Lead and cadmium in red deer and wild boar from different hunting grounds in Croatia.
Bilandzić, Nina; Sedak, Marija; Vratarić, Darija; Perić, Tomislav; Simić, Branimir
2009-07-01
The concentration and relations of Cd and Pb as environmental risk factors were studied by atomic absorption spectrophotometry in the liver, kidney and muscle of free ranging wild boar (n=94) and red deer (n=45) from hunting grounds in four counties of north-east Croatia. In all four counties, the levels of Cd found in the kidney of red deer ranged from 2.28 to 5.91 mg/kg, and in wild boar from 3.47 to 21.10 mg/kg. The mean renal concentration of Cd was significantly higher in wild boar than in red deer from all four study areas. The mean hepatic (0.11 to 0.49 mg/kg, respectively) and muscle (0.01 to 0.04 mg/kg, respectively) Cd concentrations were similar in both species. The mean renal Cd concentration in wild boar and red deer exceeded 1 mg/kg in all four counties, ranging from 67.0% to 91.4% and from 45.5% to 69.2%, respectively. Also, the hepatic Cd/renal Cd ratio was lower than 1 in all animals. In all four counties, renal Pb concentration ranged from 0.058 to 3.77 mg/kg in red deer and from 0.056 to 11.60 mg/kg in wild boar. Hepatic Pb concentration was similar in both species (0.061 to 0.202 mg/kg in wild boar and 0.077 to 0.108 mg/kg in red deer). Because of the high Cd level in the organs of wild boar and red deer, further research is needed to identify the source of contamination in order to preserve the health of animals and humans.
Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China
Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang
2014-01-01
The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg−1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg−1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg−1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils. PMID:25247431
Transfer of cadmium from soil to vegetable in the Pearl River Delta area, South China.
Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang
2014-01-01
The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg(-1)) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg(-1)). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg(-1)). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (y = ax(b)), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils.
Maternal serum soluble CD30 is increased in pregnancies complicated with acute pyelonephritis.
Kusanovic, Juan Pedro; Romero, Roberto; Esoinoza, Jimmy; Gotsch, Francesca; Edwin, Samuel; Chaiworapongsa, Tinnakorn; Mittal, Pooja; Soto, Eleazar; Erez, Offer; Mazaki-Tovi, Shali; Than, Nandor Gabor; Friel, Lara A; Yoon, Bo Hyun; Mazor, Moshe; Hassan, Sonia S
2007-11-01
Normal pregnancy is characterized by activation of the innate immunity and suppression of the adaptive limb of the immune response. However, pregnant women are more susceptible to the effects of infection and microbial products than non-pregnant women. CD30 is a member of the tumor necrosis factor receptor superfamily and is preferentially expressed by activated T cells producing Th2-type cytokines. Its soluble form (sCD30) is proposed to be an index of Th2 immune response. High serum concentrations of sCD30 have been found in the acute phase of viral infections, such as HIV-1 and hepatitis B. There is, however, conflicting evidence about serum sCD30 concentration in patients with bacterial infections. The objective of this study was to determine whether there are changes in the serum concentration of sCD30 in pregnant women with pyelonephritis. This cross-sectional study included normal pregnant women (N = 89) and pregnant women with pyelonephritis (N = 41). Maternal serum concentration of sCD30 was measured by a specific and sensitive enzyme-linked immunoassay. Non-parametric tests were used for comparisons. A p value <0.05 was considered statistically significant. (1) Pregnant women with pyelonephritis had a significantly higher median serum concentration of sCD30 than those with a normal pregnancy (median 44.3 U/mL, range 16-352.5 vs. median 29.7 U/mL, range 12.2-313.2, respectively; p < 0.001), and (2) No significant differences were found in the median maternal serum concentration of sCD30 between pregnant women with pyelonephritis who had a positive blood culture compared to those with a negative blood culture (median 47.7 U/mL, range 17.1-118.8 vs. median 42.6 U/mL, range 16-352.5, respectively; p = 0.86). Acute pyelonephritis during pregnancy is associated with a higher maternal serum concentration of sCD30 than normal pregnancy. This finding is novel and suggests that pregnant women with pyelonephritis may have a complex immune state in which there is activation of some components of what is considered a Th2 immune response.
Kusanovic, Juan Pedro; Romero, Roberto; Hassan, Sonia S; Gotsch, Francesca; Edwin, Samuel; Chaiworapongsa, Tinnakorn; Erez, Offer; Mittal, Pooja; Mazaki-Tovi, Shali; Soto, Eleazar; Than, Nandor Gabor; Friel, Lara A; Yoon, Bo Hyun; Espinoza, Jimmy
2007-12-01
Women with preeclampsia and those who deliver small for gestational age (SGA) neonates are characterized by intravascular inflammation (T helper 1 (Th1)-biased immune response). There is controversy about the T helper 2 (Th2) response in preeclampsia and SGA. CD30, a member of the tumor necrosis factor receptor superfamily, is preferentially expressed in vitro and in vivo by activated T cells producing Th2-type cytokines. Its soluble form (sCD30) has been proposed to be an index of Th2 immune response. The objective of this study was to determine whether the maternal serum concentration of sCD30 changes with normal pregnancy, as well as in mothers with preeclampsia and those who deliver SGA neonates. This cross-sectional study included patients in the following groups: (1) non-pregnant women (N = 49); (2) patients with a normal pregnancy (N = 89); (3) patients with preeclampsia (N = 100); and (4) patients who delivered an SGA neonate (N = 78). Maternal serum concentration of sCD30 was measured by a specific and sensitive enzyme-linked immunoassay. Non-parametric tests with post-hoc analysis were used for comparisons. A p value <0.05 was considered statistically significant. (1) The median sCD30 serum concentration of pregnant women was significantly higher than that of non-pregnant women (median 29.7 U/mL, range 12.2-313.2 vs. median 23.2 U/mL, range 14.6-195.1, respectively; p = 0.01). (2) Patients with preeclampsia had a significantly lower median serum concentration of sCD30 than normal pregnant women (median 24.7 U/mL, range 7.6-71.2 vs. median 29.7 U/mL, range 12.2-313.2, respectively; p < 0.05). (3) Mothers with SGA neonates had a lower median concentration of sCD30 than normal pregnant women (median 23.4 U/mL, range 7.1-105.3 vs. median 29.7 U/mL, range 12.2-313.2, respectively; p < 0.05). (4) There was no significant correlation (r = -0.059, p = 0.5) between maternal serum sCD30 concentration and gestational age (19-38 weeks) in normal pregnant women. (1) Patients with preeclampsia and those who deliver an SGA neonate had a significantly lower serum concentration of sCD30 than normal pregnant women. (2) This finding is consistent with the view that preeclampsia and SGA are associated with a polarized Th1 immune response and, perhaps, a reduced Th2 response.
Schwaighofer, Andreas; Alcaráz, Mirta R.; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard
2016-01-01
Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml−1), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml−1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml−1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml−1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy. PMID:27633337
Schwaighofer, Andreas; Alcaráz, Mirta R; Araman, Can; Goicoechea, Héctor; Lendl, Bernhard
2016-09-16
Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml(-1)), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml(-1)). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml(-1) in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml(-1) was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.
Estimation of Cadmium uptake by tobacco plants from laboratory leaching tests.
Marković, Jelena P; Jović, Mihajlo D; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Smiljanić, Slavko N; Onjia, Antonije E; Popović, Aleksandar R
2018-03-21
The objective of the present study was to determine the impact of cadmium (Cd) concentration in the soil on its uptake by tobacco plants, and to compare the ability of diverse extraction procedures for determining Cd bioavailability and predicting soil-to-plant transfer and Cd plant concentrations. The pseudo-total digestion procedure, modified Tessier sequential extraction and six standard single-extraction tests for estimation of metal mobility and bioavailability were used for the leaching of Cd from a native soil, as well as samples artificially contaminated over a wide range of Cd concentrations. The results of various leaching tests were compared between each other, as well as with the amounts of Cd taken up by tobacco plants in pot experiments. In the native soil sample, most of the Cd was found in fractions not readily available under natural conditions, but with increasing pollution level, Cd amounts in readily available forms increased. With increasing concentrations of Cd in the soil, the quantity of pollutant taken up in tobacco also increased, while the transfer factor (TF) decreased. Linear and non-linear empirical models were developed for predicting the uptake of Cd by tobacco plants based on the results of selected leaching tests. The non-linear equations for ISO 14870 (diethylenetriaminepentaacetic acid extraction - DTPA), ISO/TS 21268-2 (CaCl 2 leaching procedure), US EPA 1311 (toxicity characteristic leaching procedure - TCLP) single step extractions, and the sum of the first two fractions of the sequential extraction, exhibited the best correlation with the experimentally determined concentrations of Cd in plants over the entire range of pollutant concentrations. This approach can improve and facilitate the assessment of human exposure to Cd by tobacco smoking, but may also have wider applicability in predicting soil-to-plant transfer.
Galitsopoulou, A; Georgantelis, D; Kontominas, M G
2009-01-01
Cadmium (Cd) levels were determined in 70 samples of mantle tissue and 70 whole individual squid (Loligo opalescens; commercially known as California squid). Samples were collected from the coastal zones of California (USA) during the period 2007/2008. To further investigate consumer exposure to processed fishery products, cadmium concentration was also determined in 200 canned samples of squid. Cd concentrations in raw mantle were low, between 0.01 and 0.29 mg kg(-1) and below the tolerance limit of current regulations (1 mg kg(-1)). Respective concentrations in whole individuals were significantly higher, ranging from 0.51 to 1.18 mg kg(-1), attributed to the presence of the visceral portion in whole squid samples. Cd concentrations varied in relation to age and sex of squid, indicating that several physiological factors may influence accumulation. Furthermore, canning of squid substantially enhanced Cd levels. Cd concentration ranged 0.17-0.67 mg kg(-1) in canned mantle tissue and 0.86-2.07 mg kg(-1) in canned whole squid samples, due to both concentration after canning and movement of the metal between different tissues. Several biological compounds, including metallothioneins, nucleic acids and enzymes, may affect Cd concentrations in commercial fishery products.
NASA Astrophysics Data System (ADS)
Labeb, Mohmed; Sakr, Abdel-Hamed; Soliman, Moataz; Abdel-Fettah, Tarek M.; Ebrahim, Shaker
2018-05-01
Cadmium telluride (CdTe) quantum dots (QDs) were prepared from an aqueous solution containing CdCl2 and Te precursor in the presence of thioglycolic acid (TGA) or L-cysteine as capping agents. Two optical sensors have been developed for Hg2+ ions with very low concentration in the range of nanomolar (nM) or picomolar (pM) depending on the type of capping agents and based on photoluminescence (PL) quenching of CdTe QDs. It was observed that low concentrations of Hg2+ ions quench the fluorescence spectra of CdTe QDs and TGA capped CdTe QDs exhibited a linear response to Hg2+ ions in the concentration range from 1.25 to 10 nM. Moreover, it was found that L-cysteine capped CdTe QDs optical sensor with a sensitivity of 6 × 109 M-1, exhibited a linear coefficient of 0.99 and showed a detection limit of 2.7 pM in range from 5 to 25 pM of Hg2+ ions was achieved. In contrast to the significant response that was observed for Hg2+, a weak signal response was noted upon the addition of other metal ions indicating an excellent selectivity of CdTe QDs towards Hg2+.
Maternal serum soluble CD30 is increased in pregnancies complicated with acute Pyelonephritis
Kusanovic, Juan Pedro; Romero, Roberto; Espinoza, Jimmy; Gotsch, Francesca; Edwin, Samuel; Chaiworapongsa, Tinnakorn; Mittal, Pooja; Soto, Eleazar; Erez, Offer; Mazaki-Tovi, Shali; Than, Nandor Gabor; Friel, Lara; Yoon, Bo Hyun; Mazor, Moshe; Hassan, Sonia
2007-01-01
Objectives Normal pregnancy is characterized by activation of the innate immunity and suppression of the adaptive limb of the immune response. However, pregnant women are more susceptible to the effects of infection and microbial products than non-pregnant women. CD30 is a member of the tumor necrosis factor receptor superfamily and is preferentially expressed by activated T cells producing Th2-type cytokines. Its soluble form (sCD30) is proposed to be an index of Th2 immune response. High serum concentrations of sCD30 have been found in the acute phase of viral infections, such as HIV-1 and hepatitis B. There is, however, conflicting evidence about serum sCD30 concentration in patients with bacterial infections. The objective of this study was to determine whether there are changes in the serum concentration of sCD30 in pregnant women with pyelonephritis. Methods This cross-sectional study included normal pregnant women (N=89) and pregnant women with pyelonephritis (N=41). Maternal serum concentration of sCD30 was measured by a specific and sensitive enzyme-linked immunoassay. Non-parametric tests were used for comparisons. A p value <0.05 was considered statistically significant. Results (1) Pregnant women with pyelonephritis had a significantly higher median serum concentration of sCD30 than those with a normal pregnancy (median: 44.3 U/ml, range: 16–352.5 vs. median: 29.7 U/ml, range: 12.2–313.2, respectively; p<0.001); and (2) No significant differences were found in the median maternal serum concentration of sCD30 between pregnant women with pyelonephritis who had a positive blood culture compared to those with a negative blood culture (median:47.7 U/mL, range: 17.1–118.8 vs. median: 42.6 U/mL, range: 16–352.5, respectively; p=0.86). Conclusions Acute pyelonephritis during pregnancy is associated with a higher maternal serum concentration of sCD30 than normal pregnancy. This finding is novel, and suggests that pregnant women with pyelonephritis may have a complex immune state in which there is activation of some components of what is considered a Th2 immune response. PMID:17853184
Serum and CSF soluble CD26 and CD30 concentrations in healthy pediatric surgical outpatients.
Delezuch, W; Marttinen, P; Kokki, H; Heikkinen, M; Vanamo, K; Pulkki, K; Matinlauri, I
2012-10-01
Activated T-helper type 1 (Th1) lymphocytes induce a cellular type immune response, and Th2 lymphocytes, a humoral or antibody-mediated type immune response. Soluble CD26 (sCD26) and soluble CD30 (sCD30) are regarded as markers of Th1 and Th2 lymphocyte activation, respectively. Serum from 112 generally healthy pediatric surgical patients and cerebrospinal fluid (CSF) from 39, aged 1-17 years were measured for sCD26 and sCD30 using an enzyme-linked immunosorbent assay method. The detection limit for sCD26 was 6.8 ng/ml and for sCD30, 1.9 IU/ml. For serum sCD26 and sCD30, 2.5% and 97.5% percentiles constituted the reference limits, and the 95% credible intervals for the percentiles were calculated using regression models with a Bayesian approach. A significant between-gender difference was observed (P = 0.015) in serum sCD26 concentration, of which the lower limits ranged between 273 and 716 ng/ml for girls and 235 and 797 ng/ml for boys. The upper limits ranged between 1456 and 1898 ng/ml for girls and between 1419 and 1981 ng/ml for boys. Moreover, the concentrations of sCD26 increased in infants and children up to 10 years in girls and 12 years in boys. After this however, the values decreased. The serum sCD30 concentration was highest among the youngest infants aged 1 year (80-193 IU/ml), after which a consistent age-related decrease was found. The lowest values were found at the age of 17 years (10-89 IU/ml). A significant between-gender difference in sCD30 concentration was observed (P = 0.019). sCD26 and sCD30 concentrations were low in the CSF samples analyzed: 13.3 ng/ml (median); range 8.3-51.5 ng/ml and 7.6 IU/ml; 2.1-18.5 IU/ml, respectively. Reference limits for serum sCD26 in children aged 1-17 years were established as being 235-1800 ng/ml in toddlers and 400-1800 ng/ml in female adolescents and 700-2000 ng/ml in male adolescents. For sCD30; reference limits of 80-190 IU/ml were established in the youngest age group and 10-90 IU/ml in adolescents. © 2012 John Wiley & Sons A/S.
Kusanovic, Juan Pedro; Romero, Roberto; Hassan, Sonia S.; Gotsch, Francesca; Edwin, Samuel; Erez, Offer; Mittal, Pooja; Mazaki-Tovi, Shali; Soto, Eleazar; Than, Nandor Gabor; Friel, Lara A.; Chaiworapongsa, Tinnakorn; Yoon, Bo Hyun; Espinoza, Jimmy
2008-01-01
Objective Women with preeclampsia and those who deliver small for gestational age (SGA) neonates are characterized by intravascular inflammation (T helper 1 (Th1)-biased immune response). There is controversy about the T helper 2 (Th2) response in preeclampsia and SGA. CD30, a member of the tumor necrosis factor receptor superfamily, is preferentially expressed in vitro and in vivo by activated T cells producing Th2-type cytokines. Its soluble form (sCD30) has been proposed to be an index of Th2 immune response. The objective of this study was to determine whether maternal serum concentration of sCD30 changes with normal pregnancy, as well as in mothers with preeclampsia and those who deliver SGA neonates. Methods This cross-sectional study included patients in the following groups: (1) non-pregnant women (N=49); (2) patients with a normal pregnancy (N=89); (3) patients with preeclampsia (N=100); and (4) patients who delivered an SGA neonates (N=78). Maternal serum concentration of sCD30 was measured by a specific and sensitive enzyme-linked immunoassay. Non-parametric tests with post-hoc analysis were used for comparisons. A p value <0.05 was considered statistically significant. Results (1) The median sCD30 serum concentration of pregnant women was significantly higher than that of non-pregnant women (median: 29.7 U/mL, range: 12.2-313.2 vs. median: 23.2 U/mL, range: 14.6-195.1, respectively; p=0.01); (2) Patients with preeclampsia had a significantly lower median serum concentration of sCD30 than normal pregnant women (median: 24.7 U/mL, range: 7.6-71.2 vs. median: 29.7 U/mL, range: 12.2-313.2, respectively; p<0.05); (3) Mothers with SGA neonates had a lower median concentration of sCD30 than normal pregnant women (median: 23.4 U/mL, range: 7.1-105.3 vs. median: 29.7 U/mL, range: 12.2-313.2, respectively; p<0.05); and (4) There was no significant correlation (r=-0.059, p=0.5) between maternal serum sCD30 concentration and gestational age (19-38 weeks) in normal pregnant women. Conclusions (1) Patients with preeclampsia and those who deliver a SGA neonate had a significantly lower serum concentration of sCD30 than normal pregnant women; (2) This finding is consistent with the view that preeclampsia and SGA are associated with a polarized Th1 immune response and, perhaps, a reduced Th2 response. PMID:17853188
Cadmium and lead in chocolates commercialized in Brazil.
Villa, Javier E L; Peixoto, Rafaella R A; Cadore, Solange
2014-08-27
Cadmium (Cd) and lead (Pb) concentrations and their relationship to the cocoa content of chocolates commercialized in Brazil were evaluated by graphite furnace atomic absorption spectrometry (GF AAS) after microwave-assisted acid digestion. Several chemical modifiers were tested during method development, and analytical parameters, including the limits of detection and quantification as well as the accuracy and precision of the overall procedure, were assessed. The study examined 30 chocolate samples, and the concentrations of Cd and Pb were in the range of <1.7-107.6 and <21-138.4 ng/g, respectively. The results indicated that dark chocolates have higher concentrations of Cd and Pb than milk and white chocolates. Furthermore, samples with five different cocoa contents (ranging from 34 to 85%) from the same brand were analyzed, and linear correlations between the cocoa content and the concentrations of Cd (R(2) = 0.907) and Pb (R(2) = 0.955) were observed. The results showed that chocolate might be a significant source of Cd and Pb ingestion, particularly for children.
Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.).
Xie, Pan-pan; Deng, Juan-wei; Zhang, Hui-min; Ma, You-hua; Cao, De-ju; Ma, Ru-xiao; Liu, Ren-jing; Liu, Cheng; Liang, Yue-gan
2015-12-01
This study investigated the effects of various Cd concentrations on the bioaccumulation, antioxidative defense, and stress responses of rice (Oryza sativa L.). The distribution characteristics of Cd in rice were in the following order: roots>stems>grains. The bioconcentration factor values of Cd increased at concentrations lower than 3.00 mg Cd/kg and approximately decreased to a constant value at concentrations higher than 3.00 mg Cd/kg. Rice showed a higher Cd accumulation potential at low Cd concentrations than at high Cd concentrations. The Freundlich isotherm model described well the adsorption isotherms of Cd in rice roots. The biosorption mechanism of rice roots was determined to be cooperative adsorption. The malondialdehyde (MDA) content increased at a concentration range of 0.00-5.00 mg/L, indicating the enhancement of lipid peroxidation. By contrast, the MDA content slightly decreased at concentrations higher than 5.00 mg/L. Peroxidase (POD) activity exhibited active response to oxidative stress at concentrations lower than 5.00 mg/L but was inhibited at concentrations higher than 5.00 mg/L. The response to Cd stress of the N-H, O-H and C-O functional groups in rice shoots was observed via Fourier transform infrared spectroscopy. Copyright © 2015 Elsevier Inc. All rights reserved.
Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu
2015-01-01
Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170
Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu
2015-08-13
Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.
Sinnett, Danielle E; Hodson, Mark E; Hutchings, Tony R
2009-08-01
The present study examines the potential of Urtica dioica as an ecologically relevant species for use in ecotoxicological testing. It is prevalent in degraded ecosystems and is a food source for invertebrates. Urtica dioica grown in hydroponic solutions containing from less than 0.003 to 5.7 mg Cd/L or from 0.02 to 41.9 mg Zn/L accumulated metals resulting in leaf tissue concentrations in the range of 0.10 to 24.9 mg Cd/kg or 22.5 to 2,772.0 mg Zn/kg. No toxicological effects were apparent except at the highest concentrations tested, suggesting that this species may be an important pathway for transfer of metals to primary plant consumers. Helix aspersa and Lumbricus terrestris were fed the Cd- and Zn-rich leaves of U. dioica for six and four weeks, respectively. Cadmium and Zn body load increased with increasing metal concentration in the leaves (p < 0.001). Ratios of invertebrate metal concentration to leaf metal concentration were in the range of 1:0.03 to 1:1.4 for Cd and 1:0.2 to 1:2.8 for Zn in H. aspersa and 1:0.002 to 1:3.9 for Cd and 1:0.2 to 1:8.8 for Zn in L. terrestris. Helix aspersa Cd and Zn tissue concentrations (15.5 and 1,220.2 mg/kg, respectively) were approximately threefold those in L. terrestris when both species were fed nettle leaves with concentrations of approximately 23 mg Cd/kg and 3,400 mg Zn/kg. Models demonstrate that L. terrestris Cd tissue concentrations (r2 = 0.74, p < 0.001) and H. aspersa Zn tissue concentrations (r(2) = 0.69, p < 0.001) can be estimated from concentrations of Cd and Zn within the leaves of U. dioica and suggest that reasonably reproducible results can be obtained using these species for ecotoxicological testing.
Age-dependent changes of serum soluble CD30 concentration in children.
Chrul, Slawomir; Polakowska, Ewa
2011-08-01
CD30 was originally described as a marker on Reed-Sternberg cells in Hodgkin lymphoma. The extracellular portion of CD30 is proteolytically cleaved from CD30+ cells, to produce a soluble form of the molecule (sCD30) detectable in serum. Measurement of sCD30 concentration in serum has been suggested to be a potential tool in monitoring of inflammatory status in variety of diseases. Several investigators reported the relevance for sCD30 as a predictive marker for allograft rejection following organ transplantation. The aim of the study was to verify whether sCD30 serum concentrations may be affected by an age in healthy children. Heparinized venous blood was taken from 78 healthy children. For the analysis of sCD30 levels, the commercially available sCD30 ELISA was used. The sCD30 was detected in all serum samples and concentrations ranged from 6.75 to 68.07ng/mL. The statistical analysis of all individuals showed that sCD30 concentration was significantly age depended (r=-0.618, p<0.0001). When sCD30 concentrations were analyzed in regard to gender, no significant differences were identified in age subgroups. © 2011 John Wiley & Sons A/S.
Cadmium and lead in cocoa powder and chocolate products in the US Market.
Abt, Eileen; Fong Sam, Jennifer; Gray, Patrick; Robin, Lauren Posnick
2018-06-01
Cocoa powder and chocolate products are known to sometimes contain cadmium (Cd) and lead (Pb) from environmental origins. A convenience sample of cocoa powder, dark chocolate, milk chocolate, and cocoa nib products was purchased at retail in the US and analysed using inductively coupled plasma mass spectrometry to assess Cd and Pb concentrations. Cd and Pb were evaluated in relation to the percent cocoa solids and to the reported origin of the cocoa powder and chocolate products. Cd ranged from 0.004 to 3.15 mg/kg and Pb ranged from
Complexation of cadmium to sulfur and oxygen functional groups in an organic soil
NASA Astrophysics Data System (ADS)
Karlsson, Torbjörn; Elgh-Dalgren, Kristin; Björn, Erik; Skyllberg, Ulf
2007-02-01
Cadmium (Cd) is a toxic trace element and due to human activities soils and waters are contaminated by Cd both on a local and global scale. It is widely accepted that chemical interactions with functional groups of natural organic matter (NOM) is vital for the bioavailability and mobility of trace elements. In this study the binding strength of cadmium (Cd) to soil organic matter (SOM) was determined in an organic (49% organic C) soil as a function of reaction time, pH and Cd concentration. In experiments conducted at native Cd concentrations in soil (0.23 μg g -1 dry soil), halides (Cl, Br) were used as competing ligands to functional groups in SOM. The concentration of Cd in the aqueous phase was determined by isotope-dilution (ID) inductively-coupled-plasma-mass-spectrometry (ICP-MS), and the activity of Cd 2+ was calculated from the well-established Cd-halide constants. At higher Cd loading (500-54,000 μg g -1), the Cd 2+ activity was directly determined by an ion-selective electrode (ISE). On the basis of results from extended X-ray absorption fine structure (EXAFS) spectroscopy, a model with one thiolate group (RS -) was used to describe the complexation (Cd 2+ + RS - ⇆ CdSR +; log KCdSR) at native Cd concentrations. The concentration of thiols (RSH; 0.047 mol kg -1 C) was independently determined by X-ray absorption near-edge structure (XANES) spectroscopy. Log KCdSR values of 11.2-11.6 (p Ka for RSH = 9.96), determined in the pH range 3.1-4.6, compare favorably with stability constants for the association between Cd and well-defined thiolates like glutathione. In the concentration range 500-54,000 μg Cd g -1, a model consisting of one thiolate and one carboxylate (RCOO -) gave the best fit to data, indicating an increasing role for RCOOH groups as RSH groups become saturated. The determined log KCdOOCR of 3.2 (Cd 2+ + RCOO - ⇆ CdOOCR +; log KCdOOCR; p Ka for RCOOH = 4.5) is in accordance with stability constants determined for the association between Cd and well-defined carboxylates. Given a concentration of reduced sulfur groups of 0.2% or higher in NOM, we conclude that the complexation to organic RSH groups may control the speciation of Cd in soils, and most likely also in surface waters, with a total concentration less than 5 mg Cd g -1 organic C.
Geographic clustering of elevated blood heavy metal levels in pregnant women.
King, Katherine E; Darrah, Thomas H; Money, Eric; Meentemeyer, Ross; Maguire, Rachel L; Nye, Monica D; Michener, Lloyd; Murtha, Amy P; Jirtle, Randy; Murphy, Susan K; Mendez, Michelle A; Robarge, Wayne; Vengosh, Avner; Hoyo, Cathrine
2015-10-09
Cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As) exposure is ubiquitous and has been associated with higher risk of growth restriction and cardiometabolic and neurodevelopmental disorders. However, cost-efficient strategies to identify at-risk populations and potential sources of exposure to inform mitigation efforts are limited. The objective of this study was to describe the spatial distribution and identify factors associated with Cd, Pb, Hg, and As concentrations in peripheral blood of pregnant women. Heavy metals were measured in whole peripheral blood of 310 pregnant women obtained at gestational age ~12 weeks. Prenatal residential addresses were geocoded and geospatial analysis (Getis-Ord Gi* statistics) was used to determine if elevated blood concentrations were geographically clustered. Logistic regression models were used to identify factors associated with elevated blood metal levels and cluster membership. Geospatial clusters for Cd and Pb were identified with high confidence (p-value for Gi* statistic <0.01). The Cd and Pb clusters comprised 10.5 and 9.2 % of Durham County residents, respectively. Medians and interquartile ranges of blood concentrations (μg/dL) for all participants were Cd 0.02 (0.01-0.04), Hg 0.03 (0.01-0.07), Pb 0.34 (0.16-0.83), and As 0.04 (0.04-0.05). In the Cd cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.06 (0.02-0.16), Hg 0.02 (0.00-0.05), Pb 0.54 (0.23-1.23), and As 0.05 (0.04-0.05). In the Pb cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.03 (0.02-0.15), Hg 0.01 (0.01-0.05), Pb 0.39 (0.24-0.74), and As 0.04 (0.04-0.05). Co-exposure with Pb and Cd was also clustered, the p-values for the Gi* statistic for Pb and Cd was <0.01. Cluster membership was associated with lower education levels and higher pre-pregnancy BMI. Our data support that elevated blood concentrations of Cd and Pb are spatially clustered in this urban environment compared to the surrounding areas. Spatial analysis of metals concentrations in peripheral blood or urine obtained routinely during prenatal care can be useful in surveillance of heavy metal exposure.
Assessment of metals content in dandelion (Taraxacum officinale) leaves grown on mine tailings
NASA Astrophysics Data System (ADS)
Levei, Levente; Andrei, Mariana Lucia; Hoaghia, Maria Alexandra; Ozunu, Alexandru
2017-12-01
Dandelion (Taraxacum officinale) is one of the plant species that has the ability to spontaneously grow on mine tailings, due to its high tolerance for harsh environmental conditions (low nutrients level, high metal contents). The concentrations of Cd, Cu, Pb and Zn were determined in tailings and dandelion leaves grown on nonferrous mine tailings from Romania, while the metal accumulation was assessed by transfer factors (TFs) calculated as the ratio between the metal concentration in plant leaves and in tailings underneath. The results showed that the metal concentrations in tailings ranged between 0.4-8.0 mg/kg Cd, 20-1300 mg/kg Cu, 27-570 mg/kg Pb and 48-800 mg/kg Zn, while the metal concentrations in dandelion ranged between 0.2-4.8 mg/kg Cd, 6.2-17 mg/kg Cu, 0.5-75 mg/kg Pb and 27-260 mg/kg Zn. The TFs were below 0.8 for Cd and Zn and below 0.4 for Cu and Pb and decreased in the following order Cd≥Zn>Cu≥Pb, suggesting the Cd and Zn accumulation capability of dandelion.
Induction of hsp70, hsp90, and catalase activity in planarian Dugesia japonica exposed to cadmium.
Zhang, Xiufang; Mo, Yehua; Zhou, Luming; Wang, Yinan; Wang, Zhongchen; Zhao, Bosheng
2016-08-01
The hsp70 and hsp90 expression patterns and catalase (CAT) activity in the freshwater planaria Dugesia japonica exposed to cadmium (Cd) under laboratory conditions were investigated. Planaria were exposed to a range of Cd concentrations (0-150 μg Cd/L) for 24 h. The expression levels of hsp70 and hsp90 were determined by relative quantitative real-time polymerase chain reaction. Within the overall dose range in the experiment, the expression level of hsp70 and the activity of CAT in D. japonica were altered significantly. Hsp70 was induced in D. japonica upon Cd exposure concentrations as low as 9.375 μg Cd/L. No significant effect on the expression level of hsp90 was observed. Our findings demonstrated that stress gene hsp70, but not hsp90, was responsive to Cd contamination in D. japonica CAT activity was significantly induced at concentrations of 18.75, 37.5, and 75 μg Cd/L after 24-h exposure. We recommend that the use of hsp70 as a biomarker should be complemented by evidence of changes in other parameters, such as CAT activity, in D. japonica. © The Author(s) 2014.
Marcano, Mariano; Layton, Anita T; Layton, Harold E
2010-02-01
In a mathematical model of the urine concentrating mechanism of the inner medulla of the rat kidney, a nonlinear optimization technique was used to estimate parameter sets that maximize the urine-to-plasma osmolality ratio (U/P) while maintaining the urine flow rate within a plausible physiologic range. The model, which used a central core formulation, represented loops of Henle turning at all levels of the inner medulla and a composite collecting duct (CD). The parameters varied were: water flow and urea concentration in tubular fluid entering the descending thin limbs and the composite CD at the outer-inner medullary boundary; scaling factors for the number of loops of Henle and CDs as a function of medullary depth; location and increase rate of the urea permeability profile along the CD; and a scaling factor for the maximum rate of NaCl transport from the CD. The optimization algorithm sought to maximize a quantity E that equaled U/P minus a penalty function for insufficient urine flow. Maxima of E were sought by changing parameter values in the direction in parameter space in which E increased. The algorithm attained a maximum E that increased urine osmolality and inner medullary concentrating capability by 37.5% and 80.2%, respectively, above base-case values; the corresponding urine flow rate and the concentrations of NaCl and urea were all within or near reported experimental ranges. Our results predict that urine osmolality is particularly sensitive to three parameters: the urea concentration in tubular fluid entering the CD at the outer-inner medullary boundary, the location and increase rate of the urea permeability profile along the CD, and the rate of decrease of the CD population (and thus of CD surface area) along the cortico-medullary axis.
Tracing industrial heavy metal inputs to topsoils using using cadmium isotopes
NASA Astrophysics Data System (ADS)
Huang, Y.; Ma, L.; Ni, S.; Lu, H.; Liu, Z.; Zhang, C.; Guo, J.; Wang, N.
2015-12-01
Anthropogenic activities have dominated heavy metal (such as Cd, Pb, and Zn) cycling in many environments. The extent and fate of these metal depositions in topsoils, however, have not been adequately evaluated. Here, we utilize an innovative Cadmium (Cd) isotope tool to trace the sources of metal pollutants in topsoils collected from surrounding a Vanadium Titanium Magnetite smelting plant in Sichuan, China. Topsoil samples and possible pollution end-members such as fly ashes, bottom ashes, ore materials, and coal were also collected from the region surrounding the smelting plant and were analyzed for Cd isotope ratios (d114Cd relative to Cd NIST 3108). Large Cd isotope fractionation (up to 3 ‰) was observed in these industrial end-members: fly ashes possessed higher δ114Cd values ranging from +0.03 to +0.19‰; bottom fly ashes have lower δ114Cd values ranging from -0.35 to -2.46‰; and unprocessed ore and coal samples has δ114Cd value of -0.40‰. This fractionation can be attributed to the smelting processes during which bottom ashes acquired lighter Cd isotope signatures while fly ashes were mainly characterized by heavy isotope ratios, in comparison to the unprocessed ore and coal samples. Indeed, δ114Cd values of topsoils in the smelting area range from 0.29 to -0.56‰, and more than half of the soils analyzed have distinct δ114Cd values > 0‰. Cd isotopes and concentrations measured in topsoils suggested that processed materials (fly and bottom ashes from ore and coal actually used by the smelting plant) were the major source of Cd in soils. In a δ114Cd vs 1/Cd mixing diagram, the soils represent a mixture of three identified end members (fly ash, bottom ash and deep unaffected soil) with distinct Cd isotopic compositions and concentrations. Deep soils have the same δ114Cd values range as the unprocessed ore and coal, which indicated the Cd isotope fractionation did occur during evaporation and condensation processes inside the smelting plant. The signatures of fly ash end member might be even higher according to the δ114Cd increasing trend of topsoils with the increasing of Cd concentration of the topsoils. Our study suggested that δ114Cd values can be used to distinguish sources of anthropogenic Cd and to construct metal budgets in in this studying area.
Liu, Lingzhi; Gong, Zongqiang; Zhang, Yulong; Li, Peijun
2014-12-01
The effects of three arbuscular mycorrhizal fungi isolates on Cd uptake and accumulation by maize (Zea mays L.) were investigated in a planted pot experiment. Plants were inoculated with Glomus intraradices, Glomus constrictum and Glomus mosseae at three different Cd concentrations. The results showed that root colonization increased with Cd addition during a 6-week growth period, however, the fungal density on roots decreased after 9-week growth in the treatments with G. constrictum and G. mosseae isolates. The percentage of mycorrhizal colonization by the three arbuscular mycorrhizal fungi isolates ranged from 22.7 to 72.3%. Arbuscular mycorrhizal fungi inoculations decreased maize biomass especially during the first 6-week growth before Cd addition, and this inhibitory effect was less significant with Cd addition and growth time. Cd concentrations and uptake in maize plants increased with arbuscular mycorrhizal fungi colonization at low Cd concentration (0.02 mM): nonetheless, it decreased at high Cd concentration (0.20 mM) after 6-week growth period. Inoculation with G. constrictum isolates enhanced the root Cd concentrations and uptake, but G. mosseae isolates showed the opposite results at high Cd concentration level after 9 week growth period, as compared to non-mycorrhizal plants. In conclusion, maize plants inoculated with arbuscular mycorrhizal fungi were less sensitive to Cd stress than uninoculated plants. G. constrictum isolates enhanced Cd phytostabilization and G. mosseae isolates reduced Cd uptake in maize (Z. mays L.).
Assimilation and regeneration of trace elements by marine copepods
Wang, W.-X.; Reinfelder, J.R.; Lee, B.-G.; Fisher, N.S.
1996-01-01
Assimilation efficiencies (AE) of five trace elements (Am, Cd, Co, Se, and Zn) and carbon by neritic copepods (Acartia tonsa and Temora longicornis) feeding at different food concentrations and on different food types (diatoms, green algae, flagellates, dinoflagellates, and Fe oxides) were measured with radiotracer techniques. Food concentration had little influence on AEs of C, Cd, Co, and Se within a range of 16-800 ?? C liter-1. AEs of Am and Zn were highest at low food concentrations (16-56 ??g C liter-1) but remained relatively constant when food levels exceeded 160 ??g C liter-1. Different algal diets had no major influence on AEs, which generally were in the order Cd > Se > Zn > Co > Am. Metals (Cd, Co, and Zn) were assimilated from Fe oxides with 50% less efficiency than from algal cells. Element regeneration into the dissolved phase was a significant route for the release of ingested elements by copepods and increased with increased food concentration. Element regeneration rates for Cd, Se, and Zn were comparable to the regeneration rates of major nutrients such as P (30-70% daily). Retention half-times of elements in decomposing fecal pellets ranged from 10 d (Am). The efficient assimilation and regeneration of Cd, Se, and Zn can significantly lengthen the residence time of these elements in ocean surface waters.
Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium.
Weggler, Karin; McLaughlin, Michael J; Graham, Robin D
2004-01-01
Increasing chloride (Cl) concentration in soil solution has been shown to increase cadmium (Cd) concentration in soil solution and Cd uptake by plants, when grown in phosphate fertilizer- or biosolid-amended soils. However, previous experiments did not distinguish between the effect of Cl on biosolid-borne Cd compared with soil-borne Cd inherited from previous fertilizer history. A factorial pot experiment was conducted with biosolid application rates of 0, 20, 40, and 80 g biosolids kg(-1) and Cl concentration in soil solution ranging from 1 to 160 mM Cl. The Cd uptake of wheat (Triticum aestivum L. cv. Halberd) was measured and major cations and anions in soil solution were determined. Cadmium speciation in soil solution was calculated using GEOCHEM-PC. The Cd concentration in plant shoots and soil solution increased with biosolid application rates up to 40 g kg(-1), but decreased slightly in the 80 g kg(-1) biosolid treatment. Across biosolid application rates, the Cd concentration in soil solution and plant shoots was positively correlated with the Cl concentration in soil solution. This suggests that biosolid-borne Cd is also mobilized by chloride ligands in soil solution. The soil solution CdCl+ activity correlated best with the Cd uptake of plants, although little of the variation in plant Cd concentrations was explained by activity of CdCl+ in higher sludge treatments. It was concluded that chlorocomplexation of Cd increased the phytoavailability of biosolid-borne Cd to a similar degree as soil (fertilizer) Cd. There was a nonlinear increase in plant uptake and solubility of Cd in biosolid-amended soils, with highest plant Cd found at the 40 g kg(-1) rate of biosolid application, and higher rates (80 g kg(-1)) producing lower plant Cd uptake and lower Cd solubility in soil. This is postulated to be a result of Cd retention by CaCO3 formed as a result of the high alkalinity induced by biosolid application.
Health Risk Assessment of Heavy Metals in Traditional Cosmetics Sold in Tunisian Local Markets
Nouioui, Mohamed Anouar; Mahjoubi, Salah; Ghorbel, Asma; Ben Haj Yahia, Marouen; Amira, Dorra; Ghorbel, Hayet; Hedhili, Abderrazek
2016-01-01
This study was undertaken in order to determine heavy metal contents in twelve (n = 12) henna brands and eleven (n = 11) kohl products. An analytical test was performed for Pb, Cd, Cu, and Zn in henna and kohl products using atomic absorption spectrophotometery. The overall mean concentrations of heavy metals in henna varied between 1.2 and 8.9 μg g−1 for Pb; 0.8 and 18.6 μg g−1 for Cd; 0.5 μg g−1 and 3.3 μg g−1 for Cu; and 3.7 μg g−1 and 90.0 μg g−1 for Zn. As for kohl products, Pb concentrations ranged between 51.1 μg g−1 and 4839.5 μg g−1, Cd concentrations ranged between 1.0 μg g−1 and 158.6 μg g−1, Cu concentrations ranged between 2.5 μg g−1 and 162.5 μg g−1, and Zn concentrations ranged between 0.7 μg g−1 and 185.0 μg g−1. The results of our study revealed that Pb, Cd, Cu, and Zn contents in investigated samples were high, making from the prolonged use of such products a potential threat to human health. Therefore, major quality controls are recommended in order to enforce acceptable limits of potential contaminants in cosmetics and good manufacturing practice. PMID:27382641
Tomović, Vladimir; Jokanović, Marija; Tomović, Mila; Lazović, Milana; Šojić, Branislav; Škaljac, Snežana; Ivić, Maja; Kocić-Tanackov, Sunčica; Tomašević, Igor; Martinović, Aleksandra
2017-06-01
Concentrations of cadmium (Cd) were determined in the samples of 144 animals around 1 and of 144 animals around 4 years old. Cd was analysed by inductively coupled plasma-optical emission spectrometry (ICP-OES), after microwave digestion. Cd concentrations were higher (p < 0.05) in kidney than in liver and higher (p < 0.05) in older animals than in young ones. In domestic Balkan goat which was raised in a free-ranged system Cd accumulation was lower (p < 0.05) than in Alpine goat raised in an intensive production system. Geographic region did influence Cd accumulation only in older animals. Higher Cd levels (p < 0.05) were determined in goats from Serbia. The highest obtained Cd concentrations in both tissues were lower than maximum levels set by European and national legislation for ruminants (cattle and sheep).
Sample Introduction Using the Hildebrand Grid Nebulizer for Plasma Spectrometry
1988-01-01
linear dynamic ranges, precision, and peak width were de- termined for elements in methanol and acetonitrile solutions. , (1)> The grid nebulizer was...FIA) with ICP-OES detection were evaluated. Detec- tion limits, linear dynamic ranges, precision, and peak width were de- termined for elements in...Concentration vs. Log Peak Area for Mn, 59 Cd, Zn, Au, Ni in Methanol (CMSC) 3-28 Log Concentration vs. Log Peak Area for Mn, 60 Cd, Au, Ni in
Zhang, Zhong-chun; Qiu, Bao-Sheng
2007-01-01
Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdCl2 concentrations ranging from 0 to 800 micromol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 micromol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 micromol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 micromol/L. In addition, its activity increased when treated with 600 micromol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation.
Nookabkaew, Sumontha; Rangkadilok, Nuchanart; Prachoom, Norratouch; Satayavivad, Jutamaad
2016-04-27
Thailand is predominantly an agriculture-based country. Organic farming is enlisted as an important national agenda to promote food safety and international export. The present study aimed to determine the concentrations of trace elements in commercial organic fertilizers (fermented and nonfermented) composed of pig and cattle manures available in Thailand. Pig and cattle manures as well as animal feeds were also collected from either animal farms or markets. The results were compared to the literature data from other countries. Fermented fertilizer composed of pig manure contained higher concentrations of nitrogen (N) and phosphorus (P) than fertilizer composed of cattle manure. High concentrations of copper (Cu) and zinc (Zn) were also found in fertilizers and manures. Some organic fertilizers had high concentrations of arsenic (As), cadmium (Cd), and lead (Pb). The range of As concentration in these fertilizers was 0.50-24.4 mg/kg, whereas the ranges of Cd and Pb were 0.10-11.4 and 1.13-126 mg/kg, respectively. Moreover, pig manure contained As and Cd (15.7 and 4.59 mg/kg, respectively), higher than their levels in cattle manure (1.95 and 0.16 mg/kg, respectively). The use of pig manure as soil supplement also resulted in high Cd contamination in herbal tea (Gynostemma pentaphyllum Makino; GP). The Cd concentration in GP plants positively correlated with the Cd concentration in the soil. Therefore, the application of some organic fertilizers or animal manures to agricultural soil could increase some potentially toxic elements in soil, which may be absorbed by plants and, thus, increase the risk of contamination in agricultural products.
NASA Astrophysics Data System (ADS)
Sianglam, Pradthana; Kulchat, Sirinan; Tuntulani, Thawatchai; Ngeontae, Wittaya
2017-08-01
We demonstrate an advance in the fabrication of circular dichroism (CD) sensors for detection of Cd2 + and S2 - based on chiral CdS quantum dots (QDs) generated by a facile in-situ reaction. The chiral quantum dots are generated in solutions composed of Cd2 +, S2 -, cysteamine (CA) and L-penicillamine (L-PA), with the number of the generated particles limited by either the Cd2 + or S2 - concentration. We show that the magnitude of the CD signal produced by the QDs is linearly related to the initial concentration of Cd2 + and S2 -, with excellent selectivity over other ions. Our sensor functions over concentration ranges of 65-200 μM and 7-125 μM with detection limits of 59.7 and 1.6 μM for Cd2 + and S2 -, respectively. The sensor is applied in real water samples with results comparing favorably with those obtained from ICP-OES (for Cd2 +) and HPLC (for S2 -).
NASA Astrophysics Data System (ADS)
Dhara, Sangita; Misra, N. L.; Aggarwal, S. K.; Venugopal, V.
2010-06-01
An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 µg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 µg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1 σ) and the results deviated from the expected values by < 4% on average.
Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands.
Garrido, Alan E; Strosnider, William H J; Wilson, Robin Taylor; Condori, Janette; Nairn, Robert W
2017-06-01
This study assessed metals in irrigation water, soil and potato crops impacted by mining discharges, as well as potential human health risk in the high desert near the historic mining center of Potosí, Bolivia. Metal concentrations were compared with international concentration limit guidelines. In addition, an ingested average daily dose and minimum risk level were used to determine the hazard quotient from potato consumption for adults and children. Irrigation water maximum concentrations of Cd, Pb and Zn in mining-impacted sites were elevated 20- to 1100-fold above international concentration limit guidelines. Agricultural soils contained total metal concentrations of As, Cd, Pb and Zn that exceeded concentration limits in agricultural soil guidelines by 22-, 9-, 3- and 12-fold, respectively. Potato tubers in mining-impacted sites had maximum concentrations of As, Cd, Pb and Zn that exceeded concentration limits in commercially sold vegetables by 9-, 10-, 16- and fourfold, respectively. Using conservative assumptions, hazard quotients (HQ) for potatoes alone were elevated for As, Cd and Pb among children (range 1.1-71.8), in nearly all of the mining-impacted areas; and for As and Cd among adults (range 1.2-34.2) in nearly all of the mining-impacted areas. Only one mining-impacted area had a Pb adult HQ for potatoes above 1 for adults. Toxic trace elements in a major regional dietary staple may be a greater concern than previously appreciated. Considering the multitude of other metal exposure routes in this region, it is likely that total HQ values for these metals may be substantially higher than our estimates.
NASA Astrophysics Data System (ADS)
Liu, Wei-Chun; Lo, Yu-Lung; Phan, Quoc-Hung
2018-03-01
A method is proposed for extracting the circular birefringence (CB), circular dichroism (CD) and depolarization (Dep) properties of optical scattering samples using an amplitude-modulation polarimetry technique. The validity of the proposed method is demonstrated by extracting the CB property of pure glucose aqueous samples, the CB/Dep properties of glucose solutions containing 0.02% lipofundin particles, and the CD/Dep properties of chlorophyllin solutions containing suspended polystyrene microspheres. The results show that the proposed technique has the ability to detect pure glucose with a resolution of 66 mg/dL over a concentration range of 0-500 mg/dL. Moreover, the glucose concentration of the CB/Dep samples can be detected over the same range with a resolution of 168 mg/dL. Finally, the chlorophyllin concentration of the CD/Dep sample can be detected over the range of 0-200 μg/dL with a resolution of 6.5 × 10-5. In general, the results show that the proposed technique provides a reliable and accurate means of measuring the CB/CD properties of optical samples with scattering effects, and thus has significant potential for biological sensing applications.
On the interplay of point defects and Cd in non-polar ZnCdO films
NASA Astrophysics Data System (ADS)
Zubiaga, A.; Reurings, F.; Tuomisto, F.; Plazaola, F.; García, J. A.; Kuznetsov, A. Yu.; Egger, W.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.
2013-01-01
Non-polar ZnCdO films, grown over m- and r-sapphire with a Cd concentration ranging between 0.8% and 5%, have been studied by means of slow positron annihilation spectroscopy (PAS) combined with chemical depth profiling by secondary ion mass spectroscopy and Rutherford back-scattering. Vacancy clusters and Zn vacancies with concentrations up to 1017 cm-3 and 1018 cm-3, respectively, have been measured inside the films. Secondary ion mass spectroscopy results show that most Cd stays inside the ZnCdO film but the diffused atoms can penetrate up to 1.3 μm inside the ZnO buffer. PAS results give an insight to the structure of the meta-stable ZnCdO above the thermodynamical solubility limit of 2%. A correlation between the concentration of vacancy clusters and Cd has been measured. The concentration of Zn vacancies is one order of magnitude larger than in as-grown non-polar ZnO films and the vacancy cluster are, at least partly, created by the aggregation of smaller Zn vacancy related defects. The Zn vacancy related defects and the vacancy clusters accumulate around the Cd atoms as a way to release the strain induced by the substitutional CdZn in the ZnO crystal.
Takemoto, Shigeki; Iwanaga, Masako; Sagara, Yasuko; Watanabe, Toshiki
2015-01-01
Elevated levels of soluble CD30 (sCD30) are linked with various T-cell neoplasms. However, the relationship between sCD30 levels and the development of adult T-cell leukemia (ATL) in human T-cell leukemia virus type 1 (HTLV-1) carriers remains to be clarified. We here investigated whether plasma sCD30 is associated with risk of ATL in a nested case-control study within a cohort of HTLV-1 carriers. We compared sCD30 levels between 11 cases (i.e., HTLV-1 carriers who later progressed to ATL) and 22 age-, sex- and institution-matched control HTLV-1 carriers (i.e., those with no progression). The sCD30 concentration at baseline was significantly higher in cases than in controls (median 65.8, range 27.2-134.5 U/mL vs. median 22.2, range 8.4-63.1 U/mL, P=0.001). In the univariate logistic regression analysis, a higher sCD30 (≥30.2 U/mL) was significantly associated with ATL development (odds ratio 7.88 and the 95% confidence intervals 1.35-45.8, P = 0.02). Among cases, sCD30 concentration tended to increase at the time of diagnosis of aggressive-type ATL, but the concentration was stable in those developing the smoldering-type. This suggests that sCD30 may serve as a predictive marker for the onset of aggressive-type ATL in HTLV-1 carriers.
Development and validation of a fluorescent microsphere immunoassay for soluble CD30 testing.
Pavlov, Igor; Martins, Thomas B; Delgado, Julio C
2009-09-01
Testing for soluble CD30 (sCD30), an indicator of Th2 immune response, is a useful prognostic marker in solid organ transplantation, lymphoproliferative disorders, autoimmunity, and various parasitic diseases. In this study we report the development and validation of a fluorescent microsphere immunoassay for the detection of sCD30 in serum, plasma, and culture supernatants. The dynamic range of this assay is 1 to 400 ng/ml, and the rate of recovery of various concentrations of recombinant sCD30 ranges from 97 to 116% (average recovery, 105%). The test showed a high degree of precision in both intra-assay and interassay studies (coefficients of variation, as high as 7% and 8%, respectively), with a sensitivity of 1 ng/ml. The normal reference range calculated for a cohort of 151 healthy individuals was 1 to 29 ng/ml. The clinical usefulness of the sCD30 fluorescent microsphere immunoassay was demonstrated by showing that levels of sCD30 have a positive correlation with specimens containing high titers of anti-double-stranded DNA antibodies and high titers of immunoglobulin G against Leishmania species. Given the multiplexing potential of the sCD30 fluorescent microsphere immunoassay reported in this study, it is expected that testing of sCD30 concentrations along with those of other cytokines will become an important diagnostic tool for selected immunological and inflammatory diseases where Th2-type cytokine responses have been reported.
Development and Validation of a Fluorescent Microsphere Immunoassay for Soluble CD30 Testing▿
Pavlov, Igor; Martins, Thomas B.; Delgado, Julio C.
2009-01-01
Testing for soluble CD30 (sCD30), an indicator of Th2 immune response, is a useful prognostic marker in solid organ transplantation, lymphoproliferative disorders, autoimmunity, and various parasitic diseases. In this study we report the development and validation of a fluorescent microsphere immunoassay for the detection of sCD30 in serum, plasma, and culture supernatants. The dynamic range of this assay is 1 to 400 ng/ml, and the rate of recovery of various concentrations of recombinant sCD30 ranges from 97 to 116% (average recovery, 105%). The test showed a high degree of precision in both intra-assay and interassay studies (coefficients of variation, as high as 7% and 8%, respectively), with a sensitivity of 1 ng/ml. The normal reference range calculated for a cohort of 151 healthy individuals was 1 to 29 ng/ml. The clinical usefulness of the sCD30 fluorescent microsphere immunoassay was demonstrated by showing that levels of sCD30 have a positive correlation with specimens containing high titers of anti-double-stranded DNA antibodies and high titers of immunoglobulin G against Leishmania species. Given the multiplexing potential of the sCD30 fluorescent microsphere immunoassay reported in this study, it is expected that testing of sCD30 concentrations along with those of other cytokines will become an important diagnostic tool for selected immunological and inflammatory diseases where Th2-type cytokine responses have been reported. PMID:19605595
Effect of soil-added cadmium on several plant species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, L.J.; Parker, G.R.
Several species (Andropogon scoparius, Rhus radicans, Rudbeckia hirta, Anemone cylindrica, Monarda fistulosa, Poa pratensis, and Liatris spicata) native to northwestern Indiana were grown from seed in the greenhouse for 6 weeks. An uncontaminated sandy soil was utilized as the substrate with four levels of soil-added Cd. The concentrations added ranged from 0 to 100 ..mu..g Cd/g soil and were comparable to surface soil Cd concentration levels found in the urban-industrial region of northwestern Indiana. Data on germination, survival, height, and dry weight were collected. Germination, survival, and weight were found to exhibit a negative response to increasing soil Cd concentrationmore » over all species. Height, however, was not found to be a consistently good indicator of Cd response. While overall species' differences were noted, no differences could be conclusively shown among the species for Cd tolerance, although there were indications that this was the case. All effects noted were of a low level for the soil-added Cd concentrations utilized.« less
Beaumelle, Léa; Gimbert, Frédéric; Hedde, Mickaël; Guérin, Annie; Lamy, Isabelle
2015-07-01
Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl2-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl2 extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. Copyright © 2015 Elsevier B.V. All rights reserved.
Six, L; Smolders, E
2014-07-01
The gradual increase of soil cadmium concentrations in European soils during the 20th century has prompted environmental legislation to limit soil cadmium (Cd) accumulation. Mass balances (input-output) reflecting the period 1980-1995 predicted larger Cd inputs via phosphate (P) fertilizers and atmospheric deposition than outputs via crop uptake and leaching. This study updates the Cd mass balance for the agricultural top soils of EU-27+Norway (EU-27+1). Over the past 15 years, the use of P fertilizers in the EU-27+1 has decreased by 40%. The current mean atmospheric deposition of Cd in EU is 0.35 g Cd ha(-1) yr(-1), this is strikingly smaller than values used in the previous EU mass balances (~3 g Cd ha(-1) yr(-1)). Leaching of Cd was estimated with most recent data of soil solution Cd concentrations in 151 soils, which cover the range of European soil properties. No significant time trends were found in the data of net applications of Cd via manure, compost, sludge and lime, all being small sources of Cd at a large scale. Modelling of the future long-term changes in soil Cd concentrations in agricultural top soils under cereal or potato culture predicts soil Cd concentrations to decrease by 15% over the next 100 years in an average scenario, with decreasing trends in some scenarios being more prevalent than increasing trends in other scenarios. These Cd balances have reverted from the general positive balances estimated 10 or more years ago. Uncertainty analysis suggests that leaching is the most uncertain relative to other fluxes. Copyright © 2014 Elsevier B.V. All rights reserved.
Amjadian, Keyvan; Sacchi, Elisa; Rastegari Mehr, Meisam
2016-11-01
Urban soil contamination is a growing concern for the potential health impact on the increasing number of people living in these areas. In this study, the concentration, the distribution, the contamination levels, and the role of land use were investigated in Erbil metropolis, the capital of Iraqi Kurdistan. A total of 74 soil samples were collected, treated, and analyzed for their physicochemical properties, and for 7 heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) and 16 PAH contents. High concentrations, especially of Cd, Cu Pb, and Zn, were found. The Geoaccumulation index (I geo ), along with correlation coefficients and principal component analysis (PCA) showed that Cd, Cu, Pb, and Zn have similar behaviors and spatial distribution patterns. Heavy traffic density mainly contributed to the high concentrations of these metals. The total concentration of ∑PAHs ranged from 24.26 to 6129.14 ng/g with a mean of 2296.1 ng/g. The PAH pattern was dominated by 4- and 5-ring PAHs, while diagnostic ratios and PCA indicated that the main sources of PAHs were pyrogenic. The toxic equivalent (TEQ) values ranged from 3.26 to 362.84 ng/g, with higher values in central parts of the city. A statistically significant difference in As, Cd, Cu, Pb, Zn, and ∑PAH concentrations between different land uses was observed. The highest As concentrations were found in agricultural areas while roadside, commercial, and industrial areas had the highest Cd, Cu, Pb, Zn, and ∑PAH contents.
Optical studies of CdSe/PVA nanocomposite films
NASA Astrophysics Data System (ADS)
Kushwaha, Kamal Kumar; Ramrakhaini, Meera
2018-05-01
The nanocomposite films of CdSe nanocrystals in polyvinyl alcohol (PVA) matrix were synthesized by environmental friendly chemical method. These composites were characterized by X-ray diffraction which indicates the hexagonal crystalline structure of CdSe with crystal size up to a few nm. The crystal size is found to decrease by increasing PVA Concentration. The photoluminescence (PL) characteristics of these composite films with varying concentration of PVA as well as Cd2+ content have been investigated. The PL peak of CdSe was observed at 510 nm and higher intensity is observed by increasing PVA concentration without any change in position of PL peak. Due to proper passivation of surface states non-radiative transition are reduced which enhance the PL intensity. By increasing concentration of Cd2+ content in the CdSe/PVA nanocomposite films, smaller CdSe nanocrystals were obtained giving higher intensity and blue shift in the PL peak due to enhanced oscillator strength and quantum confinement effect. The PL peak in green and blue region makes these composite films promising materials for optical display devices. The Refractive index of these composites was also measured at sodium line with the help of Abee's refractometer and was found in the range of 2.20-2.45. It is seen that refractive index varies with polymer concentration. This may be useful for their potential application in anti-reflection coating, display devices and optical sensors.
Geochemical Transformation of Cadmium (Cd) from Creek to Paddy Fields in W Thailand
NASA Astrophysics Data System (ADS)
Kosolsaksakul, Peerapat; Graham, Margaret; Farmer, John
2013-04-01
Extensive Cd contamination of paddy soils in Tak Province, western Thailand, a consequence of Zn mining activities, was first established in 2005 and medical studies showed that the health of local communities was being impaired. Mae Tao, Tak Province, comprising many paddy fields and irrigation canals, has been selected for this study of the geochemical transformation of Cd from the contamination source in the mountainous region to the east of the study site through the community irrigation system to the paddy soils. The aim of this research is to (i) investigate the geochemical transformation of Cd as it is transported from the main irrigation creek through the canals and to the paddy fields, (ii) assess the availability of Cd to rice plants, which may be affected by both chemical and physical factors, and (iii) trial some practical treatments to minimise Cd concentrations in rice grains. Soils, irrigation canal sediments and water samples were collected during the dry season and at the onset of the rainy season. Rice samples were collected at harvesting time and samples of soil fertiliser were also obtained. Water samples were filtered, ultrafiltered and analysed by ICP-MS whilst sub-samples of dried, ground soils and sediments were first subjected to micro-wave assisted acid digestion (modified US EPA method 3052). XRD and SEM-EDX methods were used for mineralogical characterisation and selective chemical extractions have assisted in the characterisation of solid phase Cd associations. Soil Cd concentrations were in the range 2.5-87.6 µg g-1, with higher values being obtained for fields furthest from the main creek. Although current irrigation water Cd inputs are low (mean 1.9 μg L-1; flood period), high loads of suspended particles still contribute additional Cd (4.2-9.8 µg L-1) to the paddy fields. For bioavailability assessment by a 3-step BCR sequential extraction, 70-90% Cd was in the exchangeable; HOAc-extractable fraction. That indicated that most of the Cd was in water soluble, exchangeable and carbonate-bound forms. For the fields with highest Cd concentration, SEM-EDX analysis identified two forms of Cd, i.e. Cd-Clay and Cd-CaCO3, in good agreement with the sequential extraction data. The predominance of easily extractable forms in the paddy field soils suggests that Cd may be readily absorbed by the rice plants. After harvesting, the Cd concentration in rice grains ranged from 0.05-4.0 µg g-1 and the concentration trends across the group of 18 fields matched well with the soil Cd data. Rice from nine out of the 18 fields contained Cd at greater than the safe level of 0.4 µg g-1.
Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi
2014-04-01
Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.
Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe
2012-08-01
The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator.
Wen, Jia; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K
2016-11-01
The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.
Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S
2017-04-18
Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.
Cheng, Jinjin; Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang
2015-12-01
This study investigated heavy metal concentrations in soils and navel oranges of Xinfeng County, a well-known navel orange producing area of China. The results showed that the average concentrations of lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As) and mercury (Hg) in orchard soils all increased compared to the regional background values, especially for Cd, which increased by 422%. When compared to the Chinese Environmental Quality Standard for soil (GB15618-1995), Pb, Cr and Hg concentrations in all orchard soil samples were below the limit standards, but Cd concentrations in 24 soil samples (21%) and As concentrations in 8 soil samples (7%) exceeded the limit standards. However, concentrations of all heavy metals in navel orange pulps were within the National Food Safety Standard of China (GB 2762-2012). Dietary risk assessment also showed that the exposure to these five heavy metals by consumption of navel oranges could hardly pose adverse health effects on adults and children. Since the range and degree of soil Cd pollution was widest and the most severe of all, Cd was taken as an example to reveal the transfer characteristics of heavy metals in soil-navel orange system. Cd concentrations in different organs of navel orange trees decreased in the following order: root>leaf>peel>pulp. That navel oranges planted in the Cd contaminated soils were within the national food safety standard was mainly due to the low transfer factor for Cd from soil to pulp (TFpulp). Further studies showed that TFpulp was significantly negatively correlated with soil pH, organic carbon (OC) and cation exchange capacity (CEC). Based on these soil properties, a prediction equation for TFpulp was established, which indicated that the risk for Cd concentration of navel orange pulp exceeding the national food limit is generally low, when soil Cd concentration is below 7.30 mg/kg. If appropriate actions are taken to increase soil pH, OC and CEC, Cd concentrations in navel orange pulps could be further reduced. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, J T; Liao, B; Lan, C Y; Qiu, J W; Shu, W S
2007-12-15
Carambola (Averrhoa carambola L.) is a popular juicy fruit throughout the tropical and subtropical world. This study was designed to quantify the levels of zinc (Zn), nickel (Ni) and cadmium (Cd) in carambolas marketed in southern China, and further to evaluate the potential health risk of human consumption of carambola. Zinc concentrations, ranging from 1.471 to 2.875 mg/kg (on fresh weight basis), were below the maximum permissible concentration for Zn in fruit of China (5 mg/kg). However, Ni concentrations (0.134-0.676 mg/kg) were considerably higher than the related recommendation values. Furthermore, Cd concentrations in 51% of the carambolas purchased from Guangzhou exceeded the maximum permissible concentration for Cd in fruit of China (0.03 mg/kg). Our results implicated that the consumption of 0.385 kg carambola contaminated by Cd per day would cause the tolerable daily intake (TDI) of Cd by the consumer to be exceeded. In addition, the remarkably high Ni concentrations in carambolas should also be of concern. The status of heavy metal contamination of carambola products marketed in the other regions and their implications for human health should be identified urgently by in-depth studies.
Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna.
Poteat, Monica D; Díaz-Jaramillo, Mauricio; Buchwalter, David B
2012-05-01
Despite their ecological importance and prevalent use as ecological indicators, the trace element physiology of aquatic insects remains poorly studied. Understanding divalent metal transport processes at the water-insect interface is important because these metals may be essential (e.g. Ca), essential and potentially toxic (e.g. Zn) or non-essential and toxic (e.g. Cd). We measured accumulation kinetics of Zn and Cd across dissolved concentrations ranging 4 orders of magnitude and examined interactions with Ca and Mn in the caddisfly Hydropsyche sparna. Here, we provide evidence for at least two transport systems for both Zn and Cd, the first of which operates at concentrations below 0.8 μmol l(-1) (and is fully saturable for Zn). We observed no signs of saturation of a second lower affinity transport system at concentrations up to 8.9 μmol l(-1) Cd and 15.3 μmol l(-1) Zn. In competition studies at 0.6 μmol l(-1) Zn and Cd, the presence of Cd slowed Zn accumulation by 35% while Cd was unaffected by Zn. At extreme concentrations (listed above), Cd accumulation was unaffected by the presence of Zn whereas Zn accumulation rates were reduced by 58%. Increasing Ca from 31.1 μmol l(-1) to 1.35 mmol l(-1) resulted in only modest decreases in Cd and Zn uptake. Mn decreased adsorption of Cd and Zn to the integument but not internalization. The L-type Ca(2+) channel blockers verapamil and nifedipine and the plasma membrane Ca(2+)-ATPase inhibitor carboxyeosin had no influence on Ca, Cd or Zn accumulation rates, while Ruthenium Red, a Ca(2+)-ATPase inhibitor, significantly decreased the accumulation of all three in a concentration-dependent manner.
Trace copper measurements and electrical effects in LPE HgCdTe
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, S. P.; Norton, P. W.; Bollong, A. B.; Socha, A.; Tregilgas, J. H.; Ard, C. K.; Arlinghaus, H. F.
1996-08-01
Recent improvements in sputter initiated resonance ionization spectroscopy (SIRIS) have now made it possible to measure copper in HgCdTe films into the low 1013 cm-3 range. We have used this technique to show that copper is responsible for type conversion in n-type HgCdTe films. Good n-type LPE films were found to have less than 1 x 1014 cm-3 copper, while converted p-type samples were found to have copper concentrations approximately equal to the hole concentrations. Some compensated n-type samples with low mobilities have copper concentrations too low to account for the amount of compensation and the presence of a deep acceptor level is suggested. In order to study diffusion of copper from substrates into LPE layers, a CdTe boule was grown intentionally spiked with copper at approximately 3 x 1016 cm-3. Annealing HgCdTe films at 360°C was found to greatly increase the amount of copper that diffuses out of the substrates and a substrate screening technique was developed based on this phenomenon. SIRIS depth profiles showed much greater copper in HgCdTe films than in the substrates, indicating that copper is preferentially attracted to HgCdTe over Cd(Zn)Te. SIRIS spatial mapping showed that copper is concentrated in substrate tellurium inclusions 5 25 times greater than in the surrounding CdZnTe matrix.
Juhasz, Albert L; Weber, John; Naidu, Ravi; Gancarz, Dorota; Rofe, Allan; Todor, Damian; Smith, Euan
2010-07-01
In this study, cadmium (Cd) relative bioavailability in contaminated (n = 5) and spiked (n = 2) soils was assessed using an in vivo mouse model following administration of feed containing soil or Cd acetate (reference material) over a 15 day exposure period. Cadmium relative bioavailability varied depending on whether the accumulation of Cd in the kidneys, liver, or kidney plus liver was used for relative bioavailability calculations. When kidney plus liver Cd concentrations were used, Cd relative bioavailability ranged from 10.1 to 92.1%. Cadmium relative bioavailability was higher (14.4-115.2%) when kidney Cd concentrations were used, whereas lower values (7.2-76.5%) were derived when liver Cd concentrations were employed in calculations. Following in vivo studies, four in vitro methodologies (SBRC, IVG, PBET, and DIN), encompassing both gastric and intestinal phases, were assessed for their ability to predict Cd relative bioavailability. Pearson correlations demonstrated a strong linear relationship between Cd relative bioavailability and Cd bioaccessibility (0.62-0.91), however, stronger in vivo-in vitro relationships were observed when Cd relative bioavailability was calculated using kidney plus liver Cd concentrations. Whereas all in vitro assays could predict Cd relative bioavailability with varying degrees of confidence (r(2) = 0.348-0.835), large y intercepts were calculated for a number of in vitro assays which is undesirable for in vivo-in vitro predictive models. However, determination of Cd bioaccessibility using the intestinal phase of the PBET assay resulted in a small y intercept (5.14; slope =1.091) and the best estimate of in vivo Cd relative bioavailability (r(2) = 0.835).
A comparison of reliability of soil Cd determination by standard spectrometric methods
McBride, M.B.
2015-01-01
Inductively coupled plasma emission spectrometry (ICP-OES) is the most common method for determination of soil Cd, yet spectral and matrix interferences affect measurements at the available analytical wavelengths for this metal. This study evaluated the severity of the interference over a range of total soil Cd by comparing ICP-OES and ICP-MS measurements of Cd in acid digests. ICP-OES using the emission at 226.5 nm generally unable to quantify soil Cd at low (near-background) levels, and gave unreliable values compared to ICP-MS. Using the line at 228.nm, a marked positive bias in Cd measurement (relative to the 226.5 nm measurement) was attributable to As interference even at soil As concentrations below 10 mg/kg. This spectral interference in ICP-OES was severe in As-contaminated orchard soils, giving a false value for soil total Cd near 2 mg kg−1 when soil As was 100–150 mg kg−1. In attempting to avoid these ICP emission-specific interferences, we evaluated a method to estimate total soil Cd using 1 M HNO3 extraction followed by determination of Cd by flame atomic absorption (FAA), either with or without pre-concentration of Cd using an Aliquat-heptanone extractant. The 1 M HNO3 extracted an average of 82% of total soil Cd. The FAA method had no significant interferences, and estimated the total Cd concentrations in all soils tested with acceptable accuracy. For Cd-contaminated soils, the Aliquat-heptanone pre-concentration step was not necessary, as FAA sensitivity was adequate for quantification of extractable soil Cd and reliable estimation of total soil Cd. PMID:22031569
Elevated serum levels of soluble CD30 in patients with atopic dermatitis (AD).
Bengtsson, A; Holm, L; Bäck, O; Fransson, J; Scheynius, A
1997-09-01
The immunopathology of AD is still unclear, but evidence for an immune response polarized towards Th2 activity has been provided. The CD30 molecule belongs to the tumour necrosis factor (TNF) receptor family and is expressed on activated T cells with a sustained expression in Th2 cells. This molecule also exists in a soluble form (sCD30). Elevated serum levels of sCD30 have been found in patients with Hodgkin's disease, chronic hepatitis B infection and HIV infection. Studies were undertaken to compare the serum levels of sCD30 in patients with AD (n=49) and healthy non-atopic controls (n=94). The presence of sCD30 was analysed with ELISA. A significantly higher concentration of sCD30 was noted in AD patients, median sCD30 level 29 U/ml (range 1-708 U/ml), compared with healthy non-atopic controls (P<0.001), where the median level was 11 U/ml with a range of 1-1042 U/ml. No correlation was found between sCD30 levels and total serum IgE, or between the AD patients' SCORAD values and concentration of sCD30. sCD30 levels were also analysed in 20 AD patients, which during ketoconazole treatment had improved their clinical scores and reduced their serum IgE and eosinophil cationic protein levels. However, no significant decrease in sCD30 levels was noted after treatment. The results show that patients with AD have elevated levels of sCD30, but without correlation to total serum IgE or disease activity.
NASA Astrophysics Data System (ADS)
Mapanda, F.; Mangwayana, E. N.; Nyamangara, J.; Giller, K. E.
Contamination of leafy vegetables ( Brassica species) by copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), lead (Pb) and chromium (Cr), and the subsequent human exposure risks, were determined at two sites in the City of Harare, where wastewater is used for irrigating vegetables. The concentrations of heavy metals (mg kg -1 dry wt.) in vegetable leaves ranged from 1.0 to 3.4 for Cu, 18 to 201 for Zn, 0.7 to 2.4 for Cd, 2.5 to 6.3 for Ni, 0.7 to 5.4 for Pb and 1.5 to 6.6 for Cr. Bio-concentration factors in the range of 0.04-3 were obtained, with Zn and Cd having the highest concentration factors of 1.6 and 3, respectively. Estimated intakes rates of heavy metals from consumption of the vegetables in mg day -1 ranged from 0.04 to 0.05 for Cu, 0.6 to 3.3 for Zn, 0.02 to 0.04 for Cd, 0.05 to 0.1 for Ni, 0.05 to 0.09 for Pb and 0.05 to 0.1 for Cr. Cadmium intake rates were above their recommended minimum risk levels (MRLs) at both sites, while Cu, Ni, Cr and Pb had daily intakes above 40% of their MRLs. Potential health risks, particularly from Cd intake, existed for the daily consumers of the leafy vegetables at both Mukuvisi and Pension sites. Thus, although the practice of growing leafy vegetables using wastewater for irrigation is aimed at producing socio-economic benefits, it is not safe and may not be sustainable in the long-term. There is need for an improved food quality assurance system to ensure that the vegetables comply with existing standards on heavy metal concentrations.
Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador.
Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R S; Li, Y C; Moyano, B; Baligar, V C
2015-11-15
Cadmium (Cd) content in cacao beans above a critical level (0.6 mg kg(-1)) has raised concerns in the consumption of cacao-based chocolate. Little is available regarding Cd concentration in soil and cacao in Ecuador. The aim of this study was to determine the status of Cd in both, soils and cacao plants, in southern Ecuador. Soil samples were collected from 19 farms at 0-5, 5-15, 15-30, and 30-50 cm depths, whereas plant samples were taken from four nearby trees. Total recoverable and extractable Cd were measured at the different soil depths. Total recoverable Cd ranged from 0.88 to 2.45 and 0.06 to 2.59, averaged 1.54 and 0.85 mg kg(-1), respectively in the surface and subsurface soils whereas the corresponding values for M3-extractable Cd were 0.08 to 1.27 and 0.02 to 0.33 with mean values of 0.40 and 0.10 mg kg(-1). Surface soil in all sampling sites had total recoverable Cd above the USEPA critical level for agricultural soils (0.43 mg kg(-1)), indicating that Cd pollution occurs. Since both total recoverable and M3-extractable Cd significantly decreased depth wise, anthropogenic activities are more likely the source of contamination. Cadmium in cacao tissues decreased in the order of beans>shell>leaves. Cadmium content in cacao beans ranged from 0.02 to 3.00, averaged 0.94 mg kg(-1), and 12 out of 19 sites had bean Cd content above the critical level. Bean Cd concentration was highly correlated with M3- or HCl-extractable Cd at both the 0-5 and 5-15 cm depths (r=0.80 and 0.82 for M3, and r=0.78 and 0.82 for HCl; P<0.01). These results indicate that accumulation of Cd in surface layers results in excessive Cd in cacao beans and M3- or HCl-extractable Cd are suitable methods for predicting available Cd in the studied soils. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haron, S. H.; Ismail, B. S.; Mispan, M. R.; Abd Rahman, N. F.; Khalid, K.; Rasid, M. Z. Abdul; Sidek, L. M.
2016-03-01
Heavy metal, particularly cadmium, lead, and arsenic, constitute a significant potential threat to human health. Some metals are extremely toxic to humans and the toxic heavy metals of greatest concern include cadmium, lead, and arsenic. The objective of the study conducted was to determine the accumulation and distribution status of heavy metal cadmium (Cd) in the sediment of Bertam River from September 2014 to February 2015 in the agricultural areas of Cameron Highlands, Malaysia. The sediment samples were collected randomly in three replicates from ten sampling points in the agricultural areas of Cameron Highlands. The heavy metals in the sediment were extracted using the wet acid method and the sample concentrations are then tested for metal concentrations by the spectrography method using Inductively Coupled Plasma (ICP) spectrography. Inverse distance weighting (IDW) was used to create a map of metal concentrations for a point on the polygon dataset spatial interpolation. There is an increasing trend of Cd from the upstream to downstream stations along Bertam River during the rainy season. The activity range of Cd is 0.07 to 2.83 µg/g during the rainy season, whereas, during the dry season, Cd activity ranged from 0.26-0.83µg/g.
Heavy metals in spices and herbs from wholesale markets in Malaysia.
Nordin, N; Selamat, J
2013-01-01
As, Cd, Pb and Hg were analysed in commonly consumed spices and herbs in Malaysia. The range of As, Cd, Pb and Hg content was 0.24-2.54, 0.23-8.07, 1.54-8.94 and 0.06-0.52 µg g(-1), respectively. The highest concentration of Cd, Pb and Hg in spices and herbs exceeded the maximum permitted proportion, which are 1, 2 and 0.05 µg g(-1), respectively. This study suggests further monitoring of Cd, Pb and Hg on daily consumption of spices and herbs and its toxicological implication for consumers since only the amount of As was lower than the permitted concentration.
CdO-based nanostructures as novel CO2 gas sensors
NASA Astrophysics Data System (ADS)
Krishnakumar, T.; Jayaprakash, R.; Prakash, T.; Sathyaraj, D.; Donato, N.; Licoccia, S.; Latino, M.; Stassi, A.; Neri, G.
2011-08-01
Crystalline Cd(OH)2/CdCO3 nanowires, having lengths in the range from 0.3 up to several microns and 5-30 nm in diameter, were synthesized by a microwave-assisted wet chemical route and used as a precursor to obtain CdO nanostructures after a suitable thermal treatment in air. The morphology and microstructure of the as-synthesized and annealed materials have been investigated by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and thermogravimetry-differential scanning calorimetry. The change in morphology and electrical properties with temperature has revealed a wire-to-rod transformation along with a decreases of electrical resistance. Annealed samples were printed on a ceramic substrate with interdigitated contacts to fabricate resistive solid state sensors. Gas sensing properties were explored by monitoring CO2 in synthetic air in the concentration range 0.2-5 v/v% (2000-50 000 ppm). The effect of annealing temperature, working temperature and CO2 concentration on sensing properties (sensitivity, response/recovery time and stability) were investigated. The results obtained demonstrate that CdO-based thick films have good potential as novel CO2 sensors for practical applications.
Luo, Jinming; Yin, Xiongrui; Ya, Yajie; Wang, Yongjie; Zang, Shuying; Zhou, Xia
2013-12-01
Pb and Cd concentrations in the habitat and preys of the red-crowned crane (i.e., reed rhizomes and three typical aquatic animal families (Perccottus glehni Dybowski, Carassius auratus Linnaeus, and Viviparidae)) were analyzed to examine the impact of these hazards on red-crowned cranes in northeastern China. Results indicated that Pb and Cd concentrations in the preys of the red-crowned cranes were elevated via food chain. Most of the detected Pb and Cd contents in the sediments were above the natural background level, ranging from 9.85 to 129.72 ppm and 1.23 to 10.63 ppm (dry weight), respectively. Cd geo-accumulation index at all sites were larger than 3, even reached 5.22, suggesting serious pollution in this region. Three common water animal families were detected to contain heavy metals, following the order of increasing concentrations: primary consumers (i.e., Viviparidae and Carassius auratus Linnaeus) < secondary consumers (i.e., Perccottus glehni Dybowski). Pb and Cd concentrations in the buffer zone are significantly higher than in the core area and being elevated in the food chain. The molten feathers of the red-crowned cranes showed the highest toxic metal concentrations of Pb (2.09 to 5.81 ppm) and Cd (1.42 to 3.06 ppm) compared with the feces produced by cranes and residual eggshell left by water fowls. Exceptionally high Pb and Cd concentrations in the cranes and their preys were thought to be associated with their habitat.
Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi
2009-11-15
We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl(2)) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg(-1), 10.3 to 95 mg kg(-1) Zn, 0.1 to 1.8 mg Cd kg(-1) and 5.2 to 183 mg kg(-1) Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg(-1), 312 to 39,000 mg kg(-1) Zn, 6 to 302 mg Cd kg(-1) and 609 to 12,000 mg kg(-1) Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K(d)) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.
Structural, Optical, and Electrical Properties of Cobalt-Doped CdS Quantum Dots
NASA Astrophysics Data System (ADS)
Thambidurai, M.; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Agilan, S.; Balasundaraprabhu, R.
2012-04-01
In the present work, a systematic study has been carried out to understand the influence of cobalt (Co) doping on various properties of CdS nanoparticles. CdS and Co-doped CdS quantum dots have been prepared at room temperature using a chemical precipitation method without using catalysts, capping agents, or surfactants. X-ray diffraction reveals that both undoped and Co-doped CdS nanoparticles exhibit hexagonal structure without any impurity phase, and the lattice constants of CdS nanoparticles are observed to decrease slightly with increasing cobalt concentration. High-resolution transmission electron microscopy (HRTEM) shows that the particle size of CdS and 5.02% Co-doped CdS nanoparticles is in the range of 2 nm to 4 nm. The Raman spectra of Co-doped CdS nanoparticles exhibit a red-shift compared with that of bulk CdS, which may be attributed to optical phonon confinement. The optical absorption spectra of Co-doped CdS nanoparticles also exhibit a red-shift with respect to that of CdS nanoparticles. The electrical conductivity of CdS and Co-doped CdS nanoparticles is found to increase with increasing temperature and cobalt concentration.
Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D
2014-08-15
We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (rural
Toxicity evaluation of hydrophilic CdTe quantum dots and CdTe@SiO2 nanoparticles in mice.
Sadaf, Asma; Zeshan, Basit; Wang, Zhuyuan; Zhang, Ruohu; Xu, Shuhong; Wang, Chunlei; Cui, Yiping
2012-11-01
Quantum dots have drawn tremendous attention in the field of in vitro and small animal in vivo fluorescence imaging in the last decade. However, concerns over the cytotoxicity of their heavy metal constituents have limited their use in clinical applications. Here, we report our comparative studies on the toxicities of quantum dots (QDs) and silica coated CdTe nanoparticles (NPs) to mice after intravenous injection. The blood cells analysis showed significant increased level of white blood cells (WBCs) in groups treated with CdTe QDs as compared to the control while red blood cells (RBCs) and platelet counts were normal in treated as well as control groups. The concentration of biochemical markers of hepatic damage, alanine amino transferase (ALT) and aspartate aminotransferase (AST) were in the normal range in all the groups. However, renal function analyses of mice showed significantly increased in the concentration of blood urea nitrogen (BUN) and creatinine (CREA) in mice treated with CdTe QDs while remained within normal ranges in both the CdTe@SiO2 NPs and control group. The results of histopathology showed that the CdTe QDs caused mild nephrotoxicity while other organs were normal and no abnormalities were detected in control and CdTe@SiO2 treated group. These findings suggest that the nephrotoxicity could be minimized by silica coating which would be useful for many biomedical applications.
Tailoring and optimization of optical properties of CdO thin films for gas sensing applications
NASA Astrophysics Data System (ADS)
Rajput, Jeevitesh K.; Pathak, Trilok K.; Kumar, V.; Swart, H. C.; Purohit, L. P.
2018-04-01
Cadmium oxide (CdO) thin films have been deposited onto glass substrates using different molar concentrations (0.2 M, 0.5 M and 0.8 M) of cadmium acetate precursor solutions using a sol-gel spin coating technique. The structural, morphological, optical and electrical results are presented. X-ray diffraction patterns indicated that the CdO films of different molarity have a stable cubic structure with a (111) preferred orientation at low molar concentration. Scanning electron microscopy images revealed that the films adopted a rectangular to cauliflower like morphology. The optical transmittance of the thin films was observed in the range 200-800 nm and it was found that the 0.2 M CdO thin films showed about 83% transmission in the visible region. The optical band gap energy of the thin films was found to vary from 2.10 to 3.30 eV with the increase in molar concentration of the solution. The electrical resistance of the 0.5 M thin film was found to be 1.56 kΩ. The oxygen sensing response was observed between 20-33% in the low temperature range (32-200 °C).
Cadmium in animal production and its potential hazard on Beijing and Fuxin farmlands.
Li, Yan-xia; Xiong, Xiong; Lin, Chun-ye; Zhang, Feng-song; Wei, Li; Wei, Han
2010-05-15
A random sample of pairs of animal feeds and manures were collected from 215 animal barns in Beijing and Fuxin regions of China. The concentrations of Cd in manures and feeds ranged from non-detectable to 129.8 mg/kg dry weight and non-detectable to 31 mg/kg dry weight, respectively. The concentrations of Cd in pig, dairy cow and chicken manures were positively correlated to those in their feeds. About 30% of the manure samples contained Cd concentrations higher than the upper limit for use in farmlands, and pig and chicken manures might be the primary contributors of Cd to farmlands. The farmlands in Beijing and around the Fuxin Downtown areas would exceed the soil quality criteria within several decades according to current manure Cd loading rates. Undoubtedly, more scientific animal production and manure management practices to minimize soil pollution risks are necessary for the two regions. Copyright (c) 2009 Elsevier B.V. All rights reserved.
A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots
NASA Astrophysics Data System (ADS)
Liao, Ping; Yan, Zheng-Yu; Xu, Zhi-Ji; Sun, Xiao
2009-06-01
Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/( I - I0) with concentration of edaravone was linear in the range of (1.45-17.42) μg/mL (0.008-0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3 σ/ κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.
Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.
2009-01-01
Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained <12% of the total variation. Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet-to-blood relation explained an additional 12% of the total variation in fillet Cd. Collectively, the results indicate that blood sampling could provide reasonably accurate and precise estimates of fillet Pb, Co, and Cd concentrations that would be suitable for identifying contaminated sites and for monitoring, but some fillet sampling might be necessary at contaminated sites for establishing consumption advisories. ?? 2009 US Government.
Manav, Ramazan; Uğur Görgün, Aysun; Filizok, Işık
2016-11-09
The pollution level of Lake Bafa was investigated by collecting fish samples { Dicentrarchus labrax (sea bass), Liza ramada (mullet) and Anguilla anguilla (eel)}, surface sediment, and core samples. In all these samples, 210 Po and 210 Pb concentrations were estimated, and total annual dose rates were obtained for each species. Some heavy metal (Cr, Ni, Pb, Cd, Mn, Fe, and Zn) concentration levels were obtained for the fish and a core sample. The sediment mass accumulation rate was found to be 3.27 g·m -2 ·day -1 (0.119 g·cm -2 ·y -1 ) from a core sample. The heavy metal concentrations in the vertical profile of samples from the core were also observed. The measured concentration of Zn, Pb, Cd, and Cr were between the ERL (effects range low) and ERM (effects range median) limits, while Ni concentrations were higher than the ERM limit. The observed concentrations of Cd, Pb, and Zn in fish samples did not exceed the limits in accordance with Turkish Food Regulations. Further, the maximum effective dose equivalent of 210 Po in the area was found to be 1.169 µSv·y -1 .
Ruelas-Inzunza, J; Spanopoulos-Zarco, P; Páez-Osuna, F
2009-12-01
With the objective of estimating the temporal variation and bioavailability of Cd, Cu, Pb and Zn in Coatzacoalcos estuary, the biota-sediment accumulation factors (BSAF) were calculated. For this purpose, surficial sediments and clams from 14 selected sites were collected during three climatic seasons. In surficial sediments, highest levels of Cd and Cu were measured during the rainy season near to the industrial area of Minatitlan, while highest concentrations of Pb and Zn were registered during the windy season in sediments collected near to the industrial area of Coatzacoalcos. Considering all the sampling seasons and bivalve species, average metal concentrations followed the order Zn > Cu > Cd > Pb. BSAF ranged from 0.01 (Pb) in Corbicula fluminea during the hot season to 25.1 (Cd) in Polymesoda caroliniana during the windy season. BSAF of Cd, Cu and Zn were higher during the windy season; in the case of Pb, the dry season was the time when such figure was more elevated. It can be stated that Polymesoda caroliniana is a net accumulator of Cd and Zn and a weak accumulator of Pb for the studied estuary.
NASA Astrophysics Data System (ADS)
Kayser, H.
The dinoflagellate Scrippsiella faeroense was grown in continuous flow-through cultures (10 1 turbidostat), the outflow leading into vessels containing tunicates of the species Ciona intestinalis, Ascidiella aspersa, Molgula manhattensi and Botryllus schlosseri. The culture medium consisted of natural sea water enriched only with N and P components. CdCl 2 was added to the system at sublethal concentrations. Algal growth wass affected at a Cd ++ concentration of 10 μg·1 -1; sublethal toxicity thresholds of the tunicates ranged from 5 to 10 μg·1 -1. Cadmium accumulation was much higer in the algae than in the tunicates; in spite of the continuous supply of relatively highly Cd contaminated algae, the Cd content of algae-fed tunicates increased insignificantly by comparison with unfed specimens. Only a small percentage of the Cd offered via the food algae was actually assimilated by the ascidians during the first 3 weeks of the experiment. Cd content of the tunicates remained almost constant for the next 2 weeks of the experiment, indicating that ingestion and excretion of the metal was at equilibrium. The concentration factor of Cd decreased through the trophic chain.
Cadmium accumulations and bioavailability in soils from long-term phosphorus fertilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulla, D.J.; Page, A.L.; Ganje, T.J.
1980-07-01
Soils from citrus groves that had been fertilized with the equivalent of approximately 175 kg P/ha per year (as treble superphosphate (TSP)) over a 36-year period were sampled and analyzed for total P, Cd, and Zn as well as water-soluble P and Cd. A P fertilization rate of 175 kg/ha is much higher than normal field rates, which are typically about 30 kg/ha. Concentrations of total Cd in surface soil were highly correlated (r = 0.89) with concentrations of total P. The concentrations of Cd in surface soil receiving broadcast P for 36 years averaged 1.0 ..mu..g/g, and were considerablymore » greater than those of the controls, which showed a mean concentration of 0.07 ..mu..g/g. Phosphorus in soil saturation paste extracts ranged from 0.10 ..mu..g/ml (controls) to 8.87 ..mu..g/ml in P fertilized soils. Water-soluble saturation extract Cd ranged from 0.008 ..mu..g/ml in controls to 0.017 ..mu..g/ml in fertilized soils, and was not well correlated with water-soluble P. Cadmium levels in barley (Hordeum vulgare var. U.C. 566) grain and leaves grown in the field on soil subject to long-term heavy P fertilization were not elevated above levels in barley grown on the control soil. Swiss chard (Beta vulgaris var. cicla) was grown in the greenhouse on the above surface soils collected from the field. Although Cd levels averaging 1.6 ..mu..g/g in plant tissue were significantly elevated over those on the control soil (0.26 ..mu..g/gm), no yield depression was observed.« less
Heidari, Behnam; Riyahi Bakhtiari, Alireza; Shirneshan, Golshan
2013-12-01
This study examines concentrations of Cd, Cu, Pb and Zn in the soft tissue of Saccostrea cucullata in the intertidal zones of Lengeh Port, Persian Gulf, Iran, to survey whether heavy metals are within the acceptable limits for public health? The results revealed that the average metal concentrations (μg/g dry weight) ranged from 10.28 to 12.03 for Cd, 294.10 to 345.80 for Cu, 20.64 to 58.23 for Pb and 735.60 to 760.40 for Zn in the soft tissue of oysters. From the human public health point of view, comparison between the mean concentrations of the metals in the soft tissue of oyster and global guidelines clearly indicates that nearly in all cases concentrations are higher than the permissible amounts for human consumption. In addition, levels of Zn, Pb and Cu were well below their recommended oral maximum residue level (MRLs), whereas levels of Cd were observed two times higher. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Ramneek; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com
This paper reports the synthesis and electrical characterization of CdSe-PMMA nanocomposite. CdSe-PMMA nanocomposite has been prepared by ex-situ technique through chemical route. The influence of three different Ag doping concentrations on the electrical properties has been studied in the temperature range ∼ 303-353 K. Transmission electron micrograph reveals the spherical morphology of the CdSe nanoparticles and their proper dispersion in the PMMA matrix. The electrical conduction of the polymer nanocomposites is through thermally activated process with single activation energy. With Ag doping, initially the activation energy increases upto 0.2 % Ag doping concentration but with further increase in Ag concentration, itmore » decreases. This behavior has been discussed on the basis of randomly oriented grain boundaries and defect states. Thus, the results indicate that the transport properties of the polymer nanocomposites can be tailored by controlled doping concentration.« less
Lanio, M E; Alvarez, C; Pazos, F; Martinez, D; Martínez, Y; Casallanovo, F; Abuin, E; Schreier, S; Lissi, E
2003-01-01
The effect of sodium dodecyl sulfate (SDS) upon the conformation and hemolytic activity of St I and St II strongly depends on its concentration. At relatively low surfactant concentrations (ca. 0.5-5mM range) the surfactant leads to the formation of aggregates, as suggested by the turbidity observed even at relatively low (micromolar range) protein concentrations. In this surfactant range, the proteins show an increase in intrinsic fluorescence intensity and reduced quenching by acrylamide, with an almost total loss of its hemolytic activity. At higher surfactant concentrations the protein adducts disaggregates. This produces a decrease in fluorescence intensity, increase in quenching efficiency by acrylamide, loss of the native tertiary conformation (as reported by the near UV-CD spectra), and increase in alpha-helix content (as evidenced by the far UV-CD spectra). However, and in spite of these substantial changes, the toxins partially recover their hemolytic activity. The reasons for this recovering of the activity at high surfactant concentrations is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajwam, K.S.; Ornes, W.H.
1995-12-31
The aquatic vascular Mosquito Fern (Azolla Caroliania Willd.) was investigated as a potential biological filter for removal of Cd from waste water. Mosquito Fern plants were grown in and harvested weekly from 0.10 M Hoagland nutrient solutions containing 0.01, 0.04, and 1.03 {mu}g Cd mL{sup -1} or 0.50 M Hoagland nutrient solutions containing 0.02, 1.0, and 9.14,{mu}g Cd mL{sup -1}. Dry weights of plants significantly increased when exposed to all three Cd concentrations in 0. 10 M Hoagland solution through week three then decreased thereafter. However, in plants exposed to Cd treatments in 0.50 M Hoagland solution, dry weights increasedmore » through week one and decreased thereafter. Tissue Cd concentrations in plants grown in 0.10 M Hoagland solution increased during the first two weeks followed by decreases in week 3 and 4. However, tissue Cd increased through week 3 in plants grown in 0.50 M Hoagland solutions. Cadmium exposure to plants grown in 0.10 M Hoagland solution seemed to increase the tissue P concentrations in plants exposed to the lowest concentration of Cd. Tissue P in both control and treated plants in 0.50 M Hoagland solution seemed to increase over time with exception of the medium level (1 {mu}g Cd mL{sup -1}). These results suggest that Mosquito Fern would be useful for absorbing Cd from nutrient-rich water when the solution concentration was in the range of as low as 0.01 and as high as 9.14 {mu}g Cd mL{sup -1}. However, the harvest regime would have to be every one or two weeks to sustain plant vigor and realize maximum uptake of Cd from solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, S.P.; Zhao, F.J.; Dunham, S.J.
2000-06-01
Changes in the extractability and uptake by crops of sludge metals in a long-term field experiment, started in 1942, were measured to assess whether Zn and Cd are either fixed by the sludge/soil constituents or are released as the sludge organic matter (OM) decomposes. Total and 0.1 M CaCl{sub 2}-extractable concentrations of Zn and Cd in soil and total concentrations in crops were measured on archived crop and soil samples. Extractability of Zn as a proportion of the total ranged from 0.5 to 3% and that of Cd from 4 to 18%, and were higher in sludge-amended than farmyard manuremore » or fertilizer-amended soils. Over a 23-yr period after 1961, when sludge was last applied, the extractability of both metals fluctuated, but neither decreased nor increased consistently. The relationships between total soil and crop metal concentrations were linear, with no evidence of a plateau across the range of soil metal concentrations achieved. The slopes of the soil-plant relationships depended on the type of crop or crop part examined, but were generally in the order red beet (Beta vulgaris L.) > sugar beet (Beta vulgaris L.) > carrot (Daucus carota L.) > barley (Hordeum vulgare L.). However, there also were large seasonal differences in metal concentrations in the crops. It is concluded from the available evidence that up to 23 yr after sludge applications cease, Zn and Cd extractability and bioavailability do not decrease.« less
Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan
2016-10-01
Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.
Muñoz Sevilla, Norma Patricia; Villanueva-Fonseca, Brenda Paulina; Góngora-Gómez, Andrés Martin; García-Ulloa, Manuel; Domínguez-Orozco, Ana Laura; Ortega-Izaguirre, Rogelio; Campos Villegas, Lorena Elizabeth
2017-10-03
The concentrations of Cu, Cd, Pb, Zn, and Hg in diploid and triploid oysters from three farms (Guasave, Ahome, and Navolato) on the north-central coast of Sinaloa, Mexico, were assessed based on samples recovered during a single culture cycle 2013-2014. Metal burdens were more strongly correlated (p < 0.05) with the location of the farm than with either the ploidy or the interaction of both variables. The metal concentration ranking for oysters of both ploidies from the three farms was Zn > Cu > Cd > Pb > Hg. For all three farms, the mean concentrations of Cd and Pb in Crassostrea gigas were high, ranging from 2.52 to 7.98 μg/g wet weight for Cd and from 0.91 to 2.83 μg/g wet weight for Pb. Diploid and triploid oysters from the Guasave farm contained high levels of Cu (76.41 and 68.97 μg/g wet weight, respectively). Cu, Cd, and Zn were highly correlated (p < 0.05), and their concentrations may be influenced by agrochemical inputs. The mean levels of Cu for the Guasave farm and of Cd and Pb for all three farms exceeded permissible limits and represented a threat to human health during the sampling period (July 2014 to July 2014).
Saha, Jayanta Kumar; Panwar, N R; Singh, M V
2010-09-01
Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4-150 mg/kg and Cd at 0.02-20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C(ul)) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers' fields. Lead and Cd concentration limits in soil were calculated by dividing C(ul) with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.
Li, Song; Chen, Junren; Islam, Ejazul; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Yan, Wenbo; Peng, Danli; Liu, Dan
2016-06-01
Moso bamboo (Phyllostachys pubescens (Pradelle) Mazel ex J.Houz.) is recognized as a potential phytoremediation plant due to its huge biomass and high tolerance to environmental stresses. The objectives of this study were to investigate mechanism related to cadmium (Cd) tolerance and to evaluate Cd accumulation capacity of moso bamboo. The results of the pot experiment showed that Cd accumulation by bamboo increased with increasing the Cd levels in soil and the values in stem ranged from 28.51 to 132.13 mg kg(-1). Meanwhile chlorophyll in leaves and total biomass showed a decreasing trend. The bioaccumulation factors (BAF) for roots and stem in all the treatments were more than 1.0 and the translocation factor (TF) ranged from 0.70 to 1.06. In hydroponics experiment, the concentrations of malondialdehyde (MDA) in the leaves were significantly increased in Cd treated plants as compared with control. The activities of superoxide dismutase (SOD) and peroxidase (POD) were enhanced at initial stage and then decreased consistently with the increase of Cd addition. The proline concentrations were also increased due to the presence of Cd, particularly at 25 μM Cd treatment. According to TEM-EDX analysis, the cytoplasm was the main site for accumulation of Cd in moso bamboo. On the basis of overall results, it is suggested that moso bamboo could be successfully used for the remediation of low Cd (no more than 5 mg kg(-1)) contaminated soils. Copyright © 2016. Published by Elsevier Ltd.
Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content
Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.
2001-01-01
In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down-valley segments. We favor median-based estimates of the thickness and thickness-interval weighted-average Pb concentration, because uncommonly thick and Pb-rich sections may excessively influence mean estimates. Nevertheless, data from partial sections of Pb-rich sediments are included in most estimates, and these tend to reduce both median- and mean-based estimates. Median-based estimates indicate a volume of 32 M m3 of Pb-rich sediments in the CdA River valley, with a dry tonnage of 47 + 4 M t, containing 250 + 75 kt of Pb (considering analytical uncertainties only). An equivalent tonnage of dry CdA River valley sediments of the pre-mining era, with the mean background concentration of 30 ppm of Pb, would contain about 1.4 kt of Pb. Thus, the amount of Pb added to CdA River valley sediments deposited since the onset of mining is estimated as 249 + 75 kt of Pb, or about 99.5 percent of the estimated Pb contained. Of an estimated 850 + 10 kt of Pb lost to streams as a result of mining-related activities, an estimated total of 739 + 319 kt of Pb has been deposited in sediments of the South Fork drainage basin, the CdA River valley, and the bottom of CdA Lake (combined). Based on mid-range values from a set of preferred estimates with uncertainty ranges up to + 50 percent, roughly 24 percent of the 850 + 10 kt of mining-derived Pb lost to streams has been added to sediments of the South Fork drainage basin, 29 percent to sediments of the CdA River valley floor, and 34 percent to sediments on the bottom of CdA Lake. This amounts to roughly 87 percent of the Pb lost to streams, not including Pb contained in sediments of the North Fork drainage basin and the Spokane River valley, the tonnages of which have not yet estimated.
Phan, Quoc-Hung; Lo, Yu-Lung
2017-04-01
A surface plasmon resonance (SPR)-enhanced method is proposed for measuring the circular dichroism (CD), circular birefringence (CB), and degree of polarization (DOP) of turbid media using a Stokes–Mueller matrix polarimetry technique. The validity of the analytical model is confirmed by means of numerical simulations. The simulation results show that the proposed detection method enables the CD and CB properties to be measured with a resolution of 10 ? 4 refractive index unit (RIU) and 10 ? 5 ?? RIU , respectively, for refractive indices in the range of 1.3 to 1.4. The practical feasibility of the proposed method is demonstrated by detecting the CB/CD/DOP properties of glucose–chlorophyllin compound samples containing polystyrene microspheres. It is shown that the extracted CB value decreases linearly with the glucose concentration, while the extracted CD value increases linearly with the chlorophyllin concentration. However, the DOP is insensitive to both the glucose concentration and the chlorophyllin concentration. Consequently, the potential of the proposed SPR-enhanced Stokes–Mueller matrix polarimetry method for high-resolution CB/CD/DOP detection is confirmed. Notably, in contrast to conventional SPR techniques designed to detect relative refractive index changes, the SPR technique proposed in the present study allows absolute measurements of the optical properties (CB/CD/DOP) to be obtained.
Cain, D.J.; Buchwalter, D.B.; Luoma, S.N.
2006-01-01
The influence of metal exposure history on rates of aqueous Cd accumulation, elimination, and subcellular distribution was examined in the aquatic insect Hydropsyche californica. Specimens were obtained from a reference site and a metal-contaminated site and returned to the laboratory where they were continuously exposed to aqueous Cd (518 ng/L, nominal) for 6 d, followed by 9 d of depuration. Rates of Cd accumulation and elimination were similar in insects from the two sites. Efflux rate constants, ke, ranged from 0.20 to 0.24/d (t1/2 ??? 3 d). Immediately following exposure, the cytosol accounted for 40% of the body burden in insects from both sites; however, 89 ?? 2% of the cytosolic Cd was associated with metallothionein-like proteins (MTLP) in insects from the contaminated site, compared to 60 ?? 0% in insects from the reference site. The concentration of Cd bound to non-MTLPs (representing potentially Cd-sensitive proteins) was significantly greater in the insects from the reference site (134 ?? 7 ng/g) than in those from the contaminated site (42 ?? 2 ng/g). At the end of the depuration period, 90% of the accumulated Cd body burden had been eliminated, and Cd concentrations in MTLPs and non-MTLPs were similar between the sites. Results suggested that differences in exposure history had no influence on the bioaccumulation of Cd, but did affect the concentrations of Cd bound to MTLP during Cd exposure in these insects. ?? 2006 SETAC.
Cu-doped Cd1- x Zn x S alloy: synthesis and structural investigations
NASA Astrophysics Data System (ADS)
Yadav, Indu; Ahlawat, Dharamvir Singh; Ahlawat, Rachna
2016-03-01
Copper doped Cd1- x Zn x S ( x ≤ 1) quantum dots have been synthesized using chemical co-precipitation method. Structural investigation of the synthesized nanomaterials has been carried out by powder XRD method. The XRD results have confirmed that as-prepared Cu-doped Cd1- x Zn x S quantum dots have hexagonal structure. The average nanocrystallite size was estimated in the range 2-12 nm using Debye-Scherrer formula. The lattice constants, lattice plane, d-spacing, unit cell volume, Lorentz factor and dislocation density were also calculated from XRD data. The change in particle size was observed with the change in Zn concentration. Furthermore, FTIR spectra of the prepared samples were observed for identification of COO- and O-H functional groups. The TEM study has also reported the same size range of nanoparticles. The increase in agglomeration has been observed with the increase in Zn concentration in the prepared samples.
Concentrations and bioaccessibilities of trace elements in barbecue charcoals.
Sharp, Annabel; Turner, Andrew
2013-11-15
Total and bioaccessible concentrations of trace elements (Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb and Zn) have been measured in charcoals from 15 barbecue products available from UK retailers. Total concentrations (available to boiling aqua regia) were greater in briquetted products (with mean concentrations ranging from 0.16 μg g(-1) for Cd to 3240 μg g(-1) for Al) than in lumpwoods (0.007 μg g(-1) for Cd to 28 μg g(-1) for Fe), presumably because of the use of additives and secondary constituents (e.g. coal) in the former. On ashing, and with the exception of Hg, elemental concentrations increased by factors ranging from about 1.5 to 50, an effect attributed to the combustion of organic components and offset to varying extents by the different volatilities of the elements. Concentrations in the ashed products that were bioaccessible, or available to a physiologically based extraction test (PBET) that simulates, successively, the chemical conditions in the human stomach and intestine, exhibited considerable variation among the elements studied. Overall, however, bioaccessible concentrations relative to corresponding total concentrations were greatest for As, Cu and Ni (attaining 100% in either or both simulated PBET phases in some cases) and lowest for Pb (generally <1% in both phases). A comparison of bioaccessible concentrations in ashed charcoals with estimates of daily dietary intake suggest that Al and As are the trace elements of greatest concern to human health from barbecuing. Copyright © 2013 Elsevier B.V. All rights reserved.
A review of soil cadmium contamination in China including a health risk assessment.
Wang, Lin; Cui, Xiangfen; Cheng, Hongguang; Chen, Fei; Wang, Jiantong; Zhao, Xinyi; Lin, Chunye; Pu, Xiao
2015-11-01
Cadmium (Cd) is one of the most serious soil contaminants in China, and it poses an increasing risk to human health as large amounts of Cd are emitted into the environment. However, knowledge about soil Cd concentrations and the human health risks of these concentrations at a national scale is limited. In this study, we conducted a review of 190 articles about soil Cd concentrations during 2001 to 2010. The study involved 146 cities in China, and we quantified the risks to human health according to different regions. The results showed that elevated Cd levels were present compared to the background value of soil in 1990, and the soil Cd concentrations in the Guangxi province exceeded even the class III Soil Environmental Quality standard, which is the limit for the normal growth of plants. The Chinese soil Cd concentrations ranged from 0.003 mg kg(-1) to 9.57 mg kg(-1). The soil Cd concentrations had the following trend: northwest > southwest > south central > east > northeast > north. The sources of soil Cd are mainly from smelting, mining, waste disposal, fertilizer and pesticide application, and vehicle exhaust, etc. but differentiated in various regions. The soil Cd contamination in urban areas was more serious than contamination in the agricultural areas. Currently, there is no significant non-carcinogenic risk in any of the provinces. Regarding the different exposure pathways, the dermal pathway is the primary source of soil Cd exposure, and the risk associated with this pathway is generally hundreds of times higher than the risk for an ingestion pathway. For most of the provinces, the health risk to the urban population was higher than the risk to the rural population. For each population, the carcinogenic risk was less than 10(-6) in most of the provinces, except for the urban population in the Hunan province. If the other exposure pathways are fully considered, then the people in these areas may have a higher carcinogenic risk. This review provides a comprehensive assessment of soil Cd pollution in China, and it identifies policy recommendations for pollution mitigation and environmental management in the relevant regions.
Haines, T.A.; Brumbaugh, W.G.
1994-01-01
Adult white suckers were collected from four lakes in Maine that ranged in pH from 7.0 to 5.4. The gastrointestinal tract and remainder of the carcass of fishes of similar age and size from each lake, and gills from additional fishes of similar size, were analyzed for Al, Cd, Pb, and Zn. Carcasses were also analyzed for Hg. Concentrations of Al, Cd, and Pb were highest in the gastrointestinal tract and lowest in the carcass; Zn concentration was highest in the gill. For carcass, all metals except Al differed significantly among lakes, for gill tissue Cd and Pb differed, and for gastrointestinal tract, only Cd differed among lakes. Where differences were significant, patterns among lakes were similar in each tissue analyzed. Concentrations of Cd, Hg, and Pb were negatively correlated with lake water pH, acid neutralizing capacity (ANC), Ca, and lake:watershed area, and positively correlated with lake water SO4, indicating that concentrations were higher in fish from more acidic lakes. Zinc concentrations in gills were unrelated to lake acidity, and carcass concentrations were higher in the less acidic lakes, which is the opposite of the pattern for the other metals studied. Zinc in gastrointestinal tract did not differ among lakes. Although the lakes we studied were located in undisturbed watersheds and did not receive any point source discharges, fish metal concentrations were comparable to or higher than those reported from waters receiving industrial discharges.
Toxic metals in cigarettes and human health risk assessment associated with inhalation exposure.
Benson, Nsikak U; Anake, Winifred U; Adedapo, Adebusayo E; Fred-Ahmadu, Omowunmi H; Ayejuyo, Olusegun O
2017-11-08
This study evaluated the concentrations of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn) in 10 branded cigarettes commonly consumed in Nigeria. Chemical sequential extraction method and pseudo-total metal digestion procedure were used for extraction of metals from filler tobacco and filter samples. Samples were analyzed using flame atomic absorption spectrometry (FAAS). The filler tobacco of cigarettes had Cd, Cu, Fe, Mn, Pb, and Zn concentrations in the ranges of 5.90-7.94, 18.26-34.94, 192.61-3494.05, 44.67-297.69, 17.21-74.78, and 47.02-167.31 μg/cigarette, respectively. The minimum and maximum concentrations in the filter samples were 8.67-12.34 μg/g of Cd, 1.77-36.48 μg/g of Cu, 1.83-15.27 μg/g of Fe, 3.82-7.44 μg/g of Mn, 4.09-13.78 μg/g of Pb, and 30.07-46.70 μg/g of Zn. The results of this study showed that the concentrations of heavy metals in the filler tobacco samples were consistently higher than those obtained for the cigarette filters except for Cd. Toxic metals were largely found in the most labile chemical fractions. Moderate to very high risks are found associated with potential exposure to Cd and Pb. The carcinogenic risks posed by Cd and Pb ranged between 1.87E-02 and 2.52E-02, 1.05E-03 and 4.76E-03, respectively, while the non-carcinogenic risk estimates for Cd and Pb were greater than 1.0 (HI > 1). Toxic metals in cigarette may have significant carcinogenic and non-carcinogenic health effects associated with inhalation exposure. Continuous monitoring and regulations of the ingredients of imported and locally produced tobacco products are advocated.
Kelepertzis, Efstratios; Argyraki, Ariadne; Valakos, Efstratios; Daftsis, Emmanouil
2012-10-01
The present study investigates the accumulation of heavy metals [copper (Cu), lead (Pb), zinc (Zn), magnesium (Mn), cadmium (Cd), nickel (Ni), and chromium (Cr)] in tadpoles inhabiting the metalliferous streams flowing within the Asprolakkas River basin (northeast Chalkidiki peninsula, Greece) and the effect of potentially harmful elements in stream water and sediment on the corresponding levels in their tissue. Animals were collected from six sampling sites influenced by a wide range of surface water and stream sediment trace element concentrations. The results of the chemical analyses showed that tadpoles accumulated significant levels of all of the examined metals. The range of whole-body mean measured concentrations were (in dry mass) as follows: Cu (46-182 mg/kg), Pb (103-4,490 mg/kg), Zn (494-11,460 mg/kg), Mn (1,620-13,310 mg/kg), Cd (1.2-82 mg/kg), Ni (57-163 mg/kg), and Cr (38-272 mg/kg). The mean concentrations of Pb, Zn, Mn, Ni, Cr, and Cd in Kokkinolakkas stream, which drains a currently active mining area, were the highest ever reported in tadpoles. Our results indicate that whole-body levels of Pb, Zn, Cu, and Cd increase with stream sediment concentrations and that these organisms tend to accumulate metals bound to Fe and Mn oxides. In addition, high dissolved concentrations and significant concentrations associated with more labile geochemical phases of sediments for specific metals were contributing factors determining whole-body levels. Given the observed bioconcentration factors, as well as the correlation with sediment concentrations, it is proposed that these organisms could be considered as bioindicators of environmental contamination and may be used for monitoring purposes within this metal-rich zone and, perhaps, within other rivers affected by metal mining.
Kovac, J; Arnol, M; Vidan-Jeras, B; Bren, A F; Kandus, A
2008-06-01
Elevated serum concentrations of soluble CD30 molecule (sCD30) have been related to acute cellular rejection and poor graft outcomes in kidney transplantation. This historical cohort study investigated the association of pretransplant sCD30 serum concentrations with kidney graft function expressed as estimated glomerular filtration rate (GFR) at 3 years after transplantation. Pretransplant sera from 176 adult deceased-donor kidney graft recipients were tested for sCD30 content using a commercially available automated enzyme-linked immunosorbent assay. The immunosuppression consisted of induction therapy with monoclonal anti-CD25 antibodies and a maintenance regimen of cyclosporine (CsA)-based therapy. GFR was estimated (eGFR) by the four-variable Modification of Diet in Renal Disease (MDRD) Study equation. According to the distribution of pretransplant sCD30 levels (median 66.7 U/mL; interquartile range, 46.6 to 98.6 U/mL), a concentration of 66 U/mL or higher was defined as high (n = 89) and below 66 U/mL as low (n = 87). Three years after transplantation, eGFR was not significantly different among recipients in high versus low sCD30 groups (69 +/- 23 mL/min/1.73m2 vs 66 +/- 21 mL/min/1.73m2; P = .327) and there was no correlation between eGFR and pretransplant sCD30 levels (r2 = 0.001; P = .73). Upon multivariate regression analysis, donor age, recipient body mass index at transplantation, and acute rejection episodes were independent variables affecting eGFR at 3 years after transplantation. This study showed that pretransplant sCD30 serum concentrations were not associated with deceased-donor kidney graft function at 3 years after transplantation. The immunosuppression with anti-CD25 antibodies and a triple CsA-based maintenance regimen could possibly be decisive for our findings.
Use of the sea hare (Aplysia fasciata) in marine pollution biomonitoring of harbors and bays.
Dirrigl, Frank J; Badaoui, Zachariah; Tamez, Carlos; Vitek, Christopher J; Parsons, Jason G
2018-04-01
Our study evaluated heavy metal concentrations in soft tissues of sea hare, Aplysia fasciata, from the Lower Laguna Madre, Texas. Heavy metals in tissues followed Se>As>Pb>Cd. Concentrations ranged As (BDL-28.08), Cd (BDL-5.50), Pb (BDL-12.85) and Se (4.25-93.43ppm). Median As, Cd, Pb, and Se tissue levels exceeded exposure levels. Significant relationships occurred in metal-metal (AsCd, AsPb, CdPb, CdSe, and PbSe), metal-tissue (significant Se uptake by inhalant and exhalant siphons and As in the hepatopancreas), and metal-metal within tissue (AsPb in the hepatopancreas and CdPb in the digestive cecum) analyses (p<0.05). Bioaccumulation factors (BAF) suggested the inhalant siphon, hepatopancreas, and digestive cecum function as macroconcentrators of Cd, hepatopancreas and digestive cecum as macroconcentrators of Pb, and all tissues were deconcentrators for As and Se. As a bioaccumulator of heavy metals, Aplysia was evaluated as a bioindicator of marine pollution in harbors and bays. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zahra, Azmat; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Ahmed, Zulkifl
2014-02-01
Heavy metal concentrations in sediments of the Kurang stream: a principal feeding tributary of the Rawal Lake Reservoir were investigated using enrichment factor (EF), geoaccumulation index (Igeo) and metal pollution index (MPI) to determine metal accumulation, distribution and its pollution status. Sediment samples were collected from twenty one sites during two year monitoring in pre- and post-monsoon seasons (2007-2008). Heavy metal toxicity risk was assessed using Sediment Quality Guidelines (SQGs), effect range low/effect range median values (ERL/ERM), and threshold effect level/probable effect level (TEL/PEL). Greater mean concentrations of Ni, Mn and Pb were recorded in post-monsoon season whereas metal accumulation pattern in pre-monsoon season followed the order: Zn>Mn>Ni>Cr>Co>Cd>Pb>Cu>Li. Enrichment factor (EF) and geoaccumulation (Igeo) values showed that sediments were loaded with Cd, Zn, Ni and Mn. Comparison with uncontaminated background values showed higher concentrations of Cd, Zn and Ni than respective average shale values. Concentrations of Ni and Zn were above ERL values; however, Ni concentration exceeded the ERM values. Sediment contamination was attributed to anthropogenic and natural processes. The results can be used for effective management of fresh water hilly streams of Pakistan. © 2013.
Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil.
Divisekara, T; Navaratne, A N; Abeysekara, A S K
2018-05-01
Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder.
Oosterlaan, Jaap; Geurts, Hilde M; Knol, Dirk L; Sergeant, Joseph A
2005-03-30
Cortisol has been implicated in psychobiological explanations of antisocial behavior. This study measured basal salivary cortisol in a sample of 25 children (age range 6 to 12 years) selected to vary in levels of antisocial behavior. Regression analyses were used to predict cortisol concentrations from parent- and teacher-reported symptoms. Parent-reported symptoms did not predict basal cortisol. Teacher-reported conduct disorder (CD) symptoms explained 38% of the variance in the cortisol concentrations, with high symptom severity associated with low cortisol. When a distinction was made between aggressive and non-aggressive CD symptoms, aggressive CD symptoms were more clearly related to low cortisol than non-aggressive CD symptoms. In contrast to previous research, no evidence was found for a mediating role of anxiety symptoms in the relationship between CD and cortisol. The results support biologically based models of antisocial behavior in children that involve reduced autonomic activity.
Monteiro, Sílvia S; Pereira, Andreia T; Costa, Élia; Torres, Jordi; Oliveira, Isabel; Bastos-Santos, Jorge; Araújo, Helder; Ferreira, Marisa; Vingada, José; Eira, Catarina
2016-12-15
The common dolphin (Delphinus delphis) is one of the most abundant species in Atlantic Iberia, representing a potentially important tool to assess the bioaccumulation of trace elements in the Iberian marine ecosystem. Nine elements (As, Cd, Cu, Hg, Mn, Ni, Pb, Se and Zn) were evaluated in 36 dolphins stranded in continental Portugal. Dolphins had increasing Hg concentrations (16.72μg·g -1 ww, liver) compared with previous studies in Atlantic Iberia, whereas Cd concentrations (2.26μg·g -1 ww, kidney) fell within reported ranges. The concentrations of some trace elements (including Cd and Hg) presented positive relationships with dolphin length, presence of parasites and gross pathologies. Common dolphins may help biomonitoring more offshore Atlantic Iberian areas in future studies, which would otherwise be difficult to assess. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulette, Ben C.; Ryan, Cindy A.; Gildea, Lucy A.
2005-12-01
Human peripheral blood-derived dendritic cells (DC) respond to a variety of chemical allergens by up-regulating expression of the co-stimulatory molecule CD86. It has been postulated that this measure might provide the basis for an in vitro alternative approach for the identification of skin sensitizing chemicals. We recently reported that DC, exposed in culture to the highest non-cytotoxic concentrations of various chemical allergens, displayed marginal up-regulation of membrane CD86 expression; the interpretation being that such changes were insufficiently sensitive for the purposes of hazard identification. For the work presented here, immature DC were derived from human monocytes and treated with themore » chemical allergens 2,4-dinitrobenzenesulfonic acid (DNBS), nickel sulfate (NiSO{sub 4}), p-phenylenediamine (PPD), Bandrowski's base (BB), hydroquinone (HQ) and propyl gallate (PG) for 48 h at concentrations which induced both no to slight to moderate cytotoxicity. For comparison, DC were treated with the irritants sodium dodecyl sulfate (SDS), benzoic acid (BA), and benzalkonium chloride (BZC) at concentrations resulting in comparable levels of cytotoxicity. CD86 expression, as measured by flow cytometry, was consistently up-regulated (ranging from 162 to 386% control) on DC treated with concentrations of chemical allergens that induced approximately 10-15% cytotoxicity. The irritants BA and BZC did not induce up-regulation of CD86 expression when tested at concentrations that induced similar levels of cytotoxicity. SDS, however, up-regulated CD86 expression to 125-138% of control in 2/4 preparations when tested at concentrations which induced similar toxicity. Our results confirm that chemical allergens up-regulate CD86 expression on blood-derived DC and illustrate further that up-regulation of CD86 surface marker expression is more robust when DC are treated with concentrations of chemical allergen that induce slight to moderate cytotoxicity.« less
NASA Astrophysics Data System (ADS)
Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo
2016-03-01
A sensitive, rapid and simple flow-injection chemiluminescence (CL) system based on the light emitted from KMnO4-cadmium sulfide quantum dots (CdS QDs) reaction in the presence of cetyltrimethylammonium bromide (CTAB) in acidic medium was developed as a CL probe for the sensitive determination of atenolol. Optical and structural features of CdS QDs capped with L-cysteine, which synthesized via hydrothermal approach, were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Vis spectroscopy. The CL intensity of KMnO4-CdS QDs-CTAB was remarkably enhanced in the presence of trace level of atenolol. Under optimum experimental conditions, there is a linear relationship between the increase in CL intensity of KMnO4-CdS QDs-CTAB system and atenolol concentration in a range of 0.001 to 4.0 mg L- 1 and 4.0 to 18.0 mg L- 1, with a detection limit (3σ) of 0.0010 mg L- 1. A possible mechanism for KMnO4-CdS QDs-CTAB-atenolol CL reaction is proposed. To prove the practical application of the KMnO4-CdS QDs-CTAB CL method, the method was applied for the determination of atenolol in spiked environmental water samples and commercial pharmaceutical formulation. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) technique was utilized for determination of atenolol. Figure S2. Optimization of the CL reaction conditions: (a) effect of KMnO4 concentration. Conditions: the concentrations of H2SO4, CdS QDs and atenolol were 1 mol L-1, 0.35 mol L-1, and 4.0 mg L-1, respectively; (b) effect of acidic media. Conditions: the concentrations of KMnO4 was 0.04 mmol L-1, other conditions were as in (a); (c) effect of CdS QDs concentration. Conditions: H2SO4 concentration was 1.0 mol L-1, other conditions were as in (b), and (d) effect of CTAB concentration. Conditions: CdS QDs concentration was 0.35 mmol L-1, other conditions were as in (c). Figure S3. UV-Vis absorption spectra of KMnO4-CdS QDs-atenolol CL system, recorded at different time intervals after their mixing. Conditions: the concentrations of KMnO4, CdS QDs, H2SO4 and atenolol were 0.04 mmol L-1, 0.35 mmol L-1, 1.0 mol L-1 and 4.0 mg L-1, respectively.
NASA Astrophysics Data System (ADS)
Imperato, C. M.; Ranepura, G. A.; Deych, L. I.; Kuskovsky, I. L.
2018-03-01
Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley-Queisser limit. In this work we present calculations to determine parameters of type-II Zn1-xCdxTe/Zn1-yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35-44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50-0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.
Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G
2017-10-01
Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pietrini, F; Zacchini, M; Iori, V; Pietrosanti, L; Ferretti, M; Massacci, A
2010-03-01
The interaction of cadmium (Cd) with photosynthesis was investigated in poplar (Populus x canadensis Mönch., clone A4A, Populus nigra L., clone Poli) and willow (Salix alba L., clone SS5) clones that had different leaf metal concentrations in preliminary experiments. Plants grown in the presence of 50 microm CdSO(4) for 3 weeks under hydroponic conditions were used to examine leaf gas exchange, chlorophyll fluorescence parameters and images, and for Cd detection using energy dispersive X-ray fluorescence (ED-XRF). Leaves were finally analysed for Cd and phytochelatin concentrations. Results showed that SS5 had the highest leaf Cd concentration and high gas exchange activity similar to that of Poli, which had the lowest Cd concentration. Leaf fluorescence images evidenced in large undamaged areas of SS5 corresponded to high values of F(v)/F(m), F(o), PhiPSII, qP and NPQ, while patches of dark colour (visible necrosis) close to the main vein corresponded to low values of these parameters. In A4A, these necrotic patches were more diffuse on the leaf blade and associated with a range of fluorescence parameter values. ED-XRF analysis indicated that Cd was only detectable in necroses of SS5 leaves, while in A4A it was relatively more diffuse. Phytochelatins (PCs) were not detected in SS5, while their concentration was high in both Poli and A4A. The absence of these molecules in SS5 is thought to favour confinement of high accumulations of Cd to necrotic areas and gives SS5 the ability to maintain high photosynthesis and transpiration in remaining parts of the leaf.
Moncaleano-Niño, Angela M; Barrios-Latorre, Sergio A; Poloche-Hernández, Javier F; Becquet, Vanessa; Huet, Valérie; Villamil, Luisa; Thomas-Guyon, Hélène; Ahrens, Michael J; Luna-Acosta, Andrea
2017-04-01
Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5-5.0cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000μg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations≥100μg/L showed a significant increase, from 8.0 to 14.8μg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297μg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96h of exposure to 1000μg/L Cd, were significantly lower (0.04mg P/g gonad) compared to control oysters (0.68mg P/g gonad), suggestive of an anti-estrogenic effect of Cd at high concentrations, whereas no significant changes in vitellogenin concentrations were observed at intermediate Cd exposure concentrations. This study confirms acute responses of metallothionein and vitellogenin concentrations in tissues of Saccostrea sp. exposed to high concentrations of cadmium (Cd≥100μg/L, 96h). The present results are first step towards validating the use of these two proteins as biomarkers of metal exposure in this species. Copyright © 2017 Elsevier B.V. All rights reserved.
Toxicity of Metals to a Freshwater Ostracod: Stenocypris major
Shuhaimi-Othman, Mohammad; Yakub, Nadzifah; Ramle, Nur-Amalina; Abas, Ahmad
2011-01-01
Adults of freshwater ostracod Stenocypris major (Crustacea, Candonidae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed, and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. LC50s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 25.2, 13.1, 1189.8, 526.2, 19743.7, 278.9, 3101.9, and 510.2 μg/L, respectively. Metals bioconcentration in S. major increases with exposure to increasing concentrations, and Cd was the most toxic to S. major, followed by Cu, Fe, Mn, Pb, Zn, Al, and Ni (Cd>Cu>Fe>Mn>Pb>Zn>Al>Ni). Comparison of LC50 values for metals for this species with those for other freshwater crustacean reveals that S. major is equally or more sensitive to metals than most other tested crustacean. PMID:21559091
Zhou, Peng; Guo, Jie; Zhou, Xiaoyu; Zhang, Wei; Liu, Lili; Liu, Yangcheng; Lin, Kuangfei
2014-10-01
A typical Printed Circuit Board (PCB) manufacturer was chosen as the object of this study. During PCB processing, fine particulate matter and heavy metals (Cu, Zn, Pb, Cr, Cd and Ni) will be released into the air and dust, which then impact workers' health and the environment. The concentrations of total suspended particle (TSP), PM10 and PM2.5 in the off-site were 106.3, 90.0 and 50.2μg/m(3), respectively, while the concentrations of TSP, PM10 and PM2.5 in the workshops ranged from 36.1 to 365.3, from 27.1 to 289.8 and from 22.1 to 212.3μg/m(3), respectively. Almost all six of the heavy metals were detected in all of the particle samples except Cd. For each workshop, it was obvious that Zn was the most enriched metal in TSP, followed by Cu>Pb (Cr)>Ni>Cd, and the same trend was found for PM10 and PM2.5. In the dust samples, Cu (which ranged from 4.02 to 56.31mg/g) was the most enriched metal, followed by Zn, Cr, Pb, Ni and Cd, and the corresponding concentrations ranged from 0.77 to 4.47, 0.37 to 1.59, 0.26 to 0.84, 0.13 to 0.44 and nd to 0.078mg/g, respectively. The health risk assessment showed that noncancerous effects are unlikely for Zn, Pb, Cr, Cu, Cd and Ni. The carcinogenic risks for Cd and Ni were all lower than 10(-6), except for Cr. This result indicates that carcinogenic risks for workers are relatively possible in the workshops. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCB's recycling industry. Copyright © 2014. Published by Elsevier B.V.
de Vries, W; McLaughlin, M J
2013-09-01
The historical build up and future cadmium (Cd) concentrations in top soils and in crops of four Australian agricultural systems are predicted with a mass balance model, focusing on the period 1900-2100. The systems include a rotation of dryland cereals, a rotation of sugarcane and peanuts/soybean, intensive dairy production and intensive horticulture. The input of Cd to soil is calculated from fertilizer application and atmospheric deposition and also examines options including biosolid and animal manure application in the sugarcane rotation and dryland cereal production systems. Cadmium output from the soil is calculated from leaching to deeper horizons and removal with the harvested crop or with livestock products. Parameter values for all Cd fluxes were based on a number of measurements on Australian soil-plant systems. In the period 1900-2000, soil Cd concentrations were predicted to increase on average between 0.21 mg kg(-1) in dryland cereals, 0.42 mg kg(-1) in intensive agriculture and 0.68 mg kg(-1) in dairy production, which are within the range of measured increases in soils in these systems. Predicted soil concentrations exceed critical soil Cd concentrations, based on food quality criteria for Cd in crops during the simulation period in clay-rich soils under dairy production and intensive horticulture. Predicted dissolved Cd concentrations in soil pore water exceed a ground water quality criterion of 2 μg l(-1) in light textured soils, except for the sugarcane rotation due to large water leaching fluxes. Results suggest that the present fertilizer Cd inputs in Australia are in excess of the long-term critical loads in heavy-textured soils for dryland cereals and that all other systems are at low risk. Calculated critical Cd/P ratios in P fertilizers vary from <50 to >1000 mg Cd kg P(-1) for the different soil, crop and environmental conditions applied. Copyright © 2013 Elsevier B.V. All rights reserved.
Soluble CD26 levels and its association to epidemiologic parameters in a sample population.
De Chiara, Loretta; Rodríguez-Piñeiro, Ana M; Cordero, Oscar J; Rodríguez-Berrocal, Francisco J; Ayude, Daniel; Rivas-Hervada And, Francisco J; de la Cadena, María Páez
2009-01-01
Previous studies have suggested the use of soluble CD26 (sCD26) as a tumour marker for the detection of colorectal cancer (CRC) and advanced adenomas. The aim of this study was to assess the sCD26 concentration in a large cohort to evaluate its association to epidemiologic parameters and CRC-related symptoms/pathologies. Serum samples were collected from 2,754 putatively healthy individuals with ages ranging from 30-65 years, and with personal or familial history of polyps, CRC and/or CR symptoms. sCD26 levels were measured by ELISA. No association was found between the sCD26 concentration and age (< 50 and 50), the personal or familial history of polyps or CRC, rectal bleeding, haemorrhoids or diverticula. However, sCD26 was related to non-inflammatory benign pathologies (excluding rectal bleeding, changes in bowel habits, haemorrhoids, diverticula) and to inflammatory benign pathologies. Our results confirm that the sCD26 can be easily offered and evaluated in a large cohort. Additionally, the validation of sCD26 as a tumour marker for screening and case-finding purposes requires a further comparison with an established non-invasive test like the faecal occult blood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiseman, C.L.S., E-mail: clare.wiseman@utoronto.ca
Background: Immigrant women are often identified as being particularly vulnerable to environmental exposures and health effects. The availability of biomonitoring data on newcomers is limited, thus, presenting a challenge to public health practitioners in the identification of priorities for intervention. Objectives: In fulfillment of data needs, the purpose of this study was to characterize blood concentrations of cadmium (Cd) among newcomer women of reproductive age (19–45 years of age) living in the Greater Toronto Area (GTA), Canada and to assess potential sources of environmental exposures. Methods: A community-based model, engaging peer researchers from the communities of interest, was used formore » recruitment and follow-up purposes. Blood samples were taken from a total of 211 newcomer women from South and East Asia, representing primary, regional origins of immigrants to the GTA, and environmental exposure sources were assessed via telephone survey. Metal concentrations were measured in blood samples (diluted with 0.5% (v/v) ammonium hydroxide and 0.1% (v/v) octylphenol ethoxylate) using a quadrupole ICP-MS. Survey questions addressed a wide range of environmental exposure sources, including dietary and smoking patterns and use of nutritional supplements, herbal products and cosmetics. Results: A geometric mean (GM) blood Cd concentration of 0.39 µg/L (SD:±2.07 µg/L) was determined for study participants (min/max: <0.045 µg /L (LOD)/2.36 µg/L). Several variables including low educational attainment (Relative Ratio (RR) (adjusted)=1.50; 95% CI 1.17–1.91), milk consumption (RR (adjusted)=0.86; 95% CI 0.76–0.97), and use of zinc supplements (RR (adjusted)=0.76; 95% CI 0.64–0.95) were observed to be significantly associated with blood Cd concentrations in the adjusted regression model. The variable domains socioeconomic status (R{sup 2}{sub adj}=0.11) and country of origin (R{sup 2}{sub adj}=0.236) were the strongest predictors of blood Cd. Conclusion: Blood Cd concentrations fell below those generally considered to be of human health concern. However, negative health effects cannot be entirely excluded, especially for those that fall in the upper percentile range of the distribution, given the mounting evidence for negative health outcomes at low environmental exposure concentrations. - Highlights: • Blood Cd and exposure sources were assessed for 211 newcomer women in Toronto. • Blood Cd was slightly elevated compared to that in Canadian-born populations. • SES and country of origin were the strongest predictors of blood Cd. • Intake of essential micronutrients is a likely important modulator of blood Cd. • Identified need for more research on newcomers as a function of country of origin.« less
Effects of Cadmium and Mercury on the Upper Part of Skeletal Muscle Glycolysis in Mice
Ortega, Fernando; Westerhoff, Hans V.; Gelpí, Josep Lluis; Centelles, Josep J.; Cascante, Marta
2014-01-01
The effects of pre-incubation with mercury (Hg2+) and cadmium (Cd2+) on the activities of individual glycolytic enzymes, on the flux and on internal metabolite concentrations of the upper part of glycolysis were investigated in mouse muscle extracts. In the range of metal concentrations analysed we found that only hexokinase and phosphofructokinase, the enzymes that shared the control of the flux, were inhibited by Hg2+ and Cd2+. The concentrations of the internal metabolites glucose-6-phosphate and fructose-6-phosphate did not change significantly when Hg2+ and Cd2+ were added. A mathematical model was constructed to explore the mechanisms of inhibition of Hg2+ and Cd2+ on hexokinase and phosphofructokinase. Equations derived from detailed mechanistic models for each inhibition were fitted to the experimental data. In a concentration-dependent manner these equations describe the observed inhibition of enzyme activity. Under the conditions analysed, the integral model showed that the simultaneous inhibition of hexokinase and phosphofructokinase explains the observation that the concentrations of glucose-6-phosphate and fructose-6-phosphate did not change as the heavy metals decreased the glycolytic flux. PMID:24489641
Toxicity of Metals to a Freshwater Snail, Melanoides tuberculata
Shuhaimi-Othman, M.; Nur-Amalina, R.; Nadzifah, Y.
2012-01-01
Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC50 values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L−1, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al). Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor) in the soft tissues. A comparison of LC50 values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals. PMID:22666089
Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis
Wang, W.-X.; Fisher, N.S.; Luoma, S.N.
1996-01-01
Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.
Chen, Jinlong; Zheng, Aifang; Gao, Yingchun; He, Chiyang; Wu, Genhua; Chen, Youcun; Kai, Xiaoming; Zhu, Changqing
2008-03-01
Strong luminescence CdS quantum dots (QDs) have been prepared and modified with l-cysteine by a facile seeds-assistant technique in water. They are water-soluble and highly stable in aqueous solution. CdS QDs evaluated as a luminescence probe for heavy and transition metal (HTM) ions in aqueous solution was systematically studied. Five HTM ions such as silver(I) ion, copper(II) ion, mercury(II) ion, cobalt(II) ion, and nickel(II) ion significantly influence the photophysics of the emission from the functionalized CdS QDs. Experiment results showed that the fluorescence emission from CdS QDs was enhanced significantly by silver ion without any spectral shift, while several other bivalent HTM ions, such as Hg(2+), Cu(2+), Co(2+), and Ni(2+), exhibited effective optical quenching effect on QDs. Moreover, an obvious red-shift of emission band was observed in the quenching of CdS QDs for Hg(2+) and Cu(2+) ions. Under the optimal conditions, the response was linearly proportional to the concentration of Ag(+) ion ranging from 1.25 x 10(-7) to 5.0 x 10(-6)molL(-1) with a detection limit of 2.0 x 10(-8)molL(-1). The concentration dependence of the quenching effect on functionalized QDs for the other four HTM ions could be well described by typical Stern-Volmer equation, with the linear response of CdS QDs emission proportional to the concentration ranging from 1.50 x 10(-8) to 7.50 x 10(-7)molL(-1) for Hg(2+) ion, 3.0 x 10(-7) to 1.0 x 10(-5)molL(-1) for Ni(2+) ion, 4.59 x 10(-8) to 2.295 x 10(-6)molL(-1) for Cu(2+) ion, and 1.20 x 10(-7) to 6.0 x 10(-6)molL(-1) Co(2+) ion, respectively. Based on the distinct optical properties of CdS QDs system with the five HTM ions, and the relatively wide linear range and rapid response to HTM ions, CdS QDs can be developed as a potential identified luminescence probe for familiar HTM ions detection in aqueous solution.
Jia, Weitao; Miao, Fangfang; Lv, Sulian; Feng, Juanjuan; Zhou, Shufeng; Zhang, Xuan; Wang, Duoliya; Li, Shizhong; Li, Yinxin
2017-11-01
Cadmium (Cd) pollution is a worldwide environmental problem which heavily threatens human health and food security. Sorghum, as one of the most promising energy crop, has been considered to be the source of high-quality feedstock for ethanol fuel. Ninety-six sorghum genotypes were investigated under hydroponic conditions to compare their capabilities of Cd-tolerance, accumulation and translocation for their potential in remediation of Cd contamination. Different genotypes varied largely in the tolerance to Cd stress with tolerance indexes ranked from 0.107 to 0.933. Great difference was also found in Cd uptake and accumulation with concentrations ranging from 19.0 to 202.4mg/kg in shoots and 277.0-898.3mg/kg in roots. The total amounts of Cd ranked from 6.1 to 25.8μg per plant and the highest translocation factor was over 4 times higher than the lowest one. The correlation analysis demonstrated that Cd concentration in shoot reflected the ability of Cd translocation and tolerance of sorghum, and the path coefficient analysis indicated that root biomass could be taken as a biomarker to evaluate Cd extraction ability of sorghum. The results in this study can facilitate the restoring of Cd contaminated areas by sorghum. Copyright © 2017 Elsevier Inc. All rights reserved.
Camerani, Maria Caterina; Somogyi, Andrea; Vekemans, Bart; Ansell, Stuart; Simionovici, Alexandre S; Steenari, Britt-Marie; Panas, Itai
2007-09-01
By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-microXRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.
Özdemir, Sadin; Kilinç, Ersin; Okumuş, Veysi; Poli, Annarita; Nicolaus, Barbara; Romano, Ida
2016-02-01
Thermophilic bacteria, Geobacillus galactosidasius sp nov. was loaded on γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd by solid phase extraction before ICP-OES. pH and flow rate of the solution, amounts of biosorbent and magnetic nanoparticle, volume of sample solution, effects of the possible interferic ions were investigated in details. Linear calibration curves were constructed in the concentration ranges of 1.0-60ngmL(-1) for Pb and Cd. The RSDs of the method were lower than 2.8% for Pb and 3.8% for Cd. Certified and standard reference samples of fortified water, wastewater, poplar leaves, and simulated fresh water were used to accurate the method. LOD values were found as 0.07 and 0.06ngmL(-1) respectively for Pb and Cd. The biosorption capacities were found as 34.3mgg(-1) for Pb and 37.1mgg(-1) for Cd. Pb and Cd concentrations in foods were determined. Surface microstructure was investigated by SEM-EDX. Copyright © 2015 Elsevier Ltd. All rights reserved.
CD26 modulates nociception in mice via its dipeptidyl-peptidase IV activity.
Guieu, Regis; Fenouillet, Emmanuel; Devaux, Christiane; Fajloun, Ziad; Carrega, Louis; Sabatier, Jean-Marc; Sauze, Nicole; Marguet, Didier
2006-01-30
CD26 is a multifunctional cell surface glycoprotein expressed by T and B cells. It exhibits a dipeptidyl-peptidase activity (DPP-IV) that cleaves the penultimate proline from the N-terminus of polypeptides, thereby regulating their activity and concentration. Using CD26-/- mice resulting from targeted inactivation of the gene, we examined the consequences of a DPP-IV defect on behavioural response to nociceptive stimuli and concentration of the pain modulator peptides substance P (SP) and endomorphin 2, two DPP-IV substrates. CD26 inactivation induced a three-fold decrease in circulating endopeptidase activity while that found in brain extracts was normal, albeit very weak. CD26-/- mice had high SP concentrations in plasma (3.4+/-1 pg/ml versus 1.5+/-0.3 pg/ml, P<10(-3)) but not in brain extracts (35+/-12 pg/ml versus 32+/-9 pg/ml, P>0.05). Endomorphin-2 levels in the two groups were in the same range for plasma and brain extracts. CD26-/- mice displayed short latencies to nociceptive stimuli (hot plate test: 6.6+/-1.2 s versus 8.6+/-1.5 s, P<10(-4); tail pinch test: 3.1+/-0.6 s versus 4.2+/-0.8 s, P<10(-3)). Administration of an SP (NK1) receptor antagonist or DPP-IV to CD26-/- mice normalised latencies. DPP-IV inhibitors decreased latencies only in CD26+/+ mice. Our observations represent the first fundamental evidence showing that DPP-IV influences pain perception via modulation of the peripheral SP concentration. Our work also highlights the role of peripheral NK1 receptors in nociception.
β -Cyclodextrin polymer binding to DNA: Modulating the physicochemical parameters
NASA Astrophysics Data System (ADS)
Rocha, J. C. B.; Silva, E. F.; Oliveira, M. F.; Sousa, F. B.; Teixeira, A. V. N. C.; Rocha, M. S.
2017-05-01
Cyclodextrins and cyclodextrins-modified molecules have interesting and appealing properties due to their capacity to host components that are normally insoluble or poorly soluble in water. In this work, we investigate the interaction of a β -cyclodextrin polymer (poly-β -CD) with λ -DNA. The polymers are obtained by the reaction of β -CD with epichlorohydrin in alkaline conditions. We have used optical tweezers to characterize the changes of the mechanical properties of DNA molecules by increasing the concentration of poly-β -CD in the sample. The physical chemistry of the interaction is then deduced from these measurements by using a recently developed quenched-disorder statistical model. It is shown that the contour length of the DNA does not change in the whole range of poly-β -CD concentration (<300 μ M ). On the other hand, significant alterations were observed in the persistence length that identifies two binding modes corresponding to the clustering of ˜2.6 and ˜14 polymer molecules along the DNA double helix, depending on the polymer concentration. Comparing these results with the ones obtained for monomeric β -CD, it was observed that the concentration of CD that alters the DNA persistence length is considerably smaller when in the polymeric form. Also, the binding constant of the polymer-DNA interaction is three orders of magnitude higher than the one found for native (monomeric) β -CD. These results show that the polymerization of the β -CD strongly increases its binding affinity to the DNA molecule. This property can be wisely used to modulate the binding of cyclodextrins to the DNA double helix.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2006-01-01
In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.
Luis, G; Rubio, C; González-Weller, D; Gutiérrez, A J; Revert, C; Hardisson, A
2014-04-01
Monitoring the metal content in foods such as potatoes is an important aspect of food safety and regulation. Samples of nine varieties of potatoes (73 samples of local potatoes and 77 samples of imported potatoes) were randomly obtained from supermarkets, farmers markets, and farmer plots in Tenerife (Canary Islands, Spain). The edible portion (pulp) was the only part considered for analysis because Spaniards traditionally eat only peeled potatoes. Cadmium (Cd) and lead (Pb) were determined using graphite furnace atomic absorption spectrometry. Cd concentrations ranged from 0.006 mg/kg in the Cara and Negra varieties to 0.019 mg/kg in the Bonita variety, and Pb concentrations ranged from 0.007 mg/kg in the Up-to-date variety to 0.023 mg/kg in the Recara variety. The mean concentrations of Cd (0.01 mg/kg) and Pb (0.014 mg/kg) were below the limits established by European regulations for potatoes (0.1 mg/kg of wet weight for each metal). Based on a mean consumption of 143.2 g of potato per person per day for the Canary Islands population, the mean daily intakes of Cd (0.015 mg/day) and Pb (0.023 mg/day) were below the legislated respective tolerable weekly intakes. Thus, the samples analyzed were considered safe to eat with regard to the metal concentrations found.
Nafee, N; Hirosue, M; Loretz, B; Wenz, G; Lehr, C-M
2015-05-01
A series of cyclodextrin-based star polymers were synthesized using β-cyclodextrin (CD) as hydrophilic core, methyl methacrylate (MMA) and tert-butyl acrylate (tBA) as hydrophobic arms. Star polymers, either homopolymers or random/block copolymers, showed narrow molecular weight distributions. Grafting hydrophobic arms created CD-based nanoparticles (CD-NPs) in the size range (130-200nm) with narrow PdI <0.15 and slightly negative ζ-potential. Particle surface could be modified with chitosan to impart a positive surface charge. Colloidal stability of CD-NPs was a function of pH as revealed by the pH-titration curves. CD-NPs were used as carrier for the chemotherapeutic drug idarubicin (encapsulation efficiency, EE ∼40%) ensuring prolonged release profile (∼80% after 48h). For cell-based studies, coumarin-6 was encapsulated as a fluorescent marker (EE ∼75%). Uptake studies carried out on A549 and Caco-2 cell lines proved the uptake of coumarin-loaded NPs as a function of time and preferential localization in the cytoplasm. Uptake kinetics revealed no saturation or plateau over 6h. Chitosan-modified NPs showed significantly improved, concentration-dependent cellular uptake. Meanwhile, CD-NPs were non-cytotoxic on both cell lines over the concentration range (0.25-3mg/ml) as studied by MTT and LDH assays. In conclusion, CD star polymers can be considered a versatile platform for a new class of biocompatible nanochemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Collin-Hansen, Christian; Pedersen, Sindre A; Andersen, Rolf A; Steinnes, Eiliv
2007-01-01
Some species of macromycetes (mushrooms) consistently are found to contain high concentrations of toxic metals such as cadmium (Cd) and mercury (Hg), and consumption of wild-growing mushrooms is acknowledged as a significant source for Cd and Hg in humans. Yet little is known about the speciation of Cd and Hg in mushroom tissues. Here we present the first evidence of peptides of the phytochelatin family being responsible for binding a large fraction of Cd in caps of the macromycete Boletus edulis exposed to excess metals. Concentrations of Cd, Zn, Cu and Hg, as well as cytosolic Cd-binding capacity (CCBC), glutathione (GSH) and free proline (Pro) were quantified in fruiting bodies of B. edulis differentially exposed to a wide range of metals. Metal distribution among cytosolic compounds were investigated by size exclusion chromatography (SEC), followed by metal determinations with atomic absorption chromatography (AAS) and HR-ICP-MS. Cd-binding compounds in SEC elutates were investigated further by high performance liquid chromatography-mass spectrometry (HPLC-MS). CCBC was >90 times higher in the exposed group relative to the reference group (Mann-Whitney's P < 0.001), whereas concentrations of free Pro were almost identical for the two groups. For the whole study selection, CCBC correlated positively with metal exposure (Spearman's P < 0.001 for all four metals), suggesting dose-dependent induction of Cd-binding compounds by exposure to these metals, possibly as a defense mechanism. The presence of phytochelatins (PCs), a family of cystein-rich oligopeptides, was confirmed in Cd-containing SEC fractions by HPLC-MS. The appearance of more complex PCs was coupled to declining concentrations of GSH. To our knowledge this is the first report demonstrating the presence of PCs in a macromycete.
Single- and two-color infrared focal plane arrays made by MBE in HgCdTe
NASA Astrophysics Data System (ADS)
Zanatta, Jean-Paul; Ferret, P.; Loyer, R.; Petroz, G.; Cremer, S.; Chamonal, Jean-Paul; Bouchut, Philippe; Million, Alain; Destefanis, Gerard L.
2000-12-01
We present here recent developments obtained at LETI infrared laboratory in the field of infrared detectors made in HgCdTe material and using the molecular beam epitaxial growth technique (MBE). We discuss the metallurgical points (growth temperature and flux control) that lead to achieve excellent quality epitaxial layers grown by MBE. We show a run-to-run reproducibility measured on growth run of more than 15 layers. The crystalline quality, surface morphology, and composition uniformity are excellent. The etch pits density (EPD) are in the low 105.cm-2 when HgCdTe grows on a CdZnTe substrate. Transport properties reveal a low n-type carrier concentration in the 1014 to 1015.cm-3 range with a carrier mobility in excess of 105 cm2/V/sec at 77K for epilayers grown with 10 micrometers cutoff wavelength. We describe the performances of several kinds of our HgCdTe- MBE devices: single color MWIR and LWIR detectors on HgCdTe/CdZnTe operating at 77K in respectively (3-5 micrometers ) and (8-12 micrometers ) wavelength range; single color MWIR detectors on HgCdTe grown on germanium heterosubstrate operating at 77K in the (3-5 micrometers ) wavelength range; two color HgCdTe detectors operating within the MWIR (3-5 micrometers ) band.
The cadmium and lead content of the grain produced by leading Chinese rice cultivars.
Xie, L H; Tang, S Q; Wei, X J; Shao, G N; Jiao, G A; Sheng, Z H; Luo, J; Hu, P S
2017-02-15
The cadmium (Cd) and lead (Pb) content in both white and wholemeal flour milled from 110 leading rice cultivars was assessed. The white flour Cd content ranged from <0.0025 to 0.2530mg/kg (geometric mean (GM)=0.0150mg/kg), while its Pb content ranged from <0.0250 to 0.3830mg/kg (GM=0.0210mg/kg). The indica types took up higher amounts of Cd and Pb than did the japonica types. Although the heavy metal content of wholemeal flour tended to higher than that of white flour, nevertheless 84.5% (Cd) and 95.4% (Pb) of the entries were compliant with the national maximum allowable concentration of 0.2000mg/kg of each contaminant. An analysis of the Cd content in the white flour of three indica type cultivars grown in two consecutive years at two locations indicated that Cd content may be significantly affected by the conditions prevailing in the growing season. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos, D.; Duarte, B.; Caçador, I.
2015-12-01
The increasing metal pollution in salt marshes and its influence on the plants that inhabit these ecosystems, has become a major concern with serious implications on the species establishment. Juncus acutus is a highly common halophyte specie in Portuguese marshes. Seeds from his specie were exposed to a range of different Cd concentrations (0.05, 0.1, 0.5 and 1 μM) in order to evaluate the effects of acute Cd stress on seed germination and growth as well as on seedling pigment composition, photosynthetic apparatus and oxidative stress biomarkers. Seedling length was higher than in control in every Cd treatment, however biomass showed a decrease. It was also observed that increasing Cd treatments, lead to a proportional increase in the Cd tissue concentration. Also the Cd-substituted chlorophylls showed an increase with increasing Cd doses that were applied. This substitution results in a non-functional chlorophyll molecule, highly unstable under moderate light intensities which inevitably reduces the efficiency of the LHC II. As consequence, there was a decrease in the use-efficiency of the harvested energy, leading to a decay in the photosynthetic capacity and energy accumulation, which was dissipated as heat. As for the antioxidant enzymes, SOD and APX presented higher activity, responding to increasing cadmium concentrations. Thus, becomes evident that Cd affects negatively, both biochemically and photochemically, the establishment by seed process of J. acutus highlighting the potential of the use of this specie seed as potential sentinel and ecotoxicity test in extreme conditions.
Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon.
Liu, Jian; Ma, Jie; He, Congwu; Li, Xiuli; Zhang, Wenjun; Xu, Fangsen; Lin, Yongjun; Wang, Lijun
2013-11-01
The stresses acting on plants that are alleviated by silicon (Si) range from biotic to abiotic stresses, such as heavy metal toxicity. However, the mechanism of stress alleviation by Si at the single-cell level is poorly understood. We cultivated suspended rice (Oryza sativa) cells and protoplasts and investigated them using a combination of plant nutritional and physical techniques including inductively coupled plasma mass spectrometry (ICP-MS), the scanning ion-selective electrode technique (SIET) and X-ray photoelectron spectroscopy (XPS). We found that most Si accumulated in the cell walls in a wall-bound organosilicon compound. Total cadmium (Cd) concentrations in protoplasts from Si-accumulating (+Si) cells were significantly reduced at moderate concentrations of Cd in the culture medium compared with those from Si-limiting (-Si) cells. In situ measurement of cellular fluxes of the cadmium ion (Cd(2+) ) in suspension cells and root cells of rice exposed to Cd(2+) and/or Si treatments showed that +Si cells significantly inhibited the net Cd(2+) influx, compared with that in -Si cells. Furthermore, a net negative charge (charge density) within the +Si cell walls could be neutralized by an increase in the Cd(2+) concentration in the measuring solution. A mechanism of co-deposition of Si and Cd in the cell walls via a [Si-wall matrix]Cd co-complexation may explain the inhibition of Cd ion uptake, and may offer a plausible explanation for the in vivo detoxification of Cd in rice. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Zhou, Lingyun; Zhao, Ye; Wang, Shuifeng
2015-11-01
Phytoremediation has been proven to be an environmentally sound alternative for the recovery of contaminated soils, and the economic profit that comes along with the process might stimulate its field use. This study investigated cadmium (Cd) transfer and detoxification mechanisms in a soil-mulberry-silkworm system to estimate the suitability of the mulberry and silkworm as an alternative method for the remediation of Cd-polluted soil; it also explored the underlying mechanisms regulating the trophic transfer of Cd. The results show that both the mulberry and silkworm have high Cd tolerance. The transfer factor suggests that the mulberry has high potential for Cd extraction from polluted soil. The subcellular distribution and chemical forms of Cd in mulberry leaves show that cell wall deposition and vacuolar compartmentalization play important role in Cd tolerance. In the presence of increasing Cd concentrations in silkworm food, detoxification mechanisms (excretion and homeostasis) were activated so that excess Cd was excreted in fecal balls, and metallothionein levels in the mid-gut, the posterior of the silk gland, and the fat body of silkworms were enhanced. And, the Cd concentrations in silk are at a low level, ranging from 0.02 to 0.21 mg kg(-1). Therefore, these mechanisms of detoxification can regulate Cd trophic transfer, and mulberry planting and silkworm breeding has high phytoremediation potential for Cd-contaminated soil.
Xie, Wan-Ying; Huang, Qing; Li, Gang; Rensing, Christopher; Zhu, Yong-Guan
2013-01-01
Cadmium (Cd) pollution around the world is a serious issue demanding acceptable solutions, one of which is phytoremediation that is both cost-effective and eco-friendly. Removal of Cd from contaminated water using plants with high growth rates and sufficient Cd accumulation abilities could be an appropriate choice. Here, we investigated a potential Cd accumulator, Wolffia, a rootless duckweed with high growth rate. Cd uptake, accumulation, tolerance, and phytofiltration ability by Wolffia globosa were examined. Furthermore, the effects of arsenic (As) on Cd uptake and phytofiltration by W. globosa were also studied. Cd uptake kinetics showed a linear pattern and a hyperbolic pattern without a plateau in lower (0-2 microM) and higher (0-200 microM) Cd concentration ranges, respectively, suggesting rapid Cd uptake by W. globosa Cd accumulation ability by W. globosa was higher at Cd concentrations < 10 microM than at >10 microM. All the five species of Wolffia exposed to I microM Cd for 5 days accumulated > 500 mg Cd kg(-1) DW. Ten gram fresh W. globosa could diminish almost all the Cd (2 microM) in a 200 mL solution. This enormous accumulation ability was mostly due to passive adsorption of Cd by the apoplast. Arsenic had no significant effect on Cd uptake and phytofiltration. The fresh fronds also showed a great As extracting ability. The results indicated that Wolffia is a strong Cd accumulator and has great Cd phytoremediation potential. Therefore, this plant can be used in fresh aquatic environments co-contaminated by low-levels of Cd and As.
High pre-transplant soluble CD30 levels are predictive of the grade of rejection.
Rajakariar, Ravindra; Jivanji, Naina; Varagunam, Mira; Rafiq, Mohammad; Gupta, Arun; Sheaff, Michael; Sinnott, Paul; Yaqoob, M M
2005-08-01
In renal transplantation, serum soluble CD30 (sCD30) levels in graft recipients are associated with increased rejection and graft loss. We investigated whether pre-transplant sCD30 concentrations are predictive of the grade of rejection. Pre-transplant sera of 51 patients with tubulointerstitial rejection (TIR), 16 patients with vascular rejection (VR) and an age-matched control group of 41 patients with no rejection (NR) were analyzed for sCD30. The transplant biopsies were immunostained for C4d. The median sCD30 level was significantly elevated in the group with VR (248 Units (U)/mL, range: 92-802) when compared with TIR (103 U/mL, range: 36-309, p<0.001) and NR (179 U/mL, range: 70-343, p<0.03). Moreover, patients with TIR had significantly lower sCD30 levels compared to NR. Based on C4d staining, a TH2 driven process, the median sCD30 levels were significantly raised in C4d+ patients compared with C4d- group (177 U/mL vs. 120 U/mL, p<0.05). sCD30 levels measured at time of transplantation correlate with the grade of rejection. High pre-transplant levels are associated with antibody-mediated rejection which carries a poorer prognosis. sCD30 could be another tool to assess immunological risk prior to transplantation and enable a patient centered approach to immunosuppression.
Liu, Cheng-Chung; Chen, Guan-Bu
2013-01-15
Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Notten, M J M; Oosthoek, A J P; Rozema, J; Aerts, R
2006-01-01
We studied Cd accumulation in Cepaea nemoralis snails at low, but field-relevant Cd concentrations in the diet (Urtica dioica leaves). Six treatments of U. dioica plants were grown, resulting in leaf Cd concentrations between 0 and 2.6 microg g(-1) dw. Seven snails per treatment were fed for 38 days. Leaf Cd concentrations did not affect food consumption rates, and consequently Cd intake rates increased with increasing leaf concentrations. No differences were detected among treatments in the final soft tissue Cd concentrations and body burdens in the snails. Regression analyses showed no positive relationship between either snail Cd concentrations or body burdens and total Cd intake. This suggests a regulation of internal Cd concentrations at low food Cd concentrations. Our data suggest that Cd excretion via the mucus plays a substantial role in this regulation, in addition to Cd excretion via the faeces. Snail shells were no sinks for Cd.
Flow cytometric analyses of CD34+ cells with inclusion of internal positive controls.
Gutensohn, Kai; Jessen, Maria; Ketels, Andrea; Gramatzki, Martin; Humpe, Andreas
2012-02-01
Flow cytometric measurement of CD34+ events is used to ensure the quality of human progenitor cell grafts. This study was conducted to evaluate whether the spiking of routine samples from peripheral blood and apheresis products with CD34+ positive controls is feasible. A total of 42 samples from 32 patients and one healthy donor were stained in duplicate for CD34+ cells. Before flow cytometric analysis, one tube was spiked with stabilized CD34+ cells at a defined concentration. Median numbers of viable CD34+ cells/µL did not differ between unspiked and spiked tubes (median 37, range 0-714; and median 34, range 0-719, respectively). The 95% confidence interval (CI) of the mean showed a broad overlap between these samples (41.9-119.1 and 41.4-119.3, respectively). In addition, the 95% CI of the mean for CD45+ cells/µL overlapped broadly and median numbers did not differ. Median viability of all CD45+ cells was significantly lower in the spiked tubes (96.75, range 64-98.8 vs. 99.25, range 97.5-99.8) with no overlap of the 95% CI of the mean viability. The results of this study show that spiking of routine samples with internal positive controls does not affect CD34+ cell analyses, but does support the reliability of important clinical data. The inclusion of positive controls is expedient for laboratories that perform analyses with low CD34+ numbers and laboratories that use different flow cytometric analyzers and may also become a requirement to meet statutory regulations. © 2012 American Association of Blood Banks.
Rehman, Zahir Ur; Khan, Sardar; Brusseau, Mark L; Shah, Mohammad Tahir
2017-01-01
Rapid urbanization and industrialization result in serious contamination of soil with toxic metals such as lead (Pb) and cadmium (Cd), which can lead to deleterious health impacts in the exposed population. This study aimed to investigate Pb and Cd contamination in agricultural soils and vegetables in five different agricultural sites in Pakistan. The metal transfer from soil-to-plant, average daily intake of metals, and health risk index (HRI) were also characterized. The Pb concentrations for all soils were below the maximum allowable limits (MAL 350 mg kg−1) set by the State Environmental Protection Administration of China (SEPA), for soils in China. Conversely, Cd concentrations in the soils exceeded the MAL set by SEPA (0.6 mg kg−) and the European Union (1.5 mg kg−1) by 62-74% and 4-34%, respectively. The mean Pb concentration in edible parts of vegetables ranged from 1.8-11 mgkg−1. The Pb concentrations for leafy vegetables were higher than the fruiting and pulpy vegetables. The Pb concentrations exceeded the MAL (0.3 mg kg−1) for leafy vegetables and the MAL for fruity and rooty/tuber vegetables (0.1 mg kg−1) set by FAO/WHO-CODEX.. Likewise, all vegetables except Pisum sativum (0.12 mg kg−1) contained Cd concentrations that exceeded the MAL set by SEPA. The HRI values for Pb and Cd were <1 for both adults and children for most of the vegetable species except Luffa acutangula, Solanum lycopersicum, Benincasa hispada, Momordi charantia, Aesculantus malvaceae, Cucumis sativus, Praecitrullus fistulosus, Brassica oleracea, and Colocasia esculanta for children. Based on these results, consumption of these Pb and Cd contaminated vegetables poses a potential health risk to the local consumers. PMID:27939659
Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route
NASA Astrophysics Data System (ADS)
Aslam, Samia; Mustafa, Faiza; Jamil, Ayesha; Abbas, Ghazanfar; Raza, Rizwan; Ahmad, Muhammad Ashfaq
2018-03-01
A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV-visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5-2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.
Abdu, Nafiu; Agbenin, John O; Buerkert, Andreas
2011-12-01
Quantitative data about phytoavailability and transfer into consumed plant parts for heavy metals in intensively managed urban vegetable production areas of sub-Saharan Africa are scarce. We therefore studied the transfer of zinc (Zn) and cadmium (Cd) from soil to the root and subsequent translocation to edible portions of four vegetables in six urban gardens. While respective diethylenetriaminepentaacetic acid (DTPA)-available Zn and Cd concentrations ranged from 18 to 66 mg kg(-1) and from 0.19 to 0.35 mg kg(-1) , respectively, in soils, total Zn and Cd were 8.4-256 mg kg(-1) and 0.04-1.7 mg kg(-1) in shoot parts. Metal transfer factor (MTF) ratios were higher in Zn (0.2-0.9) than in Cd (0.1-0.6). Our data suggest that total Zn concentration in soil is a reliable indicator to assess its transfer from soil to crop in lettuce, carrot and parsley, while for Cd DTPA-extractable concentration may be used to estimate soil-crop transfer of Cd in amaranthus and carrot. Overall, Cd was more easily translocated to the aerial plant parts than Zn. Zinc and Cd accumulation by vegetables in our soils is mainly a metabolically controlled process. Such accumulation can contaminate the ecosystem but under our conditions intake and ingestion of these metals will likely have to occur over a prolonged period to experience health hazard. Copyright © 2011 Society of Chemical Industry.
Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI.
Ma, Lixia; Wei, Qi; Chen, Yueqin; Song, Qiuyang; Sun, Conghui; Wang, Zhiqiang; Wu, Guanghong
2018-02-01
Batch experiments were conducted to test the effects of various solution properties, such as pH, temperature, initial concentration and anoxic and aerobic atmosphere, on Cd removal by nanoscale zerovalent iron (nZVI) supported on industrial coal fly ash. Cd (II) could be removed by adsorption on fly ash-nZVI in a very short time (5 min) with high removal rates (greater than 99.9%) over a wide range of concentration (5-100 mg l -1 ). Cd (II) was physically adsorbed on the surface of fly ash-nZVI. The preparation of fly ash-nZVI can incorporate the use of waste media, making the overall adsorbent more removal efficient and low cost.
Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI
Ma, Lixia; Wei, Qi; Chen, Yueqin; Song, Qiuyang; Sun, Conghui; Wang, Zhiqiang
2018-01-01
Batch experiments were conducted to test the effects of various solution properties, such as pH, temperature, initial concentration and anoxic and aerobic atmosphere, on Cd removal by nanoscale zerovalent iron (nZVI) supported on industrial coal fly ash. Cd (II) could be removed by adsorption on fly ash-nZVI in a very short time (5 min) with high removal rates (greater than 99.9%) over a wide range of concentration (5–100 mg l−1). Cd (II) was physically adsorbed on the surface of fly ash-nZVI. The preparation of fly ash-nZVI can incorporate the use of waste media, making the overall adsorbent more removal efficient and low cost. PMID:29515830
NASA Astrophysics Data System (ADS)
Al-Basheer, Watheq
2017-06-01
Chiral five-and-six membered ring ketones are important molecules that are found in many biological systems and can exist in many possible conformers. In this talk, experimental and computational investigation of solvent, temperature and concentration effects on the circular dichroism (CD) and optical rotation (OR) of (R)-3 -methylcyclohexanone (R3MCH), (R)-3-methylcyclopentanone (R3MCP) and carvone conformers will be discussed. CD and OR measurements of these ketones gaseous samples and in ten common solvents of wide polarity range for different concentrations and sample temperatures were recorded and related to molecular conformation. Density functional theoretical calculations were performed using Gaussian09 at B3LYP functions with aug-cc-pVDZ level of theory. Also, CD and OR spectra for the optimized geometries of the ketones dominant conformers were computed over the ultraviolet and visible region in the gas phase as well as in ten solvents of varying polarity range, and under the umbrella of the polarizable continuum model (PCM). By comparing theoretical and experimental results, few thermodynamic parameters were deduced for the individual equatorial and axial conformers of each molecule in gas phase and in solvation.
Zhang, Feng; Wang, Xin; Yin, Daixia; Peng, Bo; Tan, Changyin; Liu, Yunguo; Tan, Xiaofei; Wu, Shixue
2015-04-15
This study investigated the efficiency and mechanisms of Cd removal by biochar pyrolyzed from water hyacinth (BC) at 250-550 °C. BC450 out-performed the other BCs at varying Cd concentrations and can remove nearly 100% Cd from aqueous solution within 1 h at initial Cd ≤ 50 mg l(-1). The process of Cd sorption by BC450 followed the pseudo-second order kinetics with the equilibrium being achieved after 24 h with initial Cd ranging from 100 to 500 mg l(-1). The maximum Cd sorption capacity of BC450 was estimated to be 70.3 mg g(-1) based on Langmuir model, which is prominent among a range of low-cost sorbents. Based on the balance analysis between cations released and Cd sorbed onto BC450 in combination with SEM-EDX and XPS data, ion-exchange followed by surface complexation is proposed as the dominant mechanism responsible for Cd immobilization by BC450. In parallel, XRD analysis also suggested the formation of insoluble Cd minerals (CdCO3, Cd3P2, Cd3(PO4)2 and K4CdCl6) from either (co)-precipitation or ion exchange. Results from this study highlighted that the conversion of water hyacinth into biochar is a promising method to achieve effective Cd immobilization and improved management of this highly problematic invasive species. Copyright © 2015 Elsevier Ltd. All rights reserved.
The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands
NASA Astrophysics Data System (ADS)
Shestakov, A. V.; Fazlizhanov, I. I.; Yatsyk, I. V.; Gilmutdinov, I. F.; Ibragimova, M. I.; Shustov, V. A.; Eremina, R. M.
2018-05-01
The objects of the investigation were uniformly Ag+ doped Hg0.76Cd0.24Te mercury chalcogenide monocrystals obtained by ion implantation with subsequent thermal annealing over 20 days. After implantation and annealing the conductivity was inverted from n-type with carrier concentration of 1016 cm‑3 to p-type with carrier concentration of ≈ 3.9 × 1015 cm‑3. The investigations of microwave absorption derivative (dP/dH) showed the existence of strong oscillations in the magnetic field for Ag:Hg0.76Cd0.24Te in the temperature range 4.2–12 K. The concentration and effective mass of charge carrier were determined from oscillation period and temperature dependency of oscillation amplitude. We suppose that this phenomenon is similar to the de Haas–van Alphen effect in weakly correlated electron system with imperfect nesting vector.
Temperature-driven massless Kane fermions in HgCdTe crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teppe, F.; Marcinkiewicz, M.; Krishtopenko, S. S.
2016-08-30
It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phasemore » transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 106 m s -1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.« less
Biochemical responses to cadmium exposure in Oncorhynchus mykiss erythrocytes.
Orlando, Patrick; Silvestri, Sonia; Ferlizza, Enea; Andreani, Giulia; Carpenè, Emilio; Falcioni, Giancarlo; Tiano, Luca; Isani, Gloria
2017-11-01
Cd is known for its carcinogenic effects, however its mechanism of toxicity and in particular its ability to promote oxidative stress is debated. In fact, although it is considered a redox-inactive metal, at high concentration Cd was shown to promote indirectly oxidative stress. In this study we investigated metal accumulation in ex vivo exposed trout (Oncorhynchus mykiss) erythrocytes and Cd dose-dependent effect in terms of RBC viability, cytosolic and mitochondrial ROS levels as well as its effects on mitochondrial membrane depolarization, hemoglobin stability and precipitation. In the concentration range used, Cd did not affect cell viability. However, metal accumulation was associated with an increase in all oxidative indexes evaluated, except mitochondrial superoxide anion production that, on the contrary, was significantly decreased, probably due to a lowered respiration rate associated with interference of Cd with complex I, II and III, as suggested by the observed Cd-dependent mitochondrial membrane depolarization. On the other hand, hemoglobin destabilisation seems to be the major trigger of oxidative stress in this cell type. Copyright © 2017. Published by Elsevier Inc.
High levels of migratable lead and cadmium on decorated drinking glassware.
Turner, Andrew
2018-03-01
Externally decorated glassware used for the consumption of beverages, purchased new or sourced second-hand, and including tumblers, beer glasses, shot glasses, wine glasses and jars, has been analysed for Pb and Cd by portable x-ray fluorescence (XRF) spectrometry. Out of 197 analyses performed on distinctly different colours and regions of enamelling on 72 products, Pb was detected in 139 cases and among all colours tested, with concentrations ranging from about 40 to 400,000μgg -1 (median=63,000μgg -1 ); Cd was detected in 134 cases and among all colours apart from gold leaf, with concentrations ranging from about 300 to 70,000μgg -1 (median=8460μgg -1 ). The frequent occurrence of these metals is attributed to their use in both the oxidic fluxes and coloured pigments of decorative enamels employed by the glass industry. A standard test involving extraction of the external surface to within 20mm of the rim (lip area) by 4% acetic acid and subsequent analysis by ICP was applied to selected positive samples (n=14). Lead concentrations normalised to internal volume exceeded limit values of 0.5mgL -1 in all but one case, with concentrations over 100mgL -1 returned by three products. Cadmium concentrations exceeded limit values of 4mgL -1 in five cases, with a maximum concentration of about 40mgL -1 . Repeating the experiment on five positive samples using a carbonated drink (Coca Cola Classic) resulted in lower extractable concentrations but non-compliance for Pb in all cases. The presence of high concentrations of total and extractable Pb and Cd in the decorated lip areas of a wide range of products manufactured in both China and Europe is cause for concern from a health and safety perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Nicolau, Lídia; Monteiro, Sílvia S; Pereira, Andreia T; Marçalo, Ana; Ferreira, Marisa; Torres, Jordi; Vingada, José; Eira, Catarina
2017-07-01
Pollution is among the most significant threats that endanger sea turtles worldwide. Waters off the Portuguese mainland are acknowledged as important feeding grounds for juvenile loggerheads. However, there is no data on trace element concentrations in marine turtles occurring in these waters. We present the first assessment of trace element concentrations in loggerhead turtles (Caretta caretta) occurring off the coast of mainland Portugal. Also, we compare our results with those from other areas and discuss parameters that may affect element concentrations. Trace element concentrations (As, Cd, Cu, Pb, Mn, Hg, Ni, Se, Zn) were determined in kidney, liver and muscle samples from 38 loggerheads stranded between 2011 and 2013. As was the only element with higher concentrations in muscle (14.78 μg g -1 ww) than in liver or kidney. Considering non-essential elements, Cd presented the highest concentrations in kidney (34.67 μg g -1 ) and liver (5.03 μg g -1 ). Only a weak positive link was found between renal Cd and turtle size. Inter-elemental correlations were observed in both liver and kidney tissues. Hepatic Hg values (0.30 ± 0.03 μg g -1 ) were higher than values reported in loggerheads in the Canary Islands but lower than in Mediterranean loggerheads. Cd concentrations in the present study were only exceeded by values found in turtles from the Pacific. Although many endogenous and exogenous parameters related with complex life cycle changes and wide geographic range may influence trace element accumulation, the concentrations of Cd are probably related to the importance of crustaceans in loggerhead diet in the Portuguese coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determining provenance of marine metal pollution in French bivalves using Cd, Zn and Pb isotopes
NASA Astrophysics Data System (ADS)
Shiel, Alyssa E.; Weis, Dominique; Cossa, Daniel; Orians, Kristin J.
2013-11-01
Cadmium, Zn and Pb isotopic compositions (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) have been used to distinguish between natural and anthropogenic sources of these metals in bivalves collected from the coastlines of France (English Channel, Atlantic and Mediterranean coasts). The Cd isotopic signatures (δ114Cd = -1.08‰ to -0.52‰) exhibited by bivalves from the coastlines of France, excluding those from NE France, are within the range of those exhibited by bivalves from the USA East coast (δ114Cd = -1.20‰ to -0.54‰). This indicates the high prevalence of industry, as well as the low natural contributions of Cd from North Atlantic waters in both regions. Thus, the significance of anthropogenic Cd sources is similar. These significant anthropogenic contributions are identified for bivalves with a large range in tissue Cd concentrations. Importantly, French bivalves from the Gironde estuary and Marennes-Oléron basin (regions of historic and modern importance for oyster farming, respectively) exhibited the highest Cd levels of the study. Their Cd isotopic signatures indicate historical smelting emissions remain the primary Cd source despite the cessation of local smelting activities in 1986 and subsequent remedial efforts. No significant variability is observed in the δ66Zn values of the French bivalves (∼0.53‰), with the exception of the much heavier compositions exhibited by oysters from the polluted Gironde estuary (1.19-1.27‰). Lead isotopes do not fractionate during processing like Cd and Zn. They can, therefore, be used to identify emissions from industrial processes and the consumption of unleaded gasoline and diesel fuel as metal sources to French bivalves. Cadmium and Zn isotopes are successfully used here as tracers of anthropogenic processing emissions and are combined with Pb isotope "fingerprinting" techniques to identify metal sources.
Predicting plant uptake of cadmium: validated with long-term contaminated soils.
Lamb, Dane T; Kader, Mohammed; Ming, Hui; Wang, Liang; Abbasi, Sedigheh; Megharaj, Mallavarapu; Naidu, Ravi
2016-10-01
Cadmium accumulates in plant tissues at low soil loadings and is a concern for human health. Yet at higher levels it is also of concern for ecological receptors. We determined Cd partitioning constants for 41 soils to examine the role of soil properties controlling Cd partitioning and plant uptake. From a series of sorption and dose response studies, transfer functions were developed for predicting Cd uptake in Cucumis sativa L. (cucumber). The parameter log K f was predicted with soil pH ca , logCEC and log OC. Transfer of soil pore-water Cd 2+ to shoots was described with a power function (R 2 = 0.73). The dataset was validated with 13 long-term contaminated soils (plus 2 control soils) ranging in Cd concentration from 0.2 to 300 mg kg -1 . The series of equations predicting Cd shoot from pore-water Cd 2+ were able to predict the measured data in the independent dataset (root mean square error = 2.2). The good relationship indicated that Cd uptake to cucumber shoots could be predicted with Cd pore and Cd 2+ without other pore-water parameters such as pH or Ca 2+ . The approach may be adapted to a range of plant species.
Heavy doping of CdTe single crystals by Cr ion implantation
NASA Astrophysics Data System (ADS)
Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian
2018-03-01
Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.
Heavy metals in Mugil cephalus (Mugilidae) from the Ligurian Sea (North-West Mediterranean, Italy).
Squadrone, S; Prearo, M; Gavinelli, S; Pellegrino, M; Tarasco, R; Benedetto, A; Abete, M C
2013-01-01
Pb, Cd and Hg in muscles of flathead mullet (Mugil cephalus), collected from Bocca di Magra, La Spezia (Ligurian Sea, Mediterranean Sea, Italy), were determined using graphite furnace atomic absorption spectrometry after microwave digestion for Pb and Cd and direct mercury analyser for Hg. Average Pb concentrations varied in the range 0.20-0.24 mg/kg, whereas Cd and Hg levels were negligible. None of the tested 200 samples exceeded the European regulatory limits as set by EC 1881/2006 and 420/2011. Metal concentrations in fish muscles were assessed for human consumption according to provisional tolerable weekly intake. The estimated values of Pb, Cd and Hg in M. cephalus's edible parts in this study were below the values established by the Joint WHO/FAO Expert Committee on Food Additives. Therefore, it can be concluded that there is no health problem in human consumption.
Song, Jinxi; Yang, Xiaogang; Zhang, Junlong; Long, Yongqing; Zhang, Yan; Zhang, Taifan
2015-01-01
Accurate estimation of the variability of heavy metals in river water and the hyporheic zone is crucial for pollution control and environmental management. The biotoxicities and potential ecological risks of heavy metals (Cu, Zn, Pb, Cd) in a solid-liquid two-phase system were estimated using the Geo-accumulation Index, Potential Ecological Risk Assessment and Quality Standard Index methods in the Weihe River of Shaanxi Province, China. Water and sediment samples were collected from five study sites during spring, summer and winter, 2013. The dominant species in the streambed sediments were chironomids and flutter earthworm, whose bioturbation mainly ranged from 0 to 20 cm. The concentrations of heavy metals in surface water and pore water varied obviously in spring and summer. The degrees of concentration of Cu and Cd in spring and summer were higher than the U.S. water quality Criteria Maximum Concentrations. Furthermore, the biotoxicities of Pb and Zn demonstrated season-spatial variations. The concentrations of Cu, Zn, Pb and Cd in spring and winter were significantly higher than those in summer, and the pollution levels also varied obviously in different layers of the sediments. Moreover, the pollution level of Cd was the most serious, as estimated by all three assessment methods. PMID:26193293
Arnamwong, Suteera; Wu, Longhua; Hu, Pengjie; Yuan, Cheng; Thiravetyan, Paitip; Luo, Yongming; Christie, Peter
2015-01-01
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg(-1) of Cd and 241 mg kg(-1) Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+-N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9-88.3 and 2691-4276 mg kg(-1), respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg(-1), respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voyer, R.A.; McGovern, D.G.
1991-01-01
Two 28-day, life-cycle tests were conducted to evaluate effects of constant and fluctuating salinities on chronic toxicity of cadmium to Mysidopsis bahia at 27C. Salinities of 10 to 32% and cadmium concentrations of 1 to 9 micrograms/l were examined. Estimated median tolerance concentrations at day 28 ranged from 4.8 to 6.3 micrograms Cd/l over the salinity range of 13 to 29%. Size and fecundity of exposed and unexposed females were predicted to be comparable when cadmium was equal or greater than 5.0 micrograms Cd/l and salinities equal or less than 20% and at concentrations of less than 5 micrograms/l atmore » lower salinities. At higher cadmium levels both responses were impaired regardless of salinity. Reproduction in control treatments was an order of magnitude lower in low (10 and 13%) as compared to high (21, 29, 32%) salinity treatments. This effect of salinity on reproduction was not moderated by periodic exposure to higher, more suitable salinities. Survival, growth and reproduction were not impacted by addition of 5 micrograms Cd/l under fluctuating salinity conditions. The no-effect concentration is 4-5 micgrogram Cd/1 regardless of salinity. Changes in survival, growth and reproduction observed are consistent with the principal distribution of M. bahia in estuaries relative to salinity. Comparison of these data with previously reported acute responses suggests that the acute water quality criterion for cadmium should be salinity-dependent whereas the chronic criterion need not be.« less
Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019
Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
NASA Astrophysics Data System (ADS)
Díaz-Reyes, J.; Contreras-Rascón, J. I.; Galván-Arellano, M.; Arias-Cerón, J. S.; Gutiérrez-Arias, J. E. M.; Flores-Mena, J. E.; Morín-Castillo, M. M.
2016-12-01
Pb2 +-doped CdS nanofilms are prepared using the growth technique chemical bath deposition (CBD) under optimum conditions lead acetate at the reservoir temperature of 20 ± 2 °C. The Pb2+ molar concentration was in the range 0.0 ≤ x ≤ 0.19.67, which was determined by energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction results show that the films are of PbS-CdS composites with individual CdS and PbS planes. The X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS-deposited films showed the zincblende (ZB) crystalline phase. The average grain size of the CdS films ranged from 1.21 to 6.67 nm that was determined by the Debye-Scherrer equation from ZB (111) direction, and it was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the Pb2+-doped CdS denotes the Raman shift of the characteristic peak in the range of 305-298 cm-1 of the CdS crystals, which is associated with the lead ion incorporation. The films exhibit three direct bandgaps, 2.44 eV attributed to CdS; the other varies continuously from 1.67 to 1.99 eV and another disappears as Pb2+ molar fraction increases.
NASA Astrophysics Data System (ADS)
Kameyama, Koji; Tani, Shigeru; Sugawara, Reiko; Ishikawa, Yuichi
The objective of this study was to investigate the applicability of phytoextraction with a Cd-hyperaccumulator plant (Arabidopsis halleri ssp. gemmifera) to remediate Cd-contaminated Andisols. Cd absorption potentials of this plant for Andisols were examined in pot experiments. Sequentially, phytoextraction durations for remediation of Cd-contaminated Andisols were calculated from the experimental data. The results were as follows: (1) Cd concentrations in the plant shoots ranged from 170-750 mgṡkg-1. (2) Cd absorption of the plant for Andisols with ALC (Autoclaved Lightweight aerated Concrete) was less than for Andisols without ALC. However, the plants absorbed the same amount of soil Cd extracted by 0.01 M HCl with or without ALC. (3) Calculations suggest that the applicability of phytoextraction with this plant is high for slightly contaminated Andisols. Therefore, phytoextraction with Arabidopsis halleri ssp. gemmifera may be a viable option for the remediation of Cd-contaminated Andisols.
Ferretti, S; Lee, S K; MacCraith, B D; Oliva, A G; Richardson, D J; Russell, D A; Sapsford, K E; Vidal, M
2000-11-01
Nitrite is an important human health and environmental analyte. As such, the European Union (EU) has imposed a limit for nitrite in potable water of 0.1 mg l-1 (2.18 microM). In order to develop an optical biosensing system for the determination of nitrite ions in environmental waters, cytochrome cd1 nitrite reductase has been extracted and purified from the bacterium Paracoccus pantotrophus. The protein has been spectroscopically characterised in solution and important kinetic parameters of nitrite reduction of the cytochrome cd1 enzyme, i.e., Km, Vmax and kcat have been determined. The influence of pH on the activity of the cytochrome cd1 has been investigated and the results suggest that this enzyme can be used for the determination of nitrite in the pH range 6-9. Biosensing experiments with the cytochrome cd1 in solution suggested that the decrease in intensity of the absorption band associated with the d1 haem (which is the nitrite binding site), at 460 nm, with increasing nitrite concentrations would enable the measurement of this analyte with the optimum limit of detection. The cytochrome cd1 has been encapsulated in a bulk sol-gel monolith with no structural changes observed and retention of enzymatic activity. The detection of nitrite ions in the range 0.075-1.250 microM was achieved, with a limit of detection of 0.075 microM. In order to increase the speed of response, a sol-gel sandwich thin film structure was formulated with the cytochrome cd1. This structure enabled the determination of nitrite concentrations within ca. 5 min. The sol-gel sandwich entrapped cytochrome cd1 enzyme was found to be stable for several months when the films were stored at 4 degrees C.
Díaz, Elba; Pérez, Dustin; Delgado Acevedo, Johanna; Massol-Deyá, Arturo
2018-01-01
Trace element composition in plant biomass could be used as an indicator of environmental stress, management practices and restoration success. A longitudinal study was conducted to compare Pb, Cd, and Cu content in seagrass Syringodium filiforme collected at a former bombing range in Puerto Rico with those of a Biosphere Reserve under similar geoclimatic conditions. Trace elements were measured by atomic absorption after dry-ashing of samples and extraction with acid. In general, levels of Pb, Cd, and Cu varied during 2001, 2003, 2005-2006, and 2013-2016. Results showed that bioaccumulated concentration of these trace elements were consistently higher, but not significant, at the bombing range site. As expected in polluted areas, greater variability in Pb and Cd content were observed in the military impacted site with levels up to 14 and 17 times higher than seagrass from the reference site, respectively. Although a decrease in Pb was observed after cessation of all military activities in 2003, the concentration in plant biomass was still above levels of ecological concern, indicating that natural attenuation is insufficient for cleanup of the site.
Wei, Xin; Gao, Bo; Wang, Peng; Zhou, Huaidong; Lu, Jin
2015-02-01
Street dusts from Heavy Density Traffic Area, Residential Area, Educational Area and Tourism Area in Beijing, China, were collected to study the distribution, accumulation and health risk assessment of heavy metals. Cr, Cu, Zn, Cd and Pb concentrations were in higher concentrations in these four locations than in the local soil background. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Beijing were generally at moderate or low levels. Ni, Cu, Zn and Pb concentrations in the Tourism Area were the highest among four different areas in Beijing. A pollution assessment by Geoaccumulation Index showed that the pollution level for the heavy metals is in the following order: Cd>Pb>Zn>Cu>Cr>Ni. The Cd levels can be considered "heavily contaminated" status. The health risk assessment model that was employed to calculate human exposure indicated that both non-carcinogenic and carcinogenic risks of selected metals in street dusts were generally in the low range, except for the carcinogenic risk from Cr for children. Copyright © 2014 Elsevier Inc. All rights reserved.
Fang, Yanyan; Nie, Zhiqiang; Liu, Feng; Die, Qingqi; He, Jie; Huang, Qifei
2014-10-01
Concentrations of heavy metals (As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn) in market vegetables and fishes in Beijing, China, are investigated, and their health risk to local consumers is evaluated by calculating the target hazard quotient (THQ). The heavy metal concentrations in vegetables and fishes ranged from not detectable (ND) to 0.21 mg/kg fresh weight (f.w.) (As), ND to 0.10 mg/kg f.w. (Cd), and n.d to 0.57 mg/kg f.w. (Pb), with average concentrations of 0.17, 0.04, and 0.24 mg/kg f.w., respectively. The measured concentrations of As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn are generally lower than the safety limits given by the Chinese regulation safety and quality standards of agriculture products (GB2762-2012). As, Cd, and Pb contaminations are found in vegetables and fishes. The exceeding standard rates are 19 % for As, 3 % for Cd, and 25 % for Pb. Pb contaminations are found quite focused on the fish samples from traditional agri-product markets. The paper further analyzed the health risk of heavy metals in vegetables and fishes respectively from supermarkets and traditional agri-product markets; the results showed that the fishes of traditional agri-product markets have higher health risk, while the supermarkets have vegetables of higher heavy metal risk, and the supervision should be strengthened in the fish supply channels in traditional agri-product markets.
Partition coefficient of cadmium between organic soils and bean and oat plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddqui, M.F.R.; Courchesne, F.; Kennedy, G.
Environmental fate models require the partition coefficient data of contaminants among two or more environmental compartments. The bioaccumulation of cadmium (Cd) by bean and oat plants grown on organic soils in a controlled growth chamber was investigated to validate the plant/soil partition coefficient. Total Cd was measured in the soils and in the different parts of the plants. The mean total Cd concentrations for soil cultivated with beans and oats were 0.86 and 0.69 {micro}g/g, respectively. Selective extractants (BaCl{sub 2}, Na-pyrophosphate and HNO{sub 3}-hydroxy) were used to evaluate solid phase Cd species in the soil. In the soil cultivated withmore » bean, BaCl{sub 2} exchangeable, Na-pyrophosphate extractable and HNO{sub 3}-NH{sub 2}OH extractable Cd represented 1.2, 1.6 and 50.9% of total soil Cd, respectively. For the soil cultivated with oats, the same extractants gave values of 1.1, 1.8 and 61.9%. Cd concentration levels in bean plants followed the sequence roots > fruits = stems > leaves (p < 0.01) while the following sequence was observed for oat plants: roots > fruits > stems > leaves (p < 0.05). The partition coefficient for total Cd (Cd{sub Plant tissue}/Cd{sub Soil}) was in the range of 0.28--0.55 for bean plants and 1.03--1.86 for oat plants.« less
Kalman, J; Smith, B D; Riba, I; Blasco, J; Rainbow, P S
2010-06-01
Biodynamic parameters of the ragworm Nereis diversicolor from southern Spain and south England were experimentally derived to assess the inter-population variability of physiological parameters of the bioaccumulation of Ag, Cd and Zn from water and sediment. Although there were some limited variations, these were not consistent with the local metal bioavailability nor with temperature changes. Incorporating the biodynamic parameters into a defined biodynamic model, confirmed that sediment is the predominant source of Cd and Zn accumulated by the worms, accounting in each case for 99% of the overall accumulated metals, whereas the contribution of dissolved Ag to the total accumulated by the worm increased from about 27 to about 53% with increasing dissolved Ag concentration. Standardised values of metal-specific parameters were chosen to generate a generalised model to be extended to N. diversicolor populations across a wide geographical range from western Europe to North Africa. According to the assumptions of this model, predicted steady state concentrations of Cd and Zn in N. diversicolor were overestimated, those of Ag underestimated, but still comparable to independent field measurements. We conclude that species-specific physiological metal bioaccumulation parameters are relatively constant over large geographical distances, and a single generalised biodynamic model does have potential to predict accumulated Ag, Cd and Zn concentrations in this polychaete from a single sediment metal concentration.
P. Thangavel; Stephanie Long; Rakesh Minocha
2007-01-01
Cell suspension cultures of red spruce (Picea rubens Sarg.) were selected to study the effects of cadmium (Cd) and zinc (Zn) on phytochelatins (PCs) and related metabolites after 24 h exposure. The PC2 and its precursor, γ-glutamylcysteine (γ-EC) increased two to fourfold with Cd concentrations ranging from 12...
New NbCd2 Phase in Niobium-Cadmium Coating Films
NASA Astrophysics Data System (ADS)
Volodin, V. N.; Tuleushev, Yu. Zh.; Zhakanbaev, E. A.; Tsai, K. V.; Rofman, O. V.
2018-02-01
Solid solutions in the form of alloy coatings have been obtained for the first time in the Cd concentration range of 64.5% using ion-plasma sputtering and the codeposition of Nb and Cd ultrafine particles. This supports thermal fluctuation melting and the coalescence of fine particles. A coating of niobium and cadmium layers less than 2 nm thick at 68 at % Cd results in the formation of a new phase identified as NbCd2. The tetragonal fcc phase with lattice parameters a = 0.84357 nm and c = 0.54514 nm forms directly during film coating. XRD data for the identification of the intermetallic compound have been determined. The thermal stability of the NbCd 2 intermetallic compound is limited by 200°C. The properties of the synthesized NbCd 2 phase are typical of semiconductors.
Analysis of several heavy metals in wild edible mushrooms from regions of China.
Chen, Xin-Hua; Zhou, Hong-Bo; Qiu, Guan-Zhou
2009-08-01
The metal (Cu, Ni, Cd, Hg, As, Pb) contents in wild edible mushrooms collected from three different sites in China were determined by atomic absorption spectrometry and atomic fluorescence spectrometry. All element concentrations were determined on a dry weight basis. A total of 11 species was studied, five being from the urban area and six from rural areas in China. The As content ranged from 0.44 to 1.48 mg/kg. The highest As content was seen in Macrolepiota crustosa from the urban area, and the lowest in Russula virescens from rural areas. A high Ni concentration (1.35 mg/kg) was found in Calvatia craniiformis from the urban area. The lowest Ni level was 0.11 mg/kg, for the species R. virescens and Cantharellus cibarius. The Cu content ranged from 39.0 to 181.5 mg/kg. The highest Cu content was seen in Agaricus silvaticus and the lowest in C. cibarius. The Pb content ranged from 1.9 to 10.8 mg/kg. The highest Pb value was found in C. craniiformis. The Cd content ranged from 0.4 to 91.8 mg/kg. The highest Cd value was found in M. crustosa. The Hg content ranged from 0.28 to 3.92 mg/kg. The highest Hg level was found in Agaricus species. The levels of the heavy metals Cd, Pb, and Hg in the studied mushroom species from urban area can be considered high. The metal-to-metal correlation analysis supported they were the same source of contamination. High automobile traffic was identified as the most likely source of the contamination. Based upon the present safety standards, consumption of those mushrooms that grow in the polluted urban area should be avoided.
Study of metals concentration levels in Patella piperata throughout the Canary Islands, Spain.
Bergasa, Oscar; Ramírez, Rubén; Collado, Cayetano; Hernández-Brito, J Joaquín; Gelado-Caballero, María Dolores; Rodríguez-Somozas, María; Haroun, Ricardo J
2007-04-01
In order to assess the extent of metal contamination at rocky shores of the Canarian Archipelago, metal concentrations have been measured in Patella piperata (Gould, 1846), using the standard atomic absorption spectrophotometer technique. Ranges of elements concentrations measured (in microg g(-1)) found in the biota were: Cd (0.36 +/- 0.26 microg g(-1) dry wt.), Cu (2.05 +/- 0.91 dry wt.), Pb (1.57 +/- 1.14 microg g(-1)dry wt.) and Zn (10.37 +/- 4.60 microg g(-1) dry wt.). Variation in metal concentrations in Patella, was tested by using non-parametric statistical methods. Cd content had a maximum in the Archipelago Chinijo, northward of Lanzarote Island. The metal concentrations recorded at the clean stations may be considered carefully if they are used like background levels.
Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures
NASA Astrophysics Data System (ADS)
Eskandari, Abdollah; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-03-01
Un- and lead (Pb)-doped cadmium oxide (CdO) semiconductor nanostructures were synthesized by a sonochemical method to study their physical properties. The obtained X-ray diffraction (XRD) patterns indicated cubic CdO crystalline structures for all samples and showed that the crystallite size of CdO increases with Pb addition. Scanning electron microscopy (SEM) images of the nanostructures illustrated agglomerated oak-like particles for the Pb-doped CdO nanostructures. Furthermore, optical studies suggested that the emission band gap energy of the CdO nanostructures lies in the range of 2.27-2.38 eV and crystalline defects increase by incorporation of Pb atoms in the CdO crystalline lattice. In addition, electrical experiments declared that the n-type electrical nature of the un- and Pb-doped CdO nanostructures and the minimum of Pb atoms lead to a high carrier concentration.
Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning
2013-10-01
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.
Structural and Magnetic Properties of {Eu}(3+) Eu 3 + -Doped {CdNb}_{2} {O}_{6} CdNb 2 O 6 Powders
NASA Astrophysics Data System (ADS)
Topkaya, Ramazan; Boyraz, Cihat; Ekmekçi, Mete Kaan
2018-03-01
Europium-doped CdNb2O6 powders with the molar concentration of Eu^{3+} (0.5, 3 and 6 mol%) were successfully prepared at 900°C by using molten salt synthesis method. The effect of europium (Eu) molar concentration on the structural and temperature-dependent magnetic properties of CdNb2O6 powders has been investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques in the temperature range of 10-300 K. XRD results confirm that all the powders have orthorhombic crystal structure. It has been confirmed from VSM and FMR measurements that Eu^{3+}-doped CdNb2O6 powders have ferromagnetic behaviour for each Eu^{3+} molar concentration between 10 and 300 K. XRD and EDX analyses indicate that there is no magnetic impurity in Eu^{3+}-doped CdNb_2O_6 powders, supporting that the ferromagnetic behaviour of the powders arises from Eu^{3+} ions. The observed ferromagnetism was elucidated with the intrinsic exchange interactions between the magnetic moments associated with the unpaired 4 f electrons in Eu^{3+} ions. The saturation magnetization decreases with increasing Eu^{3+} molar concentration. The temperature-dependent magnetization behaviour was observed not to agree with Curie-Weiss law because europium obeys Van Vleck paramagnetism. Broad FMR spectra and a g-value higher than 2 were observed from FMR measurements, indicating the ferromagnetic behaviour of the powders. It was found that while the resonance field of FMR spectra decreases, the linewidth increases as a function of Eu^{3+} molar concentration.
Hu, Pengjie; Ouyang, Younan; Wu, Longhua; Shen, Libo; Luo, Yongming; Christie, Peter
2015-01-01
Pot and field experiments were conducted to investigate the effects of water regimes on the speciation and accumulation of arsenic (As) and cadmium (Cd) in Brazilian upland rice growing in soils polluted with both As and Cd. In the pot experiment constant and intermittent flooding treatments gave 3-16 times higher As concentrations in soil solution than did aerobic conditions but Cd showed the opposite trend. Compared to arsenate, there were more marked changes in the arsenite concentrations in the soil solution as water management shifted, and therefore arsenite concentrations dominated the As speciation and bioavailability in the soil. In the field experiment As concentrations in the rice grains increased from 0.14 to 0.21 mg/kg while Cd concentrations decreased from 0.21 to 0.02 mg/kg with increasing irrigation ranging from aerobic to constantly flooding conditions. Among the various water regimes the conventional irrigation treatment produced the highest rice grain yield of 6.29 tons/ha. The As speciation analysis reveals that the accumulation of dimethylarsinic acid (from 11.3% to 61.7%) made a greater contribution to the increase in total As in brown rice in the intermittent and constant flooding treatments compared to the intermittent-aerobic treatment. Thus, water management exerted opposite effects on Cd and As speciation and bioavailability in the soil and consequently on their accumulation in the upland rice. Special care is required when irrigation regime methods are employed to mitigate the accumulation of metal(loid)s in the grain of rice grown in soils polluted with both As and Cd. Copyright © 2014. Published by Elsevier B.V.
Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension
NASA Astrophysics Data System (ADS)
Rinehart, Benjamin S.; Cao, Caroline G. L.
2016-08-01
Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seco, A.; Marzal, P.; Gabaldon, C.
1999-06-01
The single adsorption of Cd and Zn from aqueous solutions has been investigated on Scharlau Ca 346 granular activated carbon in a wide range of experimental conditions: pH, metal concentration, and carbon concentration. The results showed the efficiency of the activated carbon as sorbent for both metals. Metal removals increase on raising the pH and carbon concentration, and decrease on raising the initial metal concentration. The adsorption processes have been modeled using the surface complex formation (SCF) Triple Layer Model (TLM). The adsorbent TLM parameters were determined. Modeling has been performed assuming a single surface bidentate species or an overallmore » surface species with fractional stoichiometry. The bidentate stoichiometry successfully predicted cadmium and zinc removals in all the experimental conditions. The Freundlich isotherm has been also checked.« less
Effect of substrate temperature on implantation doping of Co in CdS nanocrystalline thin films.
Chandramohan, S; Kanjilal, A; Sarangi, S N; Majumder, S; Sathyamoorthy, R; Hong, C-H; Som, T
2010-07-01
We demonstrate doping of nanocrystalline CdS thin films with Co ions by ion implantation at an elevated temperature of 573 K. The modifications caused in structural and optical properties of these films are investigated. Co-doping does not lead to amorphization or formation of any secondary phase precipitate for dopant concentrations in the range of 0.34-10.8 at.% used in the present study. However, we observe a systematic reduction in the d-spacing with increasing cobalt concentration. Optical band gap of CdS does not show any obvious change upon Co-doping. In addition, implantation gives rise to grain growth and increase in the surface roughness. The results are discussed in the light of ion-matter interaction in the keV regime.
Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole
NASA Astrophysics Data System (ADS)
Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong
2015-04-01
Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL-1 (3.4 ng mL-1) and the quantitative determination range was 0-2.8 μg mL-1 with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.
Huang, Xiaochen; An, Guangnan; Zhu, Shishu; Wang, Li; Ma, Fang
2018-04-01
Arbuscular mycorrhizal (AM) fungi play an important role in plant tolerance of heavy metal contamination. In this study, a pot experiment was conducted to illustrate the effects of the two AM fungi species Funneliformis mosseae (Fm) and Rhizophagus irregularis (Ri) on plant growth of Oryza sativa L. either with or without ethylenediamine tetraacetate (EDTA) addition and during exposure to five Cd concentrations (in the range of 0-5 mg kg -1 ). The results showed that Fm inoculation achieved greater mycorrhizal colonization and mycorrhizal dependency indexes than Ri inoculation. In addition, the effects of AM fungi on Cd biosorption and translocation in rice were also investigated in the presence of EDTA. Despite cooperative adsorption, the Freundlich isotherm could describe the biosorption effects of Cd on rice roots regardless of AM fungi inoculation or EDTA addition. Cd concentrations in mycorrhizal roots increased but decreased in mycorrhizal shoots in contrast to the control treatment. Although EDTA addition negatively inhibited the uptake of Cd to mycorrhizal shoots, lower translocation factor (TF) and bioconcentration factor (BCF) were still observed in treatments with EDTA compared to control treatment. Our findings suggest that Ri and Fm inoculation enhanced Cd immobilization in the roots, thus preventing Cd entry into the food chain during exposure to low and high Cd stress, respectively.
Wang, Gongping; Zeng, Guangwei; Wang, Caie; Wang, Huasheng; Yang, Bo; Guan, Fangxia; Li, Dongpeng; Feng, Xiaoshan
2015-06-01
Amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) are a potential source of mesenchymal stem cells which could be used to repair skin damage. The use of mesenchymal stem cells to repair skin damage requires safe, effective and biocompatible agents to evaluate the effectiveness of the result. Quantum dots (QDs) composed of CdSe/ZnS are semiconductor nanocrystals with broad excitation and narrow emission spectra, which have been considered as a new chemical and fluorescent substance for non-invasively labeling different cells in vitro and in vivo. This study investigated the cytotoxic effects of QDs on hAM-dMSCs at different times following labeling. Using 0.75, 1.5 and 3.0 μL between quantum dots, labeled human amniotic mesenchymal stem cells were collected on days 1, 2 and 4 and observed morphological changes, performed an MTT cell growth assay and flow cytometry for mesenchymal stem cells molecular markers. Quantum dot concentration 0.75 μg/mL labeled under a fluorescence microscope, cell morphology was observed, The MTT assay showed cells in the proliferative phase. Flow cytometry expression CD29, CD31, CD34, CD44, CD90, CD105 and CD106. Within a certain range of concentrations between quantum dots labeled human amniotic mesenchymal stem cells has good biocompatibility.
Lepp, Nicholas W; Madejón, Paula
2007-01-01
Vegetation that develops spontaneously on metal-contaminated soils presents an opportunity to evaluate both metal bioavailability and the risks posed to biota. The behavior of Cd and Zn in the species of a spontaneously developed woodland, colonizing a canal embankment, has been investigated. Nitric-acid-extractable metal concentrations in the sediment-derived substrate ranged between 5.0 to 376 mg kg(-1)dry wt. Cd and 83.0 to 784 mg kg(-1)dry wt. Zn. The woodland is dominated by Willow (Salix) species. Salix caprea selectively accumulated Cd in all stem tissues, in contrast to S. viminalis, which regulated tissue Cd content. Both species showed an effective regulation of tissue Zn. Cadmium uptake by S. caprea was correlated with differences in soil pH, while Zn uptake was not. There was no relationship between tissue metal concentrations and soil metal nitric acid-extractable concentrations. Other aspects of ecosystem function appeared unaffected by the elevated Cd flux in S. caprea; leaf litter organisms present represented all major groups and there was no accumulation of organic matter. The woodland represents a potentially sustainable option for remediating a low value site with difficult access that does not involve removal of the contaminated material to a landfill or making a permanent inert cover.
Cadmium and mercury exposure over time in Swedish children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundh, T., E-mail: Thomas.Lundh@med.lu.se
Purpose: Knowledge about changes in exposure to toxic metals over time remains very sparse, in particular for children, the most vulnerable group. Here, we assessed whether a reduction in environmental pollution with cadmium (Cd) and mercury (Hg) caused a change in exposure over time. In total, 1257 children (age 4–9) in two towns in Sweden were sampled once in 1986–2013. Blood concentrations of Cd (b-Cd; n=1120) and Hg (b-Hg; n=560) were determined. Results: The median b-Cd was 0.10 (geometric mean 0.10; range 0.010–0.61) μg/L and b-Hg was 0.91 (geometric mean 0.83; range 0.021–8.2) μg/L. Children living close to a smeltermore » had higher b-Cd and b-Hg than those in urban and rural areas. There was no sex difference in b-Cd or b-Hg, and b-Cd and b-Hg showed no significant accumulation by age. b-Cd decreased only slightly (0.7% per year, p<0.001) over the study period. In contrast, b-Hg did show a clear decrease over the study period (3% per year, p<0.001). Conclusions: The exposure to Cd was very low but still might increase the risk of disease later in life. Moreover, b-Cd only showed a minor decrease, indicating that Cd pollution should be further restricted. b-Hg was relatively low and decreasing, probably because of reduced use of dental amalgam and lower Hg intake from fish. The b-Cd and b-Hg levels decreased much less than the levels of lead in the blood as previously found in the same children. - Highlights: • There are few studies of time trends for exposure to toxic metals, except for lead. • 1986–2013 we studied blood levels of cadmium and mercury in 1257 Swedish children. • The median blood concentration of cadmium was 0.10 μg/L, of mercury 0.83 μg/L. • Cadmium perhaps decreased by 0.7% per year, mercury by 3% per year. • Cadmium accumulation may result in toxic levels in elderly women.« less
Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.
2007-01-01
Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.
Towards practical cadmium phytoextraction with Noccaea caerulescens.
Simmons, R W; Chaney, R L; Angle, J S; Kruatrachue, M; Klinphoklap, S; Reeves, R D; Bellamy, P
2015-01-01
A series of field trials were conducted to investigate the potential of Noccaea caerulescens F.K. Mey [syn. Thlaspi caerulescens J &C Presl. (see Koch and Al-Shehbaz 2004)] populations (genotypes) derived from southern France to phytoextract localized Cd/Zn contamination in Thailand. Soil treatments included pH variation and fertilization level and application of fungicide. N. caerulescens populations were transplanted to the field plots three months after germination and harvested in May, prior to the onset of seasonal rains. During this period growth was rapid with shoot biomass ranging from 0.93-2.2 g plant(-1) (280-650 kg ha(-1)) DW. Shoot Cd and Zn concentrations for the four populations evaluated ranged from 460-600 and 2600-2900 mg kg(-1) DW respectively. Cadmium and Zn Translocation Factors (shoot/root) for the populations tested ranged from 0.91-1.0 and 1.7-2.1 and Bioaccumulation Factors ranged from 12-15 and 1.2-1.3. We conclude that optimizing the use of fungicidal sprays, acidic soil pH, planting density and increasing the effective cropping period will increase rates of Cd and Zn removal enough to facilitate practical Cd phytoextraction from rice paddy soils in Thailand.
NASA Astrophysics Data System (ADS)
Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.
2017-12-01
Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 ± 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 1016 to 1017/cm3 range is achieved for measured As concentrations between 1016 and 1020/cm3 with the highest doping efficiency of 40% occurring near 1017 As/cm3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.
Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.
2017-12-04
Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 +/- 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 10^16 to 10^17/cm^3 range is achieved for measured As concentrations between 10^16 and 10^20/cm^3 with the highest dopingmore » efficiency of 40% occurring near 10^17 As/cm^3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.
Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 +/- 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 10^16 to 10^17/cm^3 range is achieved for measured As concentrations between 10^16 and 10^20/cm^3 with the highest dopingmore » efficiency of 40% occurring near 10^17 As/cm^3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.« less
Sui, Dian-Peng; Fan, Hong-Tao; Li, Jing; Li, You; Li, Qiong; Sun, Ting
2013-09-30
A 0.050 mol L(-1) solution of poly (ethyleneimine) (PEI), had been used as a novel binding agent of diffusive gradients in thin-films (DGT) technique (PEI-DGT) for measuring the concentrations of labile Cu(2+), Cd(2+) and Pb(2+) in waters. The binding capacities of the PEI-DGT for Cu(2+), Cd(2+) and Pb(2+) were 11.8, 10.2 and 10.6 μmol L(-1), respectively. The performance of PEI-DGT was independence of pH in the range of 4-8 and ionic strength in the range from 1×10(-4) to 0.1 mol L(-1) (as NaNO3). PEI-DGT could measure 104.7±5.2% of the total concentration of Cd(2+) (0.500 mg L(-1)), 95.2±4.3% of the total Cu(2+) (0.500 mg L(-1)) and 99.2±3.4% of the total Pb(2+) (0.500 mg L(-1)) in synthetic solution. Effects of the ligands on the measurement of labile metals were also investigated in synthetic solutions containing the various concentrations of EDTA and humic acid. In EDTA solution, the concentrations of labile metals measured by PEI-DGT showed good agreement with the theoretical concentrations of free metal ions. In humic acid solution, the concentrations of labile metals measured by PEI-DGT decreased with the increase of the concentrations of humic acid. Several DGT devices with various binding agents, including PEI, sodium polyacrylate and poly(4-styrenesulfonate) solution, were used for the measurement of labile fractions of Cu(2+), Cd(2+) and Pb(2+) in the spiked waters and in mine wastewaters. The results showed that the concentrations of labile metal measured by DGT devices with different binding agents could be significantly different, indicating that the labile fractions of metals were dependent on the binding strength of the binding agents with metals. By choosing binding agents, the useful information on the speciation and bioavailability of the analytes can be provided. Copyright © 2013 Elsevier B.V. All rights reserved.
de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio
2018-02-01
A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recovery of heavy metals from spent Ni-Cd batteries by a potentiostatic electrodeposition technique
NASA Astrophysics Data System (ADS)
Yang, Chun-Chen
Two heavy metals, Cd and Ni, have been separately recovered from spent AA-size Ni-Cd batteries by the potentiostatic electrodeposition and chemical precipitation methods, respectively. Various types and concentrations of HCl, H 2SO 4, and HNO 3 acids had been used as leach extractants. Experimental results indicate that the acid with the best leach capability is 4 M HCl. Three complexing reagents of NH 3, sodium acetate, sodium citrate have been chosen and tested. The most effective buffer is sodium citrate. The optimum mole ratio of metallic ion to citrate ion is 1:1. The recovery process for Cd metal is conducted by the potentiostatic electrodeposition in a leach electrolyte with a sodium citrate complex. The optimum applied potential for Cd recovery is in the range -1100 to -1120 mV (versus saturated calomel electrode (SCE)). The current efficiency for the recovery process is between 70 and 90% and depends strongly on the process parameters, e.g. liquor, concentration, applied potential, temperature, type of complex reagents, mole ratio, mass-transfer rate.
Wiseman, C L S; Parnia, A; Chakravartty, D; Archbold, J; Zawar, N; Copes, R; Cole, D C
2017-04-01
Immigrant women are often identified as being particularly vulnerable to environmental exposures and health effects. The availability of biomonitoring data on newcomers is limited, thus, presenting a challenge to public health practitioners in the identification of priorities for intervention. In fulfillment of data needs, the purpose of this study was to characterize blood concentrations of cadmium (Cd) among newcomer women of reproductive age (19-45 years of age) living in the Greater Toronto Area (GTA), Canada and to assess potential sources of environmental exposures. A community-based model, engaging peer researchers from the communities of interest, was used for recruitment and follow-up purposes. Blood samples were taken from a total of 211 newcomer women from South and East Asia, representing primary, regional origins of immigrants to the GTA, and environmental exposure sources were assessed via telephone survey. Metal concentrations were measured in blood samples (diluted with 0.5% (v/v) ammonium hydroxide and 0.1% (v/v) octylphenol ethoxylate) using a quadrupole ICP-MS. Survey questions addressed a wide range of environmental exposure sources, including dietary and smoking patterns and use of nutritional supplements, herbal products and cosmetics. A geometric mean (GM) blood Cd concentration of 0.39µg/L (SD:±2.07µg/L) was determined for study participants (min/max: <0.045µg/L (LOD)/2.36µg/L). Several variables including low educational attainment (Relative Ratio (RR) (adjusted)=1.50; 95% CI 1.17-1.91), milk consumption (RR (adjusted)=0.86; 95% CI 0.76-0.97), and use of zinc supplements (RR (adjusted)=0.76; 95% CI 0.64-0.95) were observed to be significantly associated with blood Cd concentrations in the adjusted regression model. The variable domains socioeconomic status (R 2 adj =0.11) and country of origin (R 2 adj =0.236) were the strongest predictors of blood Cd. Blood Cd concentrations fell below those generally considered to be of human health concern. However, negative health effects cannot be entirely excluded, especially for those that fall in the upper percentile range of the distribution, given the mounting evidence for negative health outcomes at low environmental exposure concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.
Analysis of biogenic amines using corona discharge ion mobility spectrometry.
Hashemian, Z; Mardihallaj, A; Khayamian, T
2010-05-15
A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines.
Toxic Elements in Different Medicinal Plants and the Impact on Human Health.
Brima, Eid I
2017-10-11
Local medicinal plants from Madina, Saudi Arabia, are used to cure various diseases. However, some can cause adverse health effects. Five different medicinal plants were collected in the city of Madina: mahareeb ( Cymbopogon ), sheeh ( Artemisia ), harjal ( Cynanchum argel delile ), nabipoot ( Equisetum ), and kafmariam ( Vitex agnus-castus ). In total, four toxic elements including Al, Pb, As, and Cd were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The range of recoveries fell between 86.1 and 90.6% for all measured elements. Al levels were the highest of any of the studied elements in all plant samples, with Cymbopogon showing the highest levels. The range of concentrations of Al was 156-1609 mg/kg. Cd appeared at the lowest levels in all plants samples, with Vitex agnus-castus containing this element at the highest levels. Cd concentrations were in the range of 0.01-0.10 mg/kg. A washing process lowered the toxic elements in all plants; average % recoveries were Al (47.32%), As (59.1%), Cd (62.03%), and Pb (32.40%). The calculated human health risk assessment in one dose for toxic elements in all plants was as follows: Al (1.33 × 10 -3 -5.57 × 10 -2 mg/kg.bw), Pb (0-8.86 × 10 -5 mg/kg.bw), As (3.43 × 10 -7 -1.33 × 10 -5 mg/kg.bw), and Cd (0-3.14 × 10 -6 mg/kg.bw). Medicinal plants are a source of exposure to toxic elements. However, none of the plants in this study exceeded the daily guideline set by the WHO for any element based on conventional use by the local population. We may cautiously conclude that these medicinal plants pose no risk to users based on conventional use.
Abdallah, Maha Ahmed Mohamed
2011-07-01
Sediment quality of Lake Maryout (one of the four Nile Delta shallow brackish water lakes on the south-eastern coast of the Mediterranean Sea) is of concern as this lake is used for land reclamation and aquaculture and is an important fishing source. The magnitude and ecological relevance of metal pollution in Lake Maryout Main Basin was investigated by applying different sediment quality assessment approaches. The aim of this study was to estimate ecological risk of trace elements (Cd, Ni, Pb, Cr, Cu and Zn) in the surficial sediments (<63 jtm fraction) of Lake Maryout. Heavily contaminated sediments were evaluated by the Sediment Quality Guideline (SQG) of the US Environmental Protection Agency. The degree of contamination (Cd) was estimated as very high for each site. Two sets of SQGs effect range-low/effect range-median values and threshold effect concentration (TEC) and probable effect concentration (PEC) values were used in this study. Sediments from each site were judged toxic when more of the PEC values exceeded EPA guidelines. Based on the geoaccumulation index (Ieo) of target trace elements, the Main Basin of Lake Maryout has to be considered as extremely polluted with Cd (Igeo > or =5), strongly polluted with Zn (2 < or = Igeo < or =3), moderately polluted with Cu (1 < or = Igeo < or = 2), unpolluted to moderately polluted with Cr and Pb (0 < or = Igeo < or = 1 for each) and unpolluted with Ni (Igeo < or = 0). Lake Maryout sediments had heavy accumulations of Cd, which apparently come from drains that include industrial and raw domestic wastes. Therefore, a sequential extraction technique was applied to assess the five fractions (exchangeable, metals bound to carbonate, acid-reducible, oxidizable-organic and residual) of Cd in surface sediments. The Cd concentration in most sampling stations was dominated by the non-resistant fraction (anthropogenic). The result showed that those stations located in the vicinity of municipal and mixed waste drains posed a high potential risk to fauna and flora of Maryout Lake.
Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles
2018-01-01
Mesoporous silica nanoparticles (MSNs) have sparked considerable interest in drug/gene delivery, catalysis, adsorption, separation, sensing, antireflection coatings and bioimaging because of their tunable structural properties. The shape, size and pore structure of MSNs are greatly influenced by the type of additives used, e.g., solvent and pore-templating agent. Here, we studied the influence of cyclodextrin (CD) molecules on the formation of MSNs. The nanoparticles over 100 nm in diameter were synthesized by surfactant-templated, hydrolysis–polycondensation reactions in the presence of pristine CD (β-CD) or hydroxypropyl-functionalized CDs (HP-γ-CD and HP-β-CD). Depending on the formulation conditions, differently shaped MSNs, such as bean-like, spherical, ellipsoid, aggregate and faceted were generated. The morphology and size of MSNs varied with the CD-type used. Generally, spherical particles were obtained with β-CD, while a faceted morphology was observed for the particles synthesized using HP-CDs. The particle size could be tuned by adjusting the amount of CD used; increasing the CD concentration led to larger particles. MSNs synthesized in the presence of β-CD displayed a smaller particle size than those produced with HP-functional CDs. FTIR, TGA and solid-state 13C NMR demonstrated the adsorption of CDs on the particle surfaces. The proposed concept allows for the synthesis of silica nanoparticles with control over particle shape and size by adjusting the concentration of additives in a simple, one-pot reaction system for a wide range of applications. PMID:29527443
Assessment of cadmium (Cd) concentration in arable soil in China.
Zhang, Xiuying; Chen, Dongmei; Zhong, Taiyang; Zhang, Xiaomin; Cheng, Min; Li, Xinhui
2015-04-01
Cadmium (Cd) concentration in arable soil has drawn broad public attention due to its direct effect on Cd concentration in food. However, there have been few studies of surveying Cd accumulation on the national scale in China. This paper collected 486 studies of Cd concentrations in Chinese arable soil. The results showed that the average Cd concentration was 0.27 mg/kg, higher than its background value, indicating that Cd had been introduced into arable soil by human activity. The Cd concentrations in areas of mining and smelting, urban areas, and areas irrigated by wastewater were obviously higher than that in remote areas. Spatially, Cd concentrations were lower in the north than those in the south, and many hotspots existed throughout China due to mining and smelting activities. Most Cd in the arable soil were accumulated from external sources in all investigated provinces except Ningxia Hui Autonomous Region.
Lin, Lijin; Jin, Qian; Liu, Yingjie; Ning, Bo; Liao, Ming'an; Luo, Li
2014-11-01
A new method, the artificially high soil cadmium (Cd) concentration method, was used to screen for Cd hyperaccumulators among winter farmland weeds. Galinsoga parviflora was the most promising remedial plant among 5 Cd accumulators or hyperaccumulators. In Cd concentration gradient experiments, as soil Cd concentration increased, root and shoot biomass decreased, and their Cd contents increased. In additional concentration gradient experiments, superoxide dismutase and peroxidase activities increased with soil Cd concentrations up to 75 mg kg(-1) , while expression of their isoenzymes strengthened. Catalase (CAT) activity declined and CAT isoenzyme expression weakened at soil Cd concentrations less than 50 mg kg(-1) . The maxima of Cd contents in shoots and roots were 137.63 mg kg(-1) and 105.70 mg kg(-1) , respectively, at 100 mg kg(-1) Cd in soil. The root and shoot bioconcentration factors exceeded 1.0, as did the translocation factor. In a field experiment, total extraction of Cd by shoots was 1.35 mg m(-2) to 1.43 mg m(-2) at soil Cd levels of 2.04 mg kg(-1) to 2.89 mg kg(-1) . Therefore, the artificially high soil Cd concentration method was effective for screening Cd hyperaccumulators. Galinsoga parviflora is a Cd hyperaccumulator that could be used to efficiently remediate Cd-contaminated farmland soil. © 2014 SETAC.
Franceschini, N; Fry, R C; Balakrishnan, P; Navas-Acien, A; Oliver-Williams, C; Howard, A G; Cole, S A; Haack, K; Lange, E M; Howard, B V; Best, L G; Francesconi, K A; Goessler, W; Umans, J G; Tellez-Plaza, M
2017-03-01
Cadmium (Cd) is an environmental pollutant that has been associated with cardiovascular disease in populations, but the relationship of Cd with hypertension has been inconsistent. We studied the association between urinary Cd concentrations, a measure of total body burden, and blood pressure in American Indians, a US population with above national average Cd burden. Urinary Cd was measured using inductively coupled plasma mass spectrometry, and adjusted for urinary creatinine concentration. Among 3714 middle-aged American Indian participants of the Strong Heart Study (mean age 56 years, 41% male, 67% ever-smokers, 23% taking antihypertensive medications), urinary Cd ranged from 0.01 to 78.48 μg g -1 creatinine (geometric mean=0.94 μg g -1 ) and it was correlated with smoking pack-year among ever-smokers (r 2 =0.16, P<0.0001). Participants who were smokers were on average light-smokers (mean 10.8 pack-years), and urinary Cd was similarly elevated in light- and never-smokers (geometric means of 0.88 μg g -1 creatinine for both categories). Log-transformed urinary Cd was significantly associated with higher systolic blood pressure in models adjusted for age, sex, geographic area, body mass index, smoking (ever vs never, and cumulative pack-years) and kidney function (mean blood pressure difference by lnCd concentration (β)=1.64, P=0.002). These associations were present among light- and never-smokers (β=2.03, P=0.002, n=2627), although not significant among never-smokers (β=1.22, P=0.18, n=1260). Cd was also associated with diastolic blood pressure among light- and never-smokers (β=0.94, P=0.004). These findings suggest that there is a relationship between Cd body burden and increased blood pressure in American Indians, a population with increased cardiovascular disease risk.
Rehman, Zahir Ur; Khan, Sardar; Brusseau, Mark L; Shah, Mohammad Tahir
2017-02-01
Rapid urbanization and industrialization result in serious contamination of soil with toxic metals such as lead (Pb) and cadmium (Cd), which can lead to deleterious health impacts in the exposed population. This study aimed to investigate Pb and Cd contamination in agricultural soils and vegetables in five different agricultural sites in Pakistan. The metal transfer from soil-to-plant, average daily intake of metals, and health risk index (HRI) were also characterized. The Pb concentrations for all soils were below the maximum allowable limits (MAL 350 mg kg -1 ) set by State Environmental Protection Administration of China (SEPA), for soils in China, while Cd concentrations in the soils were exceeded the MAL (61.7-73.7% and 4.39-34.3%) set by SEPA (0.6 mg kg - ), and European Union, (1.5 mg kg -1 ) respectively. The mean Pb concentration in edible parts of vegetables ranged from 1.8 to 11 mg kg -1 . The Pb concentrations for leafy vegetables were higher than the fruiting and pulpy vegetables. The Pb concentrations exceeded the MAL (0.3 mg kg -1 ) for leafy vegetables and the 0.1 mg kg -1 MAL for fruity and rooty/tuber vegetables set by FAO/WHO-CODEX. Likewise, all vegetables except Pisum sativum (0.12 mg kg -1 ) contained Cd concentrations that exceeded the MAL set by SEPA. The HRI values for Pb and Cd were <1 for both adults and children for most of the vegetable species except Luffa acutangula, Solanum lycopersicum, Benincasa hispada, Momordi charantia, Aesculantus malvaceae, Cucumis sativus, Praecitrullus fistulosus, Brassica oleracea, and Colocasia esculanta for children. Based on these results, consumption of these Pb and Cd contaminated vegetables poses a potential health risk to the local consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of analytical methods for the determination of histamine in reference canned fish samples
NASA Astrophysics Data System (ADS)
Jakšić, S.; Baloš, M. Ž.; Mihaljev, Ž.; Prodanov Radulović, J.; Nešić, K.
2017-09-01
Two screening methods for histamine in canned fish, an enzymatic test and a competitive direct enzyme-linked immunosorbent assay (CD-ELISA), were compared with the reversed-phase liquid chromatography (RP-HPLC) standard method. For enzymatic and CD-ELISA methods, determination was conducted according to producers’ manuals. For RP-HPLC, histamine was derivatized with dansyl-chloride, followed by RP-HPLC and diode array detection. Results of analysis of canned fish, supplied as reference samples for proficiency testing, showed good agreement when histamine was present at higher concentrations (above 100 mg kg-1). At a lower level (16.95 mg kg-1), the enzymatic test produced some higher results. Generally, analysis of four reference samples according to CD-ELISA and RP-HPLC showed good agreement for histamine determination (r=0.977 in concentration range 16.95-216 mg kg-1) The results show that the applied enzymatic test and CD-ELISA appeared to be suitable screening methods for the determination of histamine in canned fish.
Genotoxic effects and induction of phytochelatins in the presence of cadmium in Vicia faba roots.
Béraud, Eric; Cotelle, Sylvie; Leroy, Pierre; Férard, Jean-François
2007-10-04
This study investigates different effects in roots of Vicia faba (broad bean) after exposure to cadmium. Genotoxic effects were assessed by use of the well-known Vicia root tip micronucleus assay. Cytotoxic effects were evaluated by determining the mitotic index in root tip cells. Finally, molecular induction mechanisms were evaluated by measuring phytochelatins with HPLC. After hydroponical exposure of V. faba roots to a range of cadmium concentrations and during different exposure times, the results of this approach showed large variations, according to the endpoint measured: after 48 h of exposure, genotoxic effects were found between 7.5 x 10(-8) and 5 x 10(-7)M CdCl(2), and cytotoxic effects were observed between 2.5 x 10(-7) and 5 x 10(-7)M CdCl(2). Statistically significant phytochelatin (PC) concentrations were measured at >or=10(-6)M CdCl(2) for PC(2), and at >or=10(-5)M CdCl(2) for PC3 and PC4.
Assessment of Trace Element Concentrations in Birds of Prey in Korea.
Kim, Jungsoo; Oh, Jong-Min
2016-07-01
This study presents liver concentrations of trace elements of cinereous vultures (Aegypius monachus), common buzzards (Buteo buteo), common kestrels (Falco tinnunculus), and Eurasian eagle owls (Bubo bubo) collected in Korea from 2007 to 2008. Iron (Fe), manganese (Mn), copper (Cu), lead (Pb), and cadmium (Cd) concentrations in common kestrel juveniles were greater than in other juveniles of birds of prey. Adult cinereous vultures had greater Fe, Pb, and Cd concentrations than in those of other species, but common kestrels had greater Mn and Cu concentrations than in those of other birds of prey. Zinc concentrations in Eurasian eagle owl juveniles and adults were greater than in juveniles and adults of other species, respectively. In common kestrels, Fe, Cu, Pb, and Cd concentrations were significantly greater in adults than in juveniles. In Eurasian eagle owls, only Pb concentrations were greater in adults than in juveniles. Essential elements, such as Fe, Zn, Mn, and Cu concentrations, were within the range of other birds of prey studies. Seventeen individual birds of prey (30 %) were at a level considered Pb exposed (6-30 µg/g dw). This is a greater proportion than reported earlier in herons, egrets, and other birds from Korea. Elevated Pb concentration might be attributed to ingestion of Pb shot and bullet fragments for cinereous vultures and common buzzards, and urbanization for common kestrels. Cadmium concentrations in birds of prey were within the background concentrations (<3 µg/g dw) for wild birds.
Crocodile Chemistry. [CD-ROM].
ERIC Educational Resources Information Center
1999
This high school chemistry resource is an on-screen chemistry lab. In the program, students can experiment with a huge range of chemicals, choosing the form, quantity and concentrations. Dangerous or difficult experiments can be investigated safely and easily. A vast range of equipment can be set up, and complex simulations can be put together and…
Cadmium Isotope Fractionation of the Surface Waters in a Mining Area Impacted by Acid Mine Drainage
NASA Astrophysics Data System (ADS)
Yang, W.; Chen, Y.; Tang, Y.
2016-12-01
The pollution of natural waters and sediments with metals derived from acid mine drainage (AMD) is a global environmental problem. However, the processes governing the behaviors of transportation and transformation of metals like Cd in mountain area are poorly understood, the complicated hydro-geomorphic settings of mountain catchments are difficult to access . And few reports have been reported about the effects of. In this study, the concentration and the isotopic composition of Cd selected filtered stream samples from the Hengshi river affected by AMD have been determined. The Cd concentrations were determined for collected sediments samples, which cover the entire river valley from upstream to the downstream regions. Results showed that reducing concentrations for Cd were found in the river water from upstream to downstream, and also high enrichment factor for Cd in all the sediments, suggest that Cd mainly is derived from Liwu dam and easily enter into solid phase. The isotopic data show that the dissolved Cd in rivers is characterized by δ114/110Cd, ranged from 0.09 ‰ to 0.40 ‰ in term of δ114/110Cd , the mean is 0.25 ± 0.06 ‰, and the content of Cd from the sediments is 0.18 to 39.85 μg/g. The river isotope values are similar to the isotope signature of Liwu dam, which contain significant amounts of contaminants under a deep water cover, such as mine tailings, sulfide-rich rocks and minerals. Large fractionated Cd (δ114/110Cd = 0.40 ± 0.09 ‰) was found in water sample collected from midstream near a farmland, which imply there is a new source different from the LIWU dam depend on the heavier Cd signature. We hypothesize that this shift results from either hydrology changes over time in the main and tributaries stream, and some new pollution source imported. The change in the behavior of sorption of cadmium on oxides and hydroxides in the sediment system under low pH cause indistinguishable fractionation. Our result is encouraging for application of Cd isotopes as a novel tracer for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds.
A national level assessment of metal contamination in bats.
Hernout, Béatrice V; Arnold, Kathryn E; McClean, Colin J; Walls, Michael; Baxter, Malcolm; Boxall, Alistair B A
2016-07-01
Many populations of bat species across the globe are declining, with chemical contamination one of many potential stressors implicated in these demographic changes. Metals still contaminate a wide range of habitats, but the risks to bats remain poorly understood. This study is the first to present a national scale assessment of toxic metal (Cd, Pb) and essential trace metal (Cu, Zn) concentrations in bats. Metal concentrations in tissues (kidneys, liver, stomach -stomach content, bones and fur) were measured in 193 Pipistrellus sp. in England and Wales using ICP-MS, and compared to critical toxic concentrations for small mammals. The concentrations of metals determined in bat tissues were generally lower than those reported elsewhere. Strong positive associations were found between concentrations in tissues for a given metal (liver and kidneys for Cd, Cu and Pb; stomach and fur and fur and bones for Pb), suggesting recent as well as long term exposure to these contaminants. In addition, positive correlations between concentrations of different metals in the same tissues (Cd and Zn, Cu and Zn, Cd and Pb, Pb and Zn) suggest a co-exposure of metals to bats. Approximately 21% of the bats sampled contained residues of at least one metal at concentrations high enough to elicit toxic effects (associated with kidney damage), or to be above the upper level measured in other mammal species. Pb was found to pose the greatest risk (with 7-11% of the bats containing concentrations of toxicological concern), followed by Cu (4-9%), Zn (0.5-5.2%) and Cd (0%). Our data suggest that leaching of metals into our storage matrix, formaldehyde, may have occurred, especially for Cu. The overall findings suggest that metal contamination is an environmental stressor affecting bat populations, and that further research is needed into the direct links between metal contamination and bat population declines worldwide. Copyright © 2016 Elsevier Ltd. All rights reserved.
López Marzo, Adaris M; Pons, Josefina; Blake, Diane A; Merkoçi, Arben
2013-09-15
In this work for first time a lateral flow immunosensor device (LFID) for Cd(2+) determination in drinking and tap waters using the Cd-EDTA-BSA-AuNP conjugate as signal producer tool is introduced. The principle of working is based on competitive reaction between the Cd-EDTA-BSA-AuNP conjugate deposited on the conjugation pad strip and the Cd-EDTA complex formed in the analysis sample for the same binding sites of the 2A81G5 monoclonal antibody, specific to Cd-EDTA but not Cd(2+) free, which is immobilized onto the test line. The device has a large response range within 0.4-2000ppb, being the linear response between 0.4 and 10ppb. The quantification and detection limits of 0.4 and 0.1ppb, respectively, represent the lowest ones reported so far for paper based metal sensors. The obtained detection limit is 50 times lower than the maximum contamination level required for drinking water. Here we also show a new option for increasing the sensibility in the LFDs with competitive format, through the decreasing in concentrations of the Cd-EDTA-BSA-AuNP conjugate deposited in the conjugation strip and the mAbs deposited in the test and control zones until to reach optimized concentrations. It is an important result take into account that the increase in sensibility is one of the challenges in the field of LFD sensors, where are focused many of the ongoing researches. In addition, a specificity study of the device for several metal interferences, where potential metal interferences are masked with the use of the EDTA and OVA optimized concentrations, is presented too. Copyright © 2013 Elsevier B.V. All rights reserved.
Acute suppression of serum IgM and IgA in tank workers exposed to benzene.
Kirkeleit, J; Ulvestad, E; Riise, T; Bråtveit, M; Moen, B E
2006-12-01
We investigated associations between benzene exposure and alterations of proteins and cells of the immune system among workers maintaining cargo tanks containing crude oil residues. Individual exposure to benzene, benzene in blood and urine, peripheral blood lymphocytes (total lymphocytes, lymphocytes in subpopulations CD3, CD4, CD8, CD19, CD56 and CD4/CD8 ratio), complement factors C3 and C4 and serum concentration of immunoglobulins (IgG, IgA, IgM and IgE) were analysed among 13 tank workers and nine unexposed referents (catering section). Benzene exposure was measured during three consecutive 12-h work days. Blood and urine samples were collected pre-shift on the first day (baseline), post-shift on the third day, and pre-next shift on the following morning. The time spent in the cargo tank was logged. The individual geometric mean benzene exposure in the breathing zone of tank workers over 3 days was 0.15 p.p.m. (range 0.01-0.62 p.p.m.) (n = 26). The geometric mean benzene concentration in blood post-shift was 12.3 nmol/l among tank workers versus 0.7 nmol/l among the referents. Tank workers showed a decline (versus referents) in IgM from baseline to post-shift (t-test, P = 0.04) and IgA from baseline to pre-next shift (t-test, P = 0.01). They also showed a decline in CD4 T cells from baseline to post-shift (t-test, P = 0.04). Suppression correlated with benzene exposure, benzene concentrations in blood and urine and time spent in the tank. The groups did not differ significantly in the change in other immune parameters. The clinical significance is unknown and warrants further studies.
Hileman, Corrilynn O; Dirajlal-Fargo, Sahera; Lam, Suet Kam; Kumar, Jessica; Lacher, Craig; Combs, Gerald F; McComsey, Grace A
2015-01-01
Background: Selenium is an essential constituent of selenoproteins, which play a substantial role in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation, including cardiovascular disease (CVD). Although HIV infection has been associated with low selenium, the role of selenium status in HIV-related CVD is unclear. Objectives: We sought to assess associations between plasma selenium and markers of inflammation, immune activation, and subclinical vascular disease in HIV-infected adults on contemporary antiretroviral therapy (ART) and to determine if statin therapy modifies selenium status. Methods: In the Stopping Atherosclerosis and Treating Unhealthy bone with RosuvastatiN trial, HIV-infected adults on stable ART were randomly assigned 1:1 to rosuvastatin or placebo. Plasma selenium concentrations were determined at entry, week 24, and week 48. Spearman correlation and linear regression analyses were used to assess relations between baseline selenium, HIV-related factors and markers of inflammation, immune activation, and subclinical vascular disease. Changes in selenium over 24 and 48 wk were compared between groups. Results: One hundred forty-seven HIV-infected adults were included. All participants were on ART. Median current CD4+ count was 613, and 76% had HIV-1 RNA ≤48 copies/mL (range: <20–600). Median plasma selenium concentration was 122 μg/L (range: 62–200). At baseline, higher selenium was associated with protease inhibitor (PI) use, lower body mass index, and a higher proportion of activated CD8+ T cells (CD8+CD38+human leukocyte antigen-DR+), but not markers of inflammation or subclinical vascular disease. Over 48 wk, selenium concentrations increased in the statin group (P < 0.01 within group), but the change did not differ between groups (+13.1 vs. +5.3 μg/L; P = 0.14 between groups). Conclusions: Plasma selenium concentrations were within the normal range for the background population and were not associated with subclinical vascular disease in HIV-infected adults on contemporary ART. The association between current PI use and higher selenium may have implications for ART allocation, especially in resource-limited countries. Also, it appears that statin therapy may increase selenium concentrations; however, larger studies are necessary to confirm this finding. This trial was registered at clinicaltrials.gov as NCT01218802. PMID:26269240
Essential and toxic elements in seaweeds for human consumption.
Desideri, D; Cantaluppi, C; Ceccotto, F; Meli, M A; Roselli, C; Feduzi, L
2016-01-01
Essential elements (K, Ca, P, S, Cl, Mn, Fe, Cu, Zn, Ni, Br, and I) and nonessential or toxic elements (Al, Ti, Si, Rb, Sr, As, Cd, Sn, and Pb) were determined by energy-dispersive polarized x-ray fluorescence spectrometry in 14 seaweeds purchased in local specialty stores in Italy and consumed by humans. The differences in elements between the algae species reached up to 2-4 orders of magnitude. Lithothamnium calcareum showed the highest levels of Ca, Al, Si, Fe, and Ti. Palmaria palmata showed the highest concentrations of K, Rb, and Cl. The highest content of S was in Chondrus crispus. Laminaria digitata contained the highest concentrations of total As, Cd, Sn, Br, and I. The highest concentration of Zn was in Chlorella pyrenoidosa. Ulva lactuca displayed the highest levels of Cu, Ni, Mn, and Pb. Iodine levels ranged from 3.4 in Chlorella pyrenoidosa to 7316 mg/kg(dry) in Laminaria digitata. The nutrimental importance of essential elements was assessed using nutritional requirements. The results showed that the consumption of algae might serve as an important source of the essential elements. Health risk due to the toxic elements present in seaweed was estimated using risk estimators. Total As, Cd, and Pb concentrations ranged from <1 to 67.6, to 7.2 and to 6.7 mg/kg(dry) respectively; therefore, their contribution to total elemental intake does not appear to pose any threat to the consumers, but the concentrations of these elements should be controlled to protect the consumer against potential adverse health risks.
CD4(+)/CD8(+) T-lymphocyte Ratio: Effects of Rehydration before Exercise in Dehydrated Men
NASA Technical Reports Server (NTRS)
Greenleaf, John E.; Jackson, Catherine G. R.; Lawless, Desales
1995-01-01
Effects of fluid ingestion on CD4+/CD8+ T-lymphocyte cell ratios were measured in four dehydrated men (ages 30-46 yr) before and after 70 min of supine submaximal (71 % VO(sub 2max) lower extremity cycle exercise. Just before exercise, Evans blue dye was injected for measurement of plasma volume. The subjects then drank one of six fluid formulations (12 ml/kg) in 3-4 min. All six mean post-hydration (pre-exercise) CD4+/CD8+ ratios (Becton-Dickinson Fluorescence Activated Cell Sorter and FACScan Consort-30 software program were below the normal range of 1.2-1.5; mean (+/- SE) and range were 0.77 +/- 0.12 and 0.39-1.15, respectively. The post-exercise ratios increased: mean = 1.36 =/- 0.15 (P less than 0.05) and range = 0.98-1.98. Regression of mean CD4+/CD8+ ratios on mean plasma osmolality resulted in pre- and post-exercise correlation coefficients of -0.76 (P less than 0.10) and -0.92 (P less than 0.01), respectively. The decreased pre-exercise ratios (after drinking) were probably not caused by the Evans blue dye but appeared to be associated more with the stress (osmotic) of dehydration. The increased post-exercise ratios to normal levels accompanied the rehydration and were not due to the varied electrolyte and osmotic concentrations of the ingested fluids or to the varied vascular volume shifts during exercise. Thus, the level of subject hydration and plasma osmotality may be factors involved in the mechanism of immune system modulation induced by exercise.
Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics.
Gogorcena, Yolanda; Larbi, Ajmi; Andaluz, Sofia; Carpena, Ramón O; Abadía, Anunciación; Abadía, Javier
2011-12-01
Cork oak (Quercus suber L.) is an autochthonous tree species that is being used for reforestation in heavy-metal-contaminated areas in Spain. A hydroponics experiment was carried out to characterize the effects of Cd on several morphological and physiological parameters in this species, including shoot length, nutrient concentrations and allocation in different organs, leaf pigment concentrations, photosynthetic efficiency, root ferric chelate reductase (FCR) activity and organic acid concentrations in xylem sap. Four different Cd treatments were applied, adding Cd chelated with EDTA or as chloride salt at two different concentrations (10 and 50 µM Cd). After 1 month of Cd treatment, plant growth was significantly inhibited in all treatments. Results indicate that Cd accumulates in all organs 7- to 500-fold when compared with control plants. The highest Cd concentration was found in the 50 µM CdCl(2) treatment, which led to concentrations of ~30, 123 and 1153 µg Cd g(-1) dry weight in leaves, stems and roots, respectively. In the strongest Cd treatments the concentrations of P and Ca decreased in some plant parts, whereas the Mn leaf concentrations decreased with three of the four Cd treatments applied. The concentrations of chlorophyll and carotenoids on an area basis decreased, whereas the (zeaxanthin plus antheraxanthin)/(total violaxanthin cycle carotenoids) ratio and the non-photochemical quenching increased significantly in all Cd treatments. Cadmium treatments caused significant increases in the activity of the enzyme FCR in roots and in the concentrations of organic acids in xylem sap. Some of the physiological changes found support the fact that Cd induces a deficiency of Fe in cork oak, although the plant Fe concentrations were not reduced significantly. At higher concentrations the effects of Cd were more pronounced, and were more marked when Cd was in the free ion form than when present in the form of Cd-EDTA.
Tidal river sediments in the Washington, D.C. area. 1. Distribution and sources of trace metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velinsky, D.J.; Wade, T.L.; Schlekat, C.E.
1994-06-01
Thirty-three bottom sediments were collected from the Potomac and Anacostia rivers, Tidal Basin, and Washington Ship Channel in June 1991 to define the extent of trace metal contamination and to elucidate source areas of sediment contaminants. In addition, twenty-three sediment samples were collected directly in front of and within major storm and combined sewers that discharge directly to these areas. Trace metals (e.g., Cu, Crk Cd, Hg, Pb, and Zn) exhibited a wide range in values in the study area. Sediment concentrations of Pb ranged from 32.0{mu}g Pb g {sup -1} to 3,630 {mu}g Pb g{sup -1}, Cd from 0.24more » {mu}g Cd g{sup -1} to 4.1 {mu}g Cd g{sup -1}, and Hg from 0.13 {mu}g g{sup -1} to 9.2 {mu}g Hg g{sup -1}, with generally higher concentrations in either outfall or sewer sediments compared to river bottom-sediments. In the Anacostia River measurements indicate that numerous storm and combined sewers are major sources of trace metals. Similar results were observed in both the Tidal Basin and Washington Ship Channel. Cadmium and Pb concentrations are higher in specific sewers and outfalls, whereas the distribution of other metals suggests a more diffuse source to the rivers and basins of the area. Cadmium and Pb also exhibited the greatest enrichment throughout the study area, with peak values in the Anacostia River, near the Washington Navy Yard. Enrichment factors decrease in the order: Cd>Pb>Zn>Hg>Cu>Cr. Between 70% and 96% of sediment-bound Pb and Cd was released from a N{sub 2}-purged 1N HCI leach. On average, {le}40% of total sedimentary Cu was liberated, possibly due to the partial attack of organic components of the sediment. Sediments of the tidal freshwater portion of the Potomac estuary reflect moderate to highly contaminated area with substantial enrichments of sedimentary Pb, Cd, and Zn. The sediment phase containing these metals indicates potential mobility of the sediment-bound metals during either storm events or dredging. 39 refs., 5 figs., 6 tabs.« less
Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich
2018-03-01
We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake.
Niu, Yong; Jiao, Wei; Yu, Hui; Niu, Yuan; Pang, Yong; Xu, Xiangyang; Guo, Xiaochun
2015-11-27
With regard to the size of China's freshwater lakes, Taihu Lake ranks third and it plays an important role in the supply of drinking water, flood prevention, farming and navigation, as well as in the travelling industry. The problem of environmental pollution has attracted widespread attention in recent years. In order to understand the levels, distribution and sources of heavy metals in sediments of Taihu Lake, random selection was carried out to obtain 59 samples of surface sediment from the entire lake and study the concentrations of Pb, Cd, Cu, Zn, Cr and Ni. Toxic units were also calculated to normalize the toxicities caused by various heavy metals. As a result, Cd and Cu in sediment were considered lower than the effect range low (ERL) at all regions where samples were gathered, while Pb and Ni were categorized into ERL-effect range median (ERM) at over 22% of the regions where samples were obtained. Nevertheless, all average concentrations of the samples were below the level of potential effect. According to the findings of this research, significant spatial heterogeneity existed in the above heavy metals. In conclusion, the distribution areas of heavy metals with higher concentrations were mainly the north bays, namely Zhushan Bay, Meiliang Bay as well as Gonghu Bay. The distribution areas of Cu, Zn, Cr and Ni with higher concentration also included the lake's central region, whereas the uniform distribution areas of those with lower concentrations were the lake's southeast region. In addition, it was most probable that the spatial distribution of heavy metals was determined by river inputs, whereas atmospheric precipitation caused by urban and traffic contamination also exerted considerable effects on the higher concentrations of Pb and Cd. Through evaluating the total amount of toxic units (ΣTU), it was found that higher toxicity existed primarily in the north bays and central region of the lake. If the heavy metals were sorted by the reduction of mean heavy metal toxic units in Taihu Lake in descending order, it would be Pb, Cr, Ni, Cd, Zn and Cu. Generally speaking, these result of analyses are conducive to alleviating the contamination of heavy metals in Taihu Lake.
Barraclough, Katherine A; Staatz, Christine E; Johnson, David W; Gillis, David; Lee, Katie J; McWhinney, Brett C; Ungerer, Jacobus P J; Campbell, Scott B; Isbel, Nicole M
2013-04-01
Soluble CD30 (sCD30) has been associated with rejection and graft loss in kidney transplantation, leading to the suggestion that sCD30 might be a useful biomarker to adjust immunosuppressant medication dosing. However, there has been minimal study of the influence of individual immunosuppressive drugs on sCD30 levels. To evaluate the influence of mycophenolic acid (MPA), prednisolone, and tacrolimus exposure on sCD30 levels in adult kidney transplant recipients. The sCD30 levels were measured pretransplant and 30 days posttransplant. Area under the concentration-time curve (AUC) for each drug was estimated on day 30 using validated, multiple regression-derived limited sampling strategies. One hundred twenty-five subjects were included. Median (interquartile range) sCD30 levels were lower on day 30 posttransplant compared with pretransplant [10.7 (3.7-20.1) pg/mL versus 66.5 (46.0-95.1) pg/mL; P < 0.0001]. On univariate analyses, day 30 sCD30 levels were negatively correlated with MPA exposure and positively correlated with tacrolimus exposure. Using multivariate logistic regression, higher tacrolimus exposure was independently associated with higher day 30 sCD30 levels (2.2 change in odds for an SD increase in tacrolimus AUC 0-12, P = 0.01; 5.5 change in odds for an SD increase in tacrolimus predose concentration, P < 0.0001). In contrast, MPA and total and free prednisolone exposures were not independently associated with sCD30 levels. The sCD30 levels are significantly reduced in the presence of combination immunosuppression but are differentially affected by different immunosuppressant agents. More research is required before introduction of sCD30 measurement into clinical practice can be considered.
Gao, Bo; Li, Qiang; Zhou, Huai-Dong; Gao, Ji-Jun; Zou, Xiao-Wen; Yong, Huang
2014-05-01
The six heavy metal concentrations (Cr, Cr, As, Cd, Cu, Zn and Pb) in water samples collected from five reservoirs of Liao River Basin were studied. The health risk assessment for heavy metals pollution in reservoirs was conducted based on the environmental health risk assessment model recommended by U. S. Environmental Protection Agency. The results showed that the average concentrations of Cr, Cu, Zn, As, Cd and Pb in five reservoirs of Liao River Basin were 3.36, 1.03, 2. 70, 1.23, 0. 02 and 0. 03 microg L-1, respectively. In fact, these heavy metals concentrations were obviously lower than the Standard of National Drinking Water in China (GB 5749-2006). The results also showed that the metal carcinogenic risk was relatively high in this region. The order of the risk level of carcinogenic metals was Cr>As>Cd. The highest carcinogenic risk was from Cr, with the risk for adults ranging from 4. 50 X 10(-5) approximately 7. 53 X 10(-5) a-1' and the risk for children ranging from 6. 29 X 10(-5) to 1. 05 X 10(-4) a-1. The health risk levels caused by non-carcinogenic metals ranging from 10-13 to 10(-10) a-1 were lower than the acceptable range suggested by International Commission on Radiological Protection (ICRP) and the order of the risk level of non-carcinogenic metals was Cu>Zn>Pb. The total health risk of heavy metals for adults ranging from 1. 07X 10(-4) to 1. 72X 10(-4) a-1 and for children ranging from 1. 49 X 10(-4) to 2. 40 X 10(-4) a-1 exceeded the accepted level of 5 X 10(-5) a-1 as suggested by ICRP. The health risk levels of carcinogenic metals were significantly higher than those of non-carcinogenic metals in the reservoirs for Liao River Basin.
Assessment of heavy metal pollution in Republic of Macedonia using a plant assay.
Gjorgieva, Darinka; Kadifkova-Panovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče
2011-02-01
Different plant organs (leaves, flowers, stems, or roots) from four plant species-Urtica dioica L. (Urticaceae), Robinia pseudoacacia L. (Fabaceae), Taraxacum officinale (Asteraceae), and Matricaria recutita (Asteraceae)-were evaluated as possible bioindicators of heavy-metal pollution in Republic of Macedonia. Concentrations of Pb, Cu, Cd, Mn, Ni, and Zn were determined in unwashed plant parts collected from areas with different degrees of metal pollution by ICP-AES. All these elements were found to be at high levels in samples collected from an industrial area. Maximum Pb concentration was 174.52 ± 1.04 mg kg⁻¹ in R. pseudoacacia flowers sampled from the Veles area, where lead and zinc metallurgical activities were present. In all control samples, the Cd concentrations were found to be under the limit of detection (LOD <0.1 mg kg⁻¹) except for R. pseudoacacia flowers and T. officinale roots. The maximum Cd concentration was 7.97 ± 0.15 mg kg⁻¹ in R. pseudoacacia flowers from the Veles area. Nickel concentrations were in the range from 1.90 ± 0.04 to 5.74 ± 0.03 mg kg⁻¹. For U. dioica leaves and R. pseudoacacia flowers sampled near a lead-smelting plant, concentrations of 465.0 ± 0.55 and 403.56 ± 0.34 mg kg⁻¹ Zn were detected, respectively. In all control samples, results for Zn were low, ranging from 10.2 ± 0.05 to 38.70 ± 0.18 mg kg⁻¹. In this study, it was found that the flower of R. pseudoacacia was a better bioindicator of heavy-metal pollution than other plant parts. Summarizing the results, it can be concluded that T. officinale, U. dioica, and R. pseudoacacia were better metal accumulators and M. recutita was a metal avoider.
Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.
Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong
2015-04-15
Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL(-1) (3.4 ng mL(-1)) and the quantitative determination range was 0-2.8 μg mL(-1) with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
CdTe quantum dots as a novel biosensor for Serratia marcescens and Lipopolysaccharide.
Ebrahim, Sh; Reda, M; Hussien, A; Zayed, D
2015-01-01
The main objective of this work is to synthesize CdTe quantum dots (QDs) conjugated with Concanavalin A (Con A) as a novel biosensor to be selective and specific for the detection of Lipopolysaccharide (LPS). In addition, the conjugated CdTe QDs-Con A was used as fluorescence labels to capture Serratia marcescens bacteria through the recognition between CdTe QDs-Con A and LPS of S. marcescens. The appearance of the lattice plans in the high resolution transmission electron photograph indicated a high crystalline with an average size of 4-5 nm for the CdTe QDs. The results showed that the relative fluorescence intensity of CdTe QDs-Con A decreased linearly with LPS concentration in the range from 10 to 90 fg/mL and with correlation coefficient (R(2)) equal to 0.9713. LPS surrounding the S. marcescens bacteria was bound to the CdTe QDs-Con A and leads to quenching of PL intensity. It was found that a good linear relationship between the relative PL intensity and the logarithmic of cell population of S. marcescens in range from 1×10 to 1×10(6) CFU/mL at pH 7 with R(2) of 0.952 was established. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Zhiping; Ying, Haiqin; Liu, Yanyan; Xu, Wanzhen; Yang, Yanfei; Luan, Yu; Lu, Yi; Liu, Tianshu; Yu, Shui; Yang, Wenming
2017-05-01
This paper demonstrates a facile method to synthesize surface molecular imprinting polymer (MIP) on SiO2-coated CdTe QDs for selective detection of sulfadimidine (SM2). The fluorescent MIP sensor was prepared using cadmium telluride quantum dots (CdTe QDs) as the material of fluorescent signal readout, sulfadimidine as template molecule, 3-aminopropyltriethoxysilane (APTES) as functional monomer and tetraethyloxysilane (TEOS) as cross-linking agent. The CdTe cores were embed in the silicon shells by a sol-gel reaction and then the molecular imprinting layers were immobilized on the surface of the SiO2-coated CdTe QDs. Under the optimized conditions, the relative fluorescent intensity weakened in a linear way with the increasing concentration of sulfadimidine in the range of 10-60 μmol L-1. The practical application of the fluorescent MIP sensor was evaluated by means of analyzing sulfadimidine in the real milk samples. The recoveries were at the range of 90.3-99.6% and the relative standard deviation (RSD) ranged from 1.9 to 3.1%, which indicates the successful synthesis of the fluorescent MIP sensor. This sensor provides an alternative solution for selective determination of sulfadimidine from real milk samples.
[Transfer characteristics of cadmium in soil-vegetable-insect food chain].
Ding, Ping; Zhuang, Ping; Li, Zhi-An; Xia, Han-Ping; Tai, Yi-Ping; Lu, Huan-Ping
2012-11-01
Taking two kinds of vegetables (Brassica rapa and Amaranthus mangostanus) and one insect species (Prodenia litura) as test materials, a greenhouse pot experiment was conducted to study the transfer characteristics of cadmium (Cd) in soil-vegetable-insect food chain and the distribution patters of different Cd chemical forms in the organs of the two vegetables. With the increasing concentration of applied Cd in soil, the biomass of the two vegetables decreased significantly, while the Cd concentration in the vegetables had a significant increase. The Cd concentration in the vegetable organs decreased in the order of stem > root > leaf for A. mangostanus, and of stem > leaf > root for B. rapa. The Cd concentration in P. litura larvae also increased with the increasing concentration of Cd in soil, and the maximum Cd concentration in the P. litura larvae on B. rapa and A. mangostanus was 36.7 and 46.3 mg x kg(-1), respectively. In the feces of the larvae on B. rapa and A. mangostanus, the Cd concentration was up to 190 and 229.8 mg x kg(-1), respectively, suggesting that the most part of Cd absorbed by P. litura larvae was excreted out of their bodies via feces. In the organs of the two vegetables, NaCl-extractable Cd was the dominant Cd form (> 70%), followed by d-H2O- and ethanol-extractable Cd, while the HAc-extractable Cd (insoluble cadmium phosphate), HCl-extractable Cd (insoluble cadmium oxalate), and residual Cd only had a very low concentration. Such a present pattern of different Cd forms in vegetable organs could be conducive to the Cd transfer in the food chain. P. litura could ease Cd poison by excreting large amount of absorbed Cd via feces, and effectively restrict the transfer of Cd to next trophic level. Since B. rapa and A. mangostanus could accumulate large amount of Cd in their biomass, the two vegetables were suggested not to be planted in highly Cd-contaminated soil.
Zhan, Juan; Li, Tingxuan; Yu, Haiying; Zhang, Xizhou; Zhao, Li
2016-09-01
The application of organic amendments into heavy metal contaminated soil is considered as an environmentally friendly technique to promote the potential of phytoremediation. A pot experiment was carried out to evaluate the effect of humic substances on growth, cadmium (Cd) accumulation and phytostabilization potential of the mining ecotype (ME) and the corresponding non-mining ecotype (NME) of Athyrium wardii (Hook.) grown in Cd-contaminated soils. The addition of the humic substances demonstrated great promotion for the growth and Cd uptake of ME. Both plant biomass and Cd concentration significantly increased with the increasing application of the humic substances up to 100 g kg(-1), beyond which no significant change of underground part biomass and Cd concentrations in underground part of A. wardii was observed. The maximum Cd concentration in underground part of ME was 180 mg kg(-1) when 150 g kg(-1) humic substances were applied. The ME showed greater Cd accumulation capability in underground part (0.47-0.68 mg plant(-1)) than that of NME (0.27-0.45 mg plant(-1)). Increasing bioaccumulation coefficient (BCF) values of A. wardii was observed with increasing application of the humic substances. The BCF values of ME were higher than those of NME. However, the use of the humic substances exhibited little impact on translocation factors (TFs) of ME, and the TF values of ME were less than NME. Furthermore, the application of the humic substances improved the remediation factors (RFs) of A. wardii. The RF values in underground part of ME ranging from 0.73 to 0.91 % were apparently higher than those of NME. These results indicated that the humic substances can be a potential candidate for enhancing the phytostabilization of A. wardii grown in Cd-contaminated soils.
NASA Astrophysics Data System (ADS)
Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.
2018-02-01
The capacitive characteristics of metal-insulator-semiconductor (MIS) structures based on the compositionally graded Hg1-xCdxTe created by molecular beam epitaxy have been experimentally investigated in a wide temperature range (8-77 K). A program has been developed for numerical simulation of ideal capacitance-voltage (C-V) characteristics in the low-frequency and high-frequency approximations. The concentrations of the majority carriers in the near-surface semiconductor layer are determined from the values of the capacitances in the minima of low-frequency C-V curves. For MIS structures based on p-Hg1-xCdxTe, the effect of the presence of the compositionally graded layer on the hole concentration in the near-surface semiconductor layer, determined from capacitive measurements, has not been established. Perhaps this is due to the fact that the concentration of holes in the near-surface layer largely depends on the type of dielectric coating and the regimes of its application. For MIS structures based on n-Hg1-x Cd x Te (x = 0.22-0.23) without a graded-gap layer, the electron concentration determined by the proposed method is close to the average concentration determined by the Hall measurements. The electron concentration in the near-surface semiconductor layer of the compositionally graded n-Hg1-x Cd x Te (x = 0.22-0.23) found from the minimum capacitance value is much higher than the average electron concentration determined by the Hall measurements. The results are qualitatively explained by the creation of additional intrinsic donor-type defects in the near-surface compositionally graded layer of n-Hg1-x Cd x Te.
Anomalous metal concentrations in soil and till at the Ballinalack Zn-Pb deposit, Ireland
NASA Astrophysics Data System (ADS)
Kalveram, Ann-Kristin; McClenaghan, Seán H.; Kamber, Balz S.
2017-04-01
Metals such as zinc, iron, arsenic and lead are commonly found in low concentrations within soils. These signatures may occur as a result of natural dispersion from metal-bearing geological formations and (or) from anthropogenic sources. Prior to investigating any high or anomalous concentrations of metals in the surficial environment, it is important to reconcile potential sources of metals and verify whether element anomalies are in response to buried mineralization. Here we show how to distinguish true elevated concentrations from naturally occurring variations within a soil system. The research area is situated above the limestone-hosted Ballinalack Zn-Pb deposit in the central Irish Midlands. To investigate the pedogenesis and its related geochemical signature, top of the till and the BC soil horizon were sampled. Although the area can be described as pasture land, it does not preclude previous anthropogenic influences from former agricultural use and local small scale peat harvesting. For the soil BC horizon as well as in the top of the till, aqua regia-digestible element concentrations vary significantly and locally reach anomalous levels: Zn (median: 104 ppm; range: 27 - 13150 ppm), Pb (median: 16 ppm; range: 2 - 6430 ppm), As (median: 7.7 ppm; range: 1.4 - 362 ppm), Ag (median: 0.12 ppm; range: 0.04 - 19.9 ppm), Ba (median: 40 ppm; range: 10 - 1230 ppm), Cd (median: 1.5 ppm; range: 0.2 - 68 ppm), Co (median: 7.3 ppm; range: 0.5 - 22 ppm), Ni (median: 37 ppm; range: 3 - 134 ppm), Fe (median: 17900 ppm; range: 5000 - 52300 ppm), Ga (median: 2.4 ppm; range: 0.3 - 7.6 ppm), Sb (median: 1.2 ppm; range: 0.1 - 197 ppm) and Tl (median: 0.3 ppm; range: 0.02 - 8.6 ppm). Comparison with background levels from the area and grouped according to underlying geology, enrichment factor calculations (against Nb and Zr) indicate an elemental response to metalliferous-bearing bedrock. These results confirm that soil anomalies of Zn, Pb, As, Ag, Ba, Cd, Ni, Sb and Tl, are consistent with the characteristics of buried Waulsortian-hosted sulphide mineralization; furthermore, Mo, Se, Sn and V are anomalous. Principal component analysis reveals a strong geochemical relationship between Ag, As, Ba, Cd, Pb, Sb, Tl and Zn in soils, representing metal dispersion from a shallow sulphide lens underneath till and soil horizons. Results of laser ablation ICP-MS analyses of pyrite and sphalerite from the Ballinalack deposit confirm this geochemical relationship. These outcomes have helped to distinguish between true geological anomalies and possible anthropogenic inputs, an important consideration for any mineral exploration activities on cultivated land.
Croteau, M.-N.; Hare, L.; Tessier, A.
2003-01-01
Because Chaoborus larvae take up most of their cadmium (Cd) from food, we tested the hypothesis that Cd concentrations in this insect are directly related to those in their planktonic prey. We measured Cd in Chaoborus and in Zooplankton collected from 24 eastern Canadian lakes varying widely in their Cd concentrations. Cd concentrations in the predator were not correlated with those in bulk zooplankton, whether separated into size fractions liable to be eaten by Chaoborus or not. In highly acidic lakes, Cd concentrations in Chaoborus did not respond to increases in zooplankton Cd because of either competition between H and Cd ions at Cd absorption sites in the predator's gut or differences in prey community composition between highly acidic and circumneutral lakes. Relationships between Cd in Chaoborus and in its potential prey were stronger when we used Cd concentrations for specific crustacean taxa in a mechanistic model. We conclude that predictive relationships between metal concentrations in predators and their prey are likely to be strongest if the subset of prey consumed by the predator has been characterized and if this information is used in a bioaccumulation model.
Dong, Jing; Wu, Feibo; Zhang, Guoping
2006-09-01
Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.
Henriques, Bruno; Rocha, Luciana S; Lopes, Cláudia B; Figueira, Paula; Duarte, A C; Vale, Carlos; Pardal, M A; Pereira, E
2017-04-15
Metal uptake from contaminated waters by living Ulva lactuca was studied during 6 days, under different relevant contamination scenarios. In mono-metallic solutions, with concentrations ranging from 10 to 100 μg L -1 for Hg, 10-200 μg L -1 for Cd, and 50-1000 μg L -1 for Pb, macroalgae (500 mg L -1 , d.w.) were able to remove, in most cases 93-99% of metal, allowing to achieve water quality criteria regarding both surface and drinking waters. In multi-metallic solutions, comprising simultaneously the three metals, living macroalgae still performed well, with Hg removal (c.a. 99%) not being significantly affected by the presence of Cd and Pb, even when those metals were in higher concentrations. Removal efficiencies for Cd and Pb varied between 57 and 96%, and 34-97%, respectively, revealing an affinity of U. lactuca toward metals: Hg > Cd > Pb. Chemical quantification in macroalgae, after bioaccumulation assays demonstrated that all Cd and Hg removed from solution was really bound in macroalgae biomass, while only half of Pb showed to be sorbed on the biomass. Overall, U. lactuca accumulated up to 209 μg g -1 of Hg, up to 347 μg g -1 of Cd and up to 1641 μg g -1 of Pb, which correspond to bioconcentration factors ranging from 500 to 2200, in a dose-dependent accumulation. Pseudo-first order, pseudo-second order and Elovich models showed a good performance in describing the kinetics of bioaccumulation, in the whole period of time. In the range of experimental conditions used, no mortality was observed and U. lactuca relative growth rate was not significantly affected by the presence of metals. Results represent an important contribution for developing a macroalgae-based biotechnology, applied for contaminated saline water remediation, more "green" and cost-effective than conventional treatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sheng, Zhen; Chen, Ligang
2017-10-01
The concentration of L-cysteine (Cys) and glutathione (GSH) is closely related to the critical risk of various diseases. In our study, a new rapid method for the determination of Cys and GSH in water and urine samples has been developed using a fluorescent probe technique, which was based on crystal violet (CV)-functionalized CdTe quantum dots (QDs). The original QDs emitted fluorescence light, which was turned off upon adding CV. This conjugation of CV and QDs could be attributed to electrostatic interaction between COO - of mercaptopropionic acid (MPA) on the surface of QDs and N + of CV in aqueous solution. In addition, Förster resonance energy transfer (FRET) also occurred between CdTe QDs and CV. After adding Cys or GSH to the solution, Cys or GSH exhibited a stronger binding preference toward Cd 2+ than Cd 2+ -MPA, which disturbed the interaction between MPA and QDs. Thus, most MPA was able to be separated from the surface of QDs because of the participation of Cys or GSH. Then, the fluorescence intensity of the CdTe QDs was enhanced. Good linear relationships were obtained in the range of 0.02-40 μg mL -1 and 0.02-50 μg mL -1 , and the detection limits were calculated as 10.5 ng mL -1 and 8.2 ng mL -1 , for Cys and GSH, respectively. In addition, the concentrations of biological thiols in water and urine samples were determined by the standard addition method using Cys as the standard; the quantitative recoveries were in the range of 97.3-105.8%, and relative standard deviations (RSDs) ranged from 2.5 to 3.7%. The method had several unique properties, such as simplicity, lower cost, high sensitivity, and environmental acceptability. Graphical abstract Crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione with switch-on fluorescent strategy.
Characterization of Cadmium Uptake by Plant Tissue 12
Cutler, Jay M.; Rains, Donald W.
1974-01-01
The uptake of cadmium by excised root tissue of barley (Hordeum vulgare L. cv. Arivat) was investigated with respect to kinetics, concentration, and interactions with various cations. The role of metabolism in Cd absorption was examined using a range of temperatures, anaerobic treatments, and chemical inhibitors. The uptake and distribution of Cd in intact barley plants was also determined. A large fraction of the Cd taken up by excised barley roots was apparently the result of exchange adsorption and was displaced by subsequent desorption with unlabeled Cd, Zn, Cu, or Hg. Another fraction of Cd which could not be displaced by desorption in unlabeled Cd was thought to result from strong irreversible binding of Cd, perhaps on sites of the cell wall. The fraction of the Cd taken up beyond that by exchange adsorption by fresh roots was a linear function of temperature, and inhibited by conditions of low oxygen and by the presence of 2,4-dinitrophenol. It was concluded that this fraction of Cd entered excised barley roots by diffusion. Diffusion, when followed by sequestering, probably accounts for the accumulation of Cd observed in intact barley plants. PMID:16658840
Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin
2018-03-01
The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."
The food colorant erythrosine is a promiscuous protein-protein interaction inhibitor.
Ganesan, Lakshmi; Margolles-Clark, Emilio; Song, Yun; Buchwald, Peter
2011-03-15
Following our observation that erythrosine B (FD&C Red No. 3) is a relatively potent inhibitor of the TNF-R-TNFα and CD40-CD154 protein-protein interactions, we investigated whether this inhibitory activity extends to any other protein-protein interactions (PPI) as well as whether any other approved food colors possess such inhibitory activity. We found erythrosine, a poly-iodinated xanthene dye, to be a non-specific promiscuous inhibitor of a number of PPIs within the tumor necrosis factor superfamily (TNF-R-TNFα, CD40-CD154, BAFF-R-BAFF, RANK-RANKL, OX40-OX40L, 4-1BB-4-1BBL) as well as outside of it (EGF-R-EGF) with a remarkably consistent median inhibitory concentration (IC(50)) in the 2-20 μM (approximately 2-20mg/L) range. In agreement with this, erythrosine also showed cellular effects including clear cytotoxic effects around this concentration range (IC₅₀≈50 μM). Among the seven FDA-approved food colorants, only erythrosine showed consistent PPI inhibitory activity in the sub-100 μM range, which might also explain (at least partially) why it also has the lowest approved acceptable daily intake (ADI) (0.1 mg/kg body weight/day). Among a number of xanthene structural analogs of erythrosine tested for activity, rose Bengal, a food colorant approved in Japan, showed similar, maybe even more pronounced, promiscuous inhibitory activity, whereas fluorescein was inactive and gallein, phloxine, and eosin were somewhat active in some of the assays. Copyright © 2011 Elsevier Inc. All rights reserved.
Shentu, Jia-li; He, Zhen-li; Yang, Xiao-e; Li, Ting-qiang
2008-01-01
Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)2 to reach a concentration range of 0~16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5~1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1~16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. PMID:18357628
Körbling, M; Anderlini, P; Durett, A; Maadani, F; Bojko, P; Seong, D; Giralt, S; Khouri, I; Andersson, B; Mehra, R; vanBesien, K; Mirza, N; Przepiorka, D; Champlin, R
1996-12-01
Allogeneic transplantation of peripheral blood progenitor cells (PBPC) is emerging as a new stem cell transplant modality. Rather than undergoing general anesthesia for bone marrow harvest, normal blood stem cell donors are subjected to rhG-CSF mobilization treatment followed by single or multiple apheresis. Whereas the effects of cytokine treatment and apheresis on stem cell peripheralization and collection have been described, little is known about delayed effects of rhG-CSF treatment and apheresis on a normal hematopoietic system, and there are no long-term data that address safety issues. Ten normal, patient-related donors underwent a 3 or 4 day rhG-CSF (filgrastim) treatment (12 micrograms/kg/day) followed by single or tandem apheresis. We monitored peripheral blood (PB) cellularity including CD34+ and lymphoid subsets at baseline, during cytokine treatment, prior to apheresis, and at days 2, 4, 7, 30 and 100 post-apheresis. The PB progenitor cell concentration peak prior to apheresis was followed by a nadir by day 7 and normalized by day 30, with the exception of the most primitive CD34+ Thy-1dim CD38- progenitor subset that reached a nadir by day 30. Lymphoid subsets such as CD3, 4, 8, suppressor cells (CD3+ 4- 8- TCR+ alpha beta), and B cells (CD19+) showed a similar pattern with a nadir concentration by day 7, followed, except for B cells, by a rebound by day 30 and subnormal counts at day 100. The PB concentrations of hemoglobin and platelets dropped mainly due to the apheresis procedure itself, and normalized by day 30. With cytokine treatment, the PB alkaline phosphatase and lactate dehydrogenase concentrations increased 2.2- and 2.8-fold, respectively, over baseline, and returned to normal range by day 30. Based on the preliminary nature of this study, the clinical relevance of these findings is still unclear.
Frías-Espericueta, M G; Osuna-López, I; Bañuelos-Vargas, I; López-López, G; Muy-Rangel, M D; Izaguirre-Fierro, G; Rubio-Carrasco, W; Meza-Guerrero, P C; Voltolina, D
2009-10-01
The ranges of concentrations of Cd, Cu, Pb and Zn of the soft tissues of C. corteziensis collected in seven coastal lagoons of NW Mexico were 1.55-7.45, 17.50-166.36, 4.13-9.49 and 245.34-2,304.12 microg/g (dry weight), respectively. Their distributions were not consistent and there were no seasonal trends, indicating different point sources of the metals in each lagoon. The mean Cd and Pb concentrations were 5.34 and 6.30 microg/g (dry weight), which are higher than the values indicative of polluted areas. Our data indicate that only the levels of Cd are a possible health risk in six of these lagoons, and only in the case of regular local consumers. In one, Cu and Zn reach levels of concern.
Trace metals in sediments of two estuarine lagoons from Puerto Rico.
Acevedo-Figueroa, D; Jiménez, B D; Rodríguez-Sierra, C J
2006-05-01
Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San José Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in microg/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.
Esfandiari Baghbamidi, Sakineh; Beitollahi, Hadi; Karimi-Maleh, Hassan; Soltani-Nejad, Somayeh; Soltani-Nejad, Vahhab; Roodsaz, Sara
2012-01-01
A simple and convenient method is described for voltammetric determination of carbidopa (CD), based on its electrochemical oxidation at a modified multiwall carbon nanotube paste electrode. Under optimized conditions, the proposed method exhibited acceptable analytical performances in terms of linearity (over the concentration range from 0.1 to 700.0 μM), detection limit (65.0 nM), and reproducibility (RSD = 2.5%) for a solution containing CD. Also, square wave voltammetry (SWV) was used for simultaneous determination of CD, folic acid (FA), and tryptophan (TRP) at the modified electrode. To further validate its possible application, the method was used for the quantification of CD, FA, and TRP in urine samples. PMID:22666634
Chen, Jianmeng; Flexner, Charles; Liberman, Rosa G.; Skipper, Paul L.; Louissaint, Nicolette; Tannenbaum, Steven R.; Hendrix, Craig; Fuchs, Edward
2012-01-01
Objective Phase 0 studies can provide initial pharmacokinetics (PK) data in humans and help to facilitate early drug development, but their predictive value for standard dosing is controversial. To evaluate the prediction of microdosing for active intracellular drug metabolites, we compared the PK profile of two antiretroviral drugs, zidovudine (ZDV) and tenofovir (TFV), in microdose and standard dosing regimens. Study Design We administered a microdose (100 μg) of 14C-labeled drug (ZDV or tenofovir disoproxil fumarate (TDF)) with or without a standard unlabelled dose (300 mg) to healthy volunteers. Both the parent drug in plasma and the active metabolite, ZDV-triphosphate (ZDV-TP) or TFV-diphosphate (TFV-DP) in PBMCs and CD4+ cells were measured by AMS. Results The intracellular ZDV-TP concentration increased less than proportionally over the dose range studied (100 μg to 300 mg), while the intracellular TFV-DP PK were linear over the same dose range. ZDV-TP concentrations were lower in CD4+ cells versus total peripheral blood mononuclear cells (PBMCs), while TFV-DP concentrations were not different in CD4+ cells and PBMCs. Conclusion Our data were consistent with a rate-limiting step in the intracellular phosphorylation of ZDV but not TFV. AMS shows promise for predicting the PK of active intracellular metabolites of nucleosides, but nonlinearity of PK may be seen with some drugs. PMID:23187888
Investigating the feasibility of stem cell enrichment mediated by immobilized selectins.
Charles, Nichola; Liesveld, Jane L; King, Michael R
2007-01-01
Hematopoietic stem cell therapy is used to treat both malignant and non-malignant diseases, and enrichment of the hematopoietic stem and progenitor cells (HSPCs) has the potential to reduce the likelihood of graft vs host disease or relapse, potentially fatal complications associated with the therapy. Current commercial HSPC isolation technologies rely solely on the CD34 surface marker, and while they have proven to be invaluable, they can be time-consuming with variable recoveries reported. We propose that selectin-mediated enrichment could prove to be a quick and effective method for recovering HSPCs from adult bone marrow (ABM) on the basis of differences in rolling velocities and independently of CD34 expression. Purified CD34+ ABM cells and the unselected CD34- ABM cells were perfused over immobilized P-, E-, and L-selectin-IgG at physiologic wall shear stresses, and rolling velocities and cell retention data were collected. CD34+ ABM cells generally exhibited lower rolling velocities and higher retention than the unselected CD34- ABM cells on all three selectins. For initial CD34+ ABM cell concentrations ranging from 1% to 5%, we predict an increase in purity ranging from 5.2% to 36.1%, depending on the selectin used. Additionally, selectin-mediated cell enrichment is not limited to subsets of cells with inherent differences in rolling velocities. CD34+ KG1a cells and CD34- HL60 cells exhibited nearly identical rolling velocities on immobilized P-selectin-IgG over the entire range of shear stresses studied. However, when anti-CD34 antibody was co-immobilized with the P-selectin-IgG, the rolling velocity of the CD34+ KG1a cells was significantly reduced, making selectin-mediated cell enrichment a feasible option. Optimal cell enrichment in immobilized selectin surfaces can be achieved within 10 min, much faster than most current commercially available systems.
NASA Astrophysics Data System (ADS)
Liu, I.-Ping; Chen, Liang-Yih; Lee, Yuh-Lang
2016-09-01
Sodium acetate (NaAc) is utilized as an additive in cationic precursors of the successive ionic layer adsorption and reaction (SILAR) process to fabricate CdS quantum-dot (QD)-sensitized photoelectrodes. The effects of the NaAc concentration on the deposition rate and distribution of QDs in mesoporous TiO2 films, as well as on the performance of CdS-sensitized solar cells are studied. The experimental results show that the presence of NaAc can significantly accelerate the deposition of CdS, improve the QD distribution across photoelectrodes, and thereby, increase the performance of solar cells. These results are mainly attributed to the pH-elevation effect of NaAc to the cationic precursors which increases the electrostatic interaction of the TiO2 film to cadmium ions. The light-to-energy conversion efficiency of the CdS-sensitized solar cell increases with increasing concentration of the NaAc and approaches a maximum value (3.11%) at 0.05 M NaAc. Additionally, an ionic exchange is carried out on the photoelectrode to transform the deposited CdS into CdS1-xSex ternary QDs. The light-absorption range of the photoelectrode is extended and an exceptional power conversion efficiency of 4.51% is achieved due to this treatment.
Piotrowska, Alicja; Bajguz, Andrzej; Godlewska-Zyłkiewicz, Beata; Zambrzycka, Elzbieta
2010-04-01
The present study investigated the biochemical response of aquatic plant Wolffia arrhiza (Lemnaceae) treated with lead (Pb) and cadmium (Cd) at a range of concentrations from 1 to 1000 microM. W. arrhiza has been identified as good scavenger of heavy metals from aqueous solution. Pb and Cd accumulation was found to be increased in a concentration- and duration-dependent manner. However, the highest biosorption of heavy metals was found in plants exposed to low levels (10 microM) of Cd and Pb in the nutrient medium. In observing the response to heavy-metal stress, we noted inhibited plant growth and decreased photosynthetic pigments, monosaccharides, and proteins. In addition, Cd was found to be more toxic to plants than Pb. Heavy metals also induced oxidative damage as evidenced by increased lipid peroxidation and hydrogen peroxide levels. In contrast, the deleterious effects resulting from the cellular oxidative state can be alleviated by enzymatic (catalase, ascorbate peroxidase, nicotinamide dinucleotide [NADH] peroxidase) and nonenzymatic (ascorbate, glutathione) antioxidant mechanisms activated in W. arrhiza plants exposed to Cd and Pb, especially at 10 microM. These results suggest that W. arrhiza is a promising bioindicator of heavy-metal toxicity.
NASA Astrophysics Data System (ADS)
Agekyan, V. F.; Akai, I.; Vasil'Ev, N. N.; Karasawa, T.; Karczewski, G.; Serov, A. Yu.; Filosofov, N. G.
2007-06-01
The emission spectra of Zn1-x Mn x Te/Zn0.6Mg0.4Te and Cd1-x Mn x Te/Cd0.5Mg0.5Te quantum-well structures with different manganese concentrations and quantum-well widths are studied at excitation power densities ranging from 105 to 107 W cm-2. Under strong optical pumping, intracenter luminescence of Mn2+ ions degrades as a result of the interaction of excited managanese ions with high-density excitons. This process is accompanied by a strong broadening of the emission band of quantum-well excitons due to the exciton-exciton interaction and saturation of the exciton ground state. Under pumping at a power density of 105 W cm-2, stimulated emission of quantum-well excitons arises in CdTe/Cd0.5Mg0.5Te. The luminescence kinetics of the quantum-well and barrier excitons is investigated with a high temporal resolution. The effect of the quantum-well width and the managanese concentration on the kinetics and band shape of the Mn2+ intracenter luminescence characterized by the contribution of the manganese interface ions is determined.
Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi
2010-10-01
The tolerance of wild flora to heavy-metal exposure has received very little research. In this study, the tolerance of four native tree species, four native grass species, and lettuce to copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) was investigated in a root-elongation study using Petri dishes. The results of these studies show a diverse range of responses to Cu, Zn, Cd, and Pb amongst the tested plant species. Toxicity among metals decreased in the following order: Cd ~ Cu > Pb > Zn. Metal concentrations resulting in a 50% reduction in growth (EC(50)) varied considerably, ranging from (microM) 30 (Dichanthium sericeum) to >2000 (Acacia spp.) for Cu; from 260 (Lactuca sativa) to 2000 (Acacia spp.) for Zn; from 27 (L. sativa) to 940 (Acacia holosericea) for Cd; and from 180 (L. sativa) to >1000 (Acacia spp.) for Pb. Sensitive native plant species identified included D. sericeum, Casuarina cunninghamiana, and Austrodanthonia caespitosa. However, L. sativa (lettuce) was also among the most sensitive to all four metals. Acacia species showed a high tolerance to metal exposure, suggesting that the Acacia genus shows potential for use in contaminated-site revegetation.
Tracing Cd, Zn and Pb pollution sources in bivalves using isotopes
NASA Astrophysics Data System (ADS)
Shiel, A. E.; Weis, D. A.; Orians, K. J.
2010-12-01
In a multi-tracer study, Cd, Zn and Pb isotopes (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) are evaluated as tools to distinguish between natural and anthropogenic sources of these metals in bivalves from western Canada (British Columbia), the eastern USA, Hawaii and France. High Cd concentrations found in BC oysters have elicited economic and health concerns. The source of these high Cd levels is unknown but thought to be largely natural. High Cd levels in BC oysters are largely attributed to the natural upwelling of Cd-rich intermediate waters in the North Pacific as the δ114/110Cd (-0.69 to -0.09‰) and δ66/64Zn (0.28 to 0.36‰) values of BC oysters fall within the range reported for North Pacific seawater. Different contributions from anthropogenic sources account for the variability of Cd isotopic compositions of BC oysters; the lightest of these oysters are from the BC mainland. These oysters also have Pb isotopic compositions that reflect primarily anthropogenic sources (e.g., leaded and unleaded automotive gasoline and smelting of Pb ores, potentially historical). On the contrary, USA East Coast bivalves exhibit relatively light Cd isotopic compositions (δ114/110Cd = -1.20 to -0.54‰; lighter than reported for North Atlantic seawater) due to the high prevalence of industry on this coast. The Pb isotopic compositions of these bivalves indicate contributions from the combustion of coal. The large variability of environmental health among coastal areas in France is reflected in the broad range of Cd isotopic compositions exhibited by French bivalves (δ114/110Cd = -1.08 to -0.20‰). Oysters and mussels from the Marennes-Oléron basin and Gironde estuary have the lightest Cd isotopic compositions of the French oysters consistent with significant historical Cd emissions from the now-closed proximal Zn smelter. In these bivalves, significant declines in the Cd levels between 1984/7 and 2004/5 are not accompanied by a significant shift in the Cd isotopic composition toward natural values. The Mediterranean samples have isotopic compositions within error of the lighter end of the range reported for Mediterranean seawater. The Zn isotopic compositions of French oysters and mussels (δ66/64Zn = 0.39 to 0.46‰) are identical to those reported for North Atlantic seawater, with the exception of the much heavier compositions of oysters (δ66/64Zn = 1.03 to 1.15‰) from the polluted Gironde estuary. In agreement with Cd and Zn isotopic compositions, the Pb isotopic compositions of the French bivalves indicate primarily industrial (as opposed to automotive) sources; this is consistent with the collection of most of the French bivalve samples in 2004, after the complete phase-out of leaded gasoline in France. This study demonstrates the effective use of Cd and Zn isotopes to trace anthropogenic sources in the environment and the benefit of combining these tools with Pb isotope “fingerprinting” techniques to identify processes contributing metals. Use of these new geochemical tools requires site-specific knowledge of potential metal sources and their isotopic compositions.
Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia
NASA Astrophysics Data System (ADS)
Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab
2018-03-01
The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.
Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong
2016-04-07
Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.
Zhi, Yang; He, Kangxin; Sun, Ting; Zhu, Yongqiang; Zhou, Qixing
2015-09-01
The selection of cadmium-excluding cultivars has been used to minimize the transfer of cadmium into the human food chain. In this experiment, five Chinese soybean plants were grown in three soils with different concentrations of Cd (0.15, 0.75 and 1.12mg/kg). Variations in uptake, enrichment, and translocation of Cd among these soybean cultivars were studied. The results indicated that the concentration of Cd in seeds that grew at 1.12mg/kg Cd in soils exceeded the permitted maximum levels in soybeans. Therefore, our results indicated that even some soybean cultivars grown on soils with permitted levels of Cd might accumulate higher concentrations of Cd in seeds that are hazardous to human health. The seeds of these five cultivars were further assessed for interactions between Cd and other mineral nutrient elements such as Ca, Cu, Fe, Mg, Mn and Zn. High Cd concentration in soil was found to inhibit the uptake of Mn. Furthermore, Fe and Zn accumulations were found to be enhanced in the seeds of all of the five soybean cultivars in response to high Cd concentration. Cultivar Tiefeng 31 was found to fit the criteria for a Cd-excluding cultivar under different concentrations of Cd in soils. Copyright © 2015. Published by Elsevier B.V.
Mitigating cadmium accumulation in greenhouse lettuce production using biochar.
Zheng, Ruilun; Sun, Guoxin; Li, Cui; Reid, Brian J; Xie, Zubin; Zhang, Bo; Wang, Qinghai
2017-03-01
Greenhouse experiments were conducted to investigate the influence of rice straw biochar (RSB) on soil cadmium (Cd) availability and accumulation in lettuce. The RSB was applied either in bands or broadcast in the test site of four greenhouses with soil Cd concentrations ranging from 1.70-3.14 μg g -1 . Biochar doses applied in bands were half of those broadcast. The Cd levels in the shoots of lettuce were observed to be reduced by up to 57% with increasing RSB application rate (0, 6, 12, 18 t ha -1 ). Following RSB application, shoot Cd concentrations of lettuce were reduced to below the Chinese threshold value set for food, and hazard quotients for Cd associated with vegetable consumption were reduced from 0.70-1.11 to 0.42-0.65. A decrease in soil bulk density (11%) and increases in water holding capacity (16%), available phosphorus (30%), available potassium (197%), and lettuce yield (15%) were observed after RSB application. Multiple linear regression analysis suggested that the soil extractable Cd level (but not biomass dilution) and soil bulk density, as influenced by RSB addition, were the dominant contributors to the shoot Cd levels in lettuce and lettuce yield, respectively. These results highlight the potential for RSB to mitigate the phytoaccumulation of Cd and thereby to reduce human exposure from vegetable consumption. Application of biochar in band, rather than broadcasting over the entire area, represents an opportunity to halve the biochar cost while retaining a good remediation effect.
Wiseman, Clare L S; Zereini, Fathi; Püttmann, Wilhelm
2015-12-15
This study aims to examine the elemental enrichment patterns in low to medium traffic areas over a three year period in Toronto, Canada. Soils were sampled at three locations with different volumes of traffic between 2010 and 2013. A range of elements, including V, Cr, Mn, Cu, Cd, As, Sb and Pb, were measured in acid digested samples using ICP-MS. While the concentrations of Cd, Sb and Pb were found to be relatively low, a significant, albeit small increase in their levels over time was determined for all sites. For the low traffic areas, median Cd, Sb and Pb concentrations increased from 0.18mg Cd/kg, 0.14mg Sb/kg and 12mg Pb/kg in 2010 to 0.38mg Cd/kg, 0.21mg Sb/kg and 15mg Pb/kg in 2012, respectively. For the medium traffic site, the respective levels of Cd and Sb rose from 0.19mg Cd/kg and 0.14mg Sb/kg in 2010 to 0.49mg Cd/kg and 0.28mg Sb/kg in 2012. Median Pb concentrations at the medium traffic site were comparable to those at the low traffic sites (13mg/kg in 2010 and 15mg/kg in 2012). Principal Component Analysis (PCA) revealed the existence of two components (rotated), which explained 77% of the variance for all sites: 1. PC1 with large loadings of V, Cr, Co and Cu that likely originate from the commercial soil originally used for monitoring purposes, and 2. PC2 with high correlations between Cd, Sb and Pb, attributed to traffic sources of emissions. The resuspension and transport of more mobile fractions of contaminated dust and soil particles is hypothesized to be contributing to an elemental enrichment of soils located in low traffic areas. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Liangyuan; Guo, Weijie; Zhao, Weihua; Long, Meng; Li, Huan
2017-05-01
Plant-accelerated removal of BDE-209 from sediment by aquatic macrophyte Scirpus validus Vahl in the presence of a cationic-surfactant (CTAB), an anionic-surfactant (SDS), a nonionic-surfactant (Tween 80) and β-cyclodextrin (β-CD) at the concentrations ranged from 300 mg/kg to 1000 mg/kg were investigated. Significantly negative effect were not observed for the growth of S. validus in terms of plant height and stem diatemeter, which indicated that it is preferable for CTAB, SDS, Tween 80 and β-cyclodextrin to be utilized as the BDE-209 phytoremediation amendment. Furthermore, CTAB, SDS and Tween 80 in the certain concentrations significantly enhanced the phytoremediation efficiencies and 11.78-19.33% of increase in BDE-209 removal rates was obtained. Significantly enhance of BDE-209 phytoremediation efficiency was not observed in the added β-CD concentration ranges. Results obtained from this study provided some insight with regard to the feasibility of phytoremediation for BDE-209 contaminated sediments with addition of suitable solubilizers, especially Tween 80.
Rucandio, M Isabel; Petit-Domínguez, M Dolores
2002-01-01
Cadmium is a representative example of trace elements that are insidious and widespread health hazards. In contemporary environmental analysis, there is a clear trend toward its determination over a wide range of concentrations in complex matrixes. This paper describes a versatile method for the determination of Cd at various levels (0.1-500 microg/g) in several sample types, such as soils, sediments, coals, ashes, sewage sludges, animal tissues, and plants, by graphite furnace atomic absorption spectrometry with Zeeman background correction. The effect of the individual presence of about 50 elements, with an interference/analyte concentration ratio of up to 10(5), was tested; recoveries of Cd ranged from 93 to 106%. The influence of different media, such as HNO3, HCI, HF, H2SO4, HClO4, acetic acid, hydroxylammonium chloride, and ammonium acetate, in several concentrations, was also tested. From these studies it can be concluded that the analytical procedure is scarcely matrix dependent, and the results obtained for a wide diversity of reference materials are in good agreement with the certified values.
Substitutional Cd and Cd-Oxygen Vacancy Complexes in ZrO2 and Ce-doped ZrO_2
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Karapetrova, E.; Platzer, R.; Gardner, J. A.; Evenson, W. E.; Sommers, J. A.
1996-03-01
We are using Perturbed Angular Correlation Spectroscopy (PAC) to study oxygen vacancy (V_O) dynamics in tetragonal ZrO2 and Ce-doped ZrO_2. PAC requires a radioactive probe atom, Cd in this study, which sits substitutionally for a Zr ion. Cd is doubly-negatively charged relative to the lattice and attracts doubly-positively charged V_Os. Pure tetragonal zirconia exists only above 950 ^circC and in this temperature range, the V_Os are very mobile. Above 950 ^circC we observe V_Os rapidly hopping about the Cd allowing us to determine the VO concentration and the trapping energy. We have been Ce-doping to stabilize the tetragonal phase to lower temperature to determine the electric field gradient the Cd experiences due to a stationary V_O. As a consequence of the Ce-doping, we observe a local lattice distortion about the Cd which increases with Ce-doping.
Lin, Lijin; Shi, Jun; Liu, Qihua; Liao, Ming'an; Mei, Luoyin
2014-07-01
In a preliminary study, we found that the cadmium (Cd) concentrations in shoots of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)), indicating that these two farmland weeds might be Cd-hyperaccumulators. In this study, we grew these species in soil containing various concentrations of Cd to further evaluate their Cd accumulation characteristics. The biomasses of C. hirsuta and G. affine decreased with increasing Cd concentrations in the soil, while the root/shoot ratio and the Cd concentrations in shoot tissues increased. The Cd concentrations in shoots of C. hirsuta and G. affine reached 121.96 and 143.91 mg kg(-1), respectively, at the soil Cd concentration of 50 mg kg(-1). Both of these concentrations exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)). The shoot bioconcentration factors of C. hirsuta and G. affine were greater than 1. The translocation factor of C. hirsuta was less than 1 and that of G. affine was greater than 1. These findings indicated that C. hirsuta is a Cd-accumulator and G. affine is Cd-hyperaccumulator. Both plants are distributed widely in the field, and they could be used to remediate Cd-contaminated farmland soil in winter.
Rosa, Cheryl; Blake, John E; Bratton, Gerald R; Dehn, Larissa-A; Gray, Matthew J; O'Hara, Todd M
2008-07-25
The bowhead whale (Balaena mysticetus) is a species endangered over much of its range that is of great cultural significance and subsistence value to the Inuit of Northern Alaska. This species occupies subarctic and arctic regions presently undergoing significant ecological change and hydrocarbon development. Thus, understanding the health status of the Bering-Chukchi-Beaufort Sea (BCBS) stock of bowhead whales is of importance. In this study, we evaluated the concentrations of six essential and non-essential elements (Zn, tHg, Ag, Se, Cu and Cd) in liver and kidney of bowhead whales (n=64). These tissues were collected from the Inuit subsistence hunt in Barrow, Wainwright and Kaktovik, Alaska between 1983 and 2001. Reference ranges of these elements (including previously reported data from 1983-1997) were developed for this species as part of a health assessment effort, and interpreted using improved aging techniques (aspartic acid racemization and baleen isotopic (13)C methods) to evaluate trends over time with increased statistical power. Interactions between element concentrations and age, sex and harvest season were assessed. Age was found to be of highest significance. Sex and harvest season did not effect the concentrations of these elements, with the exception of renal Se levels, which were significantly higher in fall seasons. In addition, histological evaluation of tissues from whales collected between 1998-2001 was performed. Associations between concentrations of Cd in kidney and liver and scored histopathological changes were evaluated. Liver Cd concentration was strongly associated with the degree of lung fibromuscular hyperplasia (P=0.001) and moderately associated with the degree of renal fibrosis (P=0.03). Renal Cd concentration influenced the degree of lung fibromuscular hyperplasia and renal fibrosis (P=0.01). A significant age effect was found for both pulmonary fibromuscular hyperplasia and renal fibrosis, indicating age may be a causative factor. Improvements in aging techniques and the addition of histological indices help clarify the relationships between elements and the influence of life history parameters on concentrations of these elements and potential impacts on health. These data provide essential baseline input useful for monitoring the effects of arctic ecosystem change as it relates to global climate change and industrial development, as well as help inform epidemiological studies examining the public health implications of heavy metals in subsistence foods.
Zhou, Tong; Li, Zhu; Zhang, Fan; Jiang, Xiaosan; Shi, Weiming; Wu, Longhua; Christie, Peter
2016-12-01
Concentrations of arsenic (As), cadmium (Cd) and lead (Pb) were determined in 384 human hair samples and 445 purchased food samples from 11 cities in China. The mean concentrations of hair As, Cd and Pb were 0.23, 0.062 and 2.45mgkg -1 , respectively. The As, Cd and Pb concentrations in different foods were lower than the national maximum allowable contaminant levels. By comparison, males had higher hair As concentrations but lower Cd concentrations than females. When the interaction effects of gender and age were considered, males had the higher hair As, Cd and Pb concentrations in the 51-65 year-old age group. Residents of rural areas had higher hair As, Cd and Pb concentrations than people living in urban areas. Further analysis indicates that hair As, Cd and Pb concentrations and their changes with biological and environmental factors cannot be satisfactorily explained by the estimated intakes from purchased food. Copyright © 2016 Elsevier B.V. All rights reserved.
Shan, Yun; Xu, Jing-Juan; Chen, Hong-Yuan
2011-07-01
This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO(2) NPs). CdTe/SiO(2) NPs were synthesized via the Stöber method and showed black bodies' strong absorption in a wide spectral range without excitonic emission, which made them excellent ECL quenchers. Within the effective distance of energy scavenging, the ECL quenching efficiency was dependent on the number of CdTe QDs doped into the silica NPs. Using ca. 200 CdTe QDs doped silica NPs on average of 40 nm in diameter as ECL quenching labels, attomolar detection of thrombin was successfully realized. The protein detection involves a competition binding event, based on thrombin replacing CdTe/SiO(2) NPs labeled probing DNA which is hybridized with capturing aptamer immobilized on a CdS:Mn NCs film modified glassy carbon electrode surface by specific aptamer-protein affinity interactions. It results in the displacement of ECL quenching labels from CdS:Mn NCs film and concomitant ECL signal recovery. Owing to the high-content CdTe QDs in silica NP, the increment of ECL intensity (ΔI(ECL)) and the concentration of thrombin showed a double logarithmic linear correlation in the range of 5.0 aM∼5.0 fM with a detection limit of 1aM. And, the aptasensor hardly responded to antibody, bovine serum albumin (BSA), haemoglobin (Hb) and lysozyme, showing good detection selectivity for thrombin. This long-distance energy scavenging could have a promising application perspective in the detection of biological recognition events on a molecular level.
NASA Astrophysics Data System (ADS)
Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.
2018-04-01
We present L-cysteine capped CdOXTe1-X and CdTeXSe1-X nanoparticles (NPs) prepared in one pot. The as-prepared CdOXTe1-X NPs were found to have a hexagonal crystal structure of CdTe with a cubic phase of CdO. There was, however, change in phase to cubic type when 2 mM of Se was introduced into the CdTe at 60 min of reaction time. The average crystallite sizes obtained from X-ray diffraction analysis for CdOXTe1-X and CdTeXSe1-X NPs were in the range of 10-36 nm. The diffraction peaks shifted to higher diffraction angle with longer growth time. Scanning electron microscope images display change in shape and size as reaction progress. Photoluminescence (PL) emission was observed to shift from 510-566 nm and 620-653 nm for CdOXTe1-X and CdTeXSe1-X NPs respectively followed by variation in the peak intensities. The emission spectra displayed a good symmetry and a narrow full width at half maximum ranging from 41 to 100 nm in both cases. The absorbance analysis of the as-prepared NPs displayed well-resolved absorption bands. The optical band gaps of the as-prepared NPs were found to decrease with increase in reaction time. Reaction parameters such as pH, reaction time, reaction temperature and the molar concentration could have major effects on the optical properties of the as-prepared nanoparticles hence their need to control them.
Advanced methods for preparation and characterization of infrared detector materials
NASA Technical Reports Server (NTRS)
Broerman, J. G.; Morris, B. J.; Meschter, P. J.
1983-01-01
Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.
Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.
Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe
2015-07-15
Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cadmium sorption and extractability in tropical soils with variable charge.
Colzato, Marina; Alleoni, Luís Reynaldo Ferracciú; Kamogawa, Marcos Yassuo
2018-05-14
The availability of cadmium (Cd) for plants and its impact in the environment depends on Cd sorption in soil colloids. The study of Cd sorption in soil and its fractionation is an interesting tool for the evaluation of Cd affinity with soil pools. The objective with this study was to evaluate Cd sorption and desorption in tropical soils with variable charge (three Oxisols), in a Mollisol and in two Entisols with diverse physical, chemical, and mineralogical attributes. We used a thermodynamic approach to evaluate Cd sorption and performed a chemical fractionation of Cd in the six soils. Data from Cd sorption fit the Langmuir model (r > 0.94), and the sorption capacity ranged from 0.33 to 11.5 mmol kg -1 . The Gibbs standard free energy was positively correlated to Cd sorption capacity (r = 0.74, except for the Quartzipsamments), and it was more favorable in soils with great sorption capacity. Distribution of Cd among fractions was not affected (t test, α = 0.05) by initial concentration, and there was a predominance of Cd extractable in 0.1 mol L -1 CaCl 2 .
Zhou, Hankun; Gan, Ning; Li, Tianhua; Cao, Yuting; Zeng, Saolin; Zheng, Lei; Guo, Zhiyong
2012-10-09
A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of α-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe(3)O(4)-Au nanoparticles, which was first employed to capture AFP antigens to form Fe(3)O(4)-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe(3)O(4)-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe(3)O(4)-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL(-1) with a detection limit of 0.2 pg mL(-1). The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the amplification of the signal tag, the immunosensor is highly sensitive, which can offer great promise for rapid, simple, selective and cost-effective detection of effective biomonitoring for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.
Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie
2017-01-01
In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources.
Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie
2017-01-01
In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources. PMID:29253896
Zhang, Chang; Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Zhang, Jiachao; Peng, Bo; Xie, Xia; Lai, Cui; Long, Beiqing; Zhu, Jingjing
2016-01-01
The fabrication and evaluation of a glassy carbon electrode (GCE) modified with self-doped polyaniline nanofibers (SPAN)/mesoporous carbon nitride (MCN) and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by square wave anodic stripping voltammetry (SWASV) are presented here. The morphology properties of SPAN and MCN were characterized by transmission electron microscopy (TEM), and the electrochemical properties of the fabricated electrode were characterized by cyclic voltammetry (CV). Experimental parameters, such as deposition time, pulse potential, step potential, bismuth concentration and NaCl concentration, were optimized. Under the optimum conditions, the fabricated electrode exhibited linear calibration curves ranging from 5 to 80 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.7 nM for Cd2+ and 0.2 nM for Pb2+ (S/N = 3). Additionally, the repeatability, reproducibility, anti-interference ability and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for other heavy metal determination. PMID:28344264
Cao, Xueying; Hu, Pengjie; Tan, Changyin; Wu, Longhua; Peng, Bo; Christie, Peter; Luo, Yongming
2018-05-25
Soil contamination with cadmium (Cd) represents a substantial threat to human health and environmental quality. Long-term effectiveness and persistence of remediation are two important criteria for the evaluation of amendment techniques used to remediate soils polluted with potentially toxic metals. In the current study, we investigated the remediation persistence of a natural sepiolite bearing material (NSBM, containing 15% sepiolite) and ground limestone (equivalent to > 98.0% CaO) on soil pH, Cd bioavailability, and Cd accumulation by pak choi (Brassica chinensis L.) during the growth of four consecutive crops in a Cd-contaminated acid soil with different amounts of NSBM (0, 0.2, 0.5, 1, 2, and 5%). Soil pH levels ranged from 5.21 to 7.76 during the first crop, 4.30 to 7.34 during the second, 4.23 to 7.80 during the third, and 4.33 to 6.98 during the fourth, and increased significantly with increasing the application rate of NSBM. Soil CaCl 2 -Cd and shoot Cd concentrations decreased by 8.11 to 99.2% and 6.58 to 94.5%, respectively, compared with the control throughout the four cropping seasons. A significant negative correlation was found between soil CaCl 2 -Cd and soil pH. Combined use of 0.1% lime and NSBM showed greater effects than NSBM alone, especially, when the application rate of NSBM was ˂ 2%. Moreover, pak choi tissue Cd concentrations in the treatments with NSBM addition alone at ≥ 2% or at ≥ 1% NSBM combined with 0.1% lime met the maximum permissible concentration (MPC) over the four crops, allowed by the Chinese and European regulations. Based on the present study, safe crop production in the test soil is possible at a soil pH > 6.38 and CaCl 2 -Cd < 14 μg kg -1 , and soil Cd immobilization by NSBM without or with lime is a potentially feasible method of controlling the transfer of soil Cd into the food chain.
Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard
2015-07-01
Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and Zn values in the clay waste were determined to have exceeded the severe effect level (SEL) limit values, whereas Cd and Cu level ranges between LEL and SEL indicate moderate contamination. I R values of heavy metals in the clay waste confirmed that Cd and Cu were bound to the exchangeable and carbonate fractions and presented higher mobility, whereas As, Cr, Mo, Pb, V, and Zn were bound to organic or residual fractions and consequently exhibit lower mobility. A Nemerow multi-factor index revealed that the mine site contains high levels of Cd, Cu, V, and Zn pollution. As and Cr were found at a moderate level of contamination, whereas Pb was present at a safe level of contamination. The order of the comprehensive contamination indices was Cd > Cu > Mo > Zn > V > Cr > As > Pb, indicating that the assessment of clay waste, especially with Cd and Cu, should be undertaken to control heavy metal contamination in adjacent urban and mine areas at the Eshidiya mines.
Integrated Health Risk Assessment of Heavy Metals in Suxian County, South China
Song, Daping; Zhuang, Dafang; Jiang, Dong; Fu, Jingying; Wang, Qiao
2015-01-01
The purpose of this study was to assess soil heavy metal contamination and the potential risk for local residents in Suxian county of Hunan Province, southern China. Soil, rice and vegetable samples from the areas near the mining industrial districts were sampled and analyzed. The results indicate that the anthropogenic mining activities have caused local agricultural soil contamination with As, Pb, Cu and Cd in the ranges of 8.47–341.33 mg/kg, 19.91–837.52 mg/kg, 8.41–148.73 mg/kg and 0.35–6.47 mg/kg, respectively. GIS-based mapping shows that soil heavy metal concentrations abruptly diminish with increasing distance from the polluting source. The concentrations of As, Pb, Cu and Cd found in rice were in the ranges of 0.02–1.48 mg/kg, 0.66–5.78 mg/kg, 0.09–6.75 mg/kg, and up to 1.39 mg/kg, respectively. Most of these concentrations exceed their maximum permissible levels for contaminants in foods in China. Heavy metals accumulate to significantly different levels between leafy vegetables and non-leafy vegetables. Food consumption and soil ingestion exposure are the two routes that contribute to the average daily intake dose of heavy metals for local adults. Moreover, the total hazard indices of As, Pb and Cd are greater than or close to the safety threshold of 1. Long-term As, Pb and Cd exposure through the regular consumption of the soil, rice and vegetables in the investigated area poses potential health problems to residents in the vicinity of the mining industry. PMID:26114243
Liang, Qian; Xue, Zhan-Jun; Wang, Fei; Sun, Zhi-Mei; Yang, Zhi-Xin; Liu, Shu-Qing
2015-12-01
A total of 79 topsoil samples (ranging from 0 to 20 cm in depth) were collected from a grape cultivation area of Zhangjiakou City, China. The total concentrations of As, Cd, Hg, Cr, Cu, Mn, Ni, Pb, and Zn in soil samples were determined to evaluate pollution levels and associated health risks in each sample. Pollution levels were calculated using enrichment factors (EF) and geoaccumulation index (I geo). Health risks for adults and children were quantified using hazard indexes (HI) and aggregate carcinogenic risks (ACR). The mean concentrations of measured heavy metals Cd, Hg, and Cu, only in the grape cultivation soil samples, were higher than the background values of heavy metals in Hebei Province. According to principal component analysis (PCA), the anthropogenic activities related to agronomic and fossil fuel combustion practices attributed to higher accumulations of Cd, Hg, and Cu, which have slightly polluted about 10-40% of the sampled soils. However, the HI for all of the heavy metals were lower than 1 (within safe limits), and the ACR of As was in the 10(-6)-10(-4) range (a tolerable level). This suggests the absence of both non-carcinogenic and carcinogenic health risks for adults and children through oral ingestion and dermal absorption exposure pathways in the studied area. It should be also noted that the heightened vulnerability of children to health risks was accounted for higher HI and ACR values. Consequently, heavy metal concentrations (e.g., Cd, Hg, Cu) should be periodically monitored in these soils and improved soil management practices are required to minimize possible impacts on children's health.
CdTe quantum dot as a fluorescence probe for vitamin B12 in dosage form
NASA Astrophysics Data System (ADS)
Vaishnavi, E.; Renganathan, R.
2013-11-01
We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14 μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15 μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%.
CdTe quantum dot as a fluorescence probe for vitamin B(12) in dosage form.
Vaishnavi, E; Renganathan, R
2013-11-01
We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%. Copyright © 2013 Elsevier B.V. All rights reserved.
Susceptibility of early life stages of Xenopus laevis to cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Perez-Coll, C.S.; Cardellini, P.
1997-02-01
The susceptibility of Xenopus laevis to cadmium during different stages of development was evaluated by exposing embryos to cadmium concentrations ranging from 0.1 to 10 mg Cd{sup 2+}/L for 24, 48, and 72 h and assessing lethality and malformations. Susceptibility increased from the two blastomeres stage (stage 2) to stage 40, in which the 24-h LC100 was 1.13 mg Cd{sup 2+}/L, and resistance increased from this stage onward. Malformations occurred at all developmental stages evaluated, the most common being reduced size, incurvated axis, underdeveloped or abnormally developed fin, microcephaly, and microphtalmy. Scanning electron microscopy revealed changes in the ectodermal surfacemore » ranging from slightly vaulted cells to a severe reduction in the number of ciliated cells as the concentration of cadmium increased. The intraspecific variation evaluated in embryos (from four sets of parents) at seven developmental stages, expressed as the coefficient of variation of the LC100, ranged from 10 to 112% and reflects the capacity of Xenopus laevis to adapt to changing environmental conditions at different embryonic stages.« less
Bartsch, Michelle; Cope, W. Gregory; Rada, Ronald G.
1999-01-01
We assessed accumulation of cadmium (Cd) and bioturbation by nymphs of the burrowing mayfly Hexagenia bilineata as indicators of exposure to Cd-spiked sediment in a 21-d test. Surficial sediments (top 5 cm) from Pool 7 of the Upper Mississippi River were spiked with Cd to concentrations of 3, 7, and 15 µg Cd g-1 dry weight. The experimental design was completely randomized, with three Cd-spiked sediment treatments plus an unspiked sediment control (1 µg Cd g-1 dry weight), and 10 nymphs in each of six replicates per treatment. Nymphs accumulated Cd during the 21-d exposure; mean concentrations varied from 0.22 to 6.24 µg g-1 dry weight, and tissue concentrations were correlated with Cd concentration in unfiltered test water (r = 0.93, P -1 treatment (our greatest exposure concentration) did not differ significantly from the control. Concentrations of Cd in unfiltered, overlying test water increased significantly within treatments during the test, indicating that nymphs mobilized sediment-associated Cd into the overlying water, presumably through burrowing and respiratory activities.
Boshoff, Magdalena; De Jonge, Maarten; Scheifler, Renaud; Bervoets, Lieven
2014-09-15
The aim of this study was to derive regression-based soil-plant models to predict and compare metal(loid) (i.e. As, Cd, Cu, Pb and Zn) concentrations in plants (grass Agrostis sp./Poa sp. and nettle Urtica dioica L.) among sites with a wide range of metal pollution and a wide variation in soil properties. Regression models were based on the pseudo total (aqua-regia) and exchangeable (0.01 M CaCl2) soil metal concentrations. Plant metal concentrations were best explained by the pseudo total soil metal concentrations in combination with soil properties. The most important soil property that influenced U. dioica metal concentrations was the clay content, while for grass organic matter (OM) and pH affected the As (OM) and Cu and Zn (pH). In this study multiple linear regression models proved functional in predicting metal accumulation in plants on a regional scale. With the proposed models based on the pseudo total metal concentration, the percentage of variation explained for the metals As, Cd, Cu, Pb and Zn were 0.56%, 0.47%, 0.59%, 0.61%, 0.30% in nettle and 0.46%, 0.38%, 0.27%, 0.50%, 0.28% in grass. Copyright © 2014 Elsevier B.V. All rights reserved.
Ghasemi, Saber; Moghaddam, Sina Siavash; Rahimi, Amir; Damalas, Christos A; Naji, Abolfazl
2018-01-01
Sediment quality of mangrove forests in Hormozgan Province of Iran with a focus on two distinct habitats - the Hara Protected Area and the area of the Azini Bay - was studied. The accumulation of heavy metals in the sediments of the Hara Protected Area in terms of concentration was in the order of Pb > Zn > Cu > Cd and in those of the Azini Bay in the order of Zn > Cu > Pb > Cd. Based on Pearson's correlation coefficient, no significant correlations were found between concentrations of heavy metals in the sediments of the Hara Protected Area, while Zn and Pb concentrations were positively correlated in the sediments of the Azini Bay, implying a common pollution source. Common pollution indices, such as Contamination factor (Cf), degree of contamination (Cd), modified contamination degree (mCd), potential ecological risk index (RI) and metal pollution index (MPI), were used for assessing contamination status. The value of contamination (Cd) index was lower than 7 across all five stations of each studied region, implying a low degree of contamination. The modified contamination degree (mCd) index was lower than 1.5, showing that the sediment pollution was low in both regions. The potential ecological risk assessment index was 223.89 and 543.97 for the Hara Protected Area and the Azini Bay, respectively. Based on categorization of Hakanson's ecological risk, the Hara Protected Area region was in the range of 150 ≤ RI ≤ 300 (moderate ecological risk) and the Azini Bay region in the range of 300 ≤ RI ≤ 600 (acceptable ecological risk). Findings raise awareness of the contamination status of mangrove forests in Hormozgan Province, provide a valuable benchmark for future comparisons in the area, and are important for the design of appropriate policies and long-term management of those ecosystems by local managers and the national authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trace metal concentrations in snow from the Yukon River Basin, Alaska and Canada
Wang, B.; Gough, L.; Hinkley, T.; Garbarino, J.; Lamothe, P.
2005-01-01
We report here on metal concentrations in snow collected from the Yukon River basin. Atmospheric transport of metals and subsequent deposition is a known mechanism for introducing metals into the northern environment. Potential sources of airborne elements are locally generated terrestrial sources, locally derived anthropogenic sources, and long range atmospheric transport. Sites were distributed along the Yukon River corridor and within the southeastern, central, and western basin areas. Snow samples were taken in the spring of 2001 and 2002 when the snow pack was at its maximum. Total-depth composite samples were taken from pits using clean techniques. Mercury was analyzed using cold vapor atomic fluorescence spectrometry. All other elements were analyzed by inductively coupled plasma-mass spectrometry. In samples from remote sites, the concentration for selected metals ranged from: 0.015 - 0.34 ug/L for V, 0.01 - 0.22 ug/L for Ni, < 0.05 - 0.52 ug/L for Cu, 0.14 - 2.8 ug/L for Zn, 0.002 - 0.046 ug/L for Cd, 0.03 - 0.13 ug/L for Pb, 0.00041 - 0.0023 ug/L for filtered-Hg. Because the entire snow pack was sampled and there was no evidence of mid-season thaw, these concentrations represent the seasonal deposition. There was no significant difference in the seasonal deposition of V, Ni, Cu, Zn, Cd, and Pb at these sites between 2001 and 2002, and no north-south or east-west trend in concentrations. Samples taken from within communities, however, had significantly higher concentrations of V, Ni, Cu, Zn, and Cd in 2001, and Ni, Cu, and Pb in 2002 relative to the remote sites. Our data indicate that the atmospheric deposition of metals in the Yukon River basin is relatively uniform both spatially and temporally. However, communities have a measurable but variable effect on metal concentrations. Copyright ASCE 2005.
Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits.
Wójcik, Małgorzata; Sugier, Piotr; Siebielec, Grzegorz
2014-07-15
Metal (Zn, Pb, Cd, Cu, Ni, Cr) accumulation in shoots of 38 plant species spontaneously colonizing three Zn-Pb waste deposits in southern Poland was studied in order to find out if the age of the waste (30-130 years) or its type (slag or flotation residues) influence metal content in plants and to identify species potentially suitable for biomonitoring and phytoremediation. The total metal concentrations in the waste upper layers ranged from 7300 to 171,790 mg kg(-1) for Zn, from 1390 to 22,265 mg kg(-1) for Pb, and from 66 to 1,464 mg kg(-1) for Cd, whereas CaCl2-extracted fractions accounted for 0.034-0.11 %, 0.005-0.03 %, and 0.28-0.62 % of total Zn, Pb and Cd concentrations, respectively. The concentrations of Cu, Ni, and Cr in substrates and in plants were low and ranged within the background values. Metal accumulation in plant shoots was poorly correlated with both total and CaCl2-extracted forms of metals in the substrate and was highly variable among species and also specimens of the same species. The highest mean concentrations of Zn, Pb and Cd were found in Anthyllis vulneraria L. (901.5 mg kg(-1)), Echium vulgare L. (116.92 mg kg(-1)), and Hieracium piloselloides Vill. (26.86 mg kg(-1)), respectively. Besides Reseda lutea L., no species appeared to be a good indicator of polymetallic environment pollution based on chemical analysis of shoots; however, metal accumulation in the whole plant communities of a particular contaminated area might be an accurate tool for assessment of metal transfer to vegetation irrespective of the type or age of the waste. All the species studied developed a metal exclusion strategy, thus exhibiting potential for phytostabilization of metalliferous wastelands. Copyright © 2014 Elsevier B.V. All rights reserved.
Balistrieri, L.S.; Blank, R.G.
2008-01-01
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.
Wang, Peifang; Wang, Teng; Yao, Yu; Wang, Chao; Liu, Cui; Yuan, Ye
2016-01-01
Management of heavy metal contamination requires accurate information about the distribution of bioavailable fractions, and about exchange between the solid and solution phases. In this study, we employed diffusive gradients in thin-films (DGT) and traditional chemical extraction methods (soil solution, HOAc, EDTA, CaCl2, and NaOAc) to determine the Cd bioavailability in Cd-contaminated soil with the addition of Pb. Two typical terrestrial species (wheat, Bainong AK58; maize, Zhengdan 958) were selected as the accumulation plants. The results showed that the added Pb may enhance the efficiency of Cd phytoextraction which is indicated by the increasing concentration of Cd accumulating in the plant tissues. The DGT-measured Cd concentrations and all the selected traditional extractants measured Cd concentrations all increased with increasing concentration of the addition Pb which were similar to the change trends of the accumulated Cd concentrations in plant tissues. Moreover, the Pearson regression coefficients between the different indicators obtained Cd concentrations and plants uptake Cd concentrations were further indicated significant correlations (p < 0.01). However, the values of Pearson regression coefficients showed the merits of DGT, CaCl2, and Csol over the other three methods. Consequently, the in situ measurement of DGT and the ex situ traditional methods could all reflect the inhibition effects between Cd and Pb. Due to the feature of dynamic measurements of DGT, it could be a robust tool to predict Cd bioavaiability in complex contaminated soil. PMID:27271644
Ondo Zue Abaga, Norbert; Dousset, Sylvie; Mbengue, Saliou; Munier-Lamy, Colette
2014-10-01
In Burkina-Faso, urban vegetable agriculture is often characterized by urban solid waste fertilizer inputs containing heavy metals such as Cu and Cd. Thus, the relevance of surrounding urban vegetable plots with vetiver hedges to reduce environmental pollution by Cu and Cd was investigated by adsorption studies and pot experiments. Vetiver biomass, its metal contents and, its total and MgCl2 extractable soil metals were monitored over 6months in the presence of a mixture of metal at two concentrations: 2-10 and 100-500mgkg(-1), for Cd and Cu, respectively. The Freundlich adsorption coefficient (Kf) values increased after vetiver growth and were significantly higher for vertisol than for lixisol. After 6months, the vetiver that was grown on lixisol accumulated more metal, increasing up to 4635mgkg(-1) for Cu and to 21.8mgkg(-1) for Cd, than did the vetiver that was grown on vertisol, increasing up to 1534mgkg(-1) for Cu and to 7.2mgkg(-1) for Cd. The metal bioconcentration factor, which was significantly higher for Cd, increased with the applied concentration and ranged from 1.6 to 14 for Cu and from 2.3 to 22 for Cd. Additionally, the translocation factors were higher for Cd (0.38-7.3) than for Cu (0.07-2.6), and the translocation was easiest from lixisol than from vertisol. Thus our results demonstrate the ability of vetiver for Cu and Cd phytoremediation in Burkina Faso soils. Nevertheless, these results should be confirmed across the field to advocate the establishment of vetiver hedges. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarkar, Anupam; Bhagat, Jacky; Ingole, Baban S; Rao, Durga P; Markad, Vijaykumar L
2015-02-01
This paper presents an evaluation of the genotoxic effects of cadmium chloride (CdCl2 ) on marine gastropod, Nerita chamaeleon following the technique of comet assay and the DNA alkaline unwinding assay (DAUA). In this study, the extent of DNA damage in gill cells of N. chamaeleon was measured after in vivo exposure to four different concentrations (10, 25, 50, and 75 µg/L) of CdCl2 . In vitro exposure of hydrogen peroxide (H2 O2 ; 1, 10, 25, and 50 µM) of the gill cells showed a significant increase in the percentage tail DNA, Olive tail moment, and tail length (TL). Significant changes in percentage tail DNA by CdCl2 exposure were observed in all exposed groups of snails with respect to those in control. Exposure to 75 µg/L of CdCl2 produced significant decrease in DNA integrity as measured by DAUA at all duration with respect to control. In vivo exposure to different concentrations of CdCl2 (10, 25, 50, and 75 µg/L) to N. chamaeleon showed considerable increase in DNA damage as observed by both alkaline comet assay and the DAUA. The extent of DNA damage in marine gastropods determined by the application of alkaline comet assay and DAUA clearly indicated the genotoxic responses of marine gastropod, N. chamaeleon to a wide range of cadmium concentration in the marine environment. © 2013 Wiley Periodicals, Inc.
Toxic Elements in Different Medicinal Plants and the Impact on Human Health
Brima, Eid I.
2017-01-01
Local medicinal plants from Madina, Saudi Arabia, are used to cure various diseases. However, some can cause adverse health effects. Five different medicinal plants were collected in the city of Madina: mahareeb (Cymbopogon), sheeh (Artemisia), harjal (Cynanchum argel delile), nabipoot (Equisetum), and kafmariam (Vitex agnus-castus). In total, four toxic elements including Al, Pb, As, and Cd were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The range of recoveries fell between 86.1 and 90.6% for all measured elements. Al levels were the highest of any of the studied elements in all plant samples, with Cymbopogon showing the highest levels. The range of concentrations of Al was 156–1609 mg/kg. Cd appeared at the lowest levels in all plants samples, with Vitex agnus-castus containing this element at the highest levels. Cd concentrations were in the range of 0.01–0.10 mg/kg. A washing process lowered the toxic elements in all plants; average % recoveries were Al (47.32%), As (59.1%), Cd (62.03%), and Pb (32.40%). The calculated human health risk assessment in one dose for toxic elements in all plants was as follows: Al (1.33 × 10−3–5.57 × 10−2 mg/kg.bw), Pb (0–8.86 × 10−5 mg/kg.bw), As (3.43 × 10−7–1.33 × 10−5 mg/kg.bw), and Cd (0–3.14 × 10−6 mg/kg.bw). Medicinal plants are a source of exposure to toxic elements. However, none of the plants in this study exceeded the daily guideline set by the WHO for any element based on conventional use by the local population. We may cautiously conclude that these medicinal plants pose no risk to users based on conventional use. PMID:29019913
Huang, Baifei; Xin, Junliang; Dai, Hongwen; Zhou, Wenjing
2017-11-01
A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg -1 ; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.
Trace elements in soil and biota in confined disposal facilities for dredged material
Beyer, W.N.; Miller, G.; Simmers, J.W.
1990-01-01
We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.
Cheng, Siwei; Liu, Guijian; Zhou, Chuncai; Sun, Ruoyu
2018-05-21
The distribution characteristics of Cadmium (Cd) fractions in soils around a coal mining area of Huaibei coalfield were investigated, with the aim to assess its ecological risk. The total Cd concentrations in soils ranged from 0.05 to 0.87 mg/kg. The high percentage of phyto-available Cd (58%) when redox or base-acid equilibria changed. Soil pH was found to be a crucial factor affecting soil Cd fraction, and carbonate-bound Cd can be significantly affected by both organic matter and pH of soils. The static ecological evaluation models, including potential ecological risk index (PERI), geo-accumulation index (I geo ) and risk assessment code (RAC), revealed a moderate soil Cd contamination and prensented high Cd exposure risk in studied soils. However, the dynamic evaluation of Cd risk, determined using a delayed geochemical hazard (DGH), suggested that our studied soils can be classified as median-risk with a mean probability of 24.79% for Cd DGH. These results provide a better assessment for the risk development of Cd contamination in coal mining areas. Copyright © 2018 Elsevier Inc. All rights reserved.
Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe
NASA Astrophysics Data System (ADS)
Madejczyk, Paweł; Kębłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Kopytko, Małgorzata; Stępień, Dawid; Rutkowski, Jarosław; Piotrowski, Józef; Piotrowski, Adam; Rogalski, Antoni
2017-09-01
We present progress in metal organic chemical vapor deposition (MOCVD) growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool for the fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping, and without post grown ex-situ annealing. Surface morphology, residual background concentration, and acceptor doping efficiency are compared in (111) and (100) oriented HgCdTe epilayers. At elevated temperatures, the carrier lifetime in measured p-type photoresistors is determined by Auger 7 process with about one order of magnitude difference between theoretical and experimental values. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for medium wavelength infrared photoconductors operated in high-operating temperature conditions.
Health impact assessment of arsenic and cadmium intake via rice consumption in Bangkok, Thailand.
Hensawang, Supanad; Chanpiwat, Penradee
2017-10-31
Consumption of contaminated food is a major route of exposure to toxic contaminants for humans. To protect against potential negative health effects from rice consumption, As and Cd concentrations in rice sold in Bangkok were determined, and non-carcinogenic and carcinogenic risk assessments were conducted. Four types of rice (n = 97), namely, white jasmine, white, glutinous, and brown jasmine, were collected. Samples were acid-digested and analyzed for total concentrations of As and Cd by ICP-MS. The average concentrations of As and Cd were 0.205 ± 0.008 and 0.019 ± 0.001 mg kg -1 , respectively. Approximately 22.8, 62.5, and 57.1% of white, white jasmine, and brown jasmine rice, respectively, contained As concentrations exceeding the Codex inorganic As standards for polished and unpolished rice. Brown jasmine rice contained significantly higher As concentrations than the other types of rice. However, Cd concentrations in all rice samples were significantly lower than the Codex standard of 0.4 mg kg -1 . Children are exposed to the highest amounts of both elements. Concerning As exposure through the consumption of different types of rice in the same age group, the consumption of brown jasmine rice caused approximately 1.7 to 2.3 times higher As exposure rates compared to the consumption of other types of rice. Non-carcinogenic risks (hazard quotient (HQ)) of As exposure from all types of rice were higher than the threshold limit of 1. HQ in children ranging from 2.1 to 4.9 was significantly higher than HQ in the other age groups. The cancer risks from As exposure were negligible in all groups.
[Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.)].
Sbartai, Hana; Djebar, Med Reda; Sbartai, Ibtissem; Berrabbah, Houria
2012-09-01
This work aims at evaluating the accumulation of cadmium (Cd) and zinc (Zn) (trace elements) in the organs of young tomato plants (Lycopersicon esculentum L. var. Rio Grande) and their effects on the rate of chlorophyll and enzyme activities involved in the antioxidant system: catalase (CAT), glutathion-S-transferase (GST) and peroxysase ascorbate (APX). Plants previously grown on a basic nutrient solution were undergoing treatment for 7 days, either by increasing concentrations of CdCl(2) or ZnSO(4) (0, 50, 100, 250, 500 μM) or by the combined concentrations of Cd and Zn (100/50, 100/100, 100/250, 100/500 μM). The results concerning the determination of metals in the various compartments of tomato plants as a function of increasing concentrations of Cd or Zn, suggest a greater accumulation of Cd and Zn in the roots compared to leaves. The combined treatment (Cd/Zn) interferes with the absorption of the two elements according to their concentrations in the culture medium. The presence of Zn at low concentrations (50 μM of Zn/100 μM Cd) has little influence on the accumulation of Cd in the roots and leaves, while the absorption of these two elements in the leaves increases and decreases in roots when their concentrations are equivalent (100/100 μM) compared to treatment alone. When the concentration of Zn is higher than that of Cd (500 μM of Zn/100 μM Cd) absorption of the latter is inhibited in the roots while increasing their translocation to the leaves. Meanwhile, the dosage of chlorophylls shows that they tend to decrease in a dose-dependent for both treatments (Cd or Cd/Zn), however, treatment with low concentrations of Zn (50 and 100 μM) stimulates chlorophyll synthesis. However, treatment with different concentrations of Cd seems to induce the activity of the enzymes studied (CAT, APX, GST). It is the same for treatment with different concentrations of Zn and this particularly for the highest concentrations. Finally, the combined treatment (Zn/Cd) also appears to cause enzyme inductions: CAT, APX and GST. Copyright © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Clabeaux, Bernadette L; Navarro, Divina A G; Aga, Diana S; Bisson, Mary A
2011-06-15
We investigated the potential use of the alga Chara australis (R. Br.) forphytore mediation of Cd-contaminated sediments in aquatic systems. Chara tolerated up to 20 mg added Cd (kg soil)⁻¹ in laboratory culture. Chlorophyll a and b levels were not affected even at Cd concentrations that suppressed growth. Levels of glutathione were suppressed at 2-35 mg added Cd (kg soil)⁻¹ to 200-350 nmol GSH (g DW)⁻¹, while control levels were 660 nmol GSH (g DW)⁻¹). Histochemical studies showed Cd occurred throughout cell walls and cytoplasm in plants grown in 5-20 mg Cd (kg soil)⁻¹. Quantification using ICP-MS showed the maximum concentration in shoots was 72 mg Cd (kg DW)⁻¹ at 35 mg added Cd (kg soil)⁻¹, while the maximum in rhizoids was 116 mg Cd (kg DW)⁻¹ at 25 mg added Cd (kg soil)⁻¹. The bioconcentration factor (BCF, concentration in plant/concentration in soil) exceeded 1.0, the critical value for hyperaccumulators, for shoots exposed to 35 mg Cd (kg soil)⁻¹ and rhizoids exposed to ≥25 mg Cd (kg soil)⁻¹. Translocation factors (TF, shoot concentration/rhizoid concentration) did not exceed 1.0 for any treatment. While Chara cannot be considered a hyperaccumulator, it shows promise for use in phytoremediation efforts.
Kucuksezgin, F; Kontas, A; Altay, O; Uluturhan, E; Darilmaz, E
2006-01-01
Izmir Bay (western Turkey) is one of the great natural bays of the Mediterranean. Izmir is an important industrial and commercial centre and a cultural focal point. The main industries in the region include food processing, oil, soap and paint production, chemical industries, paper and pulp factories, textile industries and metal processing. The mean concentrations showed ranges of 0.01-0.19 and 0.01-10 microM for phosphate, 0.10-1.8 and 0.12-27 microM for nitrate+nitrite, and 0.30-5.8 and 0.43-39 microM for silicate in the outer and middle-inner bays, respectively. The TNO(x)/PO(4) ratio is significantly lower than the Redfield's ratio and nitrogen is the limiting element in the middle-inner bays. Diatoms and dinoflagellates were observed all year around in the bay and are normally nitrogen limited. Metal concentrations ranged between Hg: 0.05-1.3, Cd: 0.005-0.82, Pb: 14-113 and Cr: 29-316 microg g(-1) in the sediments. The results showed significant enrichments during sampling periods from Inner Bay. Outer and middle bays show low levels of heavy metal enrichments except estuary of Gediz River. The concentrations of Hg, Cd and Pb in the outer bay were generally similar to the background levels from the Mediterranean. The levels gradually decreased over the sampling period. Total hydrocarbons concentrations range from 427 to 7800 ng g(-1) of sediments. The highest total hydrocarbon levels were found in the inner bay due to the anthropogenic activities, mainly combustion processes of traffic and industrial activities. The concentrations of heavy metals found in fish varied for Hg: 4.5-520, Cd: 0.10-10 and Pb: 0.10-491 microg kg(-1) in Izmir Bay. There was no significant seasonal variation in metal concentrations. An increase in Hg concentration with increasing length was noted for Mullus barbatus. A person can consume more than 2, 133 and 20 meals per week of fish in human diet would represent the tolerable weekly intake of mercury, cadmium and lead, respectively, in Izmir Bay. Heavy metal levels were lower than the results in fish tissues reported from polluted areas of the Mediterranean Sea.
Odiwe, Anthony I; Adesanwo, Adeyemi T J; Olowoyo, Joshua O; Raimi, Idris O
2014-04-01
The level of air pollution around the automobile mechanic workshops has been generally overlooked. This study, examined the level of trace metals in automobile mechanic workshops and the suitability of using transplanted lichen thalli of Lepraria incana for measuring air pollution in such areas. Samples of the lichen thalli were transplanted into seven different sites and were attached to the bark of trees at each site. The samples were harvested from the sites after 3-month exposure. Concentrations of Pb, Cu, Cd, Fe, Zn, and S content were determined using an atomic absorption spectrophotometer. Results showed that there was a significant difference in the trace metals concentrations across the sites (p < 0.05). The analyzed lichen samples showed a range of 91.26-119.35 ppm for Fe, 30.23-61.32 ppm for Zn, 1.25-2.45 ppm for Cu, 0.017-0.043 ppm for Cd, 0.018-0.051 ppm, and 0.37-0.42 ppm for S. From the study, sites 6 and 7 presented higher concentrations of Cd, Pb, and Zn than other sites. The enrichment factor calculated showed that Zn, Cd, and Pb were greatly enriched from the workshops. The trend in the concentration of these heavy metals suggests that activities in these workshops might become a major source of certain heavy metals in the environment and if the pollution activities persist, it might become worrisome over time.
Bhuiyan, Mohammad Amir Hossain; Dampare, Samuel B; Islam, M A; Suzuki, Shigeyuki
2015-01-01
Concentrations of heavy metals in water and sediment samples of Buriganga River in the capital city Dhaka, Bangladesh, were studied to understand the level of heavy metals and their source apportionment. The results showed that the mean concentrations of heavy metals both in water and sediment samples were very high and, in most cases, exceeded the permissible limits recommended by the Bangladesh government and other international organizations. Significantly higher concentrations of Pb, Cr, Mn, Co, Ni, Cu, Zn, As, and Cd were found in sediment samples. However, average concentrations of metals both in water and sediment samples were above the effect range median. The heavy metal pollution index (HPI) and degree of contamination (Cd) yielded different results in water samples despite significant correlations between them. The heavy metal evaluation index (HEI) showed strong correlations with HPI and Cd and provided better assessment of pollution levels. The enrichment factor (EF) and geoaccumulation index (Igeo) showed the elevated value of Cr, Pb, and Cd in access of background values. The measured elements were subjected to positive matrix factorization (PMF) and examining correlations in order to explain the content, behavior, and source apportionment of metals. PMF resulted in a successful partitioning of variances into sources related to background geochemistry and contaminant influences. However, the PMF approach successfully demarcated the major sources of metals from tannery, paint, municipal sewage, textiles, and agricultural activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghafouri, Sanaz Aian; Erdem, Murat, E-mail: merdem@marmara.edu.tr; Ekmekçi, M. Kaan
2014-12-15
Excitation and emission spectra of a visible room-temperature Er{sup 3+} ions luminescence from powders. - Highlights: • This is the first report on spectroscopic properties of CdNb{sub 2}O{sub 6}:Er{sup 3+}. • The crystalline sizes are affected as the concentration of Er{sup 3+} ions increased. • Quenching of the luminescence was observed to be above 1.0 mol% Er{sup 3+}. - Abstract: This study is focused on the synthesis and characterization of CdNb{sub 2}O{sub 6} compounds doped with of Er{sup 3+} ions. Powders were synthesized by using the molten salt method and annealed at 900 °C for 4 h. The synthesized particlesmore » were structurally characterized by using X-ray diffraction, scanning electron microscopy. A single phase of the CdNb{sub 2}O{sub 6} was determined and the size of the particles was found to be affected by the presence and the concentration of Er{sup 3+} ions. Luminescence properties of each sample were investigated by measuring accurately the emission and excitation spectra at room temperature in the wavelength range of 200–1700 nm by exciting the Er{sup 3+} ions at 379 nm and 805 nm. Quenching of the luminescence in both visible and near infrared spectral regions was observed to be above 1.0 mol% Er{sup 3+} concentration.« less
Feng, Mi; Yin, Hua; Cao, Yajuan; Peng, Hui; Lu, Guining; Liu, Zehua; Dang, Zhi
2018-06-15
Cd-induced stress response of Phanerochaete chrysosporium during the biodegradation of BDE-47 was investigated in this study, with the goal of elucidating the tolerance behavior and the detoxification mechanisms of P. chrysosporium to resist the Cd stress in the course of BDE-47 biodegradation, which has implications for expanding the application of P. chrysosporium in the bioremediation of Cd and BDE-47 combined pollution. The results suggested that single BDE-47 exposure did not induce obvious oxidative stress in P. chrysosporium, but coexistent Cd significantly triggered ROS generation, both intracellular ROS level and H 2 O 2 content showed positive correlation with Cd concentration. The activities of SOD and CAT were enhanced by low level of Cd (≤ 1 mg/L), but Cd of higher doses (>1 mg/L) depressed the expression of these two antioxidant enzymes at the later exposure period (3-5 days). The intracellular content of GSH along with GSH/GSSG ratio also exhibited a bell-shaped response with a maximum value at Cd of 1 mg/L. Furthermore, Cd-induced ROS generation resulted in the lipid peroxidation, as indicated by a noticeable increment of MDA content found after 3 days. Moreover, the study also indicated that Cd less than 1 mg/L promoted the production of extracellular protein and quickened the decrease of pH value in the medium, while excessive Cd (>1 mg/L) would lead to inhibition. These findings obtained demonstrated that P. chrysosporium had a certain degree of tolerance to Cd within a specific concentration range via regulating the antioxidant levels, inducing the synthesis of extracellular protein as well as stimulating the production of organic acids, and 1 mg/L is suggested to be the tolerance threshold of this strains under Cd stress during BDE-47 biodegradation. Copyright © 2018 Elsevier Inc. All rights reserved.
Antiretroviral Treatment Effect on Immune Activation Reduces Cerebrospinal Fluid HIV-1 Infection
Sinclair, Elizabeth; Ronquillo, Rollie; Lollo, Nicole; Deeks, Steven G.; Hunt, Peter; Yiannoutsos, Constantin T.; Spudich, Serena; Price, Richard W.
2012-01-01
Objective To define the effect of antiretroviral therapy (ART) on activation of T cells in cerebrospinal fluid (CSF) and blood, and interactions of this activation with CSF HIV-1 RNA concentrations. Design Cross-sectional analysis of 14 HIV-negative subjects and 123 neuroasymptomatic HIV-1–infected subjects divided into 3 groups: not on ART (termed “offs”), on ART with plasma HIV-1 RNA >500 copies/mL (“failures”), and on ART with plasma HIV-1 RNA ≤500 copies/mL (“successes”). T-cell activation was measured by coexpression of CD38 and human leukocyte antigen DR (HLA-DR). Other measurements included CSF neopterin and white blood cell (WBC) counts. Results CD8 T-cell activation in CSF and blood was highly correlated across all subjects and was highest in the offs, lower in the failures, and lower still in the successes. While CD8 activation was reduced in failures compared to offs across the range of plasma HIV-1, it maintained a coincident relation to CSF HIV-1 in both viremic groups. In addition to correlation with CSF HIV-1 concentrations, CD8 activation in blood and CSF correlated with CSF WBCs and CSF neopterin. Multivariate analysis confirmed the association of blood CD8 T-cell activation, along with plasma HIV-1 RNA and CSF neopterin, with CSF HIV-1 RNA levels. Conclusions The similarity of CD8 T-cell activation in blood and CSF suggests these cells move from blood to CSF with only minor changes in CD38/HLA-DR expression. Differences in the relation of CD8 activation to HIV-1 concentrations in the blood and CSF in the 2 viremic groups suggest that changes in immune activation not only modulate CSF HIV-1 replication but also contribute to CSF treatment effects. The magnitude of systemic HIV-1 infection and intrathecal macrophage activation are also important determinants of CSF HIV-1 RNA levels. PMID:18362693
Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana
2015-06-01
The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.
Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake
Niu, Yong; Jiao, Wei; Yu, Hui; Niu, Yuan; Pang, Yong; Xu, Xiangyang; Guo, Xiaochun
2015-01-01
With regard to the size of China’s freshwater lakes, Taihu Lake ranks third and it plays an important role in the supply of drinking water, flood prevention, farming and navigation, as well as in the travelling industry. The problem of environmental pollution has attracted widespread attention in recent years. In order to understand the levels, distribution and sources of heavy metals in sediments of Taihu Lake, random selection was carried out to obtain 59 samples of surface sediment from the entire lake and study the concentrations of Pb, Cd, Cu, Zn, Cr and Ni. Toxic units were also calculated to normalize the toxicities caused by various heavy metals. As a result, Cd and Cu in sediment were considered lower than the effect range low (ERL) at all regions where samples were gathered, while Pb and Ni were categorized into ERL-effect range median (ERM) at over 22% of the regions where samples were obtained. Nevertheless, all average concentrations of the samples were below the level of potential effect. According to the findings of this research, significant spatial heterogeneity existed in the above heavy metals. In conclusion, the distribution areas of heavy metals with higher concentrations were mainly the north bays, namely Zhushan Bay, Meiliang Bay as well as Gonghu Bay. The distribution areas of Cu, Zn, Cr and Ni with higher concentration also included the lake’s central region, whereas the uniform distribution areas of those with lower concentrations were the lake’s southeast region. In addition, it was most probable that the spatial distribution of heavy metals was determined by river inputs, whereas atmospheric precipitation caused by urban and traffic contamination also exerted considerable effects on the higher concentrations of Pb and Cd. Through evaluating the total amount of toxic units (ΣTU), it was found that higher toxicity existed primarily in the north bays and central region of the lake. If the heavy metals were sorted by the reduction of mean heavy metal toxic units in Taihu Lake in descending order, it would be Pb, Cr, Ni, Cd, Zn and Cu. Generally speaking, these result of analyses are conducive to alleviating the contamination of heavy metals in Taihu Lake. PMID:26633432
Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system.
Simões da Costa, A M; Delgadillo, I; Rudnitskaya, A
2014-11-01
An array of 10 potentiometric chemical sensors has been applied to the detection of total Fe, Cu, Pb and Cd content in digested wine. As digestion of organic matter of wine is necessary prior to the trace metal detection using potentiometric sensors, sample preparation procedures have been optimized. Different variants of wet and microwave digestion and dry ashing, 14 conditions in total, have been tested. Decomposition of organic matter was assessed using Fourier transform mid-infrared spectroscopy and total phenolic content. Dry ashing was found to be the most effective method of wine digestion. Measurements with sensors in individual solutions of Fe(III), Cu(II), Pb(II) and Cd(II) prepared on different backgrounds have shown that their detection limits were below typical concentration levels of these metals in wines and, in the case of Cu, Pb and Cd below maximum allowed concentrations. Detection of Fe in digested wine samples was possible using discrete iron-sensitive sensors with chalcogenide glass membranes with RMSEP of 0.05 mmol L(-1) in the concentration range from 0.0786 to 0.472 mmol L(-1). Low concentration levels of Cu, Pb and Cd in wine and cross-sensitivity of respective sensors resulted in the non-linearity of their responses, requiring back-propagation neural network for the calibration. Calibration models have been calculated using measurements in the model mixed solutions containing all three metals and a set of digested wine sample. RMSEP values for Cu, Pb and Cd were 3.9, 39 and 1.2 μmol L(-1) in model solutions and 2, 150 and 1 μmol L(-1) in digested wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Kadhum, Safaa A; Ishak, Mohd Yusoff; Zulkifli, Syaizwan Zahmir
2017-10-01
This study applied the use of sequential extraction technique and simple bioaccessibility extraction test to quantify the bioavailable fractions and the human bioaccessible concentration of metals collected from nine stations in surface sediment of the Langat River. The concentrations of total and bioaccessible metals from different stations were in the range of 0.49-1.04, 0.10-0.32 μg g -1 for T-Cd, Bio-Cd, respectively, and 12.9-128.03, 2.06-8.53 μg kg -1 for T-Hg, Bio-Hg, respectively. The results revealed highest R-Bio-Cd in Banting station (55.3 %), while the highest R-Bio-Hg was in Kajang station (49.61 %). The chemical speciation of Cd in most sampling stations was in the order of oxidisable-organic > residual > exchangeable > acid-reducible, while speciation of Hg was in the order of exchangeable > residual > oxidisable-organic > acid-reducible. The correlation matric of mean content showed that the TOM, particle size and Mg ++ in polluted surface sediments was highly correlated with total mercury. The PCA showed that the main factors influencing the bioaccessibility of Hg in surface sediments were the sediment TOM, F1 (EFLE) and F3 (oxidation-organic), while the factor influencing the bioaccessibility of Cd was the F3 (oxidation-organic) and T-Cd.
Wang, Rongyu; Ma, Hongmin; Zhang, Yong; Wang, Qi; Yang, Zhongping; Du, Bin; Wu, Dan; Wei, Qin
2017-10-15
An ultrasensitive photoelectrochemical sandwich immunosensor was designed for detection of insulin based on WO 3 /CdS/polydopamine (WO 3 /CdS/PDA) co-sensitized and PDA@carbon nanotubes (PDA@CNT) conjugates for signal amplification. The CdS nanoparticles were first deposited on the WO 3 nanorods via sequential chemical bath deposition to form the WO 3 /CdS structure to enhance photocurrent. Then equipped with PDA to form the WO 3 /CdS/PDA photosensitive structure. The PDA was used not only to reduce the toxicity of CdS but also adsorb insulin primary antibodies (Ab 1 ). Meanwhile, insulin secondary antibodies (Ab 2 ) were decorated by PDA@CNT conjugates for signal amplification and further enhance photocurrent. Different photocurrent intensities were obtained by the photoelectrochemical workstation at applied bias of 0V due to the different amount of the PDA@CNT conjugates introduced by the different concentrations of insulin. A good linear relationship was obtained between the increased photocurrent and insulin concentrations range from 0.01ngmL -1 to 50ngmL -1 . And a detection limit of 2.8pgmL -1 was obtained. The proposed sensor was applied to the determination of the insulin in human serum sample, and satisfactory results were obtained. The sensor presented good specificity, reproducibility and stability, thus it might find application in the clinical diagnosis of insulin or other biomarkers in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.
Bartsch, M.R.; Cope, W.G.; Rada, R.G.
1999-01-01
We assessed accumulation of cadmium (Cd) and bioturbation by nymphs of the burrowing mayfly Hexagenia bilineata as indicators of exposure to Cd- spiked sediment in a 21-d test. Surficial sediments (top 5 cm) from Pool 7 of the Upper Mississippi River were spiked with Cd to concentrations of 3, 7, and 15 ??g Cd g-1 dry weight. The experimental design was completely randomized, with three Cd-spiked sediment treatments plus an unspiked sediment control (1 ??g Cd g-1 dry weight), and 10 nymphs in each of six replicates per treatment. Nymphs accumulated Cd during the 21-d exposure; mean concentrations varied from 0.22 to 6.24 ??g g-1 dry weight, and tissue concentrations were correlated with Cd concentration in unfiltered test water (r = 0.93, P < 0.01) and test sediment (r = 0.93, P < 0.01). The effect of Cd on bioturbation by nymphs, as indicated by turbidity, differed significantly among treatments (P = 0.045) and over time within treatments (P = 0.01). Turbidity progressively decreased as Cd concentration in the sediment increased, up to 7 ??g g-1; however, turbidity in the 15 ??g g-1 treatment (our greatest exposure concentration) did not differ significantly from the control. Concentrations of Cd in unfiltered, overlying test water increased significantly within treatments during the test, indicating that nymphs mobilized sediment-associated Cd into the overlying water, presumably through burrowing and respiratory activities.
Kenney, Janice P L; Fein, Jeremy B
2011-05-15
In this study, we used potentiometric titrations and Cd adsorption experiments to determine the binding capacities of two acidophilic (A. cryptum and A. acidophilum) and two alkaliphilic (B. pseudofirmus and B. circulans) bacterial species in order to determine if any consistent trends could be observed relating bacterial growth environment to proton and Cd binding properties and to compare those binding behaviors to those of neutrophilic bacteria. All of the bacterial species studied exhibited significant proton buffering over the pH range in this study, with the alkaliphiles exhibiting significantly higher acidity constants than the acidophiles as well as the neutrophilic bacterial consortia. The calculated average site concentrations for each of the bacteria in this study are within 2σ experimental error of each other, with the exception of A. cryptum, which has a significantly higher Site 2 concentration than the other species. Despite differing acidity constants between the acidophiles and alkaliphiles, all bacteria except A. cryptum exhibited remarkably similar Cd adsorption behavior to each other, and the observed extent of adsorption was also similar to that predicted from a generalized model derived using neutrophilic bacterial consortia. This study demonstrates that bacteria that grow under extreme conditions exhibit similar proton and metal adsorption behavior to that of previously studied neutrophilic species and that a single set of proton and metal binding constants can be used to model the behavior of bacterial adsorption under a wide range of environmental conditions.
H2O2-sensitive quantum dots for the label-free detection of glucose.
Hu, Mei; Tian, Jing; Lu, Hao-Ting; Weng, Li-Xing; Wang, Lian-Hui
2010-08-15
A novel label-free detection system based on CdTe/CdS quantum dots (QDs) was designed for the direct measurement of glucose. Herein we demonstrated that the photoluminescence (PL) of CdTe/CdS QDs was sensitive to hydrogen peroxide (H(2)O(2)). With d-glucose as a substrate, H(2)O(2) that intensively quenched the QDs PL can be produced via the catalysis of glucose oxidase (GOx). Experimental results showed that the decrease of the QDs PL was proportional to the concentration of glucose within the range of 1.8 microM to 1mM with the detection limit of 1.8 microM under the optimized experimental conditions. In addition, the QD-based label-free glucose sensing platform was adapted to 96-well plates for fluorescent assay, enhancing the capabilities and conveniences of this detection platform. An excellent response to the concentrations of glucose was found within the range of 2-30 mM. Glucose in blood and urine samples was effectively detected via this strategy. The comparison with commercialized glucose meter indicated that this proposed glucose assay system is not only simple, sensitive, but also reliable and suitable for practical application. The high sensitivity, versatility, portability, high-throughput and low cost of this glucose sensor implied its potential in point-of-care clinical diagnose of diabetes and other fields. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vipin, E-mail: vipinkumar28@yahoo.co.in; Sharma, D. K.; Agrawal, Sonalika
Cd{sub 1-X}Zn{sub X}S thin films (X = 0.2, 0.4, 0.6, 0.8) have been grown on glass substrate by spray pyrolysis technique using equimolar concentration aqueous solution of cadmium chloride, zinc acetate and thiourea. Prepared thin films have been characterized by UV-VIS spectrophotometer. The optical band gap of the films has been studied by transmission spectra in wavelength range 325-600nm. It has been observed that optical band gap increases with increasing zinc concentration. The optical band gap of these thin films varies from 2.59 to 3.20eV with increasing Zn content.
Review on the Risk Assessment of Heavy Metals in Malaysian Clams.
Hossen, Md Faruk; Hamdan, Sinin; Rahman, Md Rezaur
2015-01-01
The current review discusses the levels of six heavy metals in different clam species from 34 sites of Malaysian coasts. The concentrations (µg/g dry weight) of these heavy metals ranged around 0.18-8.51, 0.13-17.20, 2.17-7.80, 0.84-36.00, 24.13-368.00, and 177.82-1912.00 for Cd, Pb, Ni, Cu, Zn, and Fe, respectively. It was observed that the concentrations of metals slightly depend on different clam species but mostly depend on site locations. According to Malaysian Food Regulation (1985), about 30% and more than 50% sites are safe from Cd and Pb contamination, respectively, and also the clam species from the other populations studied were safe for consumption.
Cadmium distribution in field-grown fruit trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korcak, R.F.
The effect of soil applied Cd on Cd distribution in and growth of five species of fruit trees was investigated. Cadmium was applied at three rates (0, 5, and 10 mg kg{sup {minus}1} soil) as CdSO{sub 4} to orchard plots established at two pH levels, low (5.5) and high (6.5). Five fruit tree types were planted: Gala apple (Malus domestica Borkh.) budded on M.26 (dwarfing) or MM.111 (semistandard) rootstocks, Redskin peach (Prunus persica L.) on Lovell rootstock, Stanley plum (Prunus domestica L.) on Myrobalon rootstock, and Seckel pear (Pyrus communis L.) on seedling rootstock. The trees were grown for 6more » yr, 7 yr in the case of pear, and leaf, bark, wood, fruit, and root Cd concentrations were monitored. Gala apple on both rootstocks accumulated very small concentrations of Cd, usually 0.1 mg kg{sup {minus}1} dry wt. in all tissues tested. Peach and plum were intermediate in Cd accumulation, but both still relatively low. Seckel pear had high Cd concentrations in all tissues including fruit flesh and peel. Pear leaf Cd concentrations were 2.0 mg kg{sup {minus}1} from the 10 mg kg{sup {minus}1} soil Cd application after 5 yr. Pear fruit peel and flesh showed elevated, although nonsignificant, Cd concentrations with increased Cd applied. There was little difference between bark and wood tissue Cd concentrations independent of tree type. Root Cd concentrations were highest for pear followed by peach and plum, and lowest in apple.« less
Sivaci, Aysel; Sivaci, E Ridvan; Sökmen, Münevver
2007-07-01
Changes in antioxidant activity, total phenolic and abscisic acid (ABA) constituents of Myriophyllum spicatum L. and Myriophyllum triphyllum Orchard, cadmium (Cd) aqueous macrophytes, were investigated exposed to 0, 2, 4, 6, 8, 16 mg l(-1) Cd concentrations. M. triphyllum exhibited strong antioxidant activity but not M. spicatum before and after exposure. Free radical scavenging activity of M. triphyllum was significantly affected from the Cd concentrations and a significant increase was observed at 6 mgl(-1) Cd concentration. Total phenolic constituent and ABA concentration of M. triphyllum is higher than that of M. spicatum with or without heavy metal exposure (P < 0.05). While total phenolic constituents of both species were not significantly affected from Cd concentrations except for 6 mgl(-1) Cd concentration ABA contents did. ABA content of M. triphyllum increased from 1.81 +/- 0.10 microg g(-1 )(control) to 5.13 +/- 0.15 microg g(-1) at 16 mg l(-1) Cd concentration and increase was from 0.59 +/- 0.08 microg g(-1) (control) to 2.05 +/- 0.10 microg g(-1) for M. spicatum at the same Cd concentration. Both species accumulated ABA indicating submerge plants can also accumulate ABA and its concentration increase with increasing Cd concentration. Such studies as this one may be important for evaluation of the metabolic variations of toxic metal tolerant macrophytes that grown in polluted aqueous ecosystem.
García-Delgado, C; Alonso-Izquierdo, M; González-Izquierdo, M; Yunta, F; Eymar, E
2017-07-01
The present research was aimed to (i) report the recycling of spent A. bisporus substrate (SAS) to remove heavy metals (Cd and Pb) and phenanthrene (Phe) from polluted water and (ii) assess the possibility to use the treated water for irrigation. Batch experiments were carried out to assess, firstly, the effect of interaction time between pollutants with SAS and, secondly, the pH of the polluted water. Then a biofilter was designed by using pressurized glass columns. Chemical parameters such as pH, electrical conductivity and content of Pb, Cd, Phe, nutrients (NPK) and Cl - were determined. Equilibrium for contaminants was quickly reached (1-2 h). The pH of the polluted water was the key factor for pollutants' adsorption. The polluted water's pH was increased after biofilter interaction. Phe was not detected in any fraction. Pb and Cd sorption rates were higher than 99%. The pollutant concentrations were within the permitted range to be used for agriculture purposes. Purified water showed significant concentrations of NPK, indicating its potential use as fertilizer. The SAS shows potential to be used as Phe, Pb and Cd biosorbent and the resulting treated water can be used for irrigation according to pollutant contents and agronomical evaluation.
Wang, Qingqing; Zhan, Guoqing; Li, Chunya
2014-01-03
Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of Hb in the range of 4.0×10(-9)-4.4×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The developed method has been successfully employed to determine Hb in human urine samples. Copyright © 2013. Published by Elsevier B.V.
Cohn, Moran D; Viding, Essi; McCrory, Eamon; Pape, Louise; van den Brink, Wim; Doreleijers, Theo A H; Veltman, Dick J; Popma, Arne
2016-08-30
Structural Magnetic Resonance Imaging studies have reported volume reductions in several brain regions implicated in social cognition and emotion recognition in juvenile antisocial populations. However, it is unclear whether these structural abnormalities are specifically related to antisocial features, or to co-occurring callous-unemotional (CU) traits. The present study employed voxel-based morphometry to assess both grey matter volume (GMV) and grey matter concentration (GMC) in a large representative at-risk sample of adolescents (n=134; mean age 17.7yr), characterized by a broad range of CU trait and conduct disorder (CD) symptom scores. There was a significant interaction between CD symptom and CU trait scores in the prediction of GMV in the anterior insula, with a significant positive association between CU traits and GMV in youth low on CD symptoms only. In addition, we found a significant unique positive association between CD symptoms and GMC in the amygdala, and unique negative associations between CU traits and GMC in the amygdala and insula. These findings are in line with accumulating evidence of distinct associations of CD symptoms and CU traits with amygdala and insula GMC in juvenile antisocial populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lipopolysaccharide modulation of a CD14-like molecule on porcine alveolar macrophages
NASA Technical Reports Server (NTRS)
Kielian, T. L.; Ross, C. R.; McVey, D. S.; Chapes, S. K.; Blecha, F.; Spooner, B. S. (Principal Investigator)
1995-01-01
Cluster of differentiation antigen 14 (CD14) functions as a receptor for lipopolysaccharide (LPS) LPS-binding protein (LBP) complexes. Because LPS has varying effects on CD14 expression in vitro, we evaluated CD14 expression in response to LPS with a fully differentiated macrophage phenotype, the alveolar macrophage. By using flow microfluorometric analysis and a radioimmunoassay with an anti-human CD14 monoclonal antibody (My4) that cross-reacts with porcine CD14, we found that macrophages stimulated with LPS for 24 h exhibited a two- to fivefold increase in CD14-like antigen compared with unstimulated cells. At low concentrations of LPS, up-regulation of the CD14-like antigen was dependent on serum; at higher concentrations of LPS, serum was not required. In the absence of serum a 10-fold higher dose of LPS (10 ng/ml) was required to increase CD14-like expression. In addition, LPS-induced CD14-like up-regulation correlated with secretion of tumor necrosis factor-alpha, regardless of serum concentration. Blockade with My4 antibody significantly inhibited LPS-induced tumor necrosis factor-alpha secretion at 1 ng/ml of LPS. However, inhibition decreased as we increased the LPS concentration, suggesting the existence of CD14-independent pathways of macrophage activation in response to LPS. Alternatively, My4 may have a lower affinity for the porcine CD14 antigen than LPS, which may have only partially blocked the LPS-LBP binding site at high concentrations of LPS. Therefore, these data suggest that LPS activation of porcine alveolar macrophages for 24 h increased CD14-like receptor expression. The degree of CD14-like up-regulation was related to LPS concentration, however, activation did not require the presence of serum at high concentrations of LPS.
NASA Astrophysics Data System (ADS)
Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao
2016-02-01
A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi-Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.
Dean, W.E.; Zheng, Yen; Ortiz, J.D.; VanGeen, A.
2006-01-01
Concentrations of organic carbon (orgC), cadmium (Cd), and molybdenum (Mo) were measured in two sediment cores raised from depths of 430 and 700 m within the oxygen-minimum zone (OMZ) off southern Baja California at a temporal resolution of e10.5 kyr over the past 52 kyr. These records are supplemented with diffuse spectral reflectance (DSR) measurements obtained on board ship soon after collection at a resolution of e10.05 kyr. In the core from 700 m depth, a component extracted from the DSR data and the three geochemical proxies generally vary in concert with each other and over a wide range (4-22% orgC; 1-40 mg/kg Cd; 5-120 mg/kg Mo). Intervals of increased orgC, Cd, and Mo accumulation generally correspond to warm periods recorded in the oxygen-isotopic composition of Greenland ice, with the exception of the Bolling/Allerod which is only weakly expressed off Baja California. Concentrations of the biogenic proxies are higher in the core from 430 m depth, but erratic sediment accumulation before 15 ka precludes dating of the older intervals that are laminated and contain elevated orgC, Cd, and Mo concentrations. The new data provide further evidence of an intimate teleconnection between global climate and the intensity of the OMZ and/or productivity along the western margin of North America. On the basis of a comparison with Cd and Mo records collected elsewhere in the region, we conclude that productivity may actually have varied off southern Baja California by no more than a factor of 2 over the past 52 kyr. Copyright 2006 by the American Geophysical Union.
Anderson, Stacey E.; Shane, Hillary; Long, Carrie; Lukomska, Ewa; Meade, B. Jean; Marshall, Nikki B.
2016-01-01
Didecyldimethylammonium chloride (DDAC) is a dialkyl-quaternary ammonium compound that is used in numerous products for its bactericidal, virucidal and fungicidal properties. There have been clinical reports of immediate and delayed hypersensitivity reactions in exposed individuals; however, the sensitization potential of DDAC has not been thoroughly investigated. The purpose of these studies was to evaluate the irritancy and sensitization potential of DDAC following dermal exposure in a murine model. DDAC induced significant irritancy (0.5 and 1%), evaluated by ear swelling in female Balb/c mice. Initial evaluation of the sensitization potential was conducted using the local lymph node assay (LLNA) at concentrations ranging from 0.0625–1%. A concentration-dependent increase in lymphocyte proliferation was observed with a calculated EC3 value of 0.17%. Dermal exposure to DDAC did not induce increased production of IgE as evaluated by phenotypic analysis of draining lymph node B-cells (IgE+B220+) and measurement of total serum IgE levels. Additional phenotypic analyses revealed significant and dose-responsive increases in the absolute number of B-cells, CD4+ T-cells, CD8+ T-cells and dendritic cells in the draining lymph nodes, along with significant increases in the percentage of B-cells (0.25% and 1% DDAC) at Day 10 following 4 days of dermal exposure. There was also a significant and dose-responsive increase in the number of activated CD44 + CD4 + and CD8+ T-cells and CD86+ B-cells and dendritic cells following exposure to all concentrations of DDAC. These results demonstrate the potential for development of irritation and hypersensitivity responses to DDAC following dermal exposure and raise concerns about the use of this chemical and other quaternary ammonium compounds that may elicit similar effects. PMID:27216637
Heavy metal concentrations in earthworms from soil amended with sewage sludge
Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.
1982-01-01
Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.
Desmond, Alan N; O'Regan, Kevin; Malik, Neera; McWilliams, Sebastian; O'Neill, Siobhan; Quigley, Eamonn M; Shanahan, Fergus; Maher, Michael M
2012-11-01
Results of previous studies have shown that repeated abdominopelvic computed tomography (CT) examinations can lead to substantial cumulative diagnostic radiation exposure in patients with Crohn's disease (CD). Improved selection of patients referred for CT will reduce unnecessary radiation exposure. This study examines if serum C-reactive protein (CRP) concentration predicts which symptomatic patients with CD are likely to have significant disease activity or disease complications (such as abscess) detected on abdominopelvic CT. All abdominopelvic CTs performed on patients with CD at a tertiary referral centre during the period June 2003 to June 2008 were identified. CT findings were coded by a pair of independent blinded senior radiologists for (i) small bowel luminal disease, (ii) large bowel luminal disease, (iii) mesenteric inflammatory changes, (iv) penetrating disease (fistulas, abscess, or phlegmon), (v) acute disease complications (obstruction or perforation), and (vi) acute non-CD findings. Imaging findings were correlated with serum CRP checked within 14 days before imaging. The reference range for CRP was defined as 0-5 mg/L. A total of 147 patients with symptomatic CD had a CRP assay performed within 14 days before undergoing abdominopelvic CT. The median time from CRP assay to imaging was 2 days (interquartile range, 0-6 days). Median CRP before imaging was 24 mg/L (interquartile range, 6-88 mg/L). CT was normal in 34 of 147 case (23.1%). Patients with normal CRP (n = 36) were significantly less likely to have penetrating disease (odds ratio [OR], 0.04 [95% confidence interval {CI}, 0.01-0.7]; P < .001) or large bowel luminal disease (OR, 0.3 [95% CI, 0.1-0.8]; P < .05). Normal CRP excluded penetrating disease with a sensitivity of 1.0 (95% CI, 0.87-1.0). CRP levels did not correlate with the presence of small bowel luminal disease (n = 82), mesenteric inflammatory changes (n = 68), or acute disease complications (n = 10). Symptomatic patients with CD and normal serum CRP are unlikely to have evidence of abscess, fistulating disease, or large bowel luminal disease detected on abdominopelvic CT. However, abdominopelvic CT may demonstrate evidence of clinically significant non-penetrating CD or complications, including perforation and acute obstruction, regardless of serum CRP concentration. Copyright © 2012 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Atmospheric inorganic trace contaminants in Finland, especially in the Gulf of Finland area
NASA Astrophysics Data System (ADS)
Jalkanen, Liisa Maria
Atmospheric aerosol samples were collected at Utö and Virolahti in the Gulf of Finland area and Ähtäri in Central Finland using a filter pack. The samples were analysed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass-spectrometry (ICP-MS) for 34 elements including halogens and heavy metals. A very simple and quantitative acid digestion method was developed for the dissolution of the aerosol samples for ICP-MS analysis. Analysis of the elemental data is given using trajectories, principal component analysis and long-range transport modelling. The average total (fine + coarse) atmospheric concentrations range at Utö from 0.083 ng m -3 for Cd to 730 ng m-3 for Na. The sea areas (Utö, Virolahti, Hailuoto) have most of the heavy metal air pollution in Finland, as witnessed by the aerosol concentration and wet deposition data. There is a clear decreasing gradient in the deposition of As, Cd, Cr, Pb, and V from South to North in Finland. In general, the trace element concentrations and deposition are lower in Finland than in Central Europe. The effect of large particulate emission sources in Estonia can be seen in the elemental concentrations of atmospheric particles and in the deposition around the eastern Gulf of Finland region. There has been a remarkable decrease in heavy metal emissions in Finland during the 1990s. However, due to long-range transport, the decrease in deposition as witnessed by analysis of these concentrations in precipitation and moss is much less than would be expected.
Jartun, Morten; Ottesen, Rolf Tore; Steinnes, Eiliv; Volden, Tore
2008-06-25
Runoff sediments from 68 small stormwater traps around the harbor of urban Bergen, Norway, were sampled and the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, and total organic carbon (TOC) were determined in addition to grain size. Our study provides empirical data from a large area in the interface between the urban and marine environment, studying the active transport of pollutants from land-based sources. The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. The concentrations of different pollutants in urban runoff sediments show that there are several active pollution sources supplying the sewage systems with PCBs, PAHs and heavy metals such as lead (Pb), zinc (Zn) and cadmium (Cd). The concentration of PCB7 in the urban runoff sediments ranged between < 0.0004 and 0.704 mg/kg. For PAH16, the concentration range was < 0.2-80 mg/kg, whereas the concentration ranges of Pb, Zn and Cd were 9-675, 51.3-4670 and 0.02-11.1 mg/kg respectively. Grain size distribution in 21 selected samples varied from a median particle diameter of 13 to 646 microm. However, several samples had very fine-grained particles even up to the 90 percentile of the samples, making them available for stormwater dispersion in suspended form. The sampling approach proposed in this paper will provide environmental authorities with a useful tool to examine ongoing urban contamination of harbors and similar recipients.
Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong
2016-01-01
Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport. PMID:27052807
Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt.
Hernandez-Martinez, Gabriel R; Ortiz-Alvarez, Daniela; Perez-Roa, Michael; Urbina-Suarez, Nestor Andres; Thalasso, Frederic
2018-06-05
Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (K S ), inhibition constant (K I ), and maximum oxygen uptake rate (OUR max ). The results indicated that, in a range of concentration from 0 to 40 mg L -1 , the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, M.J.; Tiller, K.G.; Beech, T.A.
Elevated Cd concentrations have been observed in potato (Solanum tuberosum L.) tubers from commercial crops in certain regions of southern Australia. Reasons for enhanced Cd uptake by tubers were investigated by a survey of commercial crops and associated soils. Eighty-nine sites were selected and paired tuber and soil samples taken. Concentration of Cd in tubers was compared to potato variety, tuber elemental composition, and chemical-physical characteristics of topsoil (0-150) and subsoil (150-300 mm). Tuber Cd concentrations were positively related to soil electrical conductivity (EC) and extractable Cl (R{sup 2} = 0.62, P < 0.001) in the topsoil, with extractable Clmore » accounting for more variation than EC. Tuber Cd concentrations were not strongly related (R{sup 2} = 0.23, P < 0.05) to potato variety alone. However, inclusion of variety and EDTA-extractable Zn with water-extractable Cl in a multivariate model resulted in a small but significant improvement in the variance accounted for by the model (R{sup 2} = 0.73, p < 0.001). Tuber Cd was unrelated to tuber concentrations of P or tuber but was positively related to concentrations of major cations in the tuber particularly Na. Soil pH, total C, EDTA-extractable Cd, or particle-size distribution were not correlated to tuber Cd concentrations, either singly or after inclusion in a multivariate model with soil Cl concentrations. As Cl is known to mobilize soil Cd and increase its phytoavailability, elevated Cd concentrations in potato tubers in southern Australia appear to be largely a result of the use of saline irrigation waters. 41 refs., 5 figs., 4 tabs.« less
Effects of cadmium-enriched sediment on fish and amphibian embryo-larval stages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, P.C.; Birge, W.J.; Black, J.A.
1984-08-01
Aquatic toxicity tests were conducted to evaluate the effects of cadmium-enriched sediment on embryo-larval stages of the goldfish (Carassius auratus), leopard frog (Rana pipiens), and largemouth bass (Micropterus salmoides). Natural stream sediment was collected and enriched with cadmium to nominal concentrations of 1.0, 10.0, 100, and 1000 mg/kg. Enriched sediments were placed in Pyrex dishes and covered with 350 ml of reconstituted water. Fertilized eggs were placed in the dishes and maintained through 4 days posthatching, giving a total exposure time of 6 to 7 days. For all tests the cadmium concentrations ranged from 1.1 to 76.5 micrograms/liter in watermore » above sediments containing 1 to 1000 mg Cd/kg, respectively. Although low frequencies of mortality were observed in all tests, goldfish, leopard frog, and bass exposed to sediments enriched to 1000 mg Cd/kg accumulated 4.61, 12.55, and 60.0 micrograms Cd/g, respectively. No significant correlations were found between mortality of the goldfish and leopard frog and the cadmium concentrations in either water or sediment. However, all three species showed strong correlations between cadmium concentrations in water and tissue, sediment and tissue, and water and sediment. Tissue cadmium concentrations were related to the length of time test organisms were in direct contact with cadmium-enriched sediment.« less
Xiao, Xiyuan; Chen, Tongbin; An, Zhizhuang; Lei, Mei; Huang, Zechun; Liao, Xiaoyong; Liu, Yingru
2008-01-01
Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (< or = 20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.
Tian, R N; Yu, S; Wang, S G; Zhang, Y; Tang, J Y; Liu, Y L; Nie, Y H
2013-01-01
In this study, we report the tolerance and accumulation of Triarrhena sacchariflora to copper (Cu) and cadmium (Cd). The results show that T. sacchariflora had strong tolerance to Cu and Cd stress. The tolerance indexes (TI) were greater than 0.5 for all treatments. The bioconcentration factors (BCFs) to Cu and Cd were both above 1.0. The accumulation ability of roots was stronger than that of shoots, and ranges of BCF to Cu and Cd in roots were 37.89-79.08 and 83.96-300.57, respectively. However, the translocation ability to Cu and Cd was weak, with more than 86% of Cu or Cd accumulated in roots, suggesting an exclusion strategy for heavy metal tolerance. The uptake efficiency (UE) and translocation efficiency (TE) to Cu and Cd increased linearly as the Cu and Cd concentration in the substrate increased. UE was higher than TE, with a maximum of 2,118.90 μg g(-1) root dry weight (DW) (50 mg L(-1) Cu) and 1,847.51 μg g(-1) root DW (20 mg L(-1)Cd), respectively. The results indicate that T. sacchariflora is a Cu- and Cd-tolerant non-hyperaccumulator plant, suggesting that T. sacchariflora could play an important role in phytoremediation in areas contaminated with Cu and Cd.
Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza.
de Andrade, Sara Adrián López; da Silveira, Adriana Parada Dias; Jorge, Renato Atílio; de Abreu, Mônica Ferreira
2008-01-01
In order to investigate the cadmium (Cd) accumulation patterns and possible alleviation of Cd stress by mycorrhization, sunflower plants (Helianthus annuus L.) were grown in the presence or absence of Cd (20 micromol L(-1)) and inoculated or not inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. No visual symptoms of Cd phytotoxicity were observed; nevertheless, in non-mycorrhizal plants the presence of Cd decreased plant growth. The addition of Cd had no significant effect on either mycorrhizal colonization or the amount of extra-radical mycelia that was produced by the AMF. Cd accumulated mainly in roots; only 22% of the total Cd absorbed was translocated to the shoots, where it accumulated to an average of 228 mg Cd kg(-1). Although the shoot-to-root ratio of Cd was similar in both the AMF inoculated and non-inoculated plants, the total absorbed Cd was 23% higher in mycorrhizal plants. Cd concentration in AMF extra-radical mycelium was 728 microg g(-1) dry weight. Despite the greater absorption of Cd, mycorrhizal plants showed higher photosynthetic pigment concentrations and shoot P contents. Cd also influenced mineral nutrition, leading to decreased Ca and Cu shoot concentrations; N, Fe and Cu shoot contents; and increased S and K shoot concentrations. Cd induced guaiacol peroxidase activity in roots in both mycorrhizal and non-mycorrhizal plants, but this increase was much more accentuated in non-mycorrhizal roots. In conclusion, sunflower plants associated with G. intraradices were less sensitive to Cd stress than non-mycorrhizal plants. Mycorrhizal sunflowers showed enhanced Cd accumulation and some tolerance to excessive Cd concentrations in plant tissues.
A novel quantum dot-laccase hybrid nanobiosensor for low level determination of dopamine.
Shamsipur, Mojtaba; Shanehasz, Maryam; Khajeh, Khosro; Mollania, Nasrin; Kazemi, Sayyed Habib
2012-12-07
This work reports a novel nanobiosensor based on a thioglycolic acid (TGA)-capped CdTe quantum dot-laccase (Lac) enzyme system for sensitive detection of dopamine (DA). The enzyme used catalyzes the oxidation of DA to dopamine-o-quinone (DOQ), which can selectively quench the strong luminescence of CdTe nanocrystals at neutral pH. The relationship between luminescence intensity of CdTe nanocrystals and DA concentration is nicely described by the Stern-Volmer equation. At an optimum pH of 7.4, the proposed sensor gives a linear calibration over a DA concentration range of 0.3 to 100 μM, with a limit of detection of 0.16 μM and a response time of 2 min. The relative standard deviation for seven replicate determinations of 6.0 μM of DA was found to be 3.7%. The sensor was successfully applied to the determination of DA in a blood plasma sample and in a DA injection formulation.
Bastami, Kazem Darvish; Afkhami, Majid; Mohammadizadeh, Maria; Ehsanpour, Maryam; Chambari, Shahrokh; Aghaei, Sina; Esmaeilzadeh, Marjan; Neyestani, Mahmoud Reza; Lagzaee, Farahnaz; Baniamam, Mehrnaz
2015-05-15
The concentrations of some heavy metals (Cu, Zn, Pb and Cd) were investigated in the sediments and in the mullet Liza klunzingeri from the northern part of the Persian Gulf. The levels of Cu, Zn and Pb in the sediment varied significantly among the sampling sites (P<0.05). Sediments from the northern part of the Persian Gulf had serious ecological risk when considering PER. The ranges of the average concentrations of Cu, Zn, Pb, and Cd in the tissue of L. klunzingeri were 10.00-16.66 mg/kg, 18.75-32.50 mg/kg, 3.25-14.16 mg/kg and 0.37-3.33 mg/kg, respectively. The health risk analysis of individual heavy metals in the fish tissue indicated dangerous levels of Pb and Cd for the general population at some sampling sites. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alonso Castillo, M L; Sánchez Trujillo, I; Vereda Alonso, E; García de Torres, A; Cano Pavón, J M
2013-11-15
Concentrations of heavy metals were measured in sediment and water from Málaga Bay (South Spain). In the later twentieth century, cities such as Málaga, have suffered the impact of mass summer tourism. The ancient industrial activities, and the actual urbanization and coastal development, recreation and tourism, wastewaters treatment facilities, have been sources of marine pollution. In sediments, Ni was the most disturbing metal because Ni concentrations exceeded the effects range low (ERL), concentration at which toxicity could start to be observed in 85% of the samples analyzed. The metal bioavailability decreased in the order: Cd>Ni>Pb>Cu>Cr. In the sea water samples, Cd and Pb were the most disturbing metals because they exceeded the continuous criteria concentration (CCC) of US EPA in a 22.5% and 10.0% of the samples, respectively. Statistical analyses (ANOVA, PCA, CA) were performed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shenai-Tirodkar, Prachi; Gauns, Mangesh; Kumar, Girish; Ansari, Zakir
2018-05-15
This study aimed to evaluate the relationship between physicochemical parameters and heavy metal (Cu, Ni, Pb, and Cd) concentrations from sediment, seawater, and its accumulation in tissues of oyster species (Crassostrea madrasensis and C. gryphoides) from the three sites (Chicalim Bay (CB), Nerul Creek (NC), Chapora Bay (ChB)) along the Goa coast (India). Results showed enrichment of Cu and Ni in sediment exceeding the effect range low (ERL) level. The higher concentrations of Cu and Ni in sediments and in suspended particulate matter (SPM) from all the study sites are indicative of severe contamination of estuarine and associated habitats. Moreover, particulate Ni (at all the sites), Cu (at NC and ChB), Pb (at NC), and Cd (at CB and NC) concentrations were recorded more than its total loadings in surface sediment. Concentration of Cu and Cd in oyster tissue was several folds higher than its concentration in ambience. Further, this study showed that the levels of metal in oysters and their ambient environment were higher during the monsoon season. Hence, the consumption of oysters needs to be considered carefully with respect to the health hazards posed by the elevated levels of metal contaminants in certain seasons. The present study concludes that metals associated with the particulate matter in water column are the main source of metal accumulation in oyster. It is also suggested that concentration of metal pollutants in coastal and estuarine water bodies should be monitored regularly to ensure the acceptable limits of metal concentrations.
Cadmium dietary intake in the Canary Islands, Spain.
Rubio, C; Hardisson, A; Reguera, J I; Revert, C; Lafuente, M A; González-Iglesias, T
2006-01-01
Cadmium (Cd) in the human diet constitutes a potential chronic hazard to health. In the nonsmoking general population, diet is the major source of cadmium exposure; therefore, it is important to monitor the dietary intake of this heavy metal to quantify and improve the understanding of Cd accumulation in the human body. The purpose of this study was to determine the levels of Cd in a range of food and drink commonly consumed in the Canary Islands. Food samples (420) were analyzed for Cd by atomic absorption spectrometry. The most recent nutritional survey conducted for the Canarian population was used to define the food and drink groups analyzed. The measured Cd concentrations combined with the food consumption data resulted in a total Cd intake in the Canary Islands of 0.16 microg/kg of body weight/day, which is well below the respective provisional tolerable weekly intake of Cd of 1 microg/kg of body weight per day determined by the FAO/WHO. The results are also compared with values reported for other national and international communities.
Zhao, Guanhui; Li, Xiaojian; Zhao, Yongbei; Li, Yueyuan; Cao, Wei; Wei, Qin
2017-08-21
A sensitive and selective method was proposed to detect Cu 2+ based on the electrochemiluminescence quenching of CdS/ZnS quantum dots (QDs). Herein, CdS/ZnS QDs were one-step electrodeposited directly on a gold electrode from an electrolyte (containing Cd(NO 3 ) 2 , Zn(NO 3 ) 2 , EDTA and Na 2 S 2 O 3 ) by cycling the potential from 0 to -1.8 V. The prepared CdS/ZnS QDs exhibited excellent solubility and strong and stable cathodic ECL activity. Meanwhile, Nafion was used to immobilize CdS/ZnS QDs. The quenching effect of Cu 2+ on the cathodic ECL of CdS/ZnS QDs was found to be selective and concentration dependent. The linear range for Cu 2+ detection was from 2.5 nM to 200 nM with a detection limit of 0.95 nM. Furthermore, the designed method for the detection of Cu 2+ can provide a reference for the detection of other heavy metal ions.
Joint toxicity of methamidophos and cadmium acting on Abelmoschus manihot.
Wang, Xiao-Fei; Zhou, Qi-Xing
2005-01-01
Joint toxicity of methamidophos and cadmium (Cd) on the ornamental Abelmoschus manihot was firstly examined and compared with single-factor effects of the two pollutants using ecotoxicological indexes including the inhibitory rate of seed germination, root elongation and inhibitory concentration 50% (IC50). The results indicated that methamidophos and Cd had unobvious( p > 0.05) effects on seed germination of the ornamental. There were significant( p < 0.05) inhibitory effects of Cd on root elongation of the tested plant. When the concentration of added Cd was low( < 20 mg/L), significant antagonistic effects on root elongation were observed. And synergic effects were observed when Cd was added in high dose( > 20 mg/L). However, the analysis of joint effects indicated that there were antagonistic effects between Cd and methamidophos under all the treatments. At the high concentration of Cd, joint toxicity of methamidophos and Cd was more dependent on concentration of Cd.
NASA Astrophysics Data System (ADS)
Candelone, Jean-Pierre; Hong, Sungmin; Pellone, Christian; Boutron, Claude F.
1995-08-01
Pb, Zn, Cd and Cu have been measured using ultraclean procedures in various sections of a 70.3-m snow/ice core covering the past 220 years (including the Industrial Revolution) drilled at Summit, central Greenland. These time series are the first reliable ones ever published for Zn, Cd, and Cu; for Pb they are the first verification of the pioneering data published more than two decades ago by C. Patterson and his coworkers [Murozumi et al., 1969]. For all four heavy metals, concentrations are found to have markedly increased up until the 1960s and 1970s before decreasing significantly during the following few decades. The timing and the amplitude of the observed changes differ significantly however from one metal to another. Comparison with concentration values obtained by analyzing ancient Holocene ice dated 7760 years B.P., that is, before humans started to impact on the atmosphere, show that no detectable increase occurred for Zn, Cd, and Cu before the Industrial Revolution. On the other hand, Pb concentrations were already one order of magnitude above natural values in late 18th century ice. Cumulative deposition of heavy metals to the whole Greenland ice cap since the Industrial Revolution ranges from 3200 t for Pb to 60 t for Cd.
Cassis, David; Lekhi, Priyanka; Pearce, Christopher M; Ebell, Nadene; Orians, Kristin; Maldonado, Maria T
2011-09-15
We previously identified dissolved cadmium (Cd(diss)) as the main source of this metal in cultured Pacific oysters, Crassostrea gigas, in Deep Bay, British Columbia, Canada (Lekhi et al., 2008). Total suspended particulate Cd (Cd(part)) was not found to be a significant source of oyster Cd (Cd(oys)), with Cd(part) >20 μm negatively correlated with Cd(oys) concentration. High phytoplankton abundance in spring and summer was hypothesized to reduce Cd(oys) indirectly by drawing down Cd(diss) and increasing oyster growth. In the present study we expanded on these results by examining specifically how the phytoplankton community composition modulates both Cd(diss) and Cd(oys) concentrations in Deep Bay. Based on calculations of nutrients and Cd(diss) drawdown, phytoplankton accounted for approximately 90% of the overall summer reduction in Cd(diss) in the bay. Diatoms were the dominant phytoplankton group, being correlated negatively with Cd(oys) and positively with Cd(part). This suggests that diatom growth mediates the transfer of Cd from the dissolved to the particulate phase, resulting in lower Cd(oys). Spring blooms and sporadic harmful algal blooms may mediate a large flux of Cd(part) to the sediments. Thus, phytoplankton act as a sink, rather than a source, of Cd to oysters in Deep Bay and have a crucial role in the seasonality of Cd(oys) by reducing the concentration of Cd(diss) during the summer. Based on environmental variables, two descriptive models for annual Cd(oys) concentrations were developed using multiple linear regression. The first model (R(2)=0.870) was created to explain the maximum variability in Cd(oys) concentrations throughout the year, while the second (R(2)=0.806) was based on parameters that could be measured easily under farm conditions. Oyster age heavily affected both models, with the first model being secondarily affected by temperature and the second one being more sensitive to changes in salinity. Copyright © 2011 Elsevier B.V. All rights reserved.
Cadmium neurotoxicity to a freshwater planarian.
Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui
2014-11-01
Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure.
Water management practices affect arsenic and cadmium accumulation in rice grains.
Sun, Liming; Zheng, Manman; Liu, Hongyan; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao
2014-01-01
Cadmium (Cd) and arsenic (As) accumulation in rice grains is a great threat to its productivity, grain quality, and thus human health. Pot and field studies were carried out to unravel the effect of different water management practices (aerobic, aerobic-flooded, and flooded) on Cd and As accumulation in rice grains of two different varieties. In pot experiment, Cd or As was also added into the soil as treatment. Pots without Cd or As addition were maintained as control. Results indicated that water management practices significantly influenced the Cd and As concentration in rice grains and aerobic cultivation of rice furnished less As concentration in its grains. Nonetheless, Cd concentration in this treatment was higher than the grains of flooded rice. Likewise, in field study, aerobic and flooded rice cultivation recorded higher Cd and As concentration, respectively. However, growing of rice in aerobic-flooded conditions decreased the Cd concentration by 9.38 times on average basis as compared to aerobic rice. Furthermore, this treatment showed 28% less As concentration than that recorded in flooded rice cultivation. The results suggested that aerobic-flooded cultivation may be a promising strategy to reduce the Cd and As accumulations in rice grains simultaneously.
NASA Astrophysics Data System (ADS)
Das, Tapan Kumar; Ilaiyaraja, P.; Sudakar, C.
2017-05-01
We demonstrate white light emission (WLE) from (Cd,Zn)Se system, which is a composite of Zn alloyed CdSe quantum dot and ZnSe-amorphous (ZnSe-a) phase. Detailed structural and photoluminescence emission studies on pure CdSe and (Cd,Zn)Se show cubic zinc blende structure in the size range of 2.5 to 5 nm. (Cd,Zn)Se quantum dots (QDs) also have a significant fraction of ZnSe-a phase. The near-band-edge green-emission in crystalline CdSe and (Cd,Zn)Se is tunable between 500 to 600 nm. The (Cd,Zn)Se system also exhibits a broad, deep defect level (DL) red-emission in the range 600 to 750 nm and a sharp ZnSe near-band-edge blue-emission (ZS-NBE) between 445 to 465 nm. While DL and CdSe near-band-edge (CS-NBE) emissions significantly shift with the size of QD due to strong confinement effect, the ZS-NBE show minimal change in peak position indicating a weak confinement effect. The intensities of ZS-NBE and DL emissions also exhibit a strong dependence on the QD size. A gamut of emission colors is obtained by combining the CS-NBE with the ZS-NBE emission and broad DL emission in (Cd,Zn)Se system. Interestingly, we find the convergence of Commission Internationale de l'Eclairage (CIE) coordinates towards the white light with increasing Zn concentration in CdSe. We demonstrate by combining these three emissions in a proper weight ratio WLE can be achieved. Cd1-yZnySe (y = 0. 5; QD size ˜4.9 nm) alloy with a maximum quantum yield of 57% exhibits CIE coordinates of (0.39, 0.4), color rendering index (CRI) of 82, correlated color temperature (CCT) of 3922 K, and Duv of 0.0078 which is very promising for white light applications.
Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.
2006-01-01
Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.
Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta
2014-01-01
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14. PMID:25478795
Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers.
Gao, Sanshuang; Liu, Jing; Luo, Jun; Mamat, Xamxikamar; Sambasivam, Sangaraju; Li, Yongtao; Hu, Xun; Wågberg, Thomas; Hu, Guangzhi
2018-05-05
Porous carbon nanofibers codoped with nitrogen and sulfur (NFs) were prepared by pyrolysis of trithiocyanuric acid, silica nanospheres and polyacrylonitrile (PAN) followed by electrospinning. The NFs were used to modify a glassy carbon electrode (GCE) which then displayed highly sensitive response to traces of Cd(II). Compared to a bare GCE and a Nafion modified GCE, the GCE modified with codoped NFs shows improved sensitivity for Cd(II) in differential pulse anodic sweep voltammetry. The stripping peak current (typically measured at 0.81 V vs. Ag/AgCl) increases linearly in the 2.0-500 μg·L -1 Cd(II) concentration range. This is attributed to the large surface area (109 m 2 ·g -1 ), porous structure, and high fraction of heteroatoms (19 at.% of N and 0.75 at.% of S). The method was applied to the determination of Cd(II) in (spiked) tap water where it gave recoveries that ranged between 96% and 103%. Graphical abstract Schematic of a glassy carbon electrode (GCE) modified with N- and S-codoped porous carbon nanofibers (N,S-PCNFs). This GCE has good selectivity for cadmium ion (Cd 2+ ) which can be determined by differential pulse anodic sweeping voltammetry (DPASV) with a detection limit as low as 0.7 ng·mL -1 .
Dong, Wenbo; Wang, Kaiyin; Chen, Yu; Li, Weiping; Ye, Yanchun; Jin, Shaohua
2017-07-28
An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H₂O₂. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H₂O₂. It was found that the CTS-CAT could produce a strong reduction peak current in response to H₂O₂ and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H₂O₂ concentration in the range of 1.0 × 10 -7 -6.0 × 10 -3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.
The Evaluation on the Cadmium Net Concentration for Soil Ecosystems.
Yao, Yu; Wang, Pei-Fang; Wang, Chao; Hou, Jun; Miao, Ling-Zhan
2017-03-12
Yixing, known as the "City of Ceramics", is facing a new dilemma: a raw material crisis. Cadmium (Cd) exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT), the ex situ static equilibrium approach (HAc, EDTA and CaCl2), and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops-paddy and zizania aquatica-were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved compared to the coefficients obtained by the simple linear regression model. The results revealed that DGT was a robust measurement, which could obtain the labile Cd concentrations independent of the physicochemical features' variation in the soil ecosystem. Consequently, these findings provide stronger evidence that DGT is an effective and ideal tool for labile Cd evaluation in Yixing.
The Evaluation on the Cadmium Net Concentration for Soil Ecosystems
Yao, Yu; Wang, Pei-Fang; Wang, Chao; Hou, Jun; Miao, Ling-Zhan
2017-01-01
Yixing, known as the “City of Ceramics”, is facing a new dilemma: a raw material crisis. Cadmium (Cd) exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT), the ex situ static equilibrium approach (HAc, EDTA and CaCl2), and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops—paddy and zizania aquatica—were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved compared to the coefficients obtained by the simple linear regression model. The results revealed that DGT was a robust measurement, which could obtain the labile Cd concentrations independent of the physicochemical features’ variation in the soil ecosystem. Consequently, these findings provide stronger evidence that DGT is an effective and ideal tool for labile Cd evaluation in Yixing. PMID:28287500
Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.
Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-04-01
Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.
Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.
2008-01-01
We investigated the influence of acclimation on results of in situ bioassays with cutthroat trout in metal-contaminated streams. Cutthroat trout (Oncorhynchus clarki) were held for 21 days (1) in live containers at a reference or "clean" site having dissolved metals near detection limits (0.01 ??g/L cadmium [Cd] and 2.8 ??g/L zinc [Zn]; hardness 32 mg/L as CaCO3) and (2) at a site in a mining-impacted watershed having moderately increased metals (0.07 ??g/L Cd and 38 to 40 ??g/L Zn; hardness 50 mg/L as CaCO3). The 96-hour survival of each treatment group was then tested in situ at five sites from September 5 to 9, 2002, and each group exhibited a range of metal concentrations (0.44 to 39 ??g/L arsenic [As], 0.01 to 2.2 ??g/L Cd, and 0.49 to 856 ??g/L Zn). Survival was 100% at three sites for both treatments. However, a higher percentage of metal-acclimated fish survived at the site with the second highest concentrations of Cd and Zn (0.90 and 238 ??g/L, respectively) compared with fish acclimated at the reference site (100% vs. 55%, respectively). Survival was 65% for acclimated fish and 0% for metal-nai??ve fish at the site with the largest metal concentrations (2.2 ??g/L Cd and 856 ??g/L Zn). Water collected from the site with the largest concentrations of dissolved metals (on October 30, 2002) was used in a laboratory serial dilution to determine 96-hour LC50 values. The 96-hour LC50 estimates of nai??ve fish during the in situ and laboratory experiments were similar (0.60 ??g Cd/L and 226 ??g Zn/L for in situ and 0.64 ??g Cd/L and 201 ??g Zn/L for laboratory serial dilutions). However, mortality of nai??ve cutthroat trout tested under laboratory conditions was more rapid in dilutions of 100%, 75%, and 38% site water than in situ experiments. ?? 2007 Springer Science+Business Media, LLC.
Nguyen, C; Soulier, A J; Masson, P; Bussière, S; Cornu, J Y
2016-02-01
This work focuses on the exposure of maize plants to nanomolar concentrations of Cd, which is relevant for agricultural soils cropped with food and feed plants. Maize plants were cultivated in nutrient solution at 0.8 or 20 nM Cd during the vegetative growth stages. No significant hormesis or toxic effects of Cd were observed on maize growth, but a decrease in the allocation of Cd to shoots between the 0.8 and 20 nM Cd exposures revealed that the plants already responded to these low concentrations of Cd according to a shoot Cd excluder strategy. The Cd, Cu and Zn concentrations in shoots decreased with time as the result of an early decrease in the root/shoot ratio and of a decrease in the coefficient of allocation to aboveground for Zn and Cd at 20 nM. As a consequence, shoots of young plants were richer in micronutrients Cu and Zn but also in toxic Cd. The rate of delivery of Cd, Cu and Zn from xylem sap was successfully used to predict the time course of concentrations of Cd, Cu and Zn in the shoot. However, it overestimated the actual concentrations of Cd in the shoot, presumably because the reallocation of this trace element from shoots back to roots was not taken into account.
Schlekat, C.E.; Decho, Alan W.; Chandler, G.T.
1999-01-01
Bacterial extracellular substances (also known as exopolysaccharides, or EPS) may serve as vectors for trophic transfer of metals in benthic systems because these ubiquitous sediment coatings can sorb high concentrations of toxic metals, and because many benthic invertebrates assimilate EPS sediment coatings upon ingestion. We conducted 3 sets of experiments to determine the assimilative bioavailability of EPS-associated Cd to the benthic amphipod Leptocheirus plumulosus as a function of Cd concentration and salinity. Bioavailability was measured as L. plumulosus Cd assimilation efficiency (AE) from EPS-coated silica (EPS-Si) and from uncoated silica (NC-Si) using modified pulse-chase methods with the gamma-emitting radioisotope 109Cd. Cd AE was significantly greater from NC-Si than from EPS-Si at 7.5???, but not at 2.5 or 25???. Overall, Cd AE from EPS-Si was between 15.1 and 21.5%. Because EPS-Si sorbed more Cd than NC-Si, EPS coatings magnified the amount of Cd amphipods accumulated at each salinity by up to a factor of 10. Salinity did not directly affect Cd AE from EPS-Si, but because Cd-EPS partitioning increased with decreasing salinity, amphipods accumulated more Cd from EPS at the lowest Cd-EPS incubation salinity (2.5 ???) than at higher salinities (7.5 and 25 ???). Finally, Cd concentration in EPS exhibited an inverse relationship with Cd AE at 2.5 ???, but not at 25 ???. Specifically, Cd AE was 12 times greater at 1 compared with 10 ??g Cd ??g-1 EPS. Together, these results show that estuarine benthos can accumulate Cd from EPS sediment coatings, but that the degree to which this phenomenon occurs is dependent upon seawater salinity and Cd concentration in EPS.
Protective role of selenium on pepper exposed to cadmium stress during reproductive stage.
Mozafariyan, Maryam; Shekari, Leila; Hawrylak-Nowak, Barbara; Kamelmanesh, Mohammad Mojtaba
2014-07-01
The aim of the present study was to examine the effects of exogenous selenium (Se) supplementation on the tolerance of pepper (Capsicum annuum L.) cv. Suryamukhi Cluster plants to cadmium (Cd) phytotoxicity at the reproductive stage. The pepper plants were supplied with Cd (0, 0.25 or 0.50 mM) and Se (0, 3 or 7 μM), individually or simultaneously, three times during the experiment. The obtained results show that Cd had deleterious effect on pepper plants at the reproductive stage. However, Se supplementation improved the flower number, fruit number and fruit diameter in plants exposed to 0.50 mM Cd. Moreover, both Se concentrations used in 0.25 mM Cd-treated plants and 3 μM Se in 0.50 mM Cd-treated plants enhanced fruit yield per plant as compared to Cd-alone treatment. The chlorophyll concentrations significantly increased in the fruits of Cd-exposed plants after Se addition. However, Se supplementation reduced total carotenoids and total soluble solid (TSS) concentrations in the pepper fruits exposed to Cd. Selenium also generally enhanced the total antioxidant activity of pepper fruits subjected to Cd. Both Se concentrations used increased mean productivity (MP), stress tolerance index (STI) and yield stability index (YSI) in plants grown in the medium containing 0.25 mM Cd. At low concentration (3 μM), Se significantly increased geometric mean productivity (GMP), STI and YSI of plant exposed to 0.50 mM Cd. The highest Cd concentration in the fruits was achieved at 0.50 mM Cd and Se application significantly reduced Cd accumulation in the Cd-exposed plants. Our results indicate that application of Se can alleviate Cd toxicity in pepper plants at the reproductive stage by restricting Cd accumulation in fruits, enhancing their antioxidant activity and thus improving the reproductive and stress tolerance parameters.
Qing, Xiao; Yutong, Zong; Shenggao, Lu
2015-10-01
The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control and environment management in steel industrial regions. Copyright © 2015 Elsevier Inc. All rights reserved.
Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen
2014-05-01
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.
Kroon, F. P.; van Tol, M. J. D.; Jol-van der Zijde, C. M.; van Furth, R.; van Dissel, J. T.
1999-01-01
In human immunodeficiency virus (HIV)-infected individuals the amount of antibodies formed after vaccination with T-cell-dependent recall antigens such as tetanus toxoid is proportional to the peripheral blood CD4+ T-lymphocyte counts. To investigate whether the immunoglobulin G (IgG) subclass distribution and avidity of the antibodies produced after vaccination are affected as well, we gave 13 HIV-infected adults with low CD4+ T-lymphocyte counts (<200 × 106/liter; group I), 11 HIV-infected adults with intermediate CD4+ T-lymphocyte counts (≥200 × 106/liter; group II), and 5 healthy controls booster immunizations with tetanus toxoid. The prevaccination antibody concentrations against tetanus toxoid were similar in the HIV-infected and healthy adults. After vaccination the total IgG and the IgG1 anti-tetanus toxoid antibody concentrations were significantly lower in group I than in group II and the controls. The avidity of the IgG1 anti-tetanus toxoid antibodies formed by HIV-infected adults was within the range for healthy controls, irrespective of their CD4+ T-lymphocyte counts. PMID:10225835
Martin, C.A.; Luoma, S.N.; Cain, D.J.; Buchwalter, D.B.
2007-01-01
A major challenge in ecotoxicology lies in generating data under experimental conditions that are relevant to understanding contaminant effects in nature. Biodynamic modeling combines species-specific physiological traits to make predictions of metal bioaccumulation that fare well when tested in the field. We generated biodynamic models for seven predatory stonefly (Plecoptera) species representing the families Perlidae (5) and Perlodidae (2). Each taxon was exposed to cadmium independently via diet and via solution. Species varied approximately 2.6 fold in predicted steady-state cadmium concentrations. Diet was the predominant source of accumulated cadmium in five of the seven species and averaged 53.2 ?? 9.6% and 90.2 ?? 3.7% of net Cd accumulation in perlids and perlodids, respectively. Differences in Cd bioaccumulation between the two families were largely driven by differences in dissolved accumulation rates, which were considerably slower in perlodids than in perlids. We further examined the subcellular compartmentalization of Cd accumulated from independent aqueous and dietary exposures. Predicted steady-state concentrations were modified to only consider Cd accumulated in metal-sensitive subcellular compartments. These values ranged 5.3 fold. We discuss this variability within a phylogenetic context and its implications for bioassessment. ?? 2007 American Chemical Society.
A master dynamic flow diagram for the shear thickening transition in micellar solutions.
Bautista, F; Tepale, N; Fernández, V V A; Landázuri, G; Hernández, E; Macías, E R; Soltero, J F A; Escalante, J I; Manero, O; Puig, J E
2016-01-07
The shear thickening behavior of dilute micellar solutions of hexadecyltrimethylammonium-type surfactants with different counterions (tosylate, 3- and 4-fluorobenzoate, vinylbenzoate and salicylate) and of n-alkyltetradecylammonium bromide (CnTAB), with n = 14, 16 and 18, is examined here. These solutions undergo a shear thickening transition due to the formation of shear-induced structures (SISs) in the shear range studied. Here we report a relationship between the shear thickening intensity and the differences in the hydrophobicity of counterions according to the Hofmeister-like anion series, which leads to a master flow diagram. This master flow diagram is produced by plotting a normalized shear thickening intensity (Iη - 1)/(Imax - 1) versus CD/CD,max, where Iη is the shear-thickening intensity, defined as the largest viscosity obtained in the shear-thickening transition (STT) at a given surfactant concentration CD divided by the Newtonian viscosity η0, and Imax is the largest intensity value obtained in the STT at a surfactant concentration CD,max. The master flow diagram is built using several cetyltrimethylammonium-type surfactants with different counterions, according to a Hofmeister-like series, and by n-alkyltetradecylammonium bromide surfactants with different alkyl chain lengths.
Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta
2018-07-01
Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC 10 -IC 30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.
Liver metal concentrations in Greater Sage-grouse (Centrocercus urophasianus).
Dailey, Rebecca N; Raisbeck, Merl F; Siemion, Roger S; Cornish, Todd E
2008-04-01
Greater Sage-grouse (Centrocercus urophasianus) are a species of concern due to shrinking populations associated with habitat fragmentation and loss. Baseline health parameters for this species are limited or lacking, especially with regard to tissue metal concentrations. To obtain a range of tissue metal concentrations, livers were collected from 71 Greater Sage-grouse from Wyoming and Montana. Mean +/- SE metal concentrations (mg/kg wet weight) in liver were determined for vanadium (V) (0.12 +/- 0.01), chromium (Cr) (0.50 +/- 0.02), manganese (Mn) (2.68 +/- 0.11), iron (Fe) (1,019 +/- 103), nickel (Ni) (0.40 +/- 0.04), cobalt (Co) (0.08 +/- 0.02), copper (Cu) (6.43 +/- 0.40), mercury (Hg) (0.30 +/- 0.09), selenium (Se) (1.45 +/- 0.64), zinc (Zn) (59.2 +/- 4.70), molybdenum (Mo) (0.93 +/- 0.07), cadmium (Cd) (1.44 +/- 0.14), barium (Ba) (0.20 +/- 0.03), and lead (Pb) (0.17 +/- 0.03). In addition to providing baseline data, metal concentrations were compared between sex, age (juvenile/adult), and West Nile virus (WNv) groups (positive/negative). Adult birds had higher concentrations of Ni and Cd compared to juveniles. In addition, Zn and Cu concentrations were significantly elevated in WNv-positive birds.
de Oliveira, Vinicius Henrique; de Abreu, Cleide Aparecida; Coelho, Ricardo Marques; Melo, Leônidas Carrijo Azevedo
2014-03-01
Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n = 191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg(-1), and the background concentration was 0.5 mg kg(-1). After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg(-1) of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg(-1)) was higher than in Ultisols (0.3 mg kg(-1)). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R (2) = 0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.
Holmlund, U; Bengtsson, A; Nilsson, C; Kusoffsky, E; Lilja, G; Scheynius, A; Sverremark-Ekström, E
2003-11-01
The CD30 molecule has been linked to Th2 responses. Furthermore, elevated levels of the soluble form of CD30 (sCD30) in blood as well as of the expression of CD30 on the plasma membrane of T cells are associated with atopic disease. To assess the potential usefulness of sCD30 levels as a prognostic indicator of and/or diagnostic marker for the development of atopic disease in children. sCD30 levels in cord blood and peripheral blood from 36 2-year-old (10 atopic and 26 non-atopic) and 74 7-year-old (35 atopic and 39 non-atopic) children were determined employing an ELISA procedure. Atopy was diagnosed on the basis of clinical evaluation in combination with a positive skin prick test. No significant correlation between sCD30 levels in cord blood and the development of atopic disease at 2 or 7 years of age was observed. At 7 years of age, the circulating sCD30 levels in children with atopic disease (median 41 U/mL, range 6-503 U/mL) did not differ from the corresponding values for non-atopic subjects (median 41 U/mL, range 8-402 U/mL). The same was true for children at 2 years of age. Furthermore, the sCD30 levels of children who had developed atopic eczema/dermatitis syndrome by the age of 7 years (median 49 U/mL, range 14-503 U/mL) were not significantly elevated in comparison with those of the non-atopic children. Finally, neither sCD30 levels in cord blood nor peripheral blood at 2 or 7 years of age could be linked to a family history of atopy. These findings indicate that the sCD30 concentration in cord blood is not a reliable prognostic indicator of, nor a useful diagnostic marker for, atopic disease in children up to 7 years of age. If such correlations do exist, they might be masked by age-dependent variations in the circulating levels of sCD30, which may reflect individual differences in the maturation of children's immunological responses.
Ehsanpour, Maryam; Afkhami, Majid; Khoshnood, Reza; Reich, Kimberly J
2014-06-01
This study was conducted to determine trace metal concentrations (Cd, Cu, Zn, Pb and Hg) in blood and three egg fractions from Eretmochelys imbricata nesting on Qeshm Island in Iran. The results showed detectable levels of all analytes in all fractions. Pb and Hg were detectable in the blood and eggs, reflecting a maternal transfer. With the exception of Cu and Pb, analyzed elements in eggs were concentrated in yolk. Only Zn in blood had a significant correlation with the body size and weight (p < 0.01). It appears that Hawksbill sea turtles can regulate Zn concentrations through homeostatic processes to balance metabolic requirements. The relatively low concentrations of metals in blood support the knowledge that E. imbricata feed mainly on the low trophic levels. All essential and non-essential elements were detectable in blood and in eggs of the hawksbill, reflecting a maternal transfer. Consequently, movement patterns, home ranges of foraging grounds, and availability of food could explain variations in trace element concentrations among female turtles.
Li, Dong-Yan; He, Xi-Wen; Chen, Yang; Li, Wen-You; Zhang, Yu-Kui
2013-12-11
This work presented a novel strategy for the synthesis of the hybrid structure silica/CdTe/molecularly imprinted polymer (Si-NP/CdTe/MIP) to recognize and detect the template bovine hemoglobin (BHb). First, amino-functionalized silica nanoparticles (Si-NP) and carboxyl-terminated CdTe quantum dots (QDs) were assembled into composite nanoparticles (Si-NP/CdTe) using the EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) chemistry. Next, Si-NP/CdTe/MIP was synthesized by anchoring molecularly imprinted polymer (MIP) layer on the surface of Si-NP/CdTe through the sol-gel technique and surface imprinting technique. The hybrid structure possessed the selectivity of molecular imprinting technique and the sensitivity of CdTe QDs as well as well-defined morphology. The binding experiment and fluorescence method demonstrated its special recognition performance toward the template BHb. Under the optimized conditions, the fluorescence intensity of the Si-NP/CdTe/MIP decreased linearly with the increase of BHb in the concentration range 0.02-2.1 μM, and the detection limit was 9.4 nM. Moreover, the reusability and reproducibility and the successful applications in practical samples indicated the synthesis of Si-NP/CdTe/MIP provided an alternative solution for special recognition and determination of protein from real samples.
Dissolved and particulate trace metals in coastal waters of the Gulf and Western Arabian Sea
NASA Astrophysics Data System (ADS)
Fowler, S. W.; Huynh-Ngoc, L.; Fukai, R.
Concentrations of chemical species of selected heavy metals (Cu, Zn, Cd, Hg and Pb) were determined in surface waters from a series of coastal sites in Bahrain, United Arab Emirates (UAE) and the Sultanate of Oman. Analyses were carried out on bulk sea water samples as well as on suspended particulates by anodic stripping voltammetry. Heavy metal concentrations were relatively low with the exception of some "hot spots" which occurred in the vicinity of industrial and port activities. Average copper levels along the coast of UAE were generally higher than those measured in sea water from either Bahrain of Oman. Waters from the more populated and industrialised northwest coast of Oman were found to contain approximately 3 to 4-fold higher Cd and Zn (pH 4-4.5) concentrations than those from the southern coast, an undeveloped region adjacent to the more open waters of the Arabian Sea. Possible reasons for the observed regional variations in trace metal concentrations in Oman are discussed in terms of natural and anthropogenic input sources. Average concentrations in the Gulf (inside the Strait of Hormuz) were 510 ng 1 -1 (Cu), 340 ng 1 -1 (Zn), 20 ng 1 -1 (Cd), 16 ng 1 -1 (Hg) and 76 ng 1 -1 (Pb); in the western Arabian Sea along the coast of Oman concentrations averaged 290 ng 1 -1 (Cu), 180 ng 1 -1 (Zn), 37 ng 1 -1 (Cd), 11 ng 1 -1 (Hg) and 80 ng 1 -1 (Pb). Ranges of concentrations for these metals in Gulf and western Arabian Sea waters approach those which have been reported for open surface waters of the Atlantic, Pacific, Indian Oceans and the Mediterranean Sea indicating that, in general, the coastal waters of this region are not impacted by metal pollution and that the existing natural levels can be used as a point of reference for future pollutant studies.
Zhou, Yun; Ning, Xun-an; Liao, Xikai; Lin, Meiqing; Liu, Jingyong; Wang, Jianghui
2013-09-01
The environmental risk of exposure to six heavy metals (Cu, Pb, Zn, Cr, Ni, and Cd) found in fly ashes from waste filter bags obtained from a steel plant was estimated based on the mineralogical compositions, total concentrations and speciation of the metals in the fly ashes. The results indicated that the fly ashes mainly consisted of hematite, magnetite, cyanite, spinel, coesite and amorphous materials. The concentrations of Zn and Pb were much higher than that of other materials. After Zn and Pb, Ni was present in the highest concentration, followed by Cu, Cr and Cd. Each heavy metal was distributed differently in fly ashes. The levels of Zn, Cd and Pb in the active fraction were very high, and ranged from 64.83 to 81.96%, 34.48 to 82.4% and 6.92 to 79.65% respectively, while Cu, Cr and Ni were mainly present in the residual fraction. The risk assessment code (RAC) values of fly ashes showed that the Zn and Cd present in the H3 sample presented a very high risk, with RAC values greater than 50%. The Cu present in the H3 sample, Cd in the H2 sample and Zn in the H4 and H5 samples presented a high risk. The Pb present in the H2 sample, Cd in the H4 sample, Ni in the H1 and H5 samples, and Zn in the H1 sample presented a medium risk. A low risk was presented by the Cu present in the H1, H2, H4 and H5 samples, the Pb in the H1, H3 and H5 samples, the Cd in the H1 and H5 samples, and the Ni in the H2 sample. No risk was presented by Cr in any sample. Copyright © 2013 Elsevier Inc. All rights reserved.
Fabrication of CdS nanowires with increasing anionic precursor by SILAR method
NASA Astrophysics Data System (ADS)
Dariani, R. S.; Salehi, F.
2016-05-01
CdS nanowires were fabricated on glass substrate at room temperature by SILAR method with cadmium nitrate cationic and sodium sulfide anionic precursors. The deposition were done at different S:Cd concentration ratios of 1:1, 3:1, 5:1, and 7:1. Nanowires growth procedure was studied in the mentioned concentrations. The number of immersion cycles was kept constant at 15 cycles. EDX analysis showed that in all stoichiometric ratios, S/Cd composition ratio remains at about unity. Our results indicated that S:Cd concentration ratio of 7:1 had the longest nanowires with hexagonal structure. The main objective of this paper was to produce CdS nanowires with increasing concentration of sulfur.
Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madni, I.; Umana-Membreno, G. A.; Lei, W.
2015-11-02
The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{supmore » −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.« less
Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea
NASA Astrophysics Data System (ADS)
Hamed, Mohamed A.; Emara, Ahmed M.
2006-05-01
Levels of the heavy metals Copper (Cu), Zinc (Zn), Lead (Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni), Iron (Fe) and Manganese (Mn) were determined in coastal water, sediments and soft tissues of the gastropod limpet, Patella caerulea, and the bivalve, Barbatus barbatus, from seven different stations in the western coast of the Gulf of Suez. The concentrations of heavy metals in water ranged between 3.37-4.78, 18.83-21.46, 2.75-3.17, 0.22-0.27, 0.99-1.21, 2.69-3.65, 3.75-4.56 μg L - 1 and 23.82-32.78 mg g - 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The corresponding concentration values in the sediments were 8.65-12.16, 51.78-58.06, 36.52-42.15, 3.23-3.98, 9.03-12.75, 34.31-49.63, 3.28-4.56 and 64.20-70.22 μg g - 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The highest accumulated metals were Fe, Zn and Mn in both P. caerulea and B. barbatus, while the lowest one was Cd. The accumulation of metals was more pronounced in P. caerulea than B. barbatus. The highest concentrations of all metals in water, sediments and mollusca were recorded at Adabiya harbour north of the Gulf, while the lowest concentrations were recorded at Gabal El-Zeit and Hurghada. Land based activities and ships awaiting berth are the main source of metal pollution in the northern part of the Gulf.
Assessment of heavy metals in sediment of Aguamilpa Dam, Mexico.
Rangel-Peraza, Jesús Gabriel; de Anda, José; González-Farías, Fernando A; Rode, Michael; Sanhouse-García, Antonio; Bustos-Terrones, Yaneth A
2015-03-01
The Aguamilpa Dam is part of the reservoir cascade system formed by four reservoirs in the middle and lower part of the Santiago River. For decades, this system has received urban and industrial wastewater from the metropolitan area of Guadalajara and the runoff of agricultural fields located in the river basin. The present study was carried out to obtain a preliminary assessment on the concentration distribution of heavy metals (Al, Ba, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in surface sediments of the Aguamilpa reservoir collected from 10 sampling stations. The metal concentrations (mg kg(-1)) in the sampling stations ranged as follows: Al, 27,600-7760; Ba, 190.0-15.9; Cd, 0.27-0.02; Cr, 18.30-0.22; Cu, 60.80-0.79; Fe, 15,900-4740; Hg, 0.04-0.01; Mg, 7590-8.05; Ni, 189.00-0.24; Pb, 13.6-1.64; and Zn, 51.8-14.8. Significant spatial variation in concentrations was observed for Al, Fe, and Pb. Sediment pollution was evaluated using the enrichment factor, the geo-accumulation index, the pollution load index, and sediment quality guidelines. Based on geo-accumulation and pollution load indexes, Aguamilpa sediments were found, in some sampling stations, as unpolluted to moderately polluted with Ni, Cd, Cu, and Mg. Enrichment factors showed that Cd is highly related to agricultural activities that take place in the surrounding areas of the Aguamilpa reservoir. Despite these results, none of the heavy metals evaluated exceeded international concentrations limits, indicating that the Aguamilpa reservoir surface sediments are not contaminated.
NASA Astrophysics Data System (ADS)
La Colla, Noelia S.; Botté, Sandra E.; Marcovecchio, Jorge E.
2018-05-01
The pollution of aquatic environments is a worldwide problem of difficult solution since these areas are used for the disposal and dilution of anthropogenic wastes. This study evaluated the concentrations of Cd, Cu, Ni and Zn in the gills, liver and muscle tissues of six economically important fish species from the Bahía Blanca estuary in Argentina, a coastal environment that is under anthropogenic pressure. Metal contents in 147 fish samples were determined by digestion and a subsequent analysis with an ICP OES. The concentrations (μg/g, wet weight) of each metal in the fish tissues ranged from below the limit of detection for the four metals to 5.2 in the case of Cd, 340 for Cu, 20 for Ni, and 101 for Zn. The results suggested that metal burden in fishes varied with the species and metal elements, with Cd, Cu and Zn mean maximum accumulation towards the liver tissue. Ni showed a high number of samples with concentrations below the limit of detection. Among species, Cynoscion guatucupa was found to have the highest concentrations of Cu and Zn in the liver tissues, whereas the gills and liver tissues of Mustelus schmitti showed the lowest levels of Ni and Zn. As regards the human health risks, two samples of muscle tissue belonging to C. guatucupa reached to Cd levels that exceeded the permissible levels for human consumption. Moreover, the estimated daily intakes calculated suggest that people would not experience significant health risks from the intake of individual metals through fish consumption.
Hu, Yahu; Nan, Zhongren; Jin, Cheng; Wang, Ning; Luo, Huanzhang
2014-01-01
To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.
Bednarska, Agnieszka J; Świątek, Zuzanna
2016-11-01
By studying the internal compartmentalization of metals in different subcellular fractions we are able to better understand the mechanisms of metal accumulation in organisms and the transfer of metals through trophic chains. We investigated the internal compartmentalization of cadmium (Cd) and zinc (Zn) in mealworm beetle (Tenebrio molitor) larvae by breeding them in flour contaminated with either Cd at 100, 300 and 600mgkg(-1), or Zn at 1000 and 2000mgkg(-1). We separated the cellular components of the larvae into 3 fractions: the S1 or cytosolic fraction containing organelles, heat-sensitive and heat-stable proteins, the S2 or cellular debris fraction and the G or metal-rich granule fraction. The concentration of Cd and Zn in each fraction was measured at 0, 7, 14 and 21 days of being fed the flour. The concentration of Cd in the flour affected the concentration of Cd measured in each larval subcellular fraction (p≤0.0001), while the concentration of Zn in the flour only affected the Zn concentration in the S2 and G fractions (p≤0.02). Both Cd and Zn concentrations in mealworms remained relatively constant during the exposure (days 7, 14 and 21) in all three fractions, but the Cd concentrations were much higher than those found in larvae before the exposure (day 0). The concentration of Cd in the flour, however, did not affect the percentage of Cd in the S1 fraction. The contribution of Cd in the G fraction to the total Cd amount was similar (30-40%) in all Cd treatments. The percentage of Zn in all three fractions was not affected by the concentration of Zn in the flour and the relative contributions of each subcellular fraction to the total burden of Zn remained generally constant for both control and treated larvae. In general, larvae sequestered approximately 30% of Cd and Zn in the S1 fraction, which is important for the transport of metals to higher trophic levels in a food web. Copyright © 2016 Elsevier Inc. All rights reserved.
Review on the Risk Assessment of Heavy Metals in Malaysian Clams
Hamdan, Sinin; Rahman, Md. Rezaur
2015-01-01
The current review discusses the levels of six heavy metals in different clam species from 34 sites of Malaysian coasts. The concentrations (µg/g dry weight) of these heavy metals ranged around 0.18–8.51, 0.13–17.20, 2.17–7.80, 0.84–36.00, 24.13–368.00, and 177.82–1912.00 for Cd, Pb, Ni, Cu, Zn, and Fe, respectively. It was observed that the concentrations of metals slightly depend on different clam species but mostly depend on site locations. According to Malaysian Food Regulation (1985), about 30% and more than 50% sites are safe from Cd and Pb contamination, respectively, and also the clam species from the other populations studied were safe for consumption. PMID:26060840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani
The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less
Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase.
Li, Xinyu; Zhou, Yunlong; Zheng, Zhaozhu; Yue, Xiuli; Dai, Zhifei; Liu, Shaoqin; Tang, Zhiyong
2009-06-02
A blood glucose sensor has been developed based on the multilayer films of CdTe semiconductor quantum dots (QDs) and glucose oxidase (GOD) by using the layer-by-layer assembly technique. When the composite films were contacted with glucose solution, the photoluminescence of QDs in the films was quickly quenched because the enzyme-catalyzed reaction product (H2O2) of GOD and glucose gave rise to the formation of surface defects on QDs. The quenching rate was a function of the concentration of glucose. The linear range and sensitivity for glucose determination could be adjusted by controlling the layers of QDs and GOD. The biosensor was used to successfully determine the concentration of blood glucose in real serum samples without sample pretreatment and exhibited satisfactory reproducibility and accuracy.
Cadmium pollution and amphibians--Studies in tadpoles of Rana limnocharis.
Patar, Arabinda; Giri, Anirudha; Boro, Freeman; Bhuyan, Krishna; Singha, Utsab; Giri, Sarbani
2016-02-01
Cadmium is released into the environment in increasing amounts from different natural and anthropogenic activities contaminating the aquatic habitats. Amphibian tadpoles develop in water and hence are likely to be adversely affected by cadmium present in the aquatic environment. We have studied the toxic and genotoxic effects of CdCl2 on the tadpoles of Rana limnocharis. CdCl2 in the concentration range between 0.1 and 0.4 mg/L induced significant mortality in R. limnocharis tadpoles in a dose and time dependent manner. The 10-day LC50 which has more ecological relevance was far less than the 24-h LC50. Tadpoles exposed to CdCl2 metamorphosed at an early age possibly as a survival strategy to move out of the stressful environment. The body weight of the CdCl2 exposed animals at metamorphosis was lower compared to the control individuals which may affect survival and reproductive fitness in adult life. Besides, the average body length of the metamorphosed individuals in the CdCl2 exposed group was higher than the control group. CdCl2 was found to be genotoxic in micronucleus test and comet assay. The ambient concentration of Cd could reach up to 60 μg/L or more. Exposure to 18.5 μg/L of CdCl2 (1% of 24-h LC50) induced significant increase in DNA strand breaks as compared to the control. The present findings demonstrate that presence of cadmium in the aquatic environment can significantly alter the life history traits and cause DNA damage in amphibians and hence, could contribute towards their population decline. Copyright © 2015 Elsevier Ltd. All rights reserved.
The geochemistry of redox sensitive trace metals in sediments
NASA Astrophysics Data System (ADS)
Morford, Jennifer L.; Emerson, Steven
1999-06-01
We analyzed the redox sensitive elements V, Mo, U, Re and Cd in surface sediments from the Northwest African margin, the U.S. Northwest margin and the Arabian Sea to determine their response under a range of redox conditions. Where oxygen penetrates 1 cm or less into the sediments, Mo and V diffuse to the overlying water as Mn is reduced and remobilized. Authigenic enrichments of U, Re and Cd are evident under these redox conditions. With the onset of sulfate reduction, all of the metals accumulate authigenically with Re being by far the most enriched. General trends in authigenic metal accumulation are described by calculating authigenic fluxes for the 3 main redox regimes: oxic, reducing where oxygen penetrates ≤1 cm, and anoxic conditions. Using a simple diagenesis model and global estimates of organic carbon rain rate and bottom water oxygen concentrations, we calculate the area of sediments below 1000 m water depth in which oxygen penetration is ≤1 cm to be 4% of the ocean floor. We conclude that sediments where oxygen penetrates ≤1 cm release Mn, V and Mo to seawater at rates of 140%-260%, 60%-150% and 5%-10% of their respective riverine fluxes, using the authigenic metal concentrations and accumulation rates from this work and other literature. These sediments are sinks for Re, Cd and U, with burial fluxes of 70%-140%, 30%-80% and 20%-40%, respectively, of their dissolved riverine inputs. We modeled the sensitivity of the response of seawater Re, Cd and V concentrations to changes in the area of reducing sediments where oxygen penetrates ≤1 cm. Our analysis suggests a negligible change in seawater Re concentration, whereas seawater concentrations of Cd and V could have decreased and increased, respectively, by 5%-10% over 20 kyr if the area of reducing sediments increased by a factor of 2 and by 10%-20% if the area increased by a factor of 3. The concentration variations for a factor of 2 increase in the area of reducing sediments are at about the level of uncertainty of Cd/Ca and V/Ca ratios observed in foraminifera shells over the last 40 kyr. This implies that the area of reducing sediments in the ocean deeper than 1000 m (4%) has not been greater than twice the present value in the recent past.
Synthesis and LPG sensing properties of nano-sized cadmium oxide.
Waghulade, R B; Patil, P P; Pasricha, Renu
2007-04-30
This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.
Honma, Toshimitsu; Ohba, Hirotomo; Kaneko-Kadokura, Ayako; Makino, Tomoyuki; Nakamura, Ken; Katou, Hidetaka
2016-04-19
Arsenic (As) and cadmium (Cd) concentrations in rice grains are a human health concern. We conducted field experiments to investigate optimal conditions of Eh and pH in soil for simultaneously decreasing As and Cd accumulation in rice. Water managements in the experiments, which included continuous flooding and intermittent irrigation with different intervals after midseason drainage, exerted striking effects on the dissolved As and Cd concentrations in soil through changes in Eh, pH, and dissolved Fe(II) concentrations in the soil. Intermittent irrigation with three-day flooding and five-day drainage was found to be effective for simultaneously decreasing the accumulation of As and Cd in grain. The grain As and Cd concentrations were, respectively, linearly related to the average dissolved As and Cd concentrations during the 3 weeks after heading. We propose a new indicator for expressing the degree to which a decrease in the dissolved As or Cd concentration is compromised by the increase in the other. For minimizing the trade-off relationship between As and Cd in rice grains in the field investigated, water management strategies should target the realization of optimal soil Eh of -73 mV and pH of 6.2 during the 3 weeks after heading.
Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...
2015-04-15
We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.
On the coalescence-dispersion modeling of turbulent molecular mixing
NASA Technical Reports Server (NTRS)
Givi, Peyman; Kosaly, George
1987-01-01
The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry.
NASA Astrophysics Data System (ADS)
Font, Anna; de Hoogh, Kees; Leal-Sanchez, Maria; Ashworth, Danielle C.; Brown, Richard J. C.; Hansell, Anna L.; Fuller, Gary W.
2015-07-01
This study aimed to fingerprint emissions from six municipal waste incinerators (MWIs) and then test if these fingerprint ratios could be found in ambient air samples. Stack emissions tests from MWIs comprised As, Cd, Cr, Cu, Pb, Mn, Ni, V and Hg. Those pairs of metals showing good correlation (R > 0.75) were taken as tracers of MWI emissions and ratios calculated: Cu/Pb; Cd/Pb; Cd/Cu and Cr/Pb. Emissions ratios from MWIs differed significantly from those in ambient rural locations and those close to traffic. In order to identify MWI emissions in ambient air two analysis tests were carried out. The first, aimed to explore if MWI emissions dominate the ambient concentrations. The mean ambient ratio of each of the four metal ratios were calculated for six ambient sampling sites within 10 km from a MWI under stable meteorological conditions when the wind blew from the direction of the incinerator. Under these meteorological conditions ambient Cd/Pb was within the range of MWI emissions at one location, two monitoring sites measured mean Cr/Pb ratios representative of the MWI emissions and the four sites measured values of Cu/Pb within the range of MWI emissions. No ambient measurements had mean Cd/Cu ratios within the MWI values. Even though MWI was not the main source determining the ambient metal ratios, possible occasional plume grounding might have occurred. The second test then examined possible plume grounding by identifying the periods when all metal ratios differed from rural and traffic values at the same time and were consistent with MWI emissions. Metal ratios consistent with MWI emissions were found in ambient air within 10 km of one MWI for about 0.2% of study period. Emissions consistent with a second MWI were similarly detected at two ambient measurement sites about 0.1% and 0.02% of the time. Where plume grounding was detected, the maximum annual mean particulate matter (PM) from the MWI was estimated to be 0.03 μg m-3 to 0.12 μg m-3; 2-3 orders of magnitude smaller than background ambient PM10 concentrations. Ambient concentrations of Cr increased by 1.6-3.0 times when MWI emissions were detected. From our analysis we found no evidence of incinerator emissions in ambient metal concentrations around four UK MWIs. The six UK MWIs studied contributed little to ambient PM10 concentrations.
Moskovchenko, D V; Kurchatova, A N; Fefilov, N N; Yurtaev, A A
2017-05-01
The concentrations of several trace elements and iron were determined in 26 soil samples from Belyi Island in the Kara Sea (West Siberian sector of Russian Arctic). The major types of soils predominating in the soil cover were sampled. The concentrations of trace elements (mg kg -1 ) varied within the following ranges: 119-561 for Mn, 9.5-126 for Zn, 0.082-2.5 for Cd, <0.5-19.2 for Cu, <0.5-132 for Pb, 0.011-0.081 for Hg, <0.5-10.3 for Co, and 7.6-108 for Cr; the concentration of Fe varied from 3943 to 37,899 mg kg -1 . The impact of particular soil properties (pH, carbon and nitrogen contents, particle-size distribution) on metal concentrations was analyzed by the methods of correlation, cluster, and factor analyses. The correlation analysis showed that metal concentrations are negatively correlated with the sand content and positively correlated with the contents of silt and clay fractions. The cluster analysis allowed separation of the soils into three clusters. Cluster I included the soils with the high organic matter content formed under conditions of poor drainage; cluster II, the low-humus sandy soils of the divides and slopes; and cluster III, saline soils of coastal marshes. It was concluded that the geomorphic position largely controls the soil properties. The obtained data were compared with data on metal concentrations in other regions of the Russian Arctic. In general, the concentrations of trace elements in the studied soils were within the ranges typical of the background Arctic territories. However, some soils of Belyi Island contained elevated concentrations of Pb and Cd.
Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhou, Zhigao; Zhang, Taolin; Wang, Xingxiang
2017-11-29
For selection or breeding of rice (Oryza sativa L.) cultivars with low Cd affinity, the role of node Cd restriction on Cd accumulation in brown rice was studied. A pot experiment was conducted to investigate the concentration of Cd in different sections of 12 Chinese rice cultivars. The results indicated that the Cd accumulation in the brown rice was mainly dependent on the root or shoot Cd concentration. Among the cultivars with nearly equal shoot Cd concentrations, Cd accumulation in brown rice was mainly dependent on the transport of Cd in the shoot. However, the Cd transport in the shoot was significantly restricted by the nodes, especially by the first node. Furthermore, the area of the diffuse vascular bundle in the junctional region of the flag leaf and the first node was a key contributor to the variations in Cd restriction by the nodes.
Characteristics of Au Migration and Concentration Distributions in Au-Doped HgCdTe LPE Materials
NASA Astrophysics Data System (ADS)
Sun, Quanzhi; Yang, Jianrong; Wei, Yanfeng; Zhang, Juan; Sun, Ruiyun
2015-08-01
Annealing techniques and secondary ion mass spectrometry have been used to study the characteristics of Au migration and concentration distributions in HgCdTe materials grown by liquid phase epitaxy. Secondary ion mass spectrometry measurements showed that Au concentrations had obvious positive correlations with Hg-vacancy concentration and dislocation density of the materials. Au atoms migrate toward regions of high Hg-vacancy concentration or move away from these regions when the Hg-vacancy concentration decreases during annealing. The phenomenon can be explained by defect chemical equilibrium theory if Au atoms have a very large migration velocity compared with Hg vacancies. Au atoms will also migrate toward regions of high dislocation density, leading to a peak concentration in the inter-diffusion region of HgCdTe materials near the substrate. By use of an Hg and Te-rich annealing technique, different concentration distributions of both Au atoms and Hg vacancies in HgCdTe materials were obtained, indicating that Au-doped HgCdTe materials can be designed and prepared to satisfy the requirements of HgCdTe devices.
Alcedo, Karel P; Thanigachalam, Saisathya; Naser, Saleh A
2016-01-01
Mycobacterium avium subspecies paratuberculosis (MAP) has been implicated as an etiological agent of Crohn's disease (CD), a debilitating chronic inflammatory bowel disease. Clarithromycin (CLA), clofazimine (CLO), rifabutin (RIF) and other antibiotics have been used individually or in combinations with other drugs to treat mycobacterial diseases including CD. The treatment has varied by regimen, dosage, and duration, resulting in conflicting outcomes and additional suffering to the patients. RHB-104, a drug formula with active ingredients composed of (63.3 %) CLA, (6.7 %) CLO, and (30 %) RIF, has been recently subjected to investigation in an FDA approved Phase III clinical trial to treat patients with moderate to severe CD. In this study, we determined the efficacy of RHB-104 active ingredients against MAP strains isolated from the blood, tissue, and milk of CD patients. Based on fluorescence quenching technology using the Bactec MGIT Para-TB medium, we determined the minimum inhibitory concentration (MIC) of CLA, CLO, RIF individually and in dual and triple combinations against 16 MAP clinical strains and 19 other mycobacteria. The MIC of all drugs against 35 different mycobacteria ranged between 0.25-20 μg/mL. However, the MIC of RHB-104 active ingredients regimen was the lowest at 0.25-10 μg/mL compared to the MIC of the other drugs at 0.5-20 μg/mL. The components of RHB-104 active ingredients at their individual concentrations or in dual combinations were not effective against all microorganisms compared to the triple combinations at MIC level. The MIC of CLA-CLO, CLA-RIF, and CLO-RIF regimens ranged between 0.5-1.25 μg/mL compared to 0.25 μg/mL of bactericidal effect of the triple combination. The data clearly demonstrated that lower concentrations of the triple combination of RHB-104 active ingredients provided synergistic anti-MAP growth activity compared to individual or dual combinations of the drugs. Consequently, this is favorable and should lead to tolerable dosage that is desirable for long-term treatment of CD and Mycobacterium avium complex disease.
Rizwan, M; Meunier, J-D; Davidian, J-C; Pokrovsky, O S; Bovet, N; Keller, C
2016-01-01
We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.
Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.
Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I
2017-06-27
C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca 2+ -dependent manner. In these cases, membrane association is triggered by Ca 2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd 2+ , in lieu of Ca 2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd 2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd 2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd 2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd 2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd 2+ -complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca 2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca 2+ ion binding to the C2 domain loop regions.
Application of CdSe quantum dots for the direct detection of TNT.
Yi, Kui-Yu
2016-02-01
CdSe quantum dots were synthesized through a simple, green organic-phase method. Paraffin was used as the reaction solvent and a reducing agent, oleic acid was the reaction ligand, and oleyl amine was the stabilizer. Based on the phenomenon of TNT quenched oil-soluble CdSe quantum dot fluorescence, a simple, fast, and direct method of TNT detection was established. Under optimum conditions, the degree of fluorescence quenching of oil-soluble CdSe quantum dots had a good linear correlation with TNT concentration in the 1.0×10(-7)-5.0×10(-5) mol/L range, and the correlation coefficient was 0.9990. TNT detection limit was 2.1×10(-8)mol/L. The method was successfully used to determine TNT-explosion dust samples, results were satisfactory. The fluorescence quenching mechanism of oil-soluble CdSe quantum dots by TNT was also discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.
Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi
2016-01-15
CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Avila-Avendano, Jesus; Quevedo-Lopez, Manuel; Young, Chadwin
2018-02-01
The I-V and C-V characteristics of CdTe/CdS heterojunctions deposited in-situ by Pulsed Laser Deposition (PLD) were evaluated. In-situ deposition enables the study of the CdTe/CdS interface by avoiding potential impurities at the surface and interface as a consequence of exposure to air. The I-V and C-V characteristics of the resulting junctions were obtained at different temperatures, ranging from room temperature to 150 °C, where the saturation current (from 10-8 to 10-4 A/cm2), ideality factor (between 1 and 2), series resistance (from 102 to 105 Ω), built-in potential (0.66-0.7 V), rectification factor (˜106), and carrier concentration (˜1016 cm-3) were obtained. The current-voltage temperature dependence study indicates that thermionic emission is the main transport mechanism at the CdTe/CdS interface. This study also demonstrated that the built-in potential (Vbi) calculated using a thermionic emission model is more accurate than that calculated using C-V extrapolation since C-V plots showed a Vbi shift as a function of frequency. Although CdTe/CdS is widely used for photovoltaic applications, the parameters evaluated in this work indicate that CdTe/CdS heterojunctions could be used as rectifying diodes and junction field effect transistors (JFETs). JFETs require a low PN diode saturation current, as demonstrated for the CdTe/CdS junction studied here.
Kannan, Kurunthachalam; Agusa, Tetsuro; Evans, Thomas J; Tanabe, Shinsuke
2007-10-01
Concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of polar bears (Ursus maritimus) collected from Northern and Western Alaska from 1993 to 2002 to examine differences in the profiles of trace metals between the Beaufort Sea (Northern Alaska) and the Chukchi Sea (Western Alaska) subpopulations in Alaska. Among the trace elements analyzed, concentrations of Cu (50-290 microg/g, dry wt) in polar bear livers were in the higher range of values that have been reported for marine mammals. Concentrations of Hg in polar bears varied widely, from 3.5 to 99 microg/g dry wt, and the mean concentrations in polar bears were comparable to concentrations reported previously for several other species of marine mammals. Mean concentrations of Pb and Cd were 0.67 and 1.0 microg/g dry wt, respectively; these concentrations were lower than levels reported elsewhere for polar bears from Greenland and Canada. Age- and gender-related variations in the concentrations of trace elements in our polar bears were minimal. Concentrations of Hg decreased slowly in samples collected during 1993-2002, whereas Cd and Pb concentrations were found to be stable or slowly increasing, in the livers of Alaskan polar bears. Concentrations of Ag, Bi, Ba, Cu, and Sn were significantly higher in the Chukchi Sea subpopulation than in the Beaufort Sea subpopulation. Concentrations of Hg were significantly higher in the Beaufort Sea subpopulation than in the Chukchi Sea subpopulation. Differences in the profiles and concentrations of Hg, Ag, Bi, Ba, Cu, and Sn suggest that the sources of exposure to these trace elements between Western and Northern Alaskan polar bears are different, in agreement with findings reported earlier for several organic contaminants.
NASA Astrophysics Data System (ADS)
Fernández-Camacho, R.; Rodríguez, S.; de la Rosa, J.; Sánchez de la Campa, A. M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S.
2012-12-01
Urban air quality impairment by ultrafine particles has become a matter of concern due to the adverse effects on human health. Most of the studies of ultrafine particles in urban air quality have focused on vehicle exhaust emissions. We studied how industrial emissions contribute to ultrafine particle concentrations in downwind urban ambient air. This research is based on experimental data collected in the ambient air of the industrial city of Huelva (SW Spain) over April 2008-December 2009 period (particle number, gaseous pollutants and black carbon concentrations and levels and chemical composition of PM10 and PM2.5 with daily and hourly resolution). This city is affected by emissions from the second largest Cu-smelter in Europe, phosphoric acid and fertilizer production plants and an oil refinery and petrochemical plant. Industrial emissions are the main cause of ultrafine particle episodes. When vehicle exhaust emissions are the main source, ultrafine particles typically show (24-h mean) concentrations within the range 14,700-5000 cm-3 (50th-1st), with 60% of these linked to this source and 30% to industrial emissions. In contrast, when daily mean levels of N are within the range 50,000-25,500 cm-3 (100th-70th), industrial and vehicle exhaust emissions accounted for 49 and 30%, respectively. High concentrations of toxic trace metals (As, Cu, Cd, Zn and Pb) were recorded when the study city suffered fumigations of the Cu-smelter plumes (e.g. 10-25 ng m-3 As, 1-2 ng m-3 Cd and >105 cm-3 of ultrafine particles). Because of these industrial emissions, ultrafine particle concentrations during daylight are about two times higher than those observed in other European cities. Recently, ultrafine particle emissions in vehicle exhausts have been subject to limit values in a recent stage of the EURO standards. Industrial emissions should also be considered.
Subsurface cadmium loss from a stony soil-effect of cow urine application.
Gray, Colin William; Chrystal, Jane Marie; Monaghan, Ross Martin; Cavanagh, Jo-Anne
2017-05-01
Cadmium (Cd) losses in subsurface flow from stony soils that have received cow urine are potentially important, but poorly understood. This study investigated Cd loss from a soil under a winter dairy-grazed forage crop that was grazed either conventionally (24 h) or with restricted grazing (6 h). This provided an opportunity to test the hypothesis that urine inputs could increase Cd concentrations in drainage. It was thought this would be a result of cow urine either (i) enhancing dissolved organic carbon (DOC) concentrations via an increase in soil pH, resulting in the formation of soluble Cd-organic carbon complexes and, or (ii) greater inputs of chloride (Cl) via cow urine, promoting the formation of soluble Cd-Cl complexes. Cadmium concentrations in subsurface flow were generally low, with a spike above the water quality guidelines for a month after the 24-h grazing. Cadmium fluxes were on average 0.30 g Cd ha -1 year -1 (0.27-0.32 g Cd ha -1 year -1 ), in line with previous estimates for agricultural soils. The mean Cd concentration in drainage from the 24-h grazed plots was significantly higher (P < 0.05) than 6-h plots. No increase in DOC concentrations between the treatments was found. However, Cl concentrations in drainage were significantly higher (P < 0.001) from the 24-h than the 6-h grazed treatment plots, and positively correlated with Cd concentrations, and therefore, a possible mechanism increasing Cd mobility in soil. Further study is warranted to confirm the mechanisms involved and quantities of Cd lost from other systems.
Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.
Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya
2007-11-01
We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.
Arica, Betül; Kaş, H Süheyla; Moghdam, Amir; Akalan, Nejat; Hincal, A Atilla
2005-02-16
The purpose of this study was to prepare and characterize injectable carbidopa (CD)/levodopa (LD)-loaded Poly(L-lactides) (L-PLA), Poly(D,L-lactides) (D,L-PLA) and Poly(D,L-lactide-co-glycolide) (PLAGA) microspheres for the intracerebral treatment of Parkinson's disease. The microspheres were prepared by solvent evaporation method. The polymers' (L-PLA, D,L-PLA and PLAGA) concentrations were 10% (w/w) in the organic phase; the emulsifiers [sodium carboxymethylcellulose (NaCMC):sodium oleate (SO) and Polyvinyl alcohol (PVA):SO mixture (4:1 w/v)] concentrations were 0.75% in the aqueous phase. Microspheres were analyzed for morphological characteristics, size distribution, drug loading and in vitro release. The release profile of CD/LD from microspheres was characterized in the range of 12-35% within the first hour of the in vitro release experiment. The efficiency of CD- and LD-encapsulated microspheres to striatal transplantation and the altering of apomorphine-induced rotational behavior in the 6-hydroxydopamine (6-OHDA) unilaterally lesioned rat model were also tested. 6-OHDA/CD-LD-loaded microsphere groups exhibited lower rotation scores than 6-OHDA/Blank microsphere groups as early as 1 week postlesion. These benefits continued throughout the entire experimental period and they were statistically significant during the 1, 2 and 8 weeks (p<0.05). CD/LD-loaded microspheres were specifically prepared to apply as an injectable dosage forms for brain implantation.
Damon, Paul; Rengel, Zed
2017-01-01
Zinc (Zn) is an important micronutrient that can alleviate cadmium (Cd) toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum L.) and clover (Trifolium subterraneum L.) grown on Cd-contaminated soils; all combinations of foliar Zn applications (0, 0.25 and 0.5% (w/v) ZnSO4·7H2O) and soil Cd concentrations (0, 2.5 and 5 mg Cd kg-1) were tested. For both plant species, soil concentrations of DTPA-extractable Cd and Zn increased with an increase in the Cd and Zn treatments, respectively. Compared with L. rigidum, T. subterraneum accumulated, respectively, 3.3- and 4.1-fold more Cd in the 2.5-Cd and 5-Cd treatments and about 1.3-, 2.3- and 2.8-fold more Zn in the No-Zn, 0.25-Zn and 0.5-Zn treatments. Also, DTPA-Zn concentration was higher in soil after T. subterraneum than L. rigidum growth regardless of Zn applications. Foliar application of 0.25% (w/v) Zn significantly decreased the total Cd concentration in shoots of both species grown in the Cd-contaminated soil and ameliorated the adverse effects of Cd exposure on root growth, particularly in T. subterraneum. PMID:28950025
Synthesis of positively charged CdTe quantum dots and detection for uric acid
NASA Astrophysics Data System (ADS)
Zhang, Tiliang; Sun, Xiangying; Liu, Bin
2011-09-01
The CdTe dots (QDs) coated with 2-Mercaptoethylamine was prepared in aqueous solution and characterized with fluorescence spectroscopy, UV-Vis absorption spectra, high-resolution transmission electron microscopy and infrared spectroscopy. When the λex = 350 nm, the fluorescence peak of positively charged CdTe quantum dots is at 592 nm. The uric acid is able to quench their fluorescence. Under optimum conditions, the change of fluorescence intensity is linearly proportional to the concentration of uric acid in the range 0.4000-3.600 μmol L -1, and the limit of detection calculated according to IUPAC definitions is 0.1030 μmol L -1. Compared with routine method, the present method determines uric acid in human serum with satisfactory results. The mechanism of this strategy is due to the interaction of the tautomeric keto/hydroxyl group of uric acid and the amino group coated at the CdTe QDs.
Cadmium removal from wastewater by sponge iron sphere prepared by charcoal direct reduction.
Li, Junguo; Li, Jun; Li, Yungang
2009-01-01
Sponge iron sphere (SIS), made of concentrated iron powder and possessed high activity and intension, was prepared through the process of palletizing, roasting and direct reduction by charcoal. The sponge iron sphere could remove most of Cd(2+) from wastewater. The results showed the Cd(2+) removal followed the first order reaction. Initial pH value played an important role in Cd(2+) removal. With original initial pH, Cd(2+) removal decreased to the minimum and then increased slightly with the rising of original concentration. The removal rate constant was -0.1263 and -0.0711 h(-1), respectively, under the Cd(2+) concentration of 50 and 200 mg/L. When the initial pH was adjusted to 3.0, the removal rate constant could increase to -9.896 and -4.351 h(-1), respectively. The removal percentage almost reached to 100% when Cd(2+) concentration was below 100 mg/L. While Cd(2+) concentration was above 100 mg/L, Cd(2+) removal percentage decreased slightly. In dynamic experiments, the column filled with sponge iron sphere exhibited favorable permeability. There was no sphere pulverization and conglutination between spheres. In contrast to the static state experiments, the Cd(2+) removal percentage in dynamic state experiment was lower, and the removal Cd(2+) quantity was 1.749 mg/g.
Wang, Meie; Chen, Weiping; Peng, Chi
2016-02-01
Cadmium (Cd) contamination in rice in Youxian, Hunan, China is a major environmental health concern. In order to reveal the Cd contamination in rice and paddy soils and the health risks to the population consuming the local rice grain, field surveys were conducted in eight towns in Youxian, China. The Cd contents of paddy soils averaged 0.228-1.91 mg kg(-1), 90% exceeding the allowable limit of 0.3 mg kg(-1) stipulated by the China Soil Environmental Quality Standards. Low average pH values (for air dried oxidized soils) ranging from 4.98 to 6.02 in paddy soil were also found. More than seventy percent (39 of 53) of the grain samples exceeded the maximum safe concentration of Cd, 0.2 mg kg(-1) on a dry weight basis. Considering the high consumption of local rice (339 g capita(-1) DW d(-1)) and Cd levels measured, dietary ingestion of 78% of the sampled rice grains would have adverse health risks because the intake exposure of Cd was greater than the JECFA recommended exposures, 0.8 µg Cd BW kg(-1) day(-1) or 25 µg Cd BW kg(-1) month(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries.
Hu, Zhizhong; Zhang, Xiujuan; Xie, Chao; Wu, Chunyan; Zhang, Xiaozhen; Bian, Liang; Wu, Yiming; Wang, Li; Zhang, Yuping; Jie, Jiansheng
2011-11-01
Although CdSe nanostructures possess excellent electrical and optical properties, efforts to make nano-optoelectronic devices from CdSe nanostructures have been hampered by the lack of efficient methods to rationally control their structural and electrical characteristics. Here, we report CdSe nanowires (NWs) with doping dependent crystal structures and optoelectronic properties by using gallium (Ga) as the efficient n-type dopant via a simple thermal co-evaporation method. The phase change of CdSe NWs from wurtzite to zinc blende with increased doping level is observed. Systematical measurements on the transport properties of the CdSe:Ga NWs reveal that the NW conductivity could be tuned in a wide range of near nine orders of magnitude by adjusting the Ga doping level and a high electron concentration up to 4.5 × 10(19) cm(-3) is obtained. Moreover, high-performance top-gate field-effect transistors are constructed based on the individual CdSe:Ga NWs by using high-κ HfO(2) as the gate dielectric. The great potential of the CdSe:Ga NWs as high-sensitive photodetectors and nanoscale light emitters is also exploited, revealing the promising applications of the CdSe:Ga NWs in new-generation nano-optoelectronics.
Ding, Xiaojie; Qu, Lingbo; Yang, Ran; Zhou, Yuchen; Li, Jianjun
2015-06-01
Cysteamine (CA)-capped CdTe quantum dots (QDs) (CA-CdTe QDs) were prepared by the reflux method and utilized as an efficient nano-sized fluorescent sensor to detect mercury (II) ions (Hg(2+) ). Under optimum conditions, the fluorescence quenching effect of CA-CdTe QDs was linear at Hg(2+) concentrations in the range of 6.0-450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10-fold Pb(2+) , Cu(2+) and Ag(+) on the determination of Hg(2+) was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA-CdTe QDs probe, which was prepared using a one-pot synthetic method. This CA-CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method. Copyright © 2014 John Wiley & Sons, Ltd.
Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine.
Palanisamy, Selvakumar; Sakthinathan, S; Chen, Shen-Ming; Thirumalraj, Balamurugan; Wu, Tsung-Han; Lou, Bih-Show; Liu, Xiaoheng
2016-01-01
A simple dopamine (DA) electrochemical sensor was developed based on a screen-printed carbon electrode (SPCE) modified with β-cyclodextrin entrapped graphite (GR/β-CD) composite for the first time. The polar hydroxyl groups on the β-CD rims interact with polar groups of edges of GR sheets resulting into the high dispersion ability of GR in β-CD solution. The GR/β-CD modified electrode exhibited a higher electrochemical response to DA with a lower oxidation potential (0.224V) than that of bare/β-CD (0.38V) and GR (0.525V) modified SPCEs, revealing an excellent electro-oxidation behavior of GR/β-CD composite toward DA. Under optimum conditions, the fabricated sensor detects the DA in the linear concentration range from 0.1 to 58.5μM with a limit of detection of 0.011μM and the sensitivity of 1.27±0.02μAμM(-1)cm(-2). The fabricated sensor also exhibits the excellent repeatability, practicality, reproducibility, storage stability along with acceptable selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reczyński, Witold; Muszyńska, Bożena; Opoka, Włodzimierz; Smalec, Agata; Sułkowska-Ziaja, Katarzyna; Malec, Mirosław
2013-06-01
Cantharellus cibarius Fr. (chanterelle) and Boletus badius Pers. (bay bolete) harvested from natural sites in Poland were used to derive in vitro cultures. The optimal medium composition for cultures was developed. Concentrations of the chosen elements (Zn, Cu, Fe, Mg, Ni, and Cd) in mycelium samples were measured by means of atomic absorption spectrometry. Fe concentration in the analyzed mushroom materials was in the range 215.4-680.3 μg/g dry weight. Mean values of Mg were respectively (in micrograms per gram dry weight) 541.8 for mycelium of C. cibarius cultured in vitro and 1,004.1 for C. cibarius fruiting bodies and 928.9 for the mycelium of B. badius cultured in vitro and 906.4 for B. badius fruiting bodies. The mean concentrations of Zn were 442.7 μg/g dry weight in mycelium from in vitro cultures of B. badius and 172.1 in B. badius fruiting bodies and 131.9 in the case of C. cibarius in mycelium from in vitro cultures and 95.5 for the C. cibarius fruiting bodies. Cu exhibited a reversal tendency, i.e., the element concentrations in naturally grown mushrooms were significantly higher (43.57 μg/g dry weight for C. cibarius and 43.54 μg/g for B. badius) than in cultured in vitro mycelium (12.47 μg/g for C. cibarius and 4.17 μg/g for B. badius). Ni was found in lowest concentrations ranging from 0.33 to 1.88 μg/g dry weight. Toxic metal Cd was found in relatively high concentrations in naturally grown species (0.79 μg/g dry weight-1.02). The lowest was the concentration of Cd in C. cibarius mycelium from in vitro culture-0.06 μg/g dry weight-a bit higher than it was in the B. badius mycelium (0.21 μg/g).
Abboud, Pauline; Wilkinson, Kevin J
2013-08-01
The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.
DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications
Pérez, Angela L.; Anderson, Kim A.
2014-01-01
Cadmium is a common impurity in phosphatic fertilizers and may contribute to soil Cd accumulation. Changes in total and bioavailable Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input was investigated. Three year field studies were conducted using three dose levels of cadmium-rich, commercial, phosphate fertilizers applied at four agricultural sites. Labile Cd concentrations, measured using the passive sampling device Diffusive Gradients in Thin Films (CdDGT), increased with increasing fertilizer application rates. Cd also accumulated in the edible portion of wheat and potato crops grown at the sites, and showed strong positive dose response with fertilizer treatment. Regression models were calculated for each site, year, and for individual crops. Model comparisons indicated that soil physical and chemical parameters in addition to soil Cd fractions, were important determinants of CdDGT. Significant factors contributing to CdDGT concentrations were Cd from fertilizer input (Cdfertilizer), pH, cation exchange capacity (CEC), and total recoverable Cd (Cdtotal). Important factors used to determine Cd concentrations in wheat grain (Cdwheat) and in potato (Cdpotato) were as follows: Cdwheat:Cdfertilizer, and CdDGT; and Cdpotato:Cdfertilizer, CdDGT, % O.M. The effective concentration, CE, calculated from DGT did not correlate well with Cdwheat or with Cdpotato. Direct measurements of CdDGT correlated better with Cd found in edible plant tissue. The modeling approach presented in this study helps to estimate Cd accumulation in plant tissue over multiple years and in distinct agricultural soil systems. PMID:19552942
NASA Astrophysics Data System (ADS)
Hwang, Dong-Woon; Kim, Seong-Soo; Kim, Seong-Gil; Kim, Dong-Sun; Kim, Tae-Hoon
2017-12-01
Concentrations of heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) were determined in edible parts (muscle) of 34 marine wild fish caught from the southern sea of Korea in 2007 and 2008 in order to understand the accumulation pattern of heavy metals in wild fish and to assess the potential health risk posed by fish consumption. The highest concentrations in the muscle of 17 pelagic and 17 demersal fishes were Zn and As, respectively, while the lowest concentration in both fishes was Cd. The mean concentrations of all metals except As in wild fish were much lower than the regulatory limits for fish and fishery products applied in a number of countries. Unlike other metals, As concentration in wild fish of this study region was relatively higher than that found in other country. Estimated daily intake (EDI) of the metals was in the range of 0.05% to 22.5% of the provisional maximum tolerable daily intakes (PMTDI). Similarly, the target hazard quotient (THQ) was below 1.0 for each metal. These results imply that the consumption of the investigated wild fish do not cause significant adverse health effects.
Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L.
Andresen, Elisa; Mattusch, Jürgen; Wellenreuther, Gerd; Thomas, George; Arroyo Abad, Uriel; Küpper, Hendrik
2013-10-01
The heavy metal cadmium (Cd) is highly toxic to plants. To understand the mechanisms of tolerance and resistance to Cd, we treated the rootless, submerged macrophyte Ceratophyllum demersum L. with sub-micromolar concentrations of Cd under environmentally relevant conditions. X-ray fluorescence measurements revealed changing distribution patterns of Cd and Zn at non-toxic (0.2 nM, 2 nM), moderately toxic (20 nM) and highly toxic (200 nM) levels of Cd. Increasing Cd concentrations led to enhanced sequestration of Cd into non-photosynthetic tissues like epidermis and vein. At toxic Cd concentrations, Zn was redistributed and mainly found in the vein. Cd treatment induced the synthesis of phytochelatins (PCs) in the plants, with a threshold of induction already at 20 nM Cd for PC3. In comparison, in plants treated with Cu, elevated PC levels were detected only at the highest concentrations (100-200 nM Cu). Our results show that also non-accumulators like C. demersum store toxic metals in tissues where the heavy metal interferes least with metabolic pathways, but remaining toxicity interferes with micronutrient distribution. Furthermore, we found that the induction of phytochelatins is not proportional to metal concentration, but has a distinct threshold, specific for each PC species. Finally we could show that 20 nM Cd, which was previously regarded as non-toxic to most plants, already induces detoxifying mechanisms.
Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications
Ogedengbe, O. S.; Swartz, C. H.; Jayathilaka, P. A. R. D.; ...
2017-06-06
Here, iodine-doped CdTe and Cd 1-xMg xTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 10 18 cm -3 for CdTe and 3 x 10 17 cm -3 for Cd 0.65Mg 0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTemore » samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd 0.65Mg 0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 10 18 cm -3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 10 16 cm -3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 °C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.« less
Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures.
Xin, Junliang; Huang, Baifei; Yang, Zhongyi; Yuan, Jiangang; Dai, Hongwen; Qiu, Qiu
2010-03-15
A pot experiment was conducted to investigate the stability of Cd and/or Pb accumulation in shoot of Cd and Pb pollution-safe cultivars (PSCs), the hereditary pattern of shoot Cd accumulation, and the transfer potentials of Cd and Pb in water spinach (Ipomoea aquatica Forsk.). A typical Cd-PSC, a typical non-Cd-PSC (Cd accumulative cultivar), a hybrid from the former two cultivars, and two typical Cd+Pb-PSCs were grown in seven soils with different concentrations of Cd and Pb. The results showed that concentrations of Cd and Pb in shoot of the PSCs were always lower than the non-PSC and the highest Cd and Pb transfer factors were also always observed in the non-PSC, indicating the stability of the PSCs in Cd and Pb accumulation. Shoot Cd concentration seemed to be controlled by high Cd dominant gene(s) and thus crossbreeding might not minimize Cd accumulation in water spinach. Interaction between Cd and Pb in soils affected the accumulations of the metals in shoot of water spinach. Under middle Cd and Pb treatments, the presence of higher Pb promoted the accumulation of Cd. However, under high Pb treatment, accumulations of Cd and Pb were both restricted. (c) 2009 Elsevier B.V. All rights reserved.
Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Kempers, Alexander J
2018-05-01
Arctic-alpine tundra habitats are very vulnerable to the input of relatively small amounts of xenobiotics, and thus their level in such areas must be carefully controlled. Therefore, we collected the terrestrial widespread moss Racomitrium lanuginosum (Hedw.) Brid. in Spitsbergen in the Arctic moss lichen tundra and, for comparison, in the Arctic-alpine tundra in the Karkonosze (SW Poland). Concentrations of the elements Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Na, Ni, Pb, V, and Zn in this species and in the parent rock material were measured. We tested the following hypothesis: R. lanuginosum from Spitsbergen contains lower metal levels than the species from the Karkonosze collected at altitudes influenced by long-range transport from former Black Triangle industry. Principal component and classification analysis (PCCA) ordination revealed that mosses of Spitsbergen were distinguished by a significantly higher Na concentration of marine spray origin and mosses of Karkonosze were distinguished by significantly higher concentrations of Cd, Cr, Cu, Fe, Hg, Li, Mn, Pb, V, and Zn probably from long-range atmospheric transport. The influence of the polar station with a waste incinerator resulted in significantly higher Co, Li, and Ni concentrations in neighbouring mosses in comparison with this species from other sites. This investigation contributes to the use of R. lanuginosum as a bioindicator for metal contamination in Arctic and alpine tundra regions characterised by severe climate habitats with a restricted number of species. This moss enables the control of pollution usually brought solely by long-range atmospheric transport in high mountains as well as in Arctic areas.
Liu, Houjun; Zhang, Junling; Christie, Peter; Zhang, Fusuo
2008-05-15
Iron plaque is ubiquitously formed on the root surfaces of rice. However, little is known about the role of iron plaque in Cd movement from soil to the plant aboveground parts. A pot experiment was conducted to investigate the influence of iron plaque in Cd uptake and accumulation by rice seedlings in soil. Rice seedlings were pre-cultivated in solution culture for 16 days. Two seedlings were transplanted in a nylon bag containing no substrate but surrounded by soil amended with Fe and Cd combined at rates of 0, 1, or 2 g Fe kg(-1) and 0, 2.0, or 10 mg Cd kg(-1) soil. Fe was added to induce different amounts of iron plaque, and Cd to simulate Cd-polluted soils. Plants were grown for a further 43 days and then harvested. The length of the longest leaf and SPAD values of the newly mature leaves were measured during plant growth. Fe and Cd concentrations were determined in dithionite-citrate-bicarbonate (DCB) soil extracts and in plant roots and shoots. Shoot and root dry weights were significantly affected by Fe supply level but not by added Cd. Root dry weight declined with increasing Fe supply but shoot dry weight decreased at 2 g Fe kg(-1) and increased at 1 g Fe kg(-1) (except at 2 mg Cd kg(-1)). The length of the longest leaf and SPAD values of the newly mature leaves were significantly affected by plant growth stage and added Fe and Cd. Fe tended to diminish the negative effect of Cd on these two parameters. Cd concentrations in DCB extracts increased with increasing Cd and Fe supply. In contrast, external Fe supply markedly reduced shoot and root Cd concentrations and there was generally no significant difference between the two Fe supply levels. Shoot and root Cd concentrations increased with increasing Cd addition. Root Cd concentrations were negatively correlated with root Fe concentrations. The proportion of Cd in DCB extracts was significantly lower than in roots or shoots. The results indicate that enhanced Fe uptake by plants can diminish the negative effects of Cd to some extent and that iron plaque on root surfaces is of little significance in affecting uptake and accumulation of Cd by rice plants.
Liu, Jia-nv; Zhou, Qi-xing; Sun, Ting; Ma, Lena Q; Wang, Song
2008-02-28
Up to now, there was no document on ornamental plants that had been applied to phytoremediation, which can remedy contaminated environment and beautify it at the same time. Thus, the growth responses and possible phytoremediation ability of three ornamental plants selected from the previous preliminary experiments were further examined under single Cd or combined Cd-Pb stress. The results showed that these tested plants had higher tolerance to Cd and Pb contamination and could effectively accumulate the metals, especially for Calendula officinalis and Althaea rosea. For C. officinalis, it grew normally in soils containing 100 mg kg(-1) Cd without suffering phytotoxicity, and the Cd concentration in the roots was up to 1084 mg kg(-1) while the Cd concentration in the shoots was 284 mg kg(-1). For A. rosea, the Cd accumulation in the shoots was higher than that in the roots when the Cd concentration in soils was <100 mg kg(-1), and reached 100 mg kg(-1) as the criteria of a Cd hyperaccumulator when the Cd concentration in soils was 100 mg kg(-1). Their accumulation and tolerance to Cd and Pb were further demonstrated through the hydroponic-culture method. And A. rosea had a great potential as a possible Cd hyperaccumulator under favorable or induced conditions. Furthermore, the interactive effects of Cd and Pb in the three ornamentals were complicated, not only additive, antagonistic or synergistic, but also related to many factors including concentration combinations of heavy metals, plant species and various parts of plants. Thus, it can be forecasted that this work will provide a new way for phytoremediation of contaminated soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Department of Physics and Astrophysics, University of Delhi, Delhi, 110 007; Saxena, Nupur
This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.
Concentrations of heavy metals in American woodcock harvested in Connecticut.
Hiller, Brian J; Barclay, John S
2011-01-01
The American woodcock is an important migratory species to both consumptive and nonconsumptive users throughout the species range. Woodcock populations have been declining steadily since surveys began in 1968. Laboratory and field studies have demonstrated several adverse effects associated with metals in other species, which has led to their inclusion as potential contributing factors to the woodcock population decline. We investigated the concentrations of arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), and selenium (Se) in pectoral muscle (n = 100), livers (n = 108), and kidneys (n = 104) and Pb in wing bones (n = 53) from woodcock harvested in Connecticut. Cd concentrations were elevated in 99% of woodcock livers and kidneys; 30% of kidneys were above 100 μg/g dry weight, a Cd level of reported adverse tissue and reproductive effects in other species. Hg and Cr concentrations were below current biologically significant thresholds. Asc, Pb, and Se in soft tissues were associated with lead shot use in collection. Se in 24% of livers was above 10 μg/g dry weight, the reported threshold for avian health. Wing-bone Pb was elevated above 20 μg/g in 61% of adults and 23% of juveniles examined. Our findings indicate that woodcock are being exposed to potentially damaging levels of at least two metals with known effects in other species.
Baken, Stijn; Degryse, Fien; Verheyen, Liesbeth; Merckx, Roel; Smolders, Erik
2011-04-01
Dissolved organic matter (DOM) in surface waters affects the fate and environmental effects of trace metals. We measured variability in the Cd, Cu, Ni, and Zn affinity of 23 DOM samples isolated by reverse osmosis from freshwaters in natural, agricultural, and urban areas. Affinities at uniform pH and ionic composition were assayed at low, environmentally relevant free Cd, Cu, Ni, and Zn activities. The C-normalized metal binding of DOM varied 4-fold (Cu) or about 10-fold (Cd, Ni, Zn) among samples. The dissolved organic carbon concentration ranged only 9-fold in the waters, illustrating that DOM quality is an equally important parameter for metal complexation as DOM quantity. The UV-absorbance of DOM explained metal affinity only for waters receiving few urban inputs, indicating that in those waters, aromatic humic substances are the dominant metal chelators. Larger metal affinities were found for DOM from waters with urban inputs. Aminopolycarboxylate ligands (mainly EDTA) were detected at concentrations up to 0.14 μM and partly explained the larger metal affinity. Nickel concentrations in these surface waters are strongly related to EDTA concentrations (R2=0.96) and this is underpinned by speciation calculations. It is concluded that metal complexation in waters with anthropogenic discharges is larger than that estimated with models that only take into account binding on humic substances.
NASA Astrophysics Data System (ADS)
Lehtimäki, Esa; Väisänen, Ari
2017-01-01
The digestion methods for the determination of As, Cd, Cr, Pb, Sb, Sn and Zn concentrations in plastic samples using microwave-assisted digestion (MW-AD) and small-size autoclave digestion was developed. The certified polyethylene, polypropylene, polyvinyl chloride and acrylonitrile butadiene styrene certified reference materials were used in order to find digestion method working properly for several sample matrices. Efficiency of the digestion methods was evaluated by analyzing the residual carbon in digests by TOC analyzer. MW-AD using a mixture of 7 mL of HNO3 and 3 mL of H2O2 as a digestion solution resulted in excellent recoveries for As, Cd, Pb, Sb and Zn, and were in the range of 92-107% for all the analytes except Pb in polyethylene material. Autoclave digestion using 5 mL of concentrated HNO3 as a digestion solution resulted in similar recoveries with the exception of a higher As recovery (98%). Tin recovery resulted in low level after both MW-AD and autoclave digestion. Autoclave digestion was further developed resulting in a partially open two-step digestion process especially for the determination of Sn and Cr. The method resulted in higher recoveries of Sn and Cr (87 and 76%) but with the lower concentration of easily volatile As, Cd and Sb.
Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea
NASA Astrophysics Data System (ADS)
Chen, Ying; Paytan, Adina; Chase, Zanna; Measures, Christopher; Beck, Aaron J.; SañUdo-Wilhelmy, Sergio A.; Post, Anton F.
2008-03-01
We present the first comprehensive investigation of the concentrations, fluxes and sources of aerosol trace elements over the Gulf of Aqaba. We found that the mean atmospheric concentrations of crustally derived elements such as Al, Fe and Mn (1081, 683, and 16.7 ng m-3) are about 2-3 times higher than those reported for the neighboring Mediterranean area. This is indicative of the dominance of the mineral dust component in aerosols over the Gulf. Anthropogenic impact was lower in comparison to the more heavily populated areas of the Mediterranean. During the majority of time (69%) the air masses over the Gulf originated from Europe or Mediterranean Sea areas delivering anthropogenic components such as Cu, Cd, Ni, Zn, and P. Airflows derived from North Africa in contrast contained the highest concentrations of Al, Fe, and Sr but generally lower Cu, Cd, Ni, Zn, and P. Relatively high Pb, Ni, and V were found in the local and Arabian airflows suggesting a greater influence of local emission of fuel burning. We used the data and the measured trace metal seawater concentrations to calculate residence times of dissolved trace elements in the upper 50 m surface water of the Gulf (with respect to atmospheric input) and found that the residence times for most elements are in the range of 5-37 years while Cd and V residence times are longer.
Defects and properties of cadmium oxide based transparent conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Detert, D. M.
Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ∼2 × 10{sup 20}/cm{sup 3}more » and mobility in the range of 40–100 cm{sup 2}/V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O{sub 2} partial pressure in the sputter gas mixture results in films with resistivity from ∼4 × 10{sup −4} to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 10{sup 21 }cm{sup −3} and electron mobility higher than 120 cm{sup 2}/V s can be achieved. Thermal annealing of doped CdO films in N{sub 2} ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ∼1 eV and that the mobility of sputtered deposited CdO is limited by a background acceptor concentration of ∼5–6 × 10{sup 20}/cm{sup 3}. The calculations offer an insight into understanding of the effects of defects on electrical properties of undoped and doped CdO and offer a potential to use similar methods to analyze doping and defect properties of other semiconductor materials.« less
Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Lin, Dasong; Hu, Fazhi
2013-05-01
A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.
Deng, Jiancai; Wang, Yuansheng; Liu, Xin; Hu, Weiping; Zhu, Jinge; Zhu, Lin
2016-05-01
The concentrations and spatial distributions of eight heavy metals in surface sediments and sediment core samples from a shallow lake in China were investigated to evaluate the extent of the contamination and potential ecological risks. The results showed that the heavy metal concentrations were higher in the northern and southwestern lake zones than those in the other lake zones, with lower levels of As, Hg, Zn, Cu, Pb, Cr, and Ni primarily observed in the central and eastern lake regions and Cd primarily confined to areas surrounding the lake. The concentrations of the eight heavy metals in the sediment profiles tended to decrease with increasing sediment depth. The contents of Ni, Cu, Zn, Pb, and Cd in the surface sediment were approximately 1.23-18.41-fold higher than their background values (BVs), whereas the contents of Cr, As, and Hg were nearly identical to their BVs. The calculated pollution load index (PLI) suggested that the surface sediments of this lake were heavily polluted by these heavy metals and indicated that Cd was a predominant contamination factor. The comprehensive potential ecological risk index (PERI) in the surface sediments ranged from 99.2 to 2882.1, with an average of 606.1. Cd contributed 78.7 % to the PERI, and Hg contributed 8.4 %. Multivariate statistical analyses revealed that the surface sediment pollution with heavy metals mainly originated from industrial wastewater discharged by rivers located in the western and northwestern portion of the lake.
Morphology, structure and optical properties of hydrothermally synthesized CeO2/CdS nanocomposites
NASA Astrophysics Data System (ADS)
Mohanty, Biswajyoti; Nayak, J.
2018-04-01
CeO2/CdS nanocomposites were synthesized using a two-step hydrothermal technique. The effects of precursor concentration on the optical and structural properties of the CeO2/CdS nanoparticles were systematically studied. The morphology, composition and the structure of the CeO2/CdS nanocomposite powder were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectrum analysis (EDXA) and X-ray diffraction (XRD), respectively. The optical properties of CeO2/CdS nanocomposites were studied by UV-vis absorption and photoluminescence (PL) spectroscopy. The optical band gaps of the CeO2/CdS nanopowders ranged from 2.34 eV to 2.39 eV as estimated from the UV-vis absorption. In the room temperature photoluminescence spectrum of CeO2/CdS nanopowder, a strong blue emission band was observed at 400 nm. Since the powder shows strong visible luminescence, it may be used as a blue phosphor in future. The original article published with this DOI was submitted in error. The correct article was inadvertently left out of the original submission. This has been rectified and the correct article was published online on 16 April 2018.
Kaur, Gurvir; Tripathi, S K
2015-01-05
The paper presents the interactions between trypsin and water soluble cadmium selenide (CdSe) quantum dots investigated by spectrophotometric methods. CdSe quantum dots have strong ability to quench the intrinsic fluorescence of trypsin by a static quenching mechanism. The quenching has been studied at three different temperatures where the results revealed that electrostatic interactions exist between CdSe quantum dots and trypsin and are responsible to stabilize the complex. The Scatchard plot from quenching revealed 1 binding site for quantum dots by trypsin, the same has been confirmed by making isothermal titrations of quantum dots against trypsin. The distance between donor and acceptor for trypsin-CdSe quantum dot complexes is calculated to be 2.8 nm by energy transfer mechanisms. The intrinsic fluorescence of CdSe quantum dots has also been enhanced by the trypsin, and is linear for concentration of trypsin ranging 1-80 μl. All the observations evidence the formation of trypsin-CdSe quantum dot conjugates, where trypsin retains the enzymatic activity which in turn is temperature and pH dependent. Copyright © 2014 Elsevier B.V. All rights reserved.
Zeng, Lijiao; Wang, Rui; Zhu, Lihua; Zhang, Jingdong
2013-10-01
Graphene/cadmium sulphide (GR-CdS) nanocomposite was synthesized via a low temperature process in aqueous solution. The as-prepared nanocomposite was characterized by scanning electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The impedance analysis indicated that GR-CdS nanocomposite possessed outstanding electrochemical performance for facile electron transfer. When DNA was immobilized on GR-CdS (DNA/GR-CdS) modified electrode, the electrochemical oxidation of guanine and adenine in DNA residue bases was significantly promoted. Due to the interaction of DNA with phenformin, the voltammetric current of guanine or adenine on the DNA/GR-CdS electrode was decreased when phenformin was present in the electrolytic solution. Under optimized conditions, the signal of guanine on DNA/GR-CdS electrode decreased linearly with increasing the concentration of phenformin in the range of 1.0×10(-6)molL(-1) to 1.0×10(-3)molL(-1). The proposed DNA-based electrochemical biosensor was successfully applied to the determination of phenformin in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Rentschler, Gerda; Kippler, Maria; Axmon, Anna; Raqib, Rubhana; Ekström, Eva-Charlotte; Skerfving, Staffan; Vahter, Marie
2013-01-01
Background: Cadmium (Cd) is a human toxicant and carcinogen. Genetic variation might affect long-term accumulation. Cd is absorbed via iron transporters. Objectives: We evaluated the impact of iron homeostasis genes [divalent metal transporter 1 (SLC11A2), transferrin (TF), transferrin receptors (TFR2 and TFRC), and ferroportin (SLC40A1)] on Cd accumulation. Methods: Subjects were nonsmoking women living in the Argentinean Andes [n = 172; median urinary Cd (U-Cd) = 0.24 µg/L] and Bangladesh (n = 359; U-Cd = 0.54 µg/L) with Cd exposure mainly from food. Concentrations of U-Cd and Cd in whole blood or in erythrocytes (Ery-Cd) were measured by inductively coupled plasma mass spectrometry. Fifty polymorphisms were genotyped by Sequenom. Gene expression was measured in whole blood (n = 72) with Illumina DirectHyb HumanHT-12 v4.0. Results: TFRC rs3804141 was consistently associated with U-Cd. In the Andean women, mean U-Cd concentrations were 22% (95% CI: –2, 51%), and they were 56% (95% CI: 10, 120%) higher in women with GA and AA genotypes, respectively, relative to women with the GG genotype. In the Bangladeshi women, mean U-Cd concentrations were 22% (95% CI: 1, 48%), and they were 58% (95% CI: –3, 157%) higher in women with GA and AA versus GG genotype, respectively [adjusted for age and plasma ferritin in both groups; ptrend = 0.006 (Andes) and 0.009 (Bangladesh)]. TFRC expression in blood was negatively correlated with plasma ferritin (rS = –0.33, p = 0.006), and positively correlated with Ery-Cd (significant at ferritin concentrations of < 30 µg/L only, rS = 0.40, p = 0.046). Rs3804141 did not modify these associations or predict TFRC expression. Cd was not consistently associated with any of the other polymorphisms evaluated. Conclusions: One TFRC polymorphism was associated with urine Cd concentration, a marker of Cd accumulation in the kidney, in two very different populations. The consistency of the findings supports the possibility of a causal association. PMID:23416510
NASA Astrophysics Data System (ADS)
Guo, Yuan; Zeng, Xiaoqing; Yuan, Haiyan; Huang, Yunmei; Zhao, Yanmei; Wu, Huan; Yang, Jidong
2017-08-01
In this study, a novel method for chiral recognition of phenylglycinol (PG) enantiomers was proposed. Firstly, water-soluble N-acetyl-L-cysteine (NALC)-capped CdTe quantum dots (QDs) were synthesized and experiment showed that the fluorescence intensity of the reaction system slightly enhancement when added PG enantiomers to NALC-capped CdTe quantum dots (QDs), but the R-PG and S-PG could not be distinguished. Secondly, when there was Ag+ presence in the reaction system, the experiment result was extremely interesting, the PG enantiomers cloud make NALC-capped CdTe QDs produce different fluorescence signal, in which the fluorescence of S-PG + Ag+ + NALC-CdTe system was significantly enhanced, and the fluorescence of R-PG + Ag+ + NALC-CdTe system was markedly decreased. Thirdly, all the enhanced and decreased of the fluorescence intensity were directly proportional to the concentration of R-PG and S-PG in the linearly range 10- 5-10- 7 mol·L- 1, respectively. So, the new method for simultaneous determination of the PG enantiomers was built too. The experiment result of the method was satisfactory with the detection limit of PG can reached 10- 7 mol·L- 1 and the related coefficient of S-PG and R-PG are 0.995 and 0.980, respectively. The method was highly sensitive, selective and had wider detection range compared with other methods.
Dong, Wenbo; Wang, Kaiyin; Chen, Yu; Li, Weiping; Ye, Yanchun; Jin, Shaohua
2017-01-01
An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H2O2. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin. PMID:28773229
Moncaleano-Niño, Angela M; Luna-Acosta, Andrea; Gómez-Cubillos, Maria Camila; Villamil, Luisa; Ahrens, Michael J
2018-04-30
In the present study, the sensitivity and concentration dependence of three functionally-defined components of cholinesterase activity (total: T-ChE; eserine-sensitive: Es-ChE; and eserine-resistant: Er-ChE) were quantified in the gill, digestive gland and adductor muscle of the tropical cup oyster Saccostrea sp., following acute (96h) aqueous exposure to commercial formulations of the organophosphate (OP) insecticide chlorpyrifos and the neonicotinoid (NN) imidacloprid (concentration range: 0.1-100mg/L), as well as to dissolved cadmium and copper (concentration range: 1-1000μg/L). Oysters (1.5-5.0cm shell length), field-collected from a boating marina in Santa Marta, Colombia (Caribbean Sea) were exposed in the laboratory to each substance at five concentrations. T-ChE, Es-ChE, and Er-ChE activity were quantified in the three tissues in pools of 5 individuals (3 replicates per concentration), before and after inhibition with the total cholinesterase inhibitor eserine (physostigmine, 100µM). Oysters exposed to chlorpyrifos, imidacloprid and Cd showed reduced T-ChE and Es-ChE activity in gills at highest exposure concentrations, with Es-ChE activity being inhibited proportionally more so than T-ChE, whereas Er-ChE activity showed no significant concentration-response. Digestive gland also showed diminished T-ChE, Es-ChE and Er-ChE activity for highest chlorpyrifos and Cd concentrations relative to controls, but an increase of T-ChE and Er-ChE activity at the highest imidacloprid concentration (100mg/L). For Cu, T-ChE, Es-ChE and Er-ChE activities in gills and digestive gland were elevated relative to controls in oysters exposed to Cu concentrations > 100µg/L. In adductor muscle, T-ChE, Es-ChE and Er-ChE activity showed no apparent pattern for any of the four xenobiotics and concentration levels tested. Although this study confirms acute (96h) concentration-dependent reduction of tissue T-ChE and Es-ChE activity in gills and digestive glands of Saccostrea sp. exposed to high concentrations of chlorpyrifos (100mg/L), significant changes in T-ChE, Es-ChE and Er-ChE were also caused by exposure to Cd and Cu at concentrations > 100µg/L and by exposure to imidacloprid (100mg/L), indicating that cholinesterase activity is not a specific biomarker of organophosphate exposure in this species, but, rather, a biomarker of diverse xenobiotic exposure. Copyright © 2018 Elsevier Inc. All rights reserved.
[Phytoremediation of mercury and cadmium polluted wetland by Arundo donax].
Han, Zhiping; Hu, Xiaobin; Hu, Zhenghai
2005-05-01
With a pot culture of simulated mercury (Hg) and cadmium (Cd)-polluted wetland, this paper studied the capability of Arundo donax in accumulating these heavy metals, and their distribution in the plant. The results showed that after grown in a 101 mg.kg(-1) Hg-polluted wetland for 8 months, the Hg-concentrating capability of Arundo donax was in order of root > stem > leaf, and the Hg concentration in its aboveground parts was 200 +/- 20 mg.kg(-1) (DW); while in the case of 115 mg.kg(-1) Cd-pollution, the Cd-concentrating capability was in order of leaf > root > stem, and the Cd concentration in leaf was 160 +/- 26 mg.kg(-1) (DW). The heavy metals concentration in Arundo donax organs increased with its growth time, being 30%-50% higher for 8 months than for 4 months. The BCF (Bio-concentration factor) decreased with increasing heavy metals concentration. In polluted wetland, the BCFs of Hg by the leaf and stem were 1.9 and 2.1, and those of Cd were 1.5 and 0.3, respectively; while in unpolluted wetland, the concentration of Hg and Cd was 6.8 and 8.5 mg.kg(-1), the BCFs of Hg by the leaf and stem were 6.8 and 12.2, and those of Cd were 7.0 and 2.7, respectively. It was indicated that Arundo donax not only had the characters of large biomass, exuberant root, and good adaptability, but also exhibited high tolerance and concentrating capability to Cd and Hg.
Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing
2014-11-01
Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.
Benito, Denis; Izagirre, Urtzi; Dallinger, Reinhard; Soto, Manu
2017-01-01
Cadmium (Cd) is one of the most harmful metals, being toxic to most animal species, including marine invertebrates. Among marine gastropods, the periwinkle (Littorina littorea) in particular can accumulate high amounts of Cd in its midgut gland. In this organ, the metal can elicit extensive cytological and tissue-specific alterations that may reach, depending on the intensity of Cd exposure, from reversible lesions to pathological cellular disruptions. At the same time, Littorina littorea expresses a Cd-specific metallothionein (MT) that, due to its molecular features, expectedly exerts a protective function against the adverse intracellular effects of this metal. The aim of the present study was, therefore, to assess the time course of MT induction in the periwinkle’s midgut gland on the one hand, and cellular and tissue-specific alterations in the digestive organ complex (midgut gland and digestive tract) on the other, upon exposure to sub-lethal Cd concentrations (0.25 and 1 mg Cd/L) over 21 days. Depending on the Cd concentrations applied, the beginning of alterations of the assessed parameters followed distinct concentration-dependent and time-dependent patterns, where the timeframe for the onset of the different response reactions became narrower at higher Cd concentrations compared to lower exposure concentrations. PMID:28829377
Parsimonious Development of a Physiologically-Based Pharmacokinetic Model for PFOA
We examine pharmacokinetic (PK) models of varying complexity with respect to a large data set for female CD1 mice (Lau et al.) exposed to a range of single and repeated oral doses of PFOA. These data can be broadly grouped into 1) plasma concentrations 2) liver and kidney concen...
1992-07-01
materials. The calculatedelectronic band structure of Ga,.,lnSb/lnAs superlattices is qualitatively distinct from that of conventional LWIR materials...have grown MCT layers on (I I I)B CdTe and CdZnTe for LWIR applications with uniformity in thickness within 1.5% (largest difference from the mean...at 300K over the same area. For undoped n-type LWIR layers mobilities in the range of 7-10xI04 cm 2/volt.sec and carrier concentrations of 5-10x10 14
Lin, Chien-Yu; Hsieh, Chia-Jung; Lo, Shyh-Chyi; Chen, Pau-Chung; Torng, Pao-Ling; Hu, Anren; Sung, Fung-Chang; Su, Ta-Chen
2016-01-01
Di-(2-ethylhexyl) phthalate (DEHP) has been used worldwide in various products for many years. In vitro studies have shown that exposure to DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) induces endothelial cell apoptosis. Moreover, exposure to DEHP had been linked to cardiovascular risk factors and cardiovascular diseases in epidemiological studies. Circulating microparticles have been known to be indicators of vascular injury. However, whether DEHP or its metabolites are independently associated with microparticles in humans remains unknown. From 2006 to 2008, we recruited 793 subjects (12-30years) from a population-based sample to participate in this cardiovascular disease prevention examination. Each participant was subjected to interviews and biological sample collection to determine the relationship between concentrations of DEHP metabolites MEHP, mono(ethyl-5-hydroxyhexyl) phthalate, and mono(2-ethly-5-oxoheyl) phthalate in urine and concentrations of endothelial microparticles (CD62E and CD31+/CD42a-), platelet microparticles (CD62P and CD31+/CD42a+), and CD14 in serum. Multiple linear regression analysis revealed that an ln-unit increase in MEHP concentration in urine was positively associated with an increase in serum microparticle counts/μL of 0.132 (±0.016) in CD31+/CD42a- (endothelial apoptosis marker), 0.117 (±0.023) in CD31+/CD42a+ (platelet apoptosis marker), and 0.026 (±0.007) in CD14 (monocyte, macrophage, and neutrophil activation marker). There was no association between DEHP metabolite concentration and CD62E or CD62P. In conclusion, a higher MEHP concentration in urine was associated with an increase in endothelial and platelet microparticles in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to DEHP and atherosclerosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oláh, Viktor; Hepp, Anna; Mészáros, Ilona
2015-08-01
Standard ecotoxicological test procedures use only active forms of aquatic plants. The potential effects of toxicants on vegetative propagules, which play an important role in the survival of several aquatic plant species, is not well understood. Because turion-like resting propagules overwinter on the water bottom in temperate regions, they could be exposed to contaminants for longer periods than active plants. Due to its turion producing capability, giant duckweed (Spirodela polyrhiza) is widely used in studying morphogenesis, dormancy, and activation mechanisms in plants. It is also suitable for ecotoxicological purposes. The present work aims to compare the growth inhibition sensitivity of active (normal frond) and overwintering (turion) forms of S. polyrhiza to concentrations of nickel (Ni), cadmium (Cd) and hexavalent chromium (Cr) ranging from 0 to 100mgL(-1). The results indicated that in general, resting turions have higher heavy metal tolerance than active fronds. Cd proved to be the most toxic heavy metal to S. polyrhiza active frond cultures because it induced rapid turion formation. In contrast, the toxicity of Ni and Cr were found to be similar but lower than the effects of Cd. Cr treatments up to 10mgL(-1) did not result in any future negative effects on turion activation. Turions did not survive heavy metal treatments at higher concentrations of Cr. Cd and Ni treatments affected both the floating-up and germination of turions but did not significantly affect the vigor of sprouts. Higher concentrations (of 100mgL(-1)) Cd completely inhibited germination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Naeemullah; Afridi, Hassan Imran; Shah, Faheem; Arain, Mohammad Balal; Arain, Salma Aslam
2016-04-01
In present study aluminum (Al) and cadmium (Cd) were determined in ground water samples and assesses human health risks associated with elevated concentrations of toxic metals in dissolved form, using a novel solid phase microextraction (SPμE). Ground water sample (n=200) and biological sample (blood) of patients having chronic kidney disorders (CKD) along with healthy control subjects of same area (southern part of Pakistan) were collected. A simple system, including the micropipette tip packed with modified ionic liquid-activated carbon cloth (IL-ACC) coated with 8-hydroxyqunilone (8-HQ) attached to syringe. The analytes in water and acid digested blood samples were manually drawn for 2-10 cycles (drawing/discharging) at different pH range. The analytes sorbed on coated ACC were then desorbed with 2.0molL(-1) HNO3 in ethanol by drawing/discharging cycles for 1-5 times. The concentration of extracted analytes was determined by electrothermal atomic absorption spectrometer. The influence of different variables on the extraction efficiency of Cd and Al, were optimized. The Al and Cd concentrations in groundwater were found to be elevated than recommended limits by the World Health Organization. The urinary N-acetyl-h-glucosaminidase values were significantly higher in CKD patients as compared to refrent subjects (p<0.001). The significant variation in levels of Cd and Al were observed in blood samples of CKD patients than referents subjects (p<0.01). The strong positive correlation among Al and Cd levels in groundwater versus blood samples of CKD patients (r=0.82-0.85) p<0.01) was observed than those values calculated for referent subjects (r=0.425-0.536). Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of the Metals in Soil-Water Interface in a Manganese Mine
Ren, Bozhi; Wang, Qian; Chen, Yangbo; Ding, Wenjie; Zheng, Xie
2015-01-01
In order to reveal the influence of the metals of soil-water interface in a manganese mine (Xiangtan, China), on local water environment, there are six kinds of metals (Mn, Ni, Cu, Zn, Cd, and Pb) characterized by measuring their concentration, correlation, source, and special distribution using principal component analysis, single factor, and Nemero comprehensive pollution index. The results showed that the corresponding average concentration was 0.3358, 0.045, 0.0105, 0.0148, 0.0067, and 0.0389 mg/L. The logarithmic concentration of Mn, Zn, and Pb was normal distribution. The correlation coefficients (between Mn and Pb, Mn and Zn, Mn and Ni, Cu and Zn, Cu and Pb, and Zn and Cd) were found to range from 0.5 to 0.6, and those between Cu and Ni and Cu and Cd were below 0.3. It was found that Zn and Mn pollution were caused primarily by ore mining, mineral waste transportation, tailing slag, and smelting plants, while Cu and Ni mainly originate from the mining industry activities and the traffic transportation in the mining area. In addition, the Cd was considered to be produced primarily from the agricultural or anthropogenic activities. The pollution indexes indicated that metal pollution degree was different in soil-water interface streams as listed in increasing order of pollution level as Zn > Ni > Cu > Pb > Mn > Cd. For all of the pollution of the soil-water interface streams, there was moderate metal pollution but along the eastern mine area the pollution seemed to get more serious. There was only a small amount of soil-water interface streams not contaminated by the metals. PMID:26167333
Xie, Yan; Luo, Hongji; Du, Zhimin; Hu, Longxing; Fu, Jinmin
2014-12-01
Phytoremediation utilizing plants and microbes has been increasingly adopted as a green technology for cleaning up heavy metal polluted soils. Cd polluted soil and native bermudagrass from Liuyang and Zhuzhou in Hunan province of China were collected to investigate microbial diversity and isolate Cd resistant fungi, and then to determine the effect of Cd resistant fungi on Cd tolerance and transportation of bermudagrass. The functional diversity of microorganisms was evaluated using the BIOLOG Eco method. Cd-resistant fungi strain was isolated and identified as Aspergillus aculeatus based on the ribosomal internal transcribed spacer region sequence analysis. Bermudagrass was exposed to control, Cd only, and Cd plus A. aculeatus (Cd + A. aculeatus) with growth matrix (sawdust/sand = 3/1 in volume). Results indicated that Cd + A. aculeatus treated bermudagrass exhibited a higher photosynthetic activity compared to Cd only treated plants. Inoculation of A. aculeatus resulted in a decrease in stem and leaf Cd concentrations, to a greater extent for Cd-sensitive than for Cd-tolerant genotype. However, inoculation of A. aculeatus increased root Cd concentration under Cd stress conditions, significantly elevated soil pH, and decreased soil water-soluble Cd concentration. These results suggested that A. aculeatus might be potentially applied to improve Cd tolerance and to reduce Cd transportation to shoot of bermudagrass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghiri, F.
Absorption of /sup 115m/Cd by soybean (Gylcine max l.) plants via foliar and root systems and translocation into the seed was determined. The uptake of /sup 115m/Cd by soybeans via the root system was more efficient than that of the foliar placement. Growth and Cd concentrations of soybean and wheat (Triticum aestivum l.) tops were influenced by soil-applied Cd. In both crops, the Cd concentration of plant tops increased while yield decreased with increasing levels of applied Cd. Cadmium toxicitiy began to occur in both crops at the lowest level of soil applied Cd (2.5 ppM). With soybean plants, Cdmore » toxicity symptoms resembled fe chlorosis. For wheat plants there were no visual symptoms other than the studied growth. The relative concentration of Cd found in several vegetable crops varied depending on the plant species. The relative Cd concentration in descending order for various vegetables was lettuce (Lactuca sativa l.) > radish top (Raphanus sativus l.) > celery stalk (Apium graveolens l.) > celery leaves greater than or equal to green pepper (Capsicum frutescens l.) > radish roots.« less
Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.
Kassaye, Yetneberk A; Skipperud, Lindis; Meland, Sondre; Dadebo, Elias; Einset, John; Salbu, Brit
2012-10-26
To evaluate critical trace element loads in native vegetation and calculate soil-to-plant transfer factors (TFs), 11 trace elements (Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb and Mn) have been determined in leaves of 9 taxonomically verified naturally growing terrestrial plant species as well as in soil samples collected around 3 Ethiopian Rift Valley lakes (Koka, Ziway and Awassa). The Cr concentration in leaves of all the plant species was higher than the "normal" range, with the highest level (8.4 mg per kg dw) being observed in Acacia tortilis from the Lake Koka area. Caper species (Capparis fascicularis) and Ethiopian dogstooth grass (Cynodon aethiopicus) from Koka also contained exceptionally high levels of Cd (1 mg per kg dw) and Mo (32.8 mg per kg dw), respectively. Pb, As and Cu concentrations were low in the plant leaves from all sites. The low Cu level in important fodder plant species (Cynodon aethiopicus, Acacia tortilis and Opuntia ficus-indicus) implies potential deficiency in grazing and browsing animals. Compared to the Canadian environmental quality guideline and maximum allowable concentration in agricultural soils, the total soil trace element concentrations at the studied sites are safe for agricultural crop production. Enrichment factor was high for Zn in soils around Lakes Ziway and Awassa, resulting in moderate to high transfer of Zn to the studied plants. A six step sequential extraction procedure on the soils revealed a relatively high mobility of Cd, Se and Mn. Strong association of most trace elements with the redox sensitive fraction and mineral lattice was also confirmed by partial redundancy analysis. TF (mg per kg dw plants/mg per kg dw soil) values based on the total (TF(total)) and mobile fractions (TF(mobile)) of soil trace element concentrations varied widely among elements and plant species, with the averaged TF(total) and TF(mobile) values ranging from 0.01-2 and 1-60, respectively. Considering the mobile fraction in soils should be available to plants, TF(mobile) values could reflect trace elements transfer to plants in the most realistic way. However, the present study indicates that TF(total) values also reflect the transfer of elements such as Mn, Cd and Se to plants more realistically than TF(mobile) values did.
Wang, Yixiang; Gu, Cuihua; Bai, Shangbin; Sun, Zhibin; Zhu, Tingting; Zhu, Xudan; Grit, Dale H; Tembrock, Luke R
2016-11-01
Contamination by heavy metals is one of the most serious environmental problems generated from human activities. Because phytoremediation utilizes plants to uptake contaminants, it could potentially be used to remediate metal-contaminated areas. A pot culture experiment with four levels of cadmium (Cd) (0, 20, 40, and 80 mg of Cd/kg dry soil) was conducted to investigate Cd accumulation and tolerance of roots, shoots, and leaves of Lagerstroemia indica and Lagerstroemia fauriei as well as their potential for phytoremediation. Experimental results indicated that Cd inhibited seedling growth only at the higher Cd exposure concentration (40 and 80 mg/kg). The tolerance index revealed that on average L. indica is more tolerant of Cd than L. fauriei. Moreover, plants in the experiment accumulated Cd differentially. In comparisons between L. indica and L. fauriei, the leaves of the former had higher concentrations of Cd, while the roots of latter had higher concentrations of Cd. Furthermore, the roots, shoots, and leaves had very high bioaccumulation factors that markedly exceeded 1.0 (exceptional only in shoots of 80 mg/kg for L. fauriei), indicating that the seedlings extracted Cd from the soil. The leaves' translocation factor of L. indica was greater than 1.0, being significantly higher than that of L. fauriei. Chlorophyll a, Chlorophyll b and total declined in both species significantly as Cd concentrations exceeded 40 mg/kg in the soil. In contrast, lipid peroxidation and proline content was found to increase with increasing Cd concentration. From the assessments of biomass production, Cd tolerance and uptake L. indica and L. fauriei could stand as excellent species for remediating Cd-contaminated soils.
A novel approach to enhancement of surface properties of CdO films by using surfactant: dextrin
NASA Astrophysics Data System (ADS)
Sahin, Bünyamin; Bayansal, Fatih; Yüksel, Mustafa
2015-12-01
We studied the effect of an organic surfactant, dextrin, concentration on structural, morphological and optical properties of nanostructured CdO films deposited on glass substrates by using an easy and low-cost SILAR method. Microstructures of the nanostructured CdO films were optimized by adjusting dextrin concentration. XRD, SEM and UV-Vis Spectroscopy were used to study phase structure, surface morphology and optical properties of CdO films. Furthermore, effects of dextrin concentration on the surface roughness characteristics of CdO samples were reported. The results showed that the presence of organic surfactant highly affected the physical properties of CdO nanomaterials.
Liu, Wuxing; Wang, Beibei; Wang, Qingling; Hou, Jinyu; Wu, Longhua; Wood, Jennifer L; Luo, Yongming; Franks, Ashley E
2016-09-01
Plant growth-promoting yeasts are often over looked as a mechanism to improve phytoremediation of heavy metals. In this study, Cryptococcus sp. NSE1, a Cd-tolerant yeast with plant growth capabilities, was isolated from the rhizosphere of the heavy metal hyperaccumulator Sedum plumbizincicola. The yeast exhibited strong tolerance to a range of heavy metals including Cd, Cu, and Zn on plate assays. The adsorption rate Cd, Cu, Zn by NSE1 was 26.1, 13.2, and 25.2 %, respectively. Irregular spines were formed on the surface of NSE1 when grown in MSM medium supplemented with 200 mg L(-1) Cd. NSE1 was capable of utilizing 1-aminocyclopropane-1-carboxylate (ACC) as a sole nitrogen source and was capable of solubilization of inorganic phosphate at rates of 195.2 mg L(-1). Field experiments demonstrated that NSE1 increased phytoremediation by increasing the biomass of Cd hyperaccumulator S. plumbizincicola (46 %, p < 0.05) during phytoremediation. Overall, Cd accumulation by S. plumbizincicola was increased from 19.6 to 31.1 mg m(-2) though no difference in the concentration of Cd in the shoot biomass was observed between NSE1 and control. A Cd accumulation ratio of 38.0 % for NSE1 and 17.2 % for control was observed. The HCl-extractable Cd and CaCl2-extractable Cd concentration in the soil of the NSE1 treatment were reduced by 39.2 and 29.5 %, respectively. Community-level physiology profiling, assessed using Biolog Eco plates, indicated functional changes to the rhizosphere community inoculated with NSE1 by average well color development (AWCD) and measurement of richness (diversity). Values of Shannon-Weiner index, Simpson index, and McIntosh index showed a slight but no significant increases. These results indicate that inoculation of NSE1 could increase the shoot biomass of S. plumbizincicola, enhance the Cd accumulation in S. plumbizincicola, and decrease the available heavy metal content in soils significantly without overall significant changes to the microbial community.
Ogbomida, Emmanuel Temiotan; Nakayama, Shouta M M; Bortey-Sam, Nesta; Oroszlany, Balazs; Tongo, Isioma; Enuneku, Alex Ajeh; Ozekeke, Ogbeide; Ainerua, Martins Oshioriamhe; Fasipe, Iriagbonse Priscillia; Ezemonye, Lawrence Ikechukwu; Mizukawa, Hazuki; Ikenaka, Yoshinori; Ishizuka, Mayumi
2018-04-30
The use of free range animals for monitoring environmental health offers opportunities to detect exposure and assess the toxicological effects of pollutants in terrestrial ecosystems. Potential human health risk of dietary intake of metals and metalloid via consumption of offal and muscle of free range chicken, cattle and goats by the urban population in Benin City was evaluated. Muscle, gizzard, liver and kidney samples were analyzed for Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb concentrations using inductively coupled plasma mass spectrometer (ICP-MS) while Hg was determined using Hg analyzer. Mean concentrations of metals (mg/kg ww) varied significantly depending upon the tissues and animal species. Human health risk estimations for children and adults showed estimated daily intake (EDI) values of tissues below oral reference dose (RfD) threshold for non essential metals Cd, As, Pb and Hg thus strongly indicating no possible health risk via consumption of animal based food. Calculated Hazard quotient (THQ) was less than 1 (< 1) for all the metals analyzed for both adult and children. However, Cd and As had the highest value of THQ suggestive of possible health risk associated with continuous consumption of Cd and As contaminated animal based foods. Hazard Index (HI) for additive effect of metals was higher in chicken liver and gizzard for children and chicken liver for adults. Thus, HI indicated that chicken liver and gizzard may contribute significantly to adult and children dietary exposure to heavy metals. Principal component analysis (PCA) showed a clear species difference in metal accumulation between chickens and the ruminants. This study provides baseline data for future studies and also valuable evidence of anthropogenic impacts necessary to initiate national and international policies for control of heavy metal and metalloid content in food items. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, J.R.
1974-06-01
The Pacific Hake, Merluccius productus (Ayers) was used to monitor the waters off Puget Sound and the West Coast of the US for zinc(Zn), cadmium(Cd), mercury(Hg) and {sup 65}Zn. The Columbia River is not the source of Zn, Cd or Hg contamination, but is the source of {sup 65}Zn, with the concentration in the Hake reflecting the position of the Columbia River plume. Zn and Cd accumulation in the Hake were fit to the equation Y=B{sub 1}+B{sub 2}e{sup B}{sub 3}X where Y is the concentration of the element and X is the length or weight of the fish. Biological attributesmore » were assigned to the other parameters as follows: B{sub 1} is the asymptotic value for Zn or Cd at chemical maturity; B{sub 2} is the location of the curve with respect to the length or weight of the fish; and B{sub 3} is a constant pertaining to the rate of change of Zn or Cd. Although Zn, Cd and Hg are all Group 2B elements, only the concentrations of Zn and Cd were correlated for all locations; Hg concentrations varied as a function of location. Zn and Cd concentrations increase with fish size and approach an asymptotic value at maturity, while Hg concentrations were linear and the slope is a function of sampling location. Zn and Cd levels are regulated in the adult, while Hg continues to increase with age. It may be significant that the age distribution of fish caught commercially coincides with the maximum concentration of Zn and Cd. 195 refs., 30 figs., 10 tabs. (MHB)« less
Galicia López, Aida; Olguín Ortega, Lourdes; Saavedra, Miguel A; Méndez Cruz, René; Jimenez Flores, Rafael; García de la Peña, Maximiliano
2013-01-01
To determine the concentrations of sCD40L in patients with PAPS, and establish its association with the number of thrombosis. We included patients with PAPS and healthy controls of the same age and sex. For analysis, patients with PAPS were divided into 2 groups: 1) patients with 1 thrombosis, and 2) patients with >1 thrombosis. Soluble CD40L concentrations were determined by ELISA method. sCD40L concentrations were significantly higher in patients with PAPS compared with the controls (9.72 ng ± 11.23 ng/ml vs. 4.69 ± 4.04 ng/ml) (P=.04) There was no association between serum levels of sCD40L and the number of thrombosis (1 thrombosis: 9.81 ± 9.87 ng/ml vs 9.63 ± 12.75 ng/ml in ≥ 1thrombosis (P=.13). In women with pregnancy and abortions, (13 patients) concentrations of sCD40L were higher than in those patients without a history of abortion (26 patients) but without statically significant difference (12.11 ± 16.46 ng/ml vs. 8.80 ± 8.61 ng/ml) (P=.33). There was no correlation between levels of sCD40L and the total number of thrombosis. Patients with PAPS have higher concentrations of sCD40L compared with healthy subjects, although this is not associated with a greater number of thrombosis. Among patients with PAPS, there is a tendency to higher concentrations of sCD40L in women with pregnancy and history of abortion. Since the platelet is the main cellular source of sCD40L, is possible that this pathway plays a pathogenic role in patients with PAPS. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis.
Zhao, Yanfang; Wu, Jifa; Shang, Derong; Ning, Jinsong; Zhai, Yuxiu; Sheng, Xiaofeng; Ding, Haiyan
2015-02-01
The subcellular distribution and chemical forms of Cd were investigated in the edible seaweed, Porphyra yezoensis. The seaweed was exposed to different Cd concentrations (0.01, 0.05, 0.1, 0.5, 1.0 and 5.0mgl(-1)) for up to 96h. In both the controls (no Cd added) and treatment groups, 41.2-79.2% of Cd was localised in the cell wall, and the proportion of Cd in the cell wall increased with increasing concentrations of Cd and exposure time. In the control groups, 74.8% of Cd was extracted by 1M NaCl, followed by 2% acetic acid, HAC (18.9%). In the treatment groups, most Cd was extracted by 2% HAC. The proportion of Cd extracted by 2% HAC increased with exposure to increasing concentrations of Cd and over time. Cell wall deposition and forming of precipitates with phosphate may be a key strategy to reduce Cd toxicity in P. yezoensis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Functional evaluation of circulating hematopoietic progenitors in Noonan syndrome
TIMEUS, FABIO; CRESCENZIO, NICOLETTA; BALDASSARRE, GIUSEPPINA; DORIA, ALESSANDRA; VALLERO, STEFANO; FOGLIA, LUISELDA; PAGLIANO, SARA; ROSSI, CESARE; SILENGO, MARGHERITA CIRILLO; RAMENGHI, UGO; FAGIOLI, FRANCA; DI MONTEZEMOLO, LUCA CORDERO; FERRERO, GIOVANNI BATTISTA
2013-01-01
Noonan syndrome (NS) is an autosomal dominant disorder, characterized by short stature, multiple dysmorphisms and congenital heart defects. A myeloproliferative disorder (NS/MPD), resembling juvenile myelomonocytic leukemia (JMML), is occasionally diagnosed in infants with NS. In the present study, we performed a functional evaluation of the circulating hematopoietic progenitors in a series of NS, NS/MPD and JMML patients. The different functional patterns were compared with the aim to identify a possible NS subgroup worthy of stringent hematological follow-up for an increased risk of MPD development. We studied 27 NS and 5 JMML patients fulfilling EWOG-MDS criteria. The more frequent molecular defects observed in NS were mutations in the PTPN11 and SOS genes. The absolute count of monocytes, circulating CD34+ hematopoietic progenitors, their apoptotic rate and the number of circulating CFU-GMs cultured in the presence of decreasing concentrations or in the absence of granulocyte-macrophage colony-stimulating factor (GM-CSF) were evaluated. All JMML patients showed monocytosis >1,000/μl. Ten out of the 27 NS patients showed monocytosis >1,000/μl, which included the 3 NS/MPD patients. In JMML patients, circulating CD34+ cells were significantly increased (median, 109.8/μl; range, 44–232) with a low rate of apoptosis (median, 2.1%; range, 0.4–12.1%), and circulating CFU-GMs were hyper-responsive to GM-CSF. NS/MPD patients showed the same flow cytometric pattern as the JMML patients (median, CD34+ cells/μl, 205.7; range, 58–1374; median apoptotic rate, 1.4%; range, 0.2–2.4%) and their circulating CFU-GMs were hyper-responsive to GM-CSF. These functional alterations appeared 10 months before the typical clinical manifestations in 1 NS/MPD patient. In NS, the CD34+ absolute cell count and circulating CFU-GMs showed a normal pattern (median CD34+ cells/μl, 4.9; range, 1.3–17.5), whereas the CD34+ cell apoptotic rate was significantly decreased in comparison with the controls (median, 8.6%; range, 0–27.7% vs. median, 17.6%; range, 2.8–49.6%), suggesting an increased CD34+ cell survival. The functional evaluation of circulating hematopoietic progenitors showed specific patterns in NS and NS/MPD. These tests are a reliable integrative tool that, together with clinical data and other hematological parameters, could help detect NS patients with a high risk for a myeloproliferative evolution. PMID:23756559
Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil.
Xu, Jianling; Cai, Qiongyao; Wang, Hanxi; Liu, Xuejun; Lv, Jing; Yao, Difu; Lu, Yue; Li, Wei; Liu, Yuanyuan
2017-05-01
In this study, the microwave digestion method was used to determine total cadmium (Cd) and lead (Pb) concentrations, the BCR method was used to determine different states of Cd and Pb, and atomic absorption spectroscopy (AAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to determine Cd and Pb concentrations in simulated soil and barnyard grass before and after planting barnyard grass to provide a theoretical basis for the remediation of Cd- and Pb-contaminated soil. The results showed that the bioconcentration factor changes with different Cd concentrations are relatively complex and that the removal rate increases regularly. The 100 mg kg -1 Cd treatment had the highest removal rate, which reached 36.66%. For Pb, the bioconcentration factor decreased and tended to reach equilibrium as the Pb concentration increased. The highest removal rate was 41.72% and occurred in the 500 mg kg -1 Pb treatment; however, this removal rate was generally lower than that of Cd. In addition, the reduction state had the highest change rate, followed by the residual, acid soluble and oxidation states. For Pb, the residual state has the highest change rate, followed by the acid soluble state, reduction state and oxidation state. In addition, a significant correlation was observed between the soil Pb and Cd concentrations and the concentrations of Pb and Cd that accumulated in the belowground biomass of the barnyard grass, but no significant correlation was observed between the soil Pb and Cd concentrations and the amounts of Pb and Cd that accumulated in the aboveground biomass of the barnyard grass. The highest transfer factor of Cd was 0.49, which occurred in the 5 mg kg -1 Cd treatment. The higher transfer factor of Pb was 0.48 in the 100 mg kg -1 Pb treatment. All of these factors indicate that the belowground biomass of barnyard grass plays a more important role in the remediation of Cd- and Pb-contaminated soils than the aboveground biomass of barnyard grass. Remediation should occur through phytostabilization. Thus, with its strong adaptability and lush growth, barnyard grass can be applied as a pioneer species for the phytoremediation of Cd- and Pb-contaminated soils.
Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits
Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong
2016-01-01
Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogedengbe, O. S.; Swartz, C. H.; Jayathilaka, P. A. R. D.
Here, iodine-doped CdTe and Cd 1-xMg xTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 10 18 cm -3 for CdTe and 3 x 10 17 cm -3 for Cd 0.65Mg 0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTemore » samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd 0.65Mg 0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 10 18 cm -3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 10 16 cm -3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 °C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.« less
Ducrot, Virginie; Askem, Clare; Azam, Didier; Brettschneider, Denise; Brown, Rebecca; Charles, Sandrine; Coke, Maïra; Collinet, Marc; Delignette-Muller, Marie-Laure; Forfait-Dubuc, Carole; Holbech, Henrik; Hutchinson, Thomas; Jach, Arne; Kinnberg, Karin L; Lacoste, Cédric; Le Page, Gareth; Matthiessen, Peter; Oehlmann, Jörg; Rice, Lynsey; Roberts, Edward; Ruppert, Katharina; Davis, Jessica Elphinstone; Veauvy, Clemence; Weltje, Lennart; Wortham, Ruth; Lagadic, Laurent
2014-12-01
The OECD test guideline development program has been extended in 2011 to establish a partial life-cycle protocol for assessing the reproductive toxicity of chemicals to several mollusk species, including the great pond snail Lymnaea stagnalis. In this paper, we summarize the standard draft protocol for a reproduction test with this species, and present inter-comparison results obtained in a 56-day prevalidation ring-test using this protocol. Seven European laboratories performed semi-static tests with cultured snails of the strain Renilys® exposed to nominal concentrations of cadmium chloride (from 53 to 608μgCdL(-1)). Cd concentrations in test solutions were analytically determined to confirm accuracy in the metal exposure concentrations in all laboratories. Physico-chemical and biological validity criteria (namely dissolved oxygen content >60% ASV, water temperature 20±1°C, control snail survival >80% and control snail fecundity >8 egg-masses per snail over the test period) were met in all laboratories which consistently demonstrated the reproductive toxicity of Cd in snails using the proposed draft protocol. Effect concentrations for fecundity after 56days were reproducible between laboratories (68
Coelho, Patrícia; García-Lestón, Julia; Costa, Solange; Costa, Carla; Silva, Susana; Fuchs, Dietmar; Geisler, Simon; Dall'Armi, Valentina; Zoffoli, Roberto; Bonassi, Stefano; Pásaro, Eduardo; Laffon, Blanca; Teixeira, João Paulo
2014-03-15
Environmental studies performed in Panasqueira mine area (central Portugal) identified high concentrations of several metal(loid)s in environmental media, and individuals environmentally and occupationally exposed showed higher levels of As, Cr, Mg, Mn, Mo, Pb and Zn in blood, urine, hair and nails when compared to unexposed controls. To evaluate the presence of immunological alterations attributable to environmental contamination, we quantified neopterin, kynurenine, tryptophan, and nitrite concentrations in plasma, and analysed the percentage of several lymphocytes subsets, namely CD3(+), CD4(+) and CD8(+) T-cells, CD19(+) B-cells, and CD16(+)56(+) natural killer (NK) cells in a group of individuals previously tested for metal(loid) levels in different biological matrices. The environmentally exposed group had significantly lower levels of %CD8(+) and higher CD4(+)/CD8(+) ratios, whereas the occupationally exposed individuals showed significant decreases in %CD3(+) and %CD4(+), and significant increases in %CD16(+)56(+), when compared to controls. Analysed biomarkers were found to be influenced by age, particularly neopterin, kynurenine and kynurenine to tryptophan ratio (Kyn/Trp) with significantly higher levels in older individuals, and %CD3(+), %CD8(+) and %CD19(+) with significantly lower values in older individuals. Males environmentally exposed showed significantly lower values of %CD19(+) when compared to control females. The concentration of Pb in toenails was associated to the level of neopterin, kynurenine and Kyn/Trp ratio (all direct), and the concentration of Mn in blood to the level of %CD8(+), %CD19(+) (both inverse) and CD4(+)/CD8(+) ratio (direct). Overall our results show that the metal(loid) contamination in Panasqueira mine area induced immunotoxic effects in exposed populations, possibly increasing susceptibility to diseases. Copyright © 2013 Elsevier B.V. All rights reserved.
Sánchez-Blanco, Clara; Amusquivar, Encarnación; Bispo, Kenia; Herrera, Emilio
2016-06-01
The aim was to determine the effects of cafeteria diet (CD) and fish oil supplements given to pregnant and lactating rats on the birth weight and fatty acid profiles of their offspring. Female rats were given standard diet (STD) or CD for 22 days before pregnancy. After mating, some animals remained on STD or CD; for some CD rats, the diet was supplemented with 8.78 % fish oil (CD-FO). After 12 days, half the CD-FO group returned to CD (CD-FO12) and the others remained on CD-FO. At birth, body weights of pups of the three CD groups were lower than STD, maintained until 21 days in the CD-FO group only. At the end of lactation, dams of the CD groups had increased plasma triacylglycerols (TAG), non-esterified fatty acids, and glycerol concentrations, whereas most n-6 long-chain polyunsaturated fatty acids (LCPUFA) were decreased, the effect being greatest in the CD-FO group, where most n-3 LCPUFA were increased and indices of Δ(5) and Δ(6) desaturase activities decreased. The 21-day-old pups of the CD group had increased plasma TAG, not present in the CD-FO group, which had increased 3-hydroxybutyrate concentrations. In both 2- and 21-day-old CD pups, plasma concentrations of ARA were lower than STD, and even lower in the two CD-FO groups. The effect of CD and CD-FO decreasing pups body weight could be related to decreased concentrations of ARA, caused by the inhibition of the Δ(5) and Δ(6) desaturases in the pathway of n-6 LCPUFA biosynthesis.
Li, Tianyuan; Chang, Qing; Yuan, Xuyin; Li, Jizhou; Ayoko, Godwin A; Frost, Ray L; Chen, Hongyan; Zhang, Xinjian; Song, Yinxian; Song, Wenzhi
2017-06-21
Consumption of crops grown in cadmium-contaminated soils is an important Cd exposure route to humans. The present study utilizes statistical analysis and in vitro digestion experiments to uncover the transfer processes of Cd from soils to the human body through rice consumption. Here, a model was created to predict the levels of bioaccessible Cd in rice grains using phytoavailable Cd quantities in the soil. During the in vitro digestion, a relatively constant ratio between the total and bioaccessible Cd in rice was observed. About 14.89% of Cd in soils was found to be transferred into rice grains and up to 3.19% could be transferred from rice grains to the human body. This model was able to sufficiently predict rice grain cadmium concentrations based on CaCl 2 extracted zinc and cadmium concentrations in soils (R 2 = 0.862). The bioaccessible Cd concentration in rice grains was also able to be predicted using CaCl 2 extracted cadmium from soil (R 2 = 0.892). The models established in this study demonstrated that CaCl 2 is a suitable indicator of total rice Cd concentrations and bioaccessible rice grain Cd concentrations. The chain model approach proposed in this study can be used for the fast and accurate evaluation of human Cd exposure through rice consumption based on the soil conditions in contaminated regions.
Freire, Carmen; Koifman, Rosalina Jorge; Fujimoto, Denys; de Oliveira Souza, Vanessa Cristina; Barbosa, Fernando; Koifman, Sergio
2015-06-01
This study aimed to investigate the distribution and factors influencing blood levels of Cadmium (Cd), Arsenic (As), and Manganese (Mn), and to determine their reference values in a sample of blood donors residing in Rio Branco, capital city of Acre State, Brazil. Blood samples were collected from all blood donors attending the Central Hemotherapic Unit in Rio Branco between 2010 and 2011. Among these, 1183 donors (98.9%) answered to a questionnaire on sociodemographic and lifestyle factors. Blood metal concentrations were determined by atomic spectrometry. Association between Cd, As and Mn levels and donors' characteristics was examined by linear regression analysis. Reference values were estimated as the upper limit of the 95% confidence interval of the 95th percentile of metal levels. References values were 0.87 μg L(-1) for Cd, 9.87 μg L(-1) for As, and 29.32 μg L(-1) for Mn. Reference values of Cd and As in smokers were 2.66 and 10.86 μg L(-1), respectively. Factors contributing to increase Cd levels were smoking, ethnicity (non-white), and lower education, whereas drinking tea and non-bottled water were associated with lower Cd. Lower levels of As were associated with higher household income, living near industrial facilities, working in a glass factory, a compost plant or in metal mining activities. Risk factors for Mn exposure were not identified. In general, blood Cd concentrations were in the range of exposure levels reported for other people from the general population, whereas levels of As and Mn were higher than in other non-occupationally exposed populations elsewhere. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.
1980-01-01
Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.
Hassan, Saad Eldin; Hijri, Mohamed; St-Arnaud, Marc
2013-09-25
Trace metal (TM) pollution of soil is a worldwide problem that threatens the quality of human and environmental health. Phytoremediation using plants and their associated microbes has been increasingly used as a green technology for cleaning up TM-polluted soils. In this study, we investigated the effect of inoculating two arbuscular mycorrhizal fungal isolates, Rhizophagus irregularis and Funneliformis mosseae, on trace metal uptake by sunflower plants grown in soils contaminated with three different Cd concentrations in a greenhouse trial. Root colonization, plant dry mass, and plant tissue cadmium (Cd), zinc (Zn), and copper (Cu) concentrations in roots and shoots were determined after sunflower harvesting. We found that root mycorrhizal colonization rates were not significantly affected by Cd treatments. At low soil Cd concentration, R. irregularis-inoculated plants had significantly higher shoot Cd and Zn concentrations than plants inoculated with F. mosseae and non-inoculated plants. However, at high soil Cd concentrations, F. mosseae-inoculated plants had significantly lower shoot Cd and Zn concentrations and biological concentration factor (BCF) values than plants inoculated with R. irregularis and non-inoculated plants. Cadmium was mainly translocated in shoot tissues of R. irregularis-inoculated plants and sequestered in the rhizosphere of F. mosseae-inoculated plants. The results indicate that these AMF strains mediate different tolerance strategies to alleviate TM toxicity in their host plants and that inoculation with the R. irregularis strain can be used for Cd phytoextraction, whereas this F. mosseae strain can be useful for Cd and Zn phytostabilization of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, D.J.; Berry, W.J.; Benyi, S.J.
1996-12-01
The role of interstitial cadmium and acid-volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked to achieve nominal cadmium/AVS molar ratios of 0.0 (control), 0.1, 0.8, and 3.0 in this 118-d test. Oxidation of AVS in the surficial 2.4 cm within 2 to 4 weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 cadmium/AVS treatment measured simultaneously extracted metal (SEM{sub Cd}) was always less than AVS. Interstitial cadmium concentrations were less than those likely to cause biological effects. Nomore » significant biological effects were detected. In the nominal 0.8 cadmium/AVS treatment, measured SEM{sub Cd} commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations were of likely toxicological significance to highly sensitive species. Shifts in the presence or absence over all taxa, and fewer macrobenthic polychaetes (Mediomastus ambiseta, Streblospio benedicti, and Podarke obscurea) and unidentified meiofaunal nematodes, were observed. In the nominal 3.0 cadmium/AVS treatment, concentrations of SEM{sub Cd} were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, the sediments were colonized by fewer macrobenthic species, polychaete species, and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs; and exhibited other impacts. Over all treatments, the observed biological responses were consistent with SEM{sub Cd}/AVS ratios in surficial sediments and interstitial water cadmium concentrations.« less
Rodgher, Suzelei; Espíndola, Evaldo Luiz Gaeta; Lombardi, Ana Teresa
2010-08-01
The acute toxicity of metals to Daphnia similis was determined and compared to other daphnid species to evaluate the suitability of this organism in ecotoxicology bioassays. To verify the performance D. similis in toxicity tests, we also investigated the effect of Pseudokirchneriella subcapitata at 1 x 10(5) and 1 x 10(6) cells ml(-1) on Cd and Cr acute toxicity to the cladoceran. Daphnid neonates were exposed to a range of chromium and cadmium concentrations in the absence and presence of the algal cells. Metal speciation calculations using MINEQL(+) showed that total dissolved metal concentrations in zooplankton culture corresponded to 96.2% free Cd and 100% free Cr concentrations. Initial total dissolved metal concentrations were used for 48 h-LC(50) determination. LC(50) for D. similis was 5.15 x 10(-7) mol l(-1) dissolved Cd without algal cells, whereas with 1 x 10(5) cells ml(-1), it was significantly higher (7.15 x 10(-7) mol l(-1) dissolved Cd). For Cr, the 48 h-LC(50) value of 9.17 x 10(-7) mol l(-1) obtained for the cladoceran in tests with 1 x 10(6) cells ml(-1) of P. subcapitata was also significantly higher than that obtained in tests without algal cells (5.28 x 10(-7) mol l(-1) dissolved Cr). The presence of algal cells reduced the toxicity of metals to D. similis, as observed in other studies that investigated the effects of food on metal toxicity to standard cladocerans. Comparing our results to those of literature, we observed that D. similis is as sensitive to metals as other standardized Daphnia species and may serve as a potential test species in ecotoxicological evaluations.
Liu, Houqi; Liu, Guijian; Wang, Shanshan; Zhou, Chuncai; Yuan, Zijiao; Da, Chunnian
2018-06-05
This study measured the concentrations of eight heavy metals, including copper (Cu), zinc (Zn), lead (Pb), chromium (Cr), cadmium (Cd), iron (Fe), manganese (Mn) and nickel (Ni), and the stable isotope ratios of δ 13 C and δ 15 N in 129 fish samples collected from the Yellow River Estuary (YRE) of China. Accumulation characteristics and possible sources of these heavy metals (HMs) were analyzed. The levels of HMs presented high variations among sampling sites, higher concentrations of ∑HMs were observed at the sites closest to the estuary. Cu and Cd in fishes of the YRE were much higher than those found in the fishes of other rivers of China. Furthermore, the mean concentrations of Cu, Zn, Pb, Cr and Cd were also significantly higher than those measured in the fishes of the same region twenty years ago. According to the results of correlation analysis and principal components analysis (PCA), Pb, Cr, Fe, Mn and Ni might be originated from similar sources. The values of δ 13 C and δ 15 N presented high variation in fishes, indicating a wide range of energy sources and trophic status of the investigated fish species. The mean concentrations of Pb, Cr and Cd in fishes were all lower than the recommended values enacted by the Chinese government. The human health risk assessment showed that the estimated daily intake (EDI) of these HMs did not exceed the permissible tolerable daily intake (PTDI) and oral reference dose (RfD), indicating a situation of no potential health risk for consumption of these fish species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi
2016-01-01
Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment. PMID:27827965
Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi
2016-11-05
Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg -1 . Manganese and iron concentrations averaged 811 µg·g -1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.
Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol.
Teixeira, K I R; Araújo, P V; Sinisterra, R D; Cortés, M E
2012-04-01
Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 μg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 ×10(3); 1.4 ×10(3); 3.45 ×10(3), and 3.74 ×10(3) CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.
Crystallization of calcium sulfate dihydrate in the presence of some metal ions
NASA Astrophysics Data System (ADS)
Hamdona, Samia K.; Al Hadad, Umaima A.
2007-02-01
Crystallization of calcium sulfate dihydrate (CaSO 4·2H 2O gypsum) in sodium chloride solutions in the presence of some metal ions, and over a range of relative super-saturation has been studied. The addition of metal ions, even at relatively low concentration (10 -6 mol l -1), markedly retard the rate of crystallization of gypsum. Retardation effect was enhanced with increase in the additives contents. Moreover, the effect was enhanced as the relative super-saturation decreases. Influence of mixed additives on the rate of crystallization (Cd 2++Arg, Cd 2++H 3PO 4 and Cd 2++PAA) has also been studied. Direct adsorption experiments of these metal ions on the surface of gypsum crystals have been made for comparison.
Qin, Caidie; Bai, Xue; Zhang, Yue; Gao, Kai
2018-05-03
A photoelectrochemical wire microelectrode was constructed based on the use of a TiO 2 nanotube array with electrochemically deposited CdSe semiconductor. A strongly amplified photocurrent is generated on the sensor surface. The microsensor has a response in the 0.05-20 μM dopamine (DA) concentration range and a 16.7 μM detection limit at a signal-to-noise ratio of 3. Sensitivity, recovery and reproducibility of the sensor were validated by detecting DA in spiked human urine, and satisfactory results were obtained. Graphical abstract Schematic of a sensitive photoelectrochemical microsensor based on CdSe modified TiO 2 nanotube array. The photoelectrochemical microsensor was successfully applied to the determination of dopamine in urine samples.
On the Role of High Amounts of Mn Element in CdS Structure
NASA Astrophysics Data System (ADS)
Gonullu, Meryem Polat; Kose, Salih
2017-03-01
CdS and MnS are technologically important semiconducting materials. In this work, due to the limited ability of these materials separately, a detailed characterization of the new samples formed by the combined use of them has been reported. CdS films, with the incorporation of Mn in a wide range of concentrations, have been produced by a low-cost Ultrasonic Spray Pyrolysis set-up. Spectroscopic Ellipsometry (SE) has been used to determine the thicknesses and optical constants ( n, k) of the samples. It has been determined that samples with high amounts of Mn have lower refractive index values. Absorbance spectra have shown additional band edges along with the one belonging to CdS, for samples with Mn concentrations higher than 50 pct. This has been attributed to a phase separation above this limit. Raman spectroscopy analysis which shows additional Raman peaks belonging to MnS phase also supports these findings. Depending on this phase separation, crystalline structure has been deteriorated. Surface properties of the samples have been investigated by SEM and AFM. Elemental analysis has been performed by EDS. Resistivity measurements performed by a four-probe set-up have shown that samples containing high amount of Mn have lower electrical resistivity values.
NASA Astrophysics Data System (ADS)
Jorgetto, Alexandre de O.; da Silva, Adrielli C. P.; Wondracek, Marcos H. P.; Silva, Rafael I. V.; Velini, Edivaldo D.; Saeki, Margarida J.; Pedrosa, Valber A.; Castro, Gustavo R.
2015-08-01
Through very simple and inexpensive processes, pata-de-vaca leaves were turned into a powder and applied as an adsorbent for the uptake of Cu(II) and Cd(II) from water. The material was characterized through SEM, EDX, FTIR and surface area measurement. The material had its point of zero charge determined (5.24), and its adsorption capacity was evaluated as a function of time, pH and metal concentration. The material presented fast adsorption kinetics, reaching adsorption equilibrium in less than 5 min and it had a good correlation with the pseudo-second order kinetic model. Optimum pH for the adsorption of Cu(II) and Cd(II) were found to be in the range from 4 to 5, approximately. In the experiment as a function of the analyte concentration, analogously to gas adsorption, the material presented a type II isotherm, indicating the formation of multilayers for both species. Such behavior was explained with basis in the alternation between cations and anions over the material's surface, and the maximum adsorption capacity, considering the formation of the multilayers were found to be 0.238 mmol L-1 for Cu(II) and 0.113 mmol L-1 for Cd(II).
Khataee, Alireza; Hasanzadeh, Aliyeh; Lotfi, Roya; Joo, Sang Woo
2016-05-15
A novel chemiluminescence (CL) system is introduced based on the oxidation of carminic acid by KMnO4 in acidic conditions. CdS quantum dots (QDs) were synthesized using a facile hydrothermal method which efficiently enhanced the intensity of the CL system. A possible mechanism for the proposed system is presented using the kinetic curves, CL spectra, photoluminescence (PL), and ultraviolet-visible (UV-Vis) analysis. The emission intensity of the KMnO4-carminic acid-CdS QDs system was quenched in the presence of a trace level of cloxacillin. Based on this quenching effect, a novel and sensitive flow injection CL method was developed for determining cloxacillin concentrations. At optimal experimental conditions, the decreased CL intensity had a good linear relation with the cloxacillin concentration in the range of 0.008 to 22.0 mg L(-1). The detection limit (3σ) was 5.8 µg L(-1). The precision of the method was calculated by analyzing samples containing 4.0 mg L(-1) of cloxacillin (n=11), and the relative standard deviations (RSD%) were 2.08%. The feasibility of the method is also demonstrated for determining cloxacillin concentrations in environmental water samples and a pharmaceutical formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Giglio, Anita; Ammendola, Anna; Battistella, Silvia; Naccarato, Attilio; Pallavicini, Alberto; Simeon, Enrico; Tagarelli, Antonio; Giulianini, Piero Giulio
2017-01-01
Honeybees have become important tools for the ecotoxicological assessment of soil, water and air metal contamination due to their extraordinary capacity to bioaccumulate toxic metals from the environment. The level of heavy metal pollution in the Trieste city was monitored using foraging bees of Apis mellifera ligustica from hives owned by beekeepers in two sites strategically located in the suburban industrial area and urban ones chosen as control. The metal concentration in foraging bees was determined by inductively coupled plasma-mass spectrometry. The chemical analysis has identified and quantified 11 trace elements accumulated in two different rank orders: Zn> Cu > Sr > Bi > Ni > Cr > Pb = Co > V > Cd > As in foraging bees from the suburban site and Zn > Cu > Sr > Cr > Ni > Bi > Co = V > Pb > As > Cd in bees from urban site. Data revealed concentrations of Cr and Cu significantly higher and concentration of Cd significantly lower in bees from urban sites. The spatial difference and magnitude order in heavy metal accumulation along the urban-suburban gradient are mainly related to the different anthropogenic activity within sampled sites and represent a risk for the human health of people living in the city. We discussed and compared results with the range of values reported in literature.
Wang, Hong-Yan; Wen, Shi-Lin; Chen, Peng; Zhang, Lu; Cen, Kuang; Sun, Guo-Xin
2016-02-01
A field experiment was established to support the hypothesis that application of different silicon (Si) fertilizers can simultaneously reduce cadmium (Cd) and arsenic (As) concentration in rice grain. The "semi-finished product of Si-potash fertilizer" treatment at the high application of 9000 kg/ha (NP+S-KSi9000) significantly reduced the As concentration in rice grain by up to 20.1%, compared with the control. Si fertilization reduces the Cd concentration in rice considerably more than the As concentration. All Si fertilizers apart from sodium metasilicate (Na2SiO3) exhibited a high ability to reduce Cd concentration in rice grain. The Si-calcium (CaSi) fertilizer is the most effective in the mitigation of Cd concentration in rice grain. The CaSi fertilizer applied at 9000 kg/ha (NPK+CaSi9000) and 900 kg/ha (NPK+CaSi900) reduced the Cd concentration in rice grain about 71.5 and 48.0%, respectively, while the Si-potash fertilizer at 900 kg/ha (NP+KSi900), the semi-finished product of Si-potash fertilizer at both 900 kg/ha (NP+S-KSi900) and 9000 kg/ha (NP+S-KSi9000), and the rice straw (NPK+RS) treatments reduced the Cd concentration in rice grain about 42, 26.5, 40.7, and 23.1%, respectively. The results of this investigation demonstrated the potential effects of Si fertilizers in reducing Cd and As concentrations in rice grain.
Tunca, Evren; Aydın, Mehmet; Şahin, Ülkü Alver
2018-03-01
The aim of this study is an assessment of metal pollution levels in Aegean Sea sediment. Sediment samples collected from 7 different locations (Yeniköy, Edremit, Ayvalık, Dikili, Aliağa, Hekimadası, and Ildır) along the northern Mediterranean region of Turkey were investigated for 11 elements (Cu, Fe, Zn, V, Cd, Ni, As, Pb, Mn, Co, and Cr). Graphite furnace atomic absorption spectrophotometry (GFAAS) and flame atomic absorption spectrophotometry (FAAS) were used for elemental analysis. The findings were evaluated with sediment assessment methods by taking two different values as a reference and then investigating the adverse biological effects of elemental profiles on living organisms. Pb, Mn, As, Cd, and Cr concentrations were within a moderate to significant range in terms of contamination factor [Formula: see text]), albeit varying according to reference and location. The most problematic region and elements regarding the enrichment factor (EF) was Ayvalık and As, Ni, Cu, Pb, Co, and Cd. However, according to the EF, the anthropogenic effect was not at an alarming level. This was further supported by the results of the geoaccumulation index (Igeo). The findings of the modified degree of contamination (mC d ) and the pollution load index (PLI) suggested that the accumulation was greatest in Ayvalık, and the least in Hekimadası and Ildır. The location with the highest elemental total toxic unit (ΣTU) was Edremit. The effect of the existing element profile on organisms was 21% in this location when the mean effect range-median quotient (m-ERM-q) was considered. As and Ni concentrations in all stations were found to be higher than threshold effect level (TEL) and Effect Range Low (ERL). Ni levels in Edremit exceeded the probable effect level (PEL) and Effect Range Median (ERM). Toxic unit (TU) values of these two elements in all stations ranged from 59.30 to 80.43%.
Bing, Haijian; Zhou, Jun; Wu, Yanhong; Luo, Xiaosan; Xiang, Zhongxiang; Sun, Hongyang; Wang, Jipeng; Zhu, He
2018-07-01
Anthropogenic metals adsorbed on suspended fine particles can be deposited on remote and inaccessible high mountains by long-range atmospheric transport. In this study, we investigated the cadmium (Cd) and lead (Pb) in the soils, mosses and rainfall of three transects on the Gongga Mountain, eastern Tibetan Plateau, to understand the mountain interception effects on their atmospheric transport. The concentrations of Cd and Pb in the soils and mosses displayed a pattern of eastern transect>northern transect>western transect. The distribution of Cd and Pb on the eastern transect increased from 2000 to 2900m a.s.l. (above sea level), decreased toward the timberline, and increased again with altitude; on the northern transect, it generally decreased with altitude whereas a distribution trend was not clearly observed on the western transect. The Cd and Pb concentrations in the rainfall of the eastern transect generally decreased with altitude, and they were higher inside forests than outside forests and temporally higher in the winter than the summer. The Pb isotopic ratios coupled with moss bio-monitoring distinguished anthropogenic sources of Cd and Pb on the eastern and northern transects, whereas bedrock weathering was the main source of Cd and Pb on the western transect. We proposed a conceptual model to delineate the effects of terrain, local climate and vegetation on the transport of atmospheric metals. Our results highlighted the high mountains in the eastern Tibetan Plateau as an effective natural barrier limiting atmospheric metal transport. Copyright © 2018 Elsevier B.V. All rights reserved.
Rastogi, Vipin K.; Ryan, Shawn P.; Wallace, Lalena; Smith, Lisa S.; Shah, Saumil S.; Martin, G. Blair
2010-01-01
Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested. PMID:20305025
Franceschini, Nora; Fry, Rebecca; Balakrishnan, Poojitha; Navas-Acien, Ana; Oliver-Williams, Clare; Howard, Annie G; Cole, Shelley A; Haack, Karin; Lange, Ethan M.; Howard, Barbara V.; Best, Lyle G; Francesconi, Kevin A.; Goessler, Walter; Umans, Jason G; Tellez-Plaza, Maria
2016-01-01
Cadmium is an environmental pollutant that has been associated with cardiovascular disease in populations, but the relationship of cadmium with hypertension has been inconsistent. We studied the association between urinary cadmium concentrations, a measure of total body burden, and blood pressure in American Indians, a U.S. population with above national average cadmium burden. Urinary cadmium (Cd) was measured using inductively coupled plasma mass spectrometry, and adjusted for urinary creatinine concentration. Among 3,714 middle-aged American Indian participants of the Strong Heart Study (mean age 56 years, 41% male, 67% ever-smokers, 23% taking anti-hypertensive medications), urinary Cd ranged from 0.01 to 78.48 μg/g creatinine (geometric mean=0.94 μg/g) and it was correlated with smoking pack-year among ever-smokers (r2=0.16, P<0.0001). Participants who were smokers were on average light smokers (mean 10.8 pack-years), and urinary Cd was similarly elevated in light- and never-smokers (geometric means of 0.88 μg/g creatinine for both categories). Log-transformed urinary Cd was significantly associated with higher systolic blood pressure in models adjusted for age, sex, geographic area, body mass index, smoking (ever vs. never, and cumulative pack-years) and kidney function (mean blood pressure difference by lnCd concentration [β]=1.64, P=0.002). These associations were present among light- and never-smokers (β=2.03, P=0.002, n=2,627), although not significant among never-smokers (β=1.22, P=0.18, n=1,260). Cd was also associated with diastolic blood pressure among light- and never-smokers (β=0.94, P=0.004). These findings suggest there is a relationship between cadmium body burden and increased blood pressure in American Indians, a population with increased cardiovascular disease risk. PMID:27629244
Rastogi, Vipin K; Ryan, Shawn P; Wallace, Lalena; Smith, Lisa S; Shah, Saumil S; Martin, G Blair
2010-05-01
Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested.
Anjum, Shakeel Ahmad; Tanveer, Mohsin; Hussain, Saddam; Bao, Mingchen; Wang, Longchang; Khan, Imran; Ullah, Ehsan; Tung, Shahbaz Atta; Samad, Rana Abdul; Shahzad, Babar
2015-11-01
Increased cadmium (Cd) accumulation in soils has led to tremendous environmental problems, with pronounced effects on agricultural productivity. Present study investigated the effects of Cd stress imposed at various concentrations (0, 75, 150, 225, 300, 375 μM) on antioxidant activities, reactive oxygen species (ROS), Cd accumulation, and productivity of two maize (Zea mays L.) cultivars viz., Run Nong 35 and Wan Dan 13. Considerable variations in Cd accumulation and in behavior of antioxidants and ROS were observed under Cd stress in both maize cultivars, and such variations governed by Cd were concentration dependent. Exposure of plant to Cd stress considerably increased Cd concentration in all plant parts particularly in roots. Wan Dan 13 accumulated relatively higher Cd in root, stem, and leaves than Run Nong 35; however, in seeds, Run Nong 35 recorded higher Cd accumulation. All the Cd toxicity levels starting from 75 μM enhanced H2O2 and MDA concentrations and triggered electrolyte leakage in leaves of both cultivars, and such an increment was more in Run Nong 35. The ROS were scavenged by the enhanced activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione peroxidase in response to Cd stress, and these antioxidant activities were higher in Wan Dan 13 compared with Run Nong 35 at all Cd toxicity levels. The grain yield of maize was considerably reduced particularly for Run Nong 35 under different Cd toxicity levels as compared with control. The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd accumulation in roots may lead to improvement in Cd stress tolerance.
Han, Sim-Hee; Lee, Jae-Cheon; Oh, Chang-Young; Kim, Pan-Gi
2006-10-01
We investigated alleviation of Cd toxicity and changes in the physiological characteristics of Betula schmidtii seedlings following application of composted sewage sludge to Cd-treated plants. Plants were grown under four test conditions: control, Cd treatment, sludge amendment, and Cd treatment with sludge amendment. B. schmidtii treated with Cd only accumulated the greatest amount of Cd in the leaves, but absorbed Cd was also highly concentrated in the roots. In contrast, Cd concentrations in the Cd and sludge amendment treated seedlings were the lowest in the roots. Since sludge amendment increased the growth of seedlings, it may have alleviated toxicity by dilution of Cd. Additionally, the absorbed Cd was more widely distributed since it was transported from the roots and accumulated in the stems and leaves of Cd and sludge treated plants. Cd treatment inhibited the growth and physiological functions of B. schmidtii seedlings, but sludge amendment compensated for these effects and improved growth and physiological functions in both Cd-treated and control plants. SOD activity in the leaves of seedlings was increased in the Cd-treated plants, but not in the Cd and sludge amendment treated seedlings. In conclusion, alleviation of Cd toxicity in response to sludge amendment may be related to a dilution effect, in which the Cd concentration in the tissues was effectively lowered by the improved growth performance of the seedlings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamo, Masashi; Ono, Kyoko; Nakanishi, Junko
2006-05-15
A meta-analysis was conducted to derive age- and gender-specific dose-response relationships between urinary cadmium (Cd) concentration and {beta} {sub 2}-microglobulinuria ({beta}2MG-uria) under environmental exposure. {beta}2MG-uria was defined by a cutoff point of 1000 {mu}g {beta} {sub 2}-microglobulin/g creatinine. We proposed a model for describing the relationships among the interindividual variabilities in urinary Cd concentration, the ratio of Cd concentrations in the target organ and in urine, and the threshold Cd concentration in the target organ. The parameters in the model were determined so that good agreement might be achieved between the prevalence rates of {beta}2MG-uria reported in the literature andmore » those estimated by the model. In this analysis, only the data from the literature on populations environmentally exposed to Cd were used. Using the model and estimated parameters, the prevalence rate of {beta}2MG-uria can be estimated for an age- and gender-specific subpopulation for which the distribution of urinary Cd concentrations is known. The maximum permissible level of urinary Cd concentration was defined as the maximum geometric mean of the urinary Cd concentration in an age- and gender-specific subpopulation that would not result in a statistically significant increase in the prevalence rate of {beta}2MG-uria. This was estimated to be approximately 3 {mu}g/g creatinine for a population in a small geographical area and approximately 2 {mu}g/g creatinine for a nationwide population.« less
Kuo, S; Lai, M S; Lin, C W
2006-12-01
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.
Outridge, P M; Hobson, K A; Savelle, J M
2005-11-01
Beluga (Delphinapterus leucas) continues to be an important food species for Arctic communities, despite concerns about its high mercury (Hg) content. We investigated whether Hg and cadmium (Cd) concentrations had changed during the 20th century in beluga near Somerset Island in the central Canadian Arctic, using well-preserved teeth collected from historical sites (dating to the late 19th century and 1926-1947) and during subsistence hunts in the late 1990s. Mercury concentrations in both historical and modern teeth were correlated with animal age, but 1990s beluga exhibited a significantly more rapid accumulation with age than late 19th century animals, indicating that Hg concentrations or bioavailability in their food chain had increased during the last century. The geometric mean tooth Hg concentration in modern 30 year old animals was 7.7 times higher than in the late 19th century, which corresponds to threefold higher concentrations in muktuk and muscle. Teeth from 1926 to 1947 were similar in Hg content to the late 19th century, suggesting that the increase had occurred sometime after the 1940s. In contrast, tooth Cd was not correlated with animal age and decreased during the last 100 years, indicating that anthropogenic Cd was negligible in this population. Late 19th century beluga displayed a greater range of prey selection (tooth delta15N values: 15.6-20.5 per thousand) than modern animals (delta15N: 17.2-21.1 per thousand). To prevent this difference from confounding the temporal Hg comparison, the Hg-age relationships discussed above were based on historical animals, which overlapped isotopically with the modern group. Tooth delta13C also changed to isotopically more depleted values in modern animals, with the most likely explanation being a significant shift to more pelagic-based feeding. Industrial Hg pollution is a plausible explanation for the recent Hg increase. However, without further investigation of the relationship between the range exploitation of modern beluga and their possible exposure to regional marine food chains with (naturally) higher Hg contents than their historical counterparts, we cannot unequivocally conclude that the increase was anthropogenically driven.
Tunable photoluminescent metal-organic-frameworks and method of making the same
Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Rohwer, Lauren E.S.
2017-08-22
The present disclosure is directed to new photoluminescent metal-organic frameworks (MOFs). The newly developed MOFs include either non rare earth element (REE) transition metal atoms or limited concentrations of REE atoms, including: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Ru, Ag, Cd, Sn, Sb, Ir, Pb, Bi, that are located in the MOF framework in site isolated locations, and have emission colors ranging from white to red, depending on the metal concentration levels and/or choice of ligand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huebert, D.B.
1992-01-01
The duckweed Lemna trisulca L. was grown in axenic cultures in a filter-sterilized medium. A portion of the medium was replaced regularly during experiments. The amount replaced doubled every two days. metal concentrations in the medium wee measured on the last day of experiments. The only organic compound added was FeEDTA at a concentration of 9 [mu]M. The chelating capacity of the medium was therefore minimal, defined and controlled. The nutrient medium and environmental conditions supported a doubling time of 1.6 to 2.4 days over a 14 day culture period. Under the above conditions, the EC50 (concentration at which amore » 50% effect is observed) for Cd and 0.99 [mu]M based on multiplication rate and 0.56 [mu]M based on final yield. The NOEC (no observable effect concentration) for Cd was between 120 and 150 [mu]g Cd/g dry wt. based on internal Cd, and 0.08 [mu]M based on external Cd. Internal Cd may be a superior estimate of toxicity because it avoids the problems associated with metal speciation in the external medium and allows for a comparison with field data. Lemna trisulca responded within 2 days to the addition of 0.64 [mu]M Cd. No tolerance to Cd was induced even after 6 weeks of exposure. The calculated response of L. trisulca to Cd may have been influenced by the multiplication rate of control cultures, which varied from 1.6 to 2.4 days. Calcium had no effect on Cd uptake or toxicity. Zinc antagonized Cd toxicity but had a variable effect on Cd uptake depending on its concentration. Zinc was about fifteen times less toxic than Cd. The uptake and toxicity of Cd and Zn were almost completely prevented when the level of available EDTA was in excess of the CD or Zn concentration. These data indicate that biological and chemical factors can profoundly influence the effect of toxicants on living organisms. These factors must be considered to ensure that toxicity studies are not confounded by effects extraneous to the actual effect of the toxicant.« less
NASA Astrophysics Data System (ADS)
Bulavchenko, A. I.; Sap'yanik, A. A.; Demidova, M. G.; Rakhmanova, M. I.; Popovetskii, P. S.
2015-05-01
Nonaqueous electrophoresis reveals that the electrokinetic potential of CdS nanoparticles increases slightly (85-120 mV) along with the concentration (0-5 × 10-3 M) of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in n-decane, while negatively charged SiO2 particles acquire positive charge (switching from -75 up to +135 mV). The energies of interparticle interactions in CdS-CdS and CdS-SiO2 systems are calculated from these parameters and the literature values of the Hamaker constants according to the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory. It is concluded that the presence of a minimum (2.5 k B T) on the potential dependences of the CdS-SiO2 system indicates the formation of CdS-SiO2 aggregates electrostatically bound by heterocoagulation at low concentrations of AOT. The luminescent properties of the obtained ultrafine CdS-SiO2 powders depend on the CdS content.
Trophic transfer of Cd from duckweed (Lemna minor L.) to tilapia (Oreochromis mossambicus).
Xue, Yan; Peijnenburg, Willie J G M; Huang, Jin; Wang, Dengjun; Jin, Yan
2018-05-01
The transfer of the toxic heavy metal Cd from duckweed (Lemna minor L.) to the freshwater fish tilapia (Oreochromis mossambicus) was investigated. Concentrations of Cd in different chemical forms in duckweed and in different tissues (gut, edible muscle, and remnants or residual) of tilapia (i.e., ethanol-extractable fraction [F E ], HCl-extractable fraction [F HCl ], and residual fraction [F R ]) were quantified, and the bioaccumulation factors (BAFs) of Cd in the tilapia body were calculated. Simple linear regression analysis was used to unravel the correlation and accumulation mechanisms of Cd along the short food chain. Our results showed that with increasing exposure concentrations of Cd (0-50 μM for duckweed and 0-10 μM for tilapia), the total, F E (F e,d )-, F HCl (F h,d )-, and F R (F r,d )-Cd concentrations in duckweed and different tissues of tilapia increased progressively. The Cd sources (aqueous or dietary) influenced the BAF for Cd accumulation in the whole body of tilapia. Furthermore, regression analyses yielded significant positive correlations (R 2 > 0.96) between the Cd concentration in duckweed and in both the 3 parts and the whole body of tilapia. This finding suggests that Cd transfer from duckweed to tilapia can be quantitatively evaluated when tilapia is exposed only to duckweed. In addition, the linear regression between Cd accumulation in whole tilapia and F e,d -, F h,d -, and F r,d -Cd showed that particularly the correlation with F e,d -Cd is statistically significant (p < 0.001). The accumulated Cd concentrations and chemical forms in tilapia tissues also positively correlated with Cd sources (solution or duckweed). Compared with waterborne exposure only, duckweed especially increased the accumulation of Cd in the gut of tilapia. Taken together, our findings support a strong dependence of Cd accumulation and transfer from duckweed to tilapia on its chemical forms, especially on F e,d -Cd. This knowledge may expedite more accurate risk assessment of heavy metals through aquatic food chain ecosystems. Environ Toxicol Chem 2018;37:1367-1377. © 2018 SETAC. © 2018 SETAC.
NASA Astrophysics Data System (ADS)
Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan
2016-04-01
Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring.Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01136e
Montero, A; Tojo, Y; Matsuo, T; Matsuto, T; Yamada, M; Asakura, H; Ono, Y
2010-03-15
With insufficient source separation, construction and demolition (C&D) waste becomes a mixed material that is difficult to recycle. Treatment of mixed C&D waste generates residue that contains gypsum and organic matter and poses a risk of H(2)S formation in landfills. Therefore, removing gypsum and organic matter from the residue is vital. This study investigated the distribution of gypsum and organic matter in a sorting process. Heavy liquid separation was used to determine the density ranges in which gypsum and organic matter were most concentrated. The fine residue that was separated before shredding accounted for 27.9% of the waste mass and contained the greatest quantity of gypsum; therefore, most of the gypsum (52.4%) was distributed in this fraction. When this fine fraction was subjected to heavy liquid separation, 93% of the gypsum was concentrated in the density range of 1.59-2.28, which contained 24% of the total waste mass. Therefore, removing this density range after segregating fine particles should reduce the amount of gypsum sent to landfills. Organic matter tends to float as density increases; nevertheless, separation at 1.0 density could be more efficient. (c) 2009 Elsevier B.V. All rights reserved.
He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong
2017-12-01
Contamination of rice (Oryza sativa) by Cd is of great concern. Steel slag could be used to amend Cd-contaminated soils and make them safe for cereal production. This work was conducted to study the effects of steel slag on Cd uptake and growth of rice plants in acidic and Cd-contaminated paddy soils and to determine the possible mechanisms behind these effects. Pot (rhizobag) experiments were conducted using rice plants grown on two acidic and Cd-contaminated paddy soils with or without steel slag amendment. Steel slag amendment significantly increased grain yield by 36-45% and root catalase activity, and decreased Cd concentrations in brown rice by 66-77% compared with the control, in both soils. Steel slag amendment also markedly decreased extractable soil Cd, Cd concentrations in pore-water and Cd translocation from roots to above-ground parts. It also significantly increased soil pH, extractable Si and Ca in soils and Ca concentrations in roots. Significant positive correlations were found between extractable soil Cd and Cd concentrations in rice tissues, but it was negatively correlated with soil pH and extractable Si. Calcium in root tissues significantly and negatively correlated with Cd translocation factors from roots to straw. Overall, steel slag amendment not only significantly promoted rice growth but decreased Cd accumulation in brown rice. These benefits appear to be related to improvements in soil conditions (e.g. increasing pH, extractable Si and Ca), a reduction in extractable soil Cd, and suppression of Cd translocation from roots to above-ground parts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rich, David Q.; Kipen, Howard M.; Huang, Wei; Wang, Guangfa; Wang, Yuedan; Zhu, Ping; Ohman-Strickland, Pamela; Hu, Min; Philipp, Claire; Diehl, Scott R.; Lu, Shou-En; Tong, Jian; Gong, Jicheng; Thomas, Duncan; Zhu, Tong; Zhang, Junfeng (Jim)
2014-01-01
Context Air pollution is a risk factor for cardiovascular diseases (CVD), but the underlying biological mechanisms are not well understood. Objective To determine whether markers related to CVD pathophysiological pathways (biomarkers for systemic inflammation and thrombosis, heart rate, and blood pressure) are sensitive to changes in air pollution. Design, Setting, and Participants Using a quasi-experimental opportunity offered by greatly restricted air pollution emissions during the Beijing Olympics, we measured pollutants daily and the outcomes listed below in 125 healthy young adults before, during, and after the 2008 Olympics (June 2-October 30). We used linear mixed-effects models to estimate the improvement in outcome levels during the Olympics and the anticipated reversal of outcome levels after pollution controls ended to determine whether changes in outcome levels were associated with changes in pollutant concentrations. Main Outcome Measures C-reactive protein (CRP), fibrinogen, von Willebrand factor, soluble CD40 ligand (sCD40L), soluble P-selectin (sCD62P) concentrations; white blood cell count (WBC); heart rate; and blood pressure. Results Concentrations of particulate and gaseous pollutants decreased substantially (−13% to −60%) from the pre-Olympic period to the during-Olympic period. Using 2-sided tests conducted at the .003 level, we observed statistically significant improvements in sCD62P levels by −34.0% (95% CI, −38.4% to −29.2%; P<.001) from a pre-Olympic mean of 6.29 ng/mL to a during-Olympic mean of 4.16 ng/mL and von Willebrand factor by −13.1% (95% CI, −18.6% to −7.5%; P<.001) from 106.4% to 92.6%. After adjustments for multiple comparisons, changes in the other outcomes were not statistically significant. In the post-Olympic period when pollutant concentrations increased, most outcomes approximated pre-Olympic levels, but only sCD62P and systolic blood pressure were significantly worsened from the during-Olympic period. The fraction of above-detection-limit values for CRP (percentage ≥0.3 mg/L) was reduced from 55% in the pre-Olympic period to 46% in the during-Olympic period and reduced further to 36% in the post-Olympic period. Interquartile range increases in pollutant concentrations were consistently associated with statistically significant increases in fibrinogen, von Wille-brand factor, heart rate, sCD62P, and sCD40L concentrations. Conclusions Changes in air pollution levels during the Beijing Olympics were associated with acute changes in biomarkers of inflammation and thrombosis and measures of cardiovascular physiology in healthy young persons. These findings are of uncertain clinical significance. PMID:22665106
Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Ding, Shi-Ming
2017-03-01
Organic amendments have been widely proposed as a remediation technology for metal-contaminated soils, but there exist controversial results on their effectiveness. In this study, the effect of pig manure addition on cadmium (Cd) bioavailability in Cd-contaminated soils was systematically evaluated by one dynamic, in situ technique of diffusive gradients in thin films (DGT) and four traditional methods based on the equilibrium theory (soil solution concentration and the three commonly used extractants, i.e., acetic acid (HAc), ethylenediamine tetraacetic acid (EDTA), and calcium chloride (CaCl 2 ). Wheat and maize were selected for measurement of plant Cd uptake. The results showed that pig manure addition could promote the growth of two plants, accompanied by increasing biomasses of shoots and roots with increasing doses of pig manure addition. Correspondingly, increasing additions of pig manure reduced plant Cd uptake and accumulation, as indicated by the decreases of Cd concentrations in shoots and roots. The bioavailable concentrations of Cd in Cd-contaminated soils reflected by the DGT technique obviously decreased with increasing doses of pig manure addition, following the same changing trend as plant Cd uptake. Changes in soil solution Cd concentration and extractable Cd by HAc, EDTA, and CaCl 2 in soils were similar to DGT measurement. Meanwhile, the capability of Cd resupply from solid phase to soil solution decreased with increasing additions of pig manure, as reflected by the decreases in the ratio (R) value of C DGT to C sol . Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in the tissues of the two plants. These findings provide stronger evidence that pig manure amendment is effective in reducing Cd mobility and bioavailability in soils and it is an ideal organic material for remediation of Cd-contaminated soils.
Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Lin, Dasong; Liang, Xuefeng; Shi, Xin
2012-01-01
The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was < or = 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain.
Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck
2015-11-01
The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. Published by Elsevier B.V.
Punjee, Putthita; Siripornadulsil, Wilailak; Siripornadulsil, Surasak
2018-02-01
The effects of the cadmium (Cd)-tolerant bacterium Cupriavidus taiwanensis KKU2500-3 on the growth, yield, and Cd concentration in rice grains were investigated in the rice variety Phitsanulok 2 (PL2), which was cultivated in a hydroponic greenhouse. The numbers of Cd-tolerant bacteria isolated from the roots and shoots of plants under the RB (rice with bacteria) and RBC (rice with bacteria and Cd) treatments ranged from 2.60 to 9.03 and from 3.99 to 9.60 log cfu·g -1 of PL2, respectively. This KKU2500-3 strain was successfully colonized in rice, indicating that it was not only nontoxic to the plants but also became distributed and reproduced throughout the plants. Scanning electron microscopy analysis revealed attachment of the bacterium to the root surface, whereas the internally colonized bacteria were located in the vascular tissue, cell wall, and intercellular space. Although the Cd contents found in PL2 were very high (189.10 and 79.49 mg·kg -1 in the RC (rice with Cd) and RBC roots, respectively), the Cd accumulated inside the rice seeds at densities of only 3.10 and 1.31 mg·kg -1 , respectively; thus, the bacteria reduced the Cd content to 57.74% of the control content. Therefore, the colonizing bacteria likely acted as an inhibitor of Cd translocation in PL2.
NASA Astrophysics Data System (ADS)
Kumar, A. Guru Sampath; Obulapathi, L.; Sarmash, T. Sofi; Rani, D. Jhansi; Maddaiah, M.; Rao, T. Subba; Asokan, K.
2015-04-01
Thin films of cadmium (Cd) (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%) doped zinc oxide (ZnO) have been deposited on a glass substrate by reactive DC magnetron sputtering. The synthesized films are characterized by glancing angle x-ray diffraction (GAXRD), UV-Vis-NIR spectroscopy, four probe resistivity measurement, Hall measurement system, field emission-scanning electron microscopy and energy dispersive analysis by x-rays. A systematic study has been made on the structure, electrical and optical properties of Cd doped ZnO thin films as a function of Cd concentration (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%). All these films have a hexagonal wurtzite ZnO structure with (0 0 2) orientation without any Cd related phase from the GAXRD patterns. The grain size was increased and maximum appears at 4 wt.% Cd concentration. The electrical resistivity of the films decreased with the Cd doping and minimum resistivity was observed at 4 wt.% Cd concentration. UV-Vis-NIR studies showed that the optical band gap of ZnO (3.37 eV) was reduced to 3.10 eV which is at 4 wt.% Cd concentration.
Wei, Yanyan; Zheng, Xiaoman; Shohag, Md. Jahidul Islam; Gu, Minghua
2017-01-01
In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi (Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0–87.6% and 20.1–82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9–71.8% for Cd bioaccessibility and 16.1–59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg−1 bw day−1, BEDI of As < 3 μg kg−1 bw day−1) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities. PMID:28850097
Wei, Yanyan; Zheng, Xiaoman; Shohag, Md Jahidul Islam; Gu, Minghua
2017-08-29
In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi ( Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0-87.6% and 20.1-82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9-71.8% for Cd bioaccessibility and 16.1-59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg -1 bw day -1 , BEDI of As < 3 μg kg -1 bw day -1 ) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities.
Lai, Hung-Yu; Chen, Zueng-Sang
2005-08-01
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.
Quantification of trace metals in water using complexation and filter concentration.
Dolgin, Bella; Bulatov, Valery; Japarov, Julia; Elish, Eyal; Edri, Elad; Schechter, Israel
2010-06-15
Various metals undergo complexation with organic reagents, resulting in colored products. In practice, their molar absorptivities allow for quantification in the ppm range. However, a proper pre-concentration of the colored complex on paper filter lowers the quantification limit to the low ppb range. In this study, several pre-concentration techniques have been examined and compared: filtering the already complexed mixture, complexation on filter, and dipping of dye-covered filter in solution. The best quantification has been based on the ratio of filter reflectance at a certain wavelength to that at zero metal concentration. The studied complex formations (Ni ions with TAN and Cd ions with PAN) involve production of nanoparticle suspensions, which are associated with complicated kinetics. The kinetics of the complexation of Ni ions with TAN has been investigated and optimum timing could be found. Kinetic optimization in regard to some interferences has also been suggested.
Liu, Mohan; Sun, Jian; Li, Yang; Xiao, Yan
2017-01-01
This study aimed to explore whether nitrogen availability could influence mycorrhizal function and their associations with host plants in Cd-contaminated acidic soils or not. A greenhouse pot experiment was conducted to assess the effects of mycorrhizal inoculation (non-mycorrhizal inoculation (NM), Glomus aggregatum (Ga), G. tortuosum (Gt) and G. versiforme (Gv)) and inorganic N amendment on the growth, nutrient and Cd uptake of Medicago sativa grown in Cd-contaminated acidic soils (10 mg Cd kg -1 soil). AMF inoculations significantly increased the shoot and total biomass and decreased the shoot Cd concentration in comparison to plants uninoculated. N addition increased markedly concentration and content of N and decreased those of P in plants at all inoculation treatments. Shoot K, Na and Mg concentration in plants inoculated with Ga and Gv were decreased by N addition, whereas shoot K, Na, Ca and Mg concentration in plants inoculated with Gt were not negatively affected. It was observed that N addition only increased mycorrhizal colonization, shoot biomass, shoot K, Ca and Mg content of plants inoculated with Gt. Irrespective of N addition, plants with Gt inoculation got the maximum shoot and root P concentration and content, as well as P/Cd concentration molar ratio among all inoculation treatment. Neither AMF nor N fertilizer contributed to the decrease of soil exchangeable Cd and increase of soil pH. These results suggested that N fertilizer only elevated plant performance of alfalfa with Gt inoculation grown in acidic soil, by diluting Cd concentration and alleviating of nutrient deficiency, especially P. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative Assessment of Response to Cadmium in Heavy Metal-Tolerant Shrubs Cultured In Vitro.
Wiszniewska, A; Hanus-Fajerska, E; Muszyńska, E; Smoleń, S
2017-01-01
Two species of Pb-adapted shrubs, Alyssum montanum and Daphne jasminea , were evaluated in vitro for their tolerance to elevated concentrations of cadmium. Shoot cultures were treated with 0.5, 2.5, and 5.0 μM CdCl 2 for 16 weeks and analyzed for their organogenic response, biomass accretion, pigment content, and macronutrient status. Cadmium accumulation and its root-to-shoot translocation were also determined. In both species, rooted microplantlets, suitable for acclimatization, were obtained in the presence of Cd applied as selection agent. In A. montanum , low and moderate dose of Cd stimulated multiplication, rooting, and biomass production. Growth tolerance index (GTI) in Cd-treated shoots ranged from 120 to 215%, while in the roots 51-202%. In turn, in Cd-treated D. jasminea proliferation and rooting were inhibited, and GTI for shoots decreased with increasing doses of Cd. However, roots exposed to Cd had higher biomass accretion. Both species accumulated Cd in developed organs, and its content increased with increasing CdCl 2 dose. Interestingly, D. jasminea accumulated higher amounts of Cd in the roots than A. montanum and immobilized this metal in the root system. On the contrary, A. montanum translocated some part of accumulated Cd to the shoots, but with low efficiency. In the presence of Cd, A. montanum maintained macronutrient homeostasis and synthesized higher amounts of phytosynthetic pigments in the shoots. D. jasminea accumulated root biomass, immobilized Cd, and restricted its translocation at the expense of nutrient balance. Considering remediation potential, A. montanum could be exploited in phytoextraction, while D. jasminea in phytostabilization of polluted substrate.
Overtraining and immune system: a prospective longitudinal study in endurance athletes.
Gabriel, H H; Urhausen, A; Valet, G; Heidelbach, U; Kindermann, W
1998-07-01
A prospective longitudinal study investigated for 19 +/- 3) months whether immunophenotypes of peripheral leukocytes were altered in periods of severe training. Leukocyte membrane antigens (CD3, CD4, CD8, CD14, CD16, CD19, CD45, CD45RO, and CD56) of endurance athletes were immunophenotyped (dual-color flow cytometry) and list mode data analyzed by a self-learning classification system in a state of an overtraining syndrome (OT; N = 15) and several occasions without symptoms of staleness (NS; N = 70). Neither at physical rest nor after a short-term highly intensive cycle ergometer exercise session at 110% of the individual anaerobic threshold did cell counts of neutrophils, T, B, and natural killer cells differ between OT and NS. Eosinophils were lower during OT, activated T cells (CD3+HLA/DR+) showed slight increases (NS: 5.5 +/- 2.7; OT 7.3 +/- 2.4% CD3+ of cells; means +/- SD; P < 0.01) during OT without reaching pathological ranges. The cell-surface expression of CD45RO (P < 0.001) on T cells, but not cell concentrations of CD45RO+ T cells, were higher during OT. OT could be classified with high specificities (92%) and sensitivities (93%). It is concluded that OT does not lead to clinically relevant alterations of immunophenotypes in peripheral blood and especially that an immunosuppressive effect cannot be detected. Immunophenotyping may provide help with the diagnosis of OT in future, but the diagnostic approach presented here requires improvements before use in sports medicine practice is enabled.
Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah
2018-06-07
In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.
Cadmium (Cd) is an important inorganic pollutant that exists from both natural and anthropogenic emission. Concentrations measured in the aquatic environment vary considerably from 0.05 to 1,000 ppb depending on contamination, but even range in drinking water from 1 to 10 ppb. C...
“Lichens Lite?” chemical analysis of lichens for tracking 26 pollutants
Sarah Jovan; Susan Will-Wolf; Michael Amacher
2015-01-01
Lichen chemistry can be used to estimate concentrations of environmental contaminants, ranging from heavy metals and fertilizers to polycyclic aromatic hydrocarbons, dioxins, pesticides, herbicides, and flame retardants. We conducted a pilot looking at 26 metals and nutrient anions in 5 widespread lichen species across the upper Midwest, including: As, Al, Ba, Ca, Cd,...
NASA Astrophysics Data System (ADS)
Hu, Junli; Wu, Fuyong; Wu, Shengchun; Lam, Cheung Lung; Lin, Xiangui; Wong, Ming Hung
2014-04-01
Both biochar application and mycorrhizal inoculation have been proposed to improve plant growth and alter bioaccumulation of toxic metals. A greenhouse pot trial was conducted to investigate growth and Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance) in a Cd-contaminated soil inoculated with Glomus caledonium and/or applied with biochar. Compared with the monocultural control, intercropping with stonecrop (IS) decreased kangkong Cd acquisition via rhizosphere competition, and also decreased kangkong yield. Gc inoculation (+M) accelerated growth and Cd acquisition of stonecrop, and hence resulted in further decreases in kangkong Cd acquisition. Regardless of IS and +M, biochar addition (+B) increased kangkong yield via elevating soil available P, and decreased soil Cd phytoavailability and kangkong Cd concentration via increasing soil pH. Compared with the control, the treatment of IS + M + B had a substantially higher kangkong yield (+25.5%) with a lower Cd concentration (-62.7%). Gc generated additive effects on soil alkalinization and Cd stabilization to biochar, causing lower DTPA-extractable (phytoavailable) Cd concentrations and post-harvest transfer risks.
Ordered CdTe/CdS Arrays for High-Performance Solar Cells
NASA Astrophysics Data System (ADS)
Zubía, David; López, Cesar; Rodríguez, Mario; Escobedo, Arev; Oyer, Sandra; Romo, Luis; Rogers, Scott; Quiñónez, Stella; McClure, John
2007-12-01
The deposition of uniform arrays of CdTe/CdS heterostructures suitable for solar cells via close-spaced sublimation is presented. The approach used to create the arrays consists of two basic steps: the deposition of a patterned growth mask on CdS, and the selective-area deposition of CdTe. CdTe grains grow selectively on the CdS but not on the SiO2 due to the differential surface mobility between the two surfaces. Furthermore, the CdTe mesas mimic the size and shape of the window opening in the SiO2. Measurements of the current density in the CdTe were high at 28 mA/cm2. To our knowledge, this is the highest reported current density for these devices. This implies that either the quantum efficiency is very high or the electrons generated throughout the CdTe are being concentrated by the patterned structure analogous to solar concentration. The enhancement in crystal uniformity and the relatively unexplored current concentration phenomenon could lead to significant performance improvements.
Growth of rye grass and fescue as affected by lead-cadmium-fertilizer interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, R.W.; Rolfe, G.L.
Rye grass (Lolium perenne L.) and red fescue (Festuca rubra L.) were grown from seed in fertilized (NPK, 12:6:6) and unfertilized Flanagan silt loam soil treated with Pb (0, 10, 100, 1000, 5000, 10,000 ..mu..g g/sup -1/), Cd (0, 0.1, 1, 10, 50, 100 ..mu..g g/sup -1/), or a combination of Pb plus Cd at a ratio of 100 Pb:1 Cd. Plant growth and heavy metal content of plants were measured at the end of three, consecutive, 10-day periods. Growth of Pb-treated plants did not begin to decrease until treatment concentrations reached 1000 ..mu..g g/sup -1/ Pb or above. Abovemore » a treatment concentration of 1000 ..mu..g g/sup -1/ Pb with or without added Cd, growth was reduced sharply in a log-linear fashion with increasing treatment concentrations. Some reduction in growth of plants treated with Cd alone occurred for fertilized fescue above 10 ..mu..g g/sup -1/ Cd but not for rye until treatments above 50 ..mu..g g/sup -1/. No reduction in growth was found for nonfertilized plants treated with Cd alone at the highest soil concentration (100 ..mu..g g/sup -1/). Reduction in growth for plants treated with Pb + Cd was no lower than that of plants treated with Pb alone. While fertilization stimulated growth at treatment concentrations < 1000 ..mu..g g/sup -1/, it did not ameliorate the effects of Pb at higher concentrations. Fertilization reduced Pb content and uptake in rye (P <0.001) but not in fescue. The Cd content of fertilized plants was greater (P < 0.05) than that of nonfertilized plants. Cadmium content of plants treated with Pb + Cd was greater (P < 0.05) than that of plants treated with Cd alone, while there was no difference in Pb content between Pb and Pb + Cd treatments.« less
Pan, Fengshan; Meng, Qian; Wang, Qiong; Luo, Sha; Chen, Bao; Khan, Kiran Yasmin; Yang, Xiaoe; Feng, Ying
2016-07-01
A hydroponic experiment was conducted to verify the effects of inoculation with endophytic bacteria Sphingomonas SaMR12 on root growth, cadmium (Cd) uptake, reactive oxygen species (ROS), antioxidases, glutathione (GSH) and the related gene expression of Sedum alfredii Hance under different levels of Cd such as 0, 10, 25, 100 and 400 μM. The results showed that inoculation of SaMR12 improved Cd accumulation and upregulated glutathione synthase (GS) expression, but slightly reduced malondialdehyde (MDA) concentration and alleviated Cd-induced damage in roots. However it didn't alter the activities of antioxidant enzymes. When Cd concentration exceeded 25 μM, SaMR12 increased the concentration of GSH and the expression level of GSH1. At high Cd treatment levels (100 and 400 μM), SaMR12 significantly reduced H2O2 concentration and enhanced expression level of 1-Cys peroxiredoxin PER1 and ATPS genes. These results indicate that although SaMR12 has no significant effects on antioxidases activities, it reduces H2O2 concentration by enhancing GSH concentration and relevant genes expression, and subsequently improves Cd tolerance and accumulation. Copyright © 2016 Elsevier Ltd. All rights reserved.