. Despite these benefits, the overall cost-effectiveness has yet to be determined.

  15. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  16. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    PubMed

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the emerging notion that 5-HT plays a key role on memory formation.

  17. Involvement of μ- and κ-, but not δ-, opioid receptors in the peristaltic motor depression caused by endogenous and exogenous opioids in the guinea-pig intestine

    PubMed Central

    Shahbazian, Anaid; Heinemann, Akos; Schmidhammer, Helmut; Beubler, Eckhard; Holzer-Petsche, Ulrike; Holzer, Peter

    2002-01-01

    Opiates inhibit gastrointestinal propulsion, but it is not clear which opioid receptor types are involved in this action. For this reason, the effect of opioid receptor – selective agonists and antagonists on intestinal peristalsis was studied.Peristalsis in isolated segments of the guinea-pig small intestine was triggered by a rise of the intraluminal pressure and recorded via the intraluminal pressure changes associated with the peristaltic waves.μ-Opioid receptor agonists (DAMGO, morphine), κ-opioid receptor agonists (ICI-204,448 and BRL-52,537) and a δ-opioid receptor agonist (SNC-80) inhibited peristalsis in a concentration-related manner as deduced from a rise of the peristaltic pressure threshold (PPT) and a diminution of peristaltic effectiveness.Experiments with the δ-opioid receptor antagonists naltrindole (30 nM) and HS-378 (1 μM), the κ-opioid receptor antagonist nor-binaltorphimine (30 nM) and the μ-opioid receptor antagonist cyprodime (10 μM) revealed that the antiperistaltic effect of ICI-204,448 and BRL-52,537 was mediated by κ-opioid receptors and that of morphine and DAMGO by μ-opioid receptors. In contrast, the peristaltic motor inhibition caused by SNC-80 was unrelated to δ-opioid receptor activation.Cyprodime and nor-binaltorphimine, but not naltrindole and HS-378, were per se able to stimulate intestinal peristalsis as deduced from a decrease in PPT.The results show that the neural circuits controlling peristalsis in the guinea-pig small intestine are inhibited by endogenous and exogenous opioids acting via μ- and κ-, but not δ-, opioid receptors. PMID:11834622

  18. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization

    PubMed Central

    Mestre-Citrinovitz, Ana C.; Kleff, Veronika; Vallejo, Griselda

    2015-01-01

    Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets. PMID:25897495

  19. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole Quinuclidine analogues

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.

    2014-01-01

    Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620

  20. Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test.

    PubMed

    Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Ostadhadi, Sattar; Amini-Khoei, Hossein; Dehpour, Ahmad Reza

    2016-02-01

    Recent evidence indicates that 5-hydroxytryptamine 3 (5-HT3) antagonists such as ondansetron and tropisetron exert positive behavioral effects in animal models of depression. Due to the ionotropic nature of 5-HT3 and N-methyl-d-aspartate (NMDA) receptors, plus their contribution to the pathophysiology of depression, we investigated the possible role of NMDA receptors in the antidepressant-like effect of 5-HT3 receptor antagonists in male mice. In order to evaluate the animals' behavior in response to different treatments, we performed open-field test (OFT), forced swimming test (FST), and tail-suspension test (TST), which are considered as valid tasks for measuring locomotor activity and depressive-like behaviors in mice. Our data revealed that intraperitoneal (i.p.) administration of tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01, and 0.1μg/kg) significantly decreased the immobility time in FST and TST. Also, co-administration of subeffective doses of tropisetron (1mg/kg, i.p.) or ondansetron (0.001μg/kg, i.p.) with subeffective doses of NMDA receptor antagonists, ketamine (1mg/kg, i.p.), MK-801 (0.05mg/kg, i.p.) and magnesium sulfate (10mg/kg, i.p.) resulted in a reduced immobility time both in FST and TST. The subeffective dose of NMDA (NMDA receptor agonist, 75mg/kg, i.p.) abolished the effects of 5-HT3 antagonists in FST and TST, further supporting the presumed interaction between 5-HT3 and NMDA receptors. These treatments did not affect the locomotor behavior of animals in OFT. Finally, the results of our study suggest that the positive effects of 5-HT3 antagonists on the coping behavior of mice in FST and TST are at least partly mediated through NMDA receptors participation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A Low-Molecular-Weight Antagonist for the Human Thyrotropin Receptor with Therapeutic Potential for Hyperthyroidism

    PubMed Central

    Neumann, Susanne; Kleinau, Gunnar; Costanzi, Stefano; Moore, Susanna; Jiang, Jian-kang; Raaka, Bruce M.; Thomas, Craig J.; Krause, Gerd; Gershengorn, Marvin C.

    2008-01-01

    Low-molecular-weight (LMW) antagonists for TSH receptor (TSHR) may have therapeutic potential as orally active drugs to block stimulating antibodies (TsAbs) in Graves’ hyperthyroidism. We describe an approach to identify LMW ligands for TSHR based on Org41841, a LMW partial agonist for the LH/choriogonadotropin receptor and TSHR. We used molecular modeling and functional experiments to guide the chemical modification of Org41841. We identified an antagonist (NIDDK/CEB-52) that selectively inhibits activation of TSHR by both TSH and TsAbs. Whereas initially characterized in cultured cells overexpressing TSHRs, the antagonist was also active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs in which it inhibited TSH- and TsAb-induced up-regulation of mRNA transcripts for thyroperoxidase. Our results establish this LMW compound as a lead for the development of higher potency antagonists and serve as proof of principle that LMW ligands that target TSHR could serve as drugs in patients with Graves’ disease. PMID:18669595

  2. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    PubMed Central

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  3. Opiate physical dependence and N-methyl-D-aspartate receptors.

    PubMed

    Noda, Yukihiro; Nabeshima, Toshitaka

    2004-10-01

    The present review focused the involvement of N-methyl-D-aspartate (NMDA) receptors in morphine physical dependence. The increased levels of extracellular glutamate, NMDA receptor zeta subunit (NR1) mRNA, NMDA receptor epsilon 1 subunit (NR2A) protein, phosphorylated Ca(2+)/calmodulin kinase II (p-CaMKII) protein, c-fos mRNA, c-Fos protein, are observed in the specific brain areas of mice and/or rats showing signs of naloxone-precipitated withdrawal. In preclinical and clinical studies, a variety of NMDA receptor antagonists and pretreatment with an antisense oligonucleotide of the NR1 have been reported to inhibit the development, expression and/or maintenance of opiate physical dependence. In contrast to data obtained in adult animals, NMDA receptor antagonists are neither effective in blocking the development of opiate dependence nor the expression of opiate withdrawal in neonatal rats. In the NMDA receptor-deficient mice, the NR2A knockout mice show the marked loss of typical withdrawal abstinence behaviors precipitated by naloxone. The rescue of NR2A protein by electroporation into the nucleus accumbens of NR2A knockout mice reverses the loss of abstinence behaviors. The activation of CaMKII and increased expression of c-Fos protein in the brain of animals with naloxone-precipitated withdrawal syndrome are prevented by NMDA receptor antagonists, whereas the increased levels of extracellular glutamate are not prevented by them. These findings indicate that glutamatergic neurotransmission at the NMDA receptor site contributes to the development, expression and maintenance of opiate dependence, and suggest that NMDA receptor antagonists may be a useful adjunct in the treatment of opiate dependence.

  4. Convergent Pathways for Steroid Hormone-and Neurotransmitter-Induced Rat Sexual Behavior

    NASA Astrophysics Data System (ADS)

    Mani, S. K.; Allen, J. M. C.; Clark, J. H.; Blaustein, J. D.; O'Malley, B. W.

    1994-08-01

    Estrogen and progesterone modulate gene expression in rodents by activation of intracellular receptors in the hypothalamus, which regulate neuronal networks that control female sexual behavior. However, the neurotransmitter dopamine has been shown to activate certain steroid receptors in a ligand-independent manner. A dopamine receptor stimulant and a D_1 receptor agonist, but not a D_2 receptor agonist, mimicked the effects of progesterone in facilitating sexual behavior in female rats. The facilitatory effect of the neurotransmitter was blocked by progesterone receptor antagonists, a D_1 receptor antagonist, or antisense oligonucleotides to the progesterone receptor. The results suggest that in rodents neurotransmitters may regulate in vivo gene expression and behavior by means of cross-talk with steroid receptors in the brain.

  5. Endothelin-a receptor antagonist treatment improves the periosteal microcirculation after hindlimb ischemia and reperfusion in the rat.

    PubMed

    Wolfárd, Antal; Császár, József; Gera, László; Petri, András; Simonka, János Aurél; Balogh, Adáa; Boros, Mihály

    2002-12-01

    To examine the microcirculatory changes in the rat tibial periosteum after hindlimb ischemia and reperfusion and to evaluate the effects of endothelin-A (ET-A) receptor antagonist therapy in this condition. The healing and functioning of vascularized bone autografts depend mainly on the patency of the microcirculation, and the activation of ET-A receptors may be an important component of the tissue response that occurs during ischemia-reoxygenation injuries. Wistar rats were subjected to 1 hour of hindlimb ischemia and 3 hours of reperfusion. The periosteal microcirculation was visualized by intravital fluorescence microscopy. The leukocyte rolling and adherence in the postcapillary venules and the functional capillary density of the periosteum were determined. Two separate groups were treated with the selective ET-A receptor antagonist BQ 610 or the novel ET-A receptor antagonist ETR-p1/fl peptide at the onset of reperfusion. Reperfusion was accompanied by a significant decrease in functional capillary density and by an increase in the primary and secondary leukocyte-endothelial cell interactions. ET-A receptor inhibition reduced the leukocyte rolling and firm adherence and attenuated the decrease in functional capillary density in both treated groups. ET-1 plays a major role in microvascular dysfunction in the periosteum during reperfusion. The ET-1-ET-A receptor system might be an important target for tissue salvage therapy in transplantation surgery.

  6. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K+ channels pathway and serotoninergic system.

    PubMed

    de Los Monteros-Zuñiga, Antonio Espinosa; Izquierdo, Teresa; Quiñonez-Bastidas, Geovanna Nallely; Rocha-González, Héctor Isaac; Godínez-Chaparro, Beatriz

    The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K + channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT 1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT 1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT 1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT 5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT 1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K + channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats. Copyright © 2016. Published by Elsevier Inc.

  7. Effect of Peripheral μ-, δ-, and κ-Opioid Ligands on the Development of Tolerance to Ethanol-Induced Analgesia.

    PubMed

    Sudakov, S K; Alekseeva, E V; Nazarova, G A

    2017-06-01

    We studied the rate of development of tolerance to the ethanol-induced analgesia under the effect of μ-, δ-, and κ-opioid agonists and antagonists not crossing the blood-brain barrier and rapidly inactivated by gastric and duodenal proteolytic enzymes. Activation of gastric κ-opioid receptors eliminated the analgesic effect of ethanol and accelerated the development of tolerance to ethanol-induced analgesia. In contrast, activation of gastric μ-opioid receptors decelerated the development of this tolerance. Activation of gastric δ-opioid receptors produced no effect on examined tolerance. μ-Opioid receptor antagonist decelerated and δ-opioid receptor antagonist accelerated the development of tolerance to ethanol-induced analgesia. Thus, the state of gastric opioid receptors affects the manifestation of ethanol-induced analgesia and the development of tolerance to this effect.

  8. CCR5 receptor antagonists: discovery and SAR study of guanylhydrazone derivatives.

    PubMed

    Wei, Robert G; Arnaiz, Damian O; Chou, Yuo-Ling; Davey, Dave; Dunning, Laura; Lee, Wheeseong; Lu, Shou-Fu; Onuffer, James; Ye, Bin; Phillips, Gary

    2007-01-01

    High throughput screening (HTS) led to the identification of the guanylhydrazone of 2-(4-chlorobenzyloxy)-5-bromobenzaldehyde as a CCR5 receptor antagonist. Initial modifications of the guanylhydrazone series indicated that substitution of the benzyl group at the para-position was well tolerated. Substitution at the 5-position of the central phenyl ring was critical for potency. Replacement of the guanylhydrazone group led to the discovery of a novel series of CCR5 antagonists.

  9. Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity

    PubMed Central

    Lo, Chun-Min; King, Alexandra; Samuelson, Linda C; Kindel, Tammy Lyn; Rider, Therese; Jandacek, Ronald J; Raybould, Helen E; Woods, Stephen C; Tso, Patrick

    2011-01-01

    Background & Aims Cholecystokinin (CCK) is a satiation peptide released during meals in response to lipid intake; it regulates pancreatic digestive enzymes that are required for absorption of nutrients. We proposed that mice with a disruption in the CCK gene (CCK-KO mice) that were fed a diet of 20% butter fat would have altered fat metabolism. Methods We used quantitative magnetic resonance imaging to determine body composition and monitored food intake of CCK-KO mice using an automated measurement system. Intestinal fat absorption and energy expenditure were determined using a noninvasive assessment of intestinal fat absorption and an open circuit calorimeter, respectively. Results After consuming a high-fat diet for 10 weeks, CCK-KO mice had reduced body weight gain and body fat mass and enlarged adipocytes, despite the same level of food intake as wild-type mice. CCK-KO mice also had defects in fat absorption, especially of long-chain saturated fatty acids, but pancreatic triglyceride lipase (PTL) did not appear to have a role in the fat malabsorption. Energy expenditure was higher in CCK-KO than wild-type mice and CCK-KO mice had greater oxidation of carbohydrates while on the high-fat diet. Plasma leptin levels in the CCK-KO mice fed the high-fat diet were markedly lower than in wild-type mice, although levels of insulin, gastric-inhibitory polypeptide, and glucagon-like peptide-1 were normal. Conclusion CCK is involved in regulating the metabolic rate and is important for lipid absorption and control of body weight in mice placed on a high-fat diet. PMID:20117110

  10. Use of NK1 receptor antagonists in the exploration of physiological functions of substance P and neurokinin A.

    PubMed

    Otsuka, M; Yoshioka, K; Yanagisawa, M; Suzuki, H; Zhao, F Y; Guo, J Z; Hosoki, R; Kurihara, T

    1995-07-01

    Tachykinin NK1 receptor antagonists were used to explore the physiological functions of substance P (SP) and neurokinin A (NKA). Pharmacological profiles of three NK1 receptor antagonists, GR71251, GR82334, and RP 67580, were examined in the isolated spinal cord preparation of the neonatal rat. These tachykinin receptor antagonists exhibited considerable specificities and antagonized the actions of both SP and NKA to induce the depolarization of ventral roots. Electrical stimulation of the saphenous nerve with C-fiber strength evoked a depolarization lasting about 30 s of the ipsilateral L3 ventral root. This response, which is referred to as saphenous-nerve-evoked slow ventral root potential (VRP), was depressed by these NK1 receptor antagonists. In contrast, the saphenous-nerve-evoked slow VRP was potentiated by application of a mixture of peptidase inhibitors, including thiorphan, actinonin, and captopril in the presence of naloxone, but not after further addition of GR71251. Likewise, in the isolated coeliac ganglion of the guinea pig, electrical stimulation of the mesenteric nerves evoked in some ganglionic cells slow excitatory postsynaptic potentials (EPSPs), which were depressed by GR71251 and potentiated by peptidase inhibitors. These results further support the notion that SP and NKA serve as neurotransmitters producing slow EPSPs in the neonatal rat spinal cord and guinea pig prevertebral ganglia.

  11. Cardiovascular actions of mineralocorticoid receptor antagonists in patients with chronic kidney disease: A systematic review and meta-analysis of randomized trials.

    PubMed

    Ng, Khai P; Arnold, Julia; Sharif, Adnan; Gill, Paramjit; Townend, Jonathan N; Ferro, Charles J

    2015-09-01

    The safety and actions of mineralocorticoid receptor antagonists on surrogate markers of cardiovascular disease as well as major patient level cardiovascular end-points in patients with chronic kidney disease are unclear. MEDLINE, EMBASE, Trip Database, Cochrane Central Register of Controlled Trials, Cochrane Renal Group specialized register, Current Controlled Trials and clinicaltrials.gov were searched for relevant trials. Twenty-nine trials (1581 patients) were included. Overall, mineralocorticoid receptor antagonists lowered both systolic and diastolic blood pressure (-5.24, 95% confidence interval (CI) -8.65, -1.82 mmHg; p=0.003 and -1.96, 95% CI -3.22, -0.69 mmHg; p=0.002 respectively). There were insufficient data to perform a meta-analysis of other cardiovascular effects. However, a systematic review of the studies included suggested a consistent improvement in surrogate markers of cardiovascular disease. Overall, the use of mineralocorticoid receptor antagonists was associated with an increased serum potassium (0.23, 95% CI 0.13, 0.33 mmol/l; p<0.0001) and higher risk ratio (1.76, 95% CI 1.20, 2.57; p=0.001) of hyperkalemia. Data on long-term cardiovascular outcomes and mortality were not available in any of the trials. The long-term effects of mineralocorticoid receptor antagonists on cardiovascular events, mortality and safety need to be established. © The Author(s) 2015.

  12. Characterization and inhibition of a cholecystokinin-inactivating serine peptidase.

    PubMed

    Rose, C; Vargas, F; Facchinetti, P; Bourgeat, P; Bambal, R B; Bishop, P B; Chan, S M; Moore, A N; Ganellin, C R; Schwartz, J C

    1996-04-04

    A cholecystokinin (CCK)-inactivating peptidase was purified and identified as a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10), a cytosolic subtilisin-like peptidase of previously unknown functions. The peptidase was found in neurons responding to cholecystokinin, as well as in non-neuronal cells. Butabindide, a potent and specific inhibitor, was designed and shown to protect endogenous cholecystokinin from inactivation and to display pro-satiating effects mediated by the CCKA receptor.

  13. I. Effects of a Dopamine Receptor Antagonist on Fathead Minnow, Pimephales promelas ,Reproduction

    EPA Science Inventory

    This study used a 21 d fathead minnow (Pimephales promelas) reproduction assay to test the hypothesis that exposure to the dopamine 2 receptor (D2R) antagonist, haloperidol, would impair fish reproduction. Additionally, a 96 h experiment with fathead minnows and zebrafish (Danio ...

  14. Glycine- and GABA-mimetic Actions of Shilajit on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice.

    PubMed

    Yin, Hua; Yang, Eun Ju; Park, Soo Joung; Han, Seong Kyu

    2011-10-01

    Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na(+) channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABA(A) receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABA(A) receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing.

  15. Receptors for luteinizing hormone-releasing hormone (LHRH) in benign prostatic hyperplasia (BPH) as potential molecular targets for therapy with LHRH antagonist cetrorelix.

    PubMed

    Rozsa, Bernadett; Nadji, Mehrdad; Schally, Andrew V; Dezso, Balazs; Flasko, Tibor; Toth, Gyorgy; Mile, Melinda; Block, Norman L; Halmos, Gabor

    2011-04-01

    The majority of men will develop symptoms of benign prostatic hyperplasia (BPH) after 70 years of age. Various studies indicate that antagonists of LHRH, such as cetrorelix, exert direct inhibitory effects on BPH mediated by specific LHRH receptors. Our aim was to investigate the mRNA for LHRH and LHRH receptors and the expression of LHRH receptors in specimens of human BPH. The expression of mRNA for LHRH (n=35) and LHRH receptors (n=55) was investigated by RT-PCR in surgical specimens of BPH, using specific primers. The characteristics of binding sites for LHRH on 20 samples were determined by ligand competition assays. The LHRH receptor expression was also examined in 64 BPH specimens by immunohistochemistry. PCR products for LHRH were found in 18 of 35 (51%) BPH tissues and mRNA for LHRH receptors was detected in 39 of 55 (71%) BPH specimens. Eighteen of 20 (90%) samples showed a single class of high affinity binding sites for [D-Trp(6) ]LHRH with a mean K(d) of 4.04 nM and a mean B(max) of 527.6 fmol/mg membrane protein. LHRH antagonist cetrorelix showed high affinity binding to LHRH receptors in BPH. Positive immunohistochemical reaction for LHRH receptors was present in 42 of 64 (67%) BPH specimens. A high incidence of LHRH receptors in BPH supports the use of LHRH antagonists such as cetrorelix, for treatment of patients with lower urinary tract symptoms from BPH. Copyright © 2010 Wiley-Liss, Inc.

  16. Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder.

    PubMed

    Kawaura, Kazuaki; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2014-08-15

    A 5-trial inhibitory avoidance test using spontaneously hypertensive rat (SHR) pups has been used as an animal model of attention deficit hyperactivity disorder (ADHD). However, the roles of noradrenergic systems, which are involved in the pathophysiology of ADHD, have not been investigated in this model. In the present study, the effects of adrenergic α2 receptor stimulation, which has been an effective treatment for ADHD, on attention/cognition performance were investigated in this model. Moreover, neuronal mechanisms mediated through adrenergic α2 receptors were investigated. We evaluated the effects of both clonidine, a non-selective adrenergic α2 receptor agonist, and guanfacine, a selective adrenergic α2A receptor agonist, using a 5-trial inhibitory avoidance test with SHR pups. Juvenile SHR exhibited a shorter transfer latency, compared with juvenile Wistar Kyoto (WKY) rats. Both clonidine and guanfacine significantly prolonged the transfer latency of juvenile SHR. The effects of clonidine and guanfacine were significantly blocked by pretreatment with an adrenergic α2A receptor antagonist. In contrast, the effect of clonidine was not attenuated by pretreatment with an adrenergic α2B receptor antagonist, or an adrenergic α2C receptor antagonist, while it was attenuated by a non-selective adrenergic α2 receptor antagonist. Furthermore, the effects of neither clonidine nor guanfacine were blocked by pretreatment with a selective noradrenergic neurotoxin. These results suggest that the stimulation of the adrenergic α2A receptor improves the attention/cognition performance of juvenile SHR in the 5-trial inhibitory avoidance test and that postsynaptic, rather than presynaptic, adrenergic α2A receptor is involved in this effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Metabotropic Glutamate Receptors for Parkinson's Disease Therapy

    PubMed Central

    Gasparini, Fabrizio; Di Paolo, Thérèse; Gomez-Mancilla, Baltazar

    2013-01-01

    Excessive glutamatergic signalling within the basal ganglia is implicated in the progression of Parkinson's disease (PD) and inthe emergence of dyskinesia associated with long-term treatment with L-DOPA. There is considerable research focus on the discovery and development of compounds that modulate glutamatergic signalling via glutamate receptors, as treatments for PD and L-DOPA-induced dyskinesia (LID). Although initial preclinical studies with ionotropic glutamate receptor antagonists showed antiparkinsonian and antidyskinetic activity, their clinical use was limited due to psychiatric adverse effects, with the exception of amantadine, a weak N-methyl-d-aspartate (NMDA) antagonist, currently used to reduce dyskinesia in PD patients. Metabotropic receptor (mGlu receptor) modulators were considered to have a more favourable side-effect profile, and several agents have been studied in preclinical models of PD. The most promising results have been seen clinically with selective antagonists of mGlu5 receptor and preclinically with selective positive allosteric modulators of mGlu4 receptor. The growing understanding of glutamate receptor crosstalk also raises the possibility of more precise modulation of glutamatergic transmission, which may lead to the development of more effective agents for PD. PMID:23853735

  18. Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst2, ghrelin and GABAA/B receptors.

    PubMed

    Jiang, Jinhong; Peng, Yali; He, Zhen; Wei, Lijuan; Jin, Weidong; Wang, Xiaoli; Chang, Min

    2017-07-01

    Cortistatin-14 (CST-14), a neuropeptide related to somatostatin, is primarily localized within the cortex and hippocampus. In the hippocampus, CST-14 inhibits CA1 neuronal pyramidal cell firing and co-exists with GABA. However, its role in cognitive is still not clarified. The first aim of our study was to elucidate the role of CST-14 signaling in consolidation and reconsolidation of recognition memory in mice, using novel object recognition task. The results showed that central CST-14 induced in impairment of long-term and short-term recognition memory, indicating memory consolidation impairment effect. Similarly, we found that CST-14 did not impaired long-term and short-term reconsolidation recognition memory. To further investigate the underlying mechanisms of CST-14 in memory process, we used cyclosomatostatin (c-SOM, a selective sst 1-5 receptor antagonist), cyanamid154806 (a selective sst 2 receptor antagonist), ODN-8 (a high affinity and selectivity compound for sst 3 receptor), [d-Lys 3 ]GHRP-6 (a selective ghrelin receptor antagonist), picrotoxin (PTX, a GABA A receptor antagonist), and sacolfen (a GABA B receptor antagonist) to research its effects in recognition. Our results firstly indicated that the memory-impairing effects of CST-14 were significantly reversed by c-SOM, cyanamid154806, [d-Lys 3 ]GHRP-6, PTX and sacolfen, but not ODN-8, suggesting that the blockage of recognition memory consolidation induced by CST-14 involves sst 2 , ghrelin and GABA system. The present study provides a potential strategy to regulate memory processes, providing new evidence that reconsolidation is not a simple reiteration of consolidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The effects of intraduodenal nutrient infusion on serum CCK, LES pressure, and gastroesophageal reflux.

    PubMed

    Lacy, B E; Carter, J; Weiss, J E; Crowell, M D

    2011-07-01

    Fats cause reflux symptoms in many patients and cholecystokinin (CCK) may play a role. This study was designed to evaluate the effects of intraduodenal nutrient infusion on serum CCK levels, lower esophageal sphincter (LES) pressure, and gastroesophageal reflux (GER). Twenty-four asymptomatic volunteers were studied. A Dent sleeve catheter assessed LES function while an impedance-pH catheter measured reflux events. Participants were randomized to fat (F), carbohydrate (C) or protein (P) infusion. Serum CCK and LES pressures were measured at baseline and after nutrient infusion. Baseline LES pressures and CCK levels were similar in all three groups. A significant linear decrease was found in LES pressure during F, but not C or P, infusion (P=0.004). A significant interaction effect was noted between the infusion groups and CCK levels (P=0.002). A significant linear increase was noted in CCK levels during F but not during C or P infusion (P=0.02). A significant inverse correlation was found between CCK levels and LES pressure (ρ=-0.43; P=0.04). Esophageal acid exposure was significantly increased in the F infusion group (median; interquartile range: 1.10%; 0.25-4.7%) compared to both the C (0.03%; 0.00-0.39%) and P infusion (0.03%; 0.00-0.39%) groups (P=0.04). Intraduodenal F infusion was associated with an increase in CCK levels, while P and C were not. LES pressure decreased significantly after fat infusion and reflux events were more frequent. Fat-induced CCK release is another mechanism that contributes to GER. © 2011 Blackwell Publishing Ltd.

  20. Psilocybin-induced stimulus control in the rat.

    PubMed

    Winter, J C; Rice, K C; Amorosi, D J; Rabin, R A

    2007-10-01

    Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT(2A) receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT(1A/7) receptor antagonist, WAY-100635, or the DA D(2) antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT(2A) receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT(1A) receptors appears to play no role in psilocybin-induced stimulus control.

  1. Psilocybin-induced stimulus control in the rat

    PubMed Central

    Winter, J.C.; Rice, K.C.; Amorosi, D.J.; Rabin, R.A.

    2007-01-01

    Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT2A receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT1A/7 receptor antagonist, WAY-100635, or the DA D2 antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT2A receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT1A receptors appears to play no role in psilocybin-induced stimulus control. PMID:17688928

  2. Glycine- and GABA-mimetic Actions of Shilajit on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

    PubMed Central

    Yin, Hua; Yang, Eun Ju; Park, Soo Joung

    2011-01-01

    Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na+ channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABAA receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABAA receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing. PMID:22128261

  3. Evidence for the involvement of the opioid system in the antidepressant-like effect of folic acid in the mouse forced swimming test.

    PubMed

    Brocardo, Patrícia S; Budni, Josiane; Lobato, Kelly R; Santos, Adair Roberto S; Rodrigues, Ana Lúcia S

    2009-06-08

    The opioid system has been implicated in major depression and in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of the water-soluble B-vitamin folic acid in the forced swimming test (FST). The effect of folic acid (10 nmol/site, i.c.v.) was prevented by the pretreatment of mice with naloxone (1 mg/kg, i.p., a nonselective opioid receptor antagonist), naltrindole (3 mg/kg, i.p., a selective delta-opioid receptor antagonist), naloxonazine (10 mg/kg, i.p., a selective mu(1)-opioid receptor antagonist, 24 h before), but not with naloxone methiodide (1 mg/kg, s.c., a peripherally acting opioid receptor antagonist). In addition, a sub-effective dose of folic acid (1 nmol/site, i.c.v.) produced a synergistic antidepressant-like effect in the FST with a sub-effective dose of morphine (1 mg/kg, s.c.). A further approach was designed to investigate the possible relationship between the opioid system and NMDA receptors in the mechanism of action of folic acid in the FST. Pretreatment of the animals with naloxone (1 mg/kg, i.p.) prevented the synergistic antidepressant-like effect of folic acid (1 nmol/site, i.c.v.) and MK-801 (0.001 mg/kg, i.p., a non-competitive NMDA receptor antagonist). Together the results firstly indicate that the anti-immobility effect of folic acid in the FST is mediated by an interaction with the opioid system (mu(1) and delta), likely dependent on the inhibition of NMDA receptors elicited by folic acid.

  4. MOLECULAR PROBES FOR MUSCARINIC RECEPTORS: FUNCTIONALIZED CONGENERS OF SELECTIVE MUSCARINIC ANTAGONISTS

    PubMed Central

    Jacobson, Kenneth A.; Fischer, Bilha; van Rhee, A. Michiel

    2012-01-01

    Summary The muscarinic agonist oxotremorine and the tricyclic muscarinic antagonists pirenzepine and telenzepine have been derivatized using a functionalized congener approach for the purpose of synthesizing high affinity ligand probes that are suitable for conjugation with prosthetic groups, for receptor cross-linking, fluorescent and radioactive detection, etc. A novel fluorescent conjugate of TAC (telenzepine amine congener), an n-decylamino derivative of the ml-selective antagonist, with the fluorescent trisulfonated pyrene dye Cascade Blue may be useful for assaying the receptor as an alternative to radiotracers. In a rat m3 receptor mutant containing a single amino acid substitution in the sixth transmembrane domain (Asn507 to Ala) the parent telenzepine lost 636-fold in affinity, while TAC lost only 27-fold. Thus, the decylamino group of TAC stabilizes the bound state and thus enhances potency by acting as a distal anchor in the receptor binding site. We have built a computer-assisted molecular model of the transmembrane regions of muscarinic receptors based on homology with the G-protein coupled receptor rhodopsin, for which a low resolution structure is known. We have coordinated the antagonist pharmacophore (tricyclic and piperazine moieties) with residues of the third and seventh helices of the rat m3 receptor. Although the decylamino chain of TAC is likely to be highly flexible and may adopt many conformations, we located one possible site for a salt bridge formation with the positively charged −NH3+ group, i.e. Asp113 in helix II. PMID:10188781

  5. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  6. Discovery and structure-activity relationships of a series of pyroglutamic acid amide antagonists of the P2X7 receptor.

    PubMed

    Abdi, Muna H; Beswick, Paul J; Billinton, Andy; Chambers, Laura J; Charlton, Andrew; Collins, Sue D; Collis, Katharine L; Dean, David K; Fonfria, Elena; Gleave, Robert J; Lejeune, Clarisse L; Livermore, David G; Medhurst, Stephen J; Michel, Anton D; Moses, Andrew P; Page, Lee; Patel, Sadhana; Roman, Shilina A; Senger, Stefan; Slingsby, Brian; Steadman, Jon G A; Stevens, Alexander J; Walter, Daryl S

    2010-09-01

    A computational lead-hopping exercise identified compound 4 as a structurally distinct P2X(7) receptor antagonist. Structure-activity relationships (SAR) of a series of pyroglutamic acid amide analogues of 4 were investigated and compound 31 was identified as a potent P2X(7) antagonist with excellent in vivo activity in animal models of pain, and a profile suitable for progression to clinical studies. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Divergent Effects of Anandamide Transporter Inhibitors with Different Target Selectivity on Social Play Behavior in Adolescent Rats

    PubMed Central

    Trezza, Viviana; Vanderschuren, Louk J. M. J.

    2009-01-01

    The endocannabinoid system plays an important role in the modulation of affect, motivation, and emotion. Social play behavior is a natural reinforcer in adolescent rats, and we have recently shown that interacting endocannabinoid, opioid, and dopamine systems modulate social play. In the present study, we tested the hypothesis that, in contrast to administration of exogenous cannabinoid agonists, increasing local endocannabinoid signaling through anandamide transporter inhibition enhances social play. To this aim, we tested the effects of two anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. Interestingly, we found that the prototypical anandamide transporter inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404) reduced social play, whereas its more selective analog N-arachidonoyl-(2-methyl-4-hydroxyphenyl)amine (VDM11) enhanced it. The effects of AM404 were not mediated through its known pharmacological targets, since they were not blocked by the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), the CB2 cannabinoid receptor antagonist N-(1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide (SR144528), or by the transient receptor potential vanilloid 1 receptor antagonist capsazepine. In contrast, the increase in social play induced by VDM11 was dependent on cannabinoid, opioid, and dopaminergic neurotransmission, since it was blocked by the CB1 cannabinoid receptor antagonist SR141716A, the opioid receptor antagonist naloxone, and the dopamine receptor antagonist α-flupenthixol. These findings support the notion that anandamide plays an important role in the modulation of social interaction in adolescent rats, and they suggest that selective anandamide transporter inhibitors might be useful for the treatment of social dysfunctions. Furthermore, these results suggest that off-target effects may be responsible for some of the conflicting effects of anandamide transporter inhibitors on behavior. PMID:18948500

  8. Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice.

    PubMed

    Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami

    2014-01-15

    TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Adenosine A2A receptors and depression.

    PubMed

    El Yacoubi, Malika; Costentin, Jean; Vaugeois, Jean-Marie

    2003-12-09

    Adenosine and its analogues have been shown to induce "behavioral despair" in animal models believed to be relevant to depression. Recent data have shown that selective adenosine A2A receptor antagonists (e.g., SCH 58261, ZM241385, and KW6002) or genetic inactivation of the receptor was effective in reversing signs of behavioral despair in the tail suspension and forced swim tests, two screening procedures predictive of antidepressant activity. A2A antagonists were active in the tail suspension test using either mice previously screened for having high immobility scores or mice that were selectively bred for their spontaneous "helplessness" in this test. At stimulant doses, caffeine, a nonselective A1/A2A receptor antagonist, was effective in the forced swim test. The authors have hypothesized that the antidepressant-like effect of selective A2A antagonists is linked to an interaction with dopaminergic transmission, possibly in the frontal cortex. In support of this idea, administration of the dopamine D2 receptor antagonist haloperidol prevented antidepressant-like effects elicited by SCH 58261 in the forced swim test (putatively involving cortex), whereas it had no effect on stimulant motor effects of SCH 58261 (putatively linked to ventral striatum). The interaction profile of caffeine with haloperidol differed markedly from that of SCH 58261 in the forced swim and motor activity tests. Therefore, a clear-cut antidepressant-like effect could not be ascribed to caffeine. In conclusion, available data support the proposition that a selective blockade of the adenosine A2A receptor may be an interesting target for the development of effective antidepressant agents.

  10. Evidence for the gastric cytoprotective effect of centrally injected agmatine.

    PubMed

    Zádori, Zoltán S; Tóth, Viktória E; Fehér, Ágnes; Philipp, Kirsch; Németh, József; Gyires, Klára

    2014-09-01

    Agmatine (decarboxylated arginine) exerts cytoprotective action in several tissues, such as in the brain, heart or kidneys, but there is still controversy over the effects of agmatine on the gastric mucosa. The aim of the present study was to reveal the potential gastroprotective action of agmatine by using an acid-independent ulcer model to clarify which receptors and peripheral factors are involved in it. Gastric mucosal damage was induced by acidified ethanol. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. It was found that agmatine given intracerebroventricularly (i.c.v., 0.044-220 nmol/rat) significantly inhibited the development of ethanol-induced mucosal damage, while in the case of intraperitoneal injection (0.001-50mg/kg i.p.) it had only a minor effect. The central gastroprotective action of agmatine was completely antagonized by mixed alpha2-adrenoceptor and imidazoline I1 receptor antagonists (idazoxan, efaroxan), but only partially by yohimbine (selective alpha2-adrenoceptor antagonist) and AGN 192403 (selective I1 receptor ligand, putative antagonist). It was also inhibited by the non-selective opioid-receptor antagonist naloxone and the selective δ-opioid receptor antagonist naltrindole, but not by β-funaltrexamine and nor-Binaltorphimine (selective μ- and κ-opioid receptor antagonists, respectively). Furthermore, the effect of agmatine was antagonized by bilateral cervical vagotomy and by pretreatment with indomethacin and NG-nitro-l-arginine. Agmatine also reversed the ethanol-induced reduction of gastric mucosal CGRP and somatostatin content, but did not have any significant effect on gastric motor activity. These results indicate that agmatine given centrally induces gastric cytoprotection, which is mediated by central imidazoline I1 receptors, alpha2-adrenoceptors and δ-opioid receptors. Activation of these receptors induces the release of different mucosal protective factors, such as NO, prostaglandins, CGRP and somatostatin by a vagal-dependent mechanism. Alterations of gastric motility are not likely to contribute to the observed protective effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  12. Involvement of central opioid systems in human interferon-α induced immobility in the mouse forced swimming test

    PubMed Central

    Makino, Mitsuhiro; Kitano, Yutaka; Komiyama, Chika; Hirohashi, Masaaki; Takasuna, Kiyoshi

    2000-01-01

    We investigated the mechanism by which human interferon-α (IFN-α) increases the immobility time in a forced swimming test, an animal model of depression.Central administration of IFN-α (0.05–50 IU per mouse, i.cist.) increased the immobility time in the forced swimming test in mice in a dose-dependent manner.Neither IFN-β nor -γ possessed any effect under the same experimental conditions.Pre-treatment with an opioid receptor antagonist, naloxone (1 mg kg−1, s.c.) inhibited the prolonged immobility time induced by IFN-α (60 KIU kg−1, i.v. or 50 IU per mouse. i.cist.).Peripheral administration of naloxone methiodide (1 mg kg−1, s.c.), which does not pass the blood–brain barrier, failed to block the effect of IFN-α, while intracisternal administration of naloxone methiodide (1 nmol per mouse) completely blocked.The effect of IFN-α was inhibited by a μ1-specific opioid receptor antagonist, naloxonazine (35 mg kg−1, s.c.) and a μ1/μ2 receptor antagonist, β-FNA (40 mg kg−1, s.c.). A selective δ-opioid receptor antagonist, naltrindole (3 mg kg−1, s.c.) and a κ-opioid receptor antagonist, nor-binaltorphimine (20 mg kg−1, s.c.), both failed to inhibit the increasing effect of IFN-α.These results suggest that the activator of the central opioid receptors of the μ1-subtype might be related to the prolonged immobility time of IFN-α, but δ and κ-opioid receptors most likely are not involved. PMID:10903965

  13. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Kiguchi, Yuri; Aono, Yuri; Watanabe, Yuriko; Yamamoto-Nemoto, Seiko; Shimizu, Kunihiko; Shimizu, Takehiko; Kosuge, Yasuhiro; Waddington, John L; Ishige, Kumiko; Ito, Yoshihisa; Saigusa, Tadashi

    2016-10-15

    Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. P2X purinergic receptor ligands: recently patented compounds.

    PubMed

    Gunosewoyo, Hendra; Kassiou, Michael

    2010-05-01

    P2X channels are ionotropic purinergic receptors that are currently under scrutiny as attractive targets for novel therapeutics in areas including chronic inflammation, pain and depression. Their wide expression in the CNS, recent advances in the biochemical and pharmacological properties as well as increasing numbers of patents published in this research domain demand a review in this field. The patent literature covering novel drug-like antagonists for each P2X receptor subtype (P2X1R to P2X7R) up to December 2009 is described in this review article together with their recent highlights in pharmacology. Readers will gain an up-to-date overview of patents covering drug-like antagonists for seven P2X receptor subtypes within the last 4 years. P2X7R antagonists and other P2X inhibitors will probably be on the market for combating rheumatoid arthritis and other diseases. Some P2X7R antagonists are already in Phase I and II clinical trials.

  15. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen administration in the VTA or NACs was also preceded by administration of NTX (0.1, 1, 5 μg, 0.5 h), BFNA (0.4, 4 μg, 24 h), NBNI (0.6, 6 μg, 0.5 h) or NTI (0.4, 4 μg, 0.5 h) into the other site with intake measured 1, 2 and 4 h after agonist treatment. VTA NTX significantly reduced NACs baclofen-induced feeding. Correspondingly, NACs NTX significantly reduced VTA baclofen-induced feeding, indicating a robust and bidirectional general opioid and GABA-B receptor feeding interaction. Whereas the high, but not low VTA BFNA dose reduced NACs baclofen-induced feeding, NACs BFNA failed to affect VTA baclofen-induced feeding, indicating a unidirectional mu opioid and GABA-B receptor feeding interaction. Whereas VTA NBNI at both doses reduced NACs baclofen-induced feeding, the high, but not low NACs NBNI dose significantly reduced VTA baclofen-induced feeding, indicating a bidirectional kappa opioid and GABA-B receptor feeding interaction. Whereas VTA NTI only transiently reduced NACs baclofen-induced feeding, NACs NTI failed to affect VTA baclofen-induced feeding, indicating a weak unidirectional delta opioid and GABA-B receptor interaction. Whereas administration of NTX or BFNA into the NACs or VTA marginally reduced spontaneous food intake, NBNI or NTI into the same sites failed to alter food intake alone. Therefore, the present study suggests that GABA employs a distributed brain network in mediating its ingestive effects that is dependent upon intact opioid receptor signaling with kappa opioid receptors more involved than mu and delta opioid receptors underlying these regional effects. An alternative hypothesis to be considered is that these effects could be the sum of two independent drug effects (opioid antagonists decreasing and baclofen increasing food intake). Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders

    PubMed Central

    Heidbreder, Christian A.; Newman, Amy H.

    2011-01-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D3 receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D3 receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D3 receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D2/D3 receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D3 versus D2 receptor, and their efficacy profile is related primarily to functional antagonism at D2 receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D3 receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed. PMID:20201845

  17. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill.

    PubMed

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-07-13

    In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  18. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders.

    PubMed

    Heidbreder, Christian A; Newman, Amy H

    2010-02-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.

  19. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors

    PubMed Central

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-01-01

    Glutamate acts at central synapses via ionotropic (iGluR – NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed. PMID:16945965

  20. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors.

    PubMed

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-11-15

    Glutamate acts at central synapses via ionotropic (iGluR--NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed.

Top