High-Performance CCSDS Encapsulation Service Implementation in FPGA
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson
2010-01-01
The Consultative Committee for Space Data Systems (CCSDS) Encapsulation Service is a convergence layer between lower-layer space data link framing protocols, such as CCSDS Advanced Orbiting System (AOS), and higher-layer networking protocols, such as CFDP (CCSDS File Delivery Protocol) and Internet Protocol Extension (IPE). CCSDS Encapsulation Service is considered part of the data link layer. The CCSDS AOS implementation is described in the preceding article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS Encapsulation Service needs to be optimized to both reduce energy consumption and operate at a high rate. CCSDS Encapsulation Service has been implemented as an intellectual property core so that the aforementioned problems are solved by way of operating the CCSDS Encapsulation Service inside an FPGA. The CCSDS En capsula tion Service in FPGA implementation consists of both packetizing and de-packetizing features
High-Performance CCSDS AOS Protocol Implementation in FPGA
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson
2010-01-01
The Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) space data link protocol provides a framing layer between channel coding such as LDPC (low-density parity-check) and higher-layer link multiplexing protocols such as CCSDS Encapsulation Service, which is described in the following article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS AOS protocol implementation needs to be optimized to both reduce energy consumption and operate at a high rate.
Enhanced International Space Station Ku-Band Telemetry Service
NASA Technical Reports Server (NTRS)
Cecil, Andrew; Pitts, Lee; Welch, Steven; Bryan, Jason
2014-01-01
(1) The ISS is diligently working to increase utilization of the resources this unique laboratory provides; (2) Recent upgrades enabled the use of Internet Protocol communication using the CCSDS IP Encapsulation protocol; and (3) The Huntsville Operations Support Center has extended the onboard LAN to payload teams enabling the use of standard IP protocols for payload operations.
Developing a Standard Method for Link-Layer Security of CCSDS Space Communications
NASA Technical Reports Server (NTRS)
Biggerstaff, Craig
2009-01-01
Communications security for space systems has been a specialized field generally far removed from considerations of mission interoperability and cross-support in fact, these considerations often have been viewed as intrinsically opposed to security objectives. The space communications protocols defined by the Consultative Committee for Space Data Systems (CCSDS) have a twenty-five year history of successful use in over 400 missions. While the CCSDS Telemetry, Telecommand, and Advancing Orbiting Systems protocols for use at OSI Layer 2 are operationally mature, there has been no direct support within these protocols for communications security techniques. Link-layer communications security has been successfully implemented in the past using mission-unique methods, but never before with an objective of facilitating cross-support and interoperability. This paper discusses the design of a standard method for cryptographic authentication, encryption, and replay protection at the data link layer that can be integrated into existing CCSDS protocols without disruption to legacy communications services. Integrating cryptographic operations into existing data structures and processing sequences requires a careful assessment of the potential impediments within spacecraft, ground stations, and operations centers. The objective of this work is to provide a sound method for cryptographic encapsulation of frame data that also facilitates Layer 2 virtual channel switching, such that a mission may procure data transport services as needed without involving third parties in the cryptographic processing, or split independent data streams for separate cryptographic processing.
Motion Imagery and Robotics Application (MIRA)
NASA Technical Reports Server (NTRS)
Martinez, Lindolfo; Rich, Thomas
2011-01-01
Objectives include: I. Prototype a camera service leveraging the CCSDS Integrated protocol stack (MIRA/SM&C/AMS/DTN): a) CCSDS MIRA Service (New). b) Spacecraft Monitor and Control (SM&C). c) Asynchronous Messaging Service (AMS). d) Delay/Disruption Tolerant Networking (DTN). II. Additional MIRA Objectives: a) Demo of Camera Control through ISS using CCSDS protocol stack (Berlin, May 2011). b) Verify that the CCSDS standards stack can provide end-to-end space camera services across ground and space environments. c) Test interoperability of various CCSDS protocol standards. d) Identify overlaps in the design and implementations of the CCSDS protocol standards. e) Identify software incompatibilities in the CCSDS stack interfaces. f) Provide redlines to the SM&C, AMS, and DTN working groups. d) Enable the CCSDS MIRA service for potential use in ISS Kibo camera commanding. e) Assist in long-term evolution of this entire group of CCSDS standards to TRL 6 or greater.
OTF CCSDS Mission Operations Prototype Parameter Service. Phase I: Exit Presentation
NASA Technical Reports Server (NTRS)
Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.
2009-01-01
This slide presentation reviews the prototype of phase 1 of the parameter service design of the CCSDS mission operations. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement the Parameter Service (2) Demonstrate interoperability between Houston MCC and a CCSDS Mission Operations compliant mission operations center (3) Utilize Mission Operations Common Architecture. THe parameter service design, interfaces, and structures are described.
The CCSDS return all frames Space Link Extension service
NASA Technical Reports Server (NTRS)
Uhrig, Hans; Pietras, John; Stoloff, Michael
1994-01-01
Existing Consultative Committee for Space Data Systems (CCSDS) Recommendations for Telemetry Channel Coding, Packet Telemetry, Advanced Orbiting Systems, and Telecommand have facilitated cross-support between Agencies by standardizing the link between spacecraft and ground terminal. CCSDS is currently defining a set of Space Link Extension (SLE) services that will enable remote science and mission operations facilities to access the ground termination of the Space Link services in a standard manner. The first SLE service to be defined is the Return All Frames (RAF) service. The RAF service delivers all CCSDS link-layer frames received on a single space link physical channel. The service provides both on-line and off-line data transfer modes to accommodate the variety of access methods typical of space mission operations. This paper describes the RAF service as of the Summer of 1994. It characterizes the behavior of the service as seen across the interface between the user and the service and gives an overview of the interactions involved in setting up and operating the service in a cross-support environment.
CNES-NASA Disruption-Tolerant Networking (DTN) Interoperability
NASA Technical Reports Server (NTRS)
Mortensen, Dale; Eddy, Wesley M.; Reinhart, Richard C.; Lassere, Francois
2014-01-01
Future missions requiring robust internetworking services may use Delay-Disruption-Tolerant Networking (DTN) technology. CNES, NASA, and other international space agencies are committed to using CCSDS standards in their space and ground mission communications systems. The experiment described in this presentation will evaluate operations concepts, system performance, and advance technology readiness for the use of DTN protocols in conjunction with CCSDS ground systems, CCSDS data links, and CCSDS file transfer applications
Adding HDLC Framing to CCSDS Recommendations
NASA Technical Reports Server (NTRS)
Hogie, Keith; Criscuolo, Ed; Parise, Ron
2004-01-01
Current Space IP missions use High-Level Data Link Control (HDLC) framing to provide standard serial link interfaces over a space link. HDLC is the standard framing technique used by all routers over clock and data serial lines and is also the basic framing used in all Frame Relay services which are widely deployed in national and international communication networks. In late 2003 a presentation was made to CCSDS committees to initiate discussion on including HDLC in the CCSDS recommendations for space systems. This presentation will summarize the differences between variable length HDLC frames and fixed length CCSDS frames. It will also discuss where and how HDLC framing would fit into the overall CCSDS structures.
OTF CCSDS Mission Operations Prototype. Directory and Action Service. Phase I: Exit Presentation
NASA Technical Reports Server (NTRS)
Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.
2009-01-01
This slide presentation describes the phase I directory and action service prototype for the CCSDS system. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement Directory and Action Services (2) Investigate Mission Operations language neutrality (3) Investigate C3I XML interoperability concepts (4) Integrate applicable open source technologies in a Service Oriented Architecture
CCSDS - Advancing Spaceflight Technology for International Collaboration
NASA Technical Reports Server (NTRS)
Kearney, Mike; Kiely, Aaron; Yeh, Penshu; Gerner, Jean-Luc; Calzolari, Gian-Paolo; Gifford, Kevin; Merri, Mario; Weiss, Howard
2010-01-01
The Consultative Committee for Space Data Systems (CCSDS) has been developing data and communications standards since 1982, with the objective of providing interoperability for enabling international collaboration for spaceflight missions. As data and communications technology has advanced, CCSDS has progressed to capitalize on existing products when available and suitable for spaceflight, and to develop innovative new approaches when available products fail. The current scope of the CCSDS architecture spans the end-to-end data architecture of a spaceflight mission, with ongoing efforts to develop and standardize cutting-edge technology. This manuscript describes the overall architecture, the position of CCSDS in the standards and international mission community, and some CCSDS processes. It then highlights in detail several of the most interesting and critical technical areas in work right now, and how they support collaborative missions. Special topics include: Delay/Disruption Tolerant Networking (DTN), Asynchronous Message Service (AMS), Multispectral/Hyperspectral Data Compression (MHDC), Coding and Synchronization, Onboard Wireless, Spacecraft Monitor and Control, Navigation, Security, and Time Synchronization/Correlation. Broad international participation in development of CCSDS standards is encouraged.
Performance analysis of CCSDS path service
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.
1989-01-01
A communications service, called Path Service, is currently being developed by the Consultative Committee for Space Data Systems (CCSDS) to provide a mechanism for the efficient transmission of telemetry data from space to ground for complex space missions of the future. This is an important service, due to the large volumes of telemetry data that will be generated during these missions. A preliminary analysis of performance of Path Service is presented with respect to protocol-processing requirements and channel utilization.
NASA Technical Reports Server (NTRS)
Lucord, Steve A.; Gully, Sylvain
2009-01-01
The purpose of the PROTOTYPE INTEROPERABILITY DOCUMENT is to document the design and interfaces for the service providers and consumers of a Mission Operations prototype between JSC-OTF and DLR-GSOC. The primary goal is to test the interoperability sections of the CCSDS Spacecraft Monitor & Control (SM&C) Mission Operations (MO) specifications between both control centers. An additional goal is to provide feedback to the Spacecraft Monitor and Control (SM&C) working group through the Review Item Disposition (RID) process. This Prototype is considered a proof of concept and should increase the knowledge base of the CCSDS SM&C Mission Operations standards. No operational capabilities will be provided. The CCSDS Mission Operations (MO) initiative was previously called Spacecraft Monitor and Control (SM&C). The specifications have been renamed to better reflect the scope and overall objectives. The working group retains the name Spacecraft Monitor and Control working group and is under the Mission Operations and Information Services Area (MOIMS) of CCSDS. This document will refer to the specifications as SM&C Mission Operations, Mission Operations or just MO.
Services, architectures, and protocols for space data systems
NASA Technical Reports Server (NTRS)
Helgert, Hermann J.
1991-01-01
The author presents a comprehensive discussion of three major aspects of the work of the Consultative Committee for Space Data Systems (CCSDS), a worldwide cooperative effort of national space agencies. The author examines the CCSDS space data communications network concept on which the data communications facilities of future advanced orbiting systems will be based. He derives the specifications of an open communications architecture as a reference model for the development of services and protocols that support the transfer of information over space data communications networks. Detailed specifications of the communication services and information transfer protocols that have reached a high degree of maturity and stability are offered. The author also includes a complete list of currently available CCSDS standards and supporting documentation.
NASA Technical Reports Server (NTRS)
Fischer, Daniel; Aguilar-Sanchez, Ignacio; Saba, Bruno; Moury, Gilles; Biggerstaff, Craig; Bailey, Brandon; Weiss, Howard; Pilgram, Martin; Richter, Dorothea
2015-01-01
The protection of data transmitted over the space-link is an issue of growing importance also for civilian space missions. Through the Consultative Committee for Space Data Systems (CCSDS), space agencies have reacted to this need by specifying the Space Data-Link Layer Security (SDLS) protocol which provides confidentiality and integrity services for the CCSDS Telemetry (TM), Telecommand (TC) and Advanced Orbiting Services (AOS) space data-link protocols. This paper describes the approach of the CCSDS SDLS working group to specify and execute the necessary interoperability tests. It first details the individual SDLS implementations that have been produced by ESA, NASA, and CNES and then the overall architecture that allows the interoperability tests between them. The paper reports on the results of the interoperability tests and identifies relevant aspects for the evolution of the test environment.
Integrating CCSDS Electronic Data Sheets into Flight Software
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2017-01-01
This presentation will describe the new CCSDS Spacecraft Onboard Interfaces Services (SOIS) Electronic Data Sheet (EDS) standards and how they are being applied to data interfaces in software frameworks, tool chains, and ground systems across a range of missions at NASA and other agencies.
Mission Operations and Information Management Area Spacecraft Monitoring and Control Working Group
NASA Technical Reports Server (NTRS)
Lokerson, Donald C. (Editor)
2005-01-01
Working group goals for this year are: Goal 1. Due to many review comments the green books will be updated and available for re-review by CCSDS. Submission of green books to CCSDS for approval. Goal 2.Initial set of 4 new drafts of the red books as following: SM&C protocol: update with received comments. SM&C common services: update with received comments and expand the service specification. SM&C core services: update with received comments and expand the service the information model. SM&C time services: (target objective): produce initial draft following template of core services.
CCSDS Spacecraft Monitor and Control Service Framework
NASA Technical Reports Server (NTRS)
Merri, Mario; Schmidt, Michael; Ercolani, Alessandro; Dankiewicz, Ivan; Cooper, Sam; Thompson, Roger; Symonds, Martin; Oyake, Amalaye; Vaughs, Ashton; Shames, Peter
2004-01-01
This CCSDS paper presents a reference architecture and service framework for spacecraft monitoring and control. It has been prepared by the Spacecraft Monitoring and Control working group of the CCSDS Mission Operations and Information Management Systems (MOIMS) area. In this context, Spacecraft Monitoring and Control (SM&C) refers to end-to-end services between on- board or remote applications and ground-based functions responsible for mission operations. The scope of SM&C includes: 1) Operational Concept: definition of an operational concept that covers a set of standard operations activities related to the monitoring and control of both ground and space segments. 2) Core Set of Services: definition of an extensible set of services to support the operational concept together with its information model and behaviours. This includes (non exhaustively) ground systems such as Automatic Command and Control, Data Archiving and Retrieval, Flight Dynamics, Mission Planning and Performance Evaluation. 3) Application-layer information: definition of the standard information set to be exchanged for SM&C purposes.
Cross support overview and operations concept for future space missions
NASA Technical Reports Server (NTRS)
Stallings, William; Kaufeler, Jean-Francois
1994-01-01
Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.
Overview of AMS (CCSDS Asynchronous Message Service)
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2006-01-01
This viewgraph presentation gives an overview of the Consultative Committee for Space Data Systems (CCSDS) Asynchronous Message Service (AMS). The topics include: 1) Key Features; 2) A single AMS continuum; 3) The AMS Protocol Suite; 4) A multi-continuum venture; 5) Constraining transmissions; 6) Security; 7) Fault Tolerance; 8) Performance of Reference Implementation; 9) AMS vs Multicast (1); 10) AMS vs Multicast (2); 11) RAMS testing exercise; and 12) Results.
NASA Technical Reports Server (NTRS)
Chang, Chen J. (Inventor); Liaghati, Jr., Amir L. (Inventor); Liaghati, Mahsa L. (Inventor)
2018-01-01
Methods and apparatus are provided for telemetry processing using a telemetry processor. The telemetry processor can include a plurality of communications interfaces, a computer processor, and data storage. The telemetry processor can buffer sensor data by: receiving a frame of sensor data using a first communications interface and clock data using a second communications interface, receiving an end of frame signal using a third communications interface, and storing the received frame of sensor data in the data storage. After buffering the sensor data, the telemetry processor can generate an encapsulated data packet including a single encapsulated data packet header, the buffered sensor data, and identifiers identifying telemetry devices that provided the sensor data. A format of the encapsulated data packet can comply with a Consultative Committee for Space Data Systems (CCSDS) standard. The telemetry processor can send the encapsulated data packet using a fourth and a fifth communications interfaces.
Using CCSDS Standards to Reduce Mission Costs
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2017-01-01
NASA's open source Core Flight System (cFS) software framework has been using several Consultative Committee for Space Data Systems (CCSDS) standards since its inception. Recently developed CCSDS standards are now being applied by NASA, ESA and other organizations to streamline and automate aspects of mission development, test, and operations, speeding mission schedules and reducing mission costs. This paper will present the new CCSDS Spacecraft Onboard Interfaces Services (SOIS) Electronic Data Sheet (EDS) standards and show how they are being applied to data interfaces in the cFS software framework, tool chain, and ground systems across a range of missions at NASA. Although NASA is focusing on the cFS, it expected that these technologies are well suited for use in other system architectures and can lower costs for a wide range of both large and small satellites.
CCSDS SOIS Subnetwork Services: A First Reference Implementation
NASA Astrophysics Data System (ADS)
Gunes-Lasnet, S.; Notebaert, O.; Farges, P.-Y.; Fowell, S.
2008-08-01
The CCSDS SOIS working groups are developing a range of standards for spacecraft onboard interfaces with the intention of promoting reuse of hardware and software designs across a range of missions while enabling interoperability of onboard systems from diverse sources. The CCSDS SOIS working groups released in June 2007 their red books for both Subnetwork and application support layers. In order to allow the verification of these recommended standards and to pave the way for future implementation onboard spacecrafts, it is essential for these standards to be prototyped on a representative spacecraft platform, to provide valuable feed back to the SOIS working group. A first reference implementation of both Subnetwork and Application Support SOIS services over SpaceWire and Mil-Std-1553 bus is thus being realised by SciSys Ltd and Astrium under an ESA contract.
Cross Support Transfer Service (CSTS) Framework Library
NASA Technical Reports Server (NTRS)
Ray, Timothy
2014-01-01
Within the Consultative Committee for Space Data Systems (CCSDS), there is an effort to standardize data transfer between ground stations and control centers. CCSDS plans to publish a collection of transfer services that will each address the transfer of a particular type of data (e.g., tracking data). These services will be called Cross Support Transfer Services (CSTSs). All of these services will make use of a common foundation that is called the CSTS Framework. This library implements the User side of the CSTS Framework. "User side" means that the library performs the role that is typically expected of the control center. This library was developed in support of the Goddard Data Standards program. This technology could be applicable for control centers, and possibly for use in control center simulators needed to test ground station capabilities. The main advantages of this implementation are its flexibility and simplicity. It provides the framework capabilities, while allowing the library user to provide a wrapper that adapts the library to any particular environment. The main purpose of this implementation was to support the inter-operability testing required by CCSDS. In addition, it is likely that the implementation will be useful within the Goddard mission community (for use in control centers).
NASA Technical Reports Server (NTRS)
Sanders, Felicia A.; Jones, Grailing, Jr.; Levesque, Michael
2006-01-01
The CCSDS File Delivery Protocol (CFDP) Standard could reshape ground support architectures by enabling applications to communicate over the space link using reliable-symmetric transport services. JPL utilized the CFDP standard to support the Deep Impact Mission. The architecture was based on layering the CFDP applications on top of the CCSDS Space Link Extension Services for data transport from the mission control centers to the ground stations. On July 4, 2005 at 1:52 A.M. EDT, the Deep Impact impactor successfully collided with comet Tempel 1. During the final 48 hours prior to impact, over 300 files were uplinked to the spacecraft, while over 6 thousand files were downlinked from the spacecraft using the CFDP. This paper uses the Deep Impact Mission as a case study in a discussion of the CFDP architecture, Deep Impact Mission requirements, and design for integrating the CFDP into the JPL deep space support services. Issues and recommendations for future missions using CFDP are also provided.
CCSDS telemetry systems experience at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Carper, Richard D.; Stallings, William H., III
1990-01-01
NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.
Applications of CCSDS recommendations to Integrated Ground Data Systems (IGDS)
NASA Technical Reports Server (NTRS)
Mizuta, Hiroshi; Martin, Daniel; Kato, Hatsuhiko; Ihara, Hirokazu
1993-01-01
This paper describes an application of the CCSDS Principle Network (CPH) service model to communications network elements of a postulated Integrated Ground Data System (IGDS). Functions are drawn principally from COSMICS (Cosmic Information and Control System), an integrated space control infrastructure, and the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). From functional requirements, this paper derives a set of five communications network partitions which, taken together, support proposed space control infrastructures and data distribution systems. Our functional analysis indicates that the five network partitions derived in this paper should effectively interconnect the users, centers, processors, and other architectural elements of an IGDS. This paper illustrates a useful application of the CCSDS (Consultive Committee for Space Data Systems) Recommendations to ground data system development.
NASA Technical Reports Server (NTRS)
Kazz, G. J.; Greenberg, E.
2000-01-01
Over the next decade, international plans and commitments are underway to develop an infrastructure at Mars to support future exploration of the red planet. The purpose of this infrastructure is to provide reliable global communication and navigation coverage for on-approach, landed, roving, and in-flight assets at Mars. The claim is that this infrastructure will: 1) eliminate the need of these assets to carry Direct to Earth (DTE) communications equipment, 2) significantly increase data return and connectivity, 3) enable small mission exploration of Mars without DTE equipment, 4) provide precision navigation i.e., 10 to 100m position resolution, 5) supply timing reference accurate to 10ms. This paper in particular focuses on two CCSDS recommendations for that infrastructure: CCSDS Proximity-1 Space Link Protocol and CCSDS File Delivery Protocol (CFDP). A key aspect of Mars exploration will be the ability of future missions to interoperate. These protocols establish a framework for interoperability by providing standard communication, navigation, and timing services. In addition, these services include strategies to recover gracefully from communication interruptions and interference while ensuring backward compatibility with previous missions from previous phases of exploration.
A Multi-Center Space Data System Prototype Based on CCSDS Standards
NASA Technical Reports Server (NTRS)
Rich, Thomas M.
2016-01-01
Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing RF propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. The maturity level of this protocol set is, however, insufficient for mission inclusion at this time. This prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of these protocols..
Spacecraft Onboard Interface Services: Current Status and Roadmap
NASA Astrophysics Data System (ADS)
Prochazka, Marek; Lopez Trescastro, Jorge; Krueger, Sabine
2016-08-01
Spacecraft Onboard Interface Services (SOIS) is a set of CCSDS standards defining communication stack services to interact with hardware equipment onboard spacecraft. In 2014 ESA kicked off three parallel activities to critically review the SOIS standards, use legacy spacecraft flight software (FSW), make it compliant to a preselected subset of SOIS standards and make performance and architecture assessment. As a part of the three parallel activities, led by Airbus DS Toulouse, OHB Bremen and Thales Alenia Space Cannes respectively, it was to provide feedback back to ESA and CCSDS and also to propose a roadmap of transition towards an operational FSW system fully compliant to applicable SOIS standards. The objective of the paper is twofold: Firstly it is to summarise main results of the three parallel activities and secondly, based on the results, to propose a roadmap for the future.
NASA Tech Briefs, September 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures; Multi-Axis Accelerometer Calibration System; Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems; Autonomous System for Monitoring the Integrity of Composite Fan Housings; A Safe, Self-Calibrating, Wireless System for Measuring Volume of Any Fuel at Non-Horizontal Orientation; Adaptation of the Camera Link Interface for Flight-Instrument Applications; High-Performance CCSDS Encapsulation Service Implementation in FPGA; High-Performance CCSDS AOS Protocol Implementation in FPGA; Advanced Flip Chips in Extreme Temperature Environments; Diffuse-Illumination Systems for Growing Plants; Microwave Plasma Hydrogen Recovery System; Producing Hydrogen by Plasma Pyrolysis of Methane; Self-Deployable Membrane Structures; Reactivation of a Tin-Oxide-Containing Catalys; Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation; Miniature Piezoelectric Macro-Mass Balance; Acoustic Liner for Turbomachinery Applications; Metering Gas Strut for Separating Rocket Stages; Large-Flow-Area Flow-Selective Liquid/Gas Separator; Counterflowing Jet Subsystem Design; Water Tank with Capillary Air/Liquid Separation; True Shear Parallel Plate Viscometer; Focusing Diffraction Grating Element with Aberration Control; Universal Millimeter-Wave Radar Front End; Mode Selection for a Single-Frequency Fiber Laser; Qualification and Selection of Flight Diode Lasers for Space Applications; Plenoptic Imager for Automated Surface Navigation; Maglev Facility for Simulating Variable Gravity; Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection; High-Speed Operation of Interband Cascade Lasers; 3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events; Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates; Hidden Statistics Approach to Quantum Simulations; Reconstituted Three-Dimensional Interactive Imaging; Determining Atmospheric-Density Profile of Titan; Digital Microfluidics Sample Analyzer; Radiation Protection Using Carbon Nanotube Derivatives; Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells; and TEAMS Model Analyzer.
The XML approach to implementing space link extension service management
NASA Technical Reports Server (NTRS)
Tai, W.; Welz, G. A.; Theis, G.; Yamada, T.
2001-01-01
A feasibility study has been conducted at JPL, ESOC, and ISAS to assess the possible applications of the eXtensible Mark-up Language (XML) capabilities to the implementation of the CCSDS Space Link Extension (SLE) Service Management function.
Standardizing Navigation Data: A Status Update
NASA Technical Reports Server (NTRS)
VanEepoel, John M.; Berry, David S.; Pallaschke, Siegmar; Foliard, Jacques; Kiehling, Reinhard; Ogawa, Mina; Showell, Avanaugh; Fertig, Juergen; Castronuovo, Marco
2007-01-01
This paper presents the work of the Navigation Working Group of the Consultative Committee for Space Data Systems (CCSDS) on development of standards addressing the transfer of orbit, attitude and tracking data for space objects. Much progress has been made since the initial presentation of the standards in 2004, including the progression of the orbit data standard to an accepted standard, and the near completion of the attitude and tracking data standards. The orbit, attitude and tracking standards attempt to address predominant parameterizations for their respective data, and create a message format that enables communication of the data across space agencies and other entities. The messages detailed in each standard are built upon a keyword = value paradigm, where a fixed list of keywords is provided in the standard where users specify information about their data, and also use keywords to encapsulate their data. The paper presents a primer on the CCSDS standardization process to put in context the state of the message standards, and the parameterizations supported in each standard, then shows examples of these standards for orbit, attitude and tracking data. Finalization of the standards is expected by the end of calendar year 2007.
Evolution from Packet Utilisation to Mission Operation Services
NASA Astrophysics Data System (ADS)
Cooper, Sam; Forwell, Stuart D.
2012-08-01
The ECSS Packet Utilisation Standard (PUS) and the forthcoming CCSDS Mission Operations (MO) Services occupy a very similar domain. This paper discusses the history of the two standards, their relationship and how the two can co-exist in the near term and long terms. It also covers implications with implementing MO services in current and future on-board architectures.
The CCSDS Next Generation Space Data Link Protocol (NGSLP)
NASA Technical Reports Server (NTRS)
Kazz, Greg J.; Greenberg, Edward
2014-01-01
The CCSDS space link protocols i.e., Telemetry (TM), Telecommand (TC), Advanced Orbiting Systems (AOS) were developed in the early growth period of the space program. They were designed to meet the needs of the early missions, be compatible with the available technology and focused on the specific link environments. Digital technology was in its infancy and spacecraft power and mass issues enforced severe constraints on flight implementations. Therefore the Telecommand protocol was designed around a simple Bose, Hocquenghem, Chaudhuri (BCH) code that provided little coding gain and limited error detection but was relatively simple to decode on board. The infusion of the concatenated Convolutional and Reed-Solomon codes5 for telemetry was a major milestone and transformed telemetry applications by providing them the ability to more efficiently utilize the telemetry link and its ability to deliver user data. The ability to significantly lower the error rates on the telemetry links enabled the use of packet telemetry and data compression. The infusion of the high performance codes for telemetry was enabled by the advent of digital processing, but it was limited to earth based systems supporting telemetry. The latest CCSDS space link protocol, Proximity-1 was developed in early 2000 to meet the needs of short-range, bi-directional, fixed or mobile radio links characterized by short time delays, moderate but not weak signals, and short independent sessions. Proximity-1 has been successfully deployed on both NASA and ESA missions at Mars and is planned to be utilized by all Mars missions in development. A new age has arisen, one that now provides the means to perform advanced digital processing in spacecraft systems enabling the use of improved transponders, digital correlators, and high performance forward error correcting codes for all communications links. Flight transponders utilizing digital technology have emerged and can efficiently provide the means to make the next leap in performance for space link communications. Field Programmable Gate Arrays (FPGAs) provide the capability to incorporate high performance forward error correcting codes implemented within software transponders providing improved performance in data transfer, ranging, link security, and time correlation. Given these synergistic technological breakthroughs, the time has come to take advantage of them in applying them to both on going (e.g., command, telemetry) and emerging (e.g., space link security, optical communication) space link applications. However one of the constraining factors within the Data Link Layer in realizing these performance gains is the lack of a generic transfer frame format and common supporting services amongst the existing CCSDS link layer protocols. Currently each of the four CCSDS link layer protocols (TM, TC, AOS, and Proximity-1) have unique formats and services which prohibits their reuse across the totality of all space link applications of CCSDS member space agencies. For example, Mars missions. These missions implement their proximity data link layer using the Proximity-1 frame format and the services it supports but is still required to support the direct from Earth (TC) protocols and the Direct To Earth (AOS/TM) protocols. The prime purpose of this paper, is to describe a new general purpose CCSDS Data Link layer protocol, the NGSLP that will provide the required services along with a common transfer frame format for all the CCSDS space links (ground to/from space and space to space links) targeted for emerging missions after a CCSDS agency-wide coordinated date. This paper will also describe related options that can be included for the Coding and Synchronization sub-layer of the Data Link layer to extend the capacities of the link and additionally provide an independence of the transfer frame sub-layer from the coding sublayer. This feature will provide missions the option of running either the currently performed synchronous coding and transfer frame data link or an asynchronous coding/frame data link, in which the transfer frame length is independent of the block size of the code. The benefits from the elimination of this constraint (frame synchronized to the code block) will simplify the interface between the transponder and the data handling equipment and reduce implementation costs and complexities. The benefits include: inclusion of encoders/decoders into transmitters and receivers without regard to data link protocols, providing the ability to insert latency sensitive messages into the link to support launch, landing/docking, telerobotics. and Variable Coded Modulation (VCM). In addition the ability to transfer different sized frames can provide a backup for delivering stored anomaly engineering data simultaneously with real time data, or relaying of frames from various sources onto a trunk line for delivery to Earth.
ESTRACK Support for CCSDS Space Communication Cross Support Service Management
NASA Astrophysics Data System (ADS)
Dreihahn, H.; Unal, M.; Hoffmann, A.
2011-08-01
The CCSDS Recommended Standard for Space Communication Cross Support Service Management (SCCS SM) published as Blue Book in August 2009 is intended to provide standardised interfaces to negotiate, schedule, and manage the support of space missions by ground station network operators. ESA as a member of CCSDS has actively supported the development of the SCCS SM standard and is obviously interested in adopting it. Support of SCCS SM conforming interfaces and procedures includes:• Provision of SCCS SM conforming interfaces to non ESA missions;• Use of SCCS SM interfaces provided by other ground station operators to manage cross support of ESA missions;• In longer terms potentially use of SCCS SM interfaces and procedures also internally for support of ESA missions by ESTRACK.In the recent years ESOC has automated management and scheduling of ESA Tracking Network (ESTRACK) services by the specification, development, and deployment of the ESTRACK Management System (EMS), more specifically its planning and scheduling components ESTRACK Planning System and ESTRACK Scheduling System. While full support of the SCCS SM standard will involve also other elements of the ground segment operated by ESOC such as the Flight Dynamic System, EMS is at the core of service management and it is therefore appropriate to initially focus on the question to what extent EMS can support SCCS SM. This paper presents results of the initial analysis phase. After briefly presenting the SCCS SM standard and the relevant components of the ESTRACK management system, we will discuss the initial deployment options, open issues and a tentative roadmap for the way to proceed. Obviously the adoption of a cross support standard requires and discussion and coordination of the involved parties and agencies, especially in the light of the fact that the SCCS SM standard has many optional parts.
NASA Technical Reports Server (NTRS)
Kearney, Mike
2013-01-01
The primary goal of Consultative Committee for Space Data Systems (CCSDS) is interoperability between communications and data systems of space agencies' vehicles, facilities, missions and programs. Of all of the technologies used in spaceflight, standardization of communications and data systems brings the most benefit to multi-agency interoperability. CCSDS Started in 1982 developing standards at the lower layers of the protocol stack. The CCSDS scope has grown to cover standards throughout the entire ISO communications stack, plus other Data Systems areas (architecture, archive, security, XML exchange formats, etc.
Service-Based Extensions to an OAIS Archive for Science Data Management
NASA Astrophysics Data System (ADS)
Flathers, E.; Seamon, E.; Gessler, P. E.
2014-12-01
With new data management mandates from major funding sources such as the National Institutes for Health and the National Science Foundation, architecture of science data archive systems is becoming a critical concern for research institutions. The Consultative Committee for Space Data Systems (CCSDS), in 2002, released their first version of a Reference Model for an Open Archival Information System (OAIS). The CCSDS document (now an ISO standard) was updated in 2012 with additional focus on verifying the authenticity of data and developing concepts of access rights and a security model. The OAIS model is a good fit for research data archives, having been designed to support data collections of heterogeneous types, disciplines, storage formats, etc. for the space sciences. As fast, reliable, persistent Internet connectivity spreads, new network-available resources have been developed that can support the science data archive. A natural extension of an OAIS archive is the interconnection with network- or cloud-based services and resources. We use the Service Oriented Architecture (SOA) design paradigm to describe a set of extensions to an OAIS-type archive: purpose and justification for each extension, where and how each extension connects to the model, and an example of a specific service that meets the purpose.
In-Space Networking on NASA's SCAN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.
Incorporating CCSDS telemetry standards and philosophy on Cassini
NASA Technical Reports Server (NTRS)
Day, John C.; Elson, Anne B.
1995-01-01
The Cassini project at the Jet Propulsion Laboratory (JPL) is implementing a spacecraft telemetry system based on the Consultative Committee for Space Data Systems (CCSDS) packet telemetry standards. Resolving the CCSDS concepts with a Ground Data System designed to handle time-division-multiplexed telemetry and also handling constraints unique to a deep-space planetary spacecraft (such as fixed downlink opportunities, small downlink rates and requirements for on-board data storage) have resulted in spacecraft and ground system design challenges. Solving these design challenges involved adapting and extending the CCSDS telemetry standards as well as changes to the spacecraft and ground system designs. The resulting spacecraft/ground system design is an example of how new ideas and philosophies can be incorporated into existing systems and design approaches without requiring significant rework. In addition, it shows that the CCSDS telemetry standards can be successfully applied to deep-space planetary spacecraft.
CCSDS - SFCG Efficient Modulation Methods Study at NASA/JPL - Phase 4: Interference Susceptibility
NASA Technical Reports Server (NTRS)
Martin, W.; Yan, T. Y.; Gray, A.; Lee, D.
1999-01-01
Susceptibility to two types of interfering signals was requested by the SFCG: a pure carrier (single frequency tone)and wide-band RFI (characteristics unspecified). Selecting a broad-band interfering signal is diffuclt because it should represent the types of interference to be found in the space science service bands.
SCaN Network Ground Station Receiver Performance for Future Service Support
NASA Technical Reports Server (NTRS)
Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung
2012-01-01
Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.
CCSDS concept paper: Delta-DOR
NASA Technical Reports Server (NTRS)
Berry, David S.; Border, James S.
2005-01-01
This Concept Paper proposes the development of Consultative Committee for Space Data Systems (CCSDS) standards for the deep space navigation technique known as 'delta-DOR' (Delta Differential One-Way Ranging).
Development of CCSDS DCT to Support Spacecraft Dynamic Events
NASA Technical Reports Server (NTRS)
Sidhwa, Anahita F
2011-01-01
This report discusses the development of Consultative Committee for Space Data Systems (CCSDS) Design Control Table (DCT) to support spacecraft dynamic events. The Consultative Committee for Space Data Systems (CCSDS) Design Control Table (DCT) is a versatile link calculation tool to analyze different kinds of radio frequency links. It started out as an Excel-based program, and is now being evolved into a Mathematica-based link analysis tool. The Mathematica platform offers a rich set of advanced analysis capabilities, and can be easily extended to a web-based architecture. Last year the CCSDS DCT's for the uplink, downlink, two-way, and ranging models were developed as well as the corresponding input and output interfaces. Another significant accomplishment is the integration of the NAIF SPICE library into the Mathematica computation platform.
Standard formatted data units-control authority procedures
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of this document is to establish a set of minimum and optional requirements for the implementation of Control Authority (CA) organizations within and among the Agencies participating in the Consultative Committee for Space Data Systems (CCSDS). By satisfying these requirements, the resultant cooperating set of CA organizations will produce a global CA service supporting information transfer with digital data under the Standard Formatted Data Unit (SFDU) concept. This service is primarily accomplished through the registration, permanent archiving, and dissemination of metadata in the form of Metadata Objects (MDO) that assist in the interpretation of data objects received in SFDU form. This Recommendation addresses the responsibilities, services, and interface protocols for a hierarchy of CA organizations. The top level, consisting of the CCSDS Secretariat and its operational agent, is unique and primarily provides a global coordination function. The lower levels are Agency CA organizations that have primary responsibility for the registration, archiving, and dissemination of MDOs. As experience is gained and technology evolves, the CA Procedures will be extended to include enhanced services and their supporting protocols. In particular, it is anticipated that eventually CA organizations will be linked via networks on a global basis, and will provide requestors with online automated access to CA services. While this Recommendation does not preclude such operations, it also does not recommend the specific protocols to be used to ensure global compatibility of these services. These recommendations will be generated as experience is gained.
CCSDS Time-Critical Onboard Networking Service
NASA Technical Reports Server (NTRS)
Parkes, Steve; Schnurr, Rick; Marquart, Jane; Menke, Greg; Ciccone, Massimiliano
2006-01-01
The Consultative Committee for Space Data Systems (CCSDS) is developing recommendations for communication services onboard spacecraft. Today many different communication buses are used on spacecraft requiring software with the same basic functionality to be rewritten for each type of bus. This impacts on the application software resulting in custom software for almost every new mission. The Spacecraft Onboard Interface Services (SOIS) working group aims to provide a consistent interface to various onboard buses and sub-networks, enabling a common interface to the application software. The eventual goal is reusable software that can be easily ported to new missions and run on a range of onboard buses without substantial modification. The system engineer will then be able to select a bus based on its performance, power, etc and be confident that a particular choice of bus will not place excessive demands on software development. This paper describes the SOIS Intra-Networking Service which is designed to enable data transfer and multiplexing of a variety of internetworking protocols with a range of quality of service support, over underlying heterogeneous data links. The Intra-network service interface provides users with a common Quality of Service interface when transporting data across a variety of underlying data links. Supported Quality of Service (QoS) elements include: Priority, Resource Reservation and Retry/Redundancy. These three QoS elements combine and map into four TCONS services for onboard data communications: Best Effort, Assured, Reserved, and Guaranteed. Data to be transported is passed to the Intra-network service with a requested QoS. The requested QoS includes the type of service, priority and where appropriate, a channel identifier. The data is de-multiplexed, prioritized, and the required resources for transport are allocated. The data is then passed to the appropriate data link for transfer across the bus. The SOIS supported data links may inherently provide the quality of service support requested by the intra-network layer. In the case where the data link does not have the required level of support, the missing functionality is added by SOIS. As a result of this architecture, re-usable software applications can be designed and used across missions thereby promoting common mission operations. In addition, the protocol multiplexing function enables the blending of multiple onboard networks. This paper starts by giving an overview of the SOIS architecture in section 11, illustrating where the TCONS services fit into the overall architecture. It then describes the quality of service approach adopted, in section III. The prototyping efforts that have been going on are introduced in section JY. Finally, in section V the current status of the CCSDS recommendations is summarized.
CCSDS Mission Operations Action Service Core Capabilities
NASA Technical Reports Server (NTRS)
Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.
2009-01-01
This slide presentation reviews the operations concepts of the command (action) services. Since the consequences of sending the wrong command are unacceptable, the command system provides a collaborative and distributed work environment for flight controllers and operators. The system prescribes a review and approval process where each command is viewed by other individuals before being sent to the vehicle. The action service needs additional capabilities to support he operations concepts of manned space flight. These are : (1) Action Service methods (2) Action attributes (3) Action parameter/argument attributes (4 ) Support for dynamically maintained action data. (5) Publish subscri be capabilities.
Application of an Externded CCSDS Telecommand Standard for All Mars In-Situ Telecommunication Links
NASA Technical Reports Server (NTRS)
Kazz, G.; Greenberg, E.; MacMedan, M.
1998-01-01
The purpose of this paper is to propose a link layer standard for bi-directional telecommunication for in-situ links for data transfer between landers, rovers, and orbiters based upon the CCSDS Telecommand Recommendation.
NASA Technical Reports Server (NTRS)
Bailey, Brandon
2015-01-01
The Space Data Link Security (SDLS) Protocol is a Consultative Committee for Space Data Systems (CCSDS) standard which extends the known Data Link protocols to secure data being sent over a space link by providing confidentiality and integrity services. This plan outlines the approach by National Aeronautics Space Administration (NASA) in performing testing of the SDLS protocol using a prototype based on an existing NASA missions simulator.
Use of CCSDS and OSI Protocols on the Advanced Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Chirieleison, Don
1996-01-01
Although ACTS (Advanced Communications Technology Satellite) provides an almost error-free channel during much of the day and under most conditions, there are times when it is not suitable for reliably error-free data communications when operating in the uncoded mode. Because coded operation is not always available to every earth station, measures must be taken in the end system to maintain adequate throughput when transferring data under adverse conditions. The most effective approach that we tested to improve performance was the addition of an 'outer' Reed-Solomon code through use of CCSDS (Consultative Committee for Space Data Systems) GOS 2 (a forward error correcting code). This addition can benefit all users of an ACTS channel including those applications that do not require totally reliable transport, but it is somewhat expensive because additional hardware is needed. Although we could not characterize the link noise statistically (it appeared to resemble uncorrelated white noise, the type that block codes are least effective in correcting), we did find that CCSDS GOS 2 gave an essentially error-free link at BER's (bit error rate) as high as 6x10(exp -4). For users that demand reliable transport, an ARQ (Automatic Repeat Queuing) protocol such as TCP (Transmission Control Protocol) or TP4 (Transport Protocol, Class 4) will probably be used. In this category, it comes as no surprise that the best choice of the protocol suites tested over ACTS was TP4 using CCSDS GOS 2. TP4 behaves very well over an error-free link which GOS 2 provides up to a point. Without forward error correction, however, TP4 service begins to degrade in the 10(exp -7)-10(exp -6) range and by 4x10(exp -6), it barely gives any throughput at all. If Congestion Avoidance is used in TP4, the degradation is even more pronounced. Fortunately, as demonstrated here, this effect can be more than compensated for by choosing the Selective Acknowledgment option. In fact, this option can enable TP4 to deliver some throughput at error rates as high as 10(exp -5).
Multispectral Image Compression Based on DSC Combined with CCSDS-IDC
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741
Multispectral image compression based on DSC combined with CCSDS-IDC.
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.
Standard format data units - Tools for automatic exchange of space mission data
NASA Astrophysics Data System (ADS)
Willett, J. B.
A set of standard formatting rules for the data sets, and a standard computer-readable language with which to describe the data, are two tools which are used to create the Standard Format Data Unit (SFDU). The NASA/JPL proposal for creation and utilization of SFDUs is presented, and its relationship to recommendations from the Consultative Committee for Space Data Systems (CCSDS) is discussed. Several current and planned implementations of the SFDU concept among major space flight projects are identified. The purpose of creating the concept of an SFDU is to allow members of the science community to share national and global resource data independently of project or program. The feedback from SFDU implementation efforts is considered an essential part of the CCSDS activity. Even though the CCSDS specifically deals with space data systems, the SFDU concept can be applied to practically every data system on an open network. The SFDU is in the early phase of CCSDS standard definition work, and must go through several other phases before being formally recommended as an international standard.
A reference model for space data system interconnection services
NASA Astrophysics Data System (ADS)
Pietras, John; Theis, Gerhard
1993-03-01
The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).
A reference model for space data system interconnection services
NASA Technical Reports Server (NTRS)
Pietras, John; Theis, Gerhard
1993-01-01
The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).
NASA Astrophysics Data System (ADS)
Boettcher, M. A.; Butt, B. M.; Klinkner, S.
2016-10-01
A major concern of a university satellite mission is to download the payload and the telemetry data from a satellite. While the ground station antennas are in general easy and with limited afford to procure, the receiving unit is most certainly not. The flexible and low-cost software-defined radio (SDR) transceiver "BladeRF" is used to receive the QPSK modulated and CCSDS compliant coded data of a satellite in the HAM radio S-band. The control software is based on the Open Source program GNU Radio, which also is used to perform CCSDS post processing of the binary bit stream. The test results show a good performance of the receiving system.
Proposal for implementation of CCSDS standards for use with spacecraft engineering/housekeeping data
NASA Technical Reports Server (NTRS)
Welch, Dave
1994-01-01
Many of today's low earth orbiting spacecraft are using the Consultative Committee for Space Data Systems (CCSDS) protocol for better optimization of down link RF bandwidth and onboard storage space. However, most of the associated housekeeping data has continued to be generated and down linked in a synchronous, Time Division Multiplexed (TDM) fashion. There are many economies that the CCSDS protocol will allow to better utilize the available bandwidth and storage space in order to optimize the housekeeping data for use in operational trending and analysis work. By only outputting what is currently important or of interest, finer resolution of critical items can be obtained. This can be accomplished by better utilizing the normally allocated housekeeping data down link and storage areas rather than taking space reserved for science.
Proposal for implementation of CCSDS standards for use with spacecraft engineering/housekeeping data
NASA Astrophysics Data System (ADS)
Welch, Dave
1994-11-01
Many of today's low earth orbiting spacecraft are using the Consultative Committee for Space Data Systems (CCSDS) protocol for better optimization of down link RF bandwidth and onboard storage space. However, most of the associated housekeeping data has continued to be generated and down linked in a synchronous, Time Division Multiplexed (TDM) fashion. There are many economies that the CCSDS protocol will allow to better utilize the available bandwidth and storage space in order to optimize the housekeeping data for use in operational trending and analysis work. By only outputting what is currently important or of interest, finer resolution of critical items can be obtained. This can be accomplished by better utilizing the normally allocated housekeeping data down link and storage areas rather than taking space reserved for science.
A Multi-Center Space Data System Prototype Based on CCSDS Standards
NASA Technical Reports Server (NTRS)
Rich, Thomas M.
2016-01-01
Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing Radio Frequency (RF) propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. However, the maturity level of this protocol stack is insufficient for mission inclusion at this time. This Space Data System prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of this protocol set. In order to reduce costs, future missions can take advantage of these standard protocols, which will result in increased interoperability between control centers. This prototype demonstrates these capabilities by implementing a realistic space data system in which telemetry is published to control center applications at the Jet Propulsion Lab (JPL), the Marshall Space Flight Center (MSFC), and the Johnson Space Center (JSC). Reverse publishing paths for commanding from each control center are also implemented. The target vehicle consists of realistic flight computer hardware running Core Flight Software (CFS) in the integrated Power, Avionics, and Power (iPAS) Pathfinder Lab at JSC. This prototype demonstrates a potential upgrade path for future Deep Space Network (DSN) modification, in which the automatic error recovery and communication gap compensation capabilities of DTN would be exploited. In addition, SM&C provides architectural flexibility by allowing new service providers and consumers to be added efficiently anywhere in the network using the common interface provided by SM&C's Message Abstraction Layer (MAL). In FY 2015, this space data system was enhanced by adding telerobotic operations capability provided by the Robot API Delegate (RAPID) family of protocols developed at NASA. RAPID is one of several candidates for consideration and inclusion in a new international standard being developed by the CCSDS Telerobotic Operations Working Group. Software gateways for the purpose of interfacing RAPID messages with the existing SM&C based infrastructure were developed. Telerobotic monitor, control, and bridge applications were written in the RAPID framework, which were then tailored to the NAO telerobotic test article hardware, a product of Aldebaran Robotics.
Replacing the CCSDS Telecommand Protocol with the Next Generation Uplink (NGU)
NASA Technical Reports Server (NTRS)
Kazz, Greg J.; Greenberg, Ed; Burleigh, Scott C.
2012-01-01
The current CCSDS Telecommand (TC) Recommendations 1-3 have essentially been in use since the early 1960s. The purpose of this paper is to propose a successor protocol to TC. The current CCSDS recommendations can only accommodate telecommand rates up to approximately 1 mbit/s. However today's spacecraft are storehouses for software including software for Field Programmable Gate Arrays (FPGA) which are rapidly replacing unique hardware systems. Changes to flight software occasionally require uplinks to deliver very large volumes of data. In the opposite direction, high rate downlink missions that use acknowledged CCSDS File Delivery Protocol (CFDP)4 will increase the uplink data rate requirements. It is calculated that a 5 mbits/s downlink could saturate a 4 kbits/s uplink with CFDP downlink responses: negative acknowledgements (NAKs), FINISHs, End-of-File (EOF), Acknowledgements (ACKs). Moreover, it is anticipated that uplink rates of 10 to 20 mbits/s will be required to support manned missions. The current TC recommendations cannot meet these new demands. Specifically, they are very tightly coupled to the Bose-Chaudhuri-Hocquenghem (BCH) code in Ref. 2. This protocol requires that an uncorrectable BCH codeword delimit the TC frame and terminate the randomization process. This method greatly limits telecom performance since only the BCH code can support the protocol. More modern techniques such as the CCSDS Low Density Parity Check (LDPC)5 codes can provide a minimum performance gain of up to 6 times higher command data rates as long as sufficient power is available in the data. This paper will describe the proposed protocol format, trade-offs, and advantages offered, along with a discussion of how reliable communications takes place at higher nominal rates.
NASA Technical Reports Server (NTRS)
Sanchez, Jose Enrique; Auge, Estanislau; Santalo, Josep; Blanes, Ian; Serra-Sagrista, Joan; Kiely, Aaron
2011-01-01
A new standard for image coding is being developed by the MHDC working group of the CCSDS, targeting onboard compression of multi- and hyper-spectral imagery captured by aircraft and satellites. The proposed standard is based on the "Fast Lossless" adaptive linear predictive compressor, and is adapted to better overcome issues of onboard scenarios. In this paper, we present a review of the state of the art in this field, and provide an experimental comparison of the coding performance of the emerging standard in relation to other state-of-the-art coding techniques. Our own independent implementation of the MHDC Recommended Standard, as well as of some of the other techniques, has been used to provide extensive results over the vast corpus of test images from the CCSDS-MHDC.
NASA Astrophysics Data System (ADS)
Eickhoff, Jens; Cook, Barry; Walker, Paul; Habinc, Sadi; Witt, Rouven; Roser, Hans-Peter
2011-08-01
As already published in another paper at DASIA 2010 in Budapest [1] the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques, onboard software design and onboard computer components.The satellite has a launch mass of approx. 120kg and is foreseen to be launched end 2013 as piggy back payload on an Indian PSLV launcher.During phase C the main challenge was the conceptual design for an ultra compact and performant onboard computer (OBC), which is able to support an industry standard operating system, a PUS standard based onboard software (OBSW) and CCSDS standard based ground/space communication. The developed architecture is based on 4 main elements (see [1] and Figure 4):• the OBC core board (single board computer based on LEON3 FT architecture),• an I/O Board for all OBC digital interfaces to S/C equipment,• a CCSDS TC/TM pre-processor board,• CPDU being embedded in the PCDU.The EM for the OBC core meanwhile has been shipped to the University by the supplier Aeroflex Colorado Springs, USA and is in use in Stuttgart since January 2011. Figure 2 and Figure 3 provide brief impressions. This paper concentrates on the common design of the I/O board and the CCSDS processor boards.
Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)
NASA Technical Reports Server (NTRS)
Reyes, Miguel A. De Jesus
2014-01-01
GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.
Reducing the complexity of the CCSDS standard for image compression decreasing the DWT filter order
NASA Astrophysics Data System (ADS)
Ito, Leandro H.; Pinho, Marcelo S.
2014-10-01
The goal for this work is to evaluate the impact of utilizing shorter wavelet filters in the CCSDS standard for lossy and lossless image compression. Another constraint considered was the existence of symmetry in the filters. That approach was desired to maintain the symmetric extension compatibility of the filter banks. Even though this strategy works well for oat wavelets, it is not always the case for their integer approximations. The periodic extension was utilized whenever symmetric extension was not applicable. Even though the latter outperforms the former, for fair comparison the symmetric extension compatible integer-to-integer wavelet approximations were evaluated under both extensions. The evaluation methods adopted were bit rate (bpp), PSNR and the number of operations required by each wavelet transforms. All these results were compared against the ones obtained utilizing the standard CCSDS with 9/7 filter banks, for lossy and lossless compression. The tests were performed over tallies (512x512) of raw remote sensing images from CBERS-2B (China-Brazil Earth Resources Satellites) captured from its high resolution CCD camera. These images were cordially made available by INPE (National Institute for Space Research) in Brazil. For the CCSDS implementation, it was utilized the source code developed by Hongqiang Wang from the Electrical Department at Nebraska-Lincoln University, applying the appropriate changes on the wavelet transform. For lossy compression, the results have shown that the filter bank built from the Deslauriers-Dubuc scaling function, with respectively 2 and 4 vanishing moments on the synthesis and analysis banks, presented not only a reduction of 21% in the number of operations required, but also a performance on par with the 9/7 filter bank. In the lossless case, the biorthogonal Cohen-Daubechies-Feauveau with 2 vanishing moments presented a performance close to the 9/7 integer approximation of the CCSDS, with the number of operations reduced by 1/3.
CCSDS Spacecraft Monitor and Control Mission Operations Interoperability Prototype
NASA Technical Reports Server (NTRS)
Lucord, Steve; Martinez, Lindolfo
2009-01-01
We are entering a new era in space exploration. Reduced operating budgets require innovative solutions to leverage existing systems to implement the capabilities of future missions. Custom solutions to fulfill mission objectives are no longer viable. Can NASA adopt international standards to reduce costs and increase interoperability with other space agencies? Can legacy systems be leveraged in a service oriented architecture (SOA) to further reduce operations costs? The Operations Technology Facility (OTF) at the Johnson Space Center (JSC) is collaborating with Deutsches Zentrum fur Luft- und Raumfahrt (DLR) to answer these very questions. The Mission Operations and Information Management Services Area (MOIMS) Spacecraft Monitor and Control (SM&C) Working Group within the Consultative Committee for Space Data Systems (CCSDS) is developing the Mission Operations standards to address this problem space. The set of proposed standards presents a service oriented architecture to increase the level of interoperability among space agencies. The OTF and DLR are developing independent implementations of the standards as part of an interoperability prototype. This prototype will address three key components: validation of the SM&C Mission Operations protocol, exploration of the Object Management Group (OMG) Data Distribution Service (DDS), and the incorporation of legacy systems in a SOA. The OTF will implement the service providers described in the SM&C Mission Operation standards to create a portal for interaction with a spacecraft simulator. DLR will implement the service consumers to perform the monitor and control of the spacecraft. The specifications insulate the applications from the underlying transport layer. We will gain experience with a DDS transport layer as we delegate responsibility to the middleware and explore transport bridges to connect disparate middleware products. A SOA facilitates the reuse of software components. The prototype will leverage the capabilities of existing legacy systems. Various custom applications and middleware solutions will be combined into one system providing the illusion of a set of homogenous services. This paper will document our journey as we implement the interoperability prototype. The team consists of software engineers with experience on the current command, telemetry and messaging systems that support the International Space Station (ISS) and Space Shuttle programs. Emphasis will be on the objectives, results and potential cost saving benefits.
Extending the International Space Station Life and Operability
NASA Technical Reports Server (NTRS)
Cecil, Andrew J.; Pitts, R. Lee; Sparks, Ray N.; Wickline, Thomas W.; Zoller, David A.
2012-01-01
The International Space Station (ISS) is in an operational configuration with final assembly complete. To fully utilize ISS and extend the operational life, it became necessary to upgrade and extend the onboard systems with the Obsolescence Driven Avionics Redesign (ODAR) project. ODAR enabled a joint project between the Johnson Space Center (JSC) and Marshall Space Flight Center (MSFC) focused on upgrading the onboard payload and Ku-Band systems, expanding the voice and video capabilities, and including more modern protocols allowing unprecedented access for payload investigators to their on-orbit payloads. The MSFC Huntsville Operations Support Center (HOSC) was tasked with developing a high-rate enhanced Functionally Distributed Processor (eFDP) to handle 300Mbps Return Link data, double the legacy rate, and incorporate a Line Outage Recorder (LOR). The eFDP also provides a 25Mbps uplink transmission rate with a Space Link Extension (SLE) interface. HOSC also updated the Payload Data Services System (PDSS) to incorporate the latest Consultative Committee for Space Data Systems (CCSDS) protocols, most notably the use of the Internet Protocol (IP) Encapsulation, in addition to the legacy capabilities. The Central Command Processor was also updated to interact with the new onboard and ground capabilities of Mission Control Center -- Houston (MCC-H) for the uplink functionality. The architecture, implementation, and lessons learned, including integration and incorporation of Commercial Off The Shelf (COTS) hardware and software into the operational mission of the ISS, is described herein. The applicability of this new technology provides new benefits to ISS payload users and ensures better utilization of the ISS by the science community
NASA Technical Reports Server (NTRS)
Riha, Andrew P.
2005-01-01
As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.
In-Space Networking On NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David; Eddy, Wesley M.; Clark, Gilbert J., III; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios (SDRs) and a programmable flight computer. The purpose of the Testbed is to conduct inspace research in the areas of communication, navigation, and networking in support of NASA missions and communication infrastructure. Multiple reprogrammable elements in the end to end system, along with several communication paths and a semi-operational environment, provides a unique opportunity to explore networking concepts and protocols envisioned for the future Solar System Internet (SSI). This paper will provide a general description of the system's design and the networking protocols implemented and characterized on the testbed, including Encapsulation, IP over CCSDS, and Delay-Tolerant Networking (DTN). Due to the research nature of the implementation, flexibility and robustness are considered in the design to enable expansion for future adaptive and cognitive techniques. Following a detailed design discussion, lessons learned and suggestions for future missions and communication infrastructure elements will be provided. Plans for the evolving research on SCaN Testbed as it moves towards a more adaptive, autonomous system will be discussed.
A Model-Driven, Science Data Product Registration Service
NASA Astrophysics Data System (ADS)
Hardman, S.; Ramirez, P.; Hughes, J. S.; Joyner, R.; Cayanan, M.; Lee, H.; Crichton, D. J.
2011-12-01
The Planetary Data System (PDS) has undertaken an effort to overhaul the PDS data architecture (including the data model, data structures, data dictionary, etc.) and to deploy an upgraded software system (including data services, distributed data catalog, etc.) that fully embraces the PDS federation as an integrated system while taking advantage of modern innovations in information technology (including networking capabilities, processing speeds, and software breakthroughs). A core component of this new system is the Registry Service that will provide functionality for tracking, auditing, locating, and maintaining artifacts within the system. These artifacts can range from data files and label files, schemas, dictionary definitions for objects and elements, documents, services, etc. This service offers a single reference implementation of the registry capabilities detailed in the Consultative Committee for Space Data Systems (CCSDS) Registry Reference Model White Book. The CCSDS Reference Model in turn relies heavily on the Electronic Business using eXtensible Markup Language (ebXML) standards for registry services and the registry information model, managed by the OASIS consortium. Registries are pervasive components in most information systems. For example, data dictionaries, service registries, LDAP directory services, and even databases provide registry-like services. These all include an account of informational items that are used in large-scale information systems ranging from data values such as names and codes, to vocabularies, services and software components. The problem is that many of these registry-like services were designed with their own data models associated with the specific type of artifact they track. Additionally these services each have their own specific interface for interacting with the service. This Registry Service implements the data model specified in the ebXML Registry Information Model (RIM) specification that supports the various artifacts above as well as offering the flexibility to support customer-defined artifacts. Key features for the Registry Service include: - Model-based configuration specifying customer-defined artifact types, metadata attributes to capture for each artifact type, supported associations and classification schemes. - A REST-based external interface that is accessible via the Hypertext Transfer Protocol (HTTP). - Federation of Registry Service instances allowing associations between registered artifacts across registries as well as queries for artifacts across those same registries. A federation also enables features such as replication and synchronization if desired for a given deployment. In addition to its use as a core component of the PDS, the generic implementation of the Registry Service facilitates its applicability as a core component in any science data archive or science data system.
Delay Tolerant Networking on NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Johnson, Sandra; Eddy, Wesley
2016-01-01
This presentation covers the status of the implementation of an open source software that implements the specifications developed by the CCSDS Working Group. Interplanetary Overlay Network (ION) is open source software and it implements specifications that have been developed by two international working groups through IETF and CCSDS. ION was implemented on the SCaN Testbed, a testbed located on an external pallet on ISS, by the GRC team. The presentation will cover the architecture of the system, high level implementation details, and issues porting ION to VxWorks.
Variable Coded Modulation software simulation
NASA Astrophysics Data System (ADS)
Sielicki, Thomas A.; Hamkins, Jon; Thorsen, Denise
This paper reports on the design and performance of a new Variable Coded Modulation (VCM) system. This VCM system comprises eight of NASA's recommended codes from the Consultative Committee for Space Data Systems (CCSDS) standards, including four turbo and four AR4JA/C2 low-density parity-check codes, together with six modulations types (BPSK, QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK). The signaling protocol for the transmission mode is based on a CCSDS recommendation. The coded modulation may be dynamically chosen, block to block, to optimize throughput.
NASA Technical Reports Server (NTRS)
Grant, M.; Vernucci, A.
1991-01-01
A possible Data Relay Satellite System (DRSS) topology and network architecture is introduced. An asynchronous network concept, whereby each link (Inter-orbit, Inter-satellite, Feeder) is allowed to operate on its own clock, without causing loss of information, in conjunction with packet data structures, such as those specified by the CCSDS for advanced orbiting systems is discussed. A matching OBP payload architecture is described, highlighting the advantages provided by the OBP-based concept and then giving some indications on the OBP mass/power requirements.
New generation of telemetry systems using CCSDS packetisation - A prototype implementation
NASA Astrophysics Data System (ADS)
Sotta, J. P.; Held, K.
1988-07-01
The system described herein was developed under ESA contract to support the introduction of new telemetry standards based on the packetized telemetry data concept. These standards were derived from recommendations in the frame of work of CCSDS, an inter-Agency committee that counts among its members most European National Agencies, ESA, NASA as well as Japanese NASDA, Indian ISRO and Brazilian INPE and having as objective to facilitate cross-support for space missions. The development is based on the present generation of ESA on-board equipment (OBDH) subsystem and is fully compatible with OBDH bus interfaces and transfer protocol.
Interplanetary Overlay Network Bundle Protocol Implementation
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.
NASA Astrophysics Data System (ADS)
Downs, R. R.; Chen, R. S.
2011-12-01
Services that preserve and enable future access to scientific data are necessary to ensure that the data that are being collected today will be available for use by future generations of scientists. Many data centers, archives, and other digital repositories are working to improve their ability to serve as long-term stewards of scientific data. Trust in sustainable data management and preservation capabilities of digital repositories can influence decisions to use these services to deposit or obtain scientific data. Building on the Open Archival Information System (OAIS) Reference Model developed by the Consultative Committee for Space Data Systems (CCSDS) and adopted by the International Organization for Standardization as ISO 14721:2003, new standards are being developed to improve long-term data management processes and documentation. The Draft Information Standard ISO/DIS 16363, "Space data and information transfer systems - Audit and certification of trustworthy digital repositories" offers the potential to evaluate digital repositories objectively in terms of their trustworthiness as long-term stewards of digital resources. In conjunction with this, the CCSDS and ISO are developing another draft standard for the auditing and certification process, ISO/DIS 16919, "Space data and information transfer systems - Requirements for bodies providing audit and certification of candidate trustworthy digital repositories". Six test audits were conducted of scientific data centers and archives in Europe and the United States to test the use of these draft standards and identify potential improvements for the standards and for the participating digital repositories. We present a case study of the test audit conducted on the NASA Socioeconomic Data and Applications Center (SEDAC) and describe the preparation, the audit process, recommendations received, and next steps to obtain certification as a trustworthy digital repository, after approval of the ISO/DIS standards.
CCSDS File Delivery Protocol (CFDP): Why it's Useful and How it Works
NASA Technical Reports Server (NTRS)
Ray, Tim
2003-01-01
Reliable delivery of data products is often required across space links. For example, a NASA mission will require reliable delivery of images produced by an on-board detector. Many missions have their own (unique) way of accomplishing this, requiring custom software. Many missions also require manual operations (e.g. the telemetry receiver software keeps track of what data is missing, and a person manually inputs the appropriate commands to request retransmissions). The Consultative Committee for Space Data Systems (CCSDS) developed the CCSDS File Delivery Protocol (CFDP) specifically for this situation. CFDP is an international standard communication protocol that provides reliable delivery of data products. It is designed for use across space links. It will work well if run over the widely used CCSDS Telemetry and Telecommand protocols. However, it can be run over any protocol, and will work well as long as the underlying protocol delivers a reasonable portion of the data. The CFDP receiver will autonomously determine what data is missing, and request retransmissions as needed. The CFDP sender will autonomously perform the requested transmissions. When the entire data product is delivered, the CFDP receiver will let the CFDP sender know that the transaction has completed successfully. The result is that custom software becomes standard, and manual operations become autonomous. This paper will consider various ways of achieving reliable file delivery, explain why CFDP is the optimal choice for use over space links, explain how the core protocol works, and give some guidance on how to best utilize CFDP within various mission scenarios. It will also touch on additional features of CFDP, as well as other uses for CFDP (e.g. the loading of on-board memory and tables).
Multi-mission space science data processing systems - Past, present, and future
NASA Technical Reports Server (NTRS)
Stallings, William H.
1990-01-01
Packetized telemetry that is consistent with the international Consultative Committee for Space Data Systems (CCSDS) has been baselined for future NASA missions such as Space Station Freedom. Some experiences from past and present multimission systems are examined, including current experiences in implementing a CCSDS standard packetized data processing system, relative to the effectiveness of the multimission approach in lowering life cycle cost and the complexity of meeting new mission needs. It is shown that the continued effort toward standardization of telemetry and processing support will permit the development of multimission systems needed to meet the increased requirements of future NASA missions.
Ground System Harmonization Efforts at NASA's Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Smith, Dan
2011-01-01
This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers
A high speed CCSDS encoder for space applications
NASA Technical Reports Server (NTRS)
Whitaker, S.; Liu, K.
1990-01-01
This paper reports a VLSI implementation of the CCSDS standard Reed Solomon encoder circuit for the Space Station. The 1.0 micron double metal CMOS chip is 5.9 mm by 3.6 mm, contains 48,000 transistors, operates at a sustained data rate of 320 Mbits/s, and executes 2,560 Mops. The chip features a pin selectable interleave depth of 1 to 8. Block lengths of up to 255 bytes, as well as shortened codes, are supported. The control circuitry uses register cells which are immune to Single Event Upset. In addition, the CMOS process used is reported to be tolerant of over 1 Mrad total dose radiation.
Use of CCSDS Packets Over SpaceWire to Control Hardware
NASA Technical Reports Server (NTRS)
Haddad, Omar; Blau, Michael; Haghani, Noosha; Yuknis, William; Albaijes, Dennis
2012-01-01
For the Lunar Reconnaissance Orbiter, the Command and Data Handling subsystem consisted of several electronic hardware assemblies that were connected with SpaceWire serial links. Electronic hardware would be commanded/controlled and telemetry data was obtained using the SpaceWire links. Prior art focused on parallel data buses and other types of serial buses, which were not compatible with the SpaceWire and the core flight executive (CFE) software bus. This innovation applies to anything that utilizes both SpaceWire networks and the CFE software. The CCSDS (Consultative Committee for Space Data Systems) packet contains predetermined values in its payload fields that electronic hardware attached at the terminus of the SpaceWire node would decode, interpret, and execute. The hardware s interpretation of the packet data would enable the hardware to change its state/configuration (command) or generate status (telemetry). The primary purpose is to provide an interface that is compatible with the hardware and the CFE software bus. By specifying the format of the CCSDS packet, it is possible to specify how the resulting hardware is to be built (in terms of digital logic) that results in a hardware design that can be controlled by the CFE software bus in the final application
An Update on the CCSDS Optical Communications Working Group
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.; Schulz, Klaus-Juergen; Hamkins, Jonathan; Robinson, Bryan; Alliss, Randall; Daddato, Robert; Schmidt, Christopher; Giggebach, Dirk; Braatz, Lena
2017-01-01
International space agencies around the world are currently developing optical communication systems for Near Earth and Deep Space applications for both robotic and human rated spacecraft. These applications include both links between spacecraft and links between spacecraft and ground. The Interagency Operation Advisory Group (IOAG) has stated that there is a strong business case for international cross support of spacecraft optical links. It further concluded that in order to enable cross support the links must be standardized. This paper will overview the history and structure of the space communications international standards body, the Consultative Committee for Space Data Systems (CCSDS), that will develop the standards and provide an update on the proceedings of the Optical Communications Working Group within CCSDS. This paper will also describe the set of optical communications standards being developed and outline some of the issues that must be addressed in the next few years. The paper will address in particular the ongoing work on application scenarios for deep space to ground called High Photon Efficiency, for LEO to ground called Low Complexity, for inter-satellite and near Earth to ground called High Data Rate, as well as associated atmospheric measurement techniques and link operations concepts.
Spectral Re-Growth Reduction for CCSDS 8-D 8-PSK TCM
NASA Technical Reports Server (NTRS)
Borah, Deva K.
2002-01-01
This report presents a study on the CCSDS recommended 8-dimensional 8 PSK Trellis Coded Modulation (TCM) scheme. The important steps of the CCSDS scheme include: conversion of serial data into parallel form, differential encoding, convolutional encoding, constellation mapping, and filtering the 8-PSK symbols using the square root raised cosine (SRRC) pulses. The last step, namely the filtering of the 8 PSK symbols using SRRC pulses, significantly affects the bandwidth of the signal. If a nonlinear power amplifier is used, the SRRC filtered signal creates spectral regrowth. The purpose of this report is to investigate a technique, called the smooth phase interpolated keying (SPIK), that can provide an alternative to SRRC filtering so that good spectral as well as power efficiencies can be obtained with the CCSDS encoder. The results of this study show that the CCSDS encoder does not affect the spectral shape of the SRRC filtered signal or the SPIK signal. When a nonlinear traveling wave tube amplifier (TWTA) is used, the spectral performance of the SRRC signal degrades significantly while the spectral performance of SPIK remains unaffected. The degrading effect of a nonlinear solid state power amplifier (SSPA) on SRRC is found to be less than that due to a nonlinear TWTA. However, in both cases, the spectral performance of the SRRC modulated signal is worse than that of the SPIK signal. The bit error rate (BER) performance of the SRRC signal in a linear amplifier environment is about 2.5 dB better than that of the SPIK signal when both the receivers use algorithms of similar complexity. In a nonlinear TWTA environment, the SRRC signal requires accurate phase tracking since the TWTA introduces additional phase distortion. This problem does not arise with SPIK signal due to its constant envelope property. When a nonlinear amplifier is used, the SRRC method loses nearly 1 dB in the bit error rate performance. The SPIK signal does not lose any performance. Thus the performance gap between SRRC and SPIK reduces. The BER performance of SPIK can be improved even further by using a more optimal receiver. A similar optimal receiver for SRRC is quite complex since the amplifier distorts the pulse shape. However, this requires further investigation and is not covered in this report.
Studies of encapsulant materials for terrestrial solar-cell arrays
NASA Technical Reports Server (NTRS)
Carmichael, D. C. (Compiler)
1975-01-01
Study 1 of this contract is entitled ""Evaluation of World Experience and Properties of Materials for Encapsulation of Terrestrial Solar-Cell Arrays.'' The approach of this study is to review and analyze world experience and to compile data on properties of encapsulants for photovoltaic cells and for related applications. The objective of the effort is to recommend candidate materials and processes for encapsulating terrestrial photovoltaic arrays at low cost for a service life greater than 20 years. The objectives of Study 2, ""Definition of Encapsulant Service Environments and Test Conditions,'' are to develop the climatic/environmental data required to define the frequency and duration of detrimental environmental conditions in a 20-year array lifetime and to develop a corresponding test schedule for encapsulant systems.
Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment
Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon
2013-01-01
Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906
Secure encapsulation and publication of biological services in the cloud computing environment.
Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon
2013-01-01
Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.
Standardizing an End-to-end Accounting Service
NASA Technical Reports Server (NTRS)
Greenberg, Edward; Kazz, Greg
2006-01-01
Currently there are no space system standards available for space agencies to accomplish end-to-end accounting. Such a standard does not exist for spacecraft operations nor for tracing the relationship between the mission planning activities, the command sequences designed to perform those activities, the commands formulated to initiate those activities and the mission data and specifically the mission data products created by those activities. In order for space agencies to cross-support one another for data accountability/data tracing and for inter agency spacecraft to interoperate with each other, an international CCSDS standard for end-to-end data accountability/tracing needs to be developed. We will first describe the end-to-end accounting service model and functionality that supports the service. This model will describe how science plans that are ultimately transformed into commands can be associated with the telemetry products generated as a result of their execution. Moreover, the interaction between end-to-end accounting and service management will be explored. Finally, we will show how the standard end-to-end accounting service can be applied to a real life flight project i.e., the Mars Reconnaissance Orbiter project.
NASA Technical Reports Server (NTRS)
Berry, David S.; Broder, James S.
2005-01-01
This Concept Paper proposes the development of Consultative Committee for Space Data Systemes (CCSDS) standards for the deep space navigation technique known as 'delta-DOR' (Delta Differential One-Way Ranging).
Service lifetime prediction for encapsulated photovoltaic cells/minimodules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czanderna, A.W.; Jorgensen, G.J.
The overall purposes of this paper are to elucidate the crucial importance of predicting the service lifetime (SLP) for photovoltaics (PV) modules and to present an outline for developing a SLP methodology for encapsulated PV cells and minimodules. The specific objectives are (a) to illustrate the generic nature of SLP for several types of solar energy conversion or conversion devices, (b) to summarize the major durability issues concerned with these devices, (c) to justify using SLP in the triad of cost, performance, and durability instead of only durability, (d) to define and explain the seven major elements that comprise amore » generic SLP methodology, (e) to provide background about implementing the SLP methodology for PV cells and minimodules including the complexity of the encapsulation problems, (f) to summarize briefly the past focus of our task for improving and/or replacing ethylene vinyl acetate (EVA) as a PV pottant, and (g) to provide an outline of our present and future studies using encapsulated PV cells and minimodules for improving the encapsulation of PV cells and predicting a service lifetime for them using the SLP methodology outlined in objective (d). By using this methodology, our major conclusion is that predicting the service lifetime of PV cells and minimodules is possible. {copyright} {ital 1997 American Institute of Physics.}« less
Designing an efficient LT-code with unequal error protection for image transmission
NASA Astrophysics Data System (ADS)
S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.
2015-10-01
The use of images from earth observation satellites is spread over different applications, such as a car navigation systems and a disaster monitoring. In general, those images are captured by on board imaging devices and must be transmitted to the Earth using a communication system. Even though a high resolution image can produce a better Quality of Service, it leads to transmitters with high bit rate which require a large bandwidth and expend a large amount of energy. Therefore, it is very important to design efficient communication systems. From communication theory, it is well known that a source encoder is crucial in an efficient system. In a remote sensing satellite image transmission, this efficiency is achieved by using an image compressor, to reduce the amount of data which must be transmitted. The Consultative Committee for Space Data Systems (CCSDS), a multinational forum for the development of communications and data system standards for space flight, establishes a recommended standard for a data compression algorithm for images from space systems. Unfortunately, in the satellite communication channel, the transmitted signal is corrupted by the presence of noise, interference signals, etc. Therefore, the receiver of a digital communication system may fail to recover the transmitted bit. Actually, a channel code can be used to reduce the effect of this failure. In 2002, the Luby Transform code (LT-code) was introduced and it was shown that it was very efficient when the binary erasure channel model was used. Since the effect of the bit recovery failure depends on the position of the bit in the compressed image stream, in the last decade many e orts have been made to develop LT-code with unequal error protection. In 2012, Arslan et al. showed improvements when LT-codes with unequal error protection were used in images compressed by SPIHT algorithm. The techniques presented by Arslan et al. can be adapted to work with the algorithm for image compression recommended by CCSDS. In fact, to design a LT-code with an unequal error protection, the bit stream produced by the algorithm recommended by CCSDS must be partitioned in M disjoint sets of bits. Using the weighted approach, the LT-code produces M different failure probabilities for each set of bits, p1, ..., pM leading to a total probability of failure, p which is an average of p1, ..., pM. In general, the parameters of the LT-code with unequal error protection is chosen using a heuristic procedure. In this work, we analyze the problem of choosing the LT-code parameters to optimize two figure of merits: (a) the probability of achieving a minimum acceptable PSNR, and (b) the mean of PSNR, given that the minimum acceptable PSNR has been achieved. Given the rate-distortion curve achieved by CCSDS recommended algorithm, this work establishes a closed form of the mean of PSNR (given that the minimum acceptable PSNR has been achieved) as a function of p1, ..., pM. The main contribution of this work is the study of a criteria to select the parameters p1, ..., pM to optimize the performance of image transmission.
Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Veregge, John R.; Gao, Jay L.; Clare, Loren P.; Mills, David
2012-01-01
The Proximity-1 Space Link Interleaved Time Synchronization (PITS) protocol provides time distribution and synchronization services for space systems. A software prototype implementation of the PITS algorithm has been developed that also provides the test harness to evaluate the key functionalities of PITS with simulated data source and sink. PITS integrates time synchronization functionality into the link layer of the CCSDS Proximity-1 Space Link Protocol. The software prototype implements the network packet format, data structures, and transmit- and receive-timestamp function for a time server and a client. The software also simulates the transmit and receive-time stamp exchanges via UDP (User Datagram Protocol) socket between a time server and a time client, and produces relative time offsets and delay estimates.
End-to-end communication test on variable length packet structures utilizing AOS testbed
NASA Technical Reports Server (NTRS)
Miller, Warner H.; Sank, V.; Fong, Wai; Miko, J.; Powers, M.; Folk, John; Conaway, B.; Michael, K.; Yeh, Pen-Shu
1994-01-01
This paper describes a communication test, which successfully demonstrated the transfer of losslessly compressed images in an end-to-end system. These compressed images were first formatted into variable length Consultative Committee for Space Data Systems (CCSDS) packets in the Advanced Orbiting System Testbed (AOST). The CCSDS data Structures were transferred from the AOST to the Radio Frequency Simulations Operations Center (RFSOC), via a fiber optic link, where data was then transmitted through the Tracking and Data Relay Satellite System (TDRSS). The received data acquired at the White Sands Complex (WSC) was transferred back to the AOST where the data was captured and decompressed back to the original images. This paper describes the compression algorithm, the AOST configuration, key flight components, data formats, and the communication link characteristics and test results.
Replacing the CCSDS Telecommand Protocol with Next Generation Uplink
NASA Technical Reports Server (NTRS)
Kazz, Greg; Burleigh, Scott; Greenberg, Ed
2012-01-01
Better performing Forward Error Correction on the forward link along with adequate power in the data open an uplink operations trade space that enable missions to: Command to greater distances in deep space (increased uplink margin) Increase the size of the payload data (latency may be a factor) Provides space for the security header/trailer of the CCSDS Space Data Link Security Protocol Note: These higher rates could be used for relief of emergency communication margins/rates and not limited to improving top-end rate performance. A higher performance uplink could also reduce the requirements on flight emergency antenna size and/or the performance required from ground stations. Use of a selective repeat ARQ protocol may increase the uplink design requirements but the resultant development is deemed acceptable, due the factor of 4 to 8 potential increase in uplink data rate.
CWICOM: A Highly Integrated & Innovative CCSDS Image Compression ASIC
NASA Astrophysics Data System (ADS)
Poupat, Jean-Luc; Vitulli, Raffaele
2013-08-01
The space market is more and more demanding in terms of on image compression performances. The earth observation satellites instrument resolution, the agility and the swath are continuously increasing. It multiplies by 10 the volume of picture acquired on one orbit. In parallel, the satellites size and mass are decreasing, requiring innovative electronic technologies reducing size, mass and power consumption. Astrium, leader on the market of the combined solutions for compression and memory for space application, has developed a new image compression ASIC which is presented in this paper. CWICOM is a high performance and innovative image compression ASIC developed by Astrium in the frame of the ESA contract n°22011/08/NLL/LvH. The objective of this ESA contract is to develop a radiation hardened ASIC that implements the CCSDS 122.0-B-1 Standard for Image Data Compression, that has a SpaceWire interface for configuring and controlling the device, and that is compatible with Sentinel-2 interface and with similar Earth Observation missions. CWICOM stands for CCSDS Wavelet Image COMpression ASIC. It is a large dynamic, large image and very high speed image compression ASIC potentially relevant for compression of any 2D image with bi-dimensional data correlation such as Earth observation, scientific data compression… The paper presents some of the main aspects of the CWICOM development, such as the algorithm and specification, the innovative memory organization, the validation approach and the status of the project.
NASA Astrophysics Data System (ADS)
Yue, Songshan; Chen, Min; Wen, Yongning; Lu, Guonian
2016-04-01
Earth environment is extremely complicated and constantly changing; thus, it is widely accepted that the use of a single geo-analysis model cannot accurately represent all details when solving complex geo-problems. Over several years of research, numerous geo-analysis models have been developed. However, a collaborative barrier between model providers and model users still exists. The development of cloud computing has provided a new and promising approach for sharing and integrating geo-analysis models across an open web environment. To share and integrate these heterogeneous models, encapsulation studies should be conducted that are aimed at shielding original execution differences to create services which can be reused in the web environment. Although some model service standards (such as Web Processing Service (WPS) and Geo Processing Workflow (GPW)) have been designed and developed to help researchers construct model services, various problems regarding model encapsulation remain. (1) The descriptions of geo-analysis models are complicated and typically require rich-text descriptions and case-study illustrations, which are difficult to fully represent within a single web request (such as the GetCapabilities and DescribeProcess operations in the WPS standard). (2) Although Web Service technologies can be used to publish model services, model users who want to use a geo-analysis model and copy the model service into another computer still encounter problems (e.g., they cannot access the model deployment dependencies information). This study presents a strategy for encapsulating geo-analysis models to reduce problems encountered when sharing models between model providers and model users and supports the tasks with different web service standards (e.g., the WPS standard). A description method for heterogeneous geo-analysis models is studied. Based on the model description information, the methods for encapsulating the model-execution program to model services and for describing model-service deployment information are also included in the proposed strategy. Hence, the model-description interface, model-execution interface and model-deployment interface are studied to help model providers and model users more easily share, reuse and integrate geo-analysis models in an open web environment. Finally, a prototype system is established, and the WPS standard is employed as an example to verify the capability and practicability of the model-encapsulation strategy. The results show that it is more convenient for modellers to share and integrate heterogeneous geo-analysis models in cloud computing platforms.
Simulation Modeling and Performance Evaluation of Space Networks
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Segui, John
2006-01-01
In space exploration missions, the coordinated use of spacecraft as communication relays increases the efficiency of the endeavors. To conduct trade-off studies of the performance and resource usage of different communication protocols and network designs, JPL designed a comprehensive extendable tool, the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE). The design and development of MACHETE began in 2000 and is constantly evolving. Currently, MACHETE contains Consultative Committee for Space Data Systems (CCSDS) protocol standards such as Proximity-1, Advanced Orbiting Systems (AOS), Packet Telemetry/Telecommand, Space Communications Protocol Specification (SCPS), and the CCSDS File Delivery Protocol (CFDP). MACHETE uses the Aerospace Corporation s Satellite Orbital Analysis Program (SOAP) to generate the orbital geometry information and contact opportunities. Matlab scripts provide the link characteristics. At the core of MACHETE is a discrete event simulator, QualNet. Delay Tolerant Networking (DTN) is an end-to-end architecture providing communication in and/or through highly stressed networking environments. Stressed networking environments include those with intermittent connectivity, large and/or variable delays, and high bit error rates. To provide its services, the DTN protocols reside at the application layer of the constituent internets, forming a store-and-forward overlay network. The key capabilities of the bundling protocols include custody-based reliability, ability to cope with intermittent connectivity, ability to take advantage of scheduled and opportunistic connectivity, and late binding of names to addresses. In this presentation, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the use of MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol and discuss statistics gathered concerning the total time needed to simulate numerous bundle transmissions
CCSDS SM and C Mission Operations Interoperability Prototype
NASA Technical Reports Server (NTRS)
Lucord, Steven A.
2010-01-01
This slide presentation reviews the prototype of the Spacecraft Monitor and Control (SM&C) Operations for interoperability among other space agencies. This particular prototype uses the German Space Agency (DLR) to test the ideas for interagency coordination.
The Architecture and Application of RAMSES, a CCSDS and ECSS PUS Compliant Test and Control System
NASA Astrophysics Data System (ADS)
Battelino, Milan; Svard, Christian; Carlsson, Anna; Carlstedt-Duke, Theresa; Tornqvist, Marcus
2010-08-01
SSC, Swedish Space Corporation, has more than 30 years of experience in developing test and control systems for sounding rockets, experimental test modules and satellites. The increasing amount of ongoing projects made SSC to consider developing a test and control system conformant to CCSDS (Consultative Committee for Space Data Systems) and ECSS (European Cooperation for Space Standardization), that with small effort and cost, could be reused between separate projects and products. The foreseen reduction in cost and development time for different future space-related projects made such a reusable control system desirable. This paper will describe the ideas behind the RAMSES (Rocket and Multi-Satellite EMCS Software) system, its architecture and how it has been and is being used in a variety of applications at SSC such as the multi-satellite mission PRISMA and sounding rocket project MAXUS-8.
Modeling of the ground-to-SSFMB link networking features using SPW
NASA Technical Reports Server (NTRS)
Watson, John C.
1993-01-01
This report describes the modeling and simulation of the networking features of the ground-to-Space Station Freedom manned base (SSFMB) link using COMDISCO signal processing work-system (SPW). The networking features modeled include the implementation of Consultative Committee for Space Data Systems (CCSDS) protocols in the multiplexing of digitized audio and core data into virtual channel data units (VCDU's) in the control center complex and the demultiplexing of VCDU's in the onboard baseband signal processor. The emphasis of this work has been placed on techniques for modeling the CCSDS networking features using SPW. The objectives for developing the SPW models are to test the suitability of SPW for modeling networking features and to develop SPW simulation models of the control center complex and space station baseband signal processor for use in end-to-end testing of the ground-to-SSFMB S-band single access forward (SSAF) link.
Standardization of XML Database Exchanges and the James Webb Space Telescope Experience
NASA Technical Reports Server (NTRS)
Gal-Edd, Jonathan; Detter, Ryan; Jones, Ron; Fatig, Curtis C.
2007-01-01
Personnel from the National Aeronautics and Space Administration (NASA) James Webb Space Telescope (JWST) Project have been working with various standard communities such the Object Management Group (OMG) and the Consultative Committee for Space Data Systems (CCSDS) to assist in the definition of a common extensible Markup Language (XML) for database exchange format. The CCSDS and OMG standards are intended for the exchange of core command and telemetry information, not for all database information needed to exercise a NASA space mission. The mission-specific database, containing all the information needed for a space mission, is translated from/to the standard using a translator. The standard is meant to provide a system that encompasses 90% of the information needed for command and telemetry processing. This paper will discuss standardization of the XML database exchange format, tools used, and the JWST experience, as well as future work with XML standard groups both commercial and government.
Operating CFDP in the Interplanetary Internet
NASA Technical Reports Server (NTRS)
Burleigh, S.
2002-01-01
This paper examines the design elements of CCSDS File Delivery Protocol and Interplanetary Internet technologies that will simplify their integration and discusses the resulting new capabilities, such as efficient transmission of large files via multiple relay satellites operating in parallel.
Encapsulant selection and durability testing experience
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.
1985-01-01
The Flat Plate Solar Array Project (FSA) has established technically challenging cost and service life goals for photovoltaic modules. These goals are a cost of $70 sq m and an expected 30 years of service life in an outdoor weathering environment. out of the cost goal, $14 sq m is allocated for encapsulation materials, which includes the cost of a structural panel. At FSA's inception in 1975, the cumulative cost of encapsulation materials in popular use, such as room temperature vulcanized (RTV) silicones, aluminum panels, etc., greatly exceeded $14/sq m. Accordingly, it became necessary to identify and/or develop new materials and new material technologies to achieve the goals. Many of these new materials are low cost polymers that satisfy module engineering and encapsulation processing requirements but unfortunately are not intrinsically weather stable. This necessitates identifying lifetime and/or weathering deficiencies inherent in these low cost materials and developing specific approaches to enhancing weather stability.
Multi-User Space Link Extension (SLE) System
NASA Technical Reports Server (NTRS)
Perkins, Toby
2013-01-01
The Multi-User Space (MUS) Link Extension system, a software and data system, provides Space Link Extension (SLE) users with three space data transfer services in timely, complete, and offline modes as applicable according to standards defined by the Consultative Committee for Space Data Systems (CCSDS). MUS radically reduces the schedule, cost, and risk of implementing a new SLE user system, minimizes operating costs with a lights-out approach to SLE, and is designed to require no sustaining engineering expense during its lifetime unless changes in the CCSDS SLE standards, combined with new provider implementations, force changes. No software modification to MUS needs to be made to support a new mission. Any systems engineer with Linux experience can begin testing SLE user service instances with MUS starting from a personal computer (PC) within five days. For flight operators, MUS provides a familiar-looking Web page for entering SLE configuration data received from SLE. Operators can also use the Web page to back up a space mission's entire set of up to approximately 500 SLE service instances in less than five seconds, or to restore or transfer from another system the same amount of data from a MUS backup file in about the same amount of time. Missions operate each MUS SLE service instance independently by sending it MUS directives, which are legible, plain ASCII strings. MUS directives are usually (but not necessarily) sent through a TCP-IP (Transmission Control Protocol Internet Protocol) socket from a MOC (Mission Operations Center) or POCC (Payload Operations Control Center) system, under scripted control, during "lights-out" spacecraft operation. MUS permits the flight operations team to configure independently each of its data interfaces; not only commands and telemetry, but also MUS status messages to the MOC. Interfaces can use single- or multiple-client TCP/IP server sockets, TCP/IP client sockets, temporary disk files, the system log, or standard in, standard out, or standard error as applicable. By defining MUS templates in ASCII, the flight operations team can include any MUS system variable in telemetry or command headers or footers, and/or in status messages. Data fields can be arranged within messages in different sequences, according to the mission s needs. The only constraints imposed are on the format of MUS directive strings, and some bare minimum logical requirements that must be met in order for MUS to read the mission control center's spacecraft command inputs. The MUS system imposes no limits or constraints on the numbers and combinations of missions and SLE service instances that it will support simultaneously. At any time, flight operators may add, change, delete, bind, connect, or disconnect.
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1994-01-01
When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1993-01-01
There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.
The New CCSDS Image Compression Recommendation
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Armbruster, Philippe; Kiely, Aaron; Masschelein, Bart; Moury, Gilles; Schaefer, Christoph
2005-01-01
The Consultative Committee for Space Data Systems (CCSDS) data compression working group has recently adopted a recommendation for image data compression, with a final release expected in 2005. The algorithm adopted in the recommendation consists of a two-dimensional discrete wavelet transform of the image, followed by progressive bit-plane coding of the transformed data. The algorithm can provide both lossless and lossy compression, and allows a user to directly control the compressed data volume or the fidelity with which the wavelet-transformed data can be reconstructed. The algorithm is suitable for both frame-based image data and scan-based sensor data, and has applications for near-Earth and deep-space missions. The standard will be accompanied by free software sources on a future web site. An Application-Specific Integrated Circuit (ASIC) implementation of the compressor is currently under development. This paper describes the compression algorithm along with the requirements that drove the selection of the algorithm. Performance results and comparisons with other compressors are given for a test set of space images.
JAXA-NASA Interoperability Demonstration for Application of DTN Under Simulated Rain Attenuation
NASA Technical Reports Server (NTRS)
Suzuki, Kiyoshisa; Inagawa, Shinichi; Lippincott, Jeff; Cecil, Andrew J.
2014-01-01
As is well known, K-band or higher band communications in space link segment often experience intermittent disruptions caused by heavy rainfall. In view of keeping data integrity and establishing autonomous operations under such situation, it is important to consider introducing a tolerance mechanism such as Delay/Disruption Tolerant Networking (DTN). The Consultative Committee for Space Data Systems (CCSDS) is studying DTN as part of the standardization activities for space data systems. As a contribution to CCSDS and a feasibility study for future utilization of DTN, Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA) conducted an interoperability demonstration for confirming its tolerance mechanism and capability of automatic operation using Data Relay Test Satellite (DRTS) space link and its ground terminals. Both parties used the Interplanetary Overlay Network (ION) open source software, including the Bundle Protocol, the Licklider Transmission Protocol, and Contact Graph Routing. This paper introduces the contents of the interoperability demonstration and its results.
Lossless Coding Standards for Space Data Systems
NASA Technical Reports Server (NTRS)
Rice, R. F.
1996-01-01
The International Consultative Committee for Space Data Systems (CCSDS) is preparing to issue its first recommendation for a digital data compression standard. Because the space data systems of primary interest are employed to support scientific investigations requiring accurate representation, this initial standard will be restricted to lossless compression.
Spacecraft Data Simulator for the test of level zero processing systems
NASA Technical Reports Server (NTRS)
Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem
1994-01-01
The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.
Evolutionary Telemetry and Command Processor (TCP) architecture
NASA Technical Reports Server (NTRS)
Schneider, John R.
1992-01-01
A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.
The Joint CCSDS-SFCG Modulation Study--A Comparison of Modulation Schemes
NASA Technical Reports Server (NTRS)
Martin, W. L.; Nguyen, T. M.
1994-01-01
This paper compares the various modulation schemes, namely, PCM/PSK/PM, PCM/PM and BPSK. The subcarrier wave form for PCM/PSK/PM can be either square wave or sine wave, and the data format for PCM/PM and BPSK can be wither NRZ or Bi-phase.
Telescience Resource Kit (TReK)
NASA Technical Reports Server (NTRS)
Lippincott, Jeff
2015-01-01
Telescience Resource Kit (TReK) is one of the Huntsville Operations Support Center (HOSC) remote operations solutions. It can be used to monitor and control International Space Station (ISS) payloads from anywhere in the world. It is comprised of a suite of software applications and libraries that provide generic data system capabilities and access to HOSC services. The TReK Software has been operational since 2000. A new cross-platform version of TReK is under development. The new software is being released in phases during the 2014-2016 timeframe. The TReK Release 3.x series of software is the original TReK software that has been operational since 2000. This software runs on Windows. It contains capabilities to support traditional telemetry and commanding using CCSDS (Consultative Committee for Space Data Systems) packets. The TReK Release 4.x series of software is the new cross platform software. It runs on Windows and Linux. The new TReK software will support communication using standard IP protocols and traditional telemetry and commanding. All the software listed above is compatible and can be installed and run together on Windows. The new TReK software contains a suite of software that can be used by payload developers on the ground and onboard (TReK Toolkit). TReK Toolkit is a suite of lightweight libraries and utility applications for use onboard and on the ground. TReK Desktop is the full suite of TReK software -most useful on the ground. When TReK Desktop is released, the TReK installation program will provide the option to choose just the TReK Toolkit portion of the software or the full TReK Desktop suite. The ISS program is providing the TReK Toolkit software as a generic flight software capability offered as a standard service to payloads. TReK Software Verification was conducted during the April/May 2015 timeframe. Payload teams using the TReK software onboard can reference the TReK software verification. TReK will be demonstrated on-orbit running on an ISS provided T61p laptop. Target Timeframe: September 2015 -2016. The on-orbit demonstration will collect benchmark metrics, and will be used in the future to provide live demonstrations during ISS Payload Conferences. Benchmark metrics and demonstrations will address the protocols described in SSP 52050-0047 Ku Forward section 3.3.7. (Associated term: CCSDS File Delivery Protocol (CFDP)).
A new service-oriented grid-based method for AIoT application and implementation
NASA Astrophysics Data System (ADS)
Zou, Yiqin; Quan, Li
2017-07-01
The traditional three-layer Internet of things (IoT) model, which includes physical perception layer, information transferring layer and service application layer, cannot express complexity and diversity in agricultural engineering area completely. It is hard to categorize, organize and manage the agricultural things with these three layers. Based on the above requirements, we propose a new service-oriented grid-based method to set up and build the agricultural IoT. Considering the heterogeneous, limitation, transparency and leveling attributes of agricultural things, we propose an abstract model for all agricultural resources. This model is service-oriented and expressed with Open Grid Services Architecture (OGSA). Information and data of agricultural things were described and encapsulated by using XML in this model. Every agricultural engineering application will provide service by enabling one application node in this service-oriented grid. Description of Web Service Resource Framework (WSRF)-based Agricultural Internet of Things (AIoT) and the encapsulation method were also discussed in this paper for resource management in this model.
Use of data description languages in the interchange of data
NASA Technical Reports Server (NTRS)
Pignede, M.; Real-Planells, B.; Smith, S. R.
1994-01-01
The Consultative Committee for Space Data Systems (CCSDS) is developing Standards for the interchange of information between systems, including those operating under different environments. The objective is to perform the interchange automatically, i.e. in a computer interpretable manner. One aspect of the concept developed by CCSDS is the use of a separate data description to specify the data being transferred. Using the description, data can then be automatically parsed by the receiving computer. With a suitably expressive Data Description Language (DDL), data formats of arbitrary complexity can be handled. The advantages of this approach are: (1) that the description need only be written and distributed once to all users, and (2) new software does not need to be written for each new format, provided generic tools are available to support writing and interpretation of descriptions and the associated data instances. Consequently, the effort of 'hard coding' each new format is avoided and problems of integrating multiple implementations of a given format by different users are avoided. The approach is applicable in any context where computer parsable description of data could enhance efficiency (e.g. within a spacecraft control system, a data delivery system or an archive). The CCSDS have identified several candidate DDL's: EAST (Extended Ada Subset), TSDN (Transfer Syntax Data Notation) and MADEL (Modified ASN.1 as a Data Description Language -- a DDL based on the Abstract Syntax Notation One - ASN.1 - specified in the ISO/IEC 8824). This paper concentrates on ESA's development of MADEL. ESA have also developed a 'proof of concept' prototype of the required support tools, implemented on a PC under MS-DOS, which has successfully demonstrated the feasibility of the approach, including the capability within an application of retrieving and displaying particular data elements, given its MADEL description (i.e. a data description written in MADEL). This paper outlines the work done to date and assesses the applicability of this modified ASN.1 as a DDL. The feasibility of the approach is illustrated with several examples.
2013-01-01
Background Despite the high incidence and the economic impact of the common cold, there are still no effective therapeutic options available. Although traditional Chinese medicine (TCM) is widely used in China to treat the common cold, there is still a lack of high-quality clinical trials. This article sets forth the protocol for a high-quality trial of a new TCM drug, Baoji Tablets, which is designed to treat the common cold with summer-heat and dampness syndrome (CCSDS). The trial is evaluating both the efficacy and safety of Baoji Tablets. Methods/design This study is designed as a multicenter, phase II, parallel-group, double-blind, double-dummy, randomized and placebo-controlled trial. A total of 288 patients will be recruited from four centers. The new tablets group are administered Baoji Tablets 0.9 g and dummy Baoji Pills 3.7 g. The old pills group are administered dummy Baoji Tablets 0.9 g and Baoji Pills 3.7 g. The placebo control group are administered dummy Baoji Tablets 0.9 g and dummy Baoji Pills 3.7 g. All drugs are taken three times daily for 3 days. The primary outcome is the duration of all symptoms. Secondary outcomes include the duration of primary and secondary symptoms, changes in primary and secondary symptom scores and cumulative symptom score at day 4, as well as an evaluation of treatment efficacy. Discussion This is the first multicenter, double-blind, double-dummy, randomized and placebo-controlled trial designated to treat CCSDS in an adult population from China. It will establish the basis for a scientific and objective assessment of the efficacy and safety of Baoji Tablets for treating CCSDS, and provide evidence for a phase III clinical trial. Trial registration This study is registered with the Chinese Clinical Trial Registry. The registration number is ChiCTR-TRC-13003197. PMID:24359521
Chapter 10.2: Encapsulant Materials for PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, Michael D
2017-01-07
Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes; it provides optical coupling of PV cells and protection against environmental stress. Polymers must perform these functions under prolonged periods of high temperature, humidity, and UV radiation. When PV panels were first developed in the 1960s and the 1970s, the dominant encapsulants were based on polydimethyl siloxane (PDMS). Ethylene-co-vinyl acetate (EVA) is currently the dominant encapsulant chosen for PV applications, not because it has the best combination of properties, but because it is an economical option with an established history of acceptable durability. Getting new products onto the market ismore » challenging because there is no room for dramatic improvements, and one must balance the initial cost and performance with the unknowns of long-term service life. Recently, there has been renewed interest in using alternative encapsulant materials with some significant manufacturers switching from EVA to polyolefin elastomer-based (POE) alternatives.« less
Long-term archiving and data access: modelling and standardization
NASA Technical Reports Server (NTRS)
Hoc, Claude; Levoir, Thierry; Nonon-Latapie, Michel
1996-01-01
This paper reports on the multiple difficulties inherent in the long-term archiving of digital data, and in particular on the different possible causes of definitive data loss. It defines the basic principles which must be respected when creating long-term archives. Such principles concern both the archival systems and the data. The archival systems should have two primary qualities: independence of architecture with respect to technological evolution, and generic-ness, i.e., the capability of ensuring identical service for heterogeneous data. These characteristics are implicit in the Reference Model for Archival Services, currently being designed within an ISO-CCSDS framework. A system prototype has been developed at the French Space Agency (CNES) in conformance with these principles, and its main characteristics will be discussed in this paper. Moreover, the data archived should be capable of abstract representation regardless of the technology used, and should, to the extent that it is possible, be organized, structured and described with the help of existing standards. The immediate advantage of standardization is illustrated by several concrete examples. Both the positive facets and the limitations of this approach are analyzed. The advantages of developing an object-oriented data model within this contxt are then examined.
Endpoint Naming for Space Delay/Disruption Tolerant Networking
NASA Technical Reports Server (NTRS)
Clare, Loren; Burleigh, Scott; Scott, Keith
2010-01-01
Delay/Disruption Tolerant Networking (DTN) provides solutions to space communication challenges such as disconnections when orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other operational constraints. DTN is critical to enabling the future space internetworking envisioned by NASA. Interoperability with international partners is essential and standardization is progressing through both the CCSDS and the IETF.
System for Configuring Modular Telemetry Transponders
NASA Technical Reports Server (NTRS)
Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)
2014-01-01
A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.
James Webb Space Telescope - L2 Communications for Science Data Processing
NASA Technical Reports Server (NTRS)
Johns, Alan; Seaton, Bonita; Gal-Edd, Jonathan; Jones, Ronald; Fatig, Curtis; Wasiak, Francis
2008-01-01
JWST is the first NASA mission at the second Lagrange point (L2) to identify the need for data rates higher than 10 megabits per second (Mbps). JWST will produce approximately 235 Gigabits of science data every day that will be downlinked to the Deep Space Network (DSN). To get the data rates desired required moving away from X-band frequencies to Ka-band frequencies. To accomplish this transition, the DSN is upgrading its infrastructure. This new range of frequencies are becoming the new standard for high data rate science missions at L2. With the new frequency range, the issues of alternatives antenna deployment, off nominal scenarios, NASA implementation of the Ka-band 26 GHz, and navigation requirements will be discussed in this paper. JWST is also using Consultative Committee for Space Data Systems (CCSDS) standard process for reliable file transfer using CCSDS File Delivery Protocol (CFDP). For JWST the use of the CFDP protocol provides level zero processing at the DSN site. This paper will address NASA implementations of Ground Stations in support of Ka-band 26 GHz and lesson learned from implementing a file base (CFDP) protocol operational system.
File-Based Operations and CFDP On-Board Implementation
NASA Astrophysics Data System (ADS)
Herrera Alzu, Ignacio; Peran Mazon, Francisco; Gonzalo Palomo, Alfonso
2014-08-01
Since several years ago, there is an increasing interest among the space agencies, ESA in particular, in deploying File-based Operations (FbO) for Space missions. This aims at simplifying, from the Ground Segment's perspective, the access to the Space Segment and ultimately the overall operations. This is particularly important for deep Space missions, where the Ground-Space interaction can become too complex to handle just with traditional packet-based services. The use of a robust protocol for transferring files between Ground and Space is a key for the FbO approach, and the CCSDS File Delivery Protocol (CFDP) is nowadays the main candidate for doing this job. Both Ground and Space Segments need to be adapted for FbO, being the Ground Segment naturally closer to this concept. This paper focusses on the Space Segment. The main implications related to FbO/CFDP, the possible on-board implementations and the foreseen operations are described. The case of Euclid, the first ESA mission to be file-based operated with CFDP, is also analysed.
Test Program of the "Combined Data and Power Management Infrastructure"
NASA Astrophysics Data System (ADS)
Eickhoff, Jens; Fritz, Michael; Witt, Rouven; Bucher, Nico; Roser, Hans-Peter
2013-08-01
As already published in previous DASIA papers, the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques and Onboard Software design. This satellite furthermore features an innovative hybrid architecture of Onboard Computer and Power Control and Distribution Unit. One of the main challenges was the development of an ultra-compact and performing Onboard Computer (OBC), which was intended to support an RTEMS operating system, a PUS standard based Onboard Software (OBSW) and CCSDS standard based ground/space communication. The developed architecture (see [1, 2, 3]) is called a “Combined Onboard Data and Power Management Infrastructure” - CDPI. It features: The OBC processor boards based on a LEON3FT architecture - from Aeroflex Inc., USA The I/O Boards for all OBC digital interfaces to S/C equipment (digital RIU) - from 4Links Ltd. UK CCSDS TC/TM decoder/encoder boards - with same HW design as I/O boards - just with limited number of interfaces. HW from 4Links Ltd, UK, driver SW and IP-Core from Aeroflex Gaisler, SE Analog RIU functions via enhanced PCDU from Vectronic Aerospace, D OBC reconfiguration unit functions via Common Controller - here in PCDU [4] The CDPI overall assembly is meanwhile complete and a exhaustive description can be found in [5]. The EM test campaign including the HW/SW compatibility testing is finalized. This comprises all OBC EM units, OBC EM assembly and the EM PCDU. The unit test program for the FM Processor-Boards and Power-Boards of the OBC are completed and the unit tests of FM I/O-Boards and CCSDS-Boards have been completed by 4Links at the assembly house. The subsystem tests of the assembled OBC also are completed and the overall System tests of the CDPI with system reconfiguration in diverse possible FDIR cases also reach the last steps. Still ongoing is the subsequent integration of the CDPI with the satellite's avionics components encompassing TTC, AOCS, Power and Payload Control. This paper provides a full picture of the test campaign. Further details can be taken from
NASA Technical Reports Server (NTRS)
Pang, Jackson; Pingree, Paula J.; Torgerson, J. Leigh
2006-01-01
We present the Telecommunications protocol processing subsystem using Reconfigurable Interoperable Gate Arrays (TRIGA), a novel approach that unifies fault tolerance, error correction coding and interplanetary communication protocol off-loading to implement CCSDS File Delivery Protocol and Datalink layers. The new reconfigurable architecture offers more than one order of magnitude throughput increase while reducing footprint requirements in memory, command and data handling processor utilization, communication system interconnects and power consumption.
Flight Model of the `Flying Laptop' OBC and Reconfiguration Unit
NASA Astrophysics Data System (ADS)
Eickhoff, Jens; Stratton, Sam; Butz, Pius; Cook, Barry; Walker, Paul; Uryu, Alexander; Lengowski, Michael; Roser, Hans-Peter
2012-08-01
As already published in papers at the DASIA conferences 2010 in Budapest [1] and 2011 in Malta [2], the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques, onboard software design and onboard computer components. The satellite has a launch mass of approx. 120kg. One of the main challenges was the development of an ultra compact and performing onboard computer (OBC), which was intended to support an RTEMS operating system, a PUS standard based onboard software (OBSW) and CCSDS standard based ground/space communication. The developed architecture is based on 4 main elements (see [1, 2] and Figure 3) which are developed in cooperation with industrial partners:• the OBC core board based on the LEON3 FT architecture,• an I/O Board for all OBC digital interfaces to S/C equipment,• a CCSDS TC/TM decoder/encoder board,• reconfiguration unit being embedded in the satellite power control and distribution unit PCDU.In the meantime the EM / Breadboard units of the computer have been tested intensively including first HW/SW integration tests in a Satellite Testbench (see Figure 2). The FM HW elements from the co-authoring suppliers are under assembly in Stuttgart.
An Efficient Image Compressor for Charge Coupled Devices Camera
Li, Jin; Xing, Fei; You, Zheng
2014-01-01
Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977
Telemetry: Summary of concept and rationale
NASA Astrophysics Data System (ADS)
1987-12-01
This report presents the concept and supporting rationale for the telemetry system developed by the Consultative Committee for Space Data Systems (CCSDS). The concepts, protocols and data formats developed for the telemetry system are designed for flight and ground data systems supporting conventional, contemporary free-flyer spacecraft. Data formats are designed with efficiency as a primary consideration, i.e., format overhead is minimized. The results reflect the consensus of experts from many space agencies. An overview of the CCSDS telemetry system introduces the notion of architectural layering to achieve transparent and reliable delivery of scientific and engineering sensor data (generated aboard space vehicles) to users located in space or on earth. The system is broken down into two major conceptual categories: a packet telemetry concept and a telemetry channel coding concept. Packet telemetry facilitates data transmission from source to user in a standardized and highly automated manner. It provides a mechanism for implementing common data structures and protocols which can enhance the development and operation of space mission systems. Telemetry channel coding is a method by which data can be sent from a source to a destination by processing it in such a way that distinct messages are created which are easily distinguishable from one another. This allows construction of the data with low error probability, thus improving performance of the channel.
GPU Lossless Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.
2014-01-01
Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.
PUS Services Software Building Block Automatic Generation for Space Missions
NASA Astrophysics Data System (ADS)
Candia, S.; Sgaramella, F.; Mele, G.
2008-08-01
The Packet Utilization Standard (PUS) has been specified by the European Committee for Space Standardization (ECSS) and issued as ECSS-E-70-41A to define the application-level interface between Ground Segments and Space Segments. The ECSS-E- 70-41A complements the ECSS-E-50 and the Consultative Committee for Space Data Systems (CCSDS) recommendations for packet telemetry and telecommand. The ECSS-E-70-41A characterizes the identified PUS Services from a functional point of view and the ECSS-E-70-31 standard specifies the rules for their mission-specific tailoring. The current on-board software design for a space mission implies the production of several PUS terminals, each providing a specific tailoring of the PUS services. The associated on-board software building blocks are developed independently, leading to very different design choices and implementations even when the mission tailoring requires very similar services (from the Ground operative perspective). In this scenario, the automatic production of the PUS services building blocks for a mission would be a way to optimize the overall mission economy and improve the robusteness and reliability of the on-board software and of the Ground-Space interactions. This paper presents the Space Software Italia (SSI) activities for the development of an integrated environment to support: the PUS services tailoring activity for a specific mission. the mission-specific PUS services configuration. the generation the UML model of the software building block implementing the mission-specific PUS services and the related source code, support documentation (software requirements, software architecture, test plans/procedures, operational manuals), and the TM/TC database. The paper deals with: (a) the project objectives, (b) the tailoring, configuration, and generation process, (c) the description of the environments supporting the process phases, (d) the characterization of the meta-model used for the generation, (e) the characterization of the reference avionics architecture and of the reference on- board software high-level architecture.
NASA Technical Reports Server (NTRS)
Holland, S. Douglas (Inventor); Steele, Glen F. (Inventor); Romero, Denise M. (Inventor); Koudelka, Robert David (Inventor)
2008-01-01
A data multiplexer that accommodates both industry standard CCSDS data packets and bits streams and standard IEEE 1394 data is described. The multiplexer provides a statistical allotment of bandwidth to the channels in turn, preferably four, but expandable in increments of four up to sixteen. A microcontroller determines bandwidth requested by the plurality of channels, as well as the bandwidth available, and meters out the available bandwidth on a statistical basis employing flow control to the input channels.
SEU hardened memory cells for a CCSDS Reed Solomon encoder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, S.; Canaris, J.; Liu, K.
This paper reports on design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. The design technique provides a recovery mechanism which is independent of the shape of the upsetting event. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station and Explorer platforms.
Coping with data from Space Station Freedom
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.
1991-01-01
The volume of data from future NASA space missions will be phenomenal. Here, we examine the expected data flow from the Space Station Freedom and describe techniques that are being developed to transport and process that data. Networking in space, the Tracking and Data Relay Satellite System (TDRSS), recommendations of the Consultative Committee for Space Data systems (CCSDS), NASA institutional ground support, communications system architecture, and principal data types and formats are discussed.
Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2009-01-01
A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.
Failure Rates for Fiber Optic Assemblies
1980-10-01
Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations. RADC-TR-80-322 has been reviewed and is...Literature sources searched (in addition to the RAC automated library information retrieval system) include the National Technical Information Service (NTIS...Proceedings 1976, 26th Electronic Components Conference. Price, S.J., et al. FOR RELIABLE SERVICE ENVIRONMENT PERFORMANCE, ENCAPSULATED LEDS WITH CLEAR
Electrical research on solar cells and photovoltaic materials
NASA Technical Reports Server (NTRS)
Orehotsky, J.
1984-01-01
The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.
Mercury Shopping Cart Interface
NASA Technical Reports Server (NTRS)
Pfister, Robin; McMahon, Joe
2006-01-01
Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.
Advanced orbiting systems test-bedding and protocol verification
NASA Technical Reports Server (NTRS)
Noles, James; De Gree, Melvin
1989-01-01
The Consultative Committee for Space Data Systems (CCSDS) has begun the development of a set of protocol recommendations for Advanced Orbiting Systems (SOS). The AOS validation program and formal definition of AOS protocols are reviewed, and the configuration control of the AOS formal specifications is summarized. Independent implementations of the AOS protocols by NASA and ESA are discussed, and cross-support/interoperability tests which will allow the space agencies of various countries to share AOS communication facilities are addressed.
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Nichols, Kelvin F.
2006-01-01
To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative a requirement to standardize and control the naming conventions of very disparate systems and technologies are emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation Initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation Initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of technologies will be those that are currently in need of expansion namely the assignment of satellite designations and the process which controls assignments. Second, we will analyze the technologies currently standardized under the Consultative Committee for Space Data Systems (CCSDS) banner. Third, we will analyze the current CCSDS working group and birds of a feather activities to ascertain registry requirements. Lastly, we will identify technologies that are either currently under the auspices of another
Analysis of Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.
2011-01-01
To synchronize clocks between spacecraft in proximity, the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol has been proposed. PITS is based on the NTP Interleaved On-Wire Protocol and is capable of being adapted and integrated into CCSDS Proximity-1 Space Link Protocol with minimal modifications. In this work, we will discuss the correctness and liveness of PITS. Further, we analyze and evaluate the performance of time synchronization latency with various channel error rates in different PITS operational modes.
Phase-ambiguity resolution for QPSK modulation systems. Part 1: A review
NASA Technical Reports Server (NTRS)
Nguyen, Tien Manh
1989-01-01
Part 1 reviews the current phase-ambiguity resolution techniques for QPSK coherent modulation systems. Here, those known and published methods of resolving phase ambiguity for QPSK with and without Forward-Error-Correcting (FEC) are discussed. The necessary background is provided for a complete understanding of the second part where a new technique will be discussed. An appropriate technique to the Consultative Committee for Space Data Systems (CCSDS) is recommended for consideration in future standards on phase-ambiguity resolution for QPSK coherent modulation systems.
Using AI and Semantic Web Technologies to attack Process Complexity in Open Systems
NASA Astrophysics Data System (ADS)
Thompson, Simon; Giles, Nick; Li, Yang; Gharib, Hamid; Nguyen, Thuc Duong
Recently many vendors and groups have advocated using BPEL and WS-BPEL as a workflow language to encapsulate business logic. While encapsulating workflow and process logic in one place is a sensible architectural decision the implementation of complex workflows suffers from the same problems that made managing and maintaining hierarchical procedural programs difficult. BPEL lacks constructs for logical modularity such as the requirements construct from the STL [12] or the ability to adapt constructs like pure abstract classes for the same purpose. We describe a system that uses semantic web and agent concepts to implement an abstraction layer for BPEL based on the notion of Goals and service typing. AI planning was used to enable process engineers to create and validate systems that used services and goals as first class concepts and compiled processes at run time for execution.
Space Link Extension (SLE) Emulation for High-Throughput Network Communication
NASA Technical Reports Server (NTRS)
Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert
2014-01-01
As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.
Space Link Extension (SLE) Emulation for High-Throughput Network Communication
NASA Technical Reports Server (NTRS)
Murawski, Robert; Tchorowski, Nicole; Golden, Bert
2014-01-01
As the data rate requirements for space communications increases, signicant stressis placed not only on the wireless satellite communication links, but also on the groundnetworks which forward data from end-users to remote ground stations. These wide areanetwork (WAN) connections add delay and jitter to the end-to-end satellite communicationlink, eects which can have signicant impacts on the wireless communication link. It isimperative that any ground communication protocol can react to these eects such that theground network does not become a bottleneck in the communication path to the satellite.In this paper, we present our SCENIC Emulation Lab testbed which was developed to testthe CCSDS SLE protocol implementations proposed for use on future NASA communica-tion networks. Our results show that in the presence of realistic levels of network delay,high-throughput SLE communication links can experience signicant data rate throttling.Based on our observations, we present some insight into why this data throttling happens,and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented aswell to the SLE implementation developers which, based on our reports, developed a newrelease for SLE which we show xes the SLE blocking issue and greatly improves the pro-tocol throughput. In this paper, we also discuss future developments for our end-to-endemulation lab and how these improvements can be used to develop and test future spacecommunication technologies.
Using Quality Attributes to Bridge Systems Engineering Gaps : A Juno Ground Data Systems Case Study
NASA Technical Reports Server (NTRS)
Dubon, Lydia P.; Jackson, Maddalena M.; Thornton, Marla S.
2012-01-01
The Juno Mission to Jupiter is the second mission selected by the NASA New Frontiers Program. Juno launched August 2011 and will reach Jupiter July 2016. Juno's payload system is composed of nine instruments plus a gravity science experiment. One of the primary functions of the Juno Ground Data System (GDS) is the assembly and distribution of the CFDP (CCSDS File Delivery Protocol) product telemetry, also referred to as raw science data, for eight out of the nine instruments. The GDS accomplishes this with the Instrument Data Pipeline (IDP). During payload integration, the first attempt to exercise the IDP in a flight like manner revealed that although the functional requirements were well understood, the system was unable to meet latency requirements with the as-is heritage design. A systems engineering gap emerged between Juno instrument data delivery requirements and the assumptions behind the heritage flight-ground interactions. This paper describes the use of quality attributes to measure and overcome this gap by introducing a new systems engineering activity, and a new monitoring service architecture that successfully delivered the performance metrics needed to validate Juno IDP.
The Interplanetary Internet: A Communications Infrastructure for Mars Exploration
NASA Astrophysics Data System (ADS)
Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.
2002-01-01
A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the current set of standard CCSDS data communications protocols can be incrementally evolved so that true InterPlaNetary Internet operations are feasible by the end of the decade. The strategy - which is already in progress via the deployment of Mars relay links - needs individual missions to each contribute increments of capability so that a standard communications infrastructure can rapidly accrete. This paper will describe the IPN architectural concepts, discuss the current set of standard data communications capabilities that exist to support Mars exploration and review the proposed new developments. We will also postulate that the concept is scalable and can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog among planets is routine. 1 2 3 4 5
ERIC Educational Resources Information Center
Lennon, Sean M.
2007-01-01
Pre-service teachers and education students in three different classes (N = 53) were directed to read a short story by Mark Twain titled "Heaven or Hell?" written within a compilation of short stories late in his career. The story, "Heaven or Hell?" illustrates a koan, or an unanswerable moral or ethical dilemma. The students,…
Enhanced Multi-Modal Access to Planetary Exploration
NASA Technical Reports Server (NTRS)
Lamarra, Norm; Doyle, Richard; Wyatt, Jay
2003-01-01
Tomorrow's Interplanetary Network (IPN) will evolve from JPL's Deep-Space Network (DSN) and provide key capabilities to future investigators, such as simplified acquisition of higher-quality science at remote sites and enriched access to these sites. These capabilities could also be used to foster public interest, e.g., by making it possible for students to explore these environments personally, eventually perhaps interacting with a virtual world whose models could be populated by data obtained continuously from the IPN. Our paper looks at JPL's approach to making this evolution happen, starting from improved communications. Evolving space protocols (e.g., today's CCSDS proximity and file-transfer protocols) will provide the underpinning of such communications in the next decades, just as today's rich web was enabled by progress in Internet Protocols starting from the early 1970's (ARPAnet research). A key architectural thrust of this effort is to deploy persistent infrastructure incrementally, using a layered service model, where later higher-layer capabilities (such as adaptive science planning) are enabled by earlier lower-layer services (such as automated routing of object-based messages). In practice, there is also a mind shift needed from an engineering culture raised on point-to-point single-function communications (command uplink, telemetry downlink), to one in which assets are only indirectly accessed, via well-defined interfaces. We are aiming to foster a 'community of access' both among space assets and the humans who control them. This enables appropriate (perhaps eventually optimized) sharing of services and resources to the greater benefit of all participants. We envision such usage to be as automated in the future as using a cell phone is today - with all the steps in creating the real-time link being automated.
Considerations for Isochronous Data Services over the Proximity-1 Space Link
NASA Technical Reports Server (NTRS)
Gao, Jay L.
2006-01-01
Future mission concepts for robotic and human explorations will involve a high level of real time control/monitoring operations such as tele-operation for spacecraft rendezvous and surface mobile platforms carrying life-support equipments. The timely dissemination of voice, command, and real-time telemetry for monitoring and coordination purposes is critical for mission success. It is envisioned that future missions will require a network infrastructure capable of supporting isochronous data services. The CCSDS Proximity-1 Space Link Protocol1 could be used to provide isochronous service over the surface-to-Earth relay as well as "beyond-the-horizon" communications between distant Lunar or Mars surface elements. This paper will analyze the latency, jitter, and throughput performance of the Proximity-1 protocol for isochronous applications. In particular we will focus on constrained scenarios where the protocol operates in full-duplex mode, carrying isochronous traffic in one direction and error-controlled traffic in the other direction. We analyze the impact of the strict priority scheme in Proximity-1 on delay jitter and the impact of the isochronous traffic on the efficiency of the reliable data transfer in the other direction, and discuss methods for performance optimization. In general, jitter performance is driving by relative loading of isochronous traffic on the forward link compared to the acknowledgement traffic. Under light loading condition, the upper-bound of the delay jitter is the transmission duration of an acknowledgement frame on the forward link; for higher loading scenarios, the maximum jitter is scaled up by the inverse of the residual bandwidth, i.e., the spare capacity available in the forward link to carry isochronous traffic.
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Ratajczak, A. F.
1974-01-01
The NASA-Lewis Research Center program of transferring the FEP-encapsulated solar cell technology developed for the space program to terrestrial applications is presented. The electrical power system design and the array mechanical design are described, and power systems being tested are discussed. The latter are located at NOAA-RAMOS weather stations at Sterling, Va., and Mammoth Mountain, Calif.; on the roof of the Lewis Research Center; on a NOAA-Coast Guard buoy in the Gulf of Mexico; in a U.S. Forest Service mountaintop voice repeater station in the Inyo National Forest, Calif., and in a backpack charger for portable transmitter/receivers being used in the same place. Preliminary results of testing are still incomplete, but show that rime ice can cause cracks in modular cells without damaging the FEP though, which keeps the grid lines intact, and that electrically active elements of the module must be completely sealed from salt water to prevent FEP delamination.
Burnout in University Teaching Staff: A Systematic Literature Review
ERIC Educational Resources Information Center
Watts, J.; Robertson, N.
2011-01-01
Background: Teacher stress potentially impairs personal and professional competence and compromises productivity. Aversive emotional experience has been most comprehensively encapsulated by the phenomenon of burnout, which is particularly prominent for staff in human service sectors. Burnout reactions have been characterised as tripartite: the…
TESS SpaceX Fairing Halves Lift to Vertical; Payload Encapsulation
2018-04-08
Technicians prepare NASA's Transiting Exoplanet Survey Satellite (TESS) for encapsulation in the SpaceX payload fairing inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.
Research on SaaS and Web Service Based Order Tracking
NASA Astrophysics Data System (ADS)
Jiang, Jianhua; Sheng, Buyun; Gong, Lixiong; Yang, Mingzhong
To solve the order tracking of across enterprises in Dynamic Virtual Enterprise (DVE), a SaaS and web service based order tracking solution was designed by analyzing the order management process in DVE. To achieve the system, the SaaS based architecture of data management on order tasks manufacturing states was constructed, and the encapsulation method of transforming application system into web service was researched. Then the process of order tracking in the system was given out. Finally, the feasibility of this study was verified by the development of a prototype system.
2017-03-10
The Orbital ATK Cygnus spacecraft was encapsulted in its payload fairings inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 24, 2017. CYGNUS will deliver 7,600 of pounds of supplies, equipment and scientific research materials to the space station.
Wireless Network Communications Overview for Space Mission Operations
NASA Technical Reports Server (NTRS)
Fink, Patrick W.
2009-01-01
The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.
The CCSDS Lossless Data Compression Algorithm for Space Applications
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Day, John H. (Technical Monitor)
2001-01-01
In the late 80's, when the author started working at the Goddard Space Flight Center (GSFC) for the National Aeronautics and Space Administration (NASA), several scientists there were in the process of formulating the next generation of Earth viewing science instruments, the Moderate Resolution Imaging Spectroradiometer (MODIS). The instrument would have over thirty spectral bands and would transmit enormous data through the communications channel. This was when the author was assigned the task of investigating lossless compression algorithms for space implementation to compress science data in order to reduce the requirement on bandwidth and storage.
NASA Technical Reports Server (NTRS)
Pang, Jackson; Liddicoat, Albert; Ralston, Jesse; Pingree, Paula
2006-01-01
The current implementation of the Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Arrays (TRIGA) is equipped with CFDP protocol and CCSDS Telemetry and Telecommand framing schemes to replace the CPU intensive software counterpart implementation for reliable deep space communication. We present the hardware/software co-design methodology used to accomplish high data rate throughput. The hardware CFDP protocol stack implementation is then compared against the two recent flight implementations. The results from our experiments show that TRIGA offers more than 3 orders of magnitude throughput improvement with less than one-tenth of the power consumption.
Space Qualified High Speed Reed Solomon Encoder
NASA Technical Reports Server (NTRS)
Gambles, Jody W.; Winkert, Tom
1993-01-01
This paper reports a Class S CCSDS recommendation Reed Solomon encoder circuit baselined for several NASA programs. The chip is fabricated using United Technologies Microelectronics Center's UTE-R radiation-hardened gate array family, contains 64,000 p-n transistor pairs, and operates at a sustained output data rate of 200 MBits/s. The chip features a pin selectable message interleave depth of from 1 to 8 and supports output block lengths of 33 to 255 bytes. The UTE-R process is reported to produce parts that are radiation hardened to 16 Rads (Si) total dose and 1.0(exp -10) errors/bit-day.
Study program for encapsulation materials interface for low-cost solar array
NASA Technical Reports Server (NTRS)
Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.
1981-01-01
The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.
The Road to Independently Understandable Information
NASA Astrophysics Data System (ADS)
Habermann, T.; Robinson, E.
2017-12-01
The turn of the 21st century was a pivotal time in the Earth and Space Science information ecosystem. The Content Standard for Digital Geospatial Metadata (CSDGM) had existed for nearly a decade and ambitious new standards were just emerging. The U.S. Federal Geospatial Data Committee (FGDC) had extended many of the concepts from CSDGM into the International community with ISO 19115:2003 and the Consultative Committee for Space Data Systems (CCSDS) had migrated their Open Archival Information System (OAIS) Reference Model into an international standard (ISO 14721:2003). The OAIS model outlined the roles and responsibilities of archives with the principle role being preserving information and making it available to users, a "designated community", as a service to the data producer. It was mandatory for the archive to ensure that information is "independently understandable" to the designated community and to maintain that understanding through on-going partnerships between archives and designated communities. Standards can play a role in supporting these partnerships as designated communities expand across disciplinary and geographic boundaries. The ISO metadata standards include many capabilities that might make critical contributions to this goal. These include connections to resources outside of the metadata record (i.e. documentation) and mechanisms for ongoing incorporation of user feedback into the metadata stream. We will demonstrate these capabilities with examples of how they can increase understanding.
NEXUS - Resilient Intelligent Middleware
NASA Astrophysics Data System (ADS)
Kaveh, N.; Hercock, R. Ghanea
Service-oriented computing, a composition of distributed-object computing, component-based, and Web-based concepts, is becoming the widespread choice for developing dynamic heterogeneous software assets available as services across a network. One of the major strengths of service-oriented technologies is the high abstraction layer and large granularity level at which software assets are viewed compared to traditional object-oriented technologies. Collaboration through encapsulated and separately defined service interfaces creates a service-oriented environment, whereby multiple services can be linked together through their interfaces to compose a functional system. This approach enables better integration of legacy and non-legacy services, via wrapper interfaces, and allows for service composition at a more abstract level especially in cases such as vertical market stacks. The heterogeneous nature of service-oriented technologies and the granularity of their software components makes them a suitable computing model in the pervasive domain.
XTCE and XML Database Evolution and Lessons from JWST, LandSat, and Constellation
NASA Technical Reports Server (NTRS)
Gal-Edd, Jonathan; Kreistle, Steven; Fatig. Cirtos; Jones, Ronald
2008-01-01
The database organizations within three different NASA projects have advanced current practices by creating database synergy between the various spacecraft life cycle stakeholders and educating users in the benefits of the Consultative Committee for Space Data Systems (CCSDS) XML Telemetry and Command Exchange (XTCE) format. The combination of XML for managing program data and CCSDS XTCE for exchange is a robust approach that will meet all user requirements using Standards and Non proprietary tools. COTS tools for XTCEKML are very wide and varied. To combine together various low cost and free tools can be more expensive in the long run than choosing a more expensive COTS tool that meets all the needs. This was especially important when deploying in 32 remote sites with no need for licenses. A common mission XTCEKML format between dissimilar systems is possible and is not difficult. Command XMLKTCE is more complex than telemetry and the use of XTCEKML metadata to describe pages and scripts is needed due to the proprietary nature of most current ground systems. Other mission and science products such as spacecraft loads, science image catalogs, and mission operation procedures can all be described with XML as well to increase there flexibility as systems evolve and change. Figure 10 is an example of a spacecraft table load. The word is out and the XTCE community is growing, The f sXt TCE user group was held in October and in addition to ESAESOC, SC02000, and CNES identified several systems based on XTCE. The second XTCE user group is scheduled for March 10, 2008 with LDMC and others joining. As the experience with XTCE grows and the user community receives the promised benefits of using XTCE and XML the interest is growing fast.
NASA Astrophysics Data System (ADS)
Losik, L.
A predictive medicine program allows disease and illness including mental illness to be predicted using tools created to identify the presence of accelerated aging (a.k.a. disease) in electrical and mechanical equipment. When illness and disease can be predicted, actions can be taken so that the illness and disease can be prevented and eliminated. A predictive medicine program uses the same tools and practices from a prognostic and health management program to process biological and engineering diagnostic data provided in analog telemetry during prelaunch readiness and space exploration missions. The biological and engineering diagnostic data necessary to predict illness and disease is collected from the pre-launch spaceflight readiness activities and during space flight for the ground crew to perform a prognostic analysis on the results from a diagnostic analysis. The diagnostic, biological data provided in telemetry is converted to prognostic (predictive) data using the predictive algorithms. Predictive algorithms demodulate telemetry behavior. They illustrate the presence of accelerated aging/disease in normal appearing systems that function normally. Mental illness can predicted using biological diagnostic measurements provided in CCSDS telemetry from a spacecraft such as the ISS or from a manned spacecraft in deep space. The measurements used to predict mental illness include biological and engineering data from an astronaut's circadian and ultranian rhythms. This data originates deep in the brain that is also damaged from the long-term exposure to cortisol and adrenaline anytime the body's fight or flight response is activated. This paper defines the brain's FOFR; the diagnostic, biological and engineering measurements needed to predict mental illness, identifies the predictive algorithms necessary to process the behavior in CCSDS analog telemetry to predict and thus prevent mental illness from occurring on human spaceflight missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley, W.A.
The goals of the NREL PVMaT program are, among others, to reduce module manufacturing costs and improve the quality, and we might add here the reliability, of manufactured PV products. One component critical to the service life of PV modules is the useful life of the EVA resin-based encapsulant which is employed extensively by module manufacturers on a worldwide basis. This pottant has been in commercial use since 1982, and over that time has proven to be a dependable material from the standpoint of production, module fabrication, and end-use. But despite the widespread acceptance of the EVA resin-based A9918 andmore » similar formulations for PV encapsulation, some module producers, end-users, and investigators have reported a yellowing or browning phenomenon with EVA resin-based encapsulants in the field. Wile the incidence of this discoloration/degradation appeared at comparatively few sites at the time that this present program was conceived, it raised serious concern as to the long term reliability of EVA resin-based encapsulation systems. Consequently, under the NREL PVMaT program, Springborn Laboratories proposed a comprehensive study of the EVA aging and discoloration problem and its possible solution(s). During the first year of this program, accelerated U.V. aging methods were surveyed. On careful review of the various types of accelerated U.V. aging equipment available, an Atlas Ci35A Weather-Ometer Xenon Exposure System was selected as appropriate equipment for this work. The following report summarizes how this accelerated aging technique has been used to develop a family of solutions to the discoloration problem, the most significant of which is a series of EVA-based encapsulants which are resistant to discoloration.« less
Moral Development Research Designed to Make a Difference: Some Gaps Waiting to be Filled.
ERIC Educational Resources Information Center
Kuhmerker, Lisa
1995-01-01
Encapsulates five brief reports on cutting edge issues in moral education research. Discusses strengths and weaknesses of different administrative approaches to creating a character education program. Addresses the inherent dichotomy between military service and democratic values. Considers issues of data verification and abuse of power. (MJP)
The Advanced Orbiting Systems Testbed Program: Results to date
NASA Technical Reports Server (NTRS)
Otranto, John F.; Newsome, Penny A.
1994-01-01
The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.
Sward, Katherine A; Newth, Christopher JL; Khemani, Robinder G; Cryer, Martin E; Thelen, Julie L; Enriquez, Rene; Shaoyu, Su; Pollack, Murray M; Harrison, Rick E; Meert, Kathleen L; Berg, Robert A; Wessel, David L; Shanley, Thomas P; Dalton, Heidi; Carcillo, Joseph; Jenkins, Tammara L; Dean, J Michael
2015-01-01
Objectives To examine the feasibility of deploying a virtual web service for sharing data within a research network, and to evaluate the impact on data consistency and quality. Material and Methods Virtual machines (VMs) encapsulated an open-source, semantically and syntactically interoperable secure web service infrastructure along with a shadow database. The VMs were deployed to 8 Collaborative Pediatric Critical Care Research Network Clinical Centers. Results Virtual web services could be deployed in hours. The interoperability of the web services reduced format misalignment from 56% to 1% and demonstrated that 99% of the data consistently transferred using the data dictionary and 1% needed human curation. Conclusions Use of virtualized open-source secure web service technology could enable direct electronic abstraction of data from hospital databases for research purposes. PMID:25796596
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Nichols, Kelvin F.; Witherspoon, Keith R.
2006-01-01
To date very little effort has been made to provide interoperability between various space agency projects. To effectively get to the Moon and beyond systems must interoperate. To provide interoperability, standardization and registries of various technologies will be required. These registries will be created as they relate to space flight. With the new NASA Moon/Mars initiative, a requirement to standardize and control the naming conventions of very disparate systems and technologies is emerging. The need to provide numbering to the many processes, schemas, vehicles, robots, space suits and technologies (e.g. versions), to name a few, in the highly complex Constellation initiative is imperative. The number of corporations, developer personnel, system interfaces, people interfaces will require standardization and registries on a scale not currently envisioned. It would only take one exception (stove piped system development) to weaken, if not, destroy interoperability. To start, a standardized registry process must be defined that allows many differing engineers, organizations and operators the ability to easily access disparate registry information across numerous technological and scientific disciplines. Once registries are standardized the need to provide registry support in terms of setup and operations, resolution of conflicts between registries and other issues will need to be addressed. Registries should not be confused with repositories. No end user data is "stored" in a registry nor is it a configuration control system. Once a registry standard is created and approved, the technologies that should be registered must be identified and prioritized. In this paper, we will identify and define a registry process that is compatible with the Constellation initiative and other non related space activities and organizations. We will then identify and define the various technologies that should use a registry to provide interoperability. The first set of technologies will be those that are currently in need of expansion namely the assignment of satellite designations and the process which controls assignments. Second, we will analyze the technologies currently standardized under the Consultative Committee for Space Data Systems (CCSDS) banner. Third, we will analyze the current CCSDS working group and Birds of a Feather (BoF) activities to ascertain registry requirements. Lastly, we will identify technologies that are either currently under the auspices of another standards body or technologies that are currently not standardized. For activities one through three, we will provide the analysis by either discipline or technology with rationale, identification and brief description of requirements and precedence. For activity four, we will provide a list of current standards bodies e.g. IETF and a list of potential candidates.
Asynchronous Message Service Reference Implementation
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
This software provides a library of middleware functions with a simple application programming interface, enabling implementation of distributed applications in conformance with the CCSDS AMS (Consultative Committee for Space Data Systems Asynchronous Message Service) specification. The AMS service, and its protocols, implement an architectural concept under which the modules of mission systems may be designed as if they were to operate in isolation, each one producing and consuming mission information without explicit awareness of which other modules are currently operating. Communication relationships among such modules are self-configuring; this tends to minimize complexity in the development and operations of modular data systems. A system built on this model is a society of generally autonomous, inter-operating modules that may fluctuate freely over time in response to changing mission objectives, modules functional upgrades, and recovery from individual module failure. The purpose of AMS, then, is to reduce mission cost and risk by providing standard, reusable infrastructure for the exchange of information among data system modules in a manner that is simple to use, highly automated, flexible, robust, scalable, and efficient. The implementation is designed to spawn multiple threads of AMS functionality under the control of an AMS application program. These threads enable all members of an AMS-based, distributed application to discover one another in real time, subscribe to messages on specific topics, and to publish messages on specific topics. The query/reply (client/server) communication model is also supported. Message exchange is optionally subject to encryption (to support confidentiality) and authorization. Fault tolerance measures in the discovery protocol minimize the likelihood of overall application failure due to any single operational error anywhere in the system. The multi-threaded design simplifies processing while enabling application nodes to operate at high speeds; linked lists protected by mutex semaphores and condition variables are used for efficient, inter-thread communication. Applications may use a variety of transport protocols underlying AMS itself, including TCP (Transmission Control Protocol), UDP (User Datagram Protocol), and message queues.
CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Segui, John S.
2011-01-01
To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.
The Pacor 2 expert system: A case-based reasoning approach to troubleshooting
NASA Technical Reports Server (NTRS)
Sary, Charisse
1994-01-01
The Packet Processor 2 (Pacor 2) Data Capture Facility (DCF) acquires, captures, and performs level-zero processing of packet telemetry for spaceflight missions that adhere to communication services recommendations established by the Consultative Committee for Space Data Systems (CCSDS). A major goal of this project is to reduce life-cycle costs. One way to achieve this goal is to increase automation. Through automation, using expert systems, and other technologies, staffing requirements will remain static, which will enable the same number of analysts to support more missions. Analysts provide packet telemetry data evaluation and analysis services for all data received. Data that passes this evaluation is forwarded to the Data Distribution Facility (DDF) and released to scientists. Through troubleshooting, data that fails this evaluation is dumped and analyzed to determine if its quality can be improved before it is released. This paper describes a proof-of-concept prototype that troubleshoots data quality problems. The Pacor 2 expert system prototype uses the case-based reasoning (CBR) approach to development, an alternative to a rule-based approach. Because Pacor 2 is not operational, the prototype has been developed using cases that describe existing troubleshooting experience from currently operating missions. Through CBR, this experience will be available to analysts when Pacor 2 becomes operational. As Pacor 2 unique experience is gained, analysts will update the case base. In essence, analysts are training the system as they learn. Once the system has learned the cases most likely to recur, it can serve as an aide to inexperienced analysts, a refresher to experienced analysts for infrequently occurring problems, or a training tool for new analysts. The Expert System Development Methodology (ESDM) is being used to guide development.
Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks
NASA Technical Reports Server (NTRS)
Birrane, Edward J. III; Burleigh, Scott C.; Cerf, Vint
2011-01-01
Challenged networks exhibit irregularities in their communication performance stemming from node mobility, power constraints, and impacts from the operating environment. These irregularities manifest as high signal propagation delay and frequent link disruption. Understanding those limits of link disruption and propagation delay beyond which core networking features fail is an ongoing area of research. Various wireless networking communities propose tools and techniques that address these phenomena. Emerging standardization activities within the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) look to build upon both this experience and scalability analysis. Successful research in this area is predicated upon identifying enablers for common communication functions (notably node discovery, duplex communication, state caching, and link negotiation) and how increased disruptions and delays affect their feasibility within the network. Networks that make fewer assumptions relating to these enablers provide more universal service. Specifically, reliance on node discovery and link negotiation results in network-specific operational concepts rather than scalable technical solutions. Fundamental to this debate are the definitions, assumptions, operational concepts, and anticipated scaling of these networks. This paper presents the commonalities and differences between delay and disruption tolerance, including support protocols and critical enablers. We present where and how these tolerances differ. We propose a set of use cases that must be accommodated by any standardized delay-tolerant network and discuss the implication of these on existing tool development.
Network Monitor and Control of Disruption-Tolerant Networks
NASA Technical Reports Server (NTRS)
Torgerson, J. Leigh
2014-01-01
For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.
Space Flight Middleware: Remote AMS over DTN for Delay-Tolerant Messaging
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2011-01-01
This paper describes a technique for implementing scalable, reliable, multi-source multipoint data distribution in space flight communications -- Delay-Tolerant Reliable Multicast (DTRM) -- that is fully supported by the "Remote AMS" (RAMS) protocol of the Asynchronous Message Service (AMS) proposed for standardization within the Consultative Committee for Space Data Systems (CCSDS). The DTRM architecture enables applications to easily "publish" messages that will be reliably and efficiently delivered to an arbitrary number of "subscribing" applications residing anywhere in the space network, whether in the same subnet or in a subnet on a remote planet or vehicle separated by many light minutes of interplanetary space. The architecture comprises multiple levels of protocol, each included for a specific purpose and allocated specific responsibilities: "application AMS" traffic performs end-system data introduction and delivery subject to access control; underlying "remote AMS" directs this application traffic to populations of recipients at remote locations in a multicast distribution tree, enabling the architecture to scale up to large networks; further underlying Delay-Tolerant Networking (DTN) Bundle Protocol (BP) advances RAMS protocol data units through the distribution tree using delay-tolerant storeand- forward methods; and further underlying reliable "convergence-layer" protocols ensure successful data transfer over each segment of the end-to-end route. The result is scalable, reliable, delay-tolerant multi-source multicast that is largely self-configuring.
Building a Multi-Discipline Digital Library Through Extending the Dienst Protocol
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt; Shen, Stewart N. T.
1997-01-01
The purpose of this project is to establish multi-discipline capability for a unified, canonical digital library service for scientific and technical information (STI). This is accomplished by extending the Dienst Protocol to be aware of subject classification of a servers holdings. We propose a hierarchical, general, and extendible subject classification that can encapsulate existing classification systems.
Celebrating 40 Years. Early Developments. Volume 10, Number 1, Spring 2006
ERIC Educational Resources Information Center
Winton, Pam, Ed.; Buyssee, Virginia, Ed.; Hambrick, Catherine, Ed.
2006-01-01
Although the FPG Child Development Institute's primary mission is to generate new knowledge, this research is in the service of a higher goal: child and family well being. This goal is distilled in their tag line: "Advancing knowledge, enhancing lives." This phrase is not just a tag line--it encapsulates 40 years of striving to be an…
Parallel integrated frame synchronizer chip
NASA Technical Reports Server (NTRS)
Solomon, Jeffrey Michael (Inventor); Ghuman, Parminder Singh (Inventor); Bennett, Toby Dennis (Inventor)
2000-01-01
A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.
NASA Astrophysics Data System (ADS)
Gunes-Lasnet, Sev; Dufour, Jean-Francois
2012-08-01
The potential uses and benefits of wireless technologies in space are very broad. Since many years the CCSDS SOIS wireless working group has worked at the identification of key applications for which wireless would bring benefits, and at supporting the deployment of wireless in space thanks to documents, in particular a Green informative book and magenta books presenting recommended practices.The Smart Sensor Inter-Agency Research Test bench (SSIART) is being designed to provide the space Agencies and the Industry with a reference smart sensor platform to test wireless sensor technologies in reference representative applications and RF propagation environments, while promoting these technologies at the same time.
Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC
NASA Technical Reports Server (NTRS)
Schnurr, Richard; Marquart, Jane; Lin, Michael
2003-01-01
Advancements in fright semiconductor technology have opened the door for IP-based networking in spacecraft architectures. The GSFC believes the same signlJicant cost savings gained using MIL-STD-1553/1773 as a standard low rate interface for spacecraft busses cun be realized for highspeed network interfaces. To that end, GSFC is developing hardware and software to support a seamless, space mission IP network based on Ethernet and MIL-STD-1553. The Ethernet network shall connect all fright computers and communications systems using interface standards defined by the CCSDS Standard Onboard InterFace (SOIF) Panel. This paper shall discuss the prototyping effort underway at GSFC and expected results.
Simultant encapsulation of vitamin C and beta-carotene in sesame (Sesamum indicum l.) liposomes
NASA Astrophysics Data System (ADS)
Hudiyanti, D.; Fawrin, H.; Siahaan, P.
2018-04-01
In this study sesame liposomes were used to encapsulate both vitamin C and beta-carotene simultaneously. Liposomes were prepared with addition of cholesterol. The encapsulation efficiency (EE) of sesame liposomes for vitamin C in the present of beta-carotene was 77%. The addition of cholesterol increased the encapsulation efficiency. The highest encapsulation efficiency was 89% obtained in liposomes with 10% and 20% cholesterol. Contrary to that, the highest beta-carotene encapsulation efficiency of 78%, was found in the sesame liposomes prepared without the added cholesterol. Results showed that sesame liposomes can be used to encapsulate beta-carotene and vitamin C simultaneously. When beta-carotene and vitamin C were encapsulated concurrently, cholesterol intensified the efficiency of vitamin C encapsulation on the contrary it diminished the efficiency of beta-carotene encapsulation.
Acquisition Research for Design and Service Enterprises
2014-02-02
better than refurbishment. Replacement: Replacing a component means to swap in a new component. Consequently, the efficiency after replacement is...objectives are fueled by anticipation of future gains; and transaction encapsulates the reluctance to change currencies /investments because of the fixed...those for holding currency . It can be argued that the exception is when goods are held in reserve to meet uncertain demands, with the objective of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Annigoni, Eleonora; Ballion, Amal
2015-08-12
Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Annigoni, Eleonora; Ballion, Amal
2015-06-14
Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding thatmore » will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.« less
Landsat Data Continuity Mission (LDCM) space to ground mission data architecture
Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.
2012-01-01
The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM Mission Operations Center (MOC) to perform the CFDP accounting, file retransmissions, and management of the autonomous features of the SSR.
DSMS investment in support of satellite constellations and formation flying
NASA Technical Reports Server (NTRS)
Statman, J. I.
2003-01-01
Over the years, NASA has supported unmanned space missions, beyond earth orbit, through a Deep Space Mission System (DSMS) that is developed and operated by the Jet Propulsion Laboratory (JPL) and subcontractors. The DSMS capabilities have been incrementally upgraded since its establishment in the late '50s and are delivered primarily through three Deep Space Communications Complexes (DSCC 's) near Goldstone, California, Madrid, Spain, and Canberra, Australia and from facilities at JPL. Traditionally, mission support (tracking, command, telemetry, etc) is assigned on an individual-mission basis, between each mission and a ground-based asset, independent of other missions. As NASA, and its international partners, move toward flying fullconstellations and precision formations, the DSMS is developing plans and technologies to provide the requisite support. The key activities under way are: (1) integrated communications architecture for Mars exploration, including relays on science orbiters and dedicated relay satellites to provide continuous coverage for orbiters, landers and rovers. JPL is developing an architecture, as well as protocols and equipment, required for the cost-effective operations of such an infrastructure. (2) Internet-type protocols that will allow for efficient operations across the deep-space distances, accounting for and accommodating the long round-trip-light-time. JPL is working with the CCSDS to convert these protocols to an international standard and will deploy such protocol, the CCSDS File Delivery Protocol (CFDP), on the Mars Reconnaissance Orbiter (MRO) and on the Deep Impact (01) missions. (3) Techniques to perform cross-navigation between spacecrafi that fly in a loose formation. Typical cases are cross-navigation between missions that approach Mars and missionsthat are at Mars, or the determination of a baseline for missions that fly in an earth-lead- lag configuration. (4) Techniques and devices that allow the precise metrology and controllability of tightformations for precision constellation missions. In this paper we discuss the four classes of constellatiodformation support with emphasis of DSMS current status (technology and implementation) and plans in the first three areas.
A neural network based reputation bootstrapping approach for service selection
NASA Astrophysics Data System (ADS)
Wu, Quanwang; Zhu, Qingsheng; Li, Peng
2015-10-01
With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.
Hybrid chip-on-board LED module with patterned encapsulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soer, Wouter Anthon; Helbing, Rene; Huang, Guan
Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than anothermore » first set of first light emitting elements (160).« less
2003-08-14
KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) waits for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.
Introduction to study and simulation of low rate video coding schemes
NASA Technical Reports Server (NTRS)
1992-01-01
During this period, the development of simulators for the various HDTV systems proposed to the FCC were developed. These simulators will be tested using test sequences from the MPEG committee. The results will be extrapolated to HDTV video sequences. Currently, the simulator for the compression aspects of the Advanced Digital Television (ADTV) was completed. Other HDTV proposals are at various stages of development. A brief overview of the ADTV system is given. Some coding results obtained using the simulator are discussed. These results are compared to those obtained using the CCITT H.261 standard. These results in the context of the CCSDS specifications are evaluated and some suggestions as to how the ADTV system could be implemented in the NASA network are made.
A new method of enhancing telecommand security: the application of GCM in TC protocol
NASA Astrophysics Data System (ADS)
Zhang, Lei; Tang, Chaojing; Zhang, Quan
2007-11-01
In recent times, security has grown to a topic of major importance for the space missions. Many space agencies have been engaged in research on the selection of proper algorithms for ensuring Telecommand security according to the space communication environment, especially in regard to the privacy and authentication. Since space missions with high security levels need to ensure both privacy and authentication, Authenticated Encryption with Associated Data schemes (AEAD) be integrated into normal Telecommand protocols. This paper provides an overview of the Galois Counter Mode (GCM) of operation, which is one of the available two-pass AEAD schemes, and some preliminary considerations and analyses about its possible application to Telecommand frames specified by CCSDS.
Software Implements a Space-Mission File-Transfer Protocol
NASA Technical Reports Server (NTRS)
Rundstrom, Kathleen; Ho, Son Q.; Levesque, Michael; Sanders, Felicia; Burleigh, Scott; Veregge, John
2004-01-01
CFDP is a computer program that implements the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol, which is an international standard for automatic, reliable transfers of files of data between locations on Earth and in outer space. CFDP administers concurrent file transfers in both directions, delivery of data out of transmission order, reliable and unreliable transmission modes, and automatic retransmission of lost or corrupted data by use of one or more of several lost-segment-detection modes. The program also implements several data-integrity measures, including file checksums and optional cyclic redundancy checks for each protocol data unit. The metadata accompanying each file can include messages to users application programs and commands for operating on remote file systems.
HyspIRI Intelligent Payload Module(IPM) and Benchmarking Algorithms for Upload
NASA Technical Reports Server (NTRS)
Mandl, Daniel
2010-01-01
Features: Hardware: a) Xilinx Virtex-5 (GSFC Space Cube 2); b) 2 x 400MHz PPC; c) 100MHz Bus; d) 2 x 512MB SDRAM; e) Dual Gigabit Ethernet. Support Linux kernel 2.6.31 (gcc version 4.2.2). Support software running in stand alone mode for better performance. Can stream raw data up to 800 Mbps. Ready for operations. Software Application Examples: Band-stripping Algiotrhmsl:cloud, sulfur, flood, thermal, SWIL, NDVI, NDWI, SIWI, oil spills, algae blooms, etc. Corrections: geometric, radiometric, atmospheric. Core Flight System/dynamic software bus. CCSDS File Delivery Protocol. Delay Tolerant Network. CASPER /onboard planning. Fault monitoring/recovery software. S/C command and telemetry software. Data compression. Sensor Web for Autonomous Mission Operations.
Frey, Lewis J; Sward, Katherine A; Newth, Christopher J L; Khemani, Robinder G; Cryer, Martin E; Thelen, Julie L; Enriquez, Rene; Shaoyu, Su; Pollack, Murray M; Harrison, Rick E; Meert, Kathleen L; Berg, Robert A; Wessel, David L; Shanley, Thomas P; Dalton, Heidi; Carcillo, Joseph; Jenkins, Tammara L; Dean, J Michael
2015-11-01
To examine the feasibility of deploying a virtual web service for sharing data within a research network, and to evaluate the impact on data consistency and quality. Virtual machines (VMs) encapsulated an open-source, semantically and syntactically interoperable secure web service infrastructure along with a shadow database. The VMs were deployed to 8 Collaborative Pediatric Critical Care Research Network Clinical Centers. Virtual web services could be deployed in hours. The interoperability of the web services reduced format misalignment from 56% to 1% and demonstrated that 99% of the data consistently transferred using the data dictionary and 1% needed human curation. Use of virtualized open-source secure web service technology could enable direct electronic abstraction of data from hospital databases for research purposes. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High voltage photo-switch package module having encapsulation with profiled metallized concavities
Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen A
2015-05-05
A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces metalized with first metallic layers formed thereon, and encapsulated with a dielectric encapsulation material such as for example epoxy. The first metallic layers are exposed through the encapsulation via encapsulation concavities which have a known contour profile, such as a Rogowski edge profile. Second metallic layers are then formed to line the concavities and come in contact with the first metal layer, to form profiled and metalized encapsulation concavities which mitigate enhancement points at the edges of electrodes matingly seated in the concavities. One or more optical waveguides may also be bonded to the substrate for coupling light into the photo-conductive wafer, with the encapsulation also encapsulating the waveguides.
Flexible packaging for microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Barbieri, A.; Brower, E.; Estabrook, P.; Gibbs, R.; Horttor, R.; Ludwinski, J.; Mase, R.; McCarthy, C.; Schmidt, R.;
2004-01-01
NASA and ESA have established an international network of Mars orbiters, outfitted with relay communications payloads, to support robotic exploration of the red planet. Starting in January, 2004, this network has provided the Mars Exploration Rovers with telecommunications relay services, significantly increasing rover engineering and science data return while enhancing mission robustness and operability. Augmenting the data return capabilities of their X-band direct-to-Earth links, the rovers are equipped with UHF transceivers allowing data to be relayed at high rate to the Mars Global Surveyor (MGS), Mars Odyssey, and Mars Express orbiters. As of 21 July, 2004, over 50 Gbits of MER data have been obtained, with nearly 95% of that data returned via the MGS and Odyssey UHF relay paths, allowing a large increase in science return from the Martian surface relative to the X-band direct-to-Earth link. The MGS spacecraft also supported high-rate UHF communications of MER engineering telemetry during the critical period of entry, descent, and landing (EDL), augmenting the very low-rate EDL data collected on the X-band direct-to-Earth link. Through adoption of the new CCSDS Proximity-1 Link Protocol, NASA and ESA have achieved interoperability among these Mars assets, as validated by a successful relay demonstration between Spirit and Mars Express, enabling future interagency cross-support and establishing a truly international relay network at Mars.
Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)
NASA Astrophysics Data System (ADS)
Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.
2001-05-01
Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.
NASA Astrophysics Data System (ADS)
Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott
2009-05-01
The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type and location of data sought by multiple processes to the attention of each processing station, just that specifically sought data is downloaded to each process application. The Sensor Layer Prototype participated in a proof-of-concept demonstration in April 2008. This event allowed multiple MITRE innovation programs to interact among themselves to demonstrate the ability to couple value-adding but previously unanticipated users to the enterprise. For this event, the Sensor Layer Prototype was used to show data entering the environment in real time. Multiple data types were encapsulated and added to the database via the Sensor Layer Prototype, specifically National Imagery Transmission Format 2.1 (NITF), NATO Standardization Format 4607 (STANAG 4607), Cursor-on-Target (CoT), Joint Photographic Experts Group (JPEG), Hierarchical Data Format (HDF5) and several additional sensor file formats describing multiple sensors addressing a common scenario.
Enhanced Wound Healing Using Topically Administered Nanoparticle Encapsulated siRNA
2013-11-01
from eye surgery such as LASIK surgery, LASEK surgery, PRK surgery, glaucoma filtration surgery, cataract surgery, or surgery in which the lens...treatment vs . siRNA transfection using the RNAiMAX delivery system from InVitrogen (http://www.invitrogen.com/site/us/en/home/Products-and- Services...consisting of: wounds of the skin; wounds of the eye (including the inhibition of scarring resulting from eye surgery such as LASIK surgery, LASEK surgery
Thirty-five year review of a mercury monitoring service for Scottish dental practices.
Duncan, A; O'Reilly, D Stj; McDonald, E B; Watkins, T R; Taylor, M
2011-02-12
To review a long-standing mercury monitoring service offered to staff in dental practices in Scotland. During the first 20 years of the service, dentists and their staff were contacted by letter and invited to participate. Respondents were asked to collect samples of head hair, pubic hair, fingernail and toenail for analysis of mercury. After 1995, head hair samples were collected initially and further samples were only measured if head hair mercury was elevated. At the start of this scheme many staff, including administrative staff, had systemic exposure to mercury (defined as increased mercury in all four samples). Incidents of exposure have decreased over the 35 years and are now very rare. Male staff were found to have higher mercury concentrations than female staff and dentists tended to have higher concentrations than other staff. Staff working in dental practices more than five years old had small but discernable increases in head hair mercury concentration. In recent years the use of reusable capsules such as Dentomats has been associated with a slight but statistically significant increase in head hair mercury concentrations when compared to the use of encapsulated amalgam systems. Staff wearing open-toed footwear had significantly higher toenail mercury concentrations compared to those who wore shoes. Exposure of staff to mercury in Scottish dental practices is currently now very low. This is probably as a result of increased awareness to the toxicity of mercury and improved methods of preparing amalgam. It may be possible to reduce exposure further, although probably only slightly, by upgrading practices and using encapsulated mercury amalgam.
NASA Astrophysics Data System (ADS)
Rahmam., S.; Naim., M. N.; Ng., E.; Mokhtar, M. Nn; Abu Bakar, N. F.
2016-06-01
The ability of electrospray to encapsulate the bioactive compound extracted from Jasmine flower with β-Cyclodextrion (β-CD) without any thermal-assisted processing was demonstrated in this study. The extraction of Jasmine compound were conducted using sonicator at 70 000 Hz, for 10 minutes and followed by mixing of the filtered compound with β-CD. Then, the mixture was electrosprayed under a stable Taylor cone jet mode at the voltage of 4 - 5 kV, with flow rate of 0.2 ml/hour. The aluminum substrate that used for collecting the deposit was placed at 30 cm from the needle's tip to allow the occurrence of evaporation and droplet fission until the droplet transform to solid particles. Characteristics of solidified bioactive compound from Jasmine flower (non-encapsulated compound) and solidified bioactive compound with β-CD (encapsulated compound) were studied in this work. From SEM images, it can be observed that the particles size distribution of encapsulated compound deposits have better deposition array and did not aggregate with each other compared to the non-encapsulated compound. FE-SEM images of encapsulated compound deposits indicate more solid crystal looks while non-encapsulated compound was obtained in the porous form. The electrospray process in this work has successfully encapsulated the Jasmine compound with β-CD without any thermal-assisted process. The encapsulation occurrence was determined using FTIR analysis. Identical peaks that referred to the β-CD were found on the encapsulated compound demonstrated that most deposits were encapsulated with β-CD.
NASA Technical Reports Server (NTRS)
Kolyer, J. M.; Mann, N. R.
1977-01-01
Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.
Wu, Liang; Chen, Pu; Dong, Yingsong; Feng, Xiaojun; Liu, Bi-Feng
2013-06-01
Encapsulation of single cells is a challenging task in droplet microfluidics due to the random compartmentalization of cells dictated by Poisson statistics. In this paper, a microfluidic device was developed to improve the single-cell encapsulation rate by integrating droplet generation with fluorescence-activated droplet sorting. After cells were loaded into aqueous droplets by hydrodynamic focusing, an on-flight fluorescence-activated sorting process was conducted to isolate droplets containing one cell. Encapsulation of fluorescent polystyrene beads was investigated to evaluate the developed method. A single-bead encapsulation rate of more than 98 % was achieved under the optimized conditions. Application to encapsulate single HeLa cells was further demonstrated with a single-cell encapsulation rate of 94.1 %, which is about 200 % higher than those obtained by random compartmentalization. We expect this new method to provide a useful platform for encapsulating single cells, facilitating the development of high-throughput cell-based assays.
Issues deserve attention in encapsulating probiotics: Critical review of existing literature.
Chen, Jun; Wang, Qi; Liu, Cheng-Mei; Gong, Joshua
2017-04-13
Probiotic bacteria are being increasingly added to food for developing products with health-promoting properties. However, the efficacy of probiotics in commercial products is often questioned due to the loss of their viability during shelf storage and in human gastrointestinal tracts. Encapsulation of probiotics has been expected to provide protection to probiotics, but not many commercial products contain encapsulated and viable probiotic cells owing to various reasons. To promote the development and application of encapsulation technologies, this paper has critically reviewed previous publications with a focus on the areas where studies have fallen short, including insufficient consideration of structural effects of encapsulating material, general defects in encapsulating methods and issues in evaluation methodologies and risk assessments for application. Corresponding key issues that require further studies are highlighted. Some emerging trends in the field, such as current treads in encapsulating material and recently advanced encapsulation techniques, have also been discussed.
Selective encapsulation by Janus particles
NASA Astrophysics Data System (ADS)
Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.
2015-06-01
We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.
Microfluidic approach for encapsulation via double emulsions.
Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin
2014-10-01
Double emulsions, with inner drops well protected by the outer shells, show great potential as compartmentalized systems to encapsulate multiple components for protecting actives, masking flavor, and targetedly delivering and controllably releasing drugs. Precise control of the encapsulation characteristics of each component is critical to achieve an optimal therapeutic efficacy for pharmaceutical applications. Such controllable encapsulation can be realized by using microfluidic approaches for producing monodisperse double emulsions with versatile and controllable structures as the encapsulation system. The size, number and composition of the emulsion drops can be accurately manipulated for optimizing the encapsulation of each component for pharmaceutical applications. In this review, we highlight the outstanding advantages of controllable microfluidic double emulsions for highly efficient and precisely controllable encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Photovoltaic module encapsulation design and materials selection, volume 1
NASA Technical Reports Server (NTRS)
Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.
1982-01-01
Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.
Mendez, Natalie; Herrera, Vanessa; Zhang, Lingzhi; Hedjran, Farah; Feuer, Ralph; Blair, Sarah L; Trogler, William C; Reid, Tony R; Kummel, Andrew C
2014-11-01
Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140 to 180 nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4 × higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mendez, N.; Herrera, V.; Zhang, L.; Hedjran, F.; Feuer, R.; Blair, S.; Trogler, W.; Reid, T.
2014-01-01
Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140–180nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4× higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations. PMID:25154663
Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.
Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi
2016-11-01
Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.
NASA Astrophysics Data System (ADS)
Pujiastuti, A.; Cahyono, E.; Sumarni, W.
2017-04-01
Mosquito (Aedes aegypti) is a threat to human health due to its capability to spread dengue fever. Citronellal in citronella oil is one ofnatural active compound that has repellent activity. Essential oil is a sensitive material whichiseasy to degrade. Encapsulation is coating technology use to avoid essential oil from degradation problems. β-Cyclodextrin is frequently used as acoating material in encapsulation. The aims of this study wereto prepare the citronellal encapsulation and to evaluate its control-released and repellency. In this study, encapsulated citronellal was prepared using 83.65% citronellal and encapsulation were prepared with the theemulsion-based method and dried using freeze-dryer. The best-controlled release was performed in citronellal encapsulate with a weight ratio of 1:1 (citronellal : β-Cyclodextrin). The morphology of encapsulated citronellal was analyzed using SEM. SEM result showed it has three dimensions random shape and agglomerate in some part with thebrighter spot. Citronellal encapsulate showed the highest repellent effect at 84,67% for 5 minutes in mosquito repellency test although it has lower result compared with citronellal inliquid form.
The application of encapsulation material stability data to photovoltaic module life assessment
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1983-01-01
For any piece of hardware that degrades when subject to environmental and application stresses, the route or sequence that describes the degradation process may be summarized in terms of six key words: LOADS, RESPONSE, CHANGE, DAMAGE, FAILURE, and PENALTY. Applied to photovoltaic modules, these six factors form the core outline of an expanded failure analysis matrix for unifying and integrating relevant material degradation data and analyses. An important feature of this approach is the deliberate differentiation between factors such as CHANGE, DAMAGE, and FAILURE. The application of this outline to materials degradation research facilitates the distinction between quantifying material property changes and quantifying module damage or power loss with their economic consequences. The approach recommended for relating material stability data to photovoltaic module life is to use the degree of DAMAGE to (1) optical coupling, (2) encapsulant package integrity, (3) PV circuit integrity or (4) electrical isolation as the quantitative criterion for assessing module potential service life rather than simply using module power loss.
iSAFT Protocol Validation Platform for On-Board Data Networks
NASA Astrophysics Data System (ADS)
Tavoularis, Antonis; Kollias, Vangelis; Marinis, Kostas
2014-08-01
iSAFT is an integrated powerful HW/SW environmentfor the simulation, validation & monitoring of satellite/spacecraft on-board data networks supporting simultaneously a wide range of protocols (RMAP, PTP, CCSDS Space Packet, TM/TC, CANopen, etc.) and network interfaces (SpaceWire, ECSS MIL-STD-1553, ECSS CAN). It is based on over 20 years of TELETEL's experience in the area of protocol validation in the telecommunications and aeronautical sectors, and it has been fully re-engineered in cooperation of TELETEL with ESA & space Primes, to comply with space on-board industrial validation requirements (ECSS, EGSE, AIT, AIV, etc.). iSAFT is highly modular and expandable to support new network interfaces & protocols and it is based on the powerful iSAFT graphical tool chain (Protocol Analyser / Recorder, TestRunner, Device Simulator, Traffic Generator, etc.).
Data Management for Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Snyder, Joseph F.; Smyth, David E.
2004-01-01
Data Management for the Mars Exploration Rovers (MER) project is a comprehensive system addressing the needs of development, test, and operations phases of the mission. During development of flight software, including the science software, the data management system can be simulated using any POSIX file system. During testing, the on-board file system can be bit compared with files on the ground to verify proper behavior and end-to-end data flows. During mission operations, end-to-end accountability of data products is supported, from science observation concept to data products within the permanent ground repository. Automated and human-in-the-loop ground tools allow decisions regarding retransmitting, re-prioritizing, and deleting data products to be made using higher level information than is available to a protocol-stack approach such as the CCSDS File Delivery Protocol (CFDP).
Applications of massively parallel computers in telemetry processing
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.; Pritchard, Jim; Knoble, Gordon
1994-01-01
Telemetry processing refers to the reconstruction of full resolution raw instrumentation data with artifacts, of space and ground recording and transmission, removed. Being the first processing phase of satellite data, this process is also referred to as level-zero processing. This study is aimed at investigating the use of massively parallel computing technology in providing level-zero processing to spaceflights that adhere to the recommendations of the Consultative Committee on Space Data Systems (CCSDS). The workload characteristics, of level-zero processing, are used to identify processing requirements in high-performance computing systems. An example of level-zero functions on a SIMD MPP, such as the MasPar, is discussed. The requirements in this paper are based in part on the Earth Observing System (EOS) Data and Operation System (EDOS).
Space Network Time Distribution and Synchronization Protocol Development for Mars Proximity Link
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Gao, Jay L.; Mills, David
2010-01-01
Time distribution and synchronization in deep space network are challenging due to long propagation delays, spacecraft movements, and relativistic effects. Further, the Network Time Protocol (NTP) designed for terrestrial networks may not work properly in space. In this work, we consider the time distribution protocol based on time message exchanges similar to Network Time Protocol (NTP). We present the Proximity-1 Space Link Interleaved Time Synchronization (PITS) algorithm that can work with the CCSDS Proximity-1 Space Data Link Protocol. The PITS algorithm provides faster time synchronization via two-way time transfer over proximity links, improves scalability as the number of spacecraft increase, lowers storage space requirement for collecting time samples, and is robust against packet loss and duplication which underlying protocol mechanisms provide.
NASA Astrophysics Data System (ADS)
Qiao, Hai; Hu, Na; Bai, Jin; Ren, Lili; Liu, Qing; Fang, Liaoqiong; Wang, Zhibiao
2017-12-01
Protocells are believed to consist of a lipid membrane and encapsulated nucleic acid. As the lipid membrane is impermeable to macromolecules like nucleic acids, the processes by which nucleic acids become encapsulated inside lipid membrane compartments are still unknown. In this paper, a freeze-thaw method was modified and applied to giant unilamellar vesicles (GUVs) and deoxyribonucleic acid (DNA) in mixed solution resulting in the efficient encapsulation of 6.4 kb plasmid DNA and similar length linear DNA into GUVs. The mechanism of encapsulation was followed by observing the effect of freeze-thaw temperatures on GUV morphological change, DNA encapsulation and ice crystal formation, and analyzing their correlation. Following ice crystal formation, the shape of spherical GUVs was altered and membrane integrity was damaged and this was found to be a necessary condition for encapsulation. Heating alone had no effects on DNA encapsulation, but was helpful for restoring the spherical shape and membrane integrity of GUVs damaged during freezing. These results suggested that freeze-thaw could promote the encapsulation of DNA into GUVs by a mechanism: the vesicle membrane was breached by ice crystal formation during freezing, DNA entered into damaged GUVs through these membrane gaps and was encapsulated after the membrane was resealed during the thawing process. The process described herein therefore describes a simple way for the encapsulation of nucleic acids and potentially other macromolecules into lipid vesicles, a process by which early protocells might have formed.
2003-08-14
KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, workers move the first half of the fairing around the Space Infrared Telescope Facility (SIRTF) behind it for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.
2003-08-14
KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, the first half of the fairing (background) moves toward the Space Infrared Telescope Facility (foreground) for encapsulation. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.
2003-08-10
KENNEDY SPACE CENTER, FLA. - After dawn, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Selective encapsulation by Janus particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.
2015-06-28
We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less
Encapsulation of Organic Chemicals within a Starch Matrix.
ERIC Educational Resources Information Center
Wing, R. E.; Shasha, B. S.
1983-01-01
Three experiments demonstrating the feasibility of encapsulating liquids within a starch matrix are described, including encapsulation of linseed oil using the zanthate method and of turpentine and butylate using the calcium adduct procedure. Encapsulated materials, including pesticides, are slowly released from the resulting matrix. Considers…
NASA Astrophysics Data System (ADS)
Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.
2013-09-01
Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.
Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong
2015-06-01
Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.
Makhadmeh, Ghaseb Naser; Abdul Aziz, Azlan; Abdul Razak, Khairunisak
2016-05-01
This study analyzed the physical effects of methylene blue (MB) encapsulated within silica nanoparticles (SiNPs) in photodynamic therapy. The optimum concentration of MB needed to destroy red blood cells (RBCs) was determined, and the efficacy of encapsulated MB-SiNPs compared to that of naked MB was verified. The results confirmed the applicability of MB encapsulated in SiNPs on RBCs, and established a relationship between the concentration of the SiNP-encapsulated MB and the time required to rupture 50% of the RBCs (t50). The MB encapsulated in SiNPs exhibited higher efficacy compared to that of naked MB.
Method of making thermally removable polymeric encapsulants
Small, James H.; Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.
2001-01-01
A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90.degree. C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.
A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.
Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab
2017-04-01
Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.
Assembly of ordered carbon shells on semiconducting nanomaterials
Sutter, Eli Anguelova; Sutter, Peter Werner
2010-05-11
In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.
Assembly of ordered carbon shells on semiconducting nanomaterials
Sutter, Eli Anguelova; Sutter, Peter Werner
2012-10-02
In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.
Noninvasive encapsulated fiber optic probes for interferometric measurement
NASA Astrophysics Data System (ADS)
Zboril, O.; Cubik, J.; Kepak, S.; Nedoma, J.; Fajkus, M.; Zavodny, P.; Vasinek, V.
2017-10-01
This article focuses on the sensitivity of encapsulated interferometric probes. These probes are used mainly for BioMed and security applications. Fiber-optic sensors are interesting for these applications, as they are resistant to electromagnetic interference (EMI) and that also do not affect the surrounding medical and security equipment. Using a loop of the optical fiber with is not a suitable for these measurements. The optical fiber should be fixed to one position, and should not significantly bend. For these reasons, the optical fiber is encapsulated. Furthermore, it is necessary that the encapsulated measuring probes were flexible, inert, water resistant and not toxic. Fiber-optic sensors shouldn't be magnetically active, so they can be used for example, in magnetic resonance environments (MR). Probes meeting these requirements can be widely used in health care and security applications. Encapsulation of interferometric measuring arm brings changes in susceptibility of measurements in comparison with the optical fiber without encapsulation. To evaluate the properties of the encapsulated probes, series of probes made from different materials for encapsulation was generated, using two types of optical fibers with various degrees of protection. Comparison of the sensitivity of different encapsulated probes was performed using a series of measurements at various frequencies. The measurement results are statistically compared in the article and commented. Given the desired properties polydimethylsiloxane (PDMS) polymer has been proven the most interesting encapsulating material for further research.
Azevedo, Helena S; Reis, Rui L
2009-10-01
This paper reports the effect of alpha-amylase encapsulation on the degradation rate of a starch-based biomaterial. The encapsulation method consisted in mixing a thermostable alpha-amylase with a blend of corn starch and polycaprolactone (SPCL), which were processed by compression moulding to produce circular disks. The presence of water was avoided to keep the water activity low and consequently to minimize the enzyme activity during the encapsulation process. No degradation of the starch matrix occurred during processing and storage (the encapsulated enzyme remained inactive due to the absence of water), since no significant amount of reducing sugars was detected in solution. After the encapsulation process, the released enzyme activity from the SPCL disks after 28days was found to be 40% comparatively to the free enzyme (unprocessed). Degradation studies on SPCL disks, with alpha-amylase encapsulated or free in solution, showed no significant differences on the degradation behaviour between both conditions. This indicates that alpha-amylase enzyme was successfully encapsulated with almost full retention of its enzymatic activity and the encapsulation of alpha-amylase clearly accelerates the degradation rate of the SPCL disks, when compared with the enzyme-free disks. The results obtained in this work show that degradation kinetics of the starch polymer can be controlled by the amount of encapsulated alpha-amylase into the matrix.
NASA Astrophysics Data System (ADS)
Natsir, Muhammad Halim; Hartutik, Sjofjan, Osfar; Widodo, Eko; Widyastuti, Eny Sri
2017-05-01
The objective of this experiment was to evaluate the use of acidifier and herb-acidifier combinations on intestinal microflora, intestinal histology and serum characteristics of broilers at 35 days of age when fed a diet supplemented with natural acidifier (lactic acid and citric acid), and herb-acidifier combinations (natural acidifier and herbs (garlic and Phyllanthus niruri L.) encapsulated and non-encapsulated. Here, 192 (Lohmann) broiler chicks were fed a negative control diet, positive control diet (tetracycline), 1.2% acidifier non-encapsulated (ANE), 1.2% acidifier encapsulated (AE), 1.2% herb-acidifier combination non-encapsulated (CNE), or 1.2% herb-acidifier combination encapsulated (CE). The variables measured were the total colony of lactic acid bacteria, Escherichia coli and Salmonella sp., intestinal histological characteristics (crypt depth, villi number, villi length, and viscosity) and serum (total protein, serum albumin, and serum globulin). Results showed that during the 35-d growth period, there were significant differences (P<0.01) in increases of the total number of colonies of lactic acid bacteria and a decrease in the total colony of Escherichia coli and Salmonella sp., along with increasing intestinal histological characteristics (crypt depth, villi number, villi length, and viscosity) and total proteins in the serum, as well as significant effects (P<0.05) on intestinal pH and serum albumin. It is concluded that the use acidifiers or herb-acidifier combinations in encapsulation performed better than without encapsulation. Therefore using 1.2% of encapsulated combinations of herb-acidifiers in broiler diet is recommended.
New Directions in Space Operations Services in Support of Interplanetary Exploration
NASA Technical Reports Server (NTRS)
Bradford, Robert N.
2005-01-01
To gain access to the necessary operational processes and data in support of NASA's Lunar/Mars Exploration Initiative, new services, adequate levels of computing cycles and access to myriad forms of data must be provided to onboard spacecraft and ground based personnel/systems (earth, lunar and Martian) to enable interplanetary exploration by humans. These systems, cycles and access to vast amounts of development, test and operational data will be required to provide a new level of services not currently available to existing spacecraft, on board crews and other operational personnel. Although current voice, video and data systems in support of current space based operations has been adequate, new highly reliable and autonomous processes and services will be necessary for future space exploration activities. These services will range from the more mundane voice in LEO to voice in interplanetary travel which because of the high latencies will require new voice processes and standards. New services, like component failure predictions based on data mining of significant quantities of data, located at disparate locations, will be required. 3D or holographic representation of onboard components, systems or family members will greatly improve maintenance, operations and service restoration not to mention crew morale. Current operational systems and standards, like the Internet Protocol, will not able to provide the level of service required end to end from an end point on the Martian surface like a scientific instrument to a researcher at a university. Ground operations whether earth, lunar or Martian and in flight operations to the moon and especially to Mars will require significant autonomy that will require access to highly reliable processing capabilities, data storage based on network storage technologies. Significant processing cycles will be needed onboard but could be borrowed from other locations either ground based or onboard other spacecraft. Reliability will be a key factor with onboard and distributed backup processing an absolutely necessary requirement. Current cluster processing/Grid technologies may provide the basis for providing these services. An overview of existing services, future services that will be required and the technologies and standards required to be developed will be presented. The purpose of this paper will be to initiate a technological roadmap, albeit at a high level, of current voice, video, data and network technologies and standards (which show promise for adaptation or evolution) to what technologies and standards need to be redefined, adjusted or areas where new ones require development. The roadmap should begin the differentiation between non manned and manned processes/services where applicable. The paper will be based in part on the activities of the CCSDS Monitor and Control working group which is beginning the process of standardization of the these processes. Another element of the paper will be based on an analysis of current technologies supporting space flight processes and services at JSC, MSFC, GSFC and to a lesser extent at KSC. Work being accomplished in areas such as Grid computing, data mining and network storage at ARC, IBM and the University of Alabama at Huntsville will be researched and analyzed.
BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services.
Velloso, Henrique; Vialle, Ricardo A; Ortega, J Miguel
2015-06-02
Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.
Cui, Haiying; Yuan, Lu; Lin, Lin
2017-12-01
In recent years, phages used for the reduction of pathogenic bacteria have fostered many attentions, but they are liable to lost bioactivity in food due to the presence of acidic compounds, enzymes and evaporite materials. To improve the stability of phages, a chitosan edible film containing liposome-encapsulated phage was engineered in the present study. The characteristics of liposome-encapsulated phage and the chitosan film containing liposome-encapsulated phage were investigated. The encapsulation efficiency of phages in liposome reached 57.66±0.12%. Besides, the desirable physical properties of chitosan film were obtained. The chitosan film embedded with liposome-encapsulated phage exhibited high antibacterial activity against Escherichia coli O157:H7, without the impact on the sensory properties of beef. Hence, chitosan film containing liposome-encapsulated phage could be a promising antibacterial packaging for beef preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
de Mello, Michele Brauner; da Silva Malheiros, Patrícia; Brandelli, Adriano; Pesce da Silveira, Nádya; Jantzen, Márcia Monks; de Souza da Motta, Amanda
2013-03-01
Encapsulation may provide increased stability and antimicrobial efficiency to bacteriocins. In this work, the antilisterial peptide pediocin was encapsulated in nanovesicles prepared from partially purified soybean phosphatidylcholine. The maintenance of antimicrobial activity and properties of free and encapsulated pediocin was observed during 13 days at 4 °C, and after this period, the encapsulated pediocin retained 50 % its initial activity. The maintenance of the bioactive properties of free and encapsulated pediocin was observed against different species of Listeria, inhibiting Listeria monocytogenes, Listeria innocua and Listeria ivanovii. The size of vesicles containing pediocin was determined by dynamic light scattering as an average of 190 nm, with little change throughout the observation period. Polydispersity index values were around 0.201 and are considered satisfactory, indicating an adequate size distribution of liposomes. The efficiency of encapsulation was 80 %. Considering these results, the protocol used was appropriate for the encapsulation of this bacteriocin. Results demonstrate the production of stable nanoparticulate material. The maintenance of the properties of pediocin encapsulated in liposomes is fundamental to prospect the stability in different conditions of the food matrix.
Light emitting diode package element with internal meniscus for bubble free lens placement
Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen
2010-09-28
A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.
A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells
Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab
2017-01-01
Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells. PMID:28875004
Laboratory evaluation of polychlorinated biphenyls ...
Effectiveness and limitations of the encapsulation method for reducing polychlorinated biphenyls (PCBs) concentrations in indoor air and contaminated surface have been evaluated in the laboratory study. Ten coating materials such as epoxy and polyurethane coatings, latex paint, and petroleum-based paint were tested in small environmental chambers to rank the encapsulants by their resistance to PCB sorption and estimate the key parameters required by a barrier model. Wipe samples were collected from PCB contaminated surface encapsulated with the coating materials to rank the encapsulants by their resistance to PCB migration from the source. A barrier model was used to calculate the PCB concentrations in the sources and the encapsulant layers, and at the exposed surfaces of the encapsulant and in the room air at different times. The performance of the encapsulants was ranked by those concentrations and PCB percent reductions. Overall, the three epoxy coatings performed better than the other coatings. Both the experimental results and the mathematical modeling showed that selecting proper encapsulants can effectively reduce the PCB concentrations at the exposed surfaces. The encapsulation method is most effective for contaminated surfaces that contain low levels of PCBs. This study answers some of these questions by using a combination of laboratory testing and mathematical modeling. The results should be useful to mitigation engineers, building owners and managers
NASA Astrophysics Data System (ADS)
Wattanakull, Porntida; Killingsworth, Murray C.; Pissuwan, Dakrong
2017-11-01
Currently, human T cell therapy is of considerable scientific interest. In addition, cell encapsulation has become an attractive approach in biomedical applications. Here, we propose an innovative technique of single-cell encapsulation of human T cells using polyelectrolytes combined with gold nanorods. We have demonstrated encapsulation of human Jurkat T cells with poly(sodium 4-styrenesulfonate) (PSS)-coated gold nanorods (PSS-GNRs). Other forms of encapsulation, using polyelectrolytes without GNRs, were also performed. After Jurkat T cells were encapsulated with poly(allylamine hydrochloride) (PAH) and/or PSS-GNRs or PSS, most cells survived and could proliferate. Jurkat T cells encapsulated with a double layer of PSS-GNR/PAH (PSS-GNR/PAH@Jurkat) showed the highest rate of cell proliferation when compared to 24-h encapsulated cells. With the exception of IL-6, no significant induction of inflammatory cytokines (IL-2, IL-1β, and TNF-α) was observed. Interestingly, when encapsulated cells were co-cultured with THP-1 macrophages, co-cultures exhibited TNF-α production enhancement. However, the co-culture of THP-1 macrophage and PSS-GNR/PAH@Jurkat or PSS/PAH@Jurkat did not enhance TNF-α production. No significant inductions of IL-2, IL-1β, and IL-6 were detected. These data provide promising results, demonstrating the potential use of encapsulated PSS-GNR/PAH@Jurkat to provide a more inert T cell population for immunotherapy application and other biomedical applications.
Li, Ran; Zhang, Yufeng; Polk, D. Brent; Tomasula, Peggy M.; Yan, Fang; Liu, LinShu
2016-01-01
Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG’s beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics. PMID:27063422
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, J.; Yi, J.; Kim, T.
2007-05-01
The trial pot experiment was conducted to validate the effect of encapsulation in reduction of acid rock drainage. Six different treatments were performed: A = control, four times spraying of distilled water; B = four times of 0.01 M H2O2; C = once-encapsulated and three times spraying of distilled water; D = twice-encapsulated and twice spraying of distilled water; E = three times-encapsulated and once spraying of distilled water and F = four times-encapsulated for the acid sulfate soil with pyrite bearing andesite powder and sand. After the encapsulation treatment, the perennial ryegrass (Loium perenne) was sowed to evaluate germination rate and growth for three months. The leachate was examined for the chemical properties. The leachate from the A pot (control) is characterized as acidic (pH below 3) and high concentrations of SO4-2: 12,022 mg/L, Al: 85.8 mg/L and Mn: 34.1 mg/L which can be toxic effect to the plant growth. However, the leachate from encapsulated pots showed near neutral (pH 6 to 7) and low concentrations of SO4-2 (below 3,000 mg/L), Al (below 45mg/L) and Mn (24 gm/L). The frequency of encapsulation treatment is related to reduction of acidic drainage. It was hard to identify the significant difference of the seed germination rate of ryegrass between the treatments, although root and shoot growth showed three times difference between the control (1.90g/pot) and four times encapsulated treatment (6.33g/pot) after 2 month growth. It is suggested that encapsulation of pyrite in acid sulfate soil causes the reduction of acidic drainage resulting in the higher growth of herbaceous plants.
Characterization Methods of Encapsulates
NASA Astrophysics Data System (ADS)
Zhang, Zhibing; Law, Daniel; Lian, Guoping
Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence, reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.
Cellular Encapsulation Enhances Cardiac Repair
Levit, Rebecca D.; Landázuri, Natalia; Phelps, Edward A.; Brown, Milton E.; García, Andrés J.; Davis, Michael E.; Joseph, Giji; Long, Robert; Safley, Susan A.; Suever, Jonathan D.; Lyle, Alicia N.; Weber, Collin J.; Taylor, W. Robert
2013-01-01
Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Masson's Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases. PMID:24113327
Liposome-encapsulated actinomycin for cancer chemotherapy
Rahman, Yueh-Erh; Cerny, Elizabeth A.
1976-01-01
An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.
NAS Grid Benchmarks: A Tool for Grid Space Exploration
NASA Technical Reports Server (NTRS)
Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)
2001-01-01
We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.
Investigation into reversion of polyurethane encapsulants
NASA Technical Reports Server (NTRS)
Lynch, C. R.
1973-01-01
The effect of high humidity (95% RH) at 60 C, 70 C, 85 C and 100 C on the solid-to-liquid reversion of polyurethane elastomers (used for potting electrical connectors and conformal coating printed circuit boards) was investigated. Hardness measurements were conducted on eleven elastomers to track reversion for a 101-day period. The primary purpose of the tests was to provide data to predict service life for the polyurethane elastomers. This was not accomplished as the hardness did not deteriorate rapidly enough at the lower test temperatures. The tests did determine that the potting and coating materials most widely used on the S-1C Program are susceptible to reversion but appear adequate for service in the S-1C environment.
Conley, J; Yang, H; Wilson, T; Blasetti, K; Di Ninno, V; Schnell, G; Wong, J P
1997-06-01
The aerosol delivery of liposome-encapsulated ciprofloxacin by using 12 commercially available jet nebulizers was evaluated in this study. Aerosol particles containing liposome-encapsulated ciprofloxacin generated by the nebulizers were analyzed with a laser aerodynamic particle sizer. Mean mass aerodynamic diameters (MMADs) and geometric standard deviations (GSDs) were determined, and the drug contents of the sampling filters from each run onto which aerosolized liposome-encapsulated ciprofloxacin had been deposited were analyzed spectrophotometrically. The aerosol particles of liposome-encapsulated ciprofloxacin generated by these nebulizers ranged from 1.94 to 3.5 microm, with GSDs ranging from 1.51 to 1.84 microm. The drug contents of the sampling filters exposed for 1 min to aerosolized liposome-encapsulated ciprofloxacin range from 12.7 to 40.5 microg/ml (0.06 to 0.2 mg/filter). By using the nebulizer selected on the basis of most desirable MMADs, particle counts, and drug deposition, aerosolized liposome-encapsulated ciprofloxacin was used for the treatment of mice infected with 10 times the 50% lethal dose of Francisella tularensis. All mice treated with aerosolized liposome-encapsulated ciprofloxacin survived the infection, while all ciprofloxacin-treated or untreated control mice succumbed to the infection (P < 0.001). These results suggest that aerosol delivery of liposome-encapsulated ciprofloxacin to the lower respiratory tract is feasible and that it may provide an effective therapy for the treatment of respiratory tract infections.
Qiu, Wei; Ma, Guang-Hui; Meng, Fan-Tao; Su, Zhi-Guo
2004-03-01
Methoxypoly (ethylene glycol)- block-poly (DL-lactide) (PELA) microcapsules containing bovine hemoglobin (BHb) were prepared by a W/O/W double emulsion-solvent diffusion process. The P50 and Hill coeffcient were 3466 Pa and 2.4 respectively, which were near to the natural bioactivity of bovine hemoglobin. The results suggested that polymer composition had significant influence on encapsulation efficiency and particle size of microcapsules. The encapsulation efficiency could reach 90% and the particle size 3 - 5 microm when the PELA copolymer containing MPEG 2000 block was used. The encapsulation efficiency and particle size increased with the concentration of PELA. Increasing the concentrations of NaCl in outer aqueous solution resulted in the increase of encapsulation efficiency and the decrease of particle size. As the concentration of stabilizer in outer aqueous solution increased in the range of 10 g/L to 20 g/L, the particle size reduced while encapsulation efficiency was increased, further increase of the stabilizer concentration would decrease encapsulation efficiency. Increasing of primary emulsion stirring rate was advantageous to the improvement of encapsulation efficiency though it had little influence on the particle size. The influence of re-emulsion stirring rate was complicated, which was not apparent in the case of large volume of re-emulsion solution. When the wall polymer and primary emulsion stirring rate were fixed, the encapsulation efficiency decreased as the particle size reduced.
Hermetic Encapsulation of Nanoenergetic Porous Silicon Wafer by Parylene
2014-08-01
Hermetic Encapsulation of Nanoenergetic Porous Silicon Wafer by Parylene by Eugene Zakar, Wayne Churaman, Collin Becker, Bernard Rod, Luke...Laboratory Adelphi, MD 20783-1138 ARL-TR-7025 August 2014 Hermetic Encapsulation of Nanoenergetic Porous Silicon Wafer by Parylene...Hermetic Encapsulation of Nanoenergetic Porous Silicon Wafer by Parylene 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C
2013-10-09
Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.
Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko
2016-12-20
The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Encapsulated Unresolved Subdural Hematoma Mimicking Acute Epidural Hematoma: A Case Report
Park, Sang-Soo; Kim, Hyo-Joon; Kwon, Chang-Young
2014-01-01
Encapsulated acute subdural hematoma (ASDH) has been uncommonly reported. To our knowledge, a few cases of lentiform ASDH have been reported. The mechanism of encapsulated ASDH has been studied but not completely clarified. Encapsulated lentiform ASDH on a computed tomography (CT) scan mimics acute epidural hematoma (AEDH). Misinterpretation of biconvex-shaped ASDH on CT scan as AEDH often occurs and is usually identified by neurosurgical intervention. We report a case of an 85-year-old man presenting with a 2-day history of mental deterioration and right-sided weakness. CT scan revealed a biconvex-shaped hyperdense mass mixed with various densities of blood along the left temporoparietal cerebral convexity, which was misinterpreted as AEDH preoperatively. Emergency craniectomy was performed, but no AEDH was found beneath the skull. In the subdural space, encapsulated ASDH was located. En block resection of encapsulated ASDH was done. Emergency craniectomy confirmed that the preoperatively diagnosed AEDH was an encapsulated ASDH postoperatively. Radiologic studies of AEDH-like SDH allow us to establish an easy differential diagnosis between AEDH and ASDH by distinct features. More histological studies will provide us information on the mechanism underlying encapsulated ASDH. PMID:27169052
Design, characterisation and application of alginate-based encapsulated pig liver esterase.
Pauly, Jan; Gröger, Harald; Patel, Anant V
2018-06-05
Encapsulation of hydrolases in biopolymer-based hydrogels often suffers from low activities and encapsulation efficiencies along with high leaching and unsatisfactory recycling properties. Exemplified for the encapsulation of pig liver esterase the coating of alginate and chitosan beads have been studied by creating various biopolymer hydrogel beads. Enzyme activity and encapsulation efficiency were notably enhanced by chitosan coating of alginate beads while leaching remained nearly unchanged. This was caused by the enzymatic reaction acidifying the matrix, which increased enzyme retention through enhanced electrostatic enzyme-alginate interaction but decreased activity through enzyme deactivation. A practical and ready-to-use method for visualising pH in beads during reaction by co-encapsulation of a conventional pH indicator was also found. Our method proves that pH control inside the beads can only be realised by buffering. The resulting beads provided a specific activity of 0.267 μmol ∙ min -1 ∙ mg -1 , effectiveness factor 0.88, encapsulation efficiency of 88%, 5% leaching and good recycling properties. This work will contribute towards better understanding and application of encapsulated hydrolases for enzymatic syntheses. Copyright © 2018 Elsevier B.V. All rights reserved.
CFDP for Interplanetary Overlay Network
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
The CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol for Interplanetary Overlay Network (CFDP-ION) is an implementation of CFDP that uses IO' s DTN (delay tolerant networking) implementation as its UT (unit-data transfer) layer. Because the DTN protocols effect automatic, reliable transmission via multiple relays, CFDP-ION need only satisfy the requirements for Class 1 ("unacknowledged") CFDP. This keeps the implementation small, but without loss of capability. This innovation minimizes processing resources by using zero-copy objects for file data transmission. It runs without modification in VxWorks, Linux, Solaris, and OS/X. As such, this innovation can be used without modification in both flight and ground systems. Integration with DTN enables the CFDP implementation itself to be very simple; therefore, very small. Use of ION infrastructure minimizes consumption of storage and processing resources while maximizing safety.
A new VLSI architecture for a single-chip-type Reed-Solomon decoder
NASA Technical Reports Server (NTRS)
Hsu, I. S.; Truong, T. K.
1989-01-01
A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain.
NASA Technical Reports Server (NTRS)
Nguyen, Tien Manh
1989-01-01
MT's algorithm was developed as an aid in the design of space telecommunications systems when utilized with simultaneous range/command/telemetry operations. This algorithm provides selection of modulation indices for: (1) suppression of undesired signals to achieve desired link performance margins and/or to allow for a specified performance degradation in the data channel (command/telemetry) due to the presence of undesired signals (interferers); and (2) optimum power division between the carrier, the range, and the data channel. A software program using this algorithm was developed for use with MathCAD software. This software program, called the MT program, provides the computation of optimum modulation indices for all possible cases that are recommended by the Consultative Committee on Space Data System (CCSDS) (with emphasis on the squarewave, NASA/JPL ranging system).
Decoder synchronization for deep space missions
NASA Technical Reports Server (NTRS)
Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.
1994-01-01
The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data rates and signal-to-noise ratios (SNR's) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.
NAND Flash Qualification Guideline
NASA Technical Reports Server (NTRS)
Heidecker, Jason
2012-01-01
Better performing Forward Error Correction on the forward link along with adequate power in the data open an uplink operations trade space that enable missions to: Command to greater distances in deep space (increased uplink margin). Increase the size of the payload data (latency may be a factor). Provides space for the security header/trailer of the CCSDS Space Data Link Security Protocol. Note: These higher rates could be used for relief of emergency communication margins/rates and not limited to improving top-end rate performance. A higher performance uplink could also reduce the requirements on flight emergency antenna size and/or the performance required from ground stations. Use of a selective repeat ARQ protocol may increase the uplink design requirements but the resultant development is deemed acceptable, due the factor of 4 to 8 potential increase in uplink data rate.
Reference Model for an Open Archival Information System
NASA Technical Reports Server (NTRS)
1997-01-01
This document is a technical report for use in developing a consensus on what is required to operate a permanent, or indefinite long-term, archive of digital information. It may be useful as a starting point for a similar document addressing the indefinite long-term preservation of non-digital information. This report establishes a common framework of terms and concepts which comprise an Open Archival Information System (OAIS). It allows existing and future archives to be more meaningfully compared and contrasted. It provides a basis for further standardization of within an archival context and it should promote greater vendor awareness of, and support of , archival requirements. Through the process of normal evolution, it is expected that expansion, deletion, or modification to this document may occur. This report is therefore subject to CCSDS document management and change control procedures.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Astrophysics Data System (ADS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-10-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Technical Reports Server (NTRS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-01-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
Comunian, Talita A; Ravanfar, Raheleh; de Castro, Inar Alves; Dando, Robin; Favaro-Trindade, Carmen S; Abbaspourrad, Alireza
2017-10-15
Echium oil is rich in omega-3 fatty acids, which are important because of their benefits to human health; it is, however, unstable. The objective of this work was the coencapsulation of echium oil and quercetin or sinapic acid by microfluidic and ionic gelation techniques. The treatments were analyzed utilizing optical and scanning electron microscopy, encapsulation yield, particle size, thermogravimetry, Fourier transform infrared spectroscopy, stability under stress conditions, and oil oxidative/phenolic compound stability for 30days at 40°C. High encapsulation yield values were obtained (91-97% and 77-90% for the phenolic compounds and oil) and the encapsulated oil was almost seven times more stable than the non-encapsulated oil (0.34 vs 2.42mgMDA/kg oil for encapsulated and non-encapsulated oil, respectively). Encapsulation was shown to promote oxidative stability, allowing new vehicles for the application of these compounds in food without the use of solvents and high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N
2017-03-15
The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.
2016-01-01
Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554
NASA Astrophysics Data System (ADS)
Makhadmeh, Ghaseb N.; Aziz, Azlan Abdul; Razak, Khairunisak Abdul; Al-Akhras, M.-Ali H.
2018-02-01
This study involves the synthesis of Protoporphyrin IX (PpIX) encapsulated with Silica Nanoparticles (SiNPs) as an application for Photodynamic therapy. Semi-rigid artificial tissues with optical features similar to human tissue were used as sample materials to ascertain the efficacy of PpIX encapsulated with SiNPs. The disparity in optical characteristics (transmittance, reflectance, scattering, and absorption) of tissues treated with encapsulated PpIX and naked PpIX under light exposure (Intensity at 408 nm ~1.19 mW/cm2) was explored. The optimal exposure times required for naked PpIX and SiNPs encapsulated PpIX to engulf Red Blood Cells (RBCs) in the artificial tissue were subsequently measured. Comparative analysis showed that the encapsulated PpIX has a 91.5 % higher efficacy than naked PpIX. The results prove the applicability of PpIX encapsulated with SiNP on artificial tissue and possible use on human tissue.
Encapsulation and delivery of food ingredients using starch based systems.
Zhu, Fan
2017-08-15
Functional ingredients can be encapsulated by various wall materials for controlled release in food and digestion systems. Starch, as one of the most abundant natural carbohydrate polymers, is non-allergenic, GRAS, and cheap. There has been increasing interest of using starch in native and modified forms to encapsulate food ingredients such as flavours, lipids, polyphenols, carotenoids, vitamins, enzymes, and probiotics. Starches from various botanical sources in granular or amorphous forms are modified by chemical, physical, and/or enzymatic means to obtain the desired properties for targeted encapsulation. Other wall materials are also employed in combination with starch to facilitate some types of encapsulation. Various methods of crafting the starch-based encapsulation such as electrospinning, spray drying, antisolvent, amylose inclusion complexation, and nano-emulsification are introduced in this mini-review. The physicochemical and structural properties of the particles are described. The encapsulation systems can positively influence the controlled release of food ingredients in food and nutritional applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method Of Making Solar Collectors By In-Situ Encapsulation Of Solar Cells
Carrie, Peter J.; Chen, Kingsley D. D.
2000-10-24
A method of making solar collectors by encapsulating photovoltaic cells within a base of an elongated solar collector wherein heat and pressure are applied to the cells in-situ, after an encapsulating material has been applied. A tool is fashioned having a bladder expandable under gas pressure, filling a region of the collector where the cells are mounted. At the same time, negative pressure is applied outside of the bladder, enhancing its expansion. The bladder presses against a platen which contacts the encapsulated cells, causing outgassing of the encapsulant, while heat cures the encapsulant. After curing, the bladder is deflated and the tool may be removed from the collector and base and reflective panels put into place, if not already there, thereby allowing the solar collector to be ready for use.
NASA Technical Reports Server (NTRS)
Kolyer, J. M.
1978-01-01
An important principle is that encapsulants should be tested in a total array system allowing realistic interaction of components. Therefore, micromodule test specimens were fabricated with a variety of encapsulants, substrates, and types of circuitry. One common failure mode was corrosion of circuitry and solar cell metallization due to moisture penetration. Another was darkening and/or opacification of encapsulant. A test program plan was proposed. It includes multicondition accelerated exposure. Another method was hyperaccelerated photochemical exposure using a solar concentrator. It simulates 20 year of sunlight exposure in a short period of one to two weeks. The study was beneficial in identifying some cost effective encapsulants and array designs.
Module encapsulation technology
NASA Technical Reports Server (NTRS)
Willis, P.
1986-01-01
The identification and development techniques for low-cost module encapsulation materials were reviewed. Test results were displayed for a variety of materials. The improved prospects for modeling encapsulation systems for life prediction were reported.
Design, analysis and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A., III; Kallis, J. M.; Trucker, D. C.
1983-01-01
Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.
2003-08-10
KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, wait for the Space Infrared Telescope Facility (SIRTF) to reach their level. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-10
KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, watch as the Space Infrared Telescope Facility (SIRTF) clears the platform. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-10
KENNEDY SPACE CENTER, FLA. - Workers on the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, help guide the Space Infrared Telescope Facility (SIRTF) toward the opening in the foreground. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-10
KENNEDY SPACE CENTER, FLA. - The Space Infrared Telescope Facility (SIRTF) is lowered into the opening of the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-10
KENNEDY SPACE CENTER, FLA. - Before dawn, the Space Infrared Telescope Facility (SIRTF) is attached to an overhead crane that will lift it up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-10
KENNEDY SPACE CENTER, FLA. - Viewed from below, the Space Infrared Telescope Facility (SIRTF) is lifted up the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station. SIRTF will be attached to the Delta II rocket and encapsulated in its fairing before launch. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA’s largest infrared telescopes to be launched. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2016-01-25
2013 21-Jul-2014 Approved for Public Release; Distribution Unlimited Final Report: Bioactive Encapsulation for Military Food Applications: Request for...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Bioactive Encapsulation for Military Food Applications...Total Number: ...... Inventions (DD882) Scientific Progress Equipment was purchased. Technology Transfer 1 Bioactive Encapsulation for Military Food
Kwon, Jeong Hyun; Choi, Seungyeop; Jeon, Yongmin; Kim, Hyuncheol; Chang, Ki Soo; Choi, Kyung Cheol
2017-08-16
In this study, a new and efficient dielectric-metal-dielectric-based thin-film encapsulation (DMD-TFE) with an inserted Ag thin film is proposed to guarantee the reliability of flexible displays by improving the barrier properties, mechanical flexibility, and heat dissipation, which are considered to be essential requirements for organic light-emitting diode (OLED) encapsulation. The DMD-TFE, which is composed of Al 2 O 3 , Ag, and a silica nanoparticle-embedded sol-gel hybrid nanocomposite, shows a water vapor transmission rate of 8.70 × 10 -6 g/m 2 /day and good mechanical reliability at a bending radius of 30 mm, corresponding to 0.41% strain for 1000 bending cycles. The electrical performance of a thin-film encapsulated phosphorescent organic light-emitting diode (PHOLED) was identical to that of a glass-lid encapsulated PHOLED. The operational lifetimes of the thin-film encapsulated and glass-lid encapsulated PHOLEDs are 832 and 754 h, respectively. After 80 days, the thin-film encapsulated PHOLED did not show performance degradation or dark spots on the cell image in a shelf-lifetime test. Finally, the difference in lifetime of the OLED devices in relation to the presence and thickness of a Ag film was analyzed by applying various TFE structures to fluorescent organic light-emitting diodes (FOLEDs) that could generate high amounts of heat. To demonstrate the difference in heat dissipation effect among the TFE structures, the saturated temperatures of the encapsulated FOLEDs were measured from the back side surface of the glass substrate, and were found to be 67.78, 65.12, 60.44, and 39.67 °C after all encapsulated FOLEDs were operated at an initial luminance of 10 000 cd/m 2 for sufficient heat generation. Furthermore, the operational lifetime tests of the encapsulated FOLED devices showed results that were consistent with the measurements of real-time temperature profiles taken with an infrared camera. A multifunctional hybrid thin-film encapsulation based on a dielectric-metal-dielectric structure was thus effectively designed considering the transmittance, gas-permeation barrier properties, flexibility, and heat dissipation effect by exploiting the advantages of each separate layer.
Hattrem, Magnus N; Kristiansen, Kåre A; Aachmann, Finn L; Dille, Morten J; Draget, Kurt I
2015-06-20
A challenge in formulating water-in-oil-in-water (W/O/W) emulsions is the uncontrolled release of the encapsulated compound prior to application. Pharmaceuticals and nutraceuticals usually have amphipathic nature, which may contribute to leakage of the active ingredient. In the present study, cyclodextrins (CyDs) were used to impart a change in the relative polarity and size of a model compound (ibuprofen) by the formation of inclusion complexes. Various inclusion complexes (2-hydroxypropyl (HP)-β-CyD-, α-CyD- and γ-CyD-ibuprofen) were prepared and presented within W/O/W emulsions, and the initial and long-term encapsulation efficiency was investigated. HP-β-CyD-ibuprofen provided the highest encapsulation of ibuprofen in comparison to a W/O/W emulsion with unassociated ibuprofen confined within the inner water phase, with a four-fold increase in the encapsulation efficiency. An improved, although lower, encapsulation efficiency was obtained for the inclusion complex γ-CyD-ibuprofen in comparison to HP-β-CyD-ibuprofen, whereas α-CyD-ibuprofen had a similar encapsulation efficiency to that of unassociated ibuprofen. The lower encapsulation efficiency of ibuprofen in combination with α-CyD and γ-CyD was attributed to a lower association constant for the γ-CyD-ibuprofen inclusion complex and the ability of α-CyD to form inclusion complexes with fatty acids. For the W/O/W emulsion prepared with HP-β-CyD-ibuprofen, the highest encapsulation of ibuprofen was obtained at hyper- and iso-osmotic conditions and by using an excess molar ratio of CyD to ibuprofen. In the last part of the study, it was suggested that the chemical modification of the HP-β-CyD molecule did not influence the encapsulation of ibuprofen, as a similar encapsulation efficiency was obtained for an inclusion complex prepared with mono-1-glucose-β-CyD. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Ran; Zhang, Yufeng; Polk, D Brent; Tomasula, Peggy M; Yan, Fang; Liu, LinShu
2016-05-28
Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG's beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics. Copyright © 2016 Elsevier B.V. All rights reserved.
Nemati, Sorour; Rezabakhsh, Aysa; Khoshfetrat, Ali Baradar; Nourazarian, Alireza; Biray Avci, Çığır; Goker Bagca, Bakiye; Alizadeh Sardroud, Hamed; Khaksar, Majid; Ahmadi, Mahdi; Delkhosh, Aref; Sokullu, Emel; Rahbarghazi, Reza
2017-12-01
Up to present, many advantages have been achieved in the field of cell-based therapies by applying sophisticated methodologies and delivery approaches. Microcapsules are capable to provide safe microenvironment for cells during transplantation in a simulated physiological 3D milieu. Here, we aimed to investigate the effect of alginate-gelatin encapsulation on angiogenic behavior of human endothelial cells over a period of 5 days. Human umbilical vein endothelial cells were encapsulated by alginate-gelatin substrate and incubated for 5 days. MTT and autophagy PCR array analysis were used to monitor cell survival rate. For in vitro angiogenesis analysis, cell distribution of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 were detected by ELISA. In addition to in vitro tubulogenesis assay, we monitored the expression of VE-cadherin by Western blotting. The migration capacity of encapsulated HUVECs was studied by measuring MMP-2 and MMP-9 via gelatin zymography. The in vivo angiogenic potential of encapsulated HUVECs was analyzed in immune-compromised mouse implant model during 7 days post-transplantation. We demonstrated that encapsulation promoted HUVECs cell survival and proliferation. Compared to control, no significant differences were observed in autophagic status of encapsulated cells (p > 0.05). The level of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 were increased, but did not reach to significant levels. Encapsulation decreased MMP-2, -9 activity and increased the VE-cadherin level in enclosed cells (p < 0.05). Moreover, an enhanced in vivo angiogenic response of encapsulated HUVECs was evident as compared to non-capsulated cells (p < 0.05). These observations suggest that alginate-gelatin encapsulation can induce angiogenic response in in vivo and in vitro conditions. © 2017 Wiley Periodicals, Inc.
Fazal, Zeeshan; Pelowitz, Jennifer; Johnson, Patrick E; Harper, Jason C; Brinker, C Jeffrey; Jakobsson, Eric
2017-04-25
In order to design hybrid cellular/synthetic devices such as sensors and vaccines, it is important to understand how the metabolic state of living cells changes upon physical confinement within three-dimensional (3D) matrices. We analyze the gene expression patterns of stationary phase Saccharomyces cerevisiae (S. cerevisiae) cells encapsulated within three distinct nanostructured silica matrices and relate those patterns to known naturally occurring metabolic states. Silica encapsulation methods employed were lipid-templated mesophase silica thin films formed by cell-directed assembly (CDA), lipid-templated mesophase silica particles formed by spray drying (SD), and glycerol-doped silica gel monoliths prepared from an aqueous silicate (AqS+g) precursor solution. It was found that the cells for all three-encapsulated methods enter quiescent states characteristic of response to stress, albeit to different degrees and with differences in detail. By the measure of enrichment of stress-related gene ontology categories, we find that the AqS+g encapsulation is more amenable to the cells than CDA and SD encapsulation. We hypothesize that this differential response in the AqS+g encapsulation is related to four properties of the encapsulating gel: (1) oxygen permeability, (2) relative softness of the material, (3) development of a protective sheath around individual cells (visible in TEM micrographs vide infra), and (4) the presence of glycerol in the gel, which has been previously noted to serve as a protectant for encapsulated cells and can serve as the sole carbon source for S. cerevisiae under aerobic conditions. This work represents a combination of experiment and analysis aimed at the design and development of 3D encapsulation procedures to induce, and perhaps control, well-defined physiological behaviors.
Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants
NASA Astrophysics Data System (ADS)
Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi
2018-02-01
Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.
NASA Astrophysics Data System (ADS)
Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.
2017-03-01
Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved.
Sultana, K; Godward, G; Reynolds, N; Arumugaswamy, R; Peiris, P; Kailasapathy, K
2000-12-05
A modified method using calcium alginate for the microencapsulation of probiotic bacteria is reported in this study. Incorporation of Hi-Maize starch (a prebiotic) improved encapsulation of viable bacteria as compared to when the bacteria were encapsulated without the starch. Inclusion of glycerol (a cryo-protectant) with alginate mix increased the survival of bacteria when frozen at -20 degrees C. The acidification kinetics of encapsulated bacteria showed that the rate of acid produced was lower than that of free cultures. The encapsulated bacteria, however, did not demonstrate a significant increase in survival when subjected to in vitro high acid and bile salt conditions. A preliminary study was carried out in order to monitor the effects of encapsulation on the survival of Lactobacillus acidophilus and Bifidobacterium spp. in yoghurt over a period of 8 weeks. This study showed that the survival of encapsulated cultures of L. acidophilus and Bifidobacterium spp. showed a decline in viable count of about 0.5 log over a period of 8 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. The encapsulation method used in this study did not result in uniform bead size, and hence additional experiments need to be designed using uniform bead size in order to assess the role of different encapsulation parameters, such as bead size and alginate concentration, in providing protection to the bacteria.
Conley, J; Yang, H; Wilson, T; Blasetti, K; Di Ninno, V; Schnell, G; Wong, J P
1997-01-01
The aerosol delivery of liposome-encapsulated ciprofloxacin by using 12 commercially available jet nebulizers was evaluated in this study. Aerosol particles containing liposome-encapsulated ciprofloxacin generated by the nebulizers were analyzed with a laser aerodynamic particle sizer. Mean mass aerodynamic diameters (MMADs) and geometric standard deviations (GSDs) were determined, and the drug contents of the sampling filters from each run onto which aerosolized liposome-encapsulated ciprofloxacin had been deposited were analyzed spectrophotometrically. The aerosol particles of liposome-encapsulated ciprofloxacin generated by these nebulizers ranged from 1.94 to 3.5 microm, with GSDs ranging from 1.51 to 1.84 microm. The drug contents of the sampling filters exposed for 1 min to aerosolized liposome-encapsulated ciprofloxacin range from 12.7 to 40.5 microg/ml (0.06 to 0.2 mg/filter). By using the nebulizer selected on the basis of most desirable MMADs, particle counts, and drug deposition, aerosolized liposome-encapsulated ciprofloxacin was used for the treatment of mice infected with 10 times the 50% lethal dose of Francisella tularensis. All mice treated with aerosolized liposome-encapsulated ciprofloxacin survived the infection, while all ciprofloxacin-treated or untreated control mice succumbed to the infection (P < 0.001). These results suggest that aerosol delivery of liposome-encapsulated ciprofloxacin to the lower respiratory tract is feasible and that it may provide an effective therapy for the treatment of respiratory tract infections. PMID:9174185
Encapsulation methods for organic electrical devices
Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian
2013-06-18
The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.
Scognamiglio, Immacolata; Di Martino, Maria Teresa; Campani, Virginia; Virgilio, Antonella; Galeone, Aldo; Gullà, Annamaria; Gallo Cantafio, Maria Eugenia; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Caraglia, Michele
2014-01-01
Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2′-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM. PMID:24683542
Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil
Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad
2017-01-01
Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation. PMID:28496464
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Travis J.; Dunphy, Darren R.; Harbaugh, Svetlana
The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cellsmore » encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. Furthermore, this unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.« less
NASA Astrophysics Data System (ADS)
Sun, Yuxiang; Mei, Ling; Han, Ning; Ding, Xinyi; Yu, Caihao; Yang, Wenjuan; Ruan, Gang
2017-06-01
The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes ( 25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes ( 3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.
Liu, Dean-Mo; Chen, I-Wei
2001-01-01
The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.
NASA Astrophysics Data System (ADS)
Sloan, Jeremy; Hutchison, John L.; Tenne, Reshef; Feldman, Yishay; Tsirlina, Tatyana; Homyonfer, Moshe
1999-04-01
Complex tungsten oxides, consisting of nonstoichiometric oxides of the form WO3-xand stoichiometric lamellar oxides of the form {001}RWnO3n-1(n=3 to 6) have been observed incorporated within 2H-WX2(X=S or Se) inorganic fullerene-like (IF) structures by HRTEM. These encapsulates were formed from a gas-solid reaction between H2Xand disordered WO3-xprecursors exhibiting a range of particle sizes and morphologies. The microstructures of most of the encapsulated oxides could be described in terms of {hkl}Rcrystallographic shear (CS) structures formed relative to an ReO3-type (R) substructure. Smaller spheroidal WO3-xencapsulates were frequently found to exhibit random {103}RCS defects of the Wadsley type, while larger, needle encapsulates were found to form exclusively {001}RWnO3n-1type lamellar structures that were predominantely ordered. Spheriodal encapsulates with randomly spaced {001}RCS planes were also observed encapsulated inside 2H-WSe2IF structures. The growth and morphologies of the encapsulating 2H-WX2shells were profoundly influenced by those of the precursor oxides used in their formation. Ordering mechanisms were proposed with respect to the formation of the ordered encapsulated oxides from the disordered precursors.
Savage, Travis J.; Dunphy, Darren R.; Harbaugh, Svetlana; ...
2015-11-06
The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cellsmore » encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. Furthermore, this unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.« less
Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.
Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad
2017-01-01
Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.
Optimisation of stability and charge transferability of ferrocene-encapsulated carbon nanotubes
NASA Astrophysics Data System (ADS)
Prajongtat, Pongthep; Sriyab, Suwannee; Zentgraf, Thomas; Hannongbua, Supa
2018-01-01
Ferrocene-encapsulated carbon nanotubes (Fc@CNTs) became promising nanocomposite materials for a wide range of applications due to their superior catalytic, mechanical and electronic properties. To open up new windows of applications, the highly stable and charge transferable encapsulation complexes are required. In this work, we designed the new encapsulation complexes formed from ferrocene derivatives (FcR, where R = -CHO, -CH2OH, -CON3 and -PCl2) and single-walled carbon nanotubes (SWCNTs). The influence of diameter and chirality of the nanotubes on the stability, charge transferability and electronic properties of such complexes has been investigated using density functional theory. The calculations suggest that the encapsulation stability and charge transferability of the encapsulation complexes depend on the size and chirality of the nanotubes. FcR@SWCNTs are more stable than Fc@SWCNTs at the optimum tube diameter. The greatest charge transfer was observed for FcCH2OH@SWCNTs and Fc@SWCNTs since the Fe d levels of FcCH2OH and Fc are nearly equal and close to the Fermi energy level of the nanotubes. The obtained results pave the way to the design of new encapsulated ferrocene derivatives which can give rise to higher stability and charge transferability of the encapsulation complexes.
Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng
2013-08-01
Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.
Stability Analysis of an Encapsulated Microbubble against Gas Diffusion
Katiyar, Amit; Sarkar, Kausik
2009-01-01
Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although, bubbles, containing gases other than air is considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided. PMID:20005522
Haroun, Ahmed A; Diab, H A; Hakeim, O A
2016-08-01
Aqueous dispersions of citric-acrylate (CAC) oligomer encapsulating C.I. Pigment Blue 15:3 (PB15:3) in the presence of glutaraldhyde were formulated using the phase separation method. FT-IR spectroscopy and centrifuge sedimentation are performed to confirm the encapsulation of pigment into CAC oligomer. The prepared capsules were characterized using thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). The results revealed that the encapsulated pigment had a profound multifunctional impact and minimized the driving force of pigment printing on the cellulosic fabrics. Besides, the encapsulated pigment accelerated the pigment fixation on cellulosic fabrics without drying in one step and reduced the required amount of the binder, compared with the control sample. Furthermore, the printed fabrics exhibited good antibacterial performance against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The presence of the crosslinker could be stabilized the encapsulated pigment on the cellulosic fabrics. Moreover, the light and washing fastness for the printed fabrics using encapsulated pigment are higher than that in case of using control samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of DBD plasma actuators: The double encapsulated electrode
NASA Astrophysics Data System (ADS)
Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos
2015-04-01
Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.
Yang, Yi; Wang, Zhongwu; Xu, Zeyang; Wu, Kunjie; Yu, Xiaoqin; Chen, Xiaosong; Meng, Yancheng; Li, Hongwei; Qiu, Song; Jin, Hehua; Li, Liqiang; Li, Qingwen
2017-04-26
Electrical hysteresis in carbon nanotube thin-film transistor (CNTTFT) due to surface adsorption of H 2 O/O 2 is a severe obstacle for practical applications. The conventional encapsulation methods based on vacuum-deposited inorganic materials or wet-coated organic materials have some limitations. In this work, we develop a general and highly efficient dry-laminating encapsulation method to reduce the hysteresis of CNTTFTs, which may simultaneously realize the construction and encapsulation of CNTTFT. Furthermore, by virtue of dry procedure and wide compatibility of PMMA, this method is suitable for the construction of CNTTFT on diverse surface including both inorganic and organic dielectric materials. Significantly, the dry-encapsulated CNTTFT exhibits very low or even negligible hysteresis with good repeatability and air stability, which is greatly superior to the nonencapsulated and wet-encapsulated CNTTFT with spin-coated PMMA. The dry-laminating encapsulation strategy, a kind of technological innovation, resolves a significant problem of CNTTFT and therefore will be promising in facile transferring and packaging the CNT films for high-performance optoelectronic devices.
NASA Astrophysics Data System (ADS)
Xu, Boyi; Xu, Li Da; Fei, Xiang; Jiang, Lihong; Cai, Hongming; Wang, Shuai
2017-08-01
Facing the rapidly changing business environments, implementation of flexible business process is crucial, but difficult especially in data-intensive application areas. This study aims to provide scalable and easily accessible information resources to leverage business process management. In this article, with a resource-oriented approach, enterprise data resources are represented as data-centric Web services, grouped on-demand of business requirement and configured dynamically to adapt to changing business processes. First, a configurable architecture CIRPA involving information resource pool is proposed to act as a scalable and dynamic platform to virtualise enterprise information resources as data-centric Web services. By exposing data-centric resources as REST services in larger granularities, tenant-isolated information resources could be accessed in business process execution. Second, dynamic information resource pool is designed to fulfil configurable and on-demand data accessing in business process execution. CIRPA also isolates transaction data from business process while supporting diverse business processes composition. Finally, a case study of using our method in logistics application shows that CIRPA provides an enhanced performance both in static service encapsulation and dynamic service execution in cloud computing environment.
Germanium detector vacuum encapsulation
NASA Technical Reports Server (NTRS)
Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.
1991-01-01
This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.
Flame Suppression Agent, System and Uses
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2013-01-01
Aqueous droplets encapsulated in a flame retardant polymer are useful in suppressing combustion. Upon exposure to a flame, the encapsulated aqueous droplets rupture and vaporize, removing heat and displacing oxygen to retard the combustion process. The polymer encapsulant, through decomposition, may further add free radicals to the combustion atmosphere, thereby further retarding the combustion process. The encapsulated aqueous droplets may be used as a replacement to halon, water mist and dry powder flame suppression systems.
One-to-one encapsulation based on alternating droplet generation
NASA Astrophysics Data System (ADS)
Hirama, Hirotada; Torii, Toru
2015-10-01
This paper reports the preparation of encapsulated particles as models of cells using an alternating droplet generation encapsulation method in which the number of particles in a droplet is controlled by a microchannel to achieve one-to-one encapsulation. Using a microchannel in which wettability is treated locally, the fluorescent particles used as models of cells were successfully encapsulated in uniform water-in-oil-in-water (W/O/W) emulsion droplets. Furthermore, 20% of the particle-containing droplets contained one particle. Additionally, when a surfactant with the appropriate properties was used, the fluorescent particles within each inner aqueous droplet were enclosed in the merged droplet by spontaneous droplet coalescence. This one-to-one encapsulation method based on alternating droplet generation could be used for a variety of applications, such as high-throughput single-cell assays, gene transfection into cells or one-to-one cell fusion.
One-to-one encapsulation based on alternating droplet generation.
Hirama, Hirotada; Torii, Toru
2015-10-21
This paper reports the preparation of encapsulated particles as models of cells using an alternating droplet generation encapsulation method in which the number of particles in a droplet is controlled by a microchannel to achieve one-to-one encapsulation. Using a microchannel in which wettability is treated locally, the fluorescent particles used as models of cells were successfully encapsulated in uniform water-in-oil-in-water (W/O/W) emulsion droplets. Furthermore, 20% of the particle-containing droplets contained one particle. Additionally, when a surfactant with the appropriate properties was used, the fluorescent particles within each inner aqueous droplet were enclosed in the merged droplet by spontaneous droplet coalescence. This one-to-one encapsulation method based on alternating droplet generation could be used for a variety of applications, such as high-throughput single-cell assays, gene transfection into cells or one-to-one cell fusion.
LIU, GUOHUI; CHEN, XI; ZHOU, WU; YANG, SHUHUA; YE, SHUNAN; CAO, FAQI; LIU, YI; XIONG, YUAN
2016-01-01
Aqueous human placenta extract (HPE) has been previously used to treat chronic soft tissue ulcer; however, the optimal dosage of HPE has yet to be elucidated. The present study investigated a novel nanofiber gel composed through layer-by-layer (LbL) self-assembly, in which HPE was encapsulated. IKVAV, RGD, RAD16 and FGL-PA were screened and combined to produce an optimal vehicle nanofiber gel through LbL assembly. Subsequently, the aqueous HPE was encapsulated into this nanofiber at the appropriate concentration, and the morphology, particle size, drug loading efficacy, encapsulation rate, release efficiency and structure validation were detected. The encapsulation efficiency of all three HPE samples was >90%, the nanofiber gel exhibited a slow releasing profile, and the structure of HPE encapsulated in the nanofiber gel was unvaried. In conclusion, this type of novel composite nanocapsules may offer a promising delivery system for HPE. PMID:27073463
Limonene encapsulation in freeze dried gellan systems.
Evageliou, Vasiliki; Saliari, Dimitra
2017-05-15
The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Makhadmeh, Ghaseb Naser; Abdul Aziz, Azlan; Abdul Razak, Khairunisak; Abu Noqta, Osama
2015-12-01
This study analysed the physical effects of Cichorium Pumilum (CP), as a natural photosensitizer (PS), and Protoporphyrin IX (PpIX), as a synthetic PS, encapsulated with silica nanoparticles (SiNPs) in photodynamic therapy. The optimum concentrations of CP and PpIX, needed to destroy Red Blood Cells (RBC), were determined and the efficacy of encapsulated CP and PpIX were compared with naked CP and PpIX was verified. The results confirmed the applicability of CP and PpIX encapsulated in SiNPs on RBCs, and established a relationship between the encapsulated CP and PpIX concentration and the time required to rupture 50% of the RBCs (t50). The CP and PpIX encapsulated in SiNPs exhibited higher efficacy compared with that of naked CP and PpIX, respectively, and CP had less efficacy compared with PpIX.
Kumar, Sunil; Rai, Manoj K; Singh, Narender; Mangal, Manisha
2010-12-01
Shoot tips excised from in vitro proliferated shoots derived from nodal explants of jojoba [Simmondsia chinensis (Link) Schneider] were encapsulated in calcium alginate beads for germplasm exchange and distribution. A gelling matrix of 3 % sodium alginate and 100 mM calcium chloride was found most suitable for formation of ideal calcium alginate beads. Best response for shoot sprouting from encapsulated shoot tips was recorded on 0.8 % agar-solidified full-strength MS medium. Rooting was induced upon transfer of sprouted shoots to 0.8 % agar-solidified MS medium containing 1 mg l(-1) IBA. About 70 % of encapsulated shoot tips were rooted and converted into plantlets. Plants regenerated from encapsulated shoot tips were acclimatized successfully. The present encapsulation approach could also be applied as an alternative method of propagation of desirable elite genotype of jojoba.
NASA Astrophysics Data System (ADS)
Misra, S. K.; Mukherjee, P.; Ohoka, A.; Schwartz-Duval, A. S.; Tiwari, S.; Bhargava, R.; Pan, D.
2016-01-01
Simultaneous tracking of nanoparticles and encapsulated payload is of great importance and visualizing their activity is arduous. Here we use vibrational spectroscopy to study the in vitro tracking of co-localized lipid nanoparticles and encapsulated drug employing a model system derived from doxorubicin-encapsulated deuterated phospholipid (dodecyl phosphocholine-d38) single tailed phospholipid vesicles.Simultaneous tracking of nanoparticles and encapsulated payload is of great importance and visualizing their activity is arduous. Here we use vibrational spectroscopy to study the in vitro tracking of co-localized lipid nanoparticles and encapsulated drug employing a model system derived from doxorubicin-encapsulated deuterated phospholipid (dodecyl phosphocholine-d38) single tailed phospholipid vesicles. Electronic supplementary information (ESI) available: Raman and confocal images of the Deuto-DOX-NPs in cells, materials and details of methods. See DOI: 10.1039/c5nr07975f
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela
2009-04-15
Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.
NASA Astrophysics Data System (ADS)
Shofiah, Siti; Muflihatun, Suharyadi, Edi
2016-04-01
Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe2O4) nanoparticles comparable sizes have been studied in detail. NiFe2O4 were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe2O4 was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe2O4 as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe2O4 became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe2O3 phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe2O4 nanoparticles.
Harper-Leatherman, Amanda S; Iftikhar, Mariam; Ndoi, Adela; Scappaticci, Steven J; Lisi, George P; Buzard, Kaitlyn L; Garvey, Elizabeth M
2012-10-16
Cytochrome c (cyt. c) has been encapsulated in silica sol-gels and processed to form bioaerogels with gas-phase activity for nitric oxide through a simplified synthetic procedure. Previous reports demonstrated a need to adsorb cyt. c to metal nanoparticles prior to silica sol-gel encapsulation and processing to form aerogels. We report that cyt. c can be encapsulated in aerogels without added nanoparticles and retain structural stability and gas-phase activity for nitric oxide. While the UV-visible Soret absorbance and nitric oxide response indicate that cyt. c encapsulated with nanoparticles in aerogels remains slightly more stable and functional than cyt. c encapsulated alone, these properties are not very different in the two types of aerogels. From UV-visible and Soret circular dichroism results, we infer that cyt. c encapsulated alone self-organizes to reduce contact with the silica gel in a way that may bear at least some resemblance to the way cyt. c self-organizes into superstructures of protein within aerogels when nanoparticles are present. Both the buffer concentration and the cyt. c concentration of solutions used to synthesize the bioaerogels affect the structural integrity of the protein encapsulated alone within the dried aerogels. Optimized bioaerogels are formed when cyt. c is encapsulated from 40 mM phosphate buffered solutions, and when the loaded cyt. c concentration in the aerogel is in the range of 5 to 15 μM. Increased viability of cyt. c in aerogels is also observed when supercritical fluid used to produce aerogels is vented over relatively long times.
2013-01-16
TITUSVILLE, Fla. – NASA's Tracking and Data Relay Satellite, TDRS-K, stands inside one half of the payload fairing as the spacecraft is encapsulated inside the Astrotech payload processing facility in Titusville, Fla., near NASA’s Kennedy Space Center. Launch of the TDRS-K on a United Launch Alliance Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. Photo credit: NASA/Frankie Martin
2013-01-16
TITUSVILLE, Fla. –NASA's Tracking and Data Relay Satellite, TDRS-K, stands inside one half of the payload fairing as the spacecraft is encapsulated inside the Astrotech payload processing facility in Titusville, Fla., near NASA’s Kennedy Space Center. Launch of the TDRS-K on a United Launch Alliance Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. Photo credit: NASA/Frankie Martin
2013-01-16
TITUSVILLE, Fla. – NASA's Tracking and Data Relay Satellite, TDRS-K, stands inside one half of the payload fairing as the spacecraft is encapsulated inside a United Launch Alliance Astrotech payload processing facility in Titusville, Fla., near NASA’s Kennedy Space Center. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. Photo credit: NASA/Frankie Martin
2002-10-18
KENNEDY SPACE CENTER, FLA. - The TDRS-J spacecraft, enclosed in a container, arrives at the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for processing. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
NASA Technical Reports Server (NTRS)
Lathrop, J. W.; Davis, C. W.; Royal, E.
1982-01-01
The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.
Long-lifetime thin-film encapsulated organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Wong, F. L.; Fung, M. K.; Tao, S. L.; Lai, S. L.; Tsang, W. M.; Kong, K. H.; Choy, W. M.; Lee, C. S.; Lee, S. T.
2008-07-01
Multiple fluorocarbon (CFx) and silicon nitride (Si3N4) bilayers were applied as encapsulation cap on glass-based organic light-emitting diodes (OLEDs). When CFx/Si3N4 bilayers were deposited onto the OLED structure, the devices showed performance worse than one without any encapsulation. The adverse effects were attributed to the damage caused by reaction species during the thin-film deposition processes. To solve this problem, a CuPc interlayer was found to provide effective protection to the OLED structure. With a structure of CuPc/(CFx/Si3N4)×5, the encapsulated device showed an operation lifetime over 8000 h (higher than 80% of that achieved with a conventional metal encapsulation).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M Pauline
2007-06-30
The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less
Functional assessment of encapsulated citral for controlling necrotic enteritis in broiler chickens.
Yang, Yuexi; Wang, Qi; Diarra, Moussa S; Yu, Hai; Hua, Yufei; Gong, Joshua
2016-04-01
Development of viable alternatives to antibiotics to control necrotic enteritis (NE) caused by Clostridium perfringensis becoming urgent for chicken production due to pessures on poultry producers to limit or stop the use of antibiotics in feed. We have previously identified citral as a potential alternative to antibiotics. Citral has strong antimicrobial activity and can be encasupsulated in a powder form for protection from loss during feed processing, storage, and intestinal delivery. In the present study, encapsulated citral was evaluated both in vitro and in vivo for its antimicrobial activity against C. perfringens Encapsulation did not adversely affect the antimicrobial activity of citral. In addition, encapsulated citral was superior to the unencapsulated form in retaining its antimicrobial activity after treatment with simulated gastrointestinal fluids and in the presence of chicken intestinal digesta. In addition, the higher antimicrobial activity of encapsulated citral was confirmed in digesta samples from broilers that had been gavaged with encapsulated or unencapsulated citral. In broilers infected with C. perfringens, the diets supplemented with encapsualted citral at both 250 and 650 μg/g significantly reduced intestinal NE lesions, which was comparable to the effect of bacitracin- and salinomycin-containing diets. However, supplementation with the encapsulated citral appeared to have no significant impact on the intestinal burden of Lactobacillus These data indicate that citral can be used to control NE in chickens after proper protection by encapsulation. © Crown copyright 2016.
NASA Astrophysics Data System (ADS)
Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.
2008-05-01
Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.
Pseudotumoral encapsulated fat necrosis with diffuse pseudomembranous degeneration.
Felipo, F; Vaquero, M; del Agua, C
2004-09-01
An extraordinary case of encapsulated fat necrosis characterized by its large size, diffuse formation of pseudomembranes, and tendency to recur after excision is reported. A 67-year-old Caucasian woman suffering from morbid obesity was admitted for diagnosis and surgical treatment of a soft tissue mass showing a longest diameter of 14 cm and lying adjacently to the scar from previous appendicectomy. Histopathologic features were consistent with a nodular-cystic encapsulated fat necrosis with diffuse pseudomembranous transformation. Eight months after surgery, a new larger mass (longest diameter of 18 cm) sharing identical histopathologic features appeared in the same location. Encapsulated fat necrosis is a well-defined entity even though several names have been proposed for this condition, including mobile encapsulated lipoma, encapsulated necrosis, or nodular-cystic fat necrosis. Its pathogenesis seems to be related to ischemic changes secondary to previous trauma. It may occasionally show degenerative changes, including dystrophic calcifications and presence of pseudomembranes. To our knowledge, these are the first reported cases of encapsulated fat necrosis presenting as lesions of such size and showing diffuse formation of pseudomembranes; these particular features made diagnosis difficult and led to consideration of a wide range of potential diagnostic possibilities. This case expands the clinico-pathologic spectrum of membranocystic fat necrosis, including the potential ability of this subcutaneous fatty tissue abnormality to recur after surgical excision. Felipo F, Vaquero M, del Agua C. Pseudotumoral encapsulated fat necrosis with diffuse pseudomembranous degeneration.
The Advanced Glaucoma Intervention Study (AGIS): 5. Encapsulated bleb after initial trabeculectomy.
Schwartz, A L; Van Veldhuisen, P C; Gaasterland, D E; Ederer, F; Sullivan, E K; Cyrlin, M N
1999-01-01
To compare the incidence of encapsulated bleb after trabeculectomy in eyes with and without previous argon laser trabeculoplasty and to assess other risk factors for encapsulated bleb development. After medical treatment failure, eyes enrolled in the Advanced Glaucoma Intervention Study (AGIS) were randomly assigned to sequences of interventions starting with either argon laser trabeculoplasty or trabeculectomy. In the present study we compared the clinical course for 1 year after trabeculectomy in 119 eyes with failed argon laser trabeculoplasty with that of 379 eyes without previous argon laser trabeculoplasty. Data on bleb encapsulation were collected at the time that the encapsulation was diagnosed, and 3 and 6 months later. Of multiple factors examined in the AGIS data for the risk of developing encapsulated bleb, only male gender and high school graduation without further formal education were statistically significant. Encapsulation occurred in 18.5% of eyes with previous argon laser trabeculoplasty failure and 14.5% of eyes without previous argon laser trabeculoplasty (unadjusted relative risk, 1.27; 95% confidence limits = 0.81, 2.00; P = .23). After adjusting for age, gender, educational achievement, prescribed systemic beta-blockers, diabetes, visual field score, and years since glaucoma diagnosis, this difference remains statistically not significant. Four weeks after trabeculectomy, mean intraocular pressure was 7.5 mm Hg higher in eyes with (22.5 mm Hg) than without (15.0 mm Hg) encapsulated bleb; at 1 year after trabeculectomy and the resumption of medical therapy when needed, this excess was reduced to 1.4 mm Hg. This study, as did two previous studies, found male gender to be a risk factor for bleb encapsulation. Four studies, including the present study, have reported a higher rate of encapsulation in eyes with previous argon laser trabeculoplasty; in two of the studies, one of which was the present study, the rate was not statistically significantly higher; in the other two studies the rate was significantly higher. The 4-week postoperative mean intraocular pressure was higher in eyes with than without encapsulated bleb; with the resumption of medical treatment the two means converged after 1 year.
Anti-tumor therapy with macroencapsulated endostatin producer cells
2010-01-01
Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors. Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors. PMID:20196841
Anti-tumor therapy with macroencapsulated endostatin producer cells.
Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia
2010-03-02
Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors.Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors.
Ortakci, F; Sert, S
2012-12-01
The objective of this study was to determine the effect of encapsulation on survival of probiotic Lactobacillus acidophilus ATCC 4356 (ATCC 4356) in yogurt and during artificial gastric digestion. Strain ATCC 4356 was added to yogurt either encapsulated in calcium alginate or in free form (unencapsulated) at levels of 8.26 and 9.47 log cfu/g, respectively, and the influence of alginate capsules (1.5 to 2.5mm) on the sensorial characteristics of yogurts was investigated. The ATCC 4356 strain was introduced into an artificial gastric solution consisting of 0.08 N HCl (pH 1.5) containing 0.2% NaCl or into artificial bile juice consisting of 1.2% bile salts in de Man, Rogosa, and Sharpe broth to determine the stability of the probiotic bacteria. When incubated for 2h in artificial gastric juice, the free ATCC 4356 did not survive (reduction of >7 log cfu/g). We observed, however, greater survival of encapsulated ATCC 4356, with a reduction of only 3 log cfu/g. Incubation in artificial bile juice (6 h) did not significantly affect the viability of free or encapsulated ATCC 4356. Moreover, statistically significant reductions (~1 log cfu/g) of both free and encapsulated ATCC 4356 were observed during 4-wk refrigerated storage of yogurts. The addition of probiotic cultures in free or alginate-encapsulated form did not significantly affect appearance/color or flavor/odor of the yogurts. However, significant deficiencies were found in body/texture of yogurts containing encapsulated ATCC 4356. We concluded that incorporation of free and encapsulated probiotic bacteria did not substantially change the overall sensory properties of yogurts, and encapsulation in alginate using the extrusion method greatly enhanced the survival of probiotic bacteria against an artificial human gastric digestive system. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng
2015-03-01
The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.
Gryshkov, Oleksandr; Pogozhykh, Denys; Hofmann, Nicola; Pogozhykh, Olena; Mueller, Thomas; Glasmacher, Birgit
2014-01-01
Alginate cell-based therapy requires further development focused on clinical application. To assess engraftment, risk of mutations and therapeutic benefit studies should be performed in an appropriate non-human primate model, such as the common marmoset (Callithrix jacchus). In this work we encapsulated amnion derived multipotent stromal cells (MSCs) from Callithrix jacchus in defined size alginate beads using a high voltage technique. Our results indicate that i) alginate-cell mixing procedure and cell concentration do not affect the diameter of alginate beads, ii) encapsulation of high cell numbers (up to 10×106 cells/ml) can be performed in alginate beads utilizing high voltage and iii) high voltage (15–30 kV) does not alter the viability, proliferation and differentiation capacity of MSCs post-encapsulation compared with alginate encapsulated cells produced by the traditional air-flow method. The consistent results were obtained over the period of 7 days of encapsulated MSCs culture and after cryopreservation utilizing a slow cooling procedure (1 K/min). The results of this work show that high voltage encapsulation can further be maximized to develop cell-based therapies with alginate beads in a non-human primate model towards human application. PMID:25259731
Hanno, Ibrahim; Anselmi, Cecilia; Bouchemal, Kawthar
2012-02-01
To prepare polyamide nanocapsules for skin photo-protection, encapsulating α-tocopherol, Parsol®MCX (ethylhexyl methoxycinnamate) and/or Parsol®1789 (butyl methoxydibenzoylmethane). Nanocapsules were obtained by combining spontaneous emulsification and interfacial polycondensation reaction between sebacoyl chloride and diethylenetriamine. Nano-emulsions used as control were obtained by the same process without monomers. The influence of carrier on release rate was studied in vitro with a membrane-free model. Epidermal penetration of encapsulated sunscreens was ex vivo evaluated using Franz diffusion cells. Ability of encapsulated sunscreens to improve photo-stability was verified by comparing percentage of degradation after UV radiation exposure. Sunscreen-containing nanocapsules (260-400 nm) were successfully prepared; yield of encapsulation was >98%. Parsol®MCX and Parsol®1789 encapsulation led to decreased release rate by up to 60% in comparison with nano-emulsion and allowed minimum penetration through pig ear epidermis. Presence of polyamide shell protected encapsulated sunscreen filters from photo-degradation without affecting their activity. Encapsulation of Parsol®MCX and Parsol®1789 into oil-core of polyamide nanocapsules allowed protection from photo-degradation, controlled release from nanocapsules, and limited penetration through pig ear epidermis.
Lee, Chang-Gon; Ahmed, Maruf; Jiang, Gui-Hun; Eun, Jong-Bang
2017-08-01
Encapsulated Asian pear juice powder was produced through spray drying using three maltodextrin levels (15, 20, and 25% w/v) and three inlet air temperatures (130, 150, and 170 °C). The impact of maltodextrin concentrations and inlet air temperatures on color, bioactive compounds, and morphological characteristics of encapsulated Asian pear juice powder were investigated. Maltodextrin concentrations and inlet air temperatures significantly influenced L * and b * values of encapsulated Asian pear juice powder. Increasing inlet air temperatures increased total phenolic content, whereas the vitamin C content decreased. Vitamin C content was strongly correlated with particle size, inlet air temperature, and maltodextrin concentration. ABTS + radical-scavenging activity was highly correlated with total phenol content while DPPH radical-scavenging activity was highly correlated with vitamin C content. Encapsulated powders made with higher inlet air temperature and higher maltodextrin concentration had lowest median particle diameter with a smoother, more regular and rounded outer surface than those of encapsulated powders produced with lower inlet air temperature and lower maltodextrin concentration. Therefore, the results demonstrate that high-quality encapsulated Asian pear juice powder could be manufactured by adding 15% (w/v) maltodextrin and spray-drying at 170 °C.
The ESA standard for telemetry and telecommand packet utilisation: PUS
NASA Technical Reports Server (NTRS)
Kaufeler, Jean-Francois
1994-01-01
ESA has developed standards for packet telemetry and telecommand, which are derived from the recommendations of the Inter-Agency Consultative Committee for Space Data Systems (CCSDS). These standards are now mandatory for future ESA programs as well as for many programs currently under development. However, while these packet standards address the end-to-end transfer of telemetry and telecommand data between applications on the ground and Application Processes on-board, they leave open the internal structure or content of the packets. This paper presents the ESA Packet Utilization Standard (PUS) which addresses this very subject and, as such, serves to extend and complement the ESA packet standards. The goal of the PUS is to be applicable to future ESA missions in all application areas (Telecommunications, Science, Earth Resources, microgravity, etc.). The production of the PUS falls under the responsibility of the ESA Committee for Operations and EGSE Standards (COES).
NASA Technical Reports Server (NTRS)
Ivancic, William; Stewart, Dave; Shell, Dan; Wood, Lloyd; Paulsen, Phil; Jackson, Chris; Hodgson, Dave; Notham, James; Bean, Neville; Miller, Eric
2005-01-01
This report documents the design of network infrastructure to support operations demonstrating the concept of network-centric operations and command and control of space-based assets. These demonstrations showcase major elements of the Transformal Communication Architecture (TCA), using Internet Protocol (IP) technology. These demonstrations also rely on IP technology to perform the functions outlined in the Consultative Committee for Space Data Systems (CCSDS) Space Link Extension (SLE) document. A key element of these demonstrations was the ability to securely use networks and infrastructure owned and/or controlled by various parties. This is a sanitized technical report for public release. There is a companion report available to a limited audience. The companion report contains detailed networking addresses and other sensitive material and is available directly from William Ivancic at Glenn Research Center.
NASA Technical Reports Server (NTRS)
Rice, J. Kevin
2013-01-01
The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.
NASA Technical Reports Server (NTRS)
Benbenek, Daniel B.; Walsh, William
2010-01-01
This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol.
POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS
This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...
Liquid encapsulated crystal growth
NASA Technical Reports Server (NTRS)
Morrison, Andrew D. (Inventor)
1989-01-01
Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.
Liquid encapsulated crystal growth
NASA Technical Reports Server (NTRS)
Morrison, Andrew D. (Inventor)
1987-01-01
Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.
Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods
NASA Astrophysics Data System (ADS)
Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.
2017-07-01
Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y.; Geron, Ifat; Strongin, Alex Y.; Itkin-Ansari, Pamela
2009-01-01
Background Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human β-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human β-cells and their progenitors and (2) the engraftment of encapsulated murine β-cells in allo- and autoimmune settings. Methods Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Results Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary β-cells ameliorated diabetes without stimulating a detectable T-cell response. Conclusions We demonstrate for the first time that human β-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of β-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells. PMID:19352116
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shofiah, Siti, E-mail: esuharyadi@ugm.ac.id; Muflihatun,; Suharyadi, Edi
2016-04-19
Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles comparable sizes have been studied in detail. NiFe{sub 2}O{sub 4} were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe{sub 2}O{sub 4} was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe{sub 2}O{sub 4}more » as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe{sub 2}O{sub 4} became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe{sub 2}O{sub 3} phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe{sub 2}O{sub 4} nanoparticles.« less
Kurzbaum, Eyal; Raizner, Yasmin; Cohen, Oded; Suckeveriene, Ran Y; Kulikov, Anatoly; Hakimi, Ben; Iasur Kruh, Lilach; Armon, Robert; Farber, Yair; Menashe, Ofir
2017-09-15
Phenols are toxic byproducts from a wide range of industry sectors. If not treated, they form effluents that are very hazardous to the environment. This study presents the use of a Pseudomonas putida F1 culture encapsulated within a confined environment particle as an efficient technique for phenol biodegradation. The innovative encapsulation technique method, named the "Small Bioreactor Platform" (SBP) technology, enables the use of a microfiltration membrane constructed as a physical barrier for creating a confined environment for the encapsulated culture. The phenol biodegradation rate of the encapsulated culture was compared to its suspended state in order to evaluate the effectiveness of the encapsulation technique for phenol biodegradation. A maximal phenol biodegradation rate (q) of 2.12/d was exhibited by encapsulated P. putida at an initial phenol concentration of 100 mg/L. The biodegradation rate decreased significantly at lower and higher initial phenol concentrations of 50 and up to 3000 mg/L, reaching a rate of 0.1018/d. The results also indicate similar and up to double the degradation rate between the two bacterial states (encapsulated vs. suspended). High resolution scanning electron microscopy images of the SBP capsule's membrane morphology demonstrated a highly porous microfiltration membrane. These results, together with the long-term activity of the SBP capsules and verification that the culture remains pure after 60 days using 16S rRNA gene phylogenetic affiliation tests, provide evidence for a successful application of this new encapsulation technique for bioaugmentation of selected microbial cultures in water treatment processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.
Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat
2015-07-01
Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.
Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar
2015-01-01
Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778
Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.
Kapusuz, Derya; Durucan, Caner
2017-07-01
The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.
Fat encapsulation enhances dietary nutrients utilization and growth performance of nursery pigs.
Yang, F; Zhang, S H; Kim, S W; Ren, C X; Tian, M; Cheng, L; Song, J J; Chen, J; Chen, F; Guan, W T
2018-05-31
Encapsulation of fat may facilitate digestion and absorption of fat in nursery pigs. Two experiments were conducted to evaluate (1) effects of encapsulation of palm oil and coconut oil on growth performance, feed intake, feed efficiency, and blood parameters, and (2) effects of encapsulation of palm oil and coconut oil on apparent total tract digestibility (ATTD) of nutrients, and the activity of digestive enzymes in nursery pigs. In Exp. 1, 540 pigs (28 d of age, 8.23 ± 0.22 kg BW) were allotted to 5 treatments based on a randomized complete block design (as-fed basis). Pigs were fed basal diets with 5 different fat sources: 6.0% soybean oil (SBO), 6.0% palm oil (PO), 6.0% palm oil from encapsulated fat (EPO), 6.0% coconut oil (CO), and 6.0% coconut oil from encapsulated fat (ECO) respectively, with 6 pens per treatment and 18 pigs per pen for a 4-wk feeding trial. Dried casein and whey powder used for encapsulation were included at identical levels in all diets. Pigs fed EPO had increased (PPPad libitum for 4 weeks to measure ATTD of diets weekly and digestive enzyme activity at wk 4. Pigs fed EPO, CO, and ECO had increased (PPPEE) compared to other treatments. Pigs fed PO had greater (PP = 0.073) pancreatic lipase activity compared to other treatments whereas dietary treatments had no effect on pancreatic amylase activity. In conclusion, this study indicates that encapsulation of palm oil improved growth performance and ATTD of diets in nursery pigs, whereas the limited effects of encapsulated coconut oil were likely due to the high digestibility of the medium chain triglycerides (MCT) abundant in coconut oil.
Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage
Gupta, Vineet; Tenny, Kevin M; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S
2016-01-01
Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro. PMID:27358376
Selective Co-Encapsulation Inside an M6 L4 Cage.
Leenders, Stefan H A M; Becker, René; Kumpulainen, Tatu; de Bruin, Bas; Sawada, Tomohisa; Kato, Taito; Fujita, Makoto; Reek, Joost N H
2016-10-17
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can be encapsulated inside a self-assembled M 6 L 4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co-encapsulation is observed. This principle is demonstrated by co-encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge-transfer interaction may also contribute to this effect. Charge-transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge-transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge-transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Protein encapsulation via porous CaCO3 microparticles templating.
Volodkin, Dmitry V; Larionova, Natalia I; Sukhorukov, Gleb B
2004-01-01
Porous microparticles of calcium carbonate with an average diameter of 4.75 microm were prepared and used for protein encapsulation in polymer-filled microcapsules by means of electrostatic layer-by-layer assembly (ELbL). Loading of macromolecules in porous CaCO3 particles is affected by their molecular weight due to diffusion-limited permeation inside the particles and also by the affinity to the carbonate surface. Adsorption of various proteins and dextran was examined as a function of pH and was found to be dependent both on the charge of the microparticles and macromolecules. The electrostatic effect was shown to govern this interaction. This paper discusses the factors which can influence the adsorption capacity of proteins. A new way of protein encapsulation in polyelectrolyte microcapsules is proposed exploiting the porous, biocompatible, and decomposable microparticles from CaCO3. It consists of protein adsorption in the pores of the microparticles followed by ELbL of oppositely charged polyelectrolytes and further core dissolution. This resulted in formation of polyelectrolyte-filled capsules with protein incorporated in interpenetrating polyelectrolyte network. The properties of CaCO3 microparticles and capsules prepared were characterized by scanning electron microscopy, microelectrophoresis, and confocal laser scanning microscopy. Lactalbumin was encapsulated by means of the proposed technique yielding a content of 0.6 pg protein per microcapsule. Horseradish peroxidase saves 37% of activity after encapsulation. However, the thermostability of the enzyme was improved by encapsulation. The results demonstrate that porous CaCO3 microparticles can be applied as microtemplates for encapsulation of proteins into polyelectrolyte capsules at neutral pH as an optimal medium for a variety of bioactive material, which can also be encapsulated by the proposed method. Microcapsules filled with encapsulated material may find applications in the field of biotechnology, biochemistry, and medicine.
Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays
NASA Technical Reports Server (NTRS)
1979-01-01
The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.
Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon
2009-10-07
We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.
Photosensitive function of encapsulated dye in carbon nanotubes.
Yanagi, Kazuhiro; Iakoubovskii, Konstantin; Matsui, Hiroyuki; Matsuzaki, Hiroyuki; Okamoto, Hiroshi; Miyata, Yasumitsu; Maniwa, Yutaka; Kazaoui, Said; Minami, Nobutsugu; Kataura, Hiromichi
2007-04-25
Single-wall carbon nanotubes (SWCNTs) exhibit resonant absorption localized in specific spectral regions. To expand the light spectrum that can be utilized by SWCNTs, we have encapsulated squarylium dye into SWCNTs and clarified its microscopic structure and photosensitizing function. X-ray diffraction and polarization-resolved optical absorption measurements revealed that the encapsulated dye molecules are located at an off center position inside the tubes and aligned to the nanotube axis. Efficient energy transfer from the encapsulated dye to SWCNTs was clearly observed in the photoluminescence spectra. Enhancement of transient absorption saturation in the S1 state of the semiconducting SWCNTs was detected after the photoexcitation of the encapsulated dye, which indicates that ultrafast (<190 fs) energy transfer occurred from the dye to the SWCNTs.
The demise of plastic encapsulated microcircuit myths
NASA Astrophysics Data System (ADS)
Hakim, E. B.; Agarwal, R. K.; Pecht, M.
1994-10-01
Production of microelectronic devices encapsulated in solid, molded plastic packages has rapidly increased since the early 1980's. Today, millions of plastic-encapsulated devices are produced daily. On the other hand, only a few million hermetic (cavity) packages are produced per year. Reasons for the increased use of plastic-encapsulated packages include cost, availability, size, weight, quality, and reliability. Markets taking advantage of this technology range from computers and telecommunications to automotive uses. Yet, several industries, the military in particular, will not accept such devices. One reason for this reluctance to use the best available commercial parts is a perceived risk of poor reliability, derived from antiquated military specifications, standards, and handbooks; other common justifications cite differing environments; inadequate screens; inadequate test data, and required government audits of suppliers' processes. This paper describes failure mechanisms associated with plastic encapsulation and their elimination. It provides data indicating the relative reliability of cavity and solid-encapsulated packaging, and presents possible approaches to assuring quality and reliability in the procuring and applying this successful commercial technology.
Effect of lecithin and starch on alginate-encapsulated probiotic bacteria.
Donthidi, A R; Tester, R F; Aidoo, K E
2010-01-01
The effect of lecithin and starch on viability of alginate encapsulated probiotics was determined at different temperatures. Probiotic organisms (1% v/v>10Log CFU ml(-1)) were encapsulated using alginate (2% w/v), gelatinized starches (2% w/v) and lecithin (0-4% w/v) and stored in sealed containers at 4, 23 and 37 degrees C (to simulate shelf storage conditions). Incorporation of lecithin improved the entrapment efficiency (p < 0.05) and the viability of encapsulated bacteria (p = 0.02). Encapsulated Lactobacillus, Bifidobacterium species and Lactococcus lactis in lecithin containing freeze-dried beads had good survival stability (above 6Log CFU ml(-1)) at 23 degrees C for 12 weeks. The bacteria in the beads showed 6Log survival by the end of 2 weeks at 37 degrees C. Encapsulated L. casei in the alginate beads containing lecithin were also more stable in the yoghurt than the beads without lecithin. SEM analysis of the beads showed an irregular surface for the beads without lecithin.
Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.
Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan
2012-11-06
Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yakhnenko, Ilya; Wong, Wallace K; Katkov, Igor I; Itkin-Ansari, Pamela
2012-01-01
Encapsulating insulin producing cells (INPCs) in an immunoisolation device have been shown to cure diabetes in rodents without the need for immunosuppression. However, micro-encapsulation in semi-solid gels raises longevity and safety concerns for future use of stem cell derived INPCs. We have focused on a durable and retrievable macro-encapsulation (> 10(6) cells) device (TheraCyte). Cryopreservation (CP) of cells preloaded into the device is highly desirable but may require prolonged exposure to cryoprotectants during loading and post-thaw manipulations. Here, we are reporting survival and function of a human islet cell line frozen as single cells or as islet-like cell clusters. The non-clusterized cells exhibited high cryosurvival after prolonged pre-freeze or post-thaw exposure to 10 percent DMSO. However, both clusterization and especially loading INPCs into the device reduced viable yield even without CP. The survived cryopreserved macro-encapsulated INPCs remained fully functional suggesting that CP of macro-encapsulated cells is a promising tool for cell based therapies.
Ballesteros, Lina F; Ramirez, Monica J; Orrego, Carlos E; Teixeira, José A; Mussatto, Solange I
2017-12-15
Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hur, Sun Jin; Lee, Seung Yuan; Lee, Seung-Jae
2015-01-01
In this study, beef patties were encapsulated with 3% chitosan, pectin, onion powder, or green tea powder and the beef patties were then passed through an in vitro human digestion model. The total lipid digestibility was lowest (p<0.05) in beef patties encapsulated with chitosan and pectin after digestion in the small intestine. Thiobarbituric acid reactive substance (TBARS) values were significantly lower (p<0.05) for beef patties encapsulated with chitosan and pectin, when compared with the control, after digestion in the small intestine. In contrast, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity was highest (p<0.05) in beef patties encapsulated with onion powder and green tea powder after digestion in the small intestine. The total cholesterol oxidation product (COP) content was significantly lower (p<0.05) in beef patties encapsulated with biopolymers than in the control after digestion in the small intestine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Atomic-Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica.
Martelli, Tommaso; Ravera, Enrico; Louka, Alexandra; Cerofolini, Linda; Hafner, Manuel; Fragai, Marco; Becker, Christian F W; Luchinat, Claudio
2016-01-04
Among protein immobilization strategies, encapsulation in bioinspired silica is increasingly popular. Encapsulation offers high yields and the solid support is created through a protein-catalyzed polycondensation reaction that occurs under mild conditions. An integrated strategy is reported for the characterization of both the protein and bioinspired silica scaffold generated by the encapsulation of enzymes with an external silica-forming promoter or with the promoter expressed as a fusion to the enzyme. This strategy is applied to the catalytic domain of matrix metalloproteinase 12. Analysis reveals that the structure of the protein encapsulated by either method is not significantly altered with respect to the native form. The structural features of silica obtained by either strategy are also similar, but differ from those obtained by other approaches. In case of the covalently linked R5-enzyme construct, immobilization yields are higher. Encapsulation through a fusion protein, therefore, appears to be the method of choice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.
Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana
2017-02-01
Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement.
Pu, Chuanfen; Tang, Wenting
2017-11-15
Aiming to improve the stability of lycopene and incorporate it into a complex nutraceutical, exogenous lycopene-loaded Chlorella pyrenoidosa cells (CPCs) were developed. The complex had an encapsulation yield of 13.06±0.89% and an encapsulation efficiency of 96.31±3.10%. Fluorescence analyses indicated that lycopene was encapsulated in the CPCs. X-ray diffraction, thermogravimetric and differential scanning calorimetric analyses were conducted and compared to those of the non-loaded CPCs, lycopene and their physical mixture. These studies demonstrated that lycopene was amorphous in the complex. The degradation kinetics indicated that encapsulation increased the stability of lycopene. The antioxidant activity of lycopene loaded CPCs against DPPH free radicals was higher than that of the unencapsulated lycopene after storage at 25°C for 25d. This study proved the feasibility of encapsulation of lycopene in the CPCs and combined the activities of both materials, which could be employed in the production of novel nutraceuticals to reduce oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Rui; Tian, Jing; Liu, Yuqian; Yang, Zhiying; Wu, Dandan; Zhou, Zhongkai
2017-11-22
The cavity of phytoferritin provides a nanospace to encapsulate and deliver food nutrient molecules. However, tranditional methods to prepare the ferritin-nutrient complexes must undergo acid/alkaline conditions or apply additives. In this work, we provide a novel guideline that thermal treatment at 60 °C can expand ferritin channels by uncoiling the surrounding α-helix. Upon reduction of the temperature to 20 °C, food nutrient rutin can be encapsulated in apo-soybean seed ferritin (apoSSF) at pH 7.0 through channels without disassembly of the protein cage and with no addition of additives. Results indicated that one apoSSF could encapsulate about 10.5 molecules of rutin, with an encapsulation ratio of 8.08% (w/w). In addition, the resulting rutin-loaded SSF complexes were monodispersed in a size of 12 nm in aqueous solution. This work provides a novel pathway for the encapsulation of food nutrient molecules into the nanocavity of ferritin under a neutral pH condition induced by thermal treatment.
Chono, Sumio; Togami, Kohei; Itagaki, Shirou
2017-11-01
We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. The present study provides the useful information for development of noninvasive treatment of diabetes. Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.
Postmortem analysis of encapsulation around long-term ventricular endocardial pacing leads.
Candinas, R; Duru, F; Schneider, J; Lüscher, T F; Stokes, K
1999-02-01
To analyze the site and thickness of encapsulation around ventricular endocardial pacing leads and the extent of tricuspid valve adhesion, from today's perspective, with implications for lead removal and sensor location. Gross cardiac postmortem analysis was performed in 11 cases (8 female and 3 male patients; mean age, 78+/-7 years). None of the patients had died because of pacemaker malfunction. The mean implant time was 61+/-60 months (range, 4 to 184). The observations ranged from encapsulation only at the tip of the pacing lead to complete encapsulation along the entire length of the pacing lead within the right ventricle. Substantial areas of adhesion at the tricuspid valve apparatus were noted in 7 of the 11 cases (64%). The firmly attached leads could be removed only by dissection, and in some cases, removal was possible only by damaging the associated structures. No specific optimal site for sensor placement could be identified along the ventricular portion of the pacing leads; however, the fibrotic response was relatively less prominent in the atrial chamber. Extensive encapsulation is present in most long-term pacemaker leads, which may complicate lead removal. The site and thickness of encapsulation seem to be highly variable. Tricuspid valve adhesion, which is usually underestimated, may be severe. In contrast to earlier reports, our study demonstrates that the extent of fibrotic encapsulation may not be related to the duration since lead implantation. Moreover, we noted no ideal encapsulation-free site for sensors on the ventricular portion of long-term pacing leads.
Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids
Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua
2014-01-01
Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 ns to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 42 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect. PMID:21748265
Buchanan, Kyle D.; Huang, Shao-Ling; Kim, Hyunggun; McPherson, David D.; MacDonald, Robert C.
2011-01-01
Echogenic liposomes (ELIP) have additional promise, beyond diagnostic agents, as vehicles for delivering oligonucleotides (ODN), especially if the release of the agent can be triggered and its uptake can be enhanced by ultrasound application at a specific site. The purpose of this study was to co-encapsulate air and NF-κB decoy ODN within ELIP allowing ultrasound to release encapsulated ODN from ELIP, and to accurately quantify release of encapsulated ODN from ELIP upon ultrasound application. FITC-labeled sense ODN (2 mM) was incorporated within ELIP using freeze/thaw method. Encapsulation efficiency of FITC-ODN was spectrofluorometrically analyzed by quenching fluorescence of unencapsulated FITC-ODN using a complementary strand tagged with Iowa Black FQ-ODN. Quenching of FITC-ODN (0.05 μM) with Iowa Black FQ-ODN (0.1 μM) was found to be efficient (92.4 ± 0.2 %), allowing accurate determination of encapsulated ODN. Encapsulation efficiency of ODN was 14.2 ± 2.5 % in DPPC/DOPC/DPPG/CH liposomes and 29.6 ± 1.5 % in DPPC/DOPE/DPPG/CH liposomes. Application of ultrasound (1 MHz continuous wave, 0.26 MPa peak-to-peak pressure amplitude, 60 seconds.) to the latter formulation triggered 41.6 ± 4.3 % release of ODN from ODN-containing ELIP. We have thus demonstrated that ODN can be encapsulated into ELIP and released efficiently upon ultrasound application. These findings suggest potential applications for gene therapy in atherosclerosis treatment. PMID:19804805
Effect of Over 10-Year Cryopreserved Encapsulated Pancreatic Islets Of Langerhans.
Kinasiewicz, Joanna; Antosiak-Iwanska, Magdalena; Godlewska, Ewa; Sitarek, Elzbieta; Sabat, Marek; Fiedor, Piotr; Granicka, Ludomira
2017-08-28
Immunoisolation of pancreatic islets of Langerhans performed by the encapsulation process may be a method to avoid immunosuppressive therapy after transplant. The main problem related to islet transplant is shortage of human pancreata. Resolution of this obstacle may be cryopreservation of encapsulated islets, which enables collection of sufficient numbers of isolated islets required for transplant and long-term storage. Here, we assessed the ability of encapsulated islets to function after long-term banking at low temperature. Islets of Langerhans isolated from rat, pig, and human pancreata were encapsulated within alginate-poly-L-lysine-alginate microcapsules. Cryopreservation was carried out using a controlled method of freezing (Kriomedpol freezer; Kriomedpol, Warsaw, Poland), and samples were stored in liquid nitrogen. After 10 years, the samples were thawed with the rapid method (with 0.75 M of sucrose) and then cultured. We observed that microcapsules containing islets maintained their shape and integrity after thawing. During culture, free islets were defragmented into single cells, whereas encapsulated islets were still round in shape and compact. After 1, 4, and 7 days of culture of encapsulated islets, the use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests showed increased mitochondrial activity. After they were thawed, the insulin secretion capacity was comparable with that obtained with fresh islets. Cryopreservation and storage of free and microencapsulated islets were possible for about 10 years, although only encapsulated islets retained viability and secretory properties.
Encapsulated cell bioremediation: Evaluation on the basis of particle tracer tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrich, C.R.; Stormo, K.E.; Ralston, D.R.
1998-09-01
Microencapsulation of degradative organisms enhances microorganism survivability. The use of encapsulated cell microbeads for in situ biodegradation depends not only on microorganism survival but also on microbead transport characteristics. Two forced-gradient, recirculating-loop tracer experiments were conducted to evaluate the feasibility of encapsulated cell transport and bioremediation on the basis of polystyrene microsphere transport results. The tracer tests were conducted in a shallow, confined, unconsolidated, heterogeneous, sedimentary aquifer using bromide ion and 2 {micro}m, 5 {micro}m, and 15{micro}m microsphere tracers. Significant differences were observed in the transport of bromide solute and polystyrene microspheres. Microspheres reached peak concentrations in monitoring wells beforemore » bromide, which was thought to reflect the influence of aquifer heterogeneity. Greater decreases in microsphere C/C{sub 0} ratios were observed with distance from the injection wells than in bromide C/C{sub 0} ratios, which was attributed to particle filtration and/or settling. Several methods might be considered for introducing encapsulated cell microbeads into a subsurface environment, including direct injection into a contaminated aquifer zone, injection through a recirculating ground water flow system, or emplacement in a subsurface microbial curtain in advance of a plume. However, the in situ use of encapsulated cells in an aquifer is probably limited to aquifers containing sufficiently large pore spaces, allowing passage of at least some encapsulated cells. The use of encapsulated cells may also be limited by differences in solute and microbead transport patterns and flowpath clogging by larger encapsulated cell microbeads.« less
Retention of gene expression in porcine islets after agarose encapsulation and long-term culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumpala, Pradeep R., E-mail: pdumpala@rixd.org; Holdcraft, Robert W.; Martis, Prithy C.
Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expressionmore » profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.« less
Augmenting the access grid using augmented reality
NASA Astrophysics Data System (ADS)
Li, Ying
2012-01-01
The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.
Storage of nuclear materials by encapsulation in fullerenes
Coppa, Nicholas V.
1994-01-01
A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.
Data Relay Board with Protocol for High-Speed, Free-Space Optical Communications
NASA Technical Reports Server (NTRS)
Wright, Malcolm; Clare, Loren; Gould, Gary; Pedyash, Maxim
2004-01-01
In a free-space optical communication system, the mitigation of transient outages through the incorporation of error-control methods is of particular concern, the outages being caused by scintillation fades and obscurants. The focus of this innovative technology is the development of a data relay system for a reliable high-data-rate free-spacebased optical-transport network. The data relay boards will establish the link, maintain synchronous connection, group the data into frames, and provide for automatic retransmission (ARQ) of lost or erred frames. A certain Quality of Service (QoS) can then be ensured, compatible with the required data rate. The protocol to be used by the data relay system is based on the draft CCSDS standard data-link protocol Proximity-1, selected by orbiters to multiple lander assets in the Mars network, for example. In addition to providing data-link protocol capabilities for the free-space optical link and buffering the data, the data relay system will interface directly with user applications over Gigabit Ethernet and/or with highspeed storage resources via Fibre Channel. The hardware implementation is built on a network-processor-based architecture. This technology combines the power of a hardware switch capable of data switching and packet routing at Gbps rates, with the flexibility of a software- driven processor that can host highly adaptive and reconfigurable protocols used, for example, in wireless local-area networks (LANs). The system will be implemented in a modular multi-board fashion. The main hardware elements of the data relay system are the new data relay board developed by Rockwell Scientific, a COTS Gigabit Ethernet board for user interface, and a COTS Fibre Channel board that connects to local storage. The boards reside in a cPCI back plane, and can be housed in a VME-type enclosure.
Time Synchronization and Distribution Mechanisms for Space Networks
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.
2011-01-01
This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
Scalable Multi-Platform Distribution of Spatial 3d Contents
NASA Astrophysics Data System (ADS)
Klimke, J.; Hagedorn, B.; Döllner, J.
2013-09-01
Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.
A service relation model for web-based land cover change detection
NASA Astrophysics Data System (ADS)
Xing, Huaqiao; Chen, Jun; Wu, Hao; Zhang, Jun; Li, Songnian; Liu, Boyu
2017-10-01
Change detection with remotely sensed imagery is a critical step in land cover monitoring and updating. Although a variety of algorithms or models have been developed, none of them can be universal for all cases. The selection of appropriate algorithms and construction of processing workflows depend largely on the expertise of experts about the "algorithm-data" relations among change detection algorithms and the imagery data used. This paper presents a service relation model for land cover change detection by integrating the experts' knowledge about the "algorithm-data" relations into the web-based geo-processing. The "algorithm-data" relations are mapped into a set of web service relations with the analysis of functional and non-functional service semantics. These service relations are further classified into three different levels, i.e., interface, behavior and execution levels. A service relation model is then established using the Object and Relation Diagram (ORD) approach to represent the multi-granularity services and their relations for change detection. A set of semantic matching rules are built and used for deriving on-demand change detection service chains from the service relation model. A web-based prototype system is developed in .NET development environment, which encapsulates nine change detection and pre-processing algorithms and represents their service relations as an ORD. Three test areas from Shandong and Hebei provinces, China with different imagery conditions are selected for online change detection experiments, and the results indicate that on-demand service chains can be generated according to different users' demands.
Probiotic Encapsulation Technology: From Microencapsulation to Release into the Gut
Gbassi, Gildas K.; Vandamme, Thierry
2012-01-01
Probiotic encapsulation technology (PET) has the potential to protect microorgansisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This paper reviews the methodological approach of probiotics encapsulation including biomaterials selection, choice of appropriate technology, in vitro release studies of encapsulated probiotics, and highlights the challenges to be overcome in this area. PMID:24300185
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1983-01-01
A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.
Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes
Rahman, Yueh Erh
1977-11-10
A method is provided for transferring a polyaminopolycarboxylic acid chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes, which liposomes will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. The chelating agent is encapsulated within liposomes by drying a lipid mixture to form a thin film and wetting the lipid film with a solution containing the chelating agent. Mixing then results in the formation of a suspension of liposomes encapsulating the chelating agent, which liposomes can then be separated.
Poly(ethylene glycol) hydrogel microstructures encapsulating living cells
NASA Technical Reports Server (NTRS)
Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.
2002-01-01
We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.
High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane
Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua
2005-01-01
Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922
A quantitative method for photovoltaic encapsulation system optimization
NASA Technical Reports Server (NTRS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
1981-01-01
It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.
Performance Improvement of Energy Storage System with nano-additivesin HTF
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Saravanakumar, B.; Jayaprabakar, J.
2017-05-01
This paper is intended to improve the heat transfer rate of thermal energy storage system with copper oxide (CuO) as nano-additivesin heat transfer fluid (HTF) by varying encapsulation materials. The experimentation is done with different encapsulating materials like copper, brass and aluminium. The results are analysed for their thermal performance characteristics during charging and discharging processes. D-Sorbitol and therminol-66 with CuO is used as PCM and HTF respectively. A comparison was made between the different encapsulations and it was found that copper encapsulation has higher efficient, storing and recovering energy. However, its high thermal conductivity promotes larger heat losses and its cost is also high on other side. So the economical use of encapsulation material is aluminium compared to other two materials.
Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules
NASA Astrophysics Data System (ADS)
Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro
2016-08-01
The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.
Collins, David J; Neild, Adrian; deMello, Andrew; Liu, Ai-Qun; Ai, Ye
2015-09-07
There is a recognized and growing need for rapid and efficient cell assays, where the size of microfluidic devices lend themselves to the manipulation of cellular populations down to the single cell level. An exceptional way to analyze cells independently is to encapsulate them within aqueous droplets surrounded by an immiscible fluid, so that reagents and reaction products are contained within a controlled microenvironment. Most cell encapsulation work has focused on the development and use of passive methods, where droplets are produced continuously at high rates by pumping fluids from external pressure-driven reservoirs through defined microfluidic geometries. With limited exceptions, the number of cells encapsulated per droplet in these systems is dictated by Poisson statistics, reducing the proportion of droplets that contain the desired number of cells and thus the effective rate at which single cells can be encapsulated. Nevertheless, a number of recently developed actively-controlled droplet production methods present an alternative route to the production of droplets at similar rates and with the potential to improve the efficiency of single-cell encapsulation. In this critical review, we examine both passive and active methods for droplet production and explore how these can be used to deterministically and non-deterministically encapsulate cells.
Bou, Ricard; Claret, Anna; Stamatakis, Antonios; Martínez, Brigitte; Guerrero, Luis
2017-12-01
Citric acid is commonly used as a flavoring and preservative in food and beverages. The effect of adding citric acid directly or encapsulated (each at 1 and 2 g kg -1 ) on the quality and shelf-life of ready-to-eat sea bass patties was evaluated during storage at 4 °C in vacuum skin packaging. Microbial growth and total basic volatile nitrogen were maintained at relatively low levels up to 8 weeks of storage. With respect to oxidative stability, the addition of encapsulated citric acid minimized secondary oxidation values more efficiently than its direct addition, regardless of the concentration. This is in agreement with the decreased fishy odor observed in those patties containing encapsulated citric acid. Accordingly, sensory analysis showed that the addition of encapsulated citric acid at 1 g kg -1 resulted in lower scores in fish aroma compared to that of the control. Sourness is dependent on the amount of citric acid added, regardless of the form (direct or encapsulated). The form of citric acid addition, rather than the amount of citric acid added, caused changes in texture. Therefore, the use of encapsulated citric acid represents a suitable strategy that is of great interest in the seafood industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Hur, Sun-Jin; Kim, Young-Chan; Choi, Inwook; Lee, Si-Kyung
2013-01-01
The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract. PMID:23965957
NASA Astrophysics Data System (ADS)
Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma
2014-02-01
Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.
NASA Astrophysics Data System (ADS)
Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul
2018-05-01
The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.
Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar
2013-12-01
Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.
Droplet sorting based on the number of encapsulated particles using a solenoid valve.
Cao, Zhenning; Chen, Fangyuan; Bao, Ning; He, Huacheng; Xu, Peisheng; Jana, Saikat; Jung, Sunghwan; Lian, Hongzhen; Lu, Chang
2013-01-07
Droplet microfluidics provides a high-throughput platform for screening subjects and conditions involved in biology. Droplets with encapsulated beads and cells have been increasingly used for studying molecular and cellular biology. Droplet sorting is needed to isolate and analyze the subject of interest during such screening. The vast majority of current sorting techniques use fluorescence intensity emitted by each droplet as the only criterion. However, due to the randomness and imperfections in the encapsulation process, typically a mixed population of droplets with an uneven number of encapsulated particles results and is used for screening. Thus droplet sorting based on the number of encapsulated particles becomes necessary for isolating or enriching droplets with a specific occupancy. In this work, we developed a fluorescence-activated microfluidic droplet sorter that integrated a simple deflection mechanism based on the use of a solenoid valve and a sophisticated signal processing system with a microcontroller as the core. By passing droplets through a narrow interrogation channel, the encapsulated particles were detected individually. The microcontroller conducted the computation to determine the number of encapsulated particles in each droplet and made the sorting decision accordingly that led to actuation of the solenoid valve. We tested both fluorescent beads and stained cells and our results showed high efficiency and accuracy for sorting and enrichment.
NASA Astrophysics Data System (ADS)
Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying
2017-03-01
Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.
Effect of Coating Method on the Survival Rate of L. plantarum for Chicken Feed
Lee, Sang-Yoon; Jo, Yeon-Ji; Choi, Mi-Jung; Lee, Boo-Yong; Han, Jong-Kwon; Lim, Jae Kag
2014-01-01
This study was designed to find the most suitable method and wall material for microencapsulation of the Lactobacillus plantarum to maintain cell viability in different environmental conditions. To improve the stability of L. plantarum, we developed an encapsulation system of L. plantarum, using water-in-oil emulsion system. For the encapsulation of L. plantarum, corn starch and glyceryl monostearate were selected to form gel beads. Then 10% (w/v) of starch was gelatinized by autoclaving to transit gel state, and cooled down at 60ºC and mixed with L. plantarum to encapsulate it. The encapsulated L. plantarum was tested for the tolerance of acidic conditions at different temperatures to investigate the encapsulation ability. The study indicated that the survival rate of the microencapsulated cells in starch matrix was significantly higher than that of free cells in low pH conditions with relatively higher temperature. The results showed that corn starch as a wall material and glycerol monostearate as a gelling agent in encapsulation could play a role in the viability of lactic acid bacteria in extreme conditions. Using the current study, it would be possible to formulate a new water-in-oil system as applied in the protection of L. plantarum from the gastric conditions for the encapsulation system used in chicken feed industry. PMID:26760943
Do encapsulated heat storage materials really retain their original thermal properties?
Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn
2015-01-14
The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.
Larsen, Randy W; Wojtas, Lukasz
2015-02-21
An attractive strategy for the development of photocatalytic metal organic framework (MOF) materials is to co-encapsulate a photoactive electron donor with a catalytic electron acceptor within the MOF. Here we report the co-encapsulation of both Zn(ii) tetrakis(tetra 4-sulphonatophenyl)porphyrin (Zn4SP) and Fe(iii) tetrakis(tetra 4-sulphonatophenyl)porphyrin (Fe4SP) into an HKUST-1 (Zn) MOF and demonstrate photoinduced electron transfer (ET) between the co-encapsulated guest. Photo-excitation of the Zn4SP results in fixed-distance inter-molecular ET between the encapsulated (3)Zn4SP and the Fe(iii)4SP as evident by the reduction in the encapsulated (3)Zn4SP lifetime from 890 μs (kobs = 1.1 × 10(3) s(-1)) to 83 μs (kobs = 1.2 × 10(4) s(-1)) in the presence of Fe4SP giving a kET ∼ 1.1 × 10(4) s(-1). The data are consistent with ET taking place between encapsulated porphyrins that are two cages apart in distance with a reorganizational energy of ∼1.65 eV, β = 1.25 and ΔG° = -0.97 eV (within a semi-classical Marcus theory framework).
Silica sol-gel encapsulation of cyanobacteria: lessons for academic and applied research.
Dickson, David J; Ely, Roger L
2013-03-01
Cyanobacteria inhabit nearly every ecosystem on earth, play a vital role in nutrient cycling, and are useful as model organisms for fundamental research in photosynthesis and carbon and nitrogen fixation. In addition, they are important for several established biotechnologies for producing food additives, nutritional and pharmaceutical compounds, and pigments, as well as emerging biotechnologies for biofuels and other products. Encapsulation of living cyanobacteria into a porous silica gel matrix is a recent approach that may dramatically improve the efficiency of certain production processes by retaining the biomass within the reactor and modifying cellular metabolism in helpful ways. Although encapsulation has been explored empirically in the last two decades for a variety of cell types, many challenges remain to achieving optimal encapsulation of cyanobacteria in silica gel. Recent evidence with Synechocystis sp. PCC 6803, for example, suggests that several unknown or uncharacterized proteins are dramatically upregulated as a result of encapsulation. Also, additives commonly used to ease stresses of encapsulating living cells, such as glycerol, have detrimental impacts on photosynthesis in cyanobacteria. This mini-review is intended to address the current status of research on silica sol-gel encapsulation of cyanobacteria and research areas that may further the development of this approach for biotechnology applications.
Ruan, Xiang-cai; Wang, Shen-ming; Shi, Han-ping; Li, Xiao-xi; Xia, Feng-geng; Ming, Fei-ping
2009-03-10
To investigate the effects of micro-encapsulated bifidobacteria on gut barrier and bacterial translocation after hemorrhagic shock and resuscitation. Sprague-Dawley rats were divided into 6 groups: PBS+sham shock group fed with PBS for 7 days and then undergoing sham shock, bifidobacteria+sham shock group fed with bifidobacteria (10(9) cfu/d) for 7 days and then undergoing sham shock, micro-encapsulated bifidobacteria+sham shock group, fed with micro-encapsulated bifidobacteria (10(9) cfu/d) for 7 days and then undergoing sham shock, PBS+hemorrhagic shock group fed with PBS for 7 days and then undergoing hemorrhagic shock, bifidobacteria+shock group fed with bifidobacteria for 7 days and then undergoing hemorrhagic shock, and micro-encapsulated bifidobacteria+shock group, fed with micro-encapsulated bifidobacteria for 7 days and then undergoing hemorrhagic shock. Three hours after resuscitation laparotomy was performed, distal cecum was resected to undergo bacteriological analysis of the cecal content, mesenteric lymph nodes (MLNs), a liver lobe, and the middle part of spleen were resected to undergo bacterial culture for bacterial translocation, and the terminal ileum was resected to observe the villous damage. There was no significant difference in the amount of blood loss among the 3 hemorrhagic shock groups. The amounts of aerobes in cecum of the bifidobacteria+shock and micro-encapsulated bifidobacteria+shock groups, especially that of the latter group, were significantly lower than that of the PBS+shock group. The amounts of anaerobes and the amounts of bifidobacteria in cecum of the bifidobacteria+shock group and micro-encapsulated bifidobacteria+shock group, especially those of the latter group, were significantly higher than those of the PBS+shock group. No bacterial translocation to liver was observed in all groups. The magnitudes of total aerobes translocation in spleen of the bifidobacteria+shock and encapsulated bifidobacteria+shock groups were significantly lower than that of the PBS+shock group, however, there were not significant differences in the translocation in the MLN of total aerobes ad bifidobacteria among different groups. The percentage of ileal villous damage of the bifidobacteria+shock and encapsulated bifidobacteria+shock groups were significantly lower than that of the PBS+shock group. Bifidobacteria effectively protects the gut barrier, reduces bacterial translocation from the gut after hemorrhagic shock and resuscitation. And micro-encapsulated Bifidobacteria can enhance those effects further.
Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO 2) Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecke, Joan F; Degnan, Jr, Thomas Francis; McCready, Mark J.
Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 µm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO 2-permeable polymer shells. Here wemore » report on the encapsulation of the IL and PCIL materials, thermodynamic testing of the encapsulated materials, mass transfer measurements in both a fluidized bed and a packed bed, determination of the effect of impurities (SO 2, NO x and water) on the free and encapsulated IL and PCIL, recyclability of the CO 2 uptake, selection and synthesis of kg quantities of the IL and PCIL, identification of scale-up methods for encapsulation and production of a kg quantity of the PCIL, construction and shakedown of the laboratory scale unit to test the encapsulated particles for CO 2 capture ability and efficiency, use of our mass transfer model to predict mass transfer and identify optimal properties of the encapsulated particles, and initial testing of the encapsulated particles in the laboratory scale unit. We also show our attempts at developing shell materials that are resistant to water permeation. Overall, we have shown that the selected IL and PCIL can be successfully encapsulated in polymer shells and the methods scaled up to production levels. The IL/PCIL and encapsulated IL/PCIL react irreversibly with SO 2 and NO x so the CO 2 capture unit would need to be placed after the flue gas desulfurization and NO x reduction units. However, the reaction with CO 2 in the presence of water is completely reversible. Therefore, it is not necessary to exclude water from the capsules. Mass transfer in the fluidized and packed beds confirm that the fluidized bed arrangement is preferred and that the mass transfer can be predicted accurately by the rate based model that we have developed. Absorption and desorption experiments in the laboratory scale unit show good uptake and recyclability.« less
Soft x ray window encapsulant for HgI2 detectors
NASA Technical Reports Server (NTRS)
Entine, G.; Shah, K.; Squillante, M.
1987-01-01
HgI2 is an excellent semiconductor material for a low energy, room temperature x-ray spectrometer. The high values of the atomic numbers for its constituent elements gives high x-ray and gamma ray stopping power. The band gap of HgI2 is significantly higher than other commonly used semiconductors. Owing to the large value band gap, the leakage current for HgI2 devices is smaller, thus allowing low noise performance. Devices fabricated from HgI2 crystals have demonstrated energy resolution sufficient to distinguish the x-ray emission from the neighboring elements on the periodic table. Also the power requirements of HgI2 are very low. These characteristics make a HgI2 spectrometer an ideal component in a satellite based detection system. Unfortunately, HgI2 crystals tend to deteriorate with time, even if protected by standard semiconductor encapsulants. This degradation ruins the performance of the device in terms of its energy resolution and pulse amplitude. The degrading mechanism is believed to be material loss occurring from below the electrodes, due to high vapor pressure of HgI2 at room temperature. To address this major obstacle to rapid expansion of HgI2 technology, a research program aimed at improving device stability by encapsulation with inert polymeric materials was carried out. The program focused specifically on optimizing the encapsulant materials and their deposition techniques. The principal objectives for this program were device encapsulation, device testing, and accelerated testing to ensure very long term stability of these high resolution sensors. A variety of encapsulants were investigated with the selection criteria based on their chemical diffusion barrier properties, mechanical stability, reactivity, and morphology of encapsulant films. The investigation covered different classes of encapsulants including solvent based encapsulants, vapor deposited encapsulants, and plasma polymerized encapsulants. A variety of characterization techniques were employed to examine their effectiveness in stabilizing HgI2 devices; these included permeability evaluation, vacuum and heat testing, scanning electron microscopy (SEM) as well as studying the detector performance of coated detectors. The plasma polymerized films appear to have entirely solved the HgI2 degradation problem. Another achievement of this program was the development of an accelerated testing technique which correlates extremely well with long term tesing.
2014-01-01
Background Two major hurdles for successful production of second-generation bioethanol are the presence of inhibitory compounds in lignocellulosic media, and the fact that Saccharomyces cerevisiae cannot naturally utilise pentoses. There are recombinant yeast strains that address both of these issues, but co-utilisation of glucose and xylose is still an issue that needs to be resolved. A non-recombinant way to increase yeast tolerance to hydrolysates is by encapsulation of the yeast. This can be explained by concentration gradients occuring in the cell pellet inside the capsule. In the current study, we hypothesised that encapsulation might also lead to improved simultaneous utilisation of hexoses and pentoses because of such sugar concentration gradients. Results In silico simulations of encapsulated yeast showed that the presence of concentration gradients of inhibitors can explain the improved inhibitor tolerance of encapsulated yeast. Simulations also showed pronounced concentration gradients of sugars, which resulted in simultaneous xylose and glucose consumption and a steady state xylose consumption rate up to 220-fold higher than that found in suspension culture. To validate the results experimentally, a xylose-utilising S. cerevisiae strain, CEN.PK XXX, was constructed and encapsulated in semi-permeable alginate-chitosan liquid core gel capsules. In defined media, encapsulation not only increased the tolerance of the yeast to inhibitors, but also promoted simultaneous utilisation of glucose and xylose. Encapsulation of the yeast resulted in consumption of at least 50% more xylose compared with suspended cells over 96-hour fermentations in medium containing both sugars. The higher consumption of xylose led to final ethanol titres that were approximately 15% higher. In an inhibitory dilute acid spruce hydrolysate, freely suspended yeast cells consumed the sugars in a sequential manner after a long lag phase, whereas no lag phase was observed for the encapsulated yeast, and glucose, mannose, galactose and xylose were utilised in parallel from the beginning of the cultivation. Conclusions Encapsulation of xylose-fermenting S. cerevisiae leads to improved simultaneous and efficient utilisation of several sugars, which are utilised sequentially by suspended cells. The greatest improvement is obtained in inhibitory media. These findings show that encapsulation is a promising option for production of second-generation bioethanol. PMID:25050138
NASA Astrophysics Data System (ADS)
Wei Hsu, Benedict You; Wang, Miao; Zhang, Yu; Vijayaragavan, Vimalan; Wong, Siew Yee; Yuang-Chi Chang, Alex; Bhakoo, Kishore Kumar; Li, Xu; Wang, John
2013-12-01
To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications.To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c3nr04378a
NASA Astrophysics Data System (ADS)
Deswardani, F.; Maulia, R.; Suharyadi, E.
2017-05-01
Mg0.5Ni0.5Fe2O4 has been successfully synthesized by using co-precipitation method. Two series of Mg0.5Ni0.5Fe2O4 silica encapsulated have been prepared by varying the concentration of silica and variation of PEG-4000 concentration. Analysis of X-Ray Diffraction (XRD) pattern showed that nanoparticles contained Mg0.5Ni0.5Fe2O4 spinel phase and γ-Fe2O3 phase with a particle size of 5.1 nm. The various of silica encapsulation give rise to produce a new phase of SiO2 and increase the particle size to 16.1 nm. PEG-4000 encapsulation affected to create a new phase of γ-FeO(OH), and reduce the particle size down to 4.5 nm. Fourier Transform Infra Red (FTIR) for Mg0.5Ni0.5Fe2O4 showed absorption peaks around 300-600 cm-1 which are M-O bond vibration. After silica encapsulation, there was new bond vibration typical of silica such as Si-O-Si (1049.28 cm-1), Si-OH (779.24 cm-1), and Si-O-Fe (570.93 cm-1). The PEG-4000 encapsulation creates a new vibration for typical of PEG-like of C-O (1103.28 cm-1) and C-H (925.83, 1481.33, and 2924.09 cm-1). Both of encapsulations series have M-O bond vibration indicating the presence of Mg0.5Ni0.5Fe2O4. After silica encapsulation, the coercivity of Mg0.5Ni0.5Fe2O4 decreased from 47 Oe to 10 Oe due to the decrease of particle size. Even though, the discrepancy of particle size as the effect of PEG-4000 encapsulation, the coercivity just slightly reduced to 46 Oe. The saturation magnetization of Mg0.5Ni0.5Fe2O4 decreased from 4.7 emu/g to 1 emu/g after silica encapsulation because diamagnetic SiO2. Otherwise, the saturation magnetization increased to 7.7 emu/g after PEG-4000 encapsulation because of domination of Mg0.5Ni0.5Fe2O4 phase ratio.
NASA Astrophysics Data System (ADS)
Wang, Jian
2017-01-01
In order to change traditional PE teaching mode and realize the interconnection, interworking and sharing of PE teaching resources, a distance PE teaching platform based on broadband network is designed and PE teaching information resource database is set up. The designing of PE teaching information resource database takes Windows NT 4/2000Server as operating system platform, Microsoft SQL Server 7.0 as RDBMS, and takes NAS technology for data storage and flow technology for video service. The analysis of system designing and implementation shows that the dynamic PE teaching information resource sharing platform based on Web Service can realize loose coupling collaboration, realize dynamic integration and active integration and has good integration, openness and encapsulation. The distance PE teaching platform based on Web Service and the design scheme of PE teaching information resource database can effectively solve and realize the interconnection, interworking and sharing of PE teaching resources and adapt to the informatization development demands of PE teaching.
KeyWare: an open wireless distributed computing environment
NASA Astrophysics Data System (ADS)
Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir
1995-12-01
Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.
Photopolymerizable liquid encapsulants for microelectronic devices
NASA Astrophysics Data System (ADS)
Baikerikar, Kiran K.
2000-10-01
Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion of a thermal initiator on the thermal and mechanical properties of the final cured encapsulants have been investigated. The results show that the material properties of the PLEs are the same, if not better, than those exhibited by conventional transfer molding compounds and demonstrate the potential of using PLEs for encapsulating microelectronic devices.
Wan Sai Cheong, J; Smith, H; Heney, C; Robson, J; Schlebusch, S; Fu, J; Nourse, C
2015-10-01
Following the introduction of vaccination against Haemophilus influenzae type b (Hib), cases of invasive encapsulated Hib disease have decreased markedly. This study aimed to examine subsequent epidemiological trends in invasive H. influenzae disease in Queensland, Australia and in particular, assess the clinical impact and public health implications of invasive non-typable H. influenzae (NTHi) strains. A multicentre retrospective study was conducted from July 2000 to June 2013. Databases of major laboratories in Queensland including Queensland Forensic and Scientific Services (jurisdictional referral laboratory for isolate typing) were examined to identify cases. Demographic, infection site, Indigenous status, serotype, and mortality data were collected. In total, 737 invasive isolates were identified, of which 586 (79·5%) were serotyped. Hib, NTHi and encapsulated non-b strains, respectively, constituted 12·1%, 69·1% and 18·8% of isolates. The predominant encapsulated non-b strains were f (45·5%) and a (27·3%) serotypes. Of isolates causing meningitis, 48·9% were NTHi, 14·9% Hib, 14·9% Hie, 10·6% Hif, 6·4% Hia and 4·3% were untyped. During the study period, there was an increase in the incidence of invasive NTHi disease (P = 0·007) with seasonal peaks in winter and spring (P 0·001) and Hib (P = 0·039) than non-Indigenous patients. In Queensland, invasive H. influenzae disease is now predominantly encountered in adults and most commonly caused by NTHi strains with demonstrated pathogenicity extending to otherwise young or immunocompetent individuals. Routine public health notification of these strains is recommended and recent available immunization options should be considered.
Meng, Boyu; Li, Ling; Hua, Su; Wang, Qingsong; Liu, Chunhui; Xu, Xiangyang; Yin, Xiaojin
2010-09-15
The incomplete release of Endostar from PLGA microspheres was observed in our previous study. In the present study, we focused on the effect of medium-chain triglycerides (MCT) on the in vitro/in vivo release behavior of Endostar encapsulated PLGA microspheres, which were prepared by a water-in-oil-in-water (W/O/W) double-emulsion method with or without MCT. The in vitro accumulated release of Endostar from microspheres co-encapsulated with 30% MCT was found to be 79.04% after a 30-day incubation period in PBS (pH 7.4) at 37 degrees C. However, the accumulated release of Endostar from MCT-free microspheres was found to be only 32.22%. Pouches containing Endostar encapsulated PLGA microspheres were implanted subcutaneously in rats. The effect of MCT on the in vivo release showed a similar trend to the in vitro release. After 30 days, only 9.87% of the total encapsulated Endostar was retained in microspheres co-encapsulated with 30% MCT, while 42.25% of Endostar was retained in MCT-free microspheres. The co-encapsulation of MCT provided the microspheres with a porous surface, which significantly improved the in vitro/in vivo release of Endostar from PLGA microspheres. In addition, in vitro experiments showed that MCT co-encapsulated PLGA microspheres had more inter-connected pores, faster degradation of PLGA, and faster swelling of microspheres, which helped to explain the mechanism of the effect of MCT on improving the release of Endostar from PLGA microspheres. Copyright 2010 Elsevier B.V. All rights reserved.
Anti-Inflammatory Peptide Functionalized Hydrogels for Insulin-Secreting Cell Encapsulation
Su, Jing; Hu, Bi-Huang; Lowe, William L.; Kaufman, Dixon B.; Messersmith, Phillip B.
2009-01-01
Pancreatic islet encapsulation within semi-permeable materials has been proposed for transplantation therapy of Type I diabetes mellitus. Polymer hydrogel networks used for this purpose have been shown to provide protection from islet destruction by immunoreactive cells and antibodies. However, one of the fundamental deficiencies with current encapsulation methods is that the permselective barriers cannot protect islets from cytotoxic molecules of low molecular weight that are diffusible into the capsule material, which subsequently results in β-cell destruction. Use of materials that can locally inhibit the interaction between the permeable small cytotoxic factors and islet cells may prolong the viability and function of encapsulated islet grafts. Here we report the design of anti-inflammatory hydrogels supporting islet cell survival in the presence of diffusible pro-inflammatory cytokines. We demonstrated that a poly(ethylene glycol)-containing hydrogel network, formed by native chemical ligation and presenting an inhibitory peptide for islet cell surface IL-1 receptor, was able to maintain the viability of encapsulated islet cells in the presence of a combination of cytokines including IL-1β, TNF-α, and INF-γ. In stark contrast, cells encapsulated in unmodified hydrogels were mostly destroyed by cytokines which diffused into the capsules. At the same time, these peptide-modified hydrogels were able to efficiently protect encapsulated cells against β-cell specific T-lymphocytes and maintain glucose-stimulated insulin release by islet cells. With further development, the approach of encapsulating cells and tissues within hydrogels presenting anti-inflammatory agents may represent a new strategy to improve cell and tissue graft function in transplantation and tissue engineering applications. PMID:19782393
NASA Astrophysics Data System (ADS)
da Silva Malheiros, Patrícia; Sant'Anna, Voltaire; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; Brandelli, Adriano
2011-08-01
Antimicrobial peptide P34, a substance showing antibacterial activity against pathogenic and food spoilage bacteria, was encapsulated in liposomes prepared from partially purified soybean phosphatidylcholine, and their physicochemical characteristics were evaluated. The antimicrobial activity was estimated by agar diffusion assay using Listeria monocytogenes ATCC 7644 as indicator strain. A concentration of 3,200 AU/mL of P34 was encapsulated in nanovesicles and stocked at 4 °C. No significant difference ( p > 0.05) in the biological activity of free and encapsulated P34 was observed through 24 days. Size and PDI of liposomes, investigated by light scattering analysis, were on average 150 nm and 0.22 respectively. Zeta potential was -27.42 mV. There was no significant change ( p > 0.05) in the physicochemical properties of liposomes during the time of evaluation. The liposomes presented closed spherical morphology as visualized by transmission electron microscopy (TEM). The mode of action of liposome-encapsulated P34 under L. monocytogenes cells was investigated by TEM. Liposomes appeared to adhere but not fuse with the bacterial cell wall, suggesting that the antimicrobial is released from nanovesicles to act against the microorganism. The effect of free and encapsulated P34 was tested against L. monocytogenes, showing that free bacteriocin inhibited the pathogen more quickly than the encapsulated P34. Liposomes prepared with low-cost lipid showed high encapsulation efficiency for a new antimicrobial peptide and were stable during storage. The mode of action against the pathogen L. monocytogenes was characterized.
Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo
2010-01-01
The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.
Nguyen, Minh-Hiep; Pham, Ngoc-Duy; Dong, Bingxue; Nguyen, Thi-Huynh-Nga; Bui, Chi-Bao; Hadinoto, Kunn
2017-11-01
While the radioprotective activity of curcumin against genotoxicity has been well established, its poor oral bioavailability has limited its successful clinical applications. Nanoscale formulations, including liposomes, have been demonstrated to improve curcumin bioavailability. The objective of the present work was (1) to prepare and characterize curcumin-encapsulated liposomes (i.e. size, colloidal stability, encapsulation efficiency, and payload), and (2) subsequently to evaluate their radioprotective activity against genotoxicity in human blood cells caused by Gamma Cobalt-60 irradiation. The curcumin-encapsulated liposomes were prepared by lipid-film hydration method using commercial phosphatidylcholine (i.e. Phospholipon ® 90G). The blood cells were obtained from healthy male donors (n = 3) under an approved ethics protocol. The cell uptake and the radioprotective activity of the curcumin-encapsulated liposomes were characterized by fluorescence microscopy and micronucleus assay, respectively. Nanoscale curcumin-encapsulated liposomes exhibiting good physical characteristics and successful uptake by the human blood cells were successfully prepared. The radioprotective activity of the curcumin-encapsulated liposomes was found to be dependent on the curcumin concentration, where an optimal concentration existed (i.e. 30 μg/mL) independent of the irradiation dose, above which the radioprotective activity had become stagnant (i.e. no more reduction in the micronuclei frequency). The present results established for the first time the radioprotective activity of curcumin-encapsulated liposomes in human blood cells, which coupled by its well-established bioavailability, boded well for its potential application as a nanoscale delivery system of other radioprotective phytochemicals.
Schiebel, Frank; Cassim, R
2016-01-01
Cellular angiofibroma is a rare benign mesenchymal tumor that occurs in the inguinal and vulvovaginal region. We report a case of the tumor occurring in the right inguinal region of a 64 old male and a review of the current literature. A 64 year old male veteran was referred to our general surgery service with an incidentally discovered right inguinal mass on a computerized tomography scan. The scan was performed to follow a history of prostate cancer that had been treated with brachytherapy. Magnetic resonance imaging of the lesion helped confirm that the mass did not represent a hernia or an undescended testicle. Surgical resection revealed encapsulated, yellowish, pink tissue measuring 6.5 x 5 x 3.5 cm. Microscopically, the sections showed densely fibrous to loose and focally fibromyxoid background of oval to spindle-shaped cells with a few scattered plasma cells and mast cells. Based upon the clinical, histologic, and immunohistochemical findings, the lesion was classified as a cellular angiofibroma. Cellular angiofibroma of the inguinal region is a rare benign encapsulated tumor.It should be considered in the differential diagnosis of a male with an inguinal mass proven not to be a hernia or undescended testicle.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1981-01-01
Encapsulant materials and processes for the production of cost-effective, long-life solar cell modules were investigated. The following areas were explored: (1) soil resistant surface treatment; (2) corrosion protecting coatings from mild steel substrates; (3) primers for bonding module interfaces; and (4) RS/4 accelerated aging of candidate encapsulation compounds
USDA-ARS?s Scientific Manuscript database
Oxidation of encapsulated bioactive compounds is a key challenge that limits shelf-life of bioactive containing products. The objectives of this study were to compare differences between the oxidative barrier properties of biopolymer particle based encapsulation system (zein colloidal particles) and...
ERIC Educational Resources Information Center
Friedli, Andrienne C.; Schlager, Inge R.; Wright, Stephen W.
2005-01-01
Three variations on a classroom demonstration of the encapsulation of droplets and evidence for release of the interior solution are described. The first two demonstrations mimic biocompatible applications of encapsulation. Reversible formation of capsules from aqueous solutions of sodium alginate, a negatively charged polysaccharide derived from…
Sclerosing encapsulating peritonitis: a case series.
Nandedkar, Shirish; Malukani, Kamal; Nayak, Renu; Patidar, Ekta
2014-03-01
Sclerosing encapsulating peritonitis (SEP) is a relatively rare cause of intestinal obstruction characterized by total or partial encapsulation of the small intestine by a thick fibrous membrane and is a difficult preoperative diagnosis. A series of seven cases of SEP is reported. Modalities of preoperative diagnosis along with clinical presentation, operative findings, and histopathology are discussed.
Screening Plastic-Encapsulated Solid-State Devices
NASA Technical Reports Server (NTRS)
Buldhaupt, L.
1984-01-01
Suitability of plastic-encapsulated solid-state electronic devices for use in spacecraft discussed. Conclusion of preliminary study was plasticencapsulated parts sufficiently reliable to be considered for use in lowcost equipment used at moderate temperature and low humidity. Useful to engineers as guides to testing or use of plastic encapsulated semiconductors in severe terrestrial environments.
NASA Technical Reports Server (NTRS)
Pearman, Benjamin Pieter; Calle, Luz M.
2015-01-01
This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.
NASA Astrophysics Data System (ADS)
Nagai, Shoko; Yamada, Kiho; Hirano, Akira; Ippommatsu, Masamichi; Ito, Masahiro; Morishima, Naoki; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu
2016-08-01
To replace mercury lamps with AlGaN-based deep-ultraviolet (DUV) LEDs, a simple and low-cost package with increased light extraction efficiency (LEE) is indispensable. Therefore, resin encapsulation is considered to be a key technology. However, the photochemical reactions induced by DUV light cause serious problems, and conventional resins cannot be used. In the former part of this study, a comparison of a silicone resin and fluorine polymers was carried out in terms of their suitability for encapsulation, and we concluded that only one of the fluorine polymers can be used for encapsulation. In the latter part, the endurance of encapsulation using the selected fluorine polymer was investigated, and we confirmed that the selected fluorine polymer can guarantee a lifetime of over 6,000 h at a wavelength of 265 nm. Furthermore, a 3 × 4 array module of encapsulated dies on a simple AlN submount was fabricated, demonstrating the possibility of W/cm2-class lighting.
Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete
Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo
2016-01-01
The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times. PMID:28787859
Controlling the Maillard reaction by reactant encapsulation: sodium chloride in cookies.
Fiore, Alberto; Troise, Antonio Dario; Ataç Mogol, Burçe; Roullier, Victor; Gourdon, Anthony; El Mafadi Jian, Samira; Hamzalioğlu, Berat Aytül; Gökmen, Vural; Fogliano, Vincenzo
2012-10-31
Formation of Maillard reaction products (MRPs) including 5-hydroxymethylfurfural (HMF) and acrylamide has been an intensive area of research in recent decades. The presence of reactants such as sodium chloride may influence the Maillard reaction (MR) pathways through the dehydration of various key intermediates. The aim of this work was to test the potential of ingredient encapsulation to mitigate the MR by investigating the case of sodium chloride encapsulation on the HMF formation in cookies. Thirteen cookies were prepared with recipes containing free or encapsulated NaCl. Increasing NaCl concentration from 0 to 0.65% increases HMF concentration up to 75%, whereas in the presence of encapsulated NaCl the reduction of HMF varied from 18 to 61% due to the inhibition of sucrose pyrolytic decomposition and the fructofuranosyl cation formation. Data demonstrated that the more heat-resistant the lipid-based coating was, the more pronounced the reduction of HMF formation. The results showed that encapsulation represents a useful approach to prevent the formation of potentially harmful compounds in thermally processed foods.
Mammalian Cell Encapsulation in Alginate Beads Using a Simple Stirred Vessel.
Hoesli, Corinne A; Kiang, Roger L J; Raghuram, Kamini; Pedroza, René G; Markwick, Karen E; Colantuoni, Antonio M R; Piret, James M
2017-06-29
Cell encapsulation in alginate beads has been used for immobilized cell culture in vitro as well as for immunoisolation in vivo. Pancreatic islet encapsulation has been studied extensively as a means to increase islet survival in allogeneic or xenogeneic transplants. Alginate encapsulation is commonly achieved by nozzle extrusion and external gelation. Using this method, cell-containing alginate droplets formed at the tip of nozzles fall into a solution containing divalent cations that cause ionotropic alginate gelation as they diffuse into the droplets. The requirement for droplet formation at the nozzle tip limits the volumetric throughput and alginate concentration that can be achieved. This video describes a scalable emulsification method to encapsulate mammalian cells in 0.5% to 10% alginate with 70% to 90% cell survival. By this alternative method, alginate droplets containing cells and calcium carbonate are emulsified in mineral oil, followed by a decrease in pH leading to internal calcium release and ionotropic alginate gelation. The current method allows the production of alginate beads within 20 min of emulsification. The equipment required for the encapsulation step consists in simple stirred vessels available to most laboratories.
Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm.
Danso, K E; Ford-Lloyd, B V
2003-04-01
We report the encapsulation of in vitro-derived nodal cuttings or shoot tips of cassava in 3% calcium alginate for storage and germplasm exchange purposes. Shoot regrowth was not significantly affected by the concentration of sucrose in the alginate matrix while root formation was. In contrast, increasing the sucrose concentration in the calcium chloride polymerisation medium significantly reduced regrowth from encapsulated nodal cuttings of accession TME 60444. Supplementing the alginate matrix with increased concentrations of 6-benzylaminopurine and alpha-naphthaleneacetic acid enhanced complete plant regrowth within 2 weeks. Furthermore, plant regrowth by encapsulated nodal cuttings and shoot tips was significantly affected by the duration of the storage period as shoot recovery decreased from almost 100% to 73.3% for encapsulated nodal cuttings and 94.4% to 60% for shoot tips after 28 days of storage. The high frequency of plant regrowth from alginate-coated micropropagules coupled with high viability percentage after 28 days of storage is highly encouraging for the exchange of cassava genetic resources. Such encapsulated micropropagules could be used as an alternative to synthetic seeds derived from somatic embryos.
Window encapsulation in car industry by using the 50 {Omega} RF technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, J.P.; Barboteau, M.; Collet, L.
Throughout the world car industry has been using window encapsulation for a few years now. This technology is mainly used in production lines and is called RIM for polyurethane reaction injection moulding. This technology, however brings about some problems such as: glass breaking during mould closure, high production cost, systematic rough edges. The PSA Group (Peugeot-Citroen), a pioneer in this field, in collaboration with SAIREM has launched a new innovating process for window encapsulation by using the 50 {Omega} RF technology for gelling PVC Plastisol. The study was followed by an industrial prototype. Industrial equipment was then installed at WEBASTOmore » HEULIEZ for window encapsulation of the sunshine roof for the Citroen Xantia. The authors describe the principle of window encapsulation and the different existing processes. They describe the 50 {Omega} RF technology, an industrial installation and the constraints of this technology in order to get maximum efficiency. In the conclusion they present a technical and economical analysis of the different solutions for window encapsulation. They also present the advantages of the 50 {Omega} RF technology and the new opportunities it offers.« less
Bustamante, Mariela; Oomah, B Dave; Rubilar, Mónica; Shene, Carolina
2017-02-01
Mucilage (M) and soluble protein (SP) extracted from chia seed and flaxseed were used as encapsulating material for two probiotic bacteria: Bifidobacterium infantis and Lactobacillus plantarum by spray drying. Probiotic survival and viability after spray drying and during storage were evaluated. B. infantis and L. plantarum displayed high survival (⩾98%) after encapsulation with mixtures of maltodextrin (MD) combined with M and SP from flaxseed (MD:FM:FSP - 7.5:0.2:7.5%, w/w/w) and chia seed (MD:CM:CSP - 7.5:0.6:7.5%, w/w/w), respectively. These ternary blends protected the probiotics and enhanced their resistance to simulated gastric juice and bile solution. Probiotics encapsulated with the ternary blends incorporated in instant juice powder exhibited high viability (>9Log10CFU/g) after 45days refrigerated storage. Encapsulation with the ternary blends reduced particle size of the probiotic powders thereby offering additional functional benefits. Our results reveal that chia seed and flaxseed are excellent sources of probiotic encapsulating agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Methods For Self-Organizing Software
Bouchard, Ann M.; Osbourn, Gordon C.
2005-10-18
A method for dynamically self-assembling and executing software is provided, containing machines that self-assemble execution sequences and data structures. In addition to ordered functions calls (found commonly in other software methods), mutual selective bonding between bonding sites of machines actuates one or more of the bonding machines. Two or more machines can be virtually isolated by a construct, called an encapsulant, containing a population of machines and potentially other encapsulants that can only bond with each other. A hierarchical software structure can be created using nested encapsulants. Multi-threading is implemented by populations of machines in different encapsulants that are interacting concurrently. Machines and encapsulants can move in and out of other encapsulants, thereby changing the functionality. Bonding between machines' sites can be deterministic or stochastic with bonding triggering a sequence of actions that can be implemented by each machine. A self-assembled execution sequence occurs as a sequence of stochastic binding between machines followed by their deterministic actuation. It is the sequence of bonding of machines that determines the execution sequence, so that the sequence of instructions need not be contiguous in memory.
Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele
2015-01-01
Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugaiah, Anand
The objective of this program is to generate novel LED package designs that would provide 30% improvement in lumen/$ output. This was to be achieved by improving thermal management in encapsulants/ phosphors to reduce their temperatures. Currently, the heat that is generated during down conversion of blue light to longer wavelengths by the phosphors dispersed in the encapsulant does not have optimum thermal pathways for dissipation due to poor thermal conductivity of the encapsulant material. Additionally, high temperature in the encapsulant during operation is one of the primary failure modes in LED luminaires resulting in much shorter than expected life.more » The thermal issues manifest in color instability (yellowing, browning), cracking and hot spots in the encapsulant leading to failures. This work explored boron nitride (hBN) as thermal fillers in encapsulants to improve thermal conductivity while minimally impacting optical properties. Various approaches to Boron Nitride (BN) were evaluated and over 380 samples were generated to down select appropriate BN morphologies. We developed a range or BN materials for enabling thermal properties while attempting to minimally impact to optical properties.« less
Silva, Eric Keven; Zabot, Giovani L; Cazarin, Cinthia B B; Maróstica, Mário R; Meireles, M Angela A
2016-06-25
The objective of this study was to evaluate the use of inulin (IN), a prebiotic carbohydrate without superficial activity, as an encapsulating matrix of lipophilic bioactive compounds. For achieving the encapsulation, IN was associated with biopolymers that present superficial activity: modified starch (HiCap), whey protein isolate (WPI) and gum acacia (GA). Encapsulation was performed through emulsification assisted by ultrasound followed by freeze-drying (FD) process to dry the emulsions. All blends retained geranylgeraniol. GA-IN blend yielded the highest geranylgeraniol retention (96±2wt.%) and entrapment efficiency (94±3wt.%), whilst WPI-IN blend yielded the highest encapsulation efficiency (88±2wt.%). After encapsulation, composition of geranylgeraniol in the annatto seed oil was maintained (23.0±0.5g/100g of oil). Such findings indicate that the method of encapsulation preserved the active compound. All blends were also effective for maintaining the antioxidant activity of the oil through ORAC and DPPH analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Funaro, Michael G; Nemani, Krishnamurthy V; Chen, Zhihang; Bhujwalla, Zaver M; Griswold, Karl E; Gimi, Barjor
2016-02-01
Cytosine deaminase (CD) catalyses the enzymatic conversion of the non-toxic prodrug 5-fluorocytosine (5-FC) to the potent chemotherapeutic form, 5-fluorouracil (5-FU). Intratumoral delivery of CD localises chemotherapy dose while reducing systemic toxicity. Encapsulation in biocompatible microcapsules immunoisolates CD and protects it from degradation. We report on the effect of alginate encapsulation on the catalytic and functional activity of isolated CD and recombinant E. coli engineered to express CD (E. coli(CD)). Alginate microcapsules containing either CD or Escherichia coli(CD) were prepared using ionotropic gelation. Conversion of 5-FC to 5-FU was quantitated in unencapsulated and encapsulated CD/E. coli(CD) using spectrophotometry, with a slower rate of conversion observed following encapsulation. Both encapsulated CD/5-FC and E. coli(CD)/5-FC resulted in cell kill and reduced proliferation of 9 L rat glioma cells, which was comparable to direct 5-FU treatment. Our results show that encapsulation preserves the therapeutic potential of CD and E. coli(CD) is equally effective for enzyme-prodrug therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Chunnian; Zhao Naiqin; Shi Chunsheng
2008-08-04
Three types of carbon nanomaterials, including bamboo-shaped carbon nanotubes with Ni encapsulated and hollow and Ni catalytic particles filled carbon nanocages, have been prepared by methane catalytic decomposition at a relatively low temperature. Transmission electron microscopy observations showed that fascinating fullerene-like Ni-C (graphitic) core-shell nanostructures predominated. Detailed examination of high-resolution transmission electron microscopy showed that the walls of bamboo-shaped carbon nanotubes with quasi-cone catalytic particles encapsulated consisted of oblique graphene planes with respect to the tube axis. The Ni particles encapsulated in the carbon nanocages were larger than that encapsulated in carbon nanotubes, but the diameters of the cores ofmore » hollow carbon nanocages were less than that of Ni particles encapsulated in carbon nanotubes, suggesting that the sizes of catalyst particles played an important role during carbon nanomaterial growth. The magnetic properties of the carbon nanomaterials were measured, which showed relatively large coercive force (H{sub c} = 138.4 O{sub e}) and good ferromagnetism (M{sub r}/M{sub s} = 0.325)« less
Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete.
Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo
2016-01-19
The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.
NASA Astrophysics Data System (ADS)
Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri
2017-02-01
Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.
Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele
2015-01-01
Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications. PMID:26528254
Encina, Cristian; Márquez-Ruiz, Gloria; Holgado, Francisca; Giménez, Begoña; Vergara, Cristina; Robert, Paz
2018-10-15
Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.
Encapsulation of cosmetic active ingredients for topical application--a review.
Casanova, Francisca; Santos, Lúcia
2016-02-01
Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs.
Statistical Modeling of Single Target Cell Encapsulation
Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan
2011-01-01
High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems. PMID:21814548
Improved performance of InSe field-effect transistors by channel encapsulation
NASA Astrophysics Data System (ADS)
Liang, Guangda; Wang, Yiming; Han, Lin; Yang, Zai-Xing; Xin, Qian; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Patanè, Amalia; Song, Aimin
2018-06-01
Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosphorene, InSe is more resilient to oxidation in air. Nevertheless, its implementation in future applications requires encapsulation techniques to prevent the adsorption of gas molecules on its surface. In this work, we use a common lithography resist, poly(methyl methacrylate) (PMMA) to encapsulate InSe-based field-effect transistors (FETs). The encapsulation of InSe by PMMA improves the electrical stability of the FETs under a gate bias stress, and increases both the drain current and electron mobility. These findings indicate the effectiveness of the PMMA encapsulation method, which could be applied to other 2D materials.
A method for encapsulating high voltage power transformers
NASA Astrophysics Data System (ADS)
Sanchez, Robert O.
Voltage breakdowns become a major concern in reducing the size of high-voltage power converter transformers. Even the smallest of voids can provide a path for corona discharge which can cause a dielectric breakdown leading to a transformer failure. A method of encapsulating small high voltage transformers has been developed. The method virtually eliminates voids in the impregnation material, provides an exceptional dielectric between windings and provides a mechanically rugged package. The encapsulation material is a carboxyl terminated butadiene nitril (CTBN) modified mica filled epoxy. The method requires heat/vacuum to impregnate the coil and heat/pressure to cure the encapsulant. The transformer package utilizes a diallyl phthalate (DAP) contact assembly in which a coated core/coil assembly is mounted and soldered. This assembly is then loaded into an RTV mold and the encapsulation process begins.
Balabushevich, Nadezhda G; Lopez de Guerenu, Anna V; Feoktistova, Natalia A; Skirtach, Andre G; Volodkin, Dmitry
2016-01-01
Encapsulation of model proteins (catalase, insulin, aprotinin) into multilayer dextran sulphate/protamin capsules by templating on CaCO3 microparticles is investigated employing: (i) PRE-loading into CaCO3 particles by adsorption or co-synthesis and (ii) POST-loading into performed capsules. Protein encapsulation is governed by both its size and electrostatic interactions with the carbonate microparticles and multilayer shell. PRE-loading enables improved encapsulation compared to POST-loading (catalase content in capsules 630 and 70 mg · g(-1)). Bioactivity of encapsulated protein is not affected by interaction with multilayers but may be reduced at slightly alkaline pH due to CaCO3 hydrolysis. This study might help to successfully encapsulate fragile bio-macromolecules into multilayer capsules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Son, Jino; Hooven, Louisa A; Harper, Bryan; Harper, Stacey L
2015-12-15
Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Ochi, Mohammad Mahdi; Amoabediny, Ghasem; Rezayat, Seyed Mahdi; Akbarzadeh, Azim; Ebrahimi, Bahman
2016-01-01
Objective This study aimed to evaluate a co-encapsulated pegylated nano-liposome system based on two herbal anti-tumor drugs, silibinin and glycyrrhizic acid, for delivery to a hepatocellular carcinoma (HCC) cell line (HepG2). Materials and Methods In this experimental study, co-encapsulated nano-liposomes by the thin layer film hydration method with HEPES buffer and sonication at 60% amplitude. Liposomes that co-encapsulated silibinin and glycyrrhizic acid were prepared with a specified molar ratio of dipalmitoylphosphatidylcholine (DPPC), cholesterol (CHOL), and methoxy-polyethylene glycol 2000 (PEG2000)–derived distearoyl phosphatidylethanolamine (mPEG2000-DSPE). We used the MTT technique to assess cytotoxicity for various concentrations of co-encapsulated nano-liposomes, free silibinin (25% w/v) and glycyrrhizic acid (75% w/v) on HepG2 and fibroblast cell lines over a 48-hour period. Results Formulation of pegylated nano-liposomes showed a narrow size distribution with an average diameter of 46.3 nm. The encapsulation efficiency (EE) for silibinin was 24.37%, whereas for glycyrrhizic acid it was 68.78%. Results of in vitro cytotoxicity showed significantly greater co-encapsulated nano-liposomes on the HepG2 cell line compared to the fibroblast cell line. The half maximal inhibitory concentration (IC50) for co-encapsulated pegylated nanoliposomal herbal drugs was 48.68 µg/ml and free silibinin with glycyrrhizic acid was 485.45 µg/ml on the HepG2 cell line. Conclusion This in vitro study showed that nano-liposome encapsulation of silibinin with glycyrrhizic acid increased the biological activity of free drugs, increased the stability of silibinin, and synergized the therapeutic effect of silibinin with glycyrrhizic acid. The IC50 of the co-encapsulated nano-liposomes was lower than the combination of free silibinin and glycyrrhizic acid on the HepG2 cell line. PMID:27540518
Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M
2017-06-01
The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect carvacrol structure and increase its efficiency and stability. Moreover, nano-encapsulation of carvacrol is more efficient than nano-emulsion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Interfacing the Controllogics PLC over Ethernet/IP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasemir, K. U.; Dalesio, L. R.
2001-01-01
The Allen-Bradley ControlLogix [1] line of programmable logic controllers (PLCs) offers several interfaces: Ethernet, ControlNet, DeviceNet, RS-232 and others. The ControlLogix Ethernet interface module 1756-ENET uses EtherNet/IP, the ControlNet protocol [2], encapsulated in Ethernet packages, with specific service codes [3]. A driver for the Experimental Physics and Industrial Control System (EPICS) has been developed that utilizes this EtherNet/IP protocol for controllers running the vxWorks RTOS as well as a Win32 and Unix/Linux test program. Features, performance and limitations of this interface are presented.
Investigation of test methods, material properties and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1985-01-01
The historical development of ethylene vinyl acetate (EVA) is presented, including the functional requirements, polymer selection, curing, stabilization, production and module processing. The construction and use of a new method for the accelerated aging of polymers is detailed. The method more closely resembles the conditions that may be encountered in actual module field exposure and additionally may permit service life to be predicted accurately. The use of hardboard as a low cost candidate substrate material is studied. The performance of surface antisoiling treatments useful for imparting a self cleaning property to modules is updated.
Module degradation catalyzed by metal-encapsulation reactions
NASA Technical Reports Server (NTRS)
Gallagher, B. D.
1983-01-01
Four major properties are considered to be relevant in determining service life of a photovoltaic module: (1) Mechanical: creep resistance, modulus, tensile strength; (2) Optical: integrated transmission at 0.4 to 1.1 m wavelength; (3) Chemical: inertness with respect to metals and other components, retention of stabilizers, etc. and (4) Electrical; maintaining effective isolation of conductive components. These properties were measured after exposing polymer specimens to three types of accelerated stress: thermal, ultraviolet radiation and metal catalysts. These conditions give rise to a large number of complex interrelated free-radical reactions that result in the deterioration of polymeric materials.
2013-01-11
TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, the Tracking and Data Relay Satellite, TDRS-K, is being checked out prior to being encapsulated in the nose faring. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Jim Grossmann
2012-12-19
TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, the Tracking and Data Relay Satellite, TDRS-K, is being checked out prior to being encapsulated in the nose faring. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett
2002-10-18
KENNEDY SPACE CENTER, FLA. - The TDRS-J spacecraft, enclosed in a container, is transported past the Vehicle Assembly Building on its way to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for processing. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Coulbert, C. D.; Liang, R. H.; Gupta, A.; Willis, P.; Baum, B.
1983-01-01
Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described.
NASA Astrophysics Data System (ADS)
Asharani, I. V.; Thirumalai, D.; Sivakumar, A.
2017-11-01
Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.
Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.
Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai
2009-10-15
Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.
Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.
1981-01-01
The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.
Status of FEP encapsulated solar cell modules used in terrestrial applications
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Forestieri, A. F.
1974-01-01
The Lewis Research Center has been engaged in transferring the FEP encapsulated solar cell technology developed for the space program to terrestrial applications. FEP encapsulated solar cell modules and arrays were designed and built expressly for terrestrial applications. Solar cell power systems were installed at three different land sites, while individual modules are undergoing marine environment tests. Four additional power systems are being completed for installation during the summer of 1974. These tests have revealed some minor problems which have been corrected. The results confirm the inherent utility of FEP encapsulated terrestrial solar cell systems.
Design of Stretchable Electronics Against Impact.
Yuan, J H; Pharr, M; Feng, X; Rogers, John A; Huang, Yonggang
2016-10-01
Stretchable electronics offer soft, biocompatible mechanical properties; these same properties make them susceptible to device failure associated with physical impact. This paper studies designs for stretchable electronics that resist failure from impacts due to incorporation of a viscoelastic encapsulation layer. Results indicate that the impact resistance depends on the thickness and viscoelastic properties of the encapsulation layer, as well as the duration of impact. An analytic model for the critical thickness of the encapsulation layer is established. It is shown that a commercially available, low modulus silicone material offers viscous properties that make it a good candidate as the encapsulation layer for stretchable electronics.
Kochetkova, O Yu; Yurinskaya, M M; Evgen'ev, M B; Zatsepina, O G; Shabarchina, L I; Suslikov, A V; Tikhonenko, S A; Vinokurov, M G
2015-11-01
Microencapsulated heat shock proteins HSP 70 were studied in terms of their effects on neutrophil apoptosis, production of reactive oxygen species, and secretion of TNF-α by human neurtrophils and monocytes. Encapsulated HSP70 inhibited neutrophil apoptosis by 65% as compared to the effect of nonencapsulated HSP70; TNF-α production by the promonocytic THP-1 cells was similarly inhibited by the non-encapsulated and encapsulated HSP70. Thus, the polyelectrolyte micromolecules can be used as containers for effective delivery of HSP70 up to neutrophils and monocytes to correct the innate immunity functions.
Essential oils: from extraction to encapsulation.
El Asbahani, A; Miladi, K; Badri, W; Sala, M; Aït Addi, E H; Casabianca, H; El Mousadik, A; Hartmann, D; Jilale, A; Renaud, F N R; Elaissari, A
2015-04-10
Essential oils are natural products which have many interesting applications. Extraction of essential oils from plants is performed by classical and innovative methods. Numerous encapsulation processes have been developed and reported in the literature in order to encapsulate biomolecules, active molecules, nanocrystals, oils and also essential oils for various applications such as in vitro diagnosis, therapy, cosmetic, textile, food etc. Essential oils encapsulation led to numerous new formulations with new applications. This insures the protection of the fragile oil and controlled release. The most commonly prepared carriers are polymer particles, liposomes and solid lipid nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Fanchiotti, Brenda Gomes; Machado, Marcella Piffer Zamprogno; de Paula, Letícia Camilato; Durmuş, Mahmut; Nyokong, Tebello; da Silva Gonçalves, Arlan; da Silva, André Romero
2016-12-01
The photobleaching of an unsubstituted phthalocyanine (gallium(III) phthalocyanine chloride (GaPc)) and a substituted phthalocyanine (1,4-(tetrakis[4-(benzyloxy)phenoxy]phthalocyaninato) indium(III) chloride (InTBPPc)) was monitored for the free photosensitizers and for the phthalocyanines encapsulated into nanoparticles of PEGylated poly(D,L-lactide-co-glycolide) (PLGA-PEG). Phosphate-buffered solutions (PBS) and organic solutions of the free GaPc or the free InTBPPc, and suspensions of each encapsulated photosensitizer (2-15μmol/L) were irradiated using a laser diode of 665nm with a power of 1-104mW and a light dose of 7.5J/cm 2 . The relative absorbance (RA) of the free GaPc dissolved in 1-methyl-2-pyrrolidone (MP) decreased 8.4 times when the laser power increased from 1mW to 104mW. However, the free or encapsulated GaPc did not suffer the photobleaching in PBS solution. The RA values decreased 2.4 times and 22.2 times for the free InTBPPc dissolved in PBS solution and in dimethylformamide (DMF), respectively, but the encapsulated InTBPPc was only photobleached when the laser power was 104mW at 8μmol/L. The increase of the free GaPc concentration favored the photobleaching in MP until 8μmol/L while the increase from 2μmol/L to 5μmol/L reduced the photodegradation in PBS solution. However, the photobleaching of the free InTBPPc in DMF or in PBS solution, and of each encapsulated photosensitizer was not influenced by increasing the concentration. The influence of the photobleaching on the capability of the free and encapsulated GaPc and InTBPPc to photooxidate the simple molecules was investigated monitoring the fluorescence of dimethylanthracene (DMA) and the tryptophan (Trp). Free InTBPPc was 2.0 and 1.8 times faster to photooxidate the DMA and Trp than it was the free GaPc, but the encapsulated GaPc was 3.4 times more efficient to photooxidize the Trp than it was the encapsulated InTBPPc due to the photodegradation suffered by the encapsulated InTBPPc. The participation of the singlet oxygen was confirmed with the sodium azide in the photobleaching of all free and encapsulated photosensitizer, and in the photooxidation of the DMA and Trp. The asymmetry of InTBPPc increased the solubility of the free compound, decreasing the aggregation state of the photosensitizer and favoring the photobleaching process. The encapsulation shows capability in decreasing the photobleaching of both photosensitizers but the confocal micrographs showed that the increase of the solubility favored the InTBPPc photobleaching during the acquisition of optical cross section. Copyright © 2016 Elsevier B.V. All rights reserved.
An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun
2015-10-01
Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.
Encapsulated Islet Transplantation: Where Do We Stand?
Vaithilingam, Vijayaganapathy; Bal, Sumeet; Tuch, Bernard E
2017-01-01
Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.
Elastin-like polypeptides: the power of design for smart cell encapsulation.
Bandiera, Antonella
2017-01-01
Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novoa, Fernando D.; Miller, David C.; Dauskardt, Reinhold H.
Debonding of photovoltaic (PV) encapsulation in moist environments is frequently reported but presently not well understood or quantified. Temperature cycling, moisture, and mechanical loads often cause loss of encapsulation adhesion and interfacial debonding, initially facilitating back-reflectance and reduced electrical current, but ultimately leading to internal corrosion and loss of module functionality. To investigate the effects of temperature (T) and relative humidity (RH) on the kinetics of encapsulation debonding, we developed a mechanics-based technique to measure encapsulation debond energy and debond growth rates in a chamber of controlled environment. The debond energy decreased from 2.15 to 1.75 kJ m-2 in poly(ethylene-co-vinylmore » acetate) (EVA) and from 0.67 to 0.52 kJ m-2 in polyvinyl butyral when T increased from 25 to 50 degrees C and 20 to 40 degrees C, respectively. The debond growth rates of EVA increased up to 1000-fold with small increases of T (10 degrees C) and RH (15%). To elucidate the mechanisms of environmental debonding, we developed a fracture-kinetics model, where the viscoelastic relaxation processes at the debonding-tip are used to predict debond growth. The model and techniques constitute the fundamental basis for developing accelerated aging tests and long-term reliability predictions for PV encapsulation.« less
Kirk, Kaitlyn; Hao, Ergeng; Lahmy, Reyhaneh; Itkin-Ansari, Pamela
2014-05-01
There are several challenges to successful implementation of a cell therapy for insulin dependent diabetes derived from human embryonic stem cells (hESC). Among these are development of functional insulin producing cells, a clinical delivery method that eliminates the need for chronic immunosuppression, and assurance that hESC derived tumors do not form in the patient. We and others have shown that encapsulation of cells in a bilaminar device (TheraCyte) provides immunoprotection in rodents and primates. Here we monitored human insulin secretion and employed bioluminescent imaging (BLI) to evaluate the maturation, growth, and containment of encapsulated islet progenitors derived from CyT49 hESC, transplanted into mice. Human insulin was detectable by 7 weeks post-transplant and increased 17-fold over the course of 8 weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Further, bioluminescent imaging revealed for the first time that hESCs remained fully contained in encapsulation devices for up to 150 days, the longest period tested. Collectively, the data suggest that encapsulated hESC derived islet progenitors hold great promise as an effective and safe cell replacement therapy for insulin dependent diabetes. Copyright © 2014. Published by Elsevier B.V.
Borgatti, Monica; Mazzitelli, Stefania; Breveglieri, Giulia; Gambari, Roberto; Nastruzzi, Claudio
2010-01-01
We have developed a microencapsulation procedure for the entrapment and manipulation of IB3-1 cystic fibrosis cells. The applied method is based on generation of monodisperse droplets by a vibrational nozzle. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of secretomic profile, analyzing the culture medium by Bio-Plex strategy. The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent. In order to determine the biotechnological applications of this procedure, we determined whether encapsulated IB3-1 cells could be induced to pro-inflammatory responses, after treatment with TNF-α. In this experimental set-up, encapsulated and free IB3-1 cells were treated with TNF-α, thereafter the culture media from both cell populations were collected. As expected, TNF-α induced a sharp increase in the secretion of interleukins, chemokines and growth factors. Of great interest was the evidence that induction of interleukin-6 and interleukin-8 occurs also by encapsulated IB3-1 cells.
Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang
2018-07-01
Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Function, structure, and stability of enzymes confined in agarose gels.
Kunkel, Jeffrey; Asuri, Prashanth
2014-01-01
Research over the past few decades has attempted to answer how proteins behave in molecularly confined or crowded environments when compared to dilute buffer solutions. This information is vital to understanding in vivo protein behavior, as the average spacing between macromolecules in the cell cytosol is much smaller than the size of the macromolecules themselves. In our study, we attempt to address this question using three structurally and functionally different model enzymes encapsulated in agarose gels of different porosities. Our studies reveal that under standard buffer conditions, the initial reaction rates of the agarose-encapsulated enzymes are lower than that of the solution phase enzymes. However, the encapsulated enzymes retain a higher percentage of their activity in the presence of denaturants. Moreover, the concentration of agarose used for encapsulation had a significant effect on the enzyme functional stability; enzymes encapsulated in higher percentages of agarose were more stable than the enzymes encapsulated in lower percentages of agarose. Similar results were observed through structural measurements of enzyme denaturation using an 8-anilinonaphthalene-1-sulfonic acid fluorescence assay. Our work demonstrates the utility of hydrogels to study protein behavior in highly confined environments similar to those present in vivo; furthermore, the enhanced stability of gel-encapsulated enzymes may find use in the delivery of therapeutic proteins, as well as the design of novel strategies for biohybrid medical devices.
A study on polypropylene encapsulation and solidification of textile sludge.
Kumari, V Krishna; Kanmani, S
2011-10-01
The textile sludge is an inevitable solid waste from the textile wastewater process and is categorised under toxic substances by statutory authorities. In this study, an attempt has been made to encapsulate and solidify heavy metals and dyes present in textile sludge using polypropylene and Portland cement. Sludge samples (2 Nos.) were characterized for pH (8.5, 9.5), moisture content (1.5%, 1.96%) and chlorides (245mg/L, 425.4mg/L). Sludge samples were encapsulated into polypropylene with calcium carbonate (additive) and solidified with cement at four different proportions (20, 30, 40, 50%) of sludge. Encapsulated and solidified cubes were made and then tested for compressive strength. Maximum compressive strength of cubes (size, 7.06cm) containing sludge (50%) for encapsulation (16.72 N/mm2) and solidification (18.84 N/mm2) was more than that of standard M15 mortar cubes. The leachability of copper, nickel and chromium has been effectively reduced from 0.58 mg/L, 0.53 mg/L and 0.07 mg/L to 0.28mg/L, 0.26mg/L and BDL respectively in encapsulated products and to 0.24mg/L, BDL and BDL respectively in solidified products. This study has shown that the solidification process is slightly more effective than encapsulation process. Both the products were recommended for use in the construction of non-load bearing walls.
Templeman, James R; Rogers, Michael A; Cant, John P; McBride, Brian W; Osborne, Vern R
2018-02-20
The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Yao, Xueping; Li, Jie; Kong, Liang; Wang, Yong
2015-08-01
Encapsulation of carbon nanotubes (CNTs) by amphiphilic block copolymers is an efficient way to stabilize CNTs in solvents. However, the appropriate dosages of copolymers and the assembled structures are difficult to predict and control because of the insufficient understanding on the encapsulation process. We encapsulate multiwalled CNTs with polystyrene-block-poly (4-vinyl pyridine) (PS-b-P4VP) by directly mixing them in acetic acid under sonication. The copolymer forms a lamellar structure along the surface of CNTs with the PS blocks anchoring on the tube wall and the P4VP blocks exposed to the outside. The encapsulated CNTs achieve good dispersibility in polar solvents over long periods. To increase our understanding of the encapsulation process we investigate the assembled structures and stability of copolymer/CNTs mixtures with changing mass ratios. Stable dispersions are obtained at high mass ratios between the copolymer and CNTs, i.e. 2 or 3, with the presence of free spherical micelles. Transmission electron microscopy and thermal gravimetric analysis determine that the threshold for the complete coverage of CNTs by the copolymer occurs at the mass ratio of 1.5. The coated copolymer layer activates the surface of CNTs, enabling further functionalization of CNTs. For instance, atomic layer deposition of TiO2 produces conformal thin layers on the encapsulated CNTs while isolated TiO2 bumps are produced on the pristine, inert CNTs.
ERIC Educational Resources Information Center
Keane, Brian P.; Lu, Hongjing; Papathomas, Thomas V.; Silverstein, Steven M.; Kellman, Philip J.
2012-01-01
Contour interpolation is a perceptual process that fills-in missing edges on the basis of how surrounding edges (inducers) are spatiotemporally related. Cognitive encapsulation refers to the degree to which perceptual mechanisms act in isolation from beliefs, expectations, and utilities (Pylyshyn, 1999). Is interpolation encapsulated from belief?…
Micro-Encapsulation of Probiotics
NASA Astrophysics Data System (ADS)
Meiners, Jean-Antoine
Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.
Encapsulation in the food industry: a review.
Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N
1999-05-01
Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.
Rodriguez, Evelyn B; Vidallon, Mark Louis P; Mendoza, David Joram R; Reyes, Charisse T
2016-11-01
Betalains, which are red-purple and yellow pigments, are ideal alternatives to synthetic colorants as they possess strong coloring potential and excellent health-contributing properties. However, the instability of betalains toward normal storage and biological conditions, in addition to the limited number of betalain sources, impedes their food application and diminishes their bioactivities. This study aimed to evaluate the health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by encapsulation in maltodextrin-gum Arabic and maltodextrin-pectin matrices. Encapsulation in maltodextrin-gum Arabic and maltodextrin-pectin matrices afforded dry betalain powders after lyophilization. Optical microscopy imaging showed that the betalain powders consisted of matrix-type and shard-like microparticles. ABTS antioxidant assay revealed that maltodextrin-gum Arabic-betalain (MGB) and maltodextrin-pectin-betalain (MPB) microparticles possessed higher antioxidant capacities (195.39 ± 8.63 and 201.76 ± 4.06 µmol Trolox g -1 microparticles respectively) than the non-encapsulated betalain extract (151.07 ± 2.57 µmol Trolox g -1 extract). Duck embryo chorioallantoic membrane (CAM) vascular irritation assay showed that the anti-inflammatory activity of encapsulated betalains was five- to six-fold higher than that of non-encapsulated betalains (P ≤ 0.05). Antiangiogenic activity, as evaluated by duck embryo CAM assay, was enhanced two- to four-fold by carbohydrate encapsulation. Glutathione S-transferase (GST)-inducing activity of betalains was likewise improved four- to five-fold. The study showed that the antioxidant, anti-inflammatory, antiangiogenic and GST-inducing activities of betalains from red dragon fruit peels were enhanced through carbohydrate encapsulation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A
2013-01-01
Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681
Protection of xenografts by a combination of immunoisolation and a single dose of anti-CD4 antibody.
Mckenzie, A W; Georgiou, H M; Zhan, Y; Brady, J L; Lew, A M
2001-01-01
Immunoisolation is the separation of transplanted cells from cells of the immune system using a semipermeable membrane. Using one such immunoisolation capsule-the TheraCyte device-we have assessed the survival of encapsulated xenogeneic tissue in vivo as well as the contribution of CD4+ve T cells to encapsulated xenograft rejection. The foreign body reaction to the TheraCyte capsule in vivo was assessed by transplanting empty capsules into normal mice. These capsules elicit a foreign body response by the host animal. Encapsulated CHO, NIT-1, and PK-15 cells were placed in culture and in immunodeficient mice to investigate their growth characteristics in the TheraCyte device. These cell lines survive both in culture and in immunodeficient SCID mice. Xenogeneic PK cells were also transplanted into normal C57BL/6 mice. These cells do not survive in normal mice despite the absence of direct contact between infiltrating and encapsulated cells. In addition, the survival of encapsulated cells in mice treated with a single dose of anti-CD4 antibody was examined. This was assessed using two systems: 1) histological analysis of capsule sections; 2) a quantitative luciferase reporter system using PK cells transfected to express luciferase. In both cases, anti-CD4 antibody contributed to prolonged encapsulated xenogeneic cell survival. Encapsulated xenogeneic cells survive in immunodeficient mice but not normal mice. Treatment of normal mice with anti-CD4 antibody results in prolonged survival of xenogeneic cells that can be measured using a luciferase reporter system. These results highlight the contribution of CD4+ve T cells to encapsulated xenograft rejection.
CRYOPRESERVATION EFFECTS ON RECOMBINANT MYOBLASTS ENCAPSULATED IN ADHESIVE ALGINATE HYDROGELS
Ahmad, Hajira F.; Sambanis, Athanassios
2013-01-01
Cell encapsulation in hydrogels is widely used in tissue engineering applications, including encapsulation of islets or other insulin-secreting cells in pancreatic substitutes. Use of adhesive, bio-functionalized hydrogels is receiving increasing attention, as cell-matrix interactions in 3-D can be important for various cell processes. With pancreatic substitutes, studies have indicated benefits of 3-D adhesion on the viability and/or function of insulin-secreting cells. As long-term storage of microencapsulated cells is critical for their clinical translation, cryopreservation of cells in hydrogels is actively being investigated. Previous studies have examined the cryopreservation response of cells encapsulated in non-adhesive hydrogels using conventional freezing and/or vitrification (ice-free cryopreservation), however, none have systematically compared the two cryopreservation methods with cells encapsulated within an adhesive 3-D environment. The latter would be significant, as evidence suggests adhesion influences cellular response to cryopreservation. Thus, the objective of this study was to determine the response to conventional freezing and vitrification of insulin-secreting cells encapsulated in an adhesive biomimetic hydrogel. Recombinant insulin-secreting C2C12 myoblasts were encapsulated in oxidized RGD-alginate and cultured 1 or 4 days post-encapsulation, cryopreserved, and assessed up to 3 days post-warming for metabolic activity and insulin secretion, and one day post-warming for cell morphology. Besides certain transient differences of the vitrified group relative to the Fresh control, both conventional freezing and vitrification maintained metabolism, secretion and morphology of the recombinant C2C12 cells. Thus, due to a simpler procedure and slightly superior results, conventional freezing is recommended over vitrification for the cryopreservation of C2C12 cells in oxidized RGD-modified alginate. PMID:23499987
Xie, Xianzong; Rieth, Loren; Caldwell, Ryan; Diwekar, Mohit; Tathireddy, Prashant; Sharma, Rohit; Solzbacher, Florian
2013-10-01
We present an encapsulation scheme that combines atomic layer deposited (ALD) Al₂O₃ and Parylene C for the encapsulation of implantable devices. The encapsulation performances of combining alumina and Parylene C was compared to individual layers of Parylene C or alumina and the bilayer coating had superior encapsulation properties. The alumina-Parylene coated interdigitated electrodes (IDEs) soaked in PBS for up to nine months at temperatures from 37 to 80 °C for accelerated lifetime testing. For 52-nm alumina and 6-μm Parylene C, leakage current was ∼20 pA at 5 VDC, and the impedance was about 3.5 MΩ at 1 kHz with a phase near -87° from electrochemical impedance spectroscopy for samples soaked at 67 °C for equivalent lifetime of 72 months at 37 °C. The change of impedance during the whole soaking period (up to 70 months of equivalent soaking time at 37 °C) over 1 to 10⁶ Hz was within 5%. The stability of impedance indicated almost no degradation of the encapsulation. Bias voltage effect was studied by continuously applying 5 VDC, and it reduced the lifetime of Parylene coating by ∼75% while it showed no measurable effect on the bilayer coating. Lifetime of encapsulation of IDEs with topography generated by attaching a coil and surface mount device (SMD) capacitor was about half of that of planer IDEs. The stable long-term insulation impedance, low leakage current, and better lifetime under bias voltage and topography made this double-layer encapsulation very promising for chronic implantable devices.
Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.
1995-08-01
Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types ofmore » commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.« less
Fabrication of hemispherical liquid encapsulated structures based on droplet molding
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroki; Miki, Norihisa
2015-12-01
We have developed and demonstrated a method for forming spherical structures of a thin polydimethylsiloxane (PDMS) membrane encapsulating a liquid. Liquid encapsulation can enhance the performance of microelectromechanical systems (MEMS) devices by providing deformability and improved dielectric properties. Parylene deposition and wafer bonding are applied to encapsulate liquid into a MEMS device. In parylene deposition, a parylene membrane is directly formed onto a liquid droplet. However, since the parylene membrane is stiff, the membrane is fragile. Although wafer bonding can encapsulate liquid between two substrates, the surface of the fabricated structure is normally flat. We propose a new liquid encapsulation method by dispensing liquid droplets. At first, a 20 μl PDMS droplet is dispensed on ethylene glycol. A 70 μl glycerin droplet is dispensed into a PDMS casting solution layer. The droplet forms a layer on heated ethylene glycol. Glycerin and ethylene glycol are chosen for their high boiling points. Additionally, a glycerin droplet is dispensed on the layer and surrounded by a thin PDMS casting solution film. The film is baked for 1 h at 75 °C. As the result, a structure encapsulating a liquid in a flexible PDMS membrane is obtained. We investigate the effects of the volume, surface tension, and guide thickness on the shape of the formed structures. We also evaluated the effect of the structure diameter on miniaturization. The structure can be adapted for various functions by changing the encapsulated liquid. We fabricated a stiffness-tunable structure by dispensing a magnetorheoligical fluid droplet with a stiffness that can be changed by an external magnetic field. We also confirmed that the proposed structure can produce stiffness differences that are distinguishable by humans.
Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".
Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P
1990-01-01
Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)
Meats, Emma; Feil, Edward J.; Stringer, Suzanna; Cody, Alison J.; Goldstein, Richard; Kroll, J. Simon; Popovic, Tanja; Spratt, Brian G.
2003-01-01
A multilocus sequence typing (MLST) scheme has been developed for the unambiguous characterization of encapsulated and noncapsulated Haemophilus influenzae isolates. The sequences of internal fragments of seven housekeeping genes were determined for 131 isolates, comprising a diverse set of 104 serotype a, b, c, d, e, and f isolates and 27 noncapsulated isolates. Many of the encapsulated isolates had previously been characterized by multilocus enzyme electrophoresis (MLEE), and the validity of the MLST scheme was established by the very similar clustering of isolates obtained by these methods. Isolates of serotypes c, d, e, and f formed monophyletic groups on a dendrogram constructed from the differences in the allelic profiles of the isolates, whereas there were highly divergent lineages of both serotype a and b isolates. Noncapsulated isolates were distinct from encapsulated isolates and, with one exception, were within two highly divergent clusters. The relationships between the major lineages of encapsulated H. influenzae inferred from MLEE data could not be discerned on a dendrogram constructed from differences in the allelic profiles, but were apparent on a tree reconstructed from the concatenated nucleotide sequences. Recombination has not therefore completely eliminated phylogenetic signal, and in support of this, for encapsulated isolates, there was significant congruence between many of the trees reconstructed from the sequences of the seven individual loci. Congruence was less apparent for noncapsulated isolates, suggesting that the impact of recombination is greater among noncapsulated than encapsulated isolates. The H. influenzae MLST scheme is available at www.mlst.net, it allows any isolate to be compared with those in the MLST database, and (for encapsulated isolates) it assigns isolates to their phylogenetic lineage, via the Internet. PMID:12682154
Oster, C G; Kissel, T
2005-05-01
Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous release rates.
Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N
2015-10-01
Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P < 0.05) cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P < 0.05). Both STP and eSTP increased pH, whereas SPP and eSPP decreased pH (P < 0.05). The higher orthophosphate (OP) was obtained with STP or SPP compared to their encapsulated counterparts (P < 0.05). The lowest OP was determined in samples with HMP or eHMP (P < 0.05). A 77 °C EPCT resulted in lower OP in chicken compared to 74 and 71 °C (P < 0.05), dissimilar to beef, where EPCT did not affect OP. In encapsulated or unencapsulated form, using STP and SPP enhanced reduction in TBARS and lipid hydroperoxides (LPO) compared with HMP (P < 0.05). Regardless of the phosphate type, more effective lipid oxidation inhibition was achieved by the use of encapsulated forms (P < 0.05). Increasing EPCT resulted in lower TBARS in beef and higher LPO values in both beef and chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®
Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K
2014-12-01
The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.
Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe
2015-01-01
Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID:26345627
Assessing corrosion problems in photovoltaic cells via electrochemical stress testing
NASA Technical Reports Server (NTRS)
Shalaby, H.
1985-01-01
A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.
NASA Technical Reports Server (NTRS)
Gaines, G. B.; Carmichael, D. C.; Sliemers, F. A.; Brockway, M. C.; Bunk, A. R.; Nance, G. P.
1978-01-01
Three encapsulation designs for silicon photovoltaic arrays based on cells with silk-screened Ag metallization have been evaluated: transparent polymeric coatings over cells laminated between two films or sheets of polymeric materials; cells adhesively bonded to a glass cover with a polymer pottant and a glass or other substrate component. Silicone and acrylic coatings were assessed, together with acrylic sheet, 0.635 mm fiberglass-reinforced polyester sheet, 0.102 mm polycarbonate/acrylic dual-layer film, 0.127 mm fluorocarbon film, soda-lime glass, borosilicate glass, low-iron glass, and several adhesives. The encapsulation materials were characterized by light transmittance measurements, determination of moisture barrier properties and bond strengths, and by the performance of cells before and after encapsulation. Silicon and acrylic coatings provided inadequate protection. Acrylic and fluorocarbon films displayed good weatherability and acceptable optical transmittance. Borosilicate, low-iron and soda-lime-float glasses were found to be acceptable candidate encapsulants for most environments.
Antioxidant activity from encapsulated Cinnamaldehyde-Chitosan
NASA Astrophysics Data System (ADS)
Ariestiani, Bonita; Purbowatingrum; Ngadiwiyana; Ismiyarto; Fachriyah, Enny; Nurani, Khikmah
2018-05-01
Cinnamaldehyde compound is a powerful antioxidant agent that can effectively combat the free radicals referred to superoxide anions and hydroxy radicals, as well as other free radicals in in vitro testing. An antioxidant is an electron donor or reductant. antioxidants are also compounds that can inhibit oxidation reactions by binding to free radicals and highly reactive molecules. As a result, cell damage will be inhibited. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74,389% also antioxidant activity test showed that cinnamaldehyde encapsulated by nanochitosan could inhibit free radicals of 223.44 in IC50.
Defining Threshold Values of Encapsulant and Backsheet Adhesion for PV Module Reliability
Bosco, Nick; Eafanti, Joshua; Kurtz, Sarah; ...
2017-10-04
The width-tapered cantilever beam method is used to quantify the debond energy (adhesion) of encapsulant and backsheet structures of 32 modules collected from the field. The collected population of modules contains both those that have remained intact and those with instances of either or both encapsulant and backsheet delamination. From this survey, initial threshold values (an adhesion value above which a module should remain intact throughout its lifetime) for encapsulant and backsheet interfaces are proposed. For encapsulants this value is ~ 160J/m 2 and for backsheets ~ 10J/m 2. Here, it is expected that these values will continue to bemore » refined and evolve as the width-tapered cantilever beam method gets adopted by the PV industry, and that they may aid in the future improvement of accelerated lifetime tests and the development of new, low-cost materials.« less
Boar sperm encapsulation reduces in vitro polyspermy.
Faustini, M; Bucco, M; Galeati, G; Spinaci, M; Villani, S; Chlapanidas, T; Ghidoni, I; Vigo, D; Torre, M L
2010-04-01
A boar sperm encapsulation technology in barium alginate has been developed to enhance reproductive performances and spermatozoa preservation time; aim of this work was to evaluate the effect of in vitro sperm encapsulation on polyspermy as a function of storage time at 18 degrees C. A total number of 40 in vitro fertilization (IVF) tests were performed using encapsulated or diluted spermatozoa (20 IVF each treatment). Overall, 1288 in vitro matured oocytes were fertilized with spermatozoa stored at 24, 48 or 72 h at 18 degrees C for both treatments polyspermy and normospermy, and the non-penetration rates were assessed by optical microscopy. Results indicate a significant reduction in risk of polyspermic oocytes when spermatozoa are preserved in barium alginate membranes (incidence risk ratio: 0.766 with respect to diluted); such enhancement could be explained by lesser damage of sperm membranes achieved by encapsulation technology.
Wang, Yinsong; Liu, Quan; Chung, Hee Sun; Kwon, Young Min; Shin, Meong Cheol; Lee, Kyuri; Yang, Victor C
2014-01-01
Red blood cells (RBCs) based drug carrier appears to be the most appealing for protein drugs due to their unmatched biocompatability, biodegradability, and long lifespan in the circulation. Numerous methods for encapsulating protein drugs into RBCs were developed, however, most of them induce partial disruption of the cell membrane, resulting in irreversible alterations in both physical and chemical properties of RBCs. Herein, we introduce a novel method for encapsulating proteins into intact RBCs, which was meditated by a cell penetrating peptide (CPP) developed in our lab—low molecular weight protamine (LMWP). L-asparaginase, one of the primary drugs used in treatment of acute lymphoblastic leukemia (ALL), was chosen as a model protein to illustrate the encapsulation into erythrocytes mediated by CPPs. In addition current treatment of ALL using different L-asparaginase delivery and encapsulation methods as well as their associated problems were also reviewed. PMID:24374002
Photovoltaic module and laminate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.
A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaicmore » solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.« less
Gökçe, Ali Murat; Özel, Leyla; İbişoğlu, Sevinç; Ata, Pınar; Şahin, Gülizar; Gücün, Murat; Kara, V Melih; Özdemir, Ebru; Titiz, M İzzet
2015-12-01
Encapsulating peritoneal sclerosis is a rare complication of long-term peritoneal dialysis ranging from moderate inflammation of peritoneal structures to severe sclerosing peritonitis and encapsulating peritoneal sclerosis. Complicated it, ileus may occur during or after peritoneal dialysis treatment or after kidney transplant. We sought to evaluate 3 posttransplant encapsulating peritoneal sclerosis through clinical presentation, radiologic findings, and outcomes. We analyzed 3 renal transplant patients with symptoms of encapsulating peritoneal sclerosis admitted posttransplant to our hospital with ileus between 2012 and 2013. Conservative treatment was applied to the patients whenever necessary to avoid surgery. One patient improved with medical therapy. Surgical treatment was delayed and we decided it as a last resort, in 2 cases with no response to conservative treatment for a long time. Finally, patients with peritoneal dialysis history should be searched carefully before renal transplant for intermittent bowel obstruction story.
Method of making foam-encapsulated laser targets
Rinde, James A.; Fulton, Fred J.
1977-01-01
Foam-encapsulated laser fusion targets are fabricated by suspending fusion fuel filled shells in a solution of cellulose acetate, extruding the suspension through a small orifice into a bath of ice water, soaking the thus formed shell containing cellulose acetate gel in the water to extract impurities, freezing the gel, and thereafter freeze-drying wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam containing one or more encapsulated fuel-filled shells. The thus formed material is thereafter cut and mounted on a support to provide laser fusion targets containing a fuel-filled shell surrounded by foam having a thickness of 10 to 60 .mu.m, a cell size of less than 2 .mu.m, and density of 0.08 to 0.6.times.10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by the encapsulation method are illustrated.
Defining Threshold Values of Encapsulant and Backsheet Adhesion for PV Module Reliability: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosco, Nicholas S; Kurtz, Sarah; Eafanti, Joshua
2017-08-28
The width-tapered cantilever beam method is used to quantify the debond energy (adhesion) of encapsulant and backsheet structures of 27 modules collected from the field. The collected population of modules contains both those that have remained in-tact and those with instances of either or both encapsulant and backsheet delamination. From this survey, initial threshold values (an adhesion value above which a module should remain intact throughout its lifetime) for encapsulant and backsheet interfaces are proposed. For encapsulants this value is about 60 J/m2 and for backsheets about 20 J/m2. It is expected that these values will continue to be refinedmore » and evolve as the width-tapered cantilever beam method becomes adopted by the PV industry, and that they may aid in the future improvement of accelerated lifetime tests and the development of new, low-cost materials.« less
Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation.
Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai
2015-01-19
Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.
Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation
NASA Astrophysics Data System (ADS)
Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai
2015-01-01
Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.
Modeling Encapsulated Microbubble Dynamics at High Pressure Amplitudes
NASA Astrophysics Data System (ADS)
Heyse, Jan F.; Bose, Sanjeeb; Iaccarino, Gianluca
2017-11-01
Encapsulated microbubbles are commonly used in ultrasound contrast imaging and are of growing interest in therapeutic applications where local cavitation creates temporary perforations in cell membranes allowing for enhanced drug delivery. Clinically used microbubbles are encapsulated by a shell commonly consisting of protein, polymer, or phospholipid; the response of these bubbles to externally imposed ultrasound waves is sensitive to the compressibility of the encapsulating shell. Existing models approximate the shell compressibility via an effective surface tension (Marmottant et al. 2005). We present simulations of microbubbles subjected to high amplitude ultrasound waves (on the order of 106 Pa) and compare the results with the experimental measurements of Helfield et al. (2016). Analysis of critical points (corresponding to maximum and minimum expansion) in the governing Rayleigh-Plesset equation is used to make estimates of the parameters used to characterize the effective surface tension of the encapsulating shell. Stanford Graduate Fellowship.
Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes.
Yurinskaya, M M; Kochetkova, O Yu; Shabarchina, L I; Antonova, O Yu; Suslikov, A V; Evgen'ev, M B; Vinokurov, M G
2017-01-01
Human heat shock protein Hsp70 was experimentally inserted into polyelectrolyte microcapsules. Encapsulated recombinant Hsp70 was studied in terms of its effects on neutrophil apoptosis, the production of reactive oxygen species, and the secretion of tumor necrosis factor alpha by promonocytic THP-1 cells. It was found that encapsulated Hsp70 effectively inhibits neutrophil apoptosis, unlike free exogenous protein used in solution. In THP-1 cells, encapsulated and free Hsp70 reduced LPS-induced tumor necrosis factor alpha production with a similar efficiency. Encapsulated Hsp70 reduces LPS-induced reactive oxygen species production by neutrophils in the course of its release from the microcapsules but not as much as free Hsp70. Thus, the polyelectrolyte microcapsules can be used as containers for the effective delivery of Hsp70 to neutrophils and monocytes to significantly improve the functioning of the innate immune system.
Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming
2010-06-01
This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.