Sample records for cd zn cr

  1. Synthesis and characterization of Cd Cr and Zn Cd Cr layered double hydroxides intercalated with dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zhang, He; Zhao, Lan; Li, Guo-Dong; Chen, Jie-Sheng; Xu, Lin

    2005-06-01

    Cd-Cr and Zn-Cd-Cr layered double hydroxides (CdCr-LDH and ZnCdCr-LDH) containing alkyl sulfate as the interlamellar anion have been prepared through a coprecipitation technique. The resulting compounds were characterized using X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Magnetic property measurements indicate that antiferromagnetic interactions occur between the chromium ions in the two compounds at low temperatures. The introduction of zinc influences the ligand field of Cr III and the Cr III-Cr III interactions in the LDH compound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminated by dispersion in formamide, leading to translucent and stable colloidal solutions.

  2. Heavy metals in water, sediments, plants and fish of Kali Nadi U. P. (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajmal, M.; Uddin, R.; Khan, A.U.

    1988-01-01

    The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Znmore » > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb >Co > Cr > Cu > Cd, respectively.« less

  3. Sensitivity of Four Cyanobacterial Isolates from Tropical Freshwaters to Environmentally Realistic Concentrations of Cr(6+), Cd(2+) and Zn(2.).

    PubMed

    Munagamage, Thilini; Rathnayake, I V N; Pathiratne, A; Megharaj, Mallavarapu

    2016-06-01

    Sensitivity of four tropical cyanobacteria viz. Coelosphaerium sp., Synechococcus sp., Oscillatoria sp. and Chroococcus sp. to environmentally relevant concentrations of Cr(6+), Cd(2+) and Zn(2+)was assessed based on fluorescence change as a proxy for growth reduction. At 24 h exposure, the growth reduction inthe cyanobacteria followed the order: Zn(2+) < Cr(6+) ≤ Cd(2+). Of the four cyanobacteria, Synechococcus was the most sensitive for Cr(6+), where as Chroococcus was the most sensitive for Cd(2+)and Zn(2+). Sensitivity was gradually decreased by 96 h implying the acquisition of tolerance by cyanobacteria to heavy metal ions with prolonged exposure.

  4. Assessment of heavy metal contamination in Hediste diversicolor (O.F. Müller, 1776), Mugil cephalus (Linnaeus, 1758), and surface sediments of Bafa Lake (Eastern Aegean).

    PubMed

    Aydin-Onen, S; Kucuksezgin, F; Kocak, F; Açik, S

    2015-06-01

    In the present study, the bioaccumulation of six heavy metals (Cd, Cr, Cu, Hg, Pb, and Zn) in Hediste (Nereis) diversicolor (O.F. Müller, 1776) and also in the muscle and liver of Mugil cephalus (Linnaeus, 1758) collected from seven stations in the Bafa Lake was investigated. Sediment samples were also collected in each site to assess heavy metal levels and to provide additional information on pollution of the lake. The mean concentrations of heavy metals in sediment, H. diversicolor, and muscle and liver of the fish were found to be in the magnitude of Cr>Pb>Zn>Cu>Cd>Hg, Zn>Cu>Cr>Pb>Hg>Cd, Zn>Cu>Pb>Cr >Hg>Cd, and Cu>Zn>Cr>Cd>Pb>Hg, respectively. Hg, Cu, and Zn in H. diversicolor and Hg and Zn in muscle and also Hg, Cd, Cu, and Zn in liver of fish accumulated in a higher degree than in sediment. There was no clear relationship between metal concentrations in sediments, polychaetes, and fish, except Cr. According to international criteria and Turkish regulations, Pb and Zn values in edible muscle of the fish collected from stations S6 and S5 exceeded the food safety limits, respectively. The results of this study suggest that these sentinel species can be considered as good anthropogenic biological indicators for heavy metal pollution along the Bafa Lake.

  5. Effect of combustion temperature on the emission of trace elements under O2/CO2 atmosphere during coal combustion

    NASA Astrophysics Data System (ADS)

    Qu, Chengrui; Zhang, Mo; Mann, Michael. D.

    2018-03-01

    The effect of combustion temperature on the emission of trace elementswas studied under O2/CO2 atmosphere during coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine fly ash particles collected with a low pressure impactor(LPI)was quantified by X-Ray F1uorescence Spectrometer (XRF). The elemental composition of coal and bottom ash was quantified byinductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicate that the contents of Mn, Zn, Cd and Cr in the fly ash increase with the rise of combustion temperature. It is found that the enrichment of Zn and Cd is greater in the submicrometer particles than the supermicrometer particles, but Mn and Cr do not enrich in the submicrometer particles. Mn, Zn, Cd and Cr display one peak around 0.1 μm. The relative enrichment factor (Rij) of four elements is in the order of Zn, Cd, Mn and Cr. Zn and Cd are mostly retained in fly ashwhileMn and Cr are retained in both the fly ash and bottom ash.

  6. The Environment Quality, Speciation and their Origins of Heavy Metals in Surficial Sediments in Central Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Liu, M.; Fan, D.; Han, Z.; Liao, Y.; Chen, B.; Yang, Z.

    2016-02-01

    The concentrations and speciations of heavy metals (Cu, Co, Ni, Zn, Pb, Cr and Cd) in surface and core sediments collected from the central Bohai Sea were analyzed by ICP-MS, to evaluate their distribution / fractionation, pollution status and sources. The results showed that Cd exhibited gradual increasing vertically, while others were stable or declined slightly in core sediments. Metals showed higher values in `central mud area of the Bohai Sea' and the coastal area of the Bohai Bay in surface sediments. Residual fractions were the dominant forms of Cu, Co, Ni, Zn and Cr in the surface sediments, while Cd and Pb had large proportions of the total concentration in the non-residual fractions. Both the contamination factors and the geo-accumulation index indicated that Cu, Co, Ni, Cr were not polluted, while Pb, Zn, Cd were in moderate contamination. The ecological risk assessment (by sepeciations) indicated that the sediments were unpolluted with respect to the heavy metals Co, Ni and Cr and unpolluted to moderately polluted with respect to Cu, Zn, Cd and Pb. Compared with sediment quality guidelines (SQGs), Cu, Zn, Cr, Pb, Cd were likely to produce occasional adverse biological effects, while Ni showed possible ecotoxicological risks. The combined levels of the metals have a 21% probability of being toxic. Elements Cr, Co and Ni were mainly natural origined and significantly affected by the composition of sediments. Cu, Zn, Pb and especially Cd may be influenced by human activities.

  7. Assessment of Trace Metals Concentration in Tree Barks as Indicator of Atmospheric Pollution within Ibadan City, South-West, Nigeria

    PubMed Central

    Ejidike, Ikechukwu P.; Onianwa, Percy C.

    2015-01-01

    Tree bark species were randomly collected from 65 sites having different anthropogenic activities, such as industrial, high traffic commercial, residential high and residential low traffic volume areas of Ibadan City, Nigeria. Levels of Cd, Cu, Pb, Zn, Co, and Cr of the dry-ashed bark samples were determined by AAS. The mean metal concentrations (mg kg−1) in samples from industrial zone were found as Pb: 3.67 ± 1.97, Cd: 0.10 ± 0.07, Zn: 30.96 ± 32.05, Cu: 7.29 ± 5.17, Co: 0.91 ± 0.58, and Cr: 2.61 ± 1.84. The trend of mean trace metal concentrations at high traffic commercial zone follows the order: Zn > Pb > Cu > Cr > Co > Cd. Residential high traffic and low traffic zones revealed the same trend as Cd < Co < Cr < Pb < Cu < Zn. Relatively strong positive correlation between the heavy metals at ρ < 0.05, such as Zn versus Cu (r = 0.79) and Co versus Cu (r = 0.77), was observed. The results of the study suggest that tree bark samples could potentially serve as bioindicators for Cu, Pb, Zn, Cr, and possibly Co and Cd. Furthermore, interspecies variation of heavy metal concentrations in plants barks is recommended. PMID:26605104

  8. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Rastegari Mehr, Meisam; Keshavarzi, Behnam; Moore, Farid; Sharifi, Reza; Lahijanzadeh, Ahmadreza; Kermani, Maryam

    2017-08-01

    The present study examines some heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) contents in urban soils of 23 cities in Isfahan province, central Iran. For this purpose, 83 topsoil samples were collected and analyzed by ICP-MS. Results showed that the concentrations of As, Cd, Cu, Pb and Zn are higher than background values, while Co, Cr and Ni concentrations are close to the background. Compared with heavy metal concentrations in selected cities around the world, As, Cd, Cu, Pb and Zn concentrations in urban soils of Isfahan are relatively enriched. Moreover, natural background concentrations of Co, Cr and Ni in Isfahan province soil are high and the apparent enrichment relative to other major cities of the world is due to this high background contents. Calculated contamination factor (CF) confirmed that As, Cd, Cu, Pb and Zn are extremely enriched in the urban soils. Furthermore, pollution load index (PLI) and Geoaccumulation index (Igeo) highlighted that highly contaminated cities are mostly affected by pollution from traffic, industries and Shahkuh Pb-Zn mine. Based on hazard quotients (HQ), hazard index (HI) and cancer risk (CR) calculated in this study, human health risk (particularly for Pb and Cd) have reached alarming scales. Results from principle component analysis (PCA) and positive matrix factorization (PMF) introduces three sources for soils heavy metals including mine and industries (mainly for Pb, Zn, Cd and As); urban activities (particularly for Cu, Pb and Zn); and geogenic source (Ni, Co and Cr).

  9. Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.

    PubMed

    Ding, Zhuhong; Hu, Xin

    2014-06-01

    In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p < 0.01), and Cr had a significant positive correlation with Ni (p < 0.01). Geoaccumulation indices indicate the presence of Cd and As contamination in all of the peri-urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.

  10. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    PubMed

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control and environment management in steel industrial regions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  12. Augmenting granular activated carbon with natural clay for multicomponent sorption of heavy metals from aqueous solutions.

    PubMed

    Mu'azu, Nuhu Dalhat; Essa, Mohammed Hussain; Lukman, Salihu

    2017-10-01

    Multicomponent adsorption of Cd, Cr, Cu, Pb and Zn onto date palm pits based granular activated carbon (GAC) augmented with highly active natural clay at different proportion was investigated. The effects of the initial pH and the adsorbents mixed ratio on the removal selectivity sequence of the metals evaluated. Batch adsorption experiments were undertaken at initial pH 2, 6 and 12. At initial pH 2, both the percent removal and the metals adsorptive capacity decreased with increasing GAC to clay ratio (from 0 to 1) with the percentage removal of Cd, Zn and Cr ions dropping from 68, 81, 100% to 43, 57 and 70%, respectively. At both pH 6 and 12, the percentage removals and adsorption capacities of all the heavy metal ions are higher than at pH 2. Selectivity sequences for pH 2, 6 and 12 followed the order Pb > Cr > Cu > Zn > Cd; Pb > Cr > Cu > Cd > Zn and Cd > Cr > Cu > Pb > Zn, respectively. The adsorption trends were analyzed in relation to point of zero charge and ξ-potential and the metals ions speciation at different pH. These results will help better understand the feasibility of augmenting GAC with natural clay minerals during fixed bed column test which is more beneficial for practical industrial applications.

  13. Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches.

    PubMed

    Thuong, Nguyen Thi; Yoneda, Minoru; Ikegami, Maiko; Takakura, Masato

    2013-10-01

    The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0-10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0-30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.

  14. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  15. Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China.

    PubMed

    Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng

    2017-05-01

    Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.

  16. [Spatial distribution and pollution assessment of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area, China ].

    PubMed

    Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao

    2014-09-01

    The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr

  17. Physico-Chemical and Heavy Metal Profiles of Top Soils Sourced from Abandoned Lead-Zinc Mines at Enyigba, Ameri and Ameka Villages, Abakaliki District, Ebonyi State, South Eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Osayande, D. A.; Azi, E. D.; Obayagbona, N.; Ovwasa, O. M.; Anegbe, B.

    2016-12-01

    Twenty (20) soil samples were collected from several abandoned old Pb - Zn mines located in Enyigba, Ameri, Ameka villages in the Abakaliki district of Ebonyi State, South-Eastern Nigeria. The soils were analyzed for Fe, Mn, Cu, Zn, Pb, Cd, Ni, Cr, V, pH, organic carbon and Electrical Conductivity using routine procedures. The physic-chemical analyses showed that pH values were generally low. The Electrical conductivity of the soils were high while organic carbon content in the soil was generally low. The heavy metal mean trend indicated that Pb (86) > Zn (64) > Cu (20) > Cd (15) > Ni (7) > Cr (6) > V (1). Fe and Mn values were also high. The variations observed for the heavy metal suggested both geogenic and anthropogenic activities were responsible for their distribution. Soil contamination was assessed on the basis of contamination factor (CF) and enrichment factor (EF). The CF values for the soil revealed moderate contamination for Ni, Cr, V, Zn and Mn, while Pb and Cd showed high contamination. The results of enrichment factor (EF) showed that using Fe concentration in the background value, Ni, Cr, V and Mn had moderate enrichment, Pb and Zn showed significant enrichment while Cd indicated high enrichment. The results of the principal component and cluster analyses showed that Zn, Cu, Cd, Pb metal originated from similar source but may have been significantly influenced by anthropogenic activities, while Ni, Cr, V were attributable to geogenic sources.

  18. Rice seed toxicity tests for organic and inorganic substances

    USGS Publications Warehouse

    Wang, W.

    1994-01-01

    Plant seed toxicity tests can be used to evaluate hazardous waste sites and to assess toxicity of complex effluents and industrial chemicals. Conventional plant seed toxicity tests are performed using culture dishes containing filter paper. Some reports indicate that filter papers might interfere with the toxicity of inorganic substances. In this study, a plastic seed tray was used. Rice was used as the test species. A comparison of results in the literature and this study revealed that variation of test species, methods, exposure duration, and other factors may affect the test results. The results of this study showed that the order of decreasing toxicity of metal ions was Cu>Ag>Ni>Cd>Cr(VI)>Pb>Zn>Mn>NaF for rice. The test results were similar to those reported in the literature for lettuce Ag>Ni>Cd,Cu>Cr (VI)>Zn>Mn, millet Cu,Ni>Cd>Cr(VI)>Zn>Mn, and ryegrass Cu>Ni>Mn>>Pb>Cd>Zn> Al>Hg>Cr>Fe. The order of decreasing toxicity of organic herbicides was paraquat, 2,4-D>>glyphosate>bromacil.

  19. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    NASA Astrophysics Data System (ADS)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.

  20. Uptake and loss kinetics of Cd, Cr and Zn in the bivalves Potamocorbula amurensis and Macoma balthica: Effects of size and salinity

    USGS Publications Warehouse

    Lee, B.-G.; Wallace, W.G.; Luoma, S.N.

    1998-01-01

    Radiotracer studies were employed to quantitatively compare the biokinetics of uptake from the dissolved phase (influx rates) and loss (efflux) between 2 bivalves, Potamocorbula amurensis and Macoma balthica, and among the metals Cd, Cr and Zn. Effects of salinity on influx rate were evaluated in these 2 highly euryhaline species as were effects of animal size on uptake and loss. Metal speciation and biological attributes interacted to differentiate bioaccumulation processes among metals and between species. Influx rates of the 3 metals (??g g-1 [dry wt] d-1) increased linearly with dissolved metal concentrations. Influx rates of Zn in both clams were 3 to 4x those for Cd and 15x those for Cr. However, influx on the basis of free ion activities would be faster for Cd than for Zn. Relative influx rates among the metals were similar in the 2 bivalves. But, absolute influx rates of all 3 metals were 4 to 5x greater in P. amurensis than in M. balthica, probably because of differences in biological attributes (i.e. clearance rate or gill surface area). As salinity was reduced from 30 to 5 psu, the influx rate of Cd for P. amurensis increased 4-fold and that for M. balthica increased 6-fold, consistent with expected changes in speciation. However the influx rates of Cr in both clams also increased 2.4-fold over the same range, indicating a biological contribution to the salinity effect. Influx rates of Zn were not significantly affected by salinity. Weight specific metal influx rates (??g g-1 [dry wt] d-1) were negatively correlated with the tissue dry weight of the clams, but most rate constants determining physiological turnover of assimilated metals were not affected by clam size. The exception was the rate constant for Cd loss, which resulted in faster turnover in large M. balthica than in smaller clams. The rate constant of loss for P. amurensis increased in the order of Cd (0.011 d-1) < Zn (0.027 d-1) < Cr (0.048 d-1). This was different from the hierarchy of rate constants for M. balthica: Zn (0.012 d-1) < Cd (0.018 d-1) < Cr (0.024 d-1).

  1. Metal status in human endometrium: Relation to cigarette smoking and histological lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rzymski, Piotr, E-mail: rzymskipiotr@ump.edu.pl; Rzymski, Paweł; Tomczyk, Katarzyna

    Human endometrium is a thick, blood vessel-rich, glandular tissue which undergoes cyclic changes and is potentially sensitive to the various endogenous and exogenous compounds supplied via the hematogenous route. As recently indicated, several metals including Cd, Pb, Cr and Ni represent an emerging class of potential metalloestrogens and can be implicated in alterations of the female reproductive system including endometriosis and cancer. In the present study, we investigated the content of five metals: Cd, Cr, Ni, Pb and Zn in 25 samples of human endometrium collected from Polish females undergoing diagnostic or therapeutic curettage of the uterine cavity. The overallmore » mean metal concentration (analyzed using microwave induced plasma atomic emission spectrometry MIP-OES) decreased in the following order: Cr>Pb>Zn>Ni>Cd. For the first time it was demonstrated that cigarette smoking significantly increases the endometrial content of Cd and Pb. Concentration of these metals was also positively correlated with years of smoking and the number of smoked cigarettes. Tissue samples with recognized histologic lesions (simple hyperplasia, polyposis and atrophy) were characterized by a 2-fold higher Cd level. No relation between the age of the women and metal content was found. Our study shows that human endometrium can be a potential target of metal accumulation within the human body. Quantitative analyses of endometrial metal content could serve as an additional indicator of potential impairments of the menstrual cycle and fertility. - Highlights: • Cd, Cr, Ni, Pb and Zn are detectable in human endometrium. • Mean metal content in human endometrium decreases in Cr>Pb>Zn>Ni>Cd order. • Cigarettes smoking increases endometrial content of Cd and Pb. • Lesioned endometrial tissue was characterized by higher metal contents.« less

  2. [Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China].

    PubMed

    Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing

    2015-02-01

    In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.

  3. Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China.

    PubMed

    Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan

    2014-05-01

    Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.

  4. Heavy Metal Contamination and Ecological Risk Assessment of Swine Manure Irrigated Vegetable Soils in Jiangxi Province, China.

    PubMed

    Wang, Maolan; Liu, Ronghao; Lu, Xiuying; Zhu, Ziyi; Wang, Hailin; Jiang, Lei; Liu, Jingjing; Wu, Zhihua

    2018-05-01

    Heavy metal are often added to animal fodder and accumulate in the soils with swine manure. In this study, heavy metal (Cu, Pb, Cd, Zn, As and Cr) concentrations were determined in agricultural soils irrigated with swine manure in Jiangxi Province, China. Results showed that the average concentrations of Cu, Zn, As and Cr (32.8, 93.7, 21.3 and 75.8 mg/kg, respectively) were higher than the background values, while Pb and Cd (15.2 and 0.090 mg/kg, respectively) were lower than the background values. Contamination factors [Formula: see text] indicated that they were generally moderate for Cu, Zn, As and Cr and generally low for Pb and Cd. The contamination degree (C d ) was calculated to be 7.5-10.0 indicating a moderate degree of contamination. The geoaccumulation index (I geo ) indicated that the soils were unpolluted with Zn, Cd and Pb, while unpolluted to moderately pollute with Cr, Cu and As. The single ecological risk factor [Formula: see text] revealed that the six heavy metals all belonged to low ecological risk. The ecological risk indices suggested that all the sampling sites were at low risk level.

  5. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    PubMed

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  6. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.

    PubMed

    Chatterjee, S K; Bhattacharjee, I; Chandra, G

    2010-03-15

    The metal binding capacity of the thermophilic bacteria Geobacillus thermodenitrificans isolated from Damodar river, India was assessed using synthetic metal solutions and industrial waste water. Biosorption preference of dead biomass of G. thermodenitrificans for the synthetic metal solutions was in the following order Fe(+3)>Cr(+3)>Co(+2)>Cu(+2)>Zn(+2)>Cd(+2)>Ag(+)>Pb(+2). It reduced the concentration of Fe(+3) (91.31%), Cr(+3) (80.80%), Co(+2) (79.71%), Cu(+2) (57.14%), Zn(+2) (55.14%), Cd(+2) (49.02%), Ag(+) (43.25%) and Pb(+2) (36.86%) at different optimum pH within 720 min. When this strain was applied in the industrial waste water biosorption preference was in the following order Fe(+3)>Cr(+3)>Cd(+2)>Pb(+2)>Cu(+2)>Co(+2)>Zn(+2)>Ag(+) and concentrations reduced up to 43.94% for Fe(+3), 39.2% for Cr(+3), 35.88% for Cd(+2), 18.22% for Pb(+2), 13.03% for Cu(+2), 11.43% for Co(+2), 9.02% for Zn(+2) and 7.65% for Ag(+) within 120 min. (c) 2009 Elsevier B.V. All rights reserved.

  7. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong-Cheng; Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063; Fan, Yan

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibitmore » similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.« less

  8. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant.

    PubMed

    Zhou, Yun; Ning, Xun-an; Liao, Xikai; Lin, Meiqing; Liu, Jingyong; Wang, Jianghui

    2013-09-01

    The environmental risk of exposure to six heavy metals (Cu, Pb, Zn, Cr, Ni, and Cd) found in fly ashes from waste filter bags obtained from a steel plant was estimated based on the mineralogical compositions, total concentrations and speciation of the metals in the fly ashes. The results indicated that the fly ashes mainly consisted of hematite, magnetite, cyanite, spinel, coesite and amorphous materials. The concentrations of Zn and Pb were much higher than that of other materials. After Zn and Pb, Ni was present in the highest concentration, followed by Cu, Cr and Cd. Each heavy metal was distributed differently in fly ashes. The levels of Zn, Cd and Pb in the active fraction were very high, and ranged from 64.83 to 81.96%, 34.48 to 82.4% and 6.92 to 79.65% respectively, while Cu, Cr and Ni were mainly present in the residual fraction. The risk assessment code (RAC) values of fly ashes showed that the Zn and Cd present in the H3 sample presented a very high risk, with RAC values greater than 50%. The Cu present in the H3 sample, Cd in the H2 sample and Zn in the H4 and H5 samples presented a high risk. The Pb present in the H2 sample, Cd in the H4 sample, Ni in the H1 and H5 samples, and Zn in the H1 sample presented a medium risk. A low risk was presented by the Cu present in the H1, H2, H4 and H5 samples, the Pb in the H1, H3 and H5 samples, the Cd in the H1 and H5 samples, and the Ni in the H2 sample. No risk was presented by Cr in any sample. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  10. Spatial distribution and ecological risk assessment of heavy metal on surface sediment in west part of Java Sea

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Wardiatno, Yusli; Kawaroe, Mujizat; Mursalin; Fauzia Lestari, Dea

    2017-01-01

    The surface sediments were identified from west part of Java Sea to evaluate spatial distribution and ecological risk potential of heavy metals (Hg, As, Cd, Cr, Cu, Pb, Zn and Ni). The samples were taken from surface sediment (<0.5 m) in 26 m up to 80 m water depth with Eikman grab. The average material composition on sediment samples were clay (9.86%), sand (8.57%) and mud sand (81.57%). The analysis showed that Pb (11.2%), Cd (49.7%), and Ni (59.5%) exceeded of Probably Effect Level (PEL). Base on ecological risk analysis, {{Cd }}≤ft( {E_r^i:300.64} \\right) and {{Cr }}≤ft( {E_r^i:0.02} \\right) were categorized to high risk and low risk criteria. The ecological risk potential sequences of this study were Cd>Hg>Pb>Ni>Cu>As>Zn>Cr. Furthermore, the result of multivariate statistical analysis shows that correlation among heavy metals (As/Ni, Cd/Ni, and Cu/Zn) and heavy metals with Risk Index (Cd/Ri and Ni/Ri) had positive correlation in significance level p<0.05. Total variance of analysis factor was 80.04% and developed into 3 factors (eigenvalues >1). On the cluster analysis, Cd, Ni, Pb were identified as fairly high contaminations level (cluster 1), Hg as moderate contamination level (cluster 2) and Cu, Zn, Cr with lower contamination level (cluster 3).

  11. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    PubMed

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.

  12. Comparative effects of cadmium, zinc, arsenic and chromium on olfactory-mediated neurobehavior and gene expression in larval zebrafish (Danio rerio).

    PubMed

    Heffern, Kevin; Tierney, Keith; Gallagher, Evan P

    2018-05-28

    Studies have shown that olfactory-mediated behaviors that are critical to survival can be disrupted by exposure to certain metals. Polluted waterways often contain elevated levels of metals, yet only a subset have been characterized for their potential to cause olfactory toxicity. A larval zebrafish behavioral assay was developed to characterize concentration-response curves for zinc (Zn), hexavalent chromium (Cr), and arsenate (As) olfaction inhibition. Cadmium (Cd), an established olfactory toxicant, was used as a positive control. As expected, following a 24-hour exposure to Cd, we observed a reduced response to taurocholic acid (TCA), a substrate for ciliated olfactory sensory neurons (OSNs), thus validating the behavioral assay. Zn exposure similarly decreased the olfactory response toward TCA, (IC 50 : 36 μg/L and 76 μg/L, for Cd and Zn, respectively). The response towards a secondary odorant L-cysteine (Cys), a substrate for ciliated and microvillous OSNs, was significantly altered by both Cd and Zn exposure, although the response to Cys was not completely removed in Zn treated larvae, suggesting preferential toxicity towards ciliated OSNs. No significant changes in olfactory responses were observed following Cr and As exposures. Exposures to binary mixtures of Cd and Zn indicated that Zn had a protective effect against Cd toxicity at low Zn concentrations. QuantiGene (QDP) RNA analysis revealed Cd to be a potent inducer of metallothionein 2 (mt2) mRNA in zebrafish larvae, and Zn to be a weak mt2 inducer, suggesting a protective role of mt2 in Cd and Zn olfactory injury. By contrast, QDP analysis of eight other genes important in mitigating the effects of oxidative stress suggested an antioxidant response to Cd, but not Zn, As, and Cr suggesting that oxidative stress was not a primary mechanism of Zn-induced olfactory dysfunction. In summary, our study indicates that Zn inhibits zebrafish olfaction at environmental concentrations and may potentially mitigate Cd induced olfactory dysfunction when present in mixtures. The zebrafish behavioral trough assay incorporating the odorants L-cysteine and TCA is an effective assay to assess the effects of metals on olfactory function. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. [Distribution and pollution assessment of heavy metals in soil of relocation areas from the Danjiangkou Reservoir].

    PubMed

    Zhang, Lei; Qin, Yan-Wen; Zheng, Bing-Hui; Shi, Yao; Han, Chao-Nan

    2013-01-01

    The aim of this article is to explore the pollution level and potential ecological risk of heavy metals in soil of the relocation areas from the Danjiangkou Reservoir. The contents and spatial distribution of Cd, Pb, Cu, Zn, Cr and As in soil of the relocation areas from the Danjiangkou Reservoir were analyzed. The integrated pollution index and potential ecological risk index were used to evaluate the contamination degree and potential ecological risk of these elements. The results indicated that the average contents of Cd, Pb, Cu, Zn, Cr and As in the samples were 0.61, 23.11, 58.25, 22.65, 58.99 and 16.95 mg x kg(-1), respectively. Compared with the background value of soils from Henan province, all these 6 elements except Zn were enriched to some extent, especially Cd. Similar patterns were observed for the spatial distribution of Cu, Zn, and Pb. Compared with the contents of heavy metals in surface sediments of the typical domestic reservoirs, Cd and As in soil of the relocation areas from the Danjiangkou Reservoir were heavily accumulated. The correlation analysis showed that there were significant positive correlations among Pb, Cu, and Zn. And there was also significant positive correlation between Cr and Pb. In contrast, negative correlation was found between Cr and As. To sum up, the comprehensive assessment results showed that Cd was the primary element with high ecological risk.

  14. 40 CFR 413.74 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5 6.8 (d) Alternatively... days shall not exceed CN,T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total...

  15. 40 CFR 413.74 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5 6.8 (d) Alternatively... days shall not exceed CN,T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total...

  16. 40 CFR 413.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8 (d... exceed Ag 47 29 CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals...

  17. 40 CFR 413.24 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8 (d... exceed Ag 47 29 CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals...

  18. Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities

    PubMed Central

    Wu, Tingting; Bi, Xiangyang; Sun, Guangyi; Feng, Xinbin; Shang, Lihai; Zhang, Hua; He, Tianrong; Chen, Ji

    2017-01-01

    To investigate the impact of artisanal zinc smelting activities (AZSA) on the distribution and enrichment of trace metal(loid)s in street dust of a small city in Guizhou province, SW China, street dust samples were collected and analyzed for 10 trace metal(loid)s (Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg). Meanwhile, the health risks of local resident exposed to street dust were assessed. The result showed that the average concentrations of 10 elements were Zn (1039 mg kg−1), Pb (423 mg kg−1), Cr (119 mg kg−1), Cu (99 mg kg−1), As (55 mg kg−1), Ni (39 mg kg−1), Co (18 mg kg−1), Sb (7.6 mg kg−1), Cd (2.6 mg kg−1), and Hg (0.22 mg kg−1). Except Ni, Co, and Cr, other elements in street dust were obviously elevated compared to the provincial soil background. Pb, Zn, Cd, Sb, and Cu were at heavy to moderate contamination status, especially Pb and Zn, with maximums of 1723 and 708 mg kg−1, respectively; As and Hg were slightly contaminated; while Cr, Ni, and Co were at un-contaminated levels. Multivariate statistical analysis revealed AZSA contributed to the increase of Pb, Zn, Cd, Sb, As, and Hg, while, natural sources introduced Ni, Co, Cr, and Cu. The health risk assessment disclosed that children had higher non-carcinogenic risk than those found in adults, and As has hazardous index (HI) higher than 1 both for children and adults, while Pb and Cr only had HIs higher than 1 for children, other elements were relatively safe. For carcinogenic risks, the major concern was As, then a lesser concern for Cr. The study showed that although the scale of AZSA was small, the contamination of heavy metal(loid)s in street dust and associated health risks were severe. PMID:28841170

  19. Health risk assessment of hazardous metals for population via consumption of seafood from Ogoniland, Rivers State, Nigeria; a case study of Kaa, B-Dere, and Bodo City.

    PubMed

    Nkpaa, K W; Patrick-Iwuanyanwu, K C; Wegwu, M O; Essien, E B

    2016-01-01

    This study was designed to investigate the human health risk through consumption of seafood from contaminated sites in Kaa, B-Dere, and Bodo City all in Ogoniland. The potential non-carcinogenic health risk for consumers were investigated by assessing the estimated daily intake and target hazard quotients for Cr, Cd, Zn, Pb, Mn, and Fe while carcinogenic health effect from Cr, Cd, and Pb was also estimated. The estimated daily intake from seafood consumption was below the threshold values for Cr, Mn, and Zn while they exceeded the threshold for Cd, Pb, and Fe. The target hazard quotients for Zn and Cr were below 1. Target hazard quotients values for Cd, Pb, Mn, and Fe were greater than 1 except for Fe level in Liza falcipinis from Kaa. Furthermore, estimation of carcinogenic risk for Cr in all samples under study exceeded the accepted risk level of 10E-4. Also, Cd carcinogenic risk level for L. falcipinis and Callinectes pallidus collected from B-Dere and C. pallidus collected from Bodo City was 1.1E-3 which also exceeded the accepted risk level of 10E-4 for Cd. Estimation of carcinogenic risk for Pb was within the acceptable range of 10E-4. Consumers of seafood from these sites in Ogoniland may be exposed to metal pollution.

  20. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China.

    PubMed

    Bai, L Y; Zeng, X B; Su, S M; Duan, R; Wang, Y N; Gao, X

    2015-04-01

    Greenhouse soils and arable (wheat field) soil samples were collected to identify the effects of greenhouse cultivation on the accumulation of six heavy metals (Cd, Cu, Zn, Pb, Cr, and Ni) and to evaluate the likely sources responsible for heavy metal accumulation in the irrigated desert soils of Wuwei District, China. The results indicated that the mean concentrations of Cd, Cu, Zn, Pb, Cr, and Ni were 0.421, 33.85, 85.31, 20.76, 53.12, and 28.59 mg kg(-1), respectively. The concentrations of Cd, Cu, and Zn in greenhouse soils were 60, 23, and 14% higher than those in arable soils and 263, 40, and 25% higher than background concentrations of natural soils in the study area, respectively. These results indicated that Cd, Cu, and Zn accumulation occurred in the greenhouse soils, and Cd was the most problematically accumulated heavy metal, followed by Cu and Zn. There was a significant positive correlation between the concentrations of Cd, Cu, and Zn in greenhouse soils and the number of years under cultivation (P < 0.05). Greenhouse cultivation had little impact on the accumulation of Cr, Ni, or Pb. Correlation analysis and principal component analysis suggested that the accumulation of Cd, Cu, and Zn in greenhouse soils resulted mainly from fertilizer applications. Our results indicated that the excessive and long-term use of fertilizers and livestock manures with high heavy metal levels leads to the accumulation of heavy metals in soils. Therefore, rational fertilization programs and reductions in the concentrations of heavy metals in both fertilizers and manure must be recommended to maintain a safe concentration of heavy metals in greenhouse soils.

  1. Biomonitoring of Trace Metals in the Keban Dam Reservoir (Turkey) Using Mussels (Unio elongatulus eucirrus) and Crayfish (Astacus leptodactylus).

    PubMed

    Varol, Memet; Sünbül, Muhammet Raşit

    2018-01-03

    Freshwater mussels and crayfish are commonly used as biomonitors of trace metals. In the present study, the concentrations of ten metals were determined in mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus) collected from the Keban Dam Reservoir in Turkey. The significant spatial differences in concentrations of studied metals except As in mussels were not found. However, Co, Cr, Cu, and Zn concentrations in mussels and As, Co, Cu, Fe, Pb, and Zn concentrations in crayfish showed significant seasonal differences. As, Cd, and Mn levels in mussels were about nine times higher than those in crayfish. The concentrations of Cd, Cr, Cu, Pb, Zn, and inorganic As in crayfish and mussels were lower than maximum permissible levels. When compared with other biomonitoring studies using mussels and crayfish, high concentrations of As, Cd, Co, Cr, and Ni in mussels and Cr and Ni in crayfish were observed due to lithogenic sources and anthropogenic activities in the basin. Bioconcentration factor values of Fe, Mn, Cd, and Zn in mussels and Zn, Cu, Fe, and Co in crayfish were > 1000, which indicates that both U. e. eucirrus and A. leptodactylus have potential to bioaccumulate these metals. Therefore, attention should be paid to mussels and crayfish from ecological and human health perspective, because they are potential vectors of metals to higher trophic levels.

  2. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Salmanzadeh, Mahdiyeh

    2012-08-15

    50 street dust samples from four major streets in eastern and southern Tehran, the capital of Iran, were analyzed for metal pollution (Cu, Cr, Pb, Ni, Cd, Zn, Fe, Mn and Li). Hakanson's method was used to determine the Risk Index (RI) and ecological risks. Amongst these samples, 21 were also analyzed for polycyclic aromatic hydrocarbons (PAHs). Correlation, cluster and principal component analyses identified probable natural and anthropogenic sources of contaminants. The dust had elevated concentrations of Pb, Cd, Cu, Cr, Ni, Zn, Fe and PAHs. Enrichment factors of Cu, Pb, Cd and Zn showed that the dust is extremely enriched in these metals. Multivariate statistical analyses revealed that Cu, Pb, Zn, Fe and PAHs and, to a lesser extent, Cr and Ni have common anthropogenic sources. While Mn and Li were identified to have natural sources, Cd may have different anthropogenic origins. All samples demonstrated high ecological risk. Traffic and related activities, petrogenic and pyrogenic sources are likely to be the main anthropogenic sources of heavy metals and PAHs in Tehran dust. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2017-07-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  4. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2018-06-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  5. Ferti-irrigational impact of sugar mill effluent on agronomical characteristics of Phaseolus vulgaris (L.) in two seasons.

    PubMed

    Kumar, Vinod; Chopra, A K

    2014-11-01

    Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P < 0.01) changes in the soil parameters, viz., electrical conductivity (EC), pH, organic carbon (OC), sodium (Na(+)), potassium (K(+)), calcium (Ca(2+)), magnesium (Mg(2+)), total Kjeldahl nitrogen (TKN), phosphate (PO4 (3-)), sulfate (SO4 (2-)), ferrous (Fe(2+)), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.

  6. Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction.

    PubMed

    Qiu, Jianhao; Zhang, Xiong-Fei; Zhang, Xingguang; Feng, Yi; Li, Yuxin; Yang, Lvye; Lu, Haiqiang; Yao, Jianfeng

    2018-05-05

    A novel and highly efficient photocatalyst of Cd 0.5 Zn 0.5 S@ZIF-8 nanocomposite has been developed by a facile self-assembly strategy. This is the first report on the application of Cd x Zn 1-x S and metal-organic framework (MOF) nanocomposite as photocatalysts for the reduction of Cr(VI). The resulting Cd 0.5 Zn 0.5 S@ZIF-8 exhibited higher photocatalytic activity than that of pristine Cd 0.5 Zn 0.5 S and ZIF-8. Particularly, the CZS@Z60 composite with 60 wt% of ZIF-8 exhibited a photocatalytic activity that is about 1.6 times as high as that of Cd 0.5 Zn 0.5 S. The dominant reason for the improved photocatalytic reduction potential is proved to be the newly-formed interfacial SZn bonds that firmly connect Cd 0.5 Zn 0.5 S and ZIF-8 and substantially improve the separation efficiency of photo-excited electrons and holes. The newly-formed chemical bonds are confirmed by XPS analyses, and the prolonged lifetime of photo-excited electrons is evidenced by the electrochemical measurement of photocurrent, which shows that the photocurrent on Cd 0.5 Zn 0.5 S@ZIF-8 is much higher than that of Cd 0.5 Zn 0.5 S and ZIF-8. This study clearly demonstrates that the MOF-based composite nanomaterials hold great promises for applications in the field of environmental remediation and for design of novel photocatalytic materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 40 CFR 413.14 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8... monitoring days shall not exceed CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29...

  8. 40 CFR 413.14 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb .6 .4 Cd 1.2 .7 Total metals 10.5 6.8... monitoring days shall not exceed CN, T 74 39 Cu 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29...

  9. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    PubMed

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China.

    PubMed

    Xu, Li; Wang, Tieyu; Wang, Jihua; Lu, Anxiang

    2017-04-01

    The occurrence, speciation and transport of heavy metals in 9 coastal rivers from watershed of Laizhou Bay were investigated. The largest dissolved concentrations of Cd, Cu and Zn in water were 6.26, 2755.00, 2076.00 μg/L, respectively, much higher than several drinking water guidelines. The greatest concentrations of Cu, Zn, Cr, Ni, Pb and Cd in sediments were 1462, 1602, 196, 67.2, 63.5 and 1.41 mg/kg, dw, respectively. Correlation and principal component analysis was also conducted to determine the extent between the concentrations of metals in water and sediment, as well as relevant parameters. Throughout the river stretch, most of Cr Zn, Cr, Ni and Pb bound to residual fraction, however, Cd was preferentially bound to the exchangeable phase. Among the 9 rivers, Yellow river account for 72.5%, 67.5%, 55.4%, 59.4%, 79.4% and 85.5% for Cr, Ni, Cu, Zn. Cd and Pb, respectively. The combined potential ecological risk indexes were used to evaluate potential risks. The majority of sampling sites from watershed of Laizhou Bay have moderate ecological risk from metals. The government should pay more attention to the ecological risk of river ecosystem which flow to Laizhou Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Geo-Accumulation Indices of Heavy Metals in Soil and Groundwater of Kanpur, India Under Long Term Irrigation of Tannery Effluent.

    PubMed

    Dotaniya, M L; Meena, V D; Rajendiran, S; Coumar, M Vassanda; Saha, J K; Kundu, S; Patra, A K

    2017-05-01

    Soil and groundwater from long-term (>50 years) tannery effluent irrigated areas of Kanpur were analyzed and significant buildup of heavy metals such as Cr, Ni, Cd, Pb, Zn, and As in the range of 252-972, 23-30, 2.3-14.1, 23.7-58.8, 138-338 and 6.8-11 mg kg -1 , respectively in soil was found. Few groundwater samples in the effluent irrigated areas also exhibited high Cr concentration above the permissible limit of United States Environmental Protection Agency. The tannery effluents contained 1.53-57.3 ppm Cr, 0-0.12 ppm Ni, 0-0.02 ppm Cd, 0-0.07 ppm Pb, 0-0.48 ppm Zn and 0-0.03 ppm As. The Geo-accumulation index (I geo ) revealed that soil samples were unpolluted to moderately polluted with Cu, Ni, Zn, Pb and As; moderately polluted in case of Cd; and heavily to extremely polluted by Cr.

  12. Trace Element Accumulation and Tissue Distribution in the Purpleback Flying Squid Sthenoteuthis oualaniensis from the Central and Southern South China Sea.

    PubMed

    Wu, Yan Yan; Shen, Yu; Huang, Hui; Yang, Xian Qing; Zhao, Yong Qiang; Cen, Jian Wei; Qi, Bo

    2017-01-01

    Sthenoteuthis oualaniensis is a species of cephalopod that is becoming economically important in the South China Sea. As, Cd, Cr, Cu, Hg, Pb, and Zn concentrations were determined in the mantle, arms, and digestive gland of S. oualaniensis from 31 oceanographic survey stations in the central and southern South China Sea. Intraspecific and interspecific comparisons with previous studies were made. Mean concentrations of trace elements analyzed in arms and mantle were in the following orders: Zn > Cu > Cd > Cr > As > Hg. In digestive gland, the concentrations of Cd and Cu exceed that of Zn. All the Pb concentrations were under the detected limit.

  13. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.

    PubMed

    Kuo, S; Lai, M S; Lin, C W

    2006-12-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.

  14. Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs

    PubMed Central

    Kuklina, Iryna; Kouba, Antonín; Buřič, Miloš; Horká, Ivona; Ďuriš, Zdeněk; Kozák, Pavel

    2014-01-01

    To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše) and one contaminated site (Darkovské moře) in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr), while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb). The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys. PMID:24738051

  15. Effect of Supplementing Organic Forms of Zinc, Selenium and Chromium on Performance, Anti-Oxidant and Immune Responses in Broiler Chicken Reared in Tropical Summer.

    PubMed

    Rao, S V Rama; Prakash, B; Raju, M V L N; Panda, A K; Kumari, R K; Reddy, E Pradeep Kumar

    2016-08-01

    Two experiments were conducted to study the effect of supplementing organic forms of zinc (Zn), selenium (Se) and chromium (Cr) on performance, anti-oxidant activities and immune responses in broiler chickens from 1 to 21 days of age, which were reared in cyclic heat-stressed condition under tropical summer in open-sided poultry house. A total of 200 (experiment I) and 450-day-old (experiment II) broiler male chicks (Cobb 400) were randomly distributed in stainless steel battery brooders (610 mm × 762 mm × 475 mm) at the rate of five birds per pen. A maize-soybean meal-based control diet (CD) containing recommended (Vencobb 400, Broiler Management Guide) concentrations of inorganic trace minerals and other nutrients was prepared. The CD was supplemented individually with organic form of selenium (Se, 0.30 mg/kg), chromium (Cr, 2 mg/kg) and zinc (Zn, 40 mg/kg) in experiment I. In experiment II, two concentrations of each Zn (20 and 40 mg/kg), Se (0.15 and 0.30 mg/kg) and Cr (1 and 2 mg/kg) were supplemented to the basal diet in 2 × 2 × 2 factorial design. A group without supplementing inorganic trace minerals was maintained as control group in both experiments. Each diet was allotted randomly to ten replicates in both experiments and fed ad libitum from 1 to 21 days of age. At 19th day of age, blood samples were collected for estimation of anti-oxidant and immune responses. Supplementation of Se, Cr and Zn increased (P < 0.05) body mass gain (BMG) and feed intake compared to those fed the CD in experiment I. The feed efficiency (FE) in Cr-fed group was higher (P < 0.05) compared to the CD-fed group. Se or Cr supplementation reduced lipid peroxidation (LP) compared to broilers fed the CD. In experiment II, BMG was not affected (P > 0.05) by the interaction between levels of Zn, Se and Cr in broiler diet. The FE improved (P < 0.05) with supplementation of the trace minerals tested at both concentrations except in group fed 40 mg Zn, 0.5 mg Se and 1 mg Cr/kg. Reduction in lipid peroxidation (LP, P < 0.05) and increased (P < 0.05) activity of superoxide dismutase were observed in broiler fed organic Zn, Se and Cr compared to the CD-fed group. The dietary concentrations of Zn, Se and Cr did not influence (P > 0.05) the immune responses (Newcastle disease titre and cell-mediated immune response to phytohaemagglutinin-P) in both the experiments. Based on the results, it is concluded that supplementation of organic form of Se, Cr and Zn (0.30, 2 and 40 mg/kg, respectively) either alone or in combination significantly improved performance and anti-oxidant responses (reduced LP and increased superoxide dismutase) in commercial broiler chicks (21 days of age) reared in cyclic heat stress conditions in open-sided poultry house during summer.

  16. Spatial Distribution, Chemical Fraction and Fuzzy Comprehensive Risk Assessment of Heavy Metals in Surface Sediments from the Honghu Lake, China

    PubMed Central

    Xiao, Minsi; Zhang, Jingdong; Liu, Chaoyang; Qiu, Zhenzhen; Cai, Ying

    2018-01-01

    Spatial concentrations and chemical fractions of heavy metals (Cr, Cu, Pb, Zn and Cd) in 16 sampling sites from the Honghu Lake were investigated using an atomic absorption spectrophotometer and optimized BCR (the European Community Bureau of Reference) three-stage extraction procedure. Compared with the corresponding probable effect levels (PELs), adverse biological effects of the studied five sediment metals decreased in the sequence of Cr > Cu > Zn > Pb > Cd. Geo-accumulation index (Igeo) values for Cr, Cu, Pb and Zn in each sampling site were at un-contamination level, while the values for Cd varied from un-contamination level to moderate contamination level. Spatially, the enrichment degree of Cd in lower part of the South Lake, the west part of the North Lake and the outlet were higher than the other parts of Honghu Lake. For metal chemical fractions, the proportions of the acid-extractable fraction of five metal contents were in the descending order: Cd, Cu, Zn, Pb and Cr. Cd had the highest bioaccessibility. Being the above indexes focused always on heavy metals’ total content or chemical fraction in deterministic assessment system, which may confuse decision makers, the fuzzy comprehensive risk assessment method was established based on PEI (Potential ecological risk index), RAC (Risk assessment code) and fuzzy theory. Average comprehensive risks of heavy metals in sediments revealed the following orders: Cd (considerable risk) > Cu (moderate risk) > Zn (low risk) > Pb > Cr. Thus, Cd and Cu were determined as the pollutants of most concern. The central part of South Honghu Lake (S4, S5, S6, S9, S12 and S14), east part of the North Honghu Lake (S1) and outlet of outlet of the Honghu Lake (S10) were recommended as the priority control areas. Specifically, it is necessary to pay more attention to S1, S4, S5, S6, S9 and S16 when decision making for their calculated membership values (probabilities) of adjacent risk levels quite close. PMID:29373483

  17. Heavy Metals (Cd, Cu, Cr, Pb and Zn) in Meretrix meretrix Roding, Water and Sediments from Estuaries in Sabah, North Borneo

    ERIC Educational Resources Information Center

    Abdullah, Mohd. Harun; Sidi, Jovita; Aris, Ahmad Zaharin

    2007-01-01

    Concentrations of heavy metals (Cd, Cu, Cr, Pb and Zn) in tissues of Meretrix meretrix Roding (M. meretrix R.), water and sediments from two estuaries were determined. One estuary is located in an urban area of Kota Kinabalu (Likas estuary) and the other in a rural district of Kota Belud (Kota Belud estuary), where both are in Sabah, North of…

  18. Preliminary assessment of heavy metals in water, sediment and macrophyte ( Lemna minor) collected from Anchar Lake, Kashmir, India

    NASA Astrophysics Data System (ADS)

    Showqi, Irfana; Lone, Farooq Ahmad; Naikoo, Mehrajuddin

    2018-06-01

    Water samples, sediments and free floating macrophytic plant, Lemna minor specimens were collected from five designated sites in Anchar lake (Srinagar, J&K, India) to assess its heavy metal (Cu, Cr, Zn, Ni, Cd, Pb) load and changes on seasonal basis. The concentration of heavy metals was determined using atomic absorption spectroscopy. Most of the samples were found within limits of maximum permissible concentrations as recommended by WHO (Guidelines for drinking water quality, pp 491-493, 2006). During all the seasons, highest concentration of all heavy metals (Cu, Cr, Zn, Ni, Cd, Pb) was recorded at highly polluted sites of the lake viz. near agricultural fields (S1), near settlements (S3) and SKIMS (S4). These sites received huge agrochemical run-off from the surrounding agricultural fields, solid and liquid wastes from the nearby catchment areas and effluents from Sher-e-Kashmir Institute of Medical Sciences (SKIMS) compared to control site lake centre (S5). Furthermore, most of the metals in water and sediment were found with highest concentration during autumn (Viz., Cu-1.5 ppm; Zn-0.38 ppm; Ni-1.89 ppm; Pb-0.84 ppm in water and Cu-26.9 ppm; Zn-13.6 ppm; Pb-4.33 ppm in sediment) and summer (Viz., Cr-0.68 ppm in water and Ni-4.8 ppm; Cd-2.6 ppm; Cr-8.01 ppm in sediment) seasons. Also in Lemna minor plant highest concentration was observed during summer season (Cu-29.09 ppm; Zn-19.11 ppm; Ni-5.7 ppm; Cd-1.34 ppm; Cr-9.18 ppm and Pb-9.77 ppm). From these observations, it was found that the sources of heavy metals in Anchar lake were both natural and anthropogenic ones. This study recommended that continuous monitoring of heavy metals (Viz; Cu, Cr, Zn, Ni, Cd and Pb) in water, sediment and other aquatic biota of Anchar lake should be directed to protection of ecological status of the lake and its surrounding area.

  19. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India.

    PubMed

    Manjula, Menon; Mohanraj, R; Devi, M Prashanthi

    2015-05-01

    Heavy metals continue to remain as a major environmental concern in spite of emission control measures. In this study, we analyzed the concentrations of heavy metals (Fe, Cr, Mn, Ni, Cu, Zn, and Cd) in the feathers of 11 species of birds collected from urban and rural areas of Tiruchirappalli, Southern India. Metal concentrations followed the order: Fe > Cu > Zn > Cr > Mn > Ni > Cd. Irrespective of sample locations, heavy metals such as Fe, Cr, Ni, Zn, and Cu were detected in high concentrations, while Cd and Mn were observed in lower concentrations. In contrary to our assumption, there were no statistically significant intraspecific and urban-rural differences in the metal concentrations except for Zn. Pairwise comparisons among species irrespective of metal type showed significant interspecific differences between Acridotheres tristis and Centropus phasianinus, A. tristis and Milvus migrans, C. phasianinus and M. migrans, M. migrans and Eudynamys scolopaceus, and Psittacula krameri and E. scolopaceus. Principal component analysis carried out for urban data extracted Ni, Mn, Zn, Fe, and Cu accounting for 48% variance implying dietary intake and external contamination as important sources for metals. In the rural, association of Zn, Cd, Ni, and Cr suggests the impact of metal fabrication industries and leather tanning operations.

  20. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  1. The effects of railway transportation on the enrichment of heavy metals in the artificial soil on railway cut slopes.

    PubMed

    Chen, Zhaoqiong; Wang, KeXiu; Ai, Ying Wei; Li, Wei; Gao, Hongying; Fang, Chen

    2014-02-01

    Heavy metal contamination in the artificial soils on the railway cut slopes may have great influence on the revegetation of the cut slopes. The purpose of this study was to assess the variation of heavy metal contamination levels with railway operation time and analyze their possible resources. A total of 100 soil samples from four cut slopes, which were affected by railway transportation for different years, were analyzed for metal pollution (Cd, Pb, Cr, Cu, Zn, Fe). The concentrations of Cd, Pb showed increasing trend with increasing operation time of railways, while such trend was not found in Cr, Cu, Zn, Fe. According to the soil quality standard of China, Cd was considered to have considerable contamination, while Pb has less, but Cr, Cu, Zn, Fe have none. Moreover, cadmium exhibited remarkably higher levels rather than those reported in other studies. Enrichment factors and ecological index showed that Cd and Pb showed a moderate enrichment and a considerable ecological risk in most of the soil samples. The results of descriptive statistic, principal component analysis, cluster analysis and correlation analysis were totally consistent with each other. Their results revealed that Cr, Cu, Zn and Fe had common origins, and they may come from natural resources. While Cd and Pb were significantly influenced by railway transportation, leaked cargos, fuel combustion, the use of lubricate oils and sleeper impregnation oils during railway transportation may be their main resources.

  2. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    PubMed Central

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  3. [Spatial distribution and ecological risk assessment of heavy metals in the estuaries surface sediments from the Haihe River Basin].

    PubMed

    Lü, Shu-Cong; Zhang, Hong; Shan, Bao-Qing; Li, Li-Qing

    2013-11-01

    It is well known that the rivers in the Haihe River Basin have been seriously polluted. However, what is the present condition of the estuary pollution and how the polluted inland rivers affect the estuary areas are not clear. 10 main estuaries of the Haihe River Basin were selected to measure the contents of typical heavy metals (Pb, Cu, Zn, Cd, Cr and Ni) in the surface sediments and to analyze the spatial distribution of these heavy metals. The potential ecological risk index was used to assess the ecological risk of the six heavy metals in the estuaries. The results showed that the contents of Pb, Cu, Zn, Cd, Cr and Ni in the surface sediments of the 10 estuaries were all higher than their background values in the main local soil types and the contents of Cu, Ni and Pb were 2.3-2.6 times as high as their background values, which indicated that the estuaries were contaminated by the six heavy metals. The results also indicated that the contents of the six heavy metals in surface sediment varied from one estuary to another. The four heavy metals of Cr, Cu, Ni and Zn had bigger spatial differences than Pb and Cd in the contents in sediment from different estuaries. The contents of Cr, Cu, Ni and Zn in sediment were higher in the estuaries of the Yongdingxin River, Ziyaxin River and Beipai River than those in the other estuaries, and there were significant correlations between each other (R(Cu-Zn) = 0.891, R(Cu-Cr) = 0.927, R(Cu-Ni) = 0.964, R(Zn-Cr) = 0.842, R(Zn-Ni) = 0.939, and R(Cr-Ni) = 0.879, P < 0.01), which indicated that they possibly came from the same sources. Moreover, the contents of Cr, Cu, Ni and Zn in sediment also had significant correlations with the populations of sub-river basins with correlation coefficients of 0.855, 0.806, 0.867 and 0.855 (P < 0.01), respectively. The contents of Cd and Pb had smaller spatial differences in sediment from different estuaries than the other heavy metals, with the values ranged 23.3-95.8 mg x kg(-1) and 0.051-0.200 mg x kg(-1). Contents of the two heavy metals had no significant correlation with the other heavy metals or with the populations of sub-river basins, indicating that Cd and Pb had little connection with the in-land polluted sources. The results of ecological risk assessment showed that estuaries of the Haihe River Basin had the potential ecological risk at lower levels (RI were 33.7-116) and the most important contaminating element was Cd with a middle-level potential ecological risk (Er(i) were 18.0-48.9).

  4. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    PubMed

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd

  5. Viability of a nanoremediation  process in single or multi-metal(loid) contaminated soils.

    PubMed

    Gil-Díaz, M; Pinilla, P; Alonso, J; Lobo, M C

    2017-01-05

    The effectiveness of single- and multi-metal(loid) immobilization of As, Cd, Cr, Pb and Zn using different doses of nanoscale zero-valent iron (nZVI) was evaluated and compared in two different soils, a calcareous and an acidic one. The effectiveness of nZVI to immobilize metal(loid)s in soil strongly depended on the metal characteristics, soil properties, dose of nZVI and presence of other metal(loid)s. In the case of single contamination, this nanoremediation strategy was effective for all of the metal(loid)s studied except for Cd. When comparing the two soils, anionic metal(loid)s (As and Cr) were more easily retained in acidic soil, whereas cationic metal(loid)s (Cd, Pb and Zn), were immobilized more in calcareous soil. In multi-metal(loid) contaminated soils, the presence of several metal(loid)s affected their immobilization, which was probably due to the competitive phenomenon between metal(loid) ions, which can reduce their sorption or produce synergistic effects. At 10% of nZVI, As, Cr and Pb availability decreased more than 82%, for Zn it ranged between 31 and 75% and for Cd between 13 and 42%. Thus, the application of nZVI can be a useful strategy to immobilize As, Cr, Pb and Zn in calcareous or acidic soils in both single- or multi-metal(loid) contamination conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Li, Huiming; Wang, Jinhua; Wang, Qin'geng; Qian, Xin; Qian, Yu; Yang, Meng; Li, Fengying; Lu, Hao; Wang, Cheng

    2015-02-01

    A four-step sequential extraction procedure was used to study the chemical fractionation of As and heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in fine particulate matter (PM2.5) collected from Nanjing, China. The mass concentrations of most PM2.5 samples exceeded the 24 h standard (75 μg/m3) recommended by the new national ambient air quality standard of China. The most abundant elements were Fe, Zn and Pb, while As and Cd were present at the lowest concentrations. As, Cd, Cu, Mn, Pb and Zn were mostly present in the two mobile fractions, including the soluble and exchangeable fraction (F1), and carbonates, oxides and reducible fraction (F2). Fe had the highest proportion present in the residual fraction (F4). Relatively high proportions of the metals Ni and Cr were present in the oxidizable and sulfidic fraction (F3). High proportions of Zn, As and Cu and lower proportions of Cd, Cr and Fe were present in the potentially mobile phases. The enrichment factor, contamination factor and risk assessment code were calculated to analyze the main sources and assess the environmental risks of the metals in PM2.5. The carcinogenic risks of As, Cd, Ni and Pb were all lower than the accepted criterion of 10-6, whereas the carcinogenic risks of Cr for children and As and Cr for adults were higher than 10-6. The non-carcinogenic health risk of As and heavy metals because of PM2.5 exposure for children and adults were lower than but close to the safe level of 1.

  7. Effects of heavy metals identified in Chascomús shallow lake on the endocrine-reproductive axis of pejerrey fish (Odontesthes bonariensis).

    PubMed

    Gárriz, Ángela; Del Fresno, Pamela S; Carriquiriborde, Pedro; Miranda, Leandro A

    2018-06-22

    Some heavy metals related to human activities were measured in the water of Chascomús lake. The maximum concentrations were: 0.23 μg/L for Cd, 4.28 μg/L for Cr, 22.09 μg/L for Cu, 2.49 μg/L for Ni, 3.24 μg/L for Pb and 210.76 μg/L for Zn. The values of Cd, Cr, Cr, Pb and Zn were above the Argentine National Guidelines for the Protection of the Aquatic life. The analysis of gonadal condition of pejerrey fish (Odontesthes bonariensis) from this lake did not revealed any reproductive damages. However, exposures with environmental concentrations of Cd, Cr, Cu and Zn under laboratory conditions of pejerrey males (14 days), caused a significant increase of the expression of the three variants of gnrh in the brain (within Cd exposure) and a decrease in cyp19a1b mRNA (within Cu exposure). Furthermore, at pituitary level, a decrease in fshb transcript levels was observed in the fish exposed to Cd and Cr and i a decrease in the expression of both gonadotropin receptors at gonadal level in Zn exposure. Moreover, the gonads of the fish exposed to all the tested metals suffered structural damages showing shortness of the spermatic lobules, fibrosis, testis ova and the presence of piknotic cells. All these findings alert that heavy metals pollution affects the expression of key reproductive genes and gonadal structure of fish species that represent the predominant group of organisms and are considered sentinel species in the aquatic ecosystems. Copyright © 2018. Published by Elsevier Inc.

  8. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr3+ in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hu, Dong-Cheng; Fan, Yan; Si, Chang-Dai; Wu, Ya-Jun; Dong, Xiu-Yan; Yang, Yun-Xia; Yao, Xiao-Qiang; Liu, Jia-Cheng

    2016-09-01

    A novel series of Zn/Cd coordination polymers based on H3L, namely, [Zn2(HL)2(bipy)2(H2O)6]n (1), [Zn(HL)(phen)]n (2), [Cd3L2(bbi)3]n (3), [Zn3L2(bbi)3]n (4) [(H3L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4‧-bipyridine, phen =1,10-phenanthroline, bbi =1,1‧-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibit similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (63.8.102)2(63)2(64.8.10). In particular, compound 3 exhibited a high sensitivity for Cr3+ in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr3+.

  9. Heavy metals bioconcentration from soil to vegetables and appraisal of health risk in Koka and Wonji farms, Ethiopia.

    PubMed

    Eliku, Temesgen; Leta, Seyoum

    2017-04-01

    Heavy metal accumulation in agricultural crops has grown a major concern globally as a result of a significant health impact on human. The quantification of heavy metals (Cd, Pb, Cr, Zn, Cu, and Ni) in the soil and vegetables at two sites (Koka and Wonji Gefersa) was done using flame atomic absorption spectrophotometer. The mean concentrations of heavy metals in vegetable fields' soil samples obtained from Koka were higher for Pb, Cr, Zn, Cu, and Ni. The overall results of soil samples ranged 0.52-0.93, 13.6-27.3, 10.0-21.8, 44.4-88.5, 11.9-30.3, and 14.7-34.5 mg kg -1 for Cd, Pb, Cr, Zn, Cu, and Ni, respectively. The concentrations of heavy metals were maximum for Cd (0.41 ± 0.03 mg kg -1 ), Pb (0.54 ± 0.11 mg kg -1 ), Zn (14.4 ± 0.72 mg kg -1 ), Cu (2.84 ± 0.27 mg kg -1 ), and Ni (1.09 ± 0.11 mg kg -1 ) in Cabbage and for Cr (2.63 ± 0.11 mg kg -1 ) in green pepper. The result indicated that Cd has high transfer factor value and Pb was the lowest. The transfer pattern for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Cr > Ni > Pb. Among different vegetables, cabbage showed the highest value of metal pollution index and bean had the lowest value. Hazard index of all the vegetables was less than unity; thus, the consumption of these vegetables is unlikely to pose health risks to the target population.

  10. Hybride ZnCdCrO embedded aminated polyethersulfone nanocomposites for the development of Hg2+ ionic sensor

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed M.; Alenazi, Noof A.; Hussein, Mahmoud A.; Alam, M. M.; Alamry, Khalid A.; Asiri, Abdullah M.

    2018-06-01

    In this current study, ‑NH2 functions are introduced on Polyethersulfone (PES) by a nitration reaction then a reduction reaction to fabricate PES-NH2 materials with a better hydrophilicity property. The structure of PES-NH2 was first confirmed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform infrared (FT-IR) spectroscopy. Then, the resultant polymer was doped with different concentrations of ZnCdCrO nanocomposites. The polymeric nanocomposites materials were characterized using FT-IR, x-ray powder diffraction (XRD), thermal analysis (TA), and energy dispersive x-ray (EDX) spectroscopy while the morphology was investigated using scanning electron microscopy (SEM). The performance PES-NH2-ZnCdCrO nanocomposites was investigated by sensor-probe towards the selective detection of Hg2+. The results showed the excellent thermal properties of PES-NH2-ZnCdCrO nanocomposites in comparison with non-doped polymer (PES-NH2). Here, Hg2+ ionic sensor was prepared using a flat glassy carbon electrode (GCE) coated with a thin-layer of PES-NH2-ZnCdCrO nanocomposites (20%) with nafion conducting nafion binder (5%). To evaluate the analytical performances of Hg2+ ion sensor, a calibration curve was drawn by plotting the current versus concentration. The sensitivity (0.6566 μAμM-1 cm‑2) and detection limit (14.46 ± 0.72 pM) are calculated using the slope of the calibration curve. It was determined the linearity (r2 = 0.9941) over the large linear dynamic range (LDR) (0.1 nM to 0.1 mM). Thus, this research approach might be an important route to the selective detection of environmental toxin (Hg2+ cation) from the aqueous system in broad scales for the safety of health care, environmental, and aquatic fields.

  11. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    PubMed

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. [Analysis and assessment of atmospheric pollution based on accumulation characterization of heavy metals in Platanus acerifolia leaves].

    PubMed

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Wang, Cheng-Run

    2014-03-01

    The present work was aimed to evaluate the heavy metal pollution in the atmosphere of Huainan City. We measured and clustered the accumulation of six heavy metals in Platanus acerifolia leaves in 20 sampling fields with six types of environmental conditions, and analyzed the EF value of heavy metal enrichment in the leaves. The results showed that the accumulations in Platanus acerifolia leaves varied according to different types of metals, following the order of Zn > Cu > Cr > Ni > Pb > Cd. Environmental conditions also had great influence on the accumulation of heavy metals. Cd and Cu were mostly found in cement plant and mine, respectively, and Cr, Ni, Pb and Zn were significant higher in main road, compared with other environmental conditions. The average values of EF for all the metals expect Cr in scenic and village area were over 1. The average values of EF for all the metals in mine, power plant, main road and cement plant were above 3. The overall pollution condition of heavy metals in Huainan City followed the order of Cd > Cu > Zn > Ni > Pb > Cr.

  13. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China.

    PubMed

    Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan

    2012-04-01

    One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China.

    PubMed

    Wang, Yanchun; Qiao, Min; Liu, Yunxia; Zhu, Yongguan

    2012-01-01

    The possible health risks of heavy metals contamination to local population through food chain were evaluated in Beijing and Tianjin city cluster, China, where have a long history of sewage irrigation. The transfer factors (TF) for heavy metals from soil to vegetables for six elements including Cu, Zn, Pb, Cr, As and Cd were calculated and the pollution load indexes (PLI) were also assessed. Results indicate that only Cd exceeded the maximum acceptable limit in these sites. So far, the heavy metal concentrations in soils and vegetables were all below the permissible limits set by the Ministry of Environmental Protection of China and World Health Organization. The transfer factors of six heavy metals showed the trend as Cd > Zn > Cu > Pb > As > Cr, which were dependent on the vegetable species. The estimated dietary intakes of Cu, Zn, Pb, Cr, As and Cd were far below the tolerable limits and the target hazard quotient (THQ) values were less than 1, which suggested that the health risks of heavy metals exposure through consuming vegetables were generally assumed to be safe.

  15. Risk Assessment of Heavy Metals Pollution in Agricultural Soils of Siling Reservoir Watershed in Zhejiang Province, China

    PubMed Central

    Naveedullah; Hashmi, Muhammad Zaffar; Yu, Chunna; Shen, Hui; Duan, Dechao; Lou, Liping; Chen, Yingxu

    2013-01-01

    Presence of heavy metals in agriculture soils above the permissible limit poses threats to public health. In this study, concentrations of seven metals were determined in agricultural soils from Yuhang county, Zhejiang, China. Multivariate statistical approaches were used to study the variation of metals in soils during summer and winter seasons. Contamination of soils was evaluated on the basis of enrichment factor (EF), geoaccumulation index (I geo), contamination factor (C f), and degree of contamination (C deg). Heavy metal concentrations were observed higher in winter as compared to summer season. Cr and Cd revealed random distribution with diverse correlations in both seasons. Principal component analysis and cluster analysis showed significant anthropogenic intrusions of Zn, Cd, Pb, Cr, and Cu in the soils. Enrichment factor revealed significant enrichment (EF > 5) of Zn, Cd, and Pb, whereas geoaccumulation index and contamination factor exhibited moderate to high contamination for Zn, Cr, Cd, and Pb. In light of the studied parameters, permissible limit to very high degree of contamination (C deg > 16) was observed in both seasons. PMID:24151611

  16. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health?

    PubMed

    Warming, Marlies; Hansen, Mette G; Holm, Peter E; Magid, Jakob; Hansen, Thomas H; Trapp, Stefan

    2015-07-01

    This study investigates the potential health risk from urban gardening. The concentrations of the trace elements arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in five common garden crops from three garden sites in Copenhagen were measured. Concentrations (mg/kg dw) of As were 0.002-0.21, Cd 0.03-0.25, Cr < 0.09-0.38, Cu 1.8-8.7, Ni < 0.23-0.62, Pb 0.05-1.56, and Zn 10-86. Generally, elemental concentrations in the crops do not reflect soil concentrations, nor exceed legal standards for Cd and Pb in food. Hazard quotients (HQs) were calculated from soil ingestion, vegetable consumption, measured trace element concentrations and tolerable intake levels. The HQs for As, Cd, Cr, Cu, Ni, and Zn do not indicate a health risk through urban gardening in Copenhagen. Exposure to Pb contaminated sites may lead to unacceptable risk not caused by vegetable consumption but by unintentional soil ingestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  18. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads.

    PubMed

    Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling

    2018-08-01

    The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. [Calculation of environmental dredging depth of heavy sediments in Zhushan Bay of Taihu Lake metal polluted].

    PubMed

    Jiang, Xia; Wang, Wen-Wen; Wang, Shu-Hang; Jin, Xiang-Can

    2012-04-01

    Horizontal distribution of heavy metals in surface sediments of Zhushan Bay was investigated, and core sediment samples were collected in the representative area. Core sediments were divided into oxide layer (A), polluted layer (B), upper polluted transition layer(C1), lower polluted transition layer(C2) and normal mud layer(D) from top to bottom. The change of total contents of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb and contents of biological available Cr, Ni, Cu, Zn, As, Cd, Pb with depths were analyzed. Ecological risk assessment of heavy metals in sediments was done by potential ecological risk index method. At last, environmental dredging depth was calculated. The results shows that the contents of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb are 30.56-216.58, 24.07-59.95, 16.71-140.30, 84.31-193.43, 3.39-22.30, 0.37-1.59, 0.00-0.80 and 9.67-99.35 mg x kg(-1), respectively. The average concentrations of Cr, Ni, Cu, Zn, As, Cd, Hg, Pb are 79.74, 37.74, 44.83, 122.39, 10.39, 0.77, 0.14 and 40.08 mg x kg(-1), respectively. Heavy metals in the surface sediments of Zhushan Bay mainly distribute in the west bank and the estuaries of Taige canal, Yincun Port, and Huanshan River,and Cd pollution is relatively serious. There is an accumulative effect of heavy metals in Zhushan Bay, and the contents of biological available metals decrease with depths. Ecological risk grades of Cd in layer A and B are high, and the comprehensive potential ecological risk grades of each layer are in middle or low. The environmental dredging layers are A and B, and the average dredging depth is 0.39 m.

  20. Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan.

    PubMed

    Nawab, Javed; Li, Gang; Khan, Sardar; Sher, Hassan; Aamir, Muhammad; Shamshad, Isha; Khan, Anwarzeb; Khan, Muhammad Amjad

    2016-06-01

    This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p < 0.001) higher concentrations as compared to reference soil. The integrated pollution load index (PLI) value was observed greater than three indicating high level of contamination in the study area. The concentrations of Cr (1.80-6.99 mg/kg) and Cd (0.21-0.90 mg/kg) in foodstuffs exceeded their safe limits, while Zn, Pb, and Ni concentrations were observed within their safe limits. In all foodstuffs, the selected heavy metal concentrations were accumulated significantly (p < 0.001) higher as compared to the reference, while some heavy metals were observed higher but not significant like Zn in pear, persimmon, white mulberry, and date-plum; Cd in pear, fig and white mulberry; and Pb in walnut, fig, and pumpkin. The health risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk.

  1. Risk assessment of heavy metals in air, water, vegetables, grains, and related soils irrigated with biogas slurry in Taihu Basin, China.

    PubMed

    Bian, Bo; Zhou, Ling Jun; Li, Lei; Lv, Lin; Fan, Ya Min

    2015-05-01

    Metal contamination in farmlands irrigated with biogas slurry is of great concern because of its potential health risks to local inhabitants. Health risks that depend heavily on multi-pathway exposure to heavy metals (e.g., Pb, Cd, Cr, Zn, Cu, and As) in water, soil, air, and local food were studied through field sampling in Taihu Basin, China. Results show that Zn, Pb, and Cd in soils irrigated with biogas slurry exceed the soil quality standard values, and grown vegetables and grains contaminated with Pb and Cd exceed the permissible limits. Food ingestion plays an important role in the total average daily dose of metals, especially for Cu and Zn, which account for 94 and 91%, respectively. Non-carcinogenic risks posed to adults mainly result from Cu, Zn, Pb, Cd, and As through food ingestion and from Cr through soil ingestion. The highest non-carcinogenic risk was determined from food ingestion, followed by soil ingestion, air inhalation, air ingestion, and dermal contact with air. Carcinogenic risks to adults are 6.68 to 7.00 times higher than the safe level and can be attributed to Cr, As, and Cd pollution. The estimated risks mainly result from As and Cd through food ingestion and from Cr through soil ingestion. Both cancer and non-cancer risks through dermal contact can be ignored. Therefore, attention should be paid to health risks imposed by adults' multi-pathway exposure to heavy metals in vegetables, grains, and related soils irrigated with biogas slurry in Taihu Basin. Effective measures should be implemented to control heavy metal pollution and protect potentially exposed adults.

  2. Characterization and environmental risk assessment of heavy metals in construction and demolition wastes from five sources (chemical, metallurgical and light industries, and residential and recycled aggregates).

    PubMed

    Gao, Xiaofeng; Gu, Yilu; Xie, Tian; Zhen, Guangyin; Huang, Sheng; Zhao, Youcai

    2015-06-01

    Total concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd, and Ni) were measured among 63 samples of construction and demolition (C&D) wastes collected from chemical, metallurgical and light industries, and residential and recycled aggregates within China for risk assessment. The heavy metal contamination was primarily concentrated in the chemical and metallurgical industries, especially in the electroplating factory and zinc smelting plant. High concentrations of Cd were found in light industry samples, while the residential and recycled aggregate samples were severely polluted by Zn. Six most polluted samples were selected for deep research. Mineralogical analysis by X-ray fluorescence (XRF) spectrometry and X-ray diffraction (XRD), combined with element speciation through European Community Bureau of Reference (BCR) sequential extraction, revealed that a relatively slight corrosion happened in the four samples from electroplating plants but high transfer ability for large quantities of Zn and Cu. Lead arsenate existed in the acid extractable fraction in CI7-8 and potassium chromium oxide existed in the mobility fraction. High concentration of Cr could be in amorphous forms existing in CI9. The high content of sodium in the two samples from zinc smelter plants suggested severe deposition and erosion on the workshop floor. Large quantities of Cu existed as copper halide and most of the Zn appeared to be zinc, zinc oxide, barium zinc oxide, and zincite. From the results of the risk assessment code (RAC), the samples from the electroplating factory posed a very high risk of Zn, Cu, and Cr, a high risk of Ni, a middle risk of Pb, and a low risk of Cd. The samples from the zinc smelting plant presented a high risk of Zn, a middle risk of Cu, and a low risk of Pb, Cr, Cd, and Ni.

  3. Trace elements in muscle of three fish species from Todos os Santos Bay, Bahia State, Brazil.

    PubMed

    de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, William Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso

    2017-03-01

    In this study, an analysis was performed on the concentrations of the trace elements Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in muscle of two carnivorous and one planktivorous fish species collected at Todos os Santos Bay (BTS). The accumulation order of the trace elements in Lutjanus analis was Al >Zn >Fe >Cr >Ba >Ni. In Cetengraulis edentulus, the order was Al >Fe >Zn >Cr >Ni >Mn >As. In the species Diapterus rhombeus, the order was Al >Fe >Zn >Cr >Ni >Mn >Cd. To determine the risk related to the consumption of fish, toxicity guidelines were used as standard references. It was observed that the species C. edentulus contained concentrations of As exceeding WHO limits, but these concentrations were acceptable according to the Agência Nacional de Vigilância Sanitária (ANVISA) guidelines. Cd levels were found only in D. rhombeus and in low concentrations according to the determinations of WHO and ANVISA. Pb levels were not detected in any of the three fish species. The analyzed elements did not differ statistically according to the species and feeding habits. The results point to possible risks of human contamination by As related to the consumption of the fish species C. edentulus from the BTS.

  4. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    PubMed Central

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  5. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran.

    PubMed

    Ranjbar Jafarabadi, Ali; Riyahi Bakhtiyari, Alireza; Shadmehri Toosi, Amirhossein; Jadot, Catherine

    2017-10-01

    Concentrations of 13 heavy metals (Al, Fe, Mn, Zn, Cu, Cr, Co, Ni, V, As, Cd, Hg, Pb) in 360 reef surface sediments (0-5 cm) and coastal seawater samples from ten coral Islands in the Persian Gulf were analyzed to determine their spatial distribution and potential ecological risks. Different sediment quality indices were applied to assess the surface sediment quality. The mean concentrations of metals in studied sediments followed the order: Al > Fe > Ni > V > Mn > Zn > Cu > Cr > Co > As > Cd > Pb > As. Average Cd and Hg exceeded coastal background levels at most sampling sites. With the exception of As, concentrations of heavy metals decreased progressively from the west to the east of the Persian Gulf. Based on the Enrichment Factor (EF) and Potential Ecological Risk Index (RI), concentrations of V, Ni, Hg and Cd indicated moderate contamination and is of some concern. The mean values of heavy metals Toxic Units (TUs) were calculated in the following order: Hg (0.75)> Cr (0.41)> Cd (0.27)> As (0.23)> Cu (0.12)> Zn (0.05)> Pb (0.009). Furthermore, the mean contributing ratios of six heavy metals to Toxic Risk Index (TRI) values were 79% for Hg, 11.48% for Cd, 6.16% for Cr, 3.27% for Cu, 0.07% for Zn and 0.01% for Pb. Calculated values of potential ecological risk factor, revealed that the risk of the heavy metals followed the order Cd > Pb > Ni > Cr > V > Cu > Zn. The results reflected that the level of heavy metals, especially Hg and Cd, are on rise due to emerging oil exploration, industrial development, and oil refineries along the entire Gulf. Fe, Mn, Cu, Zn, V and Ni concentrations in seawater were significantly higher (p < 0.05) than the other detected dissolved heavy metals in the sampling sites. A health risk assessment using the hazard quotient index (HQ) recommended by the USEPA suggests that there is no adverse health effect through dermal exposure, and there is no carcinogenic and non-carcinogenic harm to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. PM2.5, PM10 and health risk assessment of heavy metals in a typical printed circuit noards manufacturing workshop.

    PubMed

    Zhou, Peng; Guo, Jie; Zhou, Xiaoyu; Zhang, Wei; Liu, Lili; Liu, Yangcheng; Lin, Kuangfei

    2014-10-01

    A typical Printed Circuit Board (PCB) manufacturer was chosen as the object of this study. During PCB processing, fine particulate matter and heavy metals (Cu, Zn, Pb, Cr, Cd and Ni) will be released into the air and dust, which then impact workers' health and the environment. The concentrations of total suspended particle (TSP), PM10 and PM2.5 in the off-site were 106.3, 90.0 and 50.2μg/m(3), respectively, while the concentrations of TSP, PM10 and PM2.5 in the workshops ranged from 36.1 to 365.3, from 27.1 to 289.8 and from 22.1 to 212.3μg/m(3), respectively. Almost all six of the heavy metals were detected in all of the particle samples except Cd. For each workshop, it was obvious that Zn was the most enriched metal in TSP, followed by Cu>Pb (Cr)>Ni>Cd, and the same trend was found for PM10 and PM2.5. In the dust samples, Cu (which ranged from 4.02 to 56.31mg/g) was the most enriched metal, followed by Zn, Cr, Pb, Ni and Cd, and the corresponding concentrations ranged from 0.77 to 4.47, 0.37 to 1.59, 0.26 to 0.84, 0.13 to 0.44 and nd to 0.078mg/g, respectively. The health risk assessment showed that noncancerous effects are unlikely for Zn, Pb, Cr, Cu, Cd and Ni. The carcinogenic risks for Cd and Ni were all lower than 10(-6), except for Cr. This result indicates that carcinogenic risks for workers are relatively possible in the workshops. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCB's recycling industry. Copyright © 2014. Published by Elsevier B.V.

  7. Risk Assessment of Heavy Metals in Surface Sediments from the Yanghe River, China

    PubMed Central

    Li, Jing

    2014-01-01

    The magnitude and ecological relevance of metal pollution from the upstream of water sources after emergency pollution events was investigated by applying a set of complementary sediment quality assessment methods: (1) geochemical assessment based on background value (the geoaccumulation index); (2) comparisons with sediment quality guidelines (SQGs); (3) an evaluation of the combined pollution according to the risk index (RI); and (4) investigation of the chemical patterns of target heavy metals (Cd, Zn, Cr, Pb, Ni). The geoaccumulation indices (Igeo) suggested that the magnitude of heavy metal pollution of the sediment of Yanghe River decreased in the order of Cd > Zn > Pb > Cr > Ni. Risk analysis also suggested that Cd and Zn concentrations were sufficiently elevated as to cause adverse biological effects in this study area. According to the RI values, 27% of total sampling sites showed considerable ecological risk for the water body, and 53% of total sampling sites showed very high ecological risk for the waterbody. Sediment-bound Cd was found to be predominantly associated with the exchangeable phase of the sediment (25%–68%), while Cr, Ni, Zn and Pb showed the strongest association with the residual fractions (60%–92%, 53%–67%, 24%–85% and 35%–67%, respectively). PMID:25464136

  8. Mobility and bioavailability of Cd, Co, Cr, Cu, Mn and Zn in surface runoff sediments in the urban catchment area of Guwahati, India

    NASA Astrophysics Data System (ADS)

    Devi, Upama; Bhattacharyya, Krishna G.

    2018-03-01

    The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd < Co < Cu < Cr < Zn < Mn. The relative distribution of the metals showed that Cd was available mostly in the exchangeable and the carbonate bound fractions, which were the most mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.

  9. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    PubMed

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  10. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment.

    PubMed

    Chai, Liyuan; Li, Huan; Yang, Zhihui; Min, Xiaobo; Liao, Qi; Liu, Yi; Men, Shuhui; Yan, Yanan; Xu, Jixin

    2017-01-01

    Here, we aim to determine the distribution, ecological risk and sources of heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan Province, China. Sixty-four surface sediment samples were collected in 16 sites of the Xiangjiang River, and the concentrations of ten heavy metals and metalloids (Mn, Zn, Cr, V, Pb, Cu, As, Ni, Co, and Cd) in the sediment samples were investigated using an inductively coupled plasma mass spectrometer (ICP-MS) and an atomic fluorescence spectrophotometer (AFS), respectively. The results showed that the mean concentrations of the ten heavy metals and metalloids in the sediment samples followed the order Mn > Zn > Cr > V > Pb > Cu > As ≈ Ni >Co > Cd. The geoaccumulation index (I geo ), enrichment factor (EF), modified degree of contamination (mC d ), and potential ecological risk index (RI) revealed that Cd, followed by Pb, Zn, and Cu, caused severely contaminated and posed very highly potential ecological risk in the Xiangjiang River, especially in Shuikoushan of Hengyang, Xiawan of Zhuzhou, and Yijiawan of Xiangtan. The Pearson's correlation coefficient (PCC) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA) indicated that the ten heavy metals and metalloids in the sampling sediments of the Xiangjiang River were classified into three groups: (1) Cd, Pb, Zn, and Cu which possibly originated from Shuikoushan, Xiawan, and Yijiawan clustering Pb-Zn mining and smelting industries; (2) Co, V, Ni, Cr, and Al from natural resources; and (3) Mn and As. Therefore, our results suggest that anthropogenic activities, especially mining and smelting, have caused severe contamination of Cd, Pb, Zn, and Cu and posed very high potential ecological risk in the Xiangjiang River.

  11. Characteristics and impacts of trace elements in atmospheric deposition at a high-elevation site, southern China.

    PubMed

    Nie, Xiaoling; Wang, Yan; Li, Yaxin; Sun, Lei; Li, Tao; Yang, Minmin; Yang, Xueqiao; Wang, Wenxing

    2017-10-01

    To investigate the regional background trace element (TE) level in atmospheric deposition (dry and wet), TEs (Fe, Al, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, and Pb) in 52 rainwater samples and 73 total suspended particles (TSP) samples collected in Mt. Lushan, Southern China, were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that TEs in wet and dry deposition of the target area were significantly elevated compared within and outside China and the volume weight mean pH of rainwater was 4.43. The relative contributions of wet and dry depositions of TEs vary significantly among elements. The wet deposition fluxes of V, As, Cr, Se, Zn, and Cd exceeded considerably their dry deposition fluxes while dry deposition dominated the removal of pollution elements such as Mo, Cu, Ni, Mn, and Al. The summed dry deposition flux was four times higher than the summed wet deposition flux. Prediction results based on a simple accumulation model found that the content of seven toxic elements (Cr, Ni, Cu, Zn, As, Cd, and Pb) in soils could increase rapidly due to the impact of annual atmospheric deposition, and the increasing amounts of them reached 0.063, 0.012, 0.026, 0.459, 0.076, 0.004, and 0.145 mg kg -1 , respectively. In addition, the annual increasing rates ranged from 0.05% (Cr and Ni) to 2.08% (Cd). It was also predicted that atmospheric deposition induced the accumulation of Cr and Cd in surface soils. Cd was the critical element with the greatest potential ecological risk among all the elements in atmospheric deposition.

  12. Characterization and origin of organic and inorganic pollution in urban soils in Pisa (Tuscany, Italy).

    PubMed

    Cardelli, Roberto; Vanni, Giacomo; Marchini, Fausto; Saviozzi, Alessandro

    2017-10-12

    We assessed the quality of 31 urban soils in Pisa by analyzing total petroleum hydrocarbons (TPHs), Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, and the platinum group elements (PGEs). The risk was evaluated by the geological accumulation index (I geo ) and the enrichment factor (EF). Results were compared with those obtained from a non-urban site and with the quantitative limits fixed by Italian legislation. In nearly all the monitored sites, the legal limit for TPH of 60 mg/kg in residential areas was exceeded, indicating widespread and intense pollution throughout the entire city area. The I geo indicated no Cd, Cu, Mn, Ni, and Zn pollution and minimal Pb and Cr pollution due to anthropogenic enrichment. Legal Hg and Zn limits of 1 and 150 mg/kg, respectively, were exceeded in about 20% of sites; Cd (2 mg/kg), Cr (150 mg/kg), and Cu (120 mg/kg) in only one site; and the Ni legal limit of 120 mg/kg was never exceeded. Some urban soils showed a higher Hg level than the more restrictive legal limit of 5 mg/kg concerning areas for industrial use. Based on the soluble, exchangeable, and carbonate-bound fractions, Mn and Zn showed the highest mobility, suggesting a more potential risk of soil contamination than the other metals. The TPH and both Cr and Hg amounts were not correlated with any of the other monitored metals. The total contents of Cd, Pb, Zn, and Cu in soils were positively correlated with each other, suggesting a common origin from vehicular traffic. The PGE values (Pt and Pd) were below the detection limits in 75%-90% of the monitored areas, suggesting that their accumulation is at an early stage.

  13. Origin discrimination of defatted pork via trace elements profiling, stable isotope ratios analysis, and multivariate statistical techniques.

    PubMed

    Park, Yu Min; Lee, Cheong Mi; Hong, Joon Ho; Jamila, Nargis; Khan, Naeem; Jung, Jong-Hyun; Jung, Young-Chul; Kim, Kyong Su

    2018-09-01

    This study verified the origin of 346 defatted Korean and non-Korean pork samples via trace elements profiling, and C and N stable isotope ratios analysis. The analyzed elements were 6 Li, 7 Li, 10 B, 11 B, 51 V , 50 Cr, 52 Cr, 53 Cr, 55 Mn, 58 Ni, 60 Ni, 59 Co, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 69 Ga, 71 Ga, 75 As, 82 Se, 84 Sr, 86 Sr, 87 Sr, 88 Sr, 85 Rb, 94 Mo, 95 Mo, 97 Mo, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 113 Cd, 112 Cd, 114 Cd, 116 Cd, 133 Cs, 206 Pb, 207 Pb, and 208 Pb. Content (mg/kg) of 51 V (0.012), 50 Cr (0.882), 75 As (0.017), 85 Rb (57.7), and 87 Sr (46.3) were high in Korean pork samples whereas 6 Li, 7 Li, 59 Co, 55 Mn, 58 Ni, 84 Sr, 86 Sr, 88 Sr, 111 Cd, and 133 Cs were found higher in non-Korean samples. The results of discriminant analysis showed that the trace elements content and stable isotope ratios were significant for the discrimination of geographical origins with a perfect discrimination rate of 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil.

    PubMed

    da Silva, Yuri Jacques Agra Bezerra; do Nascimento, Clístenes Williams Araújo; Cantalice, José Ramon Barros; da Silva, Ygor Jacques Agra Bezerra; Cruz, Cinthia Maria Cordeiro Atanázio

    2015-09-01

    Determining heavy metal background concentrations in soils is fundamental in order to support the monitoring of potentially contaminated areas. This is particularly important to areas submitted to high environmental impact where an intensive and local monitoring is required. To this end, the aim of this study was to establish background concentrations and quality reference values (QRVs) for the heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg in an environmentally impacted watershed from Brazil. Geochemical associations among Fe, Mn, and trace elements were also assessed to provide an alternative tool for establishing background concentrations. A total of one hundred and four samples comprised twenty-six composite soil samples from areas of native forest or minimal anthropic influence. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES, except for As and Hg measured by atomic absorption spectrophotometer. Background concentrations of heavy metals in soils had the following decreasing order: Fe > Mn > Zn > Cr > Pb > Ni > Cu > As > Cd > Hg. These values were usually lower than those observed in the international and national literature. The QRVs for Ipojuca watershed followed the order (mg kg(-1)) Fe (13,020.40) > Mn (91.80) > Zn (30.12) > Cr (15.00) > Pb (13.12) > Cu (3.53) > Ni (3.30) > As (0.51) > Cd (0.08) > Hg (0.04). Significant correlation among Fe, Mn, and heavy metals shows that solubilization by the method 3051A provides a reasonable estimate for predicting background concentrations for Cd, Cr, and Cu as well as Zn, Cr, Cu, and Ni.

  15. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India.

    PubMed

    Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C

    2016-10-15

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities.

    PubMed

    Kováčik, Jozef; Dudáš, Matej; Hedbavny, Josef; Mártonfi, Pavol

    2016-11-01

    Accumulation of selected heavy metals (Cd, Pb, Ni, Cr, Fe, and Zn) and phenolic metabolites (total soluble phenols, cichoric and caftaric acid) in dandelion organs (leaves, roots, inflorescences/anthodia) collected from six localities within the industrial town Košice (eastern Slovakia) were studied. Localities from the vicinity of a steel factory (Cd, Fe) and heavy traffic (Pb, Ni, Cr, Zn) contained the highest amount of individual metals in the soil but a significant correlation between soil and organ metal content was found only for Cr in the leaves (r 2  = 0.7679). The amount of Cd and partially Pb differed among localities in all organs and especially in the leaves and anthodia, indicating probably the impact of atmospheric pollution. The bioaccumulation factor was <1 for almost all metals, suggesting that given dandelion species is not metal accumulator. Translocation factor did not reach values close to or over 1 only for Cd, indicating a root-to-shoot movement of Pb, Ni and Zn though the impact of air pollution on leaves cannot be excluded. A strong correlation between leaf Cd and leaf total phenols, cichoric and caftaric acids was observed (r 2  = 0.7926, 0.8682 and 0.8830, respectively), indicating that phenolic metabolites act in the protection of dandelion against Cd excess. Overall, our data indicate low pollution of urban soil by Cd (5.53-113.8 ng g -1 ) and partially by Cr and the suitability of above-ground organs of dandelion species for the monitoring of air pollution mainly by Cd. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Environmental and Ecological Risk Assessment of Trace Metal Contamination in Mangrove Ecosystems: A Case from Zhangjiangkou Mangrove National Nature Reserve, China

    PubMed Central

    Wang, Jun; Du, Huihong; Xu, Ye; Chen, Kai; Liang, Junhua; Ke, Hongwei; Cheng, Sha-Yen; Liu, Mengyang; Deng, Hengxiang; He, Tong; Wang, Wenqing

    2016-01-01

    Zhangjiangkou Mangrove National Nature Reserve is a subtropical wetland ecosystem in southeast coast of China, which is of dense population and rapid development. The concentrations, sources, and pollution assessment of trace metals (Cu, Cd, Pb, Cr, Zn, As, and Hg) in surface sediment from 29 sites and the biota specimen were investigated for better ecological risk assessment and environmental management. The ranges of trace metals in mg/kg sediment were as follows: Cu (10.79–26.66), Cd (0.03–0.19), Pb (36.71–59.86), Cr (9.67–134.51), Zn (119.69–157.84), As (15.65–31.60), and Hg (0.00–0.08). The sequences of the bioaccumulation of studied metals are Zn > Cu > As > Cr > Pb > Cd > Hg with few exceptions. Cluster analysis and principal component analysis revealed that the trace metals in the studied area mainly derived from anthropogenic activities, such as industrial effluents, agricultural waste, and domestic sewage. Pollution load index and geoaccumulation index were calculated for trace metals in surface sediments, which indicated unpolluted status in general except Pb, Cr, and As. PMID:27795956

  18. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    PubMed

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir.

  19. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mapanda, F.; Mangwayana, E. N.; Nyamangara, J.; Giller, K. E.

    Contamination of leafy vegetables ( Brassica species) by copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), lead (Pb) and chromium (Cr), and the subsequent human exposure risks, were determined at two sites in the City of Harare, where wastewater is used for irrigating vegetables. The concentrations of heavy metals (mg kg -1 dry wt.) in vegetable leaves ranged from 1.0 to 3.4 for Cu, 18 to 201 for Zn, 0.7 to 2.4 for Cd, 2.5 to 6.3 for Ni, 0.7 to 5.4 for Pb and 1.5 to 6.6 for Cr. Bio-concentration factors in the range of 0.04-3 were obtained, with Zn and Cd having the highest concentration factors of 1.6 and 3, respectively. Estimated intakes rates of heavy metals from consumption of the vegetables in mg day -1 ranged from 0.04 to 0.05 for Cu, 0.6 to 3.3 for Zn, 0.02 to 0.04 for Cd, 0.05 to 0.1 for Ni, 0.05 to 0.09 for Pb and 0.05 to 0.1 for Cr. Cadmium intake rates were above their recommended minimum risk levels (MRLs) at both sites, while Cu, Ni, Cr and Pb had daily intakes above 40% of their MRLs. Potential health risks, particularly from Cd intake, existed for the daily consumers of the leafy vegetables at both Mukuvisi and Pension sites. Thus, although the practice of growing leafy vegetables using wastewater for irrigation is aimed at producing socio-economic benefits, it is not safe and may not be sustainable in the long-term. There is need for an improved food quality assurance system to ensure that the vegetables comply with existing standards on heavy metal concentrations.

  20. Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China.

    PubMed

    Yang, Liyuan; Wang, Longfeng; Wang, Yunqian; Zhang, Wei

    2015-05-01

    Sixteen surface sediment samples were collected from Nansi Lake to analyze geochemical speciation of heavy metals including Cd, As, Pb, Cr, and Zn, assess their pollution level, and determine the spatial distribution of the non-residual fraction. Results showed that Cd had higher concentrations in water-soluble and exchangeable fractions. As and Pb were mainly observed as humic acid and reducible fractions among the non-residual fractions, while Cr and Zn were mostly locked up in a residual fraction. The mean pollution index (P i) values revealed that the lower lake generally had a higher enrichment degree than the upper lake. Cd (2.73) and As (2.05) were in moderate level of pollution, while the pollution of Pb (1.80), Cr (1.27), and Zn (1.02) appeared at low-level pollution. The calculated pollution load index (PLI) suggested the upper lake suffered from borderline moderate pollution, while the lower lake showed moderate to heavy pollution. Spatial principle component analysis showed that the first principal component (PC1) including Cd, As, and Pb could explain 56.18 % of the non-residual fraction. High values of PC1 were observed mostly in the southern part of Weishan Lake, which indicated greater bioavailability and toxicity of Cd, As, and Pb in this area.

  1. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.

    PubMed

    Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie

    2013-12-01

    The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.

  2. Accumulation rates of airborne heavy metals in wetlands

    USGS Publications Warehouse

    Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria

    2002-01-01

    Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.

  3. Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater.

    PubMed

    Ahmed, Dalia A; Slima, Dalia F

    2018-05-01

    Many agricultural soils in Egypt irrigated with untreated wastewater. Herein, we investigated the effect of untreated industrial wastewater irrigation on the soil and fodder plant Corchorus olittorius (Jew mallow). It also aimed to assess its effect on the growth measurements as well as analyses of soils, irrigation waters, and plants for heavy metal and nutrient concentrations. Significant differences between irrigation waters and soil irrigated with fresh and wastewater were recognized. Wastewater irrigation leads to remarkable reduction in the growth parameters and reduced its vegetative biomass. The concentration of Pb, Cd, Cr, Cu, Fe, and Zn were high significant and above phytotoxic concentrations in leaves (edible part) and roots of wastewater-irrigated plant. The present study indicated that Jew mallow plant tends to phytostabilize (Cd, Ni, and Mn) in its root and had the ability to translocate (Pb, Cu, Cr, Fe, and Zn) to its leaves. Higher concentrations of Cd, Cu, Cr, Pb, Fe, Mn, Ni, and Zn in the roots than leaves indicate that the roots are hyper-accumulators for Pb, Cr, Cu, Fe, and Zn more than the leaves. The research study recommended that there is a need to protect the soil from contamination through regular monitoring and not to cultivate Jew mallow in wastewater-irrigated soil and that it had a high capacity to accumulate heavy metals in its edible part and causes several harmful health effects for consumers.

  4. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques.

    PubMed

    Ma, Xiaoling; Zuo, Hang; Tian, Mengjing; Zhang, Liyang; Meng, Jia; Zhou, Xuening; Min, Na; Chang, Xinyuan; Liu, Ying

    2016-02-01

    Metal chemical fractions obtained by optimized BCR three-stage extraction procedure and multivariate analysis techniques were exploited for assessing 7 heavy metals (Cr, Pb, Cd, Co, Cu, Zn and Ni) in sediments from Gansu province, Ningxia and Inner Mongolia Autonomous Regions of the Yellow River in Northern China. The results indicated that higher susceptibility and bioavailability of Cr and Cd with a strong anthropogenic source were due to their higher availability in the exchangeable fraction. A portion of Pb, Cd, Co, Zn, and Ni in reducible fraction may be due to the fact that they can form stable complexes with Fe and Mn oxides. Substantial amount of Pb, Co, Ni and Cu was observed as oxidizable fraction because of their strong affinity to the organic matters so that they can complex with humic substances in sediments. The high geo-accumulation indexes (I(geo)) for Cr and Cd showed their higher environmental risk to the aquatic biota. Principal component analysis (PCA) revealed that high toxic Cr and Cd in polluted sites (Cd in S10, S11 and Cr in S13) may be contributed to anthropogenic sources, it was consistent with the results of dual hierarchical clustering analysis (DHCA), which could give more details about contributing sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China.

    PubMed

    Sun, Chunyuan; Zhao, Wenji; Zhang, Qianzhong; Yu, Xue; Zheng, Xiaoxia; Zhao, Jiayin; Lv, Ming

    2016-07-20

    In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb) were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult) was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd.

  6. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China

    PubMed Central

    Sun, Chunyuan; Zhao, Wenji; Zhang, Qianzhong; Yu, Xue; Zheng, Xiaoxia; Zhao, Jiayin; Lv, Ming

    2016-01-01

    In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb) were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult) was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd. PMID:27447657

  7. Pollution characteristics and source identification of trace metals in riparian soils of Miyun Reservoir, China.

    PubMed

    Han, Lanfang; Gao, Bo; Lu, Jin; Zhou, Yang; Xu, Dongyu; Gao, Li; Sun, Ke

    2017-10-01

    The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Spatial Distribution and Potential Ecological Risk Assessment of Heavy Metals in Soils and Sediments in Shunde Waterway, Southern China].

    PubMed

    Cai, Yi-min; Chen, Wei-ping; Peng, Chi; Wang, Tie-yu; Xiao, Rong-bo

    2016-05-15

    Environmental quality of soils and sediments around water source area can influence the safety of potable water of rivers. In order to study the pollution characteristics, the sources and ecological risks of heavy metals Zn, Cr, Pb, Cu, Ni and Cd in water source area, surface soils around the waterway and sediments in the estuary of main tributaries were collected in Shunde, and ecological risks of heavy metals were assessed by two methods of potential ecological risk assessment. The mean contents of Zn, Cr, Pb, Cu, Ni and Cd in the surface soils were 186.80, 65.88, 54.56, 32.47, 22.65 and 0.86 mg · kg⁻¹ respectively, and they were higher than their soil background values except those of Cu and Ni. The mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in the sediments were 312.11, 111.41, 97.87, 92.32, 29.89 and 1.72 mg · kg⁻¹ respectively, and they were higher than their soil background values except that of Ni. The results of principal component analysis illustrated that the main source of Cr and Ni in soils was soil parent materials, and Zn, Pb, Cu and Cd in soils mainly came from wastewater discharge of local manufacturing industry. The six heavy metals in sediments mainly originated from industry emissions around the Shunde waterway. The results of potential ecological risk assessment integrating environmental bioavailability of heavy metals showed that Zn, Cu, Pb and Ni had a slight potential ecological risk. Cd had a slight potential ecological risk in surface soils, but a moderate potential ecological risk in surfaces sediments. Because the potential ecological risk assessment integrating environmental bioavailability of heavy metals took the soil properties and heavy metal forms into account, its results of risks were lower than those of Hakanson methods, and it could avoid overestimating the potential risks of heavy metals.

  9. Spatial distribution and metal contamination in the coastal sediments of Al-Khafji area, Arabian Gulf, Saudi Arabia.

    PubMed

    Alharbi, Talal; Alfaifi, Hussain; Almadani, Sattam A; El-Sorogy, Abdelbaset

    2017-11-13

    To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.

  10. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.

    PubMed

    Jones, Bassey O; John, Odiyo O; Luke, Chimuka; Ochieng, Aoyi; Bassey, Bridget J

    2016-07-15

    The ability of mucilage from Dicerocaryum eriocarpum (DE) plant to act as biosorption medium in the removal of metals ions from aqueous solution was investigated. Functional groups present in the mucilage were identified using Fourier transform infrared spectroscopy (FTIR). Mucilage was modified with sodium and potassium chlorides. This was aimed at assessing the biosorption efficiency of modified mucilage: potassium mucilage (PCE) and sodium mucilage (SCE) and comparing it with non-modified deionised water mucilage (DCE) in the uptake of metal ions. FTIR results showed that the functional groups providing the active sites in PCE and SCE and DCE include: carboxyl, hydroxyl and carbonyl groups. The chloride used in the modification of the mucilage did not introduce new functional groups but increased the intensity of the already existing functional groups in the mucilage. Results from biosorption experiment showed that DE mucilage displays good binding affinity with metals ions [Zn(II), Cd(II) Ni(II), Cr(III) and Fe(II)] in the aqueous solution. Increase in the aqueous solution pH, metal ions initial concentration and mucilage concentration increased the biosorption efficiency of DE mucilage. The maximum contact time varied with each species of metal ions. Optimum pH for [Zn(II), Cd(II) Ni(II) and Fe(II)] occurred at pH 4 and pH 6 for Cr(III). Kinetic models result fitted well to pseudo-second-order with a coefficient values of R(2) = 1 for Cd(II), Ni(II), Cr(III), Fe(II) and R(2) = 0.9974 for Zn(II). Biosorption isotherms conforms best with Freundlich model for all the metal ions with correlation factors of 0.9994, 0.9987, 0.9554, 0.9621 and 0.937 for Zn(II), Ni(II), Fe(II), Cr(III) and Cd(II), respectively. Biosorption capacity of DE mucilage was 0.010, 2.387, 4.902, 0688 and 0.125 for Zn(II), Cr(III), Fe(II), Cd(II) and Ni(II) respectively. The modified mucilage was found to be highly efficient in the removal of metal ions than the unmodified mucilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bioethanol production from recovered napier grass with heavy metals.

    PubMed

    Ko, Chun-Han; Yu, Fan-Chun; Chang, Fang-Chih; Yang, Bing-Yuan; Chen, Wen-Hua; Hwang, Wen-Song; Tu, Ta-Chih

    2017-12-01

    Using plants to absorb and accumulate heavy metals from polluted soil, followed by the recycling of explants containing heavy metals, can help achieve the goal of reverting contaminated soil to low heavy-metal content soil. However, the re-use of recovered explants can also be problematic. Meanwhile, bioethanol has become a popular energy source. In this study, napier grass was used for the remediation of soil contaminated with heavy metals (artificially contaminated soil). The influence of bioethanol production from napier grass after phytoremediation was also investigated. The concentration of Zn, Cd, and Cr in the contaminated soil was 1000, 100, and 250 mg/kg, respectively. After napier grass phytoremediation, the concentration (dry biomass) of Zn, Cd, and Cr in the explants was 2701.97 ± 173.49, 6.1 ± 2.3, and 74.24 ± 1.42 mg/kg, respectively. Biomass production in the unpolluted soil was 861.13 ± 4.23 g. The biomass production ratio in high Zn-polluted soil was only 3.89%, while it was 4.68% for Cd and 21.4% for Cr. The biomass obtained after napier grass phytoremediation was pretreated using the steam explosion conditions of 180 °C, for 10 min, with 1.5% H 2 SO 2 , followed by enzymatic hydrolysis. The efficiency of enzymatic hydrolysis for Zn-polluted biomass was 90% of the unpolluted biomass, while it was 77% for Cd, and approximately the same for Cr. The fermentation efficiency of the heavy-metal-containing biomass was higher than the control biomass. The fermentation ethanol concentration obtained was 8.69-12.68, 13.03-15.50, and 18.48-19.31 g/L in Zn, Cd, and Cr environments, respectively. Results show that the heavy metals had a positive effect on bacteria fermentation. However, the fermentation efficiency was lower for biomass with severe heavy metal pollution. Thus, the utilization of napier grass phytoremediation for bioethanol production has a positive effect on the sustainability of environmental resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    PubMed Central

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal sources. Moreover, this study can be used as the fundamental data for the cell toxicity study of the subway-oriented heavy metal-containing particulate matter. PMID:24278519

  13. Distribution of selected heavy metals in sediments of the Agueda river (Central Portugal).

    PubMed

    dos Reis, Anabela Ribeiro; Parker, Andrew; Carter, Joy; Ferreira, Martim Portugal

    2005-01-01

    The state of river water deterioration in the Agueda hydrographic basin, mostly in the western part, partly reflects the high rate of housing and industrial development in this area in recent years. The streams have acted as a sink for organic and inorganic loads from several origins: domestic and industrial sewage and agricultural waste. The contents of the heavy metals Cr, Cd, Ni, Cu, Pb, and Zn were studied by sequential chemical extraction of the principal geochemical phases of streambed sediments, in the <63 microm fraction, in order to assess their potential availability to the environment, investigating the metal concentrations, assemblages, and trends. The granulometric and mineralogical characteristics of this sediment fraction were also studied. This study revealed clear pollution by Cr, Cd, Ni, Cu, Zn, and Pb, as a result from both natural and anthropogenic origins. The chemical transport of metals appears to be essentially by the following geochemical phases, in decreasing order of significance: (exchangeable + carbonates) > (organics) > (Mn and Fe oxides and hydroxides). The (exchangeable + carbonate) phase plays an important part in the fixation of Cu, Ni, Zn, and Cd. The organic phase is important in the fixation of Cr, Pb, and also Cu and Ni. Analyzing the metal contents in the residual fraction, we conclude that Zn and Cd are the most mobile, and Cr and Pb are less mobile than Cu and Ni. The proximity of the pollutant sources and the timing of the influx of contaminated material control the distribution of the contaminant-related sediments locally and on the network scale.

  14. The ecological risk, source identification, and pollution assessment of heavy metals in road dust: a case study in Rafsanjan, SE Iran.

    PubMed

    Mirzaei Aminiyan, Milad; Baalousha, Mohammed; Mousavi, Rouhollah; Mirzaei Aminiyan, Farzad; Hosseini, Hamideh; Heydariyan, Amin

    2018-05-01

    Heavy metal (HM) contamination in road dust is a potential environmental and human health threat. The sources, concentrations, spatial distribution, and ecological risk of As, Cd, Cu, Cr, Ni, Pb, and Zn in road dust in Rafsanjan City, Iran, were investigated. Pollution was assessed using the enrichment factor (EF). The potentially harmful effects of HMs were evaluated by calculating the potential ecological risk factor of individual metals (E r ) and of multiple metals (RI) using the Hakanson method. Correlation and principal component analyses (PCA) were applied to identify HM pollution sources. The concentrations of HMs in road dust were higher (ca. 5-10 folds) than their natural background values. The EF and E r increased according to the following order Cu > Pb > As > Zn > Cd > Cr > Ni and Cu > Cd > Pb > As > Ni > Zn > Cr, respectively. Thus, Cu is regarded as the pollutant of highest concern. Based on potential ecological risk index (RI) spatial distribution, all parts of Rafsanjan are characterized by significantly high potential ecological risk. HM concentration heat maps, PCA, and correlation analysis suggest that Cu, Pb, As, Cd, and Zn may have originated from the same source and follow the same spatial distribution pattern. These metals originated mainly from anthropogenic sources like copper mining and smelting plants, industrial and chemical activities, inordinate application of chemical fertilizers and pesticides in farmlands, and heavy traffic. Ni and Cr are likely to origniate from the industrial activities and traffic load in Rafsanjan City.

  15. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    PubMed

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  16. Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops.

    PubMed

    Tella, M; Doelsch, E; Letourmy, P; Chataing, S; Cuoq, F; Bravin, M N; Saint Macary, H

    2013-01-01

    The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr-Ni; anthropogenic agricultural and urban: Cu-Zn; anthropogenic urban: Cd-Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. [Distribution characteristics of heavy metals along an elevation gradient of montane forest].

    PubMed

    Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan

    2011-12-01

    In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

  18. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system.

    PubMed

    Wang, Cheng; Yang, Zhongfang; Zhong, Cong; Ji, Junfeng

    2016-09-01

    The contributions of major driving forces on temporal changes of heavy metals in the soil in a representative river-alluviation area at the lower of Yangtze River were successfully quantified by combining geostatistics analysis with the modified principal component scores & multiple linear regressions approach (PCS-MLR). The results showed that the temporal (2003-2014) changes of Cu, Zn, Ni and Cr presented a similar spatial distribution pattern, whereas the Cd and Hg showed the distinctive patterns. The temporal changes of soil Cu, Zn, Ni and Cr may be predominated by the emission of the shipbuilding industry, whereas the significant changes of Cd and Hg were possibly predominated by the geochemical and geographical processes, such as the erosion of the Yangtze River water and leaching because of soil acidification. The emission of metal-bearing shipbuilding industry contributed an estimated 74%-83% of the changes in concentrations of Cu, Zn, Ni and Cr, whereas the geochemical and geographical processes may contribute 58% of change of Cd in the soil and 59% of decrease of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China.

    PubMed

    Wei, Xin; Gao, Bo; Wang, Peng; Zhou, Huaidong; Lu, Jin

    2015-02-01

    Street dusts from Heavy Density Traffic Area, Residential Area, Educational Area and Tourism Area in Beijing, China, were collected to study the distribution, accumulation and health risk assessment of heavy metals. Cr, Cu, Zn, Cd and Pb concentrations were in higher concentrations in these four locations than in the local soil background. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Beijing were generally at moderate or low levels. Ni, Cu, Zn and Pb concentrations in the Tourism Area were the highest among four different areas in Beijing. A pollution assessment by Geoaccumulation Index showed that the pollution level for the heavy metals is in the following order: Cd>Pb>Zn>Cu>Cr>Ni. The Cd levels can be considered "heavily contaminated" status. The health risk assessment model that was employed to calculate human exposure indicated that both non-carcinogenic and carcinogenic risks of selected metals in street dusts were generally in the low range, except for the carcinogenic risk from Cr for children. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. [Multivariate geostatistics and GIS-based approach to study the spatial distribution and sources of heavy metals in agricultural soil in the Pearl River Delta, China].

    PubMed

    Cai, Li-mei; Ma, Jin; Zhou, Yong-zhang; Huang, Lan-chun; Dou, Lei; Zhang, Cheng-bo; Fu, Shan-ming

    2008-12-01

    One hundred and eighteen surface soil samples were collected from the Dongguan City, and analyzed for concentration of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg, pH and OM. The spatial distribution and sources of soil heavy metals were studied using multivariate geostatistical methods and GIS technique. The results indicated concentrations of Cu, Zn, Ni, Pb, Cd and Hg were beyond the soil background content in Guangdong province, and especially concentrations of Pb, Cd and Hg were greatly beyond the content. The results of factor analysis group Cu, Zn, Ni, Cr and As in Factor 1, Pb and Hg in Factor 2 and Cd in Factor 3. The spatial maps based on geostatistical analysis show definite association of Factor 1 with the soil parent material, Factor 2 was mainly affected by industries. The spatial distribution of Factor 3 was attributed to anthropogenic influence.

  1. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    PubMed

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  2. Chemometric analysis of voltammetric data on metal ion binding by selenocystine.

    PubMed

    Gusmão, Rui; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2012-06-28

    The behavior of selenocystine (SeCyst) alone or in the presence of various metal ions (Bi(3+), Cd(2+), Co(2+), Cu(2+), Cr(3+), Ni(2+), Pb(2+), and Zn(2+)) was studied using differential pulse voltammetry (DPV) over a wide pH range. Voltammetric data matrices were analyzed using chemometric tools recently developed for nonlinear data: pHfit and Gaussian Peak Adjustment (GPA). Under the experimental conditions tested, no evidence was found for the formation of metal complexes with Bi(3+), Cu(2+), Cr(3+), and Pb(2+). In contrast, SeCyst formed electroinactive complexes with Co(2+) and Ni(2+) and kinetically inert but electroactive complexes with Cd(2+) and Zn(2+). Titrations with Cd(2+), Co(2+), Ni(2+), and Zn(2+) produced data that were reasonably consistent with the formation of stable 1:1 M(SeCyst) complexes.

  3. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.

    PubMed

    Chai, Yuan; Guo, Jia; Chai, Sheli; Cai, Jing; Xue, Linfu; Zhang, Qingwei

    2015-09-01

    The characterization of the concentration, chemical speciation and source of heavy metals in soils is an imperative for pollution monitoring and the potential risk assessment of the metals to animal and human health. A total of 154 surface horizons and 53 underlying horizons of grassland soil were collected from the Baicheng-Songyuan area in Jilin Province, Northeast China, in which the concentrations and chemical fractionations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were investigated. The mean concentrations of heavy metals in grassland topsoil were 7.2, 0.072, 35, 16.7, 0.014, 15.2, 18.3 and 35 mg kg(-)(1) for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, and those averaged contents were lower than their China Environmental Quality Standard values for the Soils, implying that heavy metal concentrations in the studied soils were of the safety levels. The mobility sequence of the heavy metals based on the sum of the soluble, exchangeable, carbonate-bound and humic acid-bound fractions among the seven fractions decreased in the order of Cd 50.4%)>Hg (39.8%)>Cu (26.5%)>As (19.9%)>Zn (19.1%)>Ni (15.9%)>Pb (14.1%)>Cr (4.3%), suggesting Cd and Hg may pose more potential risk of soil contamination than other metals. Multivariate statistical analysis suggested that As, Cr, Cu, Ni, Pb, Zn, Cd and Hg had the similar lithogenic sources, however, Cd and Hg were more relevant to organic matter than other heavy metals, which was confirmed by the chemical speciation analysis of the metals. The study provides a base for local authority in the studied area to monitor the long term accession of heavy metals into grassland soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    PubMed

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between Cr and Cd, Cu and Zn in multiple regression; and between Cr and Cd in SVM regression. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sensitive and selective detection of trivalent chromium using Hyper Rayleigh Scattering with 5,5'-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles.

    PubMed

    Hughes, Shantelle I; Dasary, Samuel S R; Singh, Anant K; Glenn, Zachery; Jamison, Hakim; Ray, Paresh C; Yu, Hongtao

    2013-03-01

    Hyper Rayleigh Scattering (HRS) and absorption spectral assays using surface-modified gold nanoparticles (AuNP) have been developed for sensitive and selective detection of trivalent chromium (Cr 3+ ) from other metal ions including hexavalent chromium (as Cr 2 O 7 2- ). Gold nanoparticles of 13 nm, covalently attached with 5,5'-dithio- bis -(2-nitrobenzoic acid) (AuNP-DTNBA), is used as a probe for both the absorption and HRS assays. AuNP-DTNBA is able to detect Cr 3+ at 20 ppb level at pH 6.0 using absorption spectral change of the AuNP-DTNBA. Visible color change can be observed when mixed with 250 ppb of Cr 3+ , while there is no color change when mixed with 2 ppm level of some of the most common metal ions such as Cr 2 O 7 2- , Hg 2+ , Ba 2+ , Fe 3+ , Pb 2+ , Na + , Zn 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ca 2+ , and Ni 2+ . However, a color change is observed when mixed with Ni 2+ , Zn 2+ , and Cd 2+ at a concentration higher than 2 ppm. The detection limit for the HRS assay is on a remarkable 25 ppt level, and there is no detectable HRS signal at 2 ppm level for Cr 2 O 7 2- , Hg 2+ , Ba 2+ , Fe 3+ , Pb 2+ , Na + , Zn 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ca 2+ , and Ni 2+ .

  6. Dynamics of a Cr spin in a semiconductor quantum dot: Hole-Cr flip-flops and spin-phonon coupling

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Sunaga, M.; Makita, K.; Boukari, H.; Kuroda, S.; Besombes, L.

    2018-04-01

    A detailed analysis of the photoluminescence (PL) intensity distribution in singly Cr-doped CdTe/ZnTe quantum dots (QDs) is performed. First of all, we demonstrate that hole-Cr flip-flops induced by an interplay of the hole-Cr exchange interaction and the coupling with acoustic phonons are the main source of spin relaxation within the exciton-Cr complex. This spin flip mechanism appears in the excitation power dependence of the PL of the exciton as well as in the intensity distribution of the resonant PL. The resonant optical pumping of the Cr spin which was recently demonstrated can also be explained by these hole-Cr flip-flops. Despite the fast exciton-Cr spin dynamics, an analysis of the PL intensity under magnetic field shows that the hole-Cr exchange interaction in CdTe/ZnTe QDs is antiferromagnetic. In addition to the Cr spin dynamics induced by the interaction with carriers' spin, we finally demonstrate using time resolved optical pumping measurements that a Cr spin interacts with nonequilibrium acoustic phonons generated during the optical excitation inside or near the QD.

  7. An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan.

    PubMed

    Kuo, Nae-Wen; Ma, Hwong-Wen; Yang, Ya-Mei; Hsiao, Teng-Yuan; Huang, Chin-Ming

    2007-01-01

    This study aimed to identify distribution of metals and to estimate the amount of these metals that can be potentially recovered from incineration residues. First, the partitioning behavior of Cr, Cu, Fe, Cd, Al, Zn, and Pb in bottom ash and fly ash was investigated in one large municipal waste incinerator in Taiwan. In addition, the material flow analysis (MFA) method was used to estimate the material flux of metals within incinerator plant, and to calculate the amount of metal recovery. According to the findings of this study, six metals (Fe, Al, Cu, Zn, Cr, and Pb) concentrated in bottom ash mostly, while Cd existed primarily in fly ash. The weight percentages of Fe (4.49%), Al (5.24%), Cu (1.29%), Zn (2.21%), and Pb (0.58%) in incinerator ash are high, and even higher than the compositions of natural minerals. Finally, the amount of Cr, Cu, Fe, Cd, Al, Zn and Pb that can be potentially recovered from incineration residues will reach 2.69 x 10(2), 1.46 x 10(4), 4.91 x 10(4), 6.92 x 10(1), 5.10 x 10(4), 1.85 x 10(4) and 4.66 x 10(3) ton/yr, respectively.

  8. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.

    PubMed

    Lakra, Kalpana C; Lal, B; Banerjee, T K

    2017-06-03

    Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L -1 ) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.

  9. Speciation and bioavailability of some heavy metals in agricultural soils used for cultivating various vegetables in Bedugul, Bali

    NASA Astrophysics Data System (ADS)

    Siaka, I. Made; Utama, I. Made Supartha; Manuaba, I. B. Putra; Adnyana, I. Made; Sahara, Emmy

    2016-03-01

    This paper discusses the speciation and bioavailability of some heavy metals in agricultural soils used to cultivate various vegetables in Bedugul, Bali. Vegetables grown on contaminated soils where agrochemicals were applied uncontrolled could contain a number of heavy metals. This could occur in the vegetables produced from agricultural soils of Bedugul as the farmers applied agrochemicals excessively. In considering the metals transport to the vegetables, a speciation and bioavailability methods were necessary to be studied. Wet digestion and sequential extraction techniques were employed to the sample prior to the metals measurement by AAS. The results showed that the average concentrations of Pb, Cu, Cd, Cr, and Zn in the soils were 38.531, 132.126, 7.689, 15.952, and 147.275 mg/kg, respectively. The highest concentrations of Pb and Zn were found in the soil for cultivating lettuce, Cd and Cr in the soil for tomato, and Cu in the soil for potatoes. It was found that the speciation of Pb, Cu, Cd, and Cr were predominantly bound to Fe-Mn oxides fraction, while Zn was mostly associated with the EFLE (easily, freely, leachable, and exchangeable) fractions. The highest bioavailability among the metals in the studied soils was Cr, while the lowest was Cu.

  10. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan.

    PubMed

    Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard

    2015-07-01

    Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and Zn values in the clay waste were determined to have exceeded the severe effect level (SEL) limit values, whereas Cd and Cu level ranges between LEL and SEL indicate moderate contamination. I R values of heavy metals in the clay waste confirmed that Cd and Cu were bound to the exchangeable and carbonate fractions and presented higher mobility, whereas As, Cr, Mo, Pb, V, and Zn were bound to organic or residual fractions and consequently exhibit lower mobility. A Nemerow multi-factor index revealed that the mine site contains high levels of Cd, Cu, V, and Zn pollution. As and Cr were found at a moderate level of contamination, whereas Pb was present at a safe level of contamination. The order of the comprehensive contamination indices was Cd > Cu > Mo > Zn > V > Cr > As > Pb, indicating that the assessment of clay waste, especially with Cd and Cu, should be undertaken to control heavy metal contamination in adjacent urban and mine areas at the Eshidiya mines.

  12. 40 CFR 413.84 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5... consecutive monitoring days shall not exceed CN, T 169 89 Cu 401 241 Ni 365 229 Cr 623 357 Zn 374 232 Pb 53 36...

  13. 40 CFR 413.84 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7.0 4.0 Zn 4.2 2.6 Pb 0.6 0.4 Cd 1.2 0.7 Total metals 10.5... consecutive monitoring days shall not exceed CN, T 169 89 Cu 401 241 Ni 365 229 Cr 623 357 Zn 374 232 Pb 53 36...

  14. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China.

    PubMed

    Luan, Jingde; Li, Aimin; Su, Tong; Li, Xuan

    2009-07-30

    Oil shale and fly ash collected from two thermal power plants located in Huadian, the northeast city of China were subjected to fraction distribution, translocation regularity and toxicity assessment to provide preliminary assessment of suitability for land application. By Tessier sequential extraction, the results showed that Ni, Cr, Pb and Zn were mostly bounded with iron-manganese and organic bound in oil shale, but Cu and Cd were mostly associated with iron-manganese bound and residue fraction. Through circulated fluidized-bed combustion, high concentration of heavy metals (Cu, Cd, Ni, Cr, Pb, and Zn) was found in iron-manganese bound and residue fraction in fly ash. There was accumulation of all studied metals except Ni and Cr in fly ash and translocation mass of metals were as follows: Pb>Zn>Cu>Cd during circulated fluidized-bed combustion. Fly ash was contaminated with Cd higher than the pollution concentration limits listed in GB15168-1995, China. This work demonstrated that it was unadvisable way to carry out landfill without any treatment. By means of STI model, toxicity assessment of heavy metals was carried out to show that there was notable increase in toxicity from oil shale to fly ash.

  15. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India

    PubMed Central

    Satpathy, Deepmala; Reddy, M. Vikram; Dhal, Soumya Prakash

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI) values of rice consuming adults (1.561) and children (1.360) suggest their adverse health effects in the near future. PMID:24995308

  16. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    PubMed

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  17. Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India.

    PubMed

    Asa, Subas Chandra; Rath, Prasanta; Panda, Unmesh Chandra; Parhi, Pankaj Kumar; Bramha, Satyanarayan

    2013-08-01

    In the present study, concentration of some selected trace metals (Fe, Mn, Ni, Co, Pb, Zn, Cu, Cr and Cd) are measured in Brahmani, Baitarani river complex along with Dhamara estuary and its near shore. Chemical partitioning has been made to establish association of metals into different geochemical phases. The exchangeable fraction is having high environmental risk among non-lithogeneous phases due to greater potential for mobility into pore water. The metals with highest bio-availability being Cd, Zn and Cr. The metals like Mn, Zn, Cd and Cu represent an appreciable portion in carbonate phase. Fe-Mn oxides act as efficient scavenger for most of the metals playing a prime role in controlling their fate and transport. Among non-lithogeneous phases apart from reducible, Cr showed a significant enrichment in organic phase. Risk assessment code values indicate that all metals except Fe fall under medium-risk zone. In estuarine zone Cd, Zn, Pb and Cr are released to 32.43, 26.10, 21.81 and 20 %, respectively, indicating their significant bio-availability pose high ecological risk. A quantitative approach has been made through the use of different risk indices like enrichment factor, geo-accumulation index and pollution load index. Factor analysis indicates that in riverine zone, Fe-Mn oxides/hydroxides seem to play an important role in scavenging metals, in estuarine zone, organic precipitation and adsorption to the fine silt and clay particles while in coastal zone, co-precipitation with Fe could be the mechanism for the same. Canonical discriminant function indicates that it is highly successful in discriminating the groups as predicted.

  18. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China.

    PubMed

    Zhang, Haidong; Huang, Biao; Dong, Linlin; Hu, Wenyou; Akhtar, Mohammad Saleem; Qu, Mingkai

    2017-03-01

    Greenhouse vegetable cultivation with substantive manure and fertilizer input on soils with an elevated geochemical background can accumulate trace metals in soils and plants leading to human health risks. Studies on trace metal accumulation over a land use shift duration in an elevated geochemical background scenario are lacking. Accumulation characteristics of seven trace metals in greenhouse soil and edible plants were evaluated along with an assessment of the health risk to the consumers. A total of 118 greenhouse surface soils (0-20cm) and 30 vegetables were collected from Kunming City, Yunnan Province, southwestern China, and analyzed for total Cd, Pb, Cu, Zn, As, Hg, and Cr content by ICP-MS and AFS. The trace metals were ordered Cu>Cd>Hg>Zn>Pb>As>Cr in greenhouse soils accumulation level, and the geo-accumulation index suggested the soil more severely polluted with Cd, Cu, Hg and Zn. The greenhouse and open-field soils had significant difference in Cd, Cr and Zn. The duration of shift from paddy to greenhouse land-use significantly influenced trace metal accumulation with a dramatic change during five to ten year greenhouse land-use, and continuous increase of Cd and Hg. A spatial pattern from north to south for Cd and Hg and a zonal pattern for Cu and Zn were found. An anthropogenic source primarily caused trace metal accumulation, where the principal component analysis/multiple linear regression indicated a contribution 61.2%. While the assessment showed no potential risk for children and adults, the hazard health risks index was greater than one for adolescents. The extended duration of land use as greenhouses caused the trace metal accumulation, rotation in land use should be promoted to reduce the health risks. Copyright © 2016. Published by Elsevier Inc.

  19. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    PubMed

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  20. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis.

    PubMed

    Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana

    2015-06-01

    The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.

  1. Magnetically induced phonon splitting in A Cr 2 O 4 spinels from first principles

    DOE PAGES

    Wysocki, Aleksander L.; Birol, Turan

    2016-04-22

    We study the magnetically-induced phonon splitting in cubic ACr 2O 4 (A=Mg, Zn, Cd) spinels from first principles and demonstrate that the sign of the splitting, which is experimentally observed to be opposite in CdCr 2O 4 compared to ZnCr 2O 4 and MgCr 2O 4, is determined solely by the particular magnetic ordering pattern observed in these compounds. We further show that this interaction between magnetism and phonon frequencies can be fully described by the previously proposed spin-phonon coupling model [C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 (2006)] that includes only the nearest neighbormore » exchange. In conclusion, using this model with materials specific parameters calculated from first principles, we provide additional insights into the physics of spin-phonon coupling in this intriguing family of compounds.« less

  2. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China

    PubMed Central

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area. PMID:27992518

  3. Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia

    NASA Astrophysics Data System (ADS)

    Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab

    2018-03-01

    The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.

  4. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    PubMed

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  5. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.

    PubMed

    Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S

    2018-01-15

    Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Distribution characteristics and sources of trace metals in sediment cores from a trans-boundary watercourse: An example from the Shima River, Pearl River Delta.

    PubMed

    Gao, Lei; Wang, Zhuowei; Shan, Jiju; Chen, Jianyao; Tang, Changyuan; Yi, Ming; Zhao, Xinfeng

    2016-12-01

    Metal pollution in sediments from the Shima River, a typical transboundary watercourse in the Pearl River Delta area, was investigated. Sediment cores were collected at eight sites from the upper to the lower reaches crossing Shenzhen, Dongguan and Huizhou cities. Sediment physicochemical properties and the total concentrations of trace metals (V, Cr, Co, Ni, Cu, Zn, As, Cd and Pb) were determined. The results showed that riverine sediment was significantly polluted by Cr (content range: 13.8-469mgkg -1 ), Ni (14.1-257mgkg -1 ), Cu (10.8-630mgkg -1 ), Zn (50.2-1700mgkg -1 ) and Cd (0.172-2.26mgkg -1 ). The geoaccumulation indices (I geo ) of trace metals decreased in the order Cd>Zn>Ni>Cu>Co>Cr>Pb>As>V. The pollution load indices and potential ecological risk indices (RI) at the sampling sites were similar, with more severe pollution and greater risk presenting in the upper and middle reaches (S1-S6) compared with the lower reaches (S7 and S8). Cd contributed significantly (77.2-87.6%) to the RI. Source identification based on multivariate statistical techniques, including principal component analysis (PCA), correlation analysis (CA) and hierarchical cluster analysis (HACA), was performed to differentiate the origins of trace metals. PCA and CA yielded similar results, indicating that As and V originated from natural sources (e.g., parent materials) and that the other metals were related to anthropogenic activities. HACA based on the I geo showed that Cd was associated mainly with fertilizers, and the origins of Cr, Ni, Cu and Zn were probably industrial effluents, whereas Co and Pb were related to traffic activities. HACA of sediment cores suggested that Dongguan and Shenzhen cities contribute large quantities of metals to the riverine sediment, whereas few metals were discharged from Huizhou City. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.

    PubMed

    Ardelan, Murat V; Steinnes, Eiliv; Lierhagen, Syverin; Linde, Sven Ove

    2009-12-01

    The impact of CO(2) leakage on solubility and distribution of trace metals in seawater and sediment has been studied in lab scale chambers. Seven metals (Al, Cr, Ni, Pb, Cd, Cu, and Zn) were investigated in membrane-filtered seawater samples, and DGT samplers were deployed in water and sediment during the experiment. During the first phase (16 days), "dissolved" (<0.2 microm) concentrations of all elements increased substantially in the water. The increase in dissolved fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb in the CO(2) seepage chamber was respectively 5.1, 3.8, 4.5, 3.2, 1.4, 2.3 and 1.3 times higher than the dissolved concentrations of these metals in the control. During the second phase of the experiment (10 days) with the same sediment but replenished seawater, the dissolved fractions of Al, Cr, Cd, and Zn were partly removed from the water column in the CO(2) chamber. DNi and DCu still increased but at reduced rates, while DPb increased faster than that was observed during the first phase. DGT-labile fractions (Me(DGT)) of all metals increased substantially during the first phase of CO(2) seepage. DGT-labile fractions of Al, Cr, Ni, Cu, Zn, Cd and Pb were respectively 7.9, 2.0, 3.6, 1.7, 2.1, 1.9 and 2.3 times higher in the CO(2) chamber than that of in the control chamber. Al(DGT), Cr(DGT), Ni(DGT), and Pb(DGT) continued to increase during the second phase of the experiment. There was no change in Cd(DGT) during the second phase, while Cu(DGT) and Zn(DGT) decreased by 30% and 25%, respectively in the CO(2) chamber. In the sediment pore water, DGT labile fractions of all the seven elements increased substantially in the CO(2) chamber. Our results show that CO(2) leakage affected the solubility, particle reactivity and transformation rates of the studied metals in sediment and at the sediment-water interface. The metal species released due to CO(2) acidification may have sufficiently long residence time in the seawater to affect bioavailability and toxicity of the metals to biota.

  8. Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas.

    PubMed

    Acosta, J A; Gabarrón, M; Faz, A; Martínez-Martínez, S; Zornoza, R; Arocena, J M

    2015-09-01

    Street dust and soil from high, medium and low populated cities and natural area were analysed for selected physical-chemical properties, total and chemical speciation of Zn, Pb, Cu, Cr, Cd, Co, Ni to understand the influence of human activities on metal accumulation and mobility in the environment. The pH, salinity, carbonates and organic carbon contents were similar between soil and dust from the same city. Population density increases dust/soil salinity but has no influence on metals concentrations in soils. Increases in metal concentrations with population density were observed in dusts. Cu, Zn, Pb, Cr can be mobilized more easily from dust compared to the soil. In addition, population density increase the percentage of Pb and Zn associated to reducible and carbonate phase in the dust. The behaviour of metals except Cd in soil is mainly affected by physico-chemical properties, while total metal influenced the speciation except Cr and Ni in dusts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mobility and storage sinks for chromium and other metals in soils impacted by leather tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2012-12-01

    Leather tanneries around the world, including China, introduce chromium (Cr) and other metals into the environment. In China, the population pressure compels the utilization of every piece of available land for food production. In this study, we investigated the content, leachability and possible storage sinks for Cr and other metals in soils around facilities of leather industry in southern China. It was found that Cr in soils impacted by tannery can be as high as 2484 mg Cr kg⁻¹ soil, and the mean contents of other metals such as Zn (214 mg Zn kg⁻¹ soil), Cd (5.4 mg Cd kg⁻¹ soil), As (17 mg As kg⁻¹ soil) exceeded the soil quality standards and guidelines in China and Canada. Simulated leaching studies (i.e., Synthetic Precipitation Leaching Procedure) indicated that these soils could release Cr and other metals in concentrations above the environmental quality guidelines and standards for water in China and Canada. As a result, the mobility of metals from these soils can potentially contaminate both groundwater and surface water. We also found differential leachability of metals with soil properties such as total metal and total carbon contents. Principal component analysis of the total contents of 32 elements showed that the possible major sinks for Cr are organic matter and oxides of Fe/Mn/Al, while sulfates and phosphates are potential storage of Cd, Zn, Cu and Pb. The information obtained from this study can be valuable for the restoration of ecosystem functions (i.e., food production) in the study area.

  10. Bioaccumulation of trace metals in octocorals depends on age and tissue compartmentalization

    PubMed Central

    Hwang, Jiang-Shiou; Huang, Ke Li; Huang, Mu-Yeh; Liu, Xue-Jun; Khim, Jong Seong; Wong, Chong Kim

    2018-01-01

    Trace metal dynamics have not been studied with respect to growth increments in octocorals. It is particularly unknown whether ontogenetic compartmentalization of trace metal accumulation is species-specific. We studied here for the first time the intracolonial distribution and concentrations of 18 trace metals in the octocorals Subergorgia suberosa, Echinogorgia complexa and E. reticulata that were retrieved from the northern coast of Taiwan. Levels of trace metals were considerably elevated in corals collected at these particular coral habitats as a result of diverse anthropogenic inputs. There was a significant difference in the concentration of metals among octocorals except for Sn. Both species of Echinogorgia contained significantly higher concentrations of Cu, Zn and Al than Subergorgia suberosa. We used for the first time exponential growth curves that describe an age-specific relationship of octocoral trace metal concentrations of Cu, Zn, Cd, Cr and Pb where the distance from the grip point was reflecting younger age as linear regressions. The larger colony (C7) had a lower accumulation rate constant than the smaller one (C6) for Cu, Zn, Cd, Cr and Pb, while other trace metals showed an opposite trend. The Cu concentration declined exponentially from the grip point, whereas the concentrations of Zn, Cd, Cr and Pb increased exponentially. In S. suberosa and E. reticulata, Zn occurred primarily in coenosarc tissues and Zn concentrations increased with distance from the grip point in both skeletal and coenosarc tissues. Metals which appeared at high concentrations (e.g. Ca, Zn and Fe) generally tended to accumulate in the outer coenosarc tissues, while metals with low concentrations (e.g. V) tended to accumulate in the soft tissues of the inner skeleton. PMID:29684058

  11. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    PubMed

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  12. The effect of abandoned mining ponds on trace elements dynamics in the soil-plant system

    NASA Astrophysics Data System (ADS)

    Gabarrón, María; Faz, Ángel; Zornoza, Raúl; Acosta, Jose A.

    2017-04-01

    In semiarid climate regions lack of vegetation and dryer climate contribute to erosion of abandoned mining surface areas making them up important potential sources of metal pollution into the environment. The objectives of this study were to determine the influence of mine ponds in agriculture and forest soils, and identify the dynamic of metals in the soil-plant system for native plant species (Ballota hirsuta) and crop species (Hordeum vulgare) in two ancient mining districts: La Unión and Mazarrón. To achieve these objectives, wastes samples from mine ponds and soil samples (rhizosphere and non-rhizosphere soils) from natural and agricultural lands were collected. In addition, six plants (Ballota hirsuta) from natural area and 3 plants (Hordeum vulgare) from crops were collected. Physicochemical properties and total, water soluble and bioavailable metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and arsenic were measured in waste/soil samples. The chemical speciation of metals in soil was estimated by a sequential extraction procedure. For plants analyses, each plant were divided in roots, stem and leaves and metal content measured by ICP-MS. Results indicated that mine, natural and agricultural soils were contaminated by As, Cd, Cu, Pb, and Zn. Chemical partitioning revealed higher mobility of metals in mine ponds than natural and agriculture soils while only Fe and As are completely bound to the soil matrix due to the mineralogical compositions of soils. The accumulation of metals in Ballota hirsuta in La Union decrease as Fe>As>Cr>Ni>Cu>Zn>Cd>Mn>Co>Pb while in Mazarrón did as As>Fe>Cr>Pb>Cu>Ni>Co>Mn>Zn>Cd. Ballota hirsuta showed high ability to bio-accumulate Cu, Cr, Fe, Ni, and As, transferring a large amount to edible parts without exceeding the toxicity limits for animals. Results for barley plants (Hordeum vulgare) showed the ability to absorb and accumulate As, Fe, Mn, Pb and Zn, although the transfer ability of As, Cd and Pb was lower. Although the behavior of metals reflects a root barrier effect, the amount of Pb in grain overreached the permissible limit in aliments.

  13. Self-assembled organic-inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles.

    PubMed

    Denadai, Angelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S; Sinisterra, Rubén D

    2012-01-01

    Organic-inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr(3+) and Cr(2)O(7) (2-) ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer-Emmett-Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn.

  14. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China).

    PubMed

    Yutong, Zong; Qing, Xiao; Shenggao, Lu

    2016-07-01

    This study examines the distribution, mobility, and potential environmental risks of heavy metals in various particle size fractions of urban soils. Representative urban topsoils (ten) collected from Anshan, Liaoning (northeastern China), were separated into six particle size fractions and their heavy metal contents (Cr, Cu, Cd, Pb, and Zn) were determined. The bioaccessibility and leachability of heavy metals in particle size fractions were evaluated using the toxicity characteristic leaching procedure (TCLP) and ethylenediaminetetraacetic acid (EDTA) extraction, respectively. The results indicated that the contents of five heavy metals (Cd, Cr, Cu, Pb and Zn) in the size fractions increased with the decrease of particle size. The clay fraction of <2 μm had the highest content of heavy metals, indicating that the clay fraction was polluted by heavy metals more seriously than the other size fractions in urban topsoils. Cr also concentrated in the coarse fraction of 2000-1000 μm, indicating a lithogenic contribution. However, the dominant size fraction responsible for heavy metal accumulation appeared to belong to particle fraction of 50-2 μm. The lowest distribution factors (DFs) of heavy metals were recorded in the 2000- to 1000-μm size fraction, while the highest in the clay fraction. The DFs of heavy metals in the clay fraction followed Zn (3.22) > Cu (2.84) > Pb (2.61) > Cr (2.19) > Cd (2.05). The enrichment factor suggested that the enrichment degree of heavy metal increased with the decrease of the particle size, especially for Cd and Zn. The TCLP- and EDTA-extractable concentrations of heavy metals in the clay fraction were relatively higher than those in coarse particles. Cd bioavailability was higher in the clay fraction than in other fractions or whole soils. In contrast, Cr exhibits similar bioaccessibilities in the six size fractions of soils. The results suggested that fine particles were the main sources of potentially toxic metals in urban soils. The variation of heavy metals in various size fractions should be taken into account in environment assessments.

  15. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    PubMed

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals.

    PubMed

    Dey, Priyadarshini; Gola, Deepak; Mishra, Abhishek; Malik, Anushree; Kumar, Peeyush; Singh, Dileep Kumar; Patel, Neelam; von Bergen, Martin; Jehmlich, Nico

    2016-11-15

    In the present study, five fungal strains viz., Aspergillus terreus AML02, Paecilomyces fumosoroseus 4099, Beauveria bassiana 4580, Aspergillus terreus PD-17, Aspergillus fumigatus PD-18, were screened for simultaneous multimetal removal. Highest metal tolerance index for each individual metal viz., Cd, Cr, Cu, Ni, Pb and Zn (500mg/L) was recorded for A. fumigatus for the metals (Cd, 0.72; Cu, 0.72; Pb, 1.02; Zn, 0.94) followed by B. bassiana for the metals (Cd, 0.56; Cu, 0.14; Ni, 0.29; Zn, 0.85). Next, the strains were exposed to multiple metal mixture (Cd, Cr, Cu, Ni, Pb and Zn) of various concentrations (6, 12, 18, 30mg/L). Compared to other strains, B. bassiana and A. fumigatus had higher cube root growth (k) constants indicating their better adaptability to multi metal stress. After 72h, multimetal accumulation potential of B. bassiana (26.94±0.07mg/L) and A. fumigatus (27.59±0.09mg/L) were higher than the other strains at initial multimetal concentration of 30mg/L. However, considering the post treatment concentrations of individual metals in multimetal mixture (at all the tested concentrations), A. fumigatus demonstrated exceptional performance and could bring down the concentrations of Cd, Cu, Ni, Pb and Zn below the threshold level for irrigation prescribed by Food and Agriculture Organization (FAO). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multivariate analysis of selected metals in tannery effluents and related soil.

    PubMed

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  18. Health Risks and Contamination Levels of Heavy Metals in Dusts from Parks and Squares of an Industrial City in Semi-Arid Area of China

    PubMed Central

    Han, Xiufeng; Lu, Xinwei; Qinggeletu; Wu, Yongfu

    2017-01-01

    The contamination characteristics and health risk of barium (Ba), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V), zinc (Zn), arsenic (As), mercury (Hg), and cadmium (Cd) in samples of dust gathered from squares and parks of Baotou city, an industrial city situated in a semi-arid location of the northwest China were investigated. The contents of Ba, Co, Cr, Cu, Mn, Ni, V, Pb, and Zn in the collected dust samples were determined using X-ray fluorescence spectrometry, while the contents of As and Hg in the dust were investigated by use of the ICP-MS. Further, cadmium was quantified through the atomic absorption spectrometry. Levels of contamination of heavy metals analyzed in the dust samples were evaluated using the Geo-Accumulation index (Igeo) as well as through a Pollution Load Index (PLI). Their health risks to children and adults were evaluated based on the US EPA model of health risk. The findings portrayed that the mean concentrations of Ba, Co Cr, Cu, Pb, V, Cd, and Hg were elevated as compared with their local soil background values. Mean values of Igeo illustrate the order of Co > Cr> Cd > Hg > Pb > Cu > Ba > V > Ni > Mn > Zn > As. It was evident that dusts from the parks and squares were “unpolluted” to “moderately polluted”. Assessment of health risk depicts that ingestion is the foremost route of exposure in regard to the heavy metals, then the dermal adsorption follows. Hg exposure from dust might also set impending health threats to children. Besides, the cancer risks of Co, Cr, Ni, Cd, and As are considered to be within the presently tolerable range. PMID:28783109

  19. Multivariate Analyses of Heavy Metals in Surface Soil Around an Organized Industrial Area in Eskisehir, Turkey.

    PubMed

    Malkoc, S; Yazici, B

    2017-02-01

    A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.

  20. Heavy metals in sediments, soils, and aquatic plants from a secondary anabranch of the three gorges reservoir region, China.

    PubMed

    Gao, Jun-Min; Sun, Xiu-Qian; Jiang, Wen-Chao; Wei, Yun-Mei; Guo, Jin-Song; Liu, Yuan-Yuan; Zhang, Ke

    2016-06-01

    We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn > Ni > Cr > Cu > Cd > Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.

  1. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.

    PubMed

    Liu, Guannan; Wang, Juan; Zhang, Erxi; Hou, Jing; Liu, Xinhui

    2016-05-01

    Heavy metal contamination of soils has been a long-standing environmental problem in many parts of the world, and poses enormous threats to ecosystem and human health. Speciation of heavy metals in soils is crucial to assessing environmental risks from contaminated soils. In this study, total concentrations and speciation of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were measured for agricultural soils near mines along the Diaojiang River in Guangxi Zhuang Autonomy Region, China. The sources of heavy metals in soils also were identified to assess their effect on speciation distribution of soil heavy metals. Furthermore, the speciation distribution of Cd and Zn, main soil heavy metal pollutants, in dry land and paddy soils were compared. Results showed that there were two severely polluted regions near mine area reaching alarming pollution level. As, Cd, Pb, and Zn were more affected by mining activities, showing very strong pollution level in soils. The mean percentage of exchangeable and carbonate fraction was highest and up to 46.8 % for Cd, indicating a high environmental risk. Greater bioavailable fractions of As, Cd, Cu, Mn, Pb, and Zn were found in soils heavily polluted by mining activities, whereas Cr and Ni as geogenic elements in the stable residual fraction. In addition, in the dry land soils, reducible fraction proportion of Cd was higher than that in the paddy soils, whereas exchangeable and carbonate fraction of Cd was lower than that in the paddy soils. Oxidizable fraction of Zn was higher in the paddy soils than that in the dry land soils. The results indicate that the sources of soil heavy metals and land types affect heavy metal speciation in the soil and are significant for environmental risk assessment of soil heavy metal pollutions.

  2. Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China.

    PubMed

    Yuan, Zhimin; Yao, Jun; Wang, Fei; Guo, Zunwei; Dong, Zeqin; Chen, Feng; Hu, Yu; Sunahara, Geoffrey

    2017-01-01

    Artisanal zinc smelting activities, which had been widely applied in Bijie City, Guizhou Province, southwestern of China, can pollute surrounding farmlands. In the present study, 177 farmland topsoil samples of Bijie City were collected and 11 potentially toxic trace elements (PTEs), namely Pb, Zn, Cu, Ni, Co, Mn, Cr, V, Hg, As, and Cd were tested to characterize the concentrations, sources, and ecological risks. Mean concentrations of these PTEs in soils were (mg/kg) as follows: Pb (127), Zn (379), Cu (93.1), Ni (54.6), Co (26.2), Mn (1095), Cr (133), V (206), Hg (0.15), As (16.2), and Cd (3.08). Pb, Zn, and Cd had coefficients of variation greater than 100% and showed a high uneven distribution and spatial variability in the study area. Correlation coefficient analysis and principal component analysis (PCA) were used to quantify potential pollution sources. Results showed that Cu, Ni, Co, Mn, and V came from natural sources, whereas Pb, Zn, Hg, As, and Cd came from anthropogenic pollution sources. Geoaccumulation index and potential ecological risk indices were employed to study the pollution degree of PTEs, which revealed that Pb and Cd shared the greatest contamination and would pose serious ecological risks to the surrounding environment. The results of this study could help the local government managers to establish pollution control strategies and to secure food safety.

  3. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa.

    PubMed

    Mungai, Teresiah Muciku; Owino, Anita Awino; Makokha, Victorine Anyango; Gao, Yan; Yan, Xue; Wang, Jun

    2016-09-01

    The concentration distribution and toxicological assessment of eight heavy metals including lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), mercury (Hg), arsenic (As), and zinc (Zn) in agricultural soils from Kenya, Eastern Africa, were investigated in this study. The results showed mean concentrations of eight heavy metals of Zn, Pb, Cr, Cu, As, Ni, Hg, and Cd in agricultural soils as 247.39, 26.87, 59.69, 88.59, 8.93, 12.56, 8.06, and 0.42 mg kg(-1), respectively. These mean values of eight heavy metals were close to the toxicity threshold limit of USEPA standard values of agricultural soils, indicating potential toxicological risk to the food chain. Pollution index values revealed that eight heavy metals severely decreased in the order Hg > Cd > As > Cu > Pb > Zn > Ni > Cr and the mean value of the overall pollution index of Hg and Cd was 20.31, indicating severe agriculture ecological risk. Potential pollution sources of eight heavy metals in agricultural soils were mainly from anthropogenic activities and natural dissolution. The intensification of human agricultural activities, the growing industrialization, and the rapid urbanization largely influenced the concentration levels of heavy metals in Kenya, Eastern Africa. Moreover, the lack of agricultural normalization management and poor enforcement of environmental laws and regulations further intensified the widespread pollution of agricultural soils in Kenya.

  4. Size distribution, characteristics and sources of heavy metals in haze episode in Beijing.

    PubMed

    Duan, Jingchun; Tan, Jihua; Hao, Jiming; Chai, Fahe

    2014-01-01

    Size segragated samples were collected during high polluted winter haze days in 2006 in Beijing, China. Twenty nine elements and 9 water soluble ions were determined. Heavy metals of Zn, Pb, Mn, Cu, As, Cr, Ni, V and Cd were deeply studied considering their toxic effect on human being. Among these heavy metals, the levels of Mn, As and Cd exceeded the reference values of National Ambient Air Quality Standard (GB3095-2012) and guidelines of World Health Organization. By estimation, high percentage of atmospheric heavy metals in PM2.5 indicates it is an effective way to control atmospheric heavy metals by PM2.5 controlling. Pb, Cd, and Zn show mostly in accumulation mode, V, Mn and Cu exist mostly in both coarse and accumulation modes, and Ni and Cr exist in all of the three modes. Considering the health effect, the breakthrough rates of atmospheric heavy metals into pulmonary alveoli are: Pb (62.1%) > As (58.1%) > Cd (57.9%) > Zn (57.7%) > Cu (55.8%) > Ni (53.5%) > Cr (52.2%) > Mn (49.2%) > V (43.5%). Positive matrix factorization method was applied for source apportionment of studied heavy metals combined with some marker elements and ions such as K, As, SO4(2-) etc., and four factors (dust, vehicle, aged and transportation, unknown) are identified and the size distribution contribution of them to atmospheric heavy metals are discussed.

  5. Bioaccumulation of heavy metals in crop plants grown near Almeda Textile Factory, Adwa, Ethiopia.

    PubMed

    Gitet, Hintsa; Hilawie, Masho; Muuz, Mehari; Weldegebriel, Yirgaalem; Gebremichael, Dawit; Gebremedhin, Desta

    2016-09-01

    The contents of heavy metals cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) present in water (wastewater and wetland), soils, and food crops collected from the vicinity of Almeda Textile Factory were quantified using Flame Atomic Absorption Spectrometer (FAAS) in order to assess the environmental impact of the textile factory. The contents of heavy metals determined in the wastewater were found below the recommended limit set by WHO and United States Environmental Protection Agency (US EPA) except for Cr, which was found slightly higher than WHO permissible limit. Besides, the contents of the heavy metals determined in soils were below the permissible level of FAO/WHO and Canada maximum allowable limits. Moreover, only the concentrations of Cd and Pb were found above the permissible level set by FAO/WHO in the crop plants studied. Generally, the mean concentrations of heavy metals in the plants were in the decreasing order of: Mn > Zn > Cu > Pb > Ni > Co > Cr > Cd. Nevertheless, higher bioconcentration factor (BCF) was found for Cd (0.108-1.156) followed by Zn (0.081-0.499). In conclusion, comparison of heavy metal concentrations with the permissible limits in all collected sample types i.e. water, soil, and crop plants did not show significant pollution from the factory.

  6. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease

    PubMed Central

    Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328

  7. [Residues and potential ecological risk assessment of metal in sediments from lower reaches and estuary of Pearl River].

    PubMed

    Xie, Wen-Ping; Wang, Shao-Bing; Zhu, Xin-Ping; Chen, Kun-Ci; Pan, De-Bo; Hong, Xiao-You; Yin, Yi

    2012-06-01

    In order to investigate the heavy metal concentrations and their potential ecological risks in surface sediments of lower reaches and estuary of Pearl River, 21 bottom sediment samples were collected from lower reaches and estuary of Pearl River. Total contents of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg in these samples were measured by the inductively coupled plasma mass spectrometry (ICP-MS) and the atomic fluorescence spectrometry (AFS) and using the index of geoaccumulation and the potential ecological risk index to evaluate the pollution degree of heavy metals in the sediments. Results indicated that the concentration of total Fe and total Mn were 41658.73 and 1104.73 mg x kg(-1) respectively and toxic trace metals, such as Cr, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Pb and Hg were 86.62, 18.18, 54.10, 80.20, 543.60, 119.55, 4.28, 10.60, 20.26, 104.58 and 0.520 mg x kg(-1). The descending order of pollution degree of various metals is: Cd > As approximately Zn > Hg > Pb approximately Cu approximately Cr, while the single potential ecological risk followed the order: Cd > Hg > As > Cu > Pb > Zn > Cr. The pollution extent and potential ecological risk of Cd were the most serious among all heavy metals. The distribution pattern of Cd individual potential ecological risk indices is exactly the same as that of general potential ecological risk indices for all heavy metals. Clustering analysis indicates that the sampling stations may be classified into five groups which basically reflected the characteristics of the heavy metal contamination and sedimentation environments along the different river reaches in lower reaches and estuary of Pearl Rive. In general, the serious heavy metal pollution and the high potential ecological risk existed in three river reaches: Chengcun-Shawan, Chengcun-Shundegang and Waihai-Hutiaomen. The pollution degree and potential ecological risk are higher in related river reaches of Beijiang than that in other lower reaches and estuary of Pearl River.

  8. Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea

    NASA Astrophysics Data System (ADS)

    Hamed, Mohamed A.; Emara, Ahmed M.

    2006-05-01

    Levels of the heavy metals Copper (Cu), Zinc (Zn), Lead (Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni), Iron (Fe) and Manganese (Mn) were determined in coastal water, sediments and soft tissues of the gastropod limpet, Patella caerulea, and the bivalve, Barbatus barbatus, from seven different stations in the western coast of the Gulf of Suez. The concentrations of heavy metals in water ranged between 3.37-4.78, 18.83-21.46, 2.75-3.17, 0.22-0.27, 0.99-1.21, 2.69-3.65, 3.75-4.56 μg L - 1 and 23.82-32.78 mg g - 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The corresponding concentration values in the sediments were 8.65-12.16, 51.78-58.06, 36.52-42.15, 3.23-3.98, 9.03-12.75, 34.31-49.63, 3.28-4.56 and 64.20-70.22 μg g - 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The highest accumulated metals were Fe, Zn and Mn in both P. caerulea and B. barbatus, while the lowest one was Cd. The accumulation of metals was more pronounced in P. caerulea than B. barbatus. The highest concentrations of all metals in water, sediments and mollusca were recorded at Adabiya harbour north of the Gulf, while the lowest concentrations were recorded at Gabal El-Zeit and Hurghada. Land based activities and ships awaiting berth are the main source of metal pollution in the northern part of the Gulf.

  9. Level of heavy metals in some edible marine fishes of mangrove dominated tropical estuarine areas of Hooghly River, north east coast of Bay of Bengal, India.

    PubMed

    De, T K; De, M; Das, S; Ray, R; Ghosh, P B

    2010-10-01

    The muscles of some important marine fishes collected in and around Hooghly estuarine coastal areas were analyzed for the heavy metals Cu, Zn, Ni, Cd, Cr and Pb. The concentration range of Cu (16.22-47.97 ppm), Pb (12.40-19.96 ppm) and Zn (12.13-44.74 ppm) were recorded comparatively higher and were similar to that found in contaminated areas. On the other hand the ranges of Ni (2.20-3.69 ppm), Cr (0-3.89 ppm) and Cd (0.62-1.20 ppm) were almost equal to those carried out over a wide range of geographical areas. The degree of bioaccumulations was metal-specific as well as species-specific in nature. The toxic groups of metals (Pb and Cd) showed higher variability than the essential metals (Cu, Zn and Ni). The calculated intake value of metals (week⁻¹ kg⁻¹ body wt) varied from 14.88 to 27.60 of Pb, 0.87 to 1.68 of Cd, 0.0 to 5.45 of Cr, 22.70 to 137.16 of Cu, 3.08 to 5.17 of Ni and 16.98 to 62.60 of Zn through human consumption of these fishes and were compared with those of standard Provisional Tolerable Weekly Intake value (PTWI) per kg body weight as stipulated by WHO. The PTWI(Cal) values of Pb in some of the fishes recorded marginally excess values and may indicate a health risk through consumption of successive 7 days in a week.

  10. The volatilization of heavy metals during co-combustion of food waste and polyvinyl chloride in air and carbon dioxide/oxygen atmosphere.

    PubMed

    Ke, Chuncheng; Ma, Xiaoqian; Tang, Yuting; Zheng, Weihua; Wu, Zhendong

    2017-11-01

    The volatilization of three heavy metals (Cd, Cr and Zn) during food waste and PVC and their blending combustion in N 2 /O 2 or CO 2 /O 2 atmosphere in a lab-scale tubular furnace was investigated. The concentration of heavy metals in combustion ash was decreased with the increment of furnace temperature in most cases. The replacement of 80N 2 /20O 2 by 80CO 2 /20O 2 decreased the volatilization rate of Cd and Cr, but increased Zn. The increased amount of PVC added into food waste led to less content of Zn in combustion ash, 5% PVC added into food waste decreased the volatilization rate of Cr but 15% PVC added led to the higher volatilization. The volatilization rate of Zn in 70CO 2 /30O 2 was significantly lower than in 85CO 2 /15O 2 or 80CO 2 /20O 2 . The result contributes to the understanding of heavy metal volatilization during incineration and emission control of MSW oxy-fuel combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Heavy metal distribution in sediments from Calabar River, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ntekim, E. E. U.; Ekwere, S. J.; Ukpong, E. E.

    1993-08-01

    The concentration and areal distribution of selected metals (Pb, Zn, Cu, Cd, Ni, Fe, and Cr) in the sediments of the Calabar River were studied to determine the extent of anthropogenic input and to estimate the effects of dumping industrial waste materials into the river. The concentrations of Pb, Zn, and Cu indicate relatively moderate pollution mainly on the left-hand side of the river while Ni, Cr, Co, Cd, and Fe levels are below values found to have adverse effects on the lives of marine biota. High metal contents are found close to industrial establishments and so enhanced metal concentrations are related to industrial sewage and metal leaching from garbage and solid waste dumps.

  12. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    PubMed Central

    Denadai, Ângelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S

    2012-01-01

    Summary Organic–inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr3+ and Cr2O7 2− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn. PMID:23209524

  13. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    PubMed

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  14. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China.

    PubMed

    Xu, Daoquan; Wang, Yinghui; Zhang, Ruijie; Guo, Jing; Zhang, Wei; Yu, Kefu

    2016-05-01

    The distribution and speciation of several heavy metals, i.e., As, Cd, Cr, Cu, Hg, Pb, and Zn, in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China, were studied comparatively. The mean contents of Cd, Cu, Hg, Pb, and Zn were 1.72, 38.07, 0.18, 51.54, and 142.16 mg/kg, respectively, which were about 1.5-6 times higher than their corresponding regional sediment background values. Metal speciation obtained by the optimized BCR protocol highlighted the bioavailable threats of Cd, Cu, and Zn, which were highly associated with the exchangeable fraction (the labile phase). Hierarchical cluster analysis indicated that in sediments, As and Cr were mainly derived from natural and industrial sources, whereas fertilizer application might lead to the elevated level of Cd. Besides, Cu, Hg, Pb, and Zn were related to traffic activities. The effects-based sediment quality guidelines (SQGs) showed that Hg, Pb, and Zn could pose occasional adverse effects on sediment-dwelling organisms. However, based on the potential ecological risk assessment (PER) and risk assessment code (RAC), Cd was the most outstanding pollutant and posed the highest ecological hazard and bioavailable risk among the selected metals. Moreover, the metal partitioning between water and sediments was quantified through the calculation of the pseudo-partitioning coefficient (K P), and result implied that the sediments in this karst aquatic environment cannot be used as stable repositories for the metal pollutants.

  15. Metal Concentrations in Sediment And Biota of the Huludao Coast in Liaodong Bay and Associated Human and Ecological Health Risks.

    PubMed

    Gao, Mi; Klerks, Paul L; Wu, Xing; Chen, Hongxing; Xie, Lingtian

    2016-07-01

    This study assessed the contamination extent and potential ecological and human health impacts for chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in sediments and indigenous benthic organisms along the coastal area of Huludao, China. We analyzed a total of eight species: two benthic fish species, two bivalves, two snails, and two decapod crustaceans. Cu, Zn, and Cd levels in sediment exceeded the Chinese marine sediment quality criteria. The geoaccumulation index was highest for Cd followed in a decreasing order by Zn, Pb, Cu, Ni, and Cr. Metal levels were highest in the four mollusk species. The oyster and veined rapa whelk had the highest bioaccumulation factors, indicating that these two species would be well suited for monitoring the metal pollution in this area. Our comparison of estimated daily intake values for human consumption of the seafood species to the Food and Agricultural Organization-recommended daily dietary allowances indicate potential health risks from the intake of Cd from all shellfish other than our crab species and Zn intake from oyster consumption. An analysis of target hazard quotients identified noncarcinogenic health risks from Cd (in all shellfish analyzed except for our crab species), Cu, and Zn (in oysters and veined rapa whelks). Moreover, an analysis of cancer risk from Pb ingestion detected an increased risk for consumption of all shellfish except for the crab species. Health risks seem especially pronounced for the consumption of oysters and the veined rapa whelks; a seafood advisory may be warranted for these mollusks.

  16. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China

    PubMed Central

    Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-01-01

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781

  17. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China.

    PubMed

    Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-07-13

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.

  18. Bioaccumulation of Heavy Metals in Water, Sediments, and Tissues and Their Histopathological Effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Pakhtunkhwa, Pakistan

    PubMed Central

    Khan, Muhammad Iftikhar; Gulfam, Naila; Siraj, Muhammad; Zaidi, Farrah; Ahmadullah; Abidullah; Fatima, Syeda Hira; Noreen, Shumaila; Hamidullah; Shah, Zafar Ali; Qadir, Fazli

    2018-01-01

    The present investigation aimed to assess the concentrations of selected heavy metals in water and sediments and their bioaccumulation in tissues of freshwater mussels and their histopathological effects on the digestive gland, gills, and gonads of Anodonta cygnea. Water, sediments, and freshwater mussel samples were collected at four sites, that is, reference and polluted sites, along the Kabul River, Khyber Pakhtunkhwa. The polluted sites were receiving effluents from the industrial, agricultural, municipal, and domestic sources. The order of metals in the water was Zn > Pb > Ni > Cu > Mn > Fe > Cr > Cd, in sediments the order was Fe > Zn > Cr > Ni > Mn > Pb > Cu > Cd, and in the soft tissues the order was Fe > Zn > Mn > Pb > Cu > Cr > Ni > Cd. Histopathological alterations observed in polluted sites of Kabul River were inflammation, hydropic vacuolation, and lipofuscin pigments (in digestive gland), gill lamellar fusion, dilated hemolymphatic sinus, clumping, and generation of cilia and hemocytic infiltration (in gills), and atresia, necrosis, granulocytoma, hemocytic infiltration, and lipofuscin pigments (in gonads). The histopathological alterations in the organs of Anodonta cygnea can be considered as reliable biomarkers in biomonitoring of heavy metal pollution in aquatic ecosystems. PMID:29693003

  19. Essential and toxic elements in infant foods from Spain, UK, China and USA.

    PubMed

    Carbonell-Barrachina, Ángel A; Ramírez-Gandolfo, Amanda; Wu, Xiangchun; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A

    2012-09-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.

  20. Heavy metals in soils and plants of the don river estuary and the Taganrog Bay coast

    NASA Astrophysics Data System (ADS)

    Minkina, T. M.; Fedorov, Yu. A.; Nevidomskaya, D. G.; Pol'shina, T. N.; Mandzhieva, S. S.; Chaplygin, V. A.

    2017-09-01

    Natural and anthropogenic factors determining the distribution and accumulation features of Pb, Cu, Zn, Cr, Ni, Cd, Mn, and As in the soil-plant system of the Don River estuary and the northern and southern Russian coasts of Taganrog Bay estuary have been studied. High mobility of Cu, Zn, Pb, and Cd has been revealed in alluvial soils. This is confirmed by the significant bioavailability of Cu, Zn, and, to a lesser degree, Cd and the technophily of Pb, which are accumulated in tissues of macrophytic plants. Statistically significant positive correlations have been found between the mobile forms of Cu, Zn, Cd, and Mn in the soil and the accumulation of metals in plants. Impact zones with increased metal contents in aquatic ecosystems can be revealed by bioindication from the morphofunctional parameters of macrophytic plants (with Typha L. as an example).

  1. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    PubMed

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  2. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (E H ) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.

    PubMed

    Chen, Tao; Yan, Bo

    2012-05-01

    Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Determination of heavy metal ions in vegetable samples using a magnetic metal-organic framework nanocomposite sorbent.

    PubMed

    Hassanpour, Akbar; Hosseinzadeh-Khanmiri, Rahim; Babazadeh, Mirzaagha; Abolhasani, Jafar; Ghorbani-Kalhor, Ebrahim

    2015-01-01

    This paper describes the synthesis and application of a novel magnetic metal-organic framework (MOF) [(Fe₃O₄-benzoyl isothiocyanate)/Cu₃(benzene-1,3,5-tricarboxylate)₂] to pre-concentrate trace amounts of Cd(II), Pb(II), Zn(II) and Cr(III) ions and their determination by flame atomic absorption spectrometry. A Box-Behnken design was used to find the parameters affecting the pre-concentration procedure through response surface methodology. Three factors including uptake time, amount of the magnetic sorbent and pH of the sample were selected as affecting factors in the sorption step, and four factors including type, volume and concentration of the eluent as well as the elution time were selected in the elution step for the optimisation study. The opted values were 30 mg, 10.1 min, 5.9, EDTA, 4.0 ml, 0.57 mol l(-1) EDTA solution and 13.0 min for the amount of the magnetic sorbent, uptake time, pH of the sample, type, volume, concentration of the eluent, and elution time, respectively. The limits of detection (LODs) were 0.12, 0.7, 0.16, and 0.4 ng ml(-1) for Cd(II), Pb(II), Zn(II) and Cr(III) ions, respectively. The relative standard deviations (RSDs) of the method were less than 7.2% for five separate batch experiments for the determination of 30 μg l(-1) of Cd(II), Pb(II), Zn(II) and Cr(III) ions. The sorption capacity of the [(Fe₃O₄-benzoyl isothiocyanate)/MOF] was 175 mg g(-1) for Cd(II), 168 mg g(-1) for Pb(II), 210 mg g(-1) for Zn(II) and 196 mg g(-1) for Cr(III). It was found that the magnetic MOF nanocomposite demonstrated a higher capacity compared with Fe₃O₄-benzoyl isothiocyanate. Finally, the magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace amounts of the heavy metal ions from vegetable samples.

  5. [Characteristics and Risk Assessment of Heavy Metals in Core Sediments from Lakes of Tibet].

    PubMed

    Guo, Bi-xi; Liu, Yong-qin; Zhang, Fan; Hou, Ju-zhi; Zhang, Hong-bo

    2016-02-15

    To explore the source of heavy metals in lake sediments and their hazard to environment on Tibetan Plateau, China, heavy metal (Cu, Zn, Cd, Pb, Cr, Co, Ni and As) levels in surface sediments of 18 lakes were investigated. Inductively Coupled Plasma Mass Spectrometry (ICP-MS, X-7 series) was used to determine the contents of heavy metals and the concentrations of carbon and nitrogen in sediment samples were analyzed by element analyzer (Vario Max CN, Elementar, Germany). The average concentrations for Cu, Zn, Cd, Pb, Cr, Co, Ni and As were 24.61 mg x kg(-1), 70.14 mg x kg(-1), 0.26 mg x kg(-1), 25.43 mg x kg(-1), 74.12 mg x kg(-1), 7.93 mg x kg(-1), 33.85 mg x kg(-1), 77.69 mg x kg(-1). It was found that heavy-metal concentrations in Tibet sediments were higher than those in Antarctic, but lower than those in the regions affected by anthropogenic activities. The contents of Cu, Zn, Pb, Cr and Co in the samples were lower than the background values of Tibet. Correlation analysis and principal components analysis (PCA) were used to analyze the origins of heavy metals. The result showed that Cu, Zn, Cd, Pb, Co, Ni and As came from soil in drainage basin and atmospheric deposition. Cr was mainly affected by human activities. Assessment on ecological risk of heavy metals was carried out using Hakanson's method and cluster analysis (CA). Assessment on ecological risk indicated that Pumoyum Co, Longmo Co and Bangong Co were at low risks, Bieruoze Co was at high ecological risk level and the other lakes were at different risk levels.

  6. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world's largest borate basin (Turkey).

    PubMed

    Omwene, Philip Isaac; Öncel, Mehmet Salim; Çelen, Meltem; Kobya, Mehmet

    2018-06-07

    Mining activities in addition to the geology of Mustafakemalpaşa catchment have for long been linked to its deteriorating water and sediment quality. This study assessed contamination levels of heavy metals and other major elements (Pb, As, B, Cd, Zn, Cr, Mo, Co, Ni, Cu, and Ag) in surface sediments of the area, and identified possible pollution sources. Sediment quality indicators, such as contamination factor (CF), enrichment factor (EF), geo-accumulation index (I geo ) and sediment quality guidelines were used, in addition to multivariate statistical technics; Pearson Correlation Matrix (PCM), Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). The highest contamination (annual average > 110 mg kg -1 ) was revealed by B, Cr, Ni, Zn and As. Moreover, As, Cd and Ni levels exceeded their respective probable effect concentrations (PEC), posing a potential negative impact to biota. The highest I geo values were recorded for Cr, B, Ni, As and Zn, and occurred near urban settlements and mining sites, particularly of coal and chromium. The present study also suggests use of site rank index (SRI) as an alternative to pollution load index (PLI), since the former is derived from the data of interest and eliminates arbitrary classifications. The sources of heavy metals in the sediments were attributed to fly ashes of coal-powered plants, urban waste leachate and weathering of sulfide ore minerals for Pb, Zn and Cu; urban-industrial wastes and mining wastes for Ni. Although Cr, As, Cd and B were ascribed to natural occurrence, their presences in river sediment is accelerated by mining. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Trace metals in liver from bluefish, tautog, and tilefish in relation to body length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, H.C.; Eisler, R.

    1977-09-01

    Livers from bluefish, tilefish and tautog collected during the summer of 1971 off the New Jersey coast were analyzed for Cd, Cr, Cu, Fe, Mn, Ni, and Zn by atomic absorption spectrophotometry. Liver ash from male and female tautog contained decreasing concentrations of Ni with increasing body length. Smaller males also contained greater levels of Cr and Cu in liver than larger tautogs. Larger tilefish contained proportionately more Cd, Cu, and Fe in liver than smaller tilefish. Decreasing levels of Mn and Zn with body length were apparent only for females. Livers from larger male bluefish were associated with highermore » concentrations of Fe than those from smaller males, while those from larger females contained lower concentrations of Cr than those from smaller females. The data suggest that future comparisons for trace metals which vary as a function of size be made only among fish of the same length.« less

  8. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation.

    PubMed

    Yuan, Yongqiang; Yu, Shen; Bañuelos, G S; He, Yunfeng

    2016-11-01

    Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg -1 ) and other metals (e.g., 48.3 mg Cu kg -1 , 2370 mg Zn kg -1 , 44.9 mg Pb kg -1 , and 0.59 mg Cd kg -1 ). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg -1 ), Aster subulatus (310 mg Cr kg -1 ), and Brassica chinensis (300 mg Cr kg -1 ), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.

  9. Distribution and accumulation of metals in tadpoles inhabiting the metalliferous streams of eastern Chalkidiki, northeast Greece.

    PubMed

    Kelepertzis, Efstratios; Argyraki, Ariadne; Valakos, Efstratios; Daftsis, Emmanouil

    2012-10-01

    The present study investigates the accumulation of heavy metals [copper (Cu), lead (Pb), zinc (Zn), magnesium (Mn), cadmium (Cd), nickel (Ni), and chromium (Cr)] in tadpoles inhabiting the metalliferous streams flowing within the Asprolakkas River basin (northeast Chalkidiki peninsula, Greece) and the effect of potentially harmful elements in stream water and sediment on the corresponding levels in their tissue. Animals were collected from six sampling sites influenced by a wide range of surface water and stream sediment trace element concentrations. The results of the chemical analyses showed that tadpoles accumulated significant levels of all of the examined metals. The range of whole-body mean measured concentrations were (in dry mass) as follows: Cu (46-182 mg/kg), Pb (103-4,490 mg/kg), Zn (494-11,460 mg/kg), Mn (1,620-13,310 mg/kg), Cd (1.2-82 mg/kg), Ni (57-163 mg/kg), and Cr (38-272 mg/kg). The mean concentrations of Pb, Zn, Mn, Ni, Cr, and Cd in Kokkinolakkas stream, which drains a currently active mining area, were the highest ever reported in tadpoles. Our results indicate that whole-body levels of Pb, Zn, Cu, and Cd increase with stream sediment concentrations and that these organisms tend to accumulate metals bound to Fe and Mn oxides. In addition, high dissolved concentrations and significant concentrations associated with more labile geochemical phases of sediments for specific metals were contributing factors determining whole-body levels. Given the observed bioconcentration factors, as well as the correlation with sediment concentrations, it is proposed that these organisms could be considered as bioindicators of environmental contamination and may be used for monitoring purposes within this metal-rich zone and, perhaps, within other rivers affected by metal mining.

  10. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    NASA Astrophysics Data System (ADS)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.

  11. Evaluation of Levels, Sources and Health Hazards of Road-Dust Associated Toxic Metals in Jalalabad and Kabul Cities, Afghanistan.

    PubMed

    Jadoon, Waqar Azeem; Khpalwak, Wahdatullah; Chidya, Russel Chrispine Garven; Abdel-Dayem, Sherif Mohamed Mohamed Ali; Takeda, Kazuhiko; Makhdoom, Masood Arshad; Sakugawa, Hiroshi

    2018-01-01

    This study was designed to investigate selected road-dust associated heavy metals, their relations with natural and anthropogenic sources, and potential human and environmental health risks. For this purpose, 42 and 36 road-dusts samples were collected from Jalalabad and Kabul cities (Afghanistan), respectively. The following elements were found in descending concentrations: Mn, Zn, Pb, Ni, Cu, Cr, Co, and Cd in Jalalabad; and Mn, Zn, Ni, Cu, Cr, Pb, Co, and Cd in Kabul. Except for Ni, all the elemental contents were less than the Canadian permissible limits in residential/parkland soils. Principle Component Analysis and enrichment of Cd, Cu, Ni, Pb, and Zn pointed to anthropogenic sources, whereas Co, Cr, and Mn indicated crustal inputs. Broadly, Cd monomial risk index ([Formula: see text]) was considerable; however, one site each in both cities showed high risk ([Formula: see text] ≥ 350). The potential ecological risk (RI) is mostly low; however, at some sites, the risk was considerable. Ingestion appeared to be the main exposure route (99%) for heavy metals and contributed > 90% to noncancerous (all residents), as well as 92% (children) and 75-89% (adults) cancerous risks. The noncancerous risks of all metals and their integrated risks for all residents were within acceptable levels. Moreover, potential cancer risks in children from Ni and Cr were slightly higher than the US-EPA safe levels but were within acceptable levels for adults. This study found higher risks to children and therefore recommends proper management and ways to control metals pollution load in these areas to decrease human health and RIs.

  12. Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence.

    PubMed

    Stankevičiūtė, Milda; Sauliutė, Gintarė; Svecevičius, Gintaras; Kazlauskienė, Nijolė; Baršienė, Janina

    2017-10-01

    Health impact of metal mixture at environment realistic concentrations are difficult to predict especially for long-term effects where cause-and-effect relationships may not be directly obvious. This study was aimed to evaluate metal mixture (Zn-0.1, Cu-0.01, Ni-0.01, Cr-0.01, Pb-0.005 and Cd-0.005 mg/L, respectively for 1, 2, 4, 7, 14 and 28 days at concentrations accepted for the inland waters in EU) genotoxicity (micronuclei, nuclear buds, nuclear buds on filament), cytotoxicity (8-shaped nuclei, fragmented-apoptotic erythrocytes), bioaccumulation, steady-state and the reference level of geno-cytotoxicity in hatchery-reared Atlantic salmon tissues. Metals accumulated mostly in gills and kidneys, to the lesser extent in the muscle. Uptake of metals from an entire mixture in the fish for 14 days is sufficient to reach steady-state Cr, Pb concentrations in all tissues; Zn, Cu-in kidneys and muscle, Ni-in liver, kidneys, muscle and Cd-in muscle. Treatment with metal mixture significantly increased summed genotoxicity levels at 7 days of exposure in peripheral blood and liver erythrocytes, at 14 days of exposure in gills and kidney erythrocytes. Significant elevation of cytotoxicity was detected after 2 and 14 days of exposure in gills erythrocytes and after 28 days-in peripheral blood erythrocytes. The amount of Cu, Cr, Pb and Cd accumulated in tissues was dependent upon duration of exposure; nuclear buds, 8-shaped nuclei frequencies also were dependent upon duration of exposure. This study indicates that metals at low levels when existing in mixture causes significant geno-cytotoxicity responses and metals bioaccumulation in salmon.

  13. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece.

    PubMed

    Aloupi, M; Koutrotsios, G; Koulousaris, M; Kalogeropoulos, N

    2012-04-01

    The objectives of this survey were (1) to assess for the first time the Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn contents in wild edible mushrooms (Russula delica, Lactarius sanguifluus, Lactarius semisanguifluus, Lactarius deliciosus, Suillus bellinii) from the island of Lesvos, (2) to investigate the metals' variability among the species, as well as in relation to the chemical composition of the underlying soil, comparing mushrooms collected from volcanic and serpentine substrates and (3) to estimate metal intake by the consumption of the mushrooms under consideration. The trace metals in 139 samples were determined by flame or flameless atomic absorption spectroscopy. The median metal concentrations were as follows: Cd: 0.14; Cr: 0.10; Cu: 8.51; Fe: 30.3; Mn: 5.26; Ni: 0.34; Pb: 0.093 and Zn: 64.50, all in mgkg(-1) dry weight. The observed concentrations are among the lowest reported for mushrooms from Europe or Turkey, while Pb and Cd values did not exceed the limits set by the European Union. Significant species- and substrate-related differences in the metal contents were found, but the variability did not follow a uniform pattern for all the metals in all mushroom species. As a general trend, the mushrooms growing in serpentine sites contained higher Cd, Cr and Ni than those from volcanic sites. The calculated bioconcentration factors (BCFs) showed that none of the mushrooms can be regarded as a metal bioaccumulator, although BCF values slightly above unity were found for Zn in the three Lactarius species, and for Cu in R. delica. The studied mushrooms could supply considerable amounts of essential metals such as Zn and Cr. On the other hand, the consumption of R. delica collected from volcanic soils could provide 12% of the Cd daily tolerable intake and as high as 53% when collected from serpentine soils. Nonetheless, our results indicate that the regular consumption of wild edible mushrooms from Lesvos is quite safe for human health. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis.

    PubMed

    da Silva, Fernando Bruno Vieira; do Nascimento, Clístenes Williams Araújo; Araújo, Paula Renata Muniz; da Silva, Luiz Henrique Vieira; da Silva, Roberto Felipe

    2016-08-01

    Brazil is the world's largest sugarcane producer and soils in the northeastern part of the country have been cultivated with the crop for over 450 years. However, so far, there has been no study on the status of heavy metal accumulation in these long-history cultivated soils. To fill the gap, we collect soil samples from 60 sugarcane fields in order to determine the contents of Cd, Cr, Cu, Ni, Pb, and Zn. We used multivariate analysis to distinguish between natural and anthropogenic sources of these metals in soils. Analytical determinations were performed in ICP-OES after microwave acid solution digestion. Mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 1.9, 18.8, 6.4, 4.9, 11.2, and 16.2 mg kg(-1), respectively. The principal component one was associated with lithogenic origin and comprised the metals Cr, Cu, Ni, and Zn. Cluster analysis confirmed that 68 % of the evaluated sites have soil heavy metal concentrations close to the natural background. The Cd concentration (principal component two) was clearly associated with anthropogenic sources with P fertilization being the most likely source of Cd to soils. On the other hand, the third component (Pb concentration) indicates a mixed origin for this metal (natural and anthropogenic); hence, Pb concentrations are probably related not only to the soil parent material but also to industrial emissions and urbanization in the vicinity of the agricultural areas.

  15. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation

    USDA-ARS?s Scientific Manuscript database

    The lack of appropriate disposal strategies of tanning sludge (e.g., uncontrolled landfills and disposing sludge to open areas) has led to severe Cr pollution in waters and soils in many developing countries. Excessive Cr can be highly toxic to many living organisms and may damage the ecosystem. In ...

  16. Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia.

    PubMed

    El Zrelli, Radhouan; Courjault-Radé, Pierre; Rabaoui, Lotfi; Castet, Sylvie; Michel, Sylvain; Bejaoui, Nejla

    2015-12-30

    In the present study, the concentrations of 6 trace metals (Hg, Cd, Cu, Pb, Cr and Zn) were assessed in the surface sediments of the central coastal area of Gabes Gulf to determine their contamination status, source, spatial distribution and ecological risks. The ranking of metal contents was found to be Zn>Cd>Cr>Pb>Cu>Hg. Correlation analysis indicated that Cd and Zn derived mainly from the Tunisian Chemical Group phosphogypsum. The other pollutants may originate from other industrial wastes. Metallic contamination was detected in the south of chemical complex, especially in the inter-harbor zone, where the ecological risk of surface sediments is the highest, implying potential negative impacts of industrial pollutants. The spatial distribution of pollutants seems to be due to the effect of harbor installations and coastal currents. The metallic pollution status of surface sediments of Gabes Gulf is obvious, very worrying and requires rapid intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    PubMed Central

    McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.

    2015-01-01

    The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403

  18. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    PubMed

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Abandoned mines and their impact on the environment: Case studies from Franklin and Sterling Mines, NJ and Rondout Quarry, NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolkas, M.M.; Nehru, C.E.

    1995-09-01

    Water logged abandoned mines have an impact on the environment. In this project we selected abandoned mines from two sets of different ore bodies to learn about their environmental impact. Franklin and Sterling Pb-Zn mines, NJ and the limestone quarry in Rondout formation, NY were selected as case study examples. In the Pb-Zn mines metalimestone is the country rock and in the Rondout quarry limestone is the country rock. Soil water samples from selected strategic locations were analyzed for toxic and related heavy metal elements such as Pb, Zn, Cd, Cr and U. The levels of concentrations of these elementsmore » varied from one location to another according to the chemistry of the ore body and the ground movement throughout the area. In particular Cd, Cr and U concentration were variable from Franklin to Sterling mine. However, in the Rondout limestone (cement) quarry, higher concentrations of Cr and lower concentrations of Pb and Zn were noted. We conclude that ore body chemistry, mine dumps and tailing contaminated ponds along with the ground water movement throughout the area have an impact on the ground water and nearby river/stream contaminant chemistry in the areas.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, K.; Wang, W.X.

    The green mussel Perna viridis and the clam Ruditapes philippinarum have been frequently used as biomonitors of coastal contamination in subtropical and tropical waters, yet the physiological processes controlling metal uptake in these bivalves are unknown. Assimilation efficiency (AE) is an important physiological parameter quantifying metal bioavailability from ingested food. The authors determined the AEs of Cd, CR, and Zn in these bivalves feeding on five species of phytoplankton and one natural section. The influences of the cytoplasmic distribution of metals in the algal cells and the digestive physiology of bivalves on metal AEs were also examined. Among the threemore » metals, Zn was generally assimilated at the highest efficiency, i.e., 21 to 36% in the mussels and 29 to 59% in the clams. Cr was the least assimilated metal, with AEs being 10 to 16% in the mussels and 11 to 24% in the clams. The AEs of Cd and Zn in the clams were 1.8 to 4.7 and 1.1 to 1.9 times higher, respectively, than the AEs in the mussels. Assimilation efficiencies of Cr were, however, comparable between the mussels and the clams. A positive significant relationship between the metal AE and the percent of metals in the algal cytoplasm was found only for Cd in the clams, suggesting that Cd fractionation in the algal cells influenced its assimilation. No significant relationship, however, was found for other metals in both bivalves. A significant relationship between Cr-assimilation efficiency and gut passage time (GPT) was documented in the mussels, indicating a higher assimilation when Cr was retained longer in the gut. There was also significant correlation of metal AEs among the three metals, which were probably subjected to the same digestive pathway in the bivalves. Their study demonstrated that both the green mussels and the clams were able to accumulate metals from ingested food source, and food quality appeared to have different effects on metal assimilation in different bivalve species.« less

  1. Spatial distribution of heavy metals in soil, water, and vegetables of farms in Sanandaj, Kurdistan, Iran.

    PubMed

    Maleki, Afshin; Amini, Hassan; Nazmara, Shahrokh; Zandi, Shiva; Mahvi, Amir Hossein

    2014-01-01

    Heavy metals are ubiquitous elsewhere in nature and their measurement in environment is necessary to develop health management strategies. In this study, we aimed to find out concentrations and spatial patterns of heavy metals in main farms of Sanandaj in Kurdistan, Iran. Over May to October 2012, six farms were selected to analyze concentrations and spatial patterns of several heavy metals, namely aluminum (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in their soil, irrigation water, and edible vegetables. Overall, 36 samples of soil and water and 72 samples of vegetables including coriander (Coriandrum sativum), dill (Anethum graveolens), radish (Raphanus sativus) root and radish leaf were collected. The concentrations of metals were determined by inductively coupled plasma optical emission spectrometry. The spatial surfaces of heavy metals were created using geospatial information system. The order of metals in soil was Al > Zn > Ni > Cu > Cr > Pb > Co > As > Cd while in water it was Cr > Co > Zn > Pb > Cu > Ni > Al = As = Cd. The order of heavy metals in vegetables was Al > Zn > Cu > Cr > Ni > Pb > Co > As > Cd. Totally, the minimum concentrations of Al, Cu, Pb, and Zn were found in radish root while the maximum of Al, Co, Cr, and Ni were found in radish leaf. The minimum concentrations of Cd and Cr and maximum concentrations of Cu and Zn were also deciphered in dill. Noteworthy, coriander had the minimum concentrations of Co and Ni. The concentrations of Cr and Pb in vegetables were more than maximum allowable limits of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). In summary, albeit the concentrations of heavy metals in soil and water samples were below FAO and the WHO standards, vegetables were contaminated by chromium and lead.

  2. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  3. Hyperspectral estimation of soil heavy metals in Guanzhong area, Shaanxi province

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Cheng, Jie; Wang, Huanyuan; Tong, Wei; Ma, Zenghui

    2017-10-01

    In this study, the contents of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pub in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD Field Spec HR (350 ˜ 2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal hyper spectral estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pb was established by regression method. Comparing the reflection characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results show that: (1) the reflectance spectrum improves the signal-to-noise ratio of the reflectance spectrum after the transformation of NOR, MSC and SNV. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, and Zn, As, Cd, Hg and Pb by PLSR method were 0.7002, 0.7852, 0.687, 0.8036, 0.8619, 0.5765, 0.5451, 0.9912, and 0.6182.

  4. Effluent concentration and removal efficiency of nine heavy metals in secondary treatment plants in Shanghai, China.

    PubMed

    Feng, Jingjing; Chen, Xiaolin; Jia, Lei; Liu, Qizhen; Chen, Xiaojia; Han, Deming; Cheng, Jinping

    2018-04-10

    Wastewater treatment plants (WWTPs) are the most common form of industrial and municipal wastewater control. To evaluate the performance of wastewater treatment and the potential risk of treated wastewater to aquatic life and human health, the influent and effluent concentrations of nine toxic metals were determined in 12 full-scale WWTPs in Shanghai, China. The performance was evaluated based on national standards for reclamation and aquatic criteria published by US EPA, and by comparison with other full-scale WWTPs in different countries. Potential sources of heavy metals were recognized using partial correlation analysis, hierarchical clustering, and principal component analysis (PCA). Results indicated significant treatment effect on As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn. The removal efficiencies ranged from 92% (Cr) to 16.7% (Hg). The results indicated potential acute and/or chronic effect of Cu, Ni, Pb, and Zn on aquatic life and potential harmful effect of As and Mn on human health for the consumption of water and/or organism. The results of partial correlation analysis, hierarchical clustering based on cosine distance, and PCA, which were consistent with each other, suggested common source of Cd, Cr, Cu, and Pb and common source of As, Hg, Mn, Ni, and Zn. Hierarchical clustering based on Jaccard similarity suggested common source of Cd, Hg, and Ni, which was statistically proved by Fisher's exact test.

  5. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria.

    PubMed

    Ihedioha, J N; Ukoha, P O; Ekere, N R

    2017-06-01

    The study assessed the levels of some heavy metals in soils in the vicinity of a municipal solid waste dumpsite with a view to providing information on the extent of contamination, ecological risk of metals in the soils and human health risk to the residents in Uyo. Soil samples were collected in rainy and dry seasons and analyzed for metals (Pb, Cd, Zn, Mn, Cr, Ni and Fe) using atomic absorption spectrometry. The concentrations of heavy metals (mg/kg) at the dumpsite in rainy season were Pb (9.90), Zn (137), Ni (12.56), Cr (3.60), Cd (9.05) and Mn (94.00), while in dry season, the concentrations were Pb (11.80), Zn (146), Ni (11.82), Cr (4.05), Cd (12.20) and Mn (91.20). The concentrations of metals in the studied sites were higher than that of the control site (P < 0.05). Pollution indices studies revealed that soil samples from dumpsite and distances from 10 and 20 m east of the dumpsite were highly polluted with cadmium. Ecological risk assessment carried out showed that cadmium contributed 98-99 % of the total potentially ecological risk. No probable health risk was observed as the total hazard index of all the metals was less than one. However, children were found to be more susceptible to heavy metal contamination than adult.

  6. Analyses of Mineral Content and Heavy Metal of Honey Samples from South and East Region of Turkey by Using ICP-MS.

    PubMed

    Kılıç Altun, Serap; Dinç, Hikmet; Paksoy, Nilgün; Temamoğulları, Füsun Karaçal; Savrunlu, Mehmet

    2017-01-01

    The substantial of mineral ingredients in honey may symbolize the existence of elements in the plants and soil of the vicinity wherein the honey was taken. The aim of this study was to detect the levels of 13 elements (Potassium (K), Sodium (Na), Calcium (Ca), Iron (Fe), Zinc (Zn), Cadmium (Cd), Copper (Cu), Manganese (Mn), Lead (Pb), Nickel (Ni), Chromium (Cr), Aluminum (Al), and Selenium (Se)) in unifloral and multifloral honey samples from south and east regions of Turkey. Survey of 71 honey samples from seven different herbal origins, picked up from the south and east region of Turkey, was carried out to determine their mineral contents during 2015-2016. The mineral contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The most abundant minerals were K, Na, and Ca ranging within 1.18-268 ppm, 0.57-13.1 ppm, and 0.77-4.5 ppm, respectively. Zn and Cu were the most abundant trace element while Pb, Cd, Ni, and Cr were the lowest heavy metals in the honey samples surveyed, with regard to the concentrations of heavy metals such as Zn, Cu, Pb, Cd, Ni, and Cr suggested and influence of the botanical origin of element composition. Geochemical and geographical differences are probably related to the variations of the chemical components of honey samples.

  7. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater.

    PubMed

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-25

    The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+)) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea

    USGS Publications Warehouse

    Szymczycha, Beata; Kroeger, Kevin D.; Pempkowiak, Janusz

    2016-01-01

    Fluxes of dissolved trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) via groundwater discharge along the southern Baltic Sea have been assessed for the first time. Dissolved metal concentrations in groundwater samples were less variable than in seawater and were generally one or two orders of magnitude higher: Cd (2.1–2.8 nmol L− 1), Co (8.70–8.76 nmol L− 1), Cr (18.1–18.5 nmol L− 1), Mn (2.4–2.8 μmol L− 1), Pb (1.2–1.5 nmol L− 1), Zn (33.1–34.0 nmol L− 1). Concentrations of Cu (0.5–0.8 nmol L− 1) and Ni (4.9–5.8 nmol L− 1) were, respectively, 32 and 4 times lower, than in seawater. Groundwater-derived trace metal fluxes constitute 93% for Cd, 80% for Co, 91% for Cr, 6% for Cu, 66% for Mn, 4% for Ni, 70% for Pb and 93% for Zn of the total freshwater trace metal flux to the Bay of Puck. Groundwater-seawater mixing, redox conditions and Mn-cycling are the main processes responsible for trace metal distribution in groundwater discharge sites.

  9. Heavy metals in oysters, mussels and clams collected from coastal sites along the Pearl River Delta, South China.

    PubMed

    Fang, Zhan-Qiang; Cheung, R Y H; Wong, M H

    2003-01-01

    Concentrations of 8 heavy metals: cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), chromium (Cr), antimony (Sb) and tin (Sn) were examined in 3 species of bivalves ( Perna viridis, Crassostrea rivularis and Ruditapes philippinarum) collected from 25 sites along the Pearl River Delta coastal waters in the South China Sea from July to August 1996. In general, Cd, Cu, Zn and Sn concentrations in the three bivalve species collected from the Estuarine Zone were significantly higher than those collected from the Western and Eastern Zones of the Pearl River Delta, which are related to the existence of various anthropogenic activities in the catchment of the Pearl River Delta. The Western Estuarine Zone is mainly impacted hy Cr, Ni and Cu contamination. In Victoria Harbor, heavy metal contamination is mainly due to Cu and Pb, Cd, Cu and Zn concentrations in oysters were significantly higher than those in mussels and clams. This could be explained by the fact that oysters live mainly in the Estuarine Zone of the Pearl River Delta which receives most of the polluting discharges from the catchment of the Delta. During turbid condition, heavy metals( soluble or adsorbed on suspended particulates) discharged from the Delta are filtered from the water column and subsequently accumulated into the soft body tissues of oysters. Heavy metal concentrations in the three bivalve species were compared with the maximum permissible levels of heavy metals in seafood regulated by the Public Health and Municipal Services Ordinance, Laws of Hong Kong, and it was revealed that Cd and Cr concentrations in the three bivalve species exceeded the upper limits. At certain hotspots in the Delta, the maximum acceptable daily load for Cd was also exceeded.

  10. The ecological risk assessment of heavy metals in the Kuihe River basin (Xuzhou section) and the characteristics of plant enrichment

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Zheng, Lei

    2018-01-01

    In order to investigate Kuihe River basin of heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) pollution, the determination of the Kuihe River water body, the bottom of the river silt, riparian soil plants and heavy metal content of 9 kinds of riparian plants, investigate the pollution situation, so as to screen out the plants that has potential of enrichment and rehabilitation of heavy metal pollution. The results showed that Cd and Mn in the water body exceed bid; The pollution of Zn and Cu in the bottom mud is serious, potential ecological risk of heavy metals is Zn>Cu>Pb>Ni>Cd>As>Cr>Mn Riparian soil affected by sewage and overflow of sediment has significant positive correlation with soil heavy metals, among them, the Zn and Cu are heavy pollution; The selective absorption of heavy metals by 9 kinds of dominant plant leads to its bio concentration factor (BCF) of Cr and Pb on the low side, are all less than 1, from the translocation factor (TF), Setcreasea purpurea and Poa annua showed obvious roots type hoarding. Poa annua and Lycium chinense have a resistance on the absorption of heavy metals, Lythrum salicaria, Photinia serrulata and Broussonetia papyrifera have a unique advantage on enrichment of heavy metals, Broussonetia papyri era on a variety of strong ability of enrichment and transfer of heavy metals suggests that the woody plants in the vast application prospect in the field of rehabilitation technology of heavy metals.

  11. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    NASA Astrophysics Data System (ADS)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  12. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.

    PubMed

    Verma, V K; Tewari, Saumyata; Rai, J P N

    2008-04-01

    In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions.

  13. Heavy metals in soils of Hechuan County in the upper Yangtze (SW China): Comparative pollution assessment using multiple indices with high-spatial-resolution sampling.

    PubMed

    Ni, Maofei; Mao, Rong; Jia, Zhongmin; Dong, Ruozhu; Li, Siyue

    2018-02-01

    In order to assess heavy metals (HMs) in soils of the upper Yangtze Basin, a very high-spatial-resolution sampling (582 soil samples) was conducted from Hechuan County, an important agricultural practice area in the Southwest China. Multiple indices including geoaccumulation index (I geo ), enrichment factor (EF), sediment pollution index (SPI) and risk index (RI), as well as multivariate statistics were employed for pollution assessment and source identification of HMs in soils. Our results demonstrated that the averages of eight HMs decreased in the following order: Zn (82.8 ± 15.9) > Cr (71.6 ± 12.2) > Ni (32.1 ± 9.89) > Pb (27.6 ± 13.8) > Cu (25.9 ± 11.8) > As (5.48 ± 3.42) > Cd (0.30 ± 0.077) > Hg (0.082 ± 0.092). Averages of HMs except Cd were lower than threshold value of Environmental Quality Standard for Soils, while 43% of total samples had Cd concentration exceeding the national standard, 1% of samples for Hg and 5% samples for Ni, moreover, Cd and Hg averages were much higher than their background levels. I geo and EF indicated that their levels decreased as follows: Cd > Hg > Zn > Pb > Ni > Cu > Cr > As, with moderate enrichments of Cd and Hg. RI indicated that 61.7% of all samples showed moderate risk, while 6.5% of samples with greater than considerable risk due to human activities should be paid more attention. Multivariate analysis showed lithogenic source of Cu, Cr, Ni and Zn, while Cd and Hg were largely contributed by anthropogenic activities such as agricultural practices. Our study would be helpful for improving soil environmental quality in SW, China, as well as supplying modern approaches for other areas with soil HM pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. 40 CFR 413.54 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... daily values for 4 consecutive monitoring days shall not exceed CN,T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7... 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals 410 267 (e) For wastewater...

  15. 40 CFR 413.54 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daily values for 4 consecutive monitoring days shall not exceed CN,T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7... 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals 410 267 (e) For wastewater...

  16. 40 CFR 413.44 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... daily values for 4 consecutive monitoring days shall not exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7... 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals 410 267 (e) For wastewater...

  17. 40 CFR 413.44 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daily values for 4 consecutive monitoring days shall not exceed CN, T 1.9 1.0 Cu 4.5 2.7 Ni 4.1 2.6 Cr 7... 176 105 Ni 160 100 Cr 273 156 Zn 164 102 Pb 23 16 Cd 47 29 Total metals 410 267 (e) For wastewater...

  18. Trace Metals in Noah's Ark Shells (Arca noae Linnaeus, 1758): Impact of Tourist Season and Human Health Risk.

    PubMed

    Ivanković, Dušica; Erk, Marijana; Župan, Ivan; Čulin, Jelena; Dragun, Zrinka; Bačić, Niko; Cindrić, Ana-Marija

    2016-10-01

    Commercially important bivalve Noah's Ark shell (Arca noae Linnaeus, 1758) represents a high-quality seafood product, but the data on levels of metal contaminants that could pose a human health risk and also on some essential elements that are important for health protection are lacking. This study examined the concentrations of Cd, Pb, Cr, Ni, Cu, Co, and Zn in the soft tissue of A. noae from harvesting area in the central Adriatic Sea, to survey whether heavy metals are within the acceptable limits for public health and whether tourism could have an impact on them. The concentrations of analysed metals varied for Cd: 0.15-0.74, Pb: 0.06-0.26, Cr: 0.11-0.34, Ni: 0.09-0.22, Cu: 0.65-1.95, Co: 0.04-0.09, and Zn: 18.3-74.7 mg/kg wet weight. These levels were lower than the permissible limits for safe consummation of seafood, and only for Cd, some precautions should be taken into account if older shellfish were consumed. Increase of Cd, Cr, and Cu in shell tissue was observed during the tourist season at the site closest to the marine traffic routes, indicating that metal levels in shellfish tissue should be monitored especially carefully during the peak tourist season to prevent eventual toxic effects due to increased intake of metals, specifically of Cd.

  19. Health risk assessment of heavy metals in wheat using different water qualities: implication for human health.

    PubMed

    Khan, Zafar Iqbal; Ahmad, Kafeel; Rehman, Sidrah; Siddique, Samra; Bashir, Humayun; Zafar, Asma; Sohail, Muhammad; Ali, Salem Alhajj; Cazzato, Eugenio; De Mastro, Giuseppe

    2017-01-01

    In the recent years, the use of sewage water for irrigation has attracted the attention of arid and semi-arid countries where the availability of fresh water is poor. Despite the potential use of sewage water in crop irrigation as effective and sustainable strategy, the environmental and human risks behind this use need to be deeply investigated. In this regard, an experiment was carried out under field conditions in Nursery, University College of Agriculture Sargodha, to evaluate the possible health risks of undesirable metals in wheat grains. Wheat variety Sarang was cultivated and irrigated with different combinations of ground (GW) and sewage water (SW). The concentrations of heavy metals (Cr, Cd, Ni, and Pb) and trace elements (Cu, Zn, and Fe) in wheat grains as well as in soil were determined. Moreover, the pollution load index (PLI), accumulation factor (AF), daily intake of metals (DIM), and health risk index (HRI) were calculated. Results showed that the concentration trend of heavy metals was Pb

  20. Chromium behavior during thermal treatment of MSW fly ash.

    PubMed

    Kirk, Donald W; Chan, Chris C Y; Marsh, Hilary

    2002-02-14

    Energy-from-waste incineration has been promoted as an environmentally responsible method for handling non-recyclable waste from households. Despite the benefits of energy production, elimination of organic residues and reduction of volume of waste to be landfilled, there is concern about fly ash disposal. Fly ash from an incinerator contains toxic species such as Pb, Zn, Cd and Cr which may leach into soil and ground water if landfilled. Thermal treatment of the fly ash from municipal solid waste has been tested and proposed as a treatment option for removal of metal species such as Pb, Cd and Zn, via thermal re-volatilization. However, Cr is an element that remains in the residue of the heat treated fly ash and appears to become more soluble. This Cr solubilization is of concern if it exceeds the regulatory limit for hazardous waste. Hence, this unexpected behavior of Cr was investigated. The initial work involved microscopic characterization of Cr in untreated and thermally-treated MSW fly ash. This was followed by determining leaching characteristics using standard protocol leaching tests and characterization leaching methods (sequential extraction). Finally, a mechanism explaining the increased solubilization was proposed and tested by reactions of synthetic chemicals.

  1. Matrix solid phase dispersion-assisted BCR sequential extraction method for metal partitioning in surface estuarine sediments.

    PubMed

    Martínez-Fernández, Marta; Barciela-Alonso, María Carmen; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2011-01-15

    The BCR (the Community Bureau of Reference) of the European Union sequential extraction scheme for metal partitioning in estuarine sediments has been accelerated by using a matrix solid phase dispersion (MSPD) approach. The MSPD assisted BCR procedure consists of passing the extractants proposed by conventional BCR protocol (0.11 M acetic acid, 0.1M hydroxylammonium chloride and 8.8M hydrogen peroxide plus 1M ammonium acetate) through the dispersed sample packaged inside a disposable syringe. Different silica-, magnesium- and aluminium-based materials were tested as dispersing agents and sea sand was found to offer the best performances. Variables for assisting the three stages of the BCR protocol were optimized, and accurate results were obtained when assisting the first and the third stages (exchangeable and oxidizable fractions, respectively). However, lack of accuracy was observed when assisting the second step (reducible fraction) and this result agrees with most of the assisted BCR procedures for which extracting the reducible fraction is the most troublesome stage. The organic matter oxidation (third stage) was successfully assisted by passing hydrogen peroxide at 50°C through the dispersed sample inside de syringe just before passing ammonium acetate. Therefore, the time-consuming and unsafe conventional organic matter oxidation processes, commonly performed even for microwave/ultrasounds assisted BCR procedures, are totally avoided. Inductively coupled plasma-mass spectrometry (ICP-MS) was used as a selective detector. The target elements were Cd, Co, Cr, Mn, Ni, Sr and Zn (first stage), Cd, Co and Ni (second stage), and Co, Cr, Mn, Ni, Sr and Zn (third stage). Repeatability of the method (n=7) was good, and RSDs values of 9, 10, 10, 8, 8, 3 and 8% was obtained for Cd, Co, Cr, Mn, Ni, Sr and Zn, respectively (first stage); 10, 9 and 9% for Cd, Co and Ni, respectively (second stage); and 6, 2, 3, 4, 7 and 9% Co, Cr, Mn, Ni, Sr and Zn, respectively (third stage). The procedure was also validated by analysing two certified reference materials (CRM 601 and CRM 701). Good accuracy was obtained for the target elements extracted at the first stage: Cd (4.0 ± 0.1 and 7.3 ± 0.09 μg g(-1) in CRM 601 and CRM 701, respectively), Cr (0.36 ± 0.008 and 2.21 ± 0.08 μg g(-1) in CRM 601 and CRM 701, respectively), Ni (8.0 ± 0.3 and 15.4 ± 0.3 μg g(-1) in CRM 601 and CRM 701, respectively) and Zn (262 ± 3 and 203 ± 3 μg g(-1) in CRM 601 and CRM 701, respectively). Also, good accuracy was observed for elements extracted at the third step: Cd (1.8 ± 0.09 and 0.29 ± 0.03 μg g(-1) in CRM 601 and CRM 701, respectively), Cr (145 ± 4 μg g(-1) in CRM 701), Ni (8.2 ± 0.7 and 15.1 ± 0.5 μg g(-1) in CRM 601 and CRM 701, respectively) and Zn (45 ± 0.7 μg g(-1) in CRM 701). Copyright © 2010 Elsevier B.V. All rights reserved.

  2. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].

    PubMed

    Fang, Xiao-bo; Shi, Han; Liao, Xin-feng; Lou, Zhong; Zhou, Lyu-yan; Yu, Hai-xia; Yao, Lin; Sun, Li-ping

    2015-06-01

    An investigation was carried out in an attempt to reveal the characteristics of heavy metals contamination in the soils of Phyllostachys praecox forest in Lin' an. Based on the concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in 160 topsoil samples, the pollution status and ecological risks of heavy metals in the soils were assessed by single factor pollution index, Nemerow integrated pollution index and Hankanson potential ecological risk index. The spatial variability of heavy metal concentrations in the soils closely related to the distribution of traffic, industrial and livestock pollution sources. The average concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in the soils were 0.16, 7.41, 34.36, 87.98, 103.98, 0.26, 59.12, 29.56, 11.44 and 350.26 mg · kg(-1), respectively. Pb, Cd, Zn and Cu concentrations were as 2.89, 1.70, 1.12 and 1.12 times as the background values of soil in Zhejiang Province, respectively. But their concentrations were all lower than the threshold values of the National Environmental Quality Standard for Soil (GB 15618-1995). The average single factor pollution index revealed that the level of heavy metal pollution in the soils was in order of Pb>Cd>Cu= Zn>Hg>As>Ni>Co>Cr>Mn. Pb pollution was of moderate level while Cd, Cu and Zn pollutions were slight. There was no soil pollution caused by the other heavy metals. However, the Nemerow integrated pollution index showed that all the 160 soil samples were contaminated by heavy metals to a certain extent. Among total 160 soil samples, slight pollution level, moderate pollution level and heavy pollution level accounted for 55.6%, 29.4% and 15.0%, respectively. The average single factor potential ecological risk index (Er(i)) implied that the potential ecological risk related to Cd reached moderate level, while the others were of slight level. Furthermore, Cd and Hg showed higher potential ecological risk indices which reached up to 256.82 and 187.33 respectively, indicating Cd and Hg had a strong ecological risk and therefore might pose the most serious ecological risk in the soils of P. praecox standsin Lin' an. In addition, the integrated factor potential ecological risk analysis suggested a slight risk to local ecosystem originated from heavy metal contamination in the soils of P. praecox stands in Lin'an.

  3. Distribution and assessment of heavy metals in the surface sediment of Yellow River, China.

    PubMed

    Yan, Nan; Liu, Wenbin; Xie, Huiting; Gao, Lirong; Han, Ying; Wang, Mengjing; Li, Haifeng

    2016-01-01

    Large amounts of heavy metals discharged by industrial cities that are located along the middle reach of Yellow River, China have detrimental impacts on both the ecological environment and human health. In this study, fourteen surface sediment samples were taken in the middle reach of the Yellow River. Contents of Zn, Pb, Ni, Cu, Cr, Cd, As were measured, and the pollution status was assessed using three widely used pollution assessment methods, including the single factor index method, Nemerow pollution index method and potential ecological risk index. The concentrations of the studied heavy metals followed the order: Zn>Cr>Cu>Ni>Pb>As>Cd. Nearly 50% of sites had Cu and Cr accumulation. The concentration of Cu at the Yiluo River exceeded the secondary standard value of the Environmental quality standard for soils. Comparison of heavy metal concentrations between this study and other selected rivers indicated that Cu and Cr may be the major pollutants in our case. The single factor index indicated that many samples were at high levels of pollution for Cu and Cd; the Nemerow pollution index indicated that the Yihe River, Luohe River, Yiluo River and Huayuankou were polluted. According to the results of potential ecological risk assessment, Cd in the tributaries of Luo River, Yihe River, and Yiluo River showed high risk toward the ecosystem and human health, Cd in Huanyuankou and Cu in Yiluo River showed a middle level of risk and other samples were at a low level of risk. Copyright © 2015. Published by Elsevier B.V.

  4. Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area

    NASA Astrophysics Data System (ADS)

    Fernández-Olmo, Ignacio; Puente, Mariano; Montecalvo, Lucia; Irabien, Angel

    2014-08-01

    The bulk atmospheric deposition of the minor and trace elements As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn was investigated in Santander, a Northern Spanish coastal city. Bulk deposition samples were collected monthly for three years using a bottle/funnel device. Taking into account that heavy metals are bioavailable only in their soluble forms, water-soluble and water-insoluble fractions were evaluated separately for element concentration. The fluxes of the studied elements in the bulk deposition exhibited the following order: Zn > Mn ≫ Cu > Cr > Pb > V > Ni ≫ As > Mo > Cd. The fluxes of Zn and Mn were more than 10 times higher than those of the other elements, with maximum values of 554.5 and 334.1 μg m- 2 day- 1, respectively. Low solubilities (below 22%) were found for Cr, Ti and Pb, whereas the highest solubility was found for Zn (78%). With the exception of Cu, all of the studied metals in the water-soluble fraction of the atmospheric deposition showed seasonal dependence, due to the seasonal variability of precipitation. The enrichment factors (EFs) of Cu, Cd and Zn were higher than 100, indicating a clear anthropogenic origin. The EF of Mn (50) was below 100, but an exclusively industrial origin is suggested. Positive Matrix Factorisation (PMF) was used for the source apportionment of the studied minor and trace elements in the soluble fraction. Four factors were identified from PMF, and their chemical profiles were compared with those calculated from known sources that were previously identified in Santander Bay: two industrial sources, the first of which was characterised by Zn and Mn, which contributes 62.5% of the total deposition flux of the studied elements; a traffic source; and a maritime source. Zinc and Mn are considered to be the most characteristic pollutants of the studied area.

  5. Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Río de la Plata Estuary, Argentina.

    PubMed

    Bilos, C; Colombo, J C; Presa, M J

    1998-01-01

    Suspended particulate matter (SPM), sandy sediments and Asiatic clams were collected at seven sites along 150 km of the Río de la Plata coast to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 7.4-109; Cr: 75-408; Mn: 525-1341 microg(-1)), sediments (Cr: 16-27; Zn: 26-99; Mn: 221-489 microg(-1)) and bivalves (Cd: 0.5-1.9; Ni: 1.3-6.4; Cr: 1.3-11; Mn: 15-81; Cu: 28-89; Zn: 118-316 microg g(-1)) are comparable to those reported for other moderately polluted world rivers. Cu levels in Asiatic clams are among the highest, similar to those reported for heavily polluted sites. SPM Cu and Cr concentrations displayed a clear geographical trend with values increasing with proximity to major urban centers. Sediments showed a less clear pattern possibly due to their coarse nature (>98% sand) and higher proportion of mineral-associated residual metals. The clams showed a complex pattern due to the variability introduced by size-related factors and the natural dynamics of SPM in the estuary. Cr and Mn showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations near the turbidity maximum zone, possibly reflecting enhanced particle retention. Cu, Cd and Ni showed no clear geographical pattern, whereas Zn increased in the clams collected in the most industrialized area. A significant relationship with clam size was observed for Cu (positive) and Zn (negative) suggesting different physiological requirements for both metals with age. A principal component analysis confirmed these geographical and size-related trends.

  6. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Pan, Yuxue; Li, Haitao

    2016-04-01

    The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)-Nb-Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618—1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning.

  7. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China.

    PubMed

    Pan, Yuxue; Li, Haitao

    2016-04-01

    The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)-Nb-Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618-1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning.

  8. Air Force Successes and Challenges in Cr(VI) Elimination

    DTIC Science & Technology

    2011-05-10

    ion vapor deposited Al, and Cd coatings 2. Use trivalent chromium [Cr(III)] conversion coating (CC) on Dipsol IZ- C17+ zinc-nickel (Zn-Ni) coating...interested in results Anodized T-38 aileron levers 10 Chromium -Free Conversion Coatings  Identify and evaluate chromium -free conversion coatings (CFCCs...the chromium -based conversion coating for treatment of aluminum alloys at OC-ALC • Conduct technology assessment to identify suitable Cr-free

  9. The occurrence and distribution of trace metals in the Mississippi River and its tributaries

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, J.R.; Brinton, T.I.

    1990-01-01

    Quantitative and semiquantitative analyses of dissolved trace metals are reported for designated sampling sites on the Mississippi River and its main tributaries utilizing depth-integrated and width-integrated sampling technology to collect statistically representative samples. Data are reported for three sampling periods, including: July-August 1987, November-December 1987, and May-June 1988. Concentrations of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Pb, Sr, Tl, U, V, and Zn are reported quantitatively, with the remainder of the stable metals in the periodic table reported semiquantitatively. Correlations between As and V, Ba and U, Cu and Zn, Li and Ba, and Li and U are significant at the 99% confidence level for each of the sampling trips. Comparison of the results of this study for selected metals with other published data show generally good agreement for Cr, Cu, Fe, and Zn, moderate agreement for Mo, and poor agreement for Cd and V.

  10. Interannual heavy element and nutrient concentration trends in the top sediments of Venice Lagoon (Italy).

    PubMed

    Masiol, Mauro; Facca, Chiara; Visin, Flavia; Sfriso, Adriano; Pavoni, Bruno

    2014-12-15

    The elemental composition of surficial sediments of Venice Lagoon (Italy) in 1987, 1993, 1998 and 2003 were investigated. Zn and Cr concentrations resulted in higher than background levels, but only Cd and Hg were higher than legal quality standards (Italian Decree 2010/260 and Water Framework Directive 2000/60/EC). Contaminants with similar spatial distribution are sorted into three groups by means of correlation analysis: (i) As, Co, Cd, Cu, Fe, Pb, Zn; (ii) Ni, Cr; (iii) Hg. Interannual concentrations are compared by applying a factor analysis to the matrix of differences between subsequent samplings. A general decrease of heavy metal levels is observed from 1987 to 1993, whereas particularly high concentrations of Ni and Cr are recorded in 1998 as a consequence of intense clam fishing, subsequently mitigated by better prevention of illegal harvesting. Due to the major role played by anthropogenic sediment resuspension, bathymetric variations are also considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of processing on the proximate and metal contents in three fish species from Nigerian coastal waters

    PubMed Central

    Bassey, Francisca I; Oguntunde, Fehintola C; Iwegbue, Chukwujindu M A; Osabor, Vincent N; Edem, Christopher A

    2014-01-01

    The effects of culinary practices such as boiling, frying, and grilling on the proximate compositions and concentrations of metals (Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg) in commonly consumed fish species from the Nigerian coastal waters were investigated. The selected fish species were Polydactylus quadratifilis, Chrysicthys nigrodigitatus and Cynoglossus senegalensis. The culinary practices lead to increased protein, fat, and ash contents and decreased moisture contents of these fish species. The culinary practices resulted significant increase in the concentrations of most of the studied metals and decrease in the concentrations of Fe, Cr, and Pb in some fish types. The concentrations and estimated dietary intakes of Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg from consumption of the processed fish were within their statutory safe limits. The individual metal target hazard quotient (THQ) values and the total THQs were less than 1 which indicates that no health risks would arise from the long-term consumption of these fish species. PMID:24936297

  12. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations

    PubMed Central

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-01-01

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range. PMID:26287229

  13. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    PubMed

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (<50%). Carpobrotus rossii and Crassula helmsii showed higher potential for phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  14. Toxic Metals Enrichment in the Surficial Sediments of a Eutrophic Tropical Estuary (Cochin Backwaters, Southwest Coast of India)

    PubMed Central

    Martin, G. D.; George, Rejomon; Shaiju, P.; Muraleedharan, K. R.; Nair, S. M.; Chandramohanakumar, N.

    2012-01-01

    Concentrations and distributions of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surficial sediments of the Cochin backwaters were studied during both monsoon and pre-monsoon periods. Spatial variations were in accordance with textural charaterstics and organic matter content. A principal component analysis distinguished three zones with different metal accumulation capacity: (i) highest levels in north estuary, (ii) moderate levels in central zone, and (iii) lowest levels in southern part. Trace metal enrichments are mainly due to anthropogenic contribution of industrial, domestic, and agricultural effluents, whose effect is enhanced by settling of metals due to organic flocculation and inorganic precipitation associated with salinity changes. Enrichments factors using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. An assessment of degree of pollution-categorized sediments as moderately polluted with Cu and Pb, moderately-to-heavily polluted with Zn, and heavily-to-extremely polluted with Cd. Concentrations at many sites largely exceed NOAA ERL (e.g., Cu, Cr, and Pb) or ERM (e.g., Cd, Ni, and Zn). This means that adverse effects for benthic organisms are possible or even highly probable. PMID:22645488

  15. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations.

    PubMed

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-08-17

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range.

  16. Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis.

    PubMed

    Zhang, Xiaowen; Wei, Shuai; Sun, Qianqian; Wadood, Syed Abdul; Guo, Boli

    2018-09-15

    Characterizing the distribution and defining potential sources of arsenic and heavy metals are the basic preconditions for reducing the contamination of heavy metals and metalloids. 71 topsoil samples and 61 subsoil samples were collected by grid method to measure the concentration of cadmium (Cd), arsenic (As), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni) and chromium (Cr). Principle components analysis (PCA), GIS-based geo-statistical methods and Positive Matrix Factorization (PMF) were applied. The results showed that the mean concentrations were 9.59 mg kg -1 , 51.28 mg kg -1 , 202.07 mg kg -1 , 81.32 mg kg -1 and 771.22 mg kg -1 for Cd, As, Pb, Cu and Zn, respectively, higher than the guideline values of Chinese Environmental Quality Standard for Soils; while the concentrations of Ni and Cr were very close to recommended value (50 mg kg -1 , 200 mg kg -1 ), and some site were higher than guideline values. The soil was polluted by As and heavy metals in different degree, which had harmful impact on human health. The results from principle components analysis methods extracted three components, namely industrial sources (Cd, Zn and Pb), agricultural sources (As and Cu) and nature sources (Cr and Ni). GIS-based geo-statistical combined with local conditions further apportioned the sources of these trace elements. To better identify pollution sources of As and heavy metals in soil, the PMF was applied. The results of PMF demonstrated that the enrichment of Zn, Cd and Pb were attributed to industrial activities and their contribution was 24.9%; As was closely related to agricultural activities and its contribution was 19.1%; Cr, a part of Cu and Ni were related to subsoil and their contribution was 30.1%; Cu and Pb came from industry and traffic emission and their contribution was 25.9%. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Heavy metal distribution and water quality characterization of water bodies in Louisiana's Lake Pontchartrain Basin, USA.

    PubMed

    Zhang, Zengqiang; Wang, Jim J; Ali, Amjad; DeLaune, Ronald D

    2016-11-01

    The seasonal variation in physico-chemical properties, anions, and the heavy metal (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) concentration was evaluated in water from nine different rivers in Lake Pontchartrain Basin, Louisiana, USA. The water quality parameters were compared with toxicity reference values (TRV), US Environmental Protection Agency (USEPA) drinking/aquatic life protection, and WHO standards. Among physico-chemical properties, pH, DO, and turbidity were high during spring, while, EC, temperature, and DOC were high during summer and vice versa. The anion study revealed that the concentrations of F - , Cl - , and NO 3 - were higher during summer and Br - and SO 4 - were higher during spring. Our research findings showed anion concentration decreased in the order of Cl -  > SO 4 -  > NO 3 -  > Br -  > F - , in accordance with the global mean anion concentration. The dissolved heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb) except Zn were higher during spring than summer. None of the rivers showed any Cd pollution for both seasons. Co showed higher concentrations in Amite River, Mississippi River, Industrial Canal, and Lacombe Bayou during summer. The Cr concentration was higher than WHO drinking water standards, implicating water unsuitability for drinking purposes in all the rivers associated with the Lake Pontchartrain Basin. Cu showed no pollution risk for the study area. Mn and Co were similar to concentration in Lacombe Bayou, Liberty Bayou, Blind River, and Industrial Canal. Mn levels were greater than WHO standards for the Tickfaw River, Tangipahoa River, and Blind River in both seasons. Blind River, Tangipahoa River, Tickfaw River, and Amite River will require more monitoring for determining possible Mn pollution. Ni content in river water during both seasons showed low pollution risk. Liberty Bayou and Industrial Canal concentrations were closer to the WHO regulatory standards, indicating possible risk of Pb pollution in these water bodies. The Zn content was near the USEPA aquatic life standards in summer for all water bodies. None of the rivers showed any risk associated with Cd, Co, Cu, and Ni levels but medium to higher risk to aquatic life from Cr and Zn for both seasons for most of the rivers. Metal fractionation revealed the decreasing order of inert > labile > organic. The high inert fraction in the rivers under study reflects the major contribution of natural sources in Lake Pontchartrain Basin. The labile and organic forms of Cd, Cu, Ni, and Zn pose potential higher risk to the aquatic life in the Lake Pontchartrain Basin.

  18. Spatial distribution and ecological risk assessment of heavy metals in coastal surface sediments in the Hebei Province offshore area, Bohai Sea, China

    USGS Publications Warehouse

    Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W.

    2018-01-01

    Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were more finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution.

  19. Trace Elements Contamination and Human Health Risk Assessment in Drinking Water from the Agricultural and Pastoral Areas of Bay County, Xinjiang, China.

    PubMed

    Turdi, Muyessar; Yang, Linsheng

    2016-09-23

    Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element-induced health risk (including for DW adults) was higher than acceptable (10(-6)) and lower than priority risk levels (10(-4)) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10(-4), higher than acceptable and priority risk levels (10(-4)).

  20. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung; Kandasamy, Selvaraj

    2008-05-01

    Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.

  1. Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco.

    PubMed

    Nouri, Mohamed; Haddioui, Abdelmajid

    2016-01-01

    The goal of this paper is to investigate metal pollution in food chain and assess the resulting health risks to native citizens in Ait Ammar village. The results showed that cadmium (Cd), lead (Pb), and copper (Cu) concentrations in animal organs were above the metal concentration safety limit. Nevertheless, soils and plants from mining area were contaminated with iron (Fe), chromium (Cr), zinc (Zn), and Cr, Cu, Zn respectively. Cd concentrations in almost animal organs were higher than the acceptable daily upper limit, suggesting human consumption of this livestock meat and offal may pose a health risk. The estimated intake of Pb and Cd for Ait Ammar population could be a cause of concern because it exceeded the Provisional Tolerable Weekly Intake (PTWI) proposed by Joint Expert Committee on Food Additives (JECFA) in this area. Thus, conducting regular periodic studies to assess the dietary intake of mentioned elements are recommended.

  2. A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan.

    PubMed

    Tattibayeva, Damira; Nebot, Carolina; Miranda, Jose M; Abuova, Altynai B; Baibatyrov, Torebek A; Kizatova, Maigul Z; Cepeda, Alberto; Franco, Carlos M

    2016-03-01

    Little information is currently available about the content of different elements in wheat samples from the Republic of Kazakhstan. The concentrations of toxic (As, Cd, Cr, Hg, Pb, and U) and essential (Co, Cu, Fe, Mn, Ni, Se, and Zn) elements in 117 sampled wheat grains from the Republic of Kazakhstan were measured. The results indicated that the mean and maximum concentrations of most investigated elements (As, Cd, Co, Cr, Mn, Se, Pb, and U) were higher in samples collected from southern Kazakhstan. The mean and maximum concentrations of toxic elements such as As, Cd, Hg, and Pb did not exceed levels specified by European, FAO, or Kazakh legislation, although the hazard quotient (HQ) values for Co, Cu, Mn, and Zn were higher than 1 and the hazard index (HI) was higher than 1 for samples collected from all areas of Kazakhstan. This indicates that there should be concern about the potential hazards of the combination of toxic elements in Kazakh wheat.

  3. Metal concentrations in the growth bands of Porites sp.: A baseline record on the history of marine pollution in the Gulf of Mannar, India.

    PubMed

    Krishnakumar, S; Ramasamy, S; Magesh, N S; Chandrasekar, N; Simon Peter, T

    2015-12-15

    The present study was carried out on the Porites coral growth bands (1979 to 2014) to measure the metal accumulation for assessing the environmental pollution status. The concentrations of studied metals are compared with similar global studies, which indicate that the metals are probably derived from natural sources. The identical peaks of Fe and Mn are perfectly matched with Cu, Cr and Ni concentrations. However, the metal profile trend is slightly depressed from a regular trend in Zn, Cd and Pb peaks. The metal accumulation affinity of the reef skeleton is ranked in the following order Cr>Cd>Pb>Fe>Mn>Cu>Ni>Zn. The distribution of metal constituents in coral growth bands is primarily controlled by Fe and Mn in the reef skeleton. Other reef associated metals such as Pb and Cd are derived from other sources like coastal developments and anthropogenic sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Chemical fractionation of metals in wetland sediments: Indiana Dunes National Lakeshore.

    PubMed

    Dollar, N L; Souch, C J; Filippelli, G M; Mastalerz, M

    2001-09-15

    Tessier-type (1979) sequential extractions for heavy metals (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) were conducted on sediments from two wetland sites, one inundated and the other drained, within the Indiana Dunes National Lakeshore (IDNL), NW Indiana, with the objective of (i) evaluating extraction techniques on organic-rich sediments, (ii) determining the geochemistry and mobility of potentially biotoxic trace metals in a contaminated environment, and (iii) considering the implications of different restoration strategies on the potential for heavy metal remobilization. Long and repeated extractions were needed to effectively degrade the organic-rich sediments (up to 75% of the sediment by mass). Analysis of sulfur fractionation revealed that it was predominantly sequestered along with the organically bound fraction (renamed oxidizable). Metal recovery was good with the sum of the extractant steps typically within 20% of the total metal concentration determined after total microwave digestion. Results showed metal fractionation to be both metal- and site-specific, The oxidizable fraction is dominant for Cu, Cr, and Fe (>65% of the nonresidual fraction for almost all samples) and overall is most important also for Cd and Pb. The iron/manganese oxide fraction is important for Pb, Mn, and Zn, particularly at the drained site. The carbonate bound fraction is relatively insignificant at both sites, except for Cd and Mn, although it is more important at the drained site. The exchangeable fraction is significant in the uppermost sediments at the drained site, particularly for Cd (3-24%), Pb (3-14%), and Zn (36-45%); whereas, for the inundated site, it ranged only from 0 to 1% Zn, with no detectable Cd or Pb. Chromium, Cu, and Fe exist in forms not likely to be remobilized, whereas Cd, Mn, Pb, and Zn are potentially mobile if drained wetland sites are reflooded (and pH and redox potential altered). Simple mass balance calculations illustrate the potential for the removal of approximately 84,375 kg of exchangeable Zn if currently drained sites across the IDNL are reflooded, with concentrations in water draining into Lake Michigan as high as 5 ppm.

  6. An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator.

    PubMed

    Fröhlichová, Alena; Száková, Jiřina; Najmanová, Jana; Tlustoš, Pavel

    2018-02-19

    Central Bohemia (Czech Republic) has highly developed industry and a dense rail network. Here, we aimed to determine the content of risk elements in dandelion plants (Taraxacum sect. Ruderalia) growing near train stations, industrial enterprises, and in the city parks of 16 cities in the Central Bohemian region. The highest element contents in the soils were found in industrial areas affected by the historical mining and smelting activities; contemporary industry showed no substantial effect on the soil element contents. The median values of element contents (As, Be, Cd, Co, Cr, Cu, Ni, Pb, and Zn) at the railway station sites were the highest among the monitored sites, where the differences between park and station sites were significant for Be, Co, and Zn. Although the intensity of the traffic at the individual stations differed, we found that long-term regular traffic enhanced the element contents in the soils and, subsequently, in the plants. For Cd, Co, Cr, Cu, Pb, V, and Zn, the highest median element contents were found in plant roots, regardless of the sampling site. For Cd and Zn, the contents in leaves were higher than in the inflorescences, and the opposite pattern was recorded for Co and Cu. As and Be were distributed equally among the plant parts. Among the sampling sites, the As, Be, Cd, Zn, and Pb contents in the plant roots tended to have higher median values at the station sites, confirming the results of our soil analyses. We detected a fairly good correlation between soil and plant content for cadmium, regardless of the sampling site, soil element content, or analyzed part of the plant. Thus, we propose that dandelion is a suitable bioindicator of cadmium pollution of soil.

  7. Accumulation of Heavy Metals in Tea Leaves and Potential Health Risk Assessment: A Case Study from Puan County, Guizhou Province, China

    PubMed Central

    Yang, Ruidong; Chen, Rong; Peng, Yishu; Wen, Xuefeng; Gao, Lei

    2018-01-01

    This study features a survey of the concentrations of aluminum (Al) and heavy metals (Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn) in tea leaves and the corresponding cultivation soils (0–30 cm), carried out in Puan County (Guizhou Province, China). The average concentrations of Al, Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn in the soil were 106 × 103, 214, 20.9, 0.09, 0.12, 17.5, 121, 27.8, 131.2, and 64 mg·kg−1, respectively. The heavy metals’ pollution indexes in the soil can be ranked as follows: Cu > Cr > Hg > As > Ni > Zn > Pb > Mn > Cd. The soil was moderately polluted by Cu because of the high geochemical background value of Cu in the area. The potential environment risk index (RI) showed that 7.69% out of the total sample sites were within the moderate level. Moreover, the ranges of Al, Mn, Pb, Cd, Hg, As, Cr, Ni, Cu, and Zn concentrations in young tea leaves were 250–660, 194–1130, 0.107–0.400, 0.012–0.092, 0.014–0.085, 0.073–0.456, 0.33–1.26, 6.33–14.90, 14.90–26.10, and 35.8–50.3 mg·kg−1, respectively. While in mature tea leaves, they were 4300–10,400, 536–4610, 0.560–1.265, 0.040–0.087, 0.043–0.089, 0.189–0.453, 0.69–2.91, 3.43–14.20, 6.17–16.25, and 9.1–20.0 mg·kg−1, respectively. Furthermore, the concentrations of Pb, Cu, As, Hg, Cd, and Cr in young tea leaves and mature tea leaves were all lower than the standard limit values (5.0, 30, 2.0, 0.3, 1.0, and 5.0 mg·kg−1 for Pb, Cu, As, Hg, Cd, and Cr, respectively) in China. Besides, the accumulation ability of tea leaves to Mn was the strongest, and the average bioconcentration factor (BCF) of Mn in mature tea leaves was 12.5. In addition, the average target hazard quotients (THQ) were all less than one for the young tea leaves and the average aggregate risk hazard index (HI) to adults was 0.272, indicating that there was not a potential health risk for adults through the consumption of the infusions brewed by young tea leaves. However, for mature tea leaves, the percentage which HI values were above one was 38.46%, and the risk to adults via the consumption of mature tea infusions were mainly contributed by Mn and Al. PMID:29342877

  8. High Specific Heat Dielectrics and Kapitza Resistance at Dielectric Boundaries.

    DTIC Science & Technology

    1984-09-12

    RD-i4S476 AT DIELECTRIC BOUND..(U) WESTINGHOUSE RESEARCH AND DEVELOPMENT CENTER PITTSBURGH PA P Wd ECKELS ET AL. UNCASIFID12 SEP 84 84-9C9- KAPIT -Ri...measurement of the specific heat • and thermal conductivity of the anCd/, d 4 spinels and of several (The structure heavy metal hal tes in the t...included the measurement of the spe- cific heat and thermal conductivity of the CdCr 2O4 and ZnCr2O4 spinels and of several CsCI structure heavy metal

  9. Structural classification of RAO3( MO) n compounds ( R =Sc, In, Y, or lanthanides; A =Fe(III), Ga, Cr, or Al; M =divalent cation; n = 1-11)

    NASA Astrophysics Data System (ADS)

    Kimizuka, Noboru; Mohri, Takahiko

    1989-01-01

    A series of new compounds RAO3( MO) n ( n = 1-11) having spinel, YbFe 2O 4, or InFeO 3(ZnO) n types of structures were newly synthesized ( R =Sc, In, Y, Lu, Yb, Tm, or Er; A =Fe(III), Ga, Cr, or Al; M =Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO 1.5, (FeZn)O 2.5, and ZnO layers for InFeO 3(ZnO) 10 and the TmO 1.5, (AlZn)O 2.5, and ZnO layers for TmAlO 3(ZnO) 11 are presented, respectively. The crystal structures of the( RAO3) m( MO) n phases ( R =Sc, In, Y, or lanthanide elements; A =Fe(III), Ga, Cr, or Al; M =divalent cation elements; m and n =integer) are classified into four crystal structure types (K 2NiF 4, CaFe 2O 4, YbFe 2O 4, and spinel), based upon the constituent cations R, A, and M

  10. Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate.

    PubMed

    Radulović, Milanka D; Cvetković, Olga G; Nikolić, Snezana D; Dordević, Dragana S; Jakovljević, Dragica M; Vrvić, Miroslav M

    2008-09-01

    It was demonstrated that during the growth of Aureobasidium pullulans strain CH-1 on the acid hydrolysate of peat from the Vlasina Lake, the content of metals (Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr) decreased due to biosorption. The reduction in the metal content was found to be in the range (%): 38.2-62.2, 67.7-97.3, 0.02-62.05, 0.05-23.97, 0.16-4.24, 3.45-51.72, 1.18-35.82, 0.86-44.44, for Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr, respectively. During this process, the metals were accumulated in the biomass, while pullulan, an extracellular polysaccharide produced by Aureobasidium pullulans strain CH-1, was found not to bind the above-mentioned metals.

  11. [Distribution Characteristics of Heavy Metals in Environmental Samples Around Electroplating Factories and the Health Risk Assessment].

    PubMed

    Guo, Peng-ran; Lei, Yong-qian; Zhou, Qiao-li; Wang, Chang; Pan, Jia-chuan

    2015-09-01

    This study aimed to investigate the pollution degree and human health risk of heavy metals in soil and air samples around electroplating factories. Soil, air and waste gas samples were collected to measure 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in two electroplating factories, located in Baiyun district of Guangzhou city. Geoaccumulation index and USEPA Risk Assessment Guidance for Superfund (RAGS) were respectively carried out. Results showed that concentrations of Hg and Pb in waste gas and Cr in air samples were higher than limits of the corresponding quality standards, and concentrations of Cd, Hg and Zn in soil samples reached the moderate pollution level. The HQ and HI of exposure by heavy metals in air and soil samples were both lower than 1, indicating that there was no non-carcinogen risk. CRAs and CRCr in soil samples were beyond the maximum acceptable level of carcinogen risk (10(-4)), and the contribution rate of CRCr to TCR was over 81%. CRCr, CRNi and TCR in air samples were in range of 10(-6) - 10(-4), indicating there was possibly carcinogen risk but was acceptable risk. CR values for children were higher than adults in soils, but were higher for adults in air samples. Correlation analysis revealed that concentrations of heavy metals in soils were significantly correlated with these in waste gas samples, and PCA data showed pollution sources of Cd, Hg and Zn in soils were different from other metals.

  12. Remediation of metal-contaminated marine sediments using active capping with limestone, steel slag, and activated carbon: a laboratory experiment.

    PubMed

    Park, Seong-Jik; Kang, Ku; Lee, Chang-Gu; Choi, Jae-Woo

    2018-05-18

    The objectives of this study are to assess the effectiveness of limestone (LS), steel slag (SS), and activated carbon (AC) as capping materials to sequester trace metals including As, Cd, Cr, Cu, Ni, Pb, and Zn in heavily contaminated marine sediments and to minimize the release of these metals into the water column. A flat flow tank was filled with 10 mm of capping material, contaminated sediments, and seawater, and the metal concentrations were monitored over 32 d. After completion of the flow tank experiments, the sediments below the capping material were sampled and were sequentially extracted. SS effectively reduced the As, Cr, Cu, Ni, Pb, and particularly Cd elution from the contaminated sediments to the overlying seawater. Adsorption and surface precipitation were the key mechanisms for interrupting the release of cationic trace metals by SS. LS was appropriate for interrupting the release of only Cu and Pb with high hydrolysis reaction constants. AC capping could interrupt the release of Cr, Cu, Ni, and particularly Zn from the sediments by binding with the metals via electrostatic interaction. The results obtained from the sequential extraction revealed that LS capping is appropriate for stabilizing Zn, whereas AC is appropriate for Cd and Pb. LS, SS, and AC can be applied effectively for remediation of sediments contaminated by trace metals because it interrupts their release and stabilizes the trace metals in the sediments.

  13. Metal accumulation in the greentail prawn, Metapenaeus bennettae, in Sydney and Port Hacking estuaries, Australia.

    PubMed

    Lewtas, K L M; Birch, G F; Foster-Thorpe, C

    2014-01-01

    Metal concentrations of the inshore greentail prawn, Metapenaeus bennettae, and surface sediments from locations within Sydney estuary and Port Hacking (Australia) were assessed for bioaccumulation and contamination. The current study aimed to assess metal concentrations in prawn tissue (tail muscle, exoskeleton, hepatopancreas and gills), relate whole body prawn tissue metal concentrations to sediment metal concentrations and animal size, as well as assess prawn consumption as a risk to human health. Metal concentrations were highest in sediment and prawns from contaminated locations (Iron Cove, Hen and Chicken Bay and Lane Cove) in Sydney estuary compared with the reference estuary (Port Hacking). Concentrations in sediments varied considerably between sites and between metals (As, Cd, Cr, Cu, Ni, Pb and Zn), and although concentrations exceeded Interim Sediment Quality Guideline-Low values, metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were below Australian National Health and Medical Research Council human consumption guidelines in prawn tail muscle tissue. Metal concentrations in prawn tail muscle tissue were significantly different (p ≤ 0.05) amongst locations for Pb, Zn and Cd, and metal concentrations were generally highest in gills tissue, followed by the hepatopancreas, exoskeleton and tail muscle. The exoskeleton contained the highest Sr concentration; the hepatopancreas contained the highest As, Cu and Mo concentrations; and the gills contained the highest Al, Cr, Fe and Pb concentrations. Concentrations of Pb, As and Sr were significantly different (p ≤ 0.05) between size groups amongst locations.

  14. Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: Bioavailability, ecological risk assessment and source analysis on a centennial timescale.

    PubMed

    Kang, Xuming; Song, Jinming; Yuan, Huamao; Duan, Liqin; Li, Xuegang; Li, Ning; Liang, Xianmeng; Qu, Baoxiao

    2017-09-01

    Heavy metal contamination is an essential indicator of environmental health. In this work, one sediment core was used for the analysis of the speciation of heavy metals (Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) in Jiaozhou Bay sediments with different grain sizes. The bioavailability, sources and ecological risk of heavy metals were also assessed on a centennial timescale. Heavy metals were enriched in grain sizes of < 63µm and were predominantly present in residual phases. Moreover, the mobility sequence based on the sum of the first three phases (for grain sizes of < 63µm) was Mn > Pb > Cd > Zn > Cu >Ni > Cr > As. Enrichment factors (EF) indicated that heavy metals in Jiaozhou Bay presented from no enrichment to minor enrichment. The potential ecological risk index (RI) indicated that Jiaozhou Bay had been suffering from a low ecological risk and presented an increasing trend since 1940s owing to the increase of anthropogenic activities. The source analysis indicated that natural sources were primary sources of heavy metals in Jiaozhou Bay and anthropogenic sources of heavy metals presented an increasing trend since 1940s. The principal component analysis (PCA) indicated that Cr, Mn, Ni, Cu and Pb were primarily derived from natural sources and that Zn and Cd were influenced by shipbuilding industry. Mn, Cu, Zn and Pb may originate from both natural and anthropogenic sources. As may be influenced by agricultural activities. Moreover, heavy metals in sediments of Jiaozhou Bay were clearly influenced by atmospheric deposition and river input. Copyright © 2017. Published by Elsevier Inc.

  15. Chthamalus montagui as biomonitor of metal contamination in the northwest coast of Portugal.

    PubMed

    Reis, Pedro A; Salgado, Maria Antónia; Vasconcelos, Vitor

    2012-09-01

    The concentrations of seven metals (Cd, Cr, Cu, Fe, Mn, Ni and Zn) were determined in coastal seawaters and soft and hard tissues of the barnacle Chthamalus montagui from the northwest coast of Portugal to assess the potential use of C. montagui as biomonitor of metal contamination. The results of this study showed that C. montagui soft tissues can be used for monitoring metal bioavailabilities in these coastal seawaters: (1) there were significant correlations (p < 0.05) between the metal concentrations in soft tissues and their concentrations in seawaters and (2) barnacle soft tissues were sensitive to spatial variation of metal bioavailabilities, accumulating different amounts of metals in different locations. The range of concentrations in tissues were: 0.59-1.7 mg Cd kg(-1), 0.5-3.2 mg Cr kg(-1), 0.72-3.0 mg Ni kg(-1), 1.2-6.7 mg Cu kg(-1), 9-26 mg Mn kg(-1), 214-785 mg Fe kg(-1) and 178-956 mg Zn kg(-1); (3) mean logarithmic bioaccumulation factors (log BAF) of Fe, Cr and Cd were higher, 5.49, 4.93 and 4.46, respectively, than mean log BAFs of Mn, Zn, Cu and Ni, 4.03, 3.97, 3.74 and 3.61, respectively. In contrary, C. montagui shell plates were not a good matrix to monitor metal bioavailability in these coastal seawaters, with no significant correlations (p < 0.05) between metal concentrations in the shell and in seawater. Regarding the high Zn concentrations obtained in the coastal seawaters and C. montagui soft tissues, all seawaters from northwest coast of Portugal should be classified as "moderately/remarkably polluted".

  16. Yield, quality, and concentration of seven heavy metals in cabbage and broccoli grown in sewage sludge and chicken manure amended soil.

    PubMed

    Antonious, George F; Kochhar, Tejinder S; Coolong, Timothy

    2012-01-01

    The mobility of heavy metals from soil into the food chain and their subsequent bioaccumulation has increased the attention they receive as major environmental pollutants. The objectives of this investigation were to: i) study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or chicken manure (CM) on yield and quality of cabbage and broccoli, ii) quantify the concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in soil amended with SS or CM, and iii) determine bioavailability of heavy metals to cabbage leaves and broccoli heads at harvest. Analysis of the two soil amendments used in this investigation indicated that Cr, Ni, Cu, Zn, Mo, Cd, Pb, and organic matter content were significantly greater (P < 0.05) in premixed sewage sludge than premixed chicken manure. Total cabbage and broccoli yields obtained from SS and CM mixed soil were both greater than those obtained from no-mulch (bare) soil. Concentration of Ni in cabbage leaves of plants grown in soil amended with CM was low compared to plants grown in no-mulch soil. No significant differences were found in Cd and Pb accumulation between cabbage and broccoli. Concentrations of Ni, Cu, Zn, and Mo were greater in broccoli than cabbage. Total metals and plant available metals were also determined in the native and amended soils. Results indicated that the concentration of heavy metals in soils did not necessary reflect metals available to plants. Regardless of soil amendments, the overall bioaccumulation factor (BAF) of seven heavy metals in cabbage leaves and broccoli heads revealed that cabbage and broccoli were poor accumulators of Cr, Ni, Cu, Cd, and Pb (BAF <1), while BAF values were >1 for Zn and Mo. Elevated Ni and Mo bioaccumulation factor (BAF >1) of cabbage grown in chicken manure mixed soil is a characteristic that would be less favorable when cabbage is grown on sites having high concentrations of these two metals.

  17. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China.

    PubMed

    Cao, Hongbin; Chen, Jianjiang; Zhang, Jun; Zhang, Hui; Qiao, Li; Men, Yi

    2010-01-01

    Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. In this study, we investigated heavy metal (Cu, Zn, Pb, Cr, Hg and Cd) concentrations in rice and garden vegetables, as well as in cultivated soils, in a rural-industrial developed region in southern Jiangsu, China, and estimated the potential health risks of metals to the inhabitants via consumption of locally produced rice and garden vegetables. A questionnaire-based survey on dietary consumption rates of foodstuffs showed that rice and vegetables accounted for 64% of total foodstuffs consumed, and over 60% of rice and vegetables were grown in the local region. Average concentrations of Cr, Cu, Zn, Cd, Hg and Pb were 0.75, 2.64, 12.00, 0.014, 0.006 and 0.054 mg/kg dw (dry weight) in rice and were 0.67, 1.18, 4.34, 0.011, 0.002 and 0.058 mg/kg fw (fresh weight) in garden vegetables, respectively. These values were all below the maximum allowable concentration in food in China except for Cr in vegetables. Leafy vegetables had higher metal concentrations than solanaceae vegetables. Average daily intake of Cr, Cu, Zn, Cd, Hg and Pb through the consumption of rice and garden vegetables were 5.66, 16.90, 74.21, 0.10, 0.04 and 0.43 microg/(kg x day), respectively. Although Hazard Quotient values of individual metals were all lower than 1, when all six metal intakes via self-planted rice and garden vegetables were combined, the Hazard Index value was close to 1. Potential health risks from exposure to heavy metals in self-planted rice and garden vegetables need more attention.

  18. Assessment of heavy metals in agricultural soils and their source apportionment: a Turkish district survey.

    PubMed

    Dartan, Güler; Taşpınar, Fatih; Toröz, İsmail

    2015-03-01

    This study aimed at investigating the impact of industrialization on the quality of agricultural soils in the district of Bandırma, Turkey, in terms of soil heavy metal contamination. Many soil and phosphogypsum samples were analyzed, and enrichment factors (EFs) were calculated. The average concentration gradient of metals in the soil (mg/kg) was As < Se < Sb < Pb < Co < Cd < V < Cu < Ni < Zn < Cr < P < Mn < Na < K < Mg < Fe < Ca < Al. According to the Pearson cross-correlation results for the element pairs of Fe-Mg (0.635), Fe-Cu (0.863), Fe-Cd (0.545), Cu-Cd (0.630), Mn-Cr (0.698), Mn-Al (0.523), Cr-Mg (0.543), Al-P (0.508), Na-K (0.616), and C-Zn (0.703), the metal enrichments in the soil were found to be moderately high and significant. In the majority of soil samples, Ni, Cu, Co, Zn, Se, Pb, and Cr were moderately enriched whereas Sb and Cd were extremely highly enriched. A factor analysis (FA) was applied to the cross-correlations of the elements to identify their sources. Six significant factors were extracted with the help of FA, explaining 77.22 % of the total variance, and the elements loaded on these factors were interpreted. The evaluations of the factors showed that the study area has been exposed to heavy metal pollution from anthropogenic sources considering the high levels of Cr, Cd, Cu, P, V, Zn, Ni, Sb, and Pb in the soil and the higher EFs falling in the range of 2.54-372.87. Moreover, the soil concentrations of Mn, Mg, Co, Al, K, and Ca were also high, but they were of lithogenic in origin according to the FA.

  19. Heavy metals in soils and sediments from Dongting Lake in China: occurrence, sources, and spatial distribution by multivariate statistical analysis.

    PubMed

    Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming

    2018-05-01

    Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.

  20. Comparison of heavy metal contamination during the last decade along the coastal sediment of Pakistan: Multiple pollution indices approach.

    PubMed

    Saher, Noor Us; Siddiqui, Asmat Saleem

    2016-04-15

    Heavy metals concentrations (Fe, Cu, Zn, Ni, Cr, Co, Pb, and Cd) were scrutinized during two monitoring years (2001 and 2011) in the coastal sediment of Pakistan. The status of metal contamination in coastal sediment was interpreted using sediment quality guidelines, and single and combined metal pollution indices. Ni, Cr, and Cd were recognized for their significant (p<0.05) intensification in the sediment during the last decade. Sediment quality guidelines recognized the frequent adverse biological effect of Ni and the occasional adverse biological effect of Cu, Cr, Pb and Cd. Single metal pollution indices (Igeo, EF, CF, and ER) revealed that sediment pollution is predominantly caused by Pb and Cd. Low to moderate contamination was appraised along the coast by multi-metal pollution indices (CD and PERI). Correlation study specifies that heavy metals were presented diverse affiliations and carriers for distribution in the sediment during the last decade. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    PubMed

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  2. Determination and evaluation of heavy metals in soils under two different greenhouse vegetable production systems in eastern China.

    PubMed

    Tian, Kang; Hu, Wenyou; Xing, Zhe; Huang, Biao; Jia, Mengmeng; Wan, Mengxue

    2016-12-01

    The evaluation of heavy metals (HMs) in greenhouse soils is crucial for both environmental monitoring and human health; thus, it is imperative to determine their concentrations, identify their sources and assess their potential risks. In this study, eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 167 surface soils were investigated in two representative greenhouse vegetable systems of China: perennial solar greenhouse (SG) and seasonal plastic greenhouse (PG). The results indicated accumulations of Cd, Cu, Hg and Zn in the SG soils and Cd, Pb, Hg and Zn in the PG soils, with higher concentrations than the background values. In particular, Cd and Hg exhibited high levels of pollution under both GVP systems due to their positive Igeo values. Principle component analysis (PCA) and correlation analysis suggested that Cd, Cu, Hg and Zn in the SG soils and Cd, Hg and Zn in the PG soils were mainly related to intensive farming practices; Pb in the PG soils was significantly affected by atmospheric deposition. The results showed that soil characteristics, in particular soil organic matter, total nitrogen and total phosphorus, exerted significant influence on Hg, Cu, Cd, and Zn under the SG system. However, the HMs in the PG soils were weakly affected by soil properties. Overall, this study provides comparative research on the accumulation, potential risks and sources of HMs in two typical greenhouse soils in China, and our findings suggest that, Cd and Hg in both greenhouse soils could potentially represent environmental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia.

    PubMed

    Al-Wabel, Mohammad I; Sallam, Abd El-Azeem S; Usman, Adel R A; Ahmad, Mahtab; El-Naggar, Ahmed Hamdy; El-Saeid, Mohammed Hamza; Al-Faraj, Abdulelah; El-Enazi, Khaled; Al-Romian, Fahad A

    2017-06-01

    The present study was conducted in one of the most densely cultivated area of Al-Qassim region in Kingdom of Saudi Arabia to (i) monitor trace metal (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contents in surface and subsurface soils, (ii) assess the pollution and potential ecological risk levels of trace metals, and (iii) identify trace metal sources using enrichment factor (EF), correlation matrix, and principal component analysis (PCA). The pollution levels of the analyzed trace metals calculated by the geoaccumulation index (I geo ) and contamination factor (C f ) suggested that the soils were highly contaminated with Cd and moderately contaminated with Pb. Based on the average values of EF, soil samples were found to present extremely high enrichment for Cd, significant enrichment for Pb, moderate enrichment for Zn, and deficient to minimal enrichment for other trace metals. Among the analyzed trace metals, a very high ecological risk was observed only in the case of Cd at some sampling sites. Meanwhile, other investigated trace metals had a low ecological risk. The results of PCA combined with correlation matrix suggested that Fe, Mn, Zn, Cu, Cr Ni, Cu, and Co represent natural abundance in soil, but Cd, Pb, and Cu are of anthropogenic inputs, mainly due to agrochemical and fertilizer applications. It could be generally concluded that the obtained results can be useful for assessing and conducting a future program for trace metal monitoring in agricultural areas of Saudi Arabia.

  4. Potentially toxic elements in foodcrops: Triticum aestivum L., Zea mays L.

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Fontana, Silvia; Squizzato, Stefania; Minello, Fabiola; Fornasier, Flavio; Wahsha, Mohammad

    2013-04-01

    Soil is the basis of the ecosystems and of our system of food production. Crops can uptake heavy metals and potentially toxic elements from the soil and store them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (spring wheat, Triticum aestivum L. and maize, Zea mays L.) from a tannery district in North-East Italy were analyzed to determine pedological characters, soil microbial indicators and the content of some major and micro-nutrients and potentially toxic elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn, V). The soils of the area are moderately polluted; Cr is the most important inorganic contaminant, followed by Ni, Cu and V. Factor analysis evidenced that the contaminants are in part anthropogenic and in part geogenic. Major anthropogenic origin was detected for Cr, Ni (from industrial activities), Zn, Cu, Cd (from agriculture practices). Biological Absorption Coefficient (BAC) from soil to plant roots and Translocation factor (TF) within the plant were calculated; major nutrients (K, P, S) and some micronutrients (Cu, Zn, Mg, Mn) are easily absorbed and translocated, whilst other nutrients (Ca, Fe) and potentially toxic elements or micronutrients (Al, Cd, Cr, Ni, Pb, V) are not accumulated in the seeds of the two considered species. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Cr concentrations in seeds and other aerial parts (stem and leaves) of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources (dust ingestion, water), there seems to be no health risk for animal breeding and population due to the consumption of wheat and maize grown in the area.

  5. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  6. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Yang, Q. C.; Yang, Z. P.

    2014-03-01

    Aim of the present study is to evaluate the potential ecological risk and predict the trend of soil heavy metal pollution around a~coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy metal pollution. The potential ecological risk in an order of E(Cd) > E(Pb) > E(Cu) > E(Cr) > E(Zn) have been obtained, which showed that Cd was the most important factor led to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, and the fixed number of years exceeding standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metal, and the relationship between sampling points and variables. These findings provide some useful insights for making appropriate management strategies to prevent and decrease heavy metal pollution around coal gangue dump in Yangcaogou coal mine and other similar areas elsewhere.

  7. Vascular plants as ecological indicators of metals in alpine vegetation (Karkonosze, SW Poland).

    PubMed

    Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Żołnierz, Ludwik; Rajsz, Adam; Kempers, Alexander J

    2017-08-01

    Calluna vulgaris, Carex rigida, Deschampsia flexuosa, Nardus stricta and Vaccinium myrtillus are abundant in the vegetation of mountainous areas in Northern and Central Europe. Knowledge of their ability to accumulate increased amounts of metals could be useful in the evaluation of environmental pollution in the alpine tundra of high mountains. Additionally, this investigation may contribute to understanding the rate and direction of recent vegetation change in Karkonosze and similar types of environments. Our investigation revealed that Carex rigida, C. vulgaris and V. myrtillus contain excessive Mn concentrations in shoots with the highest BF for this element compared to the BFs of other elements. C. rigida, with Cu, Mn and Zn concentrations exceeding the toxicity thresholds for plants, seems to be the best metal phytoaccumulator for Nardus stricta grasslands Carici (rigidae)-Nardetum (CrN) and alpine heathlands Carici (rigidae)-Festucetum airoidis (CrFa) associations in the Karkonosze. Based on relevant BFs >1, it can be stated that the following plant available metals were transferred to shoots: Cu, Mn and Ni by C. vulgaris; Cd, Cu, Mn, Ni and Zn by C. rigida; Cd, Cu, Mn, Ni and Zn by D. flexuosa; Cu, Mn, Ni and Zn by N. stricta and Cu, Mn and Zn by V. myrtillus.

  8. Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments.

    PubMed

    Krami, Loghman Khoda; Amiri, Fazel; Sefiyanian, Alireza; Shariff, Abdul Rashid B Mohamed; Tabatabaie, Tayebeh; Pradhan, Biswajeet

    2013-12-01

    One hundred and thirty composite soil samples were collected from Hamedan county, Iran to characterize the spatial distribution and trace the sources of heavy metals including As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap statistical analysis was used; for interrelation of spatial patterns of pollution, the disjunctive kriging and geoenrichment factor (EF(G)) techniques were applied. Heavy metals and soil properties were grouped using agglomerative hierarchical clustering and gap statistic. Principal component analysis was used for identification of the source of metals in a set of data. Geostatistics was used for the geospatial data processing. Based on the comparison between the original data and background values of the ten metals, the disjunctive kriging and EF(G) techniques were used to quantify their geospatial patterns and assess the contamination levels of the heavy metals. The spatial distribution map combined with the statistical analysis showed that the main source of Cr, Co, Ni, Zn, Pb, and V in group A land use (agriculture, rocky, and urban) was geogenic; the origin of As, Cd, and Cu was industrial and agricultural activities (anthropogenic sources). In group B land use (rangeland and orchards), the origin of metals (Cr, Co, Ni, Zn, and V) was mainly controlled by natural factors and As, Cd, Cu, and Pb had been added by organic factors. In group C land use (water), the origin of most heavy metals is natural without anthropogenic sources. The Cd and As pollution was relatively more serious in different land use. The EF(G) technique used confirmed the anthropogenic influence of heavy metal pollution. All metals showed concentrations substantially higher than their background values, suggesting anthropogenic pollution.

  9. Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei.

    PubMed

    Peijnenburg, W J; Baerselman, R; de Groot, A C; Jager, T; Posthuma, L; Van Veen, R P

    1999-11-01

    Body residues are often better estimates of the amount of a chemical at the sites of toxic action in an organism than ambient soil concentrations, because bioavailability differences among soils are explicitly taken into account in considerations of body residues. Often, however, insufficient attention is paid to the rate and extent at which tissue concentrations respond to soil concentrations and soil characteristics. In this contribution the impact of soil characteristics on the environmental bioavailability of heavy metals for the oligochaete worm Eisenia andrei is reported. Uptake of As, Cd, Cr, Cu, Ni, Pb, and Zn in 20 Dutch field soils and in OECD artificial soil was quantified as a function of time. Internal metal concentrations varied less than the corresponding external levels. Metal uptake and elimination were both metal- and species-dependent. Worms typically attained steady-state concentrations rapidly for Cr, Cu, Ni, and Zn. Internal concentrations similar to those in the cultivation medium, linearly increasing body concentrations, or steady-state internal concentrations well above those in the cultivation medium were found for As, Cd, and Pb. Multivariate expressions were derived to describe uptake rate constants, steady-state concentrations, and bioaccumulation factors as a function of soil characteristics. Soil acidity is the most important solid-phase characteristic modulating the availability of As, Cd, and Pb. Although additional semimechanistic calculations yielded evidence of pore-water-related uptake of Cd and Pb modulated by competition between H(+) and metal ions at the active sites of the membranes, the findings for Cr, Cu, Ni, and Zn point to additional influences, among which is probably regulation. Copyright 1999 Academic Press.

  10. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.

    PubMed

    Nguyen, Thuy Chung; Loganathan, Paripurnanda; Nguyen, Tien Vinh; Kandasamy, Jaya; Naidu, Ravi; Vigneswaran, Saravanamuthu

    2017-07-13

    Heavy metals can be serious pollutants of natural water bodies causing health risks to humans and aquatic organisms. The purpose of this study was to investigate the removal of five heavy metals from water by adsorption onto an iron industry blast furnace slag waste (point of zero charge (PZC) pH 6.0; main constituents, Ca and Fe) and a coal industry fly ash waste (PZC 3.0; main constituents, Si and Al). Batch study revealed that rising pH increased the adsorption of all metals with an abrupt increase at pH 4.0-7.0. The Langmuir adsorption maximum for fly ash at pH 6.5 was 3.4-5.1 mg/g with the adsorption capacity for the metals being in the order Pb > Cu > Cd, Zn, Cr. The corresponding values for furnace slag were 4.3 to 5.2 mg/g, and the order of adsorption capacities was Pb, Cu, Cd > Cr > Zn. Fixed-bed column study on furnace slag/sand mixture (1:1 w/w) revealed that the adsorption capacities were generally less in the mixed metal system (1.1-2.1 mg/g) than in the single metal system (3.4-3.5 mg/g). The data for both systems fitted well to the Thomas model, with the adsorption capacity being the highest for Pb and Cu in the single metal system and Pb and Cd in the mixed metal system. Our study showed that fly ash and blast furnace slag are effective low-cost adsorbents for the simultaneous removal of Pb, Cu, Cd, Cr and Zn from water.

  11. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China.

    PubMed

    Dai, Lijun; Wang, Lingqing; Li, Lianfang; Liang, Tao; Zhang, Yongyong; Ma, Chuanxin; Xing, Baoshan

    2018-04-15

    Heavy metals in lake sediment have become a great concern because their remobilization has frequently occurred under hydrodynamic disturbance in shallow lakes. In this study, heavy metals (Cr, Cu, Cd, Pb, and Zn) concentrations in the surface and core sediments of the largest freshwater lake in China, Poyang Lake, were investigated. Geostatistical prediction maps of heavy metals distribution in the surface sediment were completed as well as further data mining. Based on the prediction maps, the ranges of Cr, Cu, Cd, Pb, and Zn concentrations in the surface sediments of the entire lake were 96.2-175.2, 38.3-127.6, 0.2-2.3, 22.5-77.4, and 72.3-254.4mg/kg, respectively. A self-organizing map (SOM) was applied to find the inner element relation of heavy metals in the sediment cores. K-means clustering of the self-organizing map was also completed to define the Euclidian distance of heavy metals in the sediment cores. The geoaccumulation index (I geo ) for Poyang Lake indicated a varying degree of heavy metal contamination in the surface sediment, especially for Cu. The heavy metal contamination in the sediment profiles had similar pollution levels as those of surface sediment, except for Cd. Correlation matrix mapping and principal component analysis (PCA) were used to support the idea that Cr, Pb, and Zn may be mainly derived from both lithogenic and human activities, such as atmospheric and river inflow transportation, whereas Cu and Cd may be mainly contributed from anthropogenic sources, such as mining activities and fertilizer application. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Determination of the Extent of Trace Metals Pollution in Soils, Sediments and Human Hair at e-Waste Recycling Site in Ghana.

    PubMed

    Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi

    2017-10-01

    The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.

  13. Essential trace elements and antioxidant status in relation to severity of HIV in Nigerian patients.

    PubMed

    Olaniyi, J A; Arinola, O G

    2007-01-01

    This study was designed to determine the plasma levels of some antioxidants and trace elements in three severity groups of HIV patients compared with non-HIV-infected controls. The plasma levels of antioxidants (total antioxidant, albumin, bilirubin and uric acid) and trace elements (Mg, Fe, Zn, Mn, Cu, Cr, Cd and Se) were estimated spectrophotometrically in controls and patients with CD4 counts of <200; 200-499 and > or =500 cells/microl. Uric acid and Zn were significantly higher, while vitamin E and all the trace elements (except Zn) were significantly lower in HIV-infected patients compared to healthy controls. The highest level of uric acid was observed in those with CD4 counts of <200 cells/microl. All the trace elements (except Zn) were higher in HIV subjects with a CD4 count of 200-499 cells/microl compared to >500 cells/microl. Only uric acid and Zn showed significant correlation with CD4 count. Based on the results of this study, we recommend routine assessment and appropriate supplementation of antioxidants/trace elements in HIV subjects. This supplementation is hoped to strengthen the immune system and reduce the adverse consequences of HIV- related oxidative stress. Copyright 2007 S. Karger AG, Basel.

  14. Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N

    NASA Astrophysics Data System (ADS)

    Trocine, Robert P.; Trefry, John H.

    1988-04-01

    Suspended particles were collected from an area of active hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge and analyzed for Fe, Mn, Cd, Zn, Cu, V, Ni, Cr, Pb, Mg, Ca, Al and Si. Rapid advection of vent-derived precipitates produced a lens with total suspended matter (TSM) loadings of 14-60 μg/l at 200-700 m above the seafloor; TSM concentrations > 60 μg/l were observed only at near-vent sites. The distribution of suspended particles correlated well with increased dissolved Mn concentrations and particulate Fe values near the vent source. Particulate Fe values decreased linearly relative to TSM concentrations as hydrothermal precipitates mixed with background suspended matter. Near-vent precipitates were characterized by up to 35% Fe, 2% Zn, 0.6% Cu and > 100 μg/g Cd. In comparison to Fe, particulate Cd, Zn and Cu values decreased dramatically away from the vent source. This trend supports differential settling and/or dissolution of Cd-, Zn- and Cu-bearing phases. Particulate Mn and Fe values were inversely related with only 50 μg Mn/g in the near-vent particles. At near-vent sites, > 99% of the total Mn was in solution; this fraction decreased to 75-80% at background TSM values. In contrast to Cd, Zn and Cu, particulate V levels show a continuous, linear decrease with particulate Fe values. This trend is explained by adsorption of V on Fe-oxides in the vent plume. Scavenging of Cr, Pb and Mg by hydrothermal precipitates is also suggested by the data. Nickel and Al values were low in near-vent particles at < 100 and < 3 μg/g, respectively. The complementary behavior of dissolved Mn and particulate trace metals provides a useful framework for studying broad aspects of hydrothermal plume processes.

  15. [Application of ICP-mS in the health risk assessment of heavy metals for drinking water sources in reservoirs].

    PubMed

    Gao, Bo; Li, Qiang; Zhou, Huai-Dong; Gao, Ji-Jun; Zou, Xiao-Wen; Yong, Huang

    2014-05-01

    The six heavy metal concentrations (Cr, Cr, As, Cd, Cu, Zn and Pb) in water samples collected from five reservoirs of Liao River Basin were studied. The health risk assessment for heavy metals pollution in reservoirs was conducted based on the environmental health risk assessment model recommended by U. S. Environmental Protection Agency. The results showed that the average concentrations of Cr, Cu, Zn, As, Cd and Pb in five reservoirs of Liao River Basin were 3.36, 1.03, 2. 70, 1.23, 0. 02 and 0. 03 microg L-1, respectively. In fact, these heavy metals concentrations were obviously lower than the Standard of National Drinking Water in China (GB 5749-2006). The results also showed that the metal carcinogenic risk was relatively high in this region. The order of the risk level of carcinogenic metals was Cr>As>Cd. The highest carcinogenic risk was from Cr, with the risk for adults ranging from 4. 50 X 10(-5) approximately 7. 53 X 10(-5) a-1' and the risk for children ranging from 6. 29 X 10(-5) to 1. 05 X 10(-4) a-1. The health risk levels caused by non-carcinogenic metals ranging from 10-13 to 10(-10) a-1 were lower than the acceptable range suggested by International Commission on Radiological Protection (ICRP) and the order of the risk level of non-carcinogenic metals was Cu>Zn>Pb. The total health risk of heavy metals for adults ranging from 1. 07X 10(-4) to 1. 72X 10(-4) a-1 and for children ranging from 1. 49 X 10(-4) to 2. 40 X 10(-4) a-1 exceeded the accepted level of 5 X 10(-5) a-1 as suggested by ICRP. The health risk levels of carcinogenic metals were significantly higher than those of non-carcinogenic metals in the reservoirs for Liao River Basin.

  16. Metal concentrations of wild edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Solak, Mehmet Halil; Cetinkaya, Serap

    2012-01-01

    In the present study, the contents of Zn, Fe, Cu, Mn, Co, Ni, Pb, Cd, Cr, Al, Ca, Mg, and K in Agaricus campestris, Agrocybe cylindracea, Collybia dryophila, Helvella leucopus, Russula delica, Tricholoma auratum, Amanita ovoidea, Melanoleuca excissa, Rhizopogon roseolus, Russula chloroides, Volvoriella gloiocephala, Lyophyllum decastes, Morcella angusticeps, Morchella esculenta and Morcella eximia collected from Isparta, Mugla, and Osmaniye provinces (Turkey) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion. The intake of heavy metals (Pb, Cd) and other metals (Fe, Cu, Zn) by consumption of 30 g dry weight of mushrooms daily poses no risk at all except in A. cylindracea and H. leucopus (for Cd) for the consumer.

  17. Epidemiological Study on Metal Pollution of Ningbo in China

    PubMed Central

    Li, Zhou; Su, Hong; Wang, Li; Hu, Danbiao; Zhang, Lijun; Fang, Jian; Jin, Micong; Song, Xin; Shi, Hongbo; Mao, Guochuan

    2018-01-01

    Background: In order to search for effective control and prevention measures, the status of metal pollution in Ningbo, China was investigated. Methods: Nine of the most common contaminating metals including lead (Pb), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), chromium (Cr), nickel (Ni), zinc (Zn), and mercury (Hg) in samples of vegetables, rice, soil, irrigation water, and human hair were detected using inductively coupled plasma-mass spectrometry (ICP-MS). Three different districts including industrial, suburban and rural areas in Ningbo were studied through a stratified random sample method. Results: (1) Among all of the detected vegetable samples, Cd exceeded the standard limit rates in industrial, suburban and rural areas as high as 43.9%, 27.5% and 5.0%, respectively; indicating the severity of Cd pollution in Ningbo. (2) The pollution index (PI) of Cd and Zn in soil (1.069, 1.584, respectively) suggests that soil is slightly polluted by Cd and Zn. Among all samples, metal contamination levels in soil were all relatively high. (3) A positive correlation was found between the concentrations of Pb, Cd and Cu in vegetables and soil; Pb, Cu, Cr and Ni in vegetables and irrigation water, as well as, Cu and Ni in rice and irrigation water; and, (4) Higher Pb and Cd concentrations were found in student scalp hair in both industrial and suburban areas compared to rural areas. (5) Hg and Pb that are found in human scalp hair may be more easily absorbed from food than any of the other metals. Conclusions: In general, certain harmful metal pollutions were detected in both industrial and suburban areas of Ningbo in China. PMID:29495631

  18. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China.

    PubMed

    Bian, Bo; Lin, Cheng; Lv, Lin

    2016-09-01

    Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.

  19. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits.

    PubMed

    Wójcik, Małgorzata; Sugier, Piotr; Siebielec, Grzegorz

    2014-07-15

    Metal (Zn, Pb, Cd, Cu, Ni, Cr) accumulation in shoots of 38 plant species spontaneously colonizing three Zn-Pb waste deposits in southern Poland was studied in order to find out if the age of the waste (30-130 years) or its type (slag or flotation residues) influence metal content in plants and to identify species potentially suitable for biomonitoring and phytoremediation. The total metal concentrations in the waste upper layers ranged from 7300 to 171,790 mg kg(-1) for Zn, from 1390 to 22,265 mg kg(-1) for Pb, and from 66 to 1,464 mg kg(-1) for Cd, whereas CaCl2-extracted fractions accounted for 0.034-0.11 %, 0.005-0.03 %, and 0.28-0.62 % of total Zn, Pb and Cd concentrations, respectively. The concentrations of Cu, Ni, and Cr in substrates and in plants were low and ranged within the background values. Metal accumulation in plant shoots was poorly correlated with both total and CaCl2-extracted forms of metals in the substrate and was highly variable among species and also specimens of the same species. The highest mean concentrations of Zn, Pb and Cd were found in Anthyllis vulneraria L. (901.5 mg kg(-1)), Echium vulgare L. (116.92 mg kg(-1)), and Hieracium piloselloides Vill. (26.86 mg kg(-1)), respectively. Besides Reseda lutea L., no species appeared to be a good indicator of polymetallic environment pollution based on chemical analysis of shoots; however, metal accumulation in the whole plant communities of a particular contaminated area might be an accurate tool for assessment of metal transfer to vegetation irrespective of the type or age of the waste. All the species studied developed a metal exclusion strategy, thus exhibiting potential for phytostabilization of metalliferous wastelands. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dissolved Concentrations, Sources, and Risk Evaluation of Selected Metals in Surface Water from Mangla Lake, Pakistan

    PubMed Central

    Saleem, Muhammad; Iqbal, Javed; Shah, Munir H.

    2014-01-01

    The present study is carried out for the assessment of water quality parameters and selected metals levels in surface water from Mangla Lake, Pakistan. The metal levels (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were determined by flame atomic absorption spectrophotometry. Average levels of Cd, Co, Cr, Ni, and Pb were higher than the allowable concentrations set by national and international agencies. Principal component analysis indicated significant anthropogenic contributions of Cd, Co, Cr, Ni, and Pb in the water reservoir. Noncarcinogenic risk assessment was then evaluated using Hazard Quotient (HQing/derm) and Hazard Index (HIing/derm) following USEPA methodology. For adults and children, Cd, Co, Cr, and Pb (HQing > 1) emerged as the most important pollutants leading to noncarcinogenic concerns via ingestion route, whereas there was no risk via dermal contact of surface water. This study helps in establishing pollutant loading reduction goal and the total maximum daily loads, and consequently contributes to preserve public health and develop water conservation strategy. PMID:24744690

  1. A novel fractionation approach for water constituents - distribution of storm event metals.

    PubMed

    McKenzie, Erica R; Young, Thomas M

    2013-05-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.

  2. A novel fractionation approach for water constituents – distribution of storm event metals

    PubMed Central

    McKenzie, Erica R.; Young, Thomas M.

    2014-01-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891

  3. ICP-AES Determination of Mineral Content in Boletus tomentipes Collected from Different Sites of China.

    PubMed

    Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao

    2015-05-01

    P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.

  4. Radionuclides (210Po and 210Pb) and Some Heavy Metals in Fish and Sediments in Lake Bafa, Turkey, and the Contribution of 210Po to the Radiation Dose.

    PubMed

    Manav, Ramazan; Uğur Görgün, Aysun; Filizok, Işık

    2016-11-09

    The pollution level of Lake Bafa was investigated by collecting fish samples { Dicentrarchus labrax (sea bass), Liza ramada (mullet) and Anguilla anguilla (eel)}, surface sediment, and core samples. In all these samples, 210 Po and 210 Pb concentrations were estimated, and total annual dose rates were obtained for each species. Some heavy metal (Cr, Ni, Pb, Cd, Mn, Fe, and Zn) concentration levels were obtained for the fish and a core sample. The sediment mass accumulation rate was found to be 3.27 g·m -2 ·day -1 (0.119 g·cm -2 ·y -1 ) from a core sample. The heavy metal concentrations in the vertical profile of samples from the core were also observed. The measured concentration of Zn, Pb, Cd, and Cr were between the ERL (effects range low) and ERM (effects range median) limits, while Ni concentrations were higher than the ERM limit. The observed concentrations of Cd, Pb, and Zn in fish samples did not exceed the limits in accordance with Turkish Food Regulations. Further, the maximum effective dose equivalent of 210 Po in the area was found to be 1.169 µSv·y -1 .

  5. Trace Elements Contamination and Human Health Risk Assessment in Drinking Water from the Agricultural and Pastoral Areas of Bay County, Xinjiang, China

    PubMed Central

    Turdi, Muyessar; Yang, Linsheng

    2016-01-01

    Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element–induced health risk (including for DW adults) was higher than acceptable (10−6) and lower than priority risk levels (10−4) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10−4, higher than acceptable and priority risk levels (10−4). PMID:27669274

  6. Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece.

    PubMed

    Antoniadis, Vasileios; Golia, Evangelia E; Shaheen, Sabry M; Rinklebe, Jörg

    2017-04-01

    Elevated concentrations of potentially toxic elements (PTEs) are usually found in areas of intense industrial activity. Thriasio Plain is a plain near Athens, Greece, where most of the heavy industry of the country has been situated for decades, but it also is a residential and horticultural area. We aimed at measuring the levels of PTEs in soils and indigenous plant species and assessing the health risk associated with direct soil ingestion. Samples of soils at roadsides and growing plants were collected from 31 sites of that area. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn were measured in both soils (as pseudo-total) and aerial plant tissues. We found that As, Cd, Cr, Cu, Ni, Pb and Zn were higher than maximum regulatory limits. Element concentrations in plants were rather lower than expected, probably because indigenous plants have developed excluder behaviour over time. Copper and Zn soil-to-plant coefficients were highest among the other elements; for Cu this was unexpected, and probably associated with recent Cu-releasing industrial activity. Risk assessment analysis indicated that As was the element contributing more than 50 % of the health risk related to direct soil ingestion, followed by Cr, Pb, and, surprisingly, Mn. We concluded that in a multi-element contamination situation, elevated risk of PTEs (such as As, Cr and Pb) may reduce the tolerance limits of exposure to less-toxic elements (here, Mn).

  7. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  8. PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.

    2017-08-01

    The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.

  9. Geologic cross sections showing the concentrations of As, Cd, Co, Cu, Cr, Fe, Mo, Ni, Pb, and Zn in acid-insoluble residues of Paleozoic rocks within the Doniphan/Eleven Point Ranger District of the Mark Twain National Forest, Missouri, USA

    USGS Publications Warehouse

    Lee, Lopaka; Goldhaber, Martin B.

    2002-01-01

    This report is a product of a U.S. Geological Survey investigation that is focused on characterizing the potential environmental impacts of lead-zinc mining within the Doniphan/Eleven Point ranger district of the Mark Twain national forest. The elemental concentrations of iron (Fe), arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn) in acidinsoluble residues are shown for boreholes along two geologic cross sections within Doniphan/Elevan Point ranger district (Figure 1). The purpose of this report is to characterize, in a general sense, the distribution of economically and environmentally important elements within the rocks and aquifers of the Doniphan/Eleven Point ranger district

  10. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    PubMed

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  11. Comparison of trace element concentrations in tissue of common carp and implications for monitoring

    USGS Publications Warehouse

    Goldstein, R.M.; DeWeese, L.R.

    1999-01-01

    Common carp (Cyprinus carpio) collected from four sites in the Red River of the North in 1994 were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), selenium (So), and zinc (Zn). Concentrations differed among liver, muscle, and whole body. Generally, trace element concentrations were the greatest in livers while concentrations in whole bodies were greater than those in muscle for Cd, Cu, Ni, Pb, and Zn, and concentrations in muscle were similar to whole body for As and Se. Concentrations of Cr were lower in liver than either muscle or whole body. Correlations between liver and whole body concentrations were stronger than those between liver and muscle concentrations, but the strongest correlations were between muscle and whole body concentrations. Examination of tissue concentrations by collection sites suggested that, for a general survey, the whole body may be the most effective matrix to analyze.

  12. Metal concentrations in demersal fish species from Santa Maria Bay, Baja California Sur, Mexico (Pacific coast).

    PubMed

    Jonathan, M P; Aurioles-Gamboa, David; Villegas, Lorena Elizabeth Campos; Bohórquez-Herrera, Jimena; Hernández-Camacho, Claudia J; Sujitha, S B

    2015-10-15

    Concentrations of 11 trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, As, Hg) in 40 fish species from Santa Maria Bay, Baja California Sur, Mexico, the strategically important area for marine mammals and organisms were analyzed. Based on their concentrations the ranking of metals Fe>Zn>Ni>Cr>Mn>Pb>Cu>Co>As>Cd>Hg suggests that organism size, metabolism and feeding habits are correlated with metal concentrations. Local geological formations affect the concentrations of different metals in the aquatic environment and are subsequently transferred to fishes. The correlation analysis suggests that metabolism and nurturing habits impact the concentration of metals. Concentrations of Fe and Mn appear to be influenced by scavenging and absorption processes, which vary by species. The considerable variability in the metal concentrations obtained in different species underscores the importance of regular monitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Influence of early diagenesis on the vertical distribution of metal forms in sediments of Bohai Bay, China.

    PubMed

    Lu, Xueqiang; Zhang, Yan; Liu, Honglei; Xing, Meinan; Shao, Xiaolong; Zhao, Feng; Li, Xiaojuan; Liu, Qiongqiong; Yu, Dan; Yuan, Xuezhu; Yuan, Min

    2014-11-15

    The influence of early diagenesis on the vertical distribution of metal forms in the sediments of Bohai Bay was discussed in this paper. The results showed that the concentrations were: Al > Fe ≈ Ca > Mn > Cr > Zn > Cu > Pb > Cd. In vertical distribution, the forms of Cr and Pb were stable from the top to the bottom. However, the exchangeable forms and acid-extracted forms of Cd, Cu and Zn presented an obvious declining trend. The metals would be transformed to more stable forms during the early-diagenesis process. Further analysis found that early diagenesis can change the sedimentary environment, affecting pH, oxidation-reduction potential (ORP), total dissolved solid (TDS) and the structure of organic matter (OM), all main factors influencing metal forms in the sediments of Bohai Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Evaluation of the stability of a nanoremediation strategy using barley plants.

    PubMed

    Gil-Díaz, M; González, A; Alonso, J; Lobo, M C

    2016-01-01

    This study evaluated the effectiveness of nZVI in reducing the availability of Cd, Cr or Zn in polluted soils. The influence of this nanoremediation process on the development of barley plants as well as its impact on soil properties and the stability of the metal immobilization afterwards were also evaluated in a greenhouse experiment. The application of nZVI reduced the availability of these metals in the soil, but the effectiveness of the immobilization and its stability depended on the metal chemical characteristics. Cadmium distribution in soil fractions showed an important change after the barley crop, favoring the immobilization of Cd in RS fraction for both nZVI-treated and untreated soils. The Cr immobilization was stable over the time studied and the doses of Cr were lethal for the barley plants. In contrast, the decrease of Cr availability reached after the nZVI treatment induced a reduction of soil phytotoxicity and an improvement in the development of the plants, which were able to complete their growing period. The Zn immobilization with nZVI was stable over time, but its effectiveness was moderate, and the growth of barley plants was poorer than that observed in the cases of Cd and Cr. Thus the best results of metal immobilization with nZVI were obtained for Cr-polluted soils. There was no overall increase of Fe in barley plants from nZVI-treated soils. In relation to the soil, no negative effects on its physico-chemical properties were observed after the time exposure with nZVI. Taking into account these results we can conclude that the use of nZVI is a promising remediation strategy, and its effectiveness would be conditioned to the soil properties and the bioavailable metal concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Apis mellifera ligustica, Spinola 1806 as bioindicator for detecting environmental contamination: a preliminary study of heavy metal pollution in Trieste, Italy.

    PubMed

    Giglio, Anita; Ammendola, Anna; Battistella, Silvia; Naccarato, Attilio; Pallavicini, Alberto; Simeon, Enrico; Tagarelli, Antonio; Giulianini, Piero Giulio

    2017-01-01

    Honeybees have become important tools for the ecotoxicological assessment of soil, water and air metal contamination due to their extraordinary capacity to bioaccumulate toxic metals from the environment. The level of heavy metal pollution in the Trieste city was monitored using foraging bees of Apis mellifera ligustica from hives owned by beekeepers in two sites strategically located in the suburban industrial area and urban ones chosen as control. The metal concentration in foraging bees was determined by inductively coupled plasma-mass spectrometry. The chemical analysis has identified and quantified 11 trace elements accumulated in two different rank orders: Zn> Cu > Sr > Bi > Ni > Cr > Pb = Co > V > Cd > As in foraging bees from the suburban site and Zn > Cu > Sr > Cr > Ni > Bi > Co = V > Pb > As > Cd in bees from urban site. Data revealed concentrations of Cr and Cu significantly higher and concentration of Cd significantly lower in bees from urban sites. The spatial difference and magnitude order in heavy metal accumulation along the urban-suburban gradient are mainly related to the different anthropogenic activity within sampled sites and represent a risk for the human health of people living in the city. We discussed and compared results with the range of values reported in literature.

  16. Toxic heavy metals in sediments, seawater, and molluscs in the eastern and western coastal waters of Guangdong Province, South China.

    PubMed

    Zhang, Ling; Shi, Zhen; Zhang, Jingping; Jiang, Zhijian; Wang, Fei; Huang, Xiaoping

    2016-05-01

    Heavy metal concentrations and distribution were studied in sediments, seawater, and molluscs, and the possible heavy metal sources in the coastal waters of Guangdong Province, South China were discussed. The results showed that the concentrations of Cu, Pb, Zn, and Cr in sediments in eastern coastal waters were generally higher than those in the western coastal waters. However, concentrations of most metals in seawater and molluscs in western waters were higher than in the eastern waters, which was tightly related to the local economics and urbanization development, especially, the different industrial structure in two regions. The main heavy metal sources were attributed to the industrial and agricultural effluent, domestic sewage, and even waste gas. Furthermore, heavy metal contamination assessment indicated that high contamination levels of Cd, Zn, and Pb occurred in sediments in local areas, especially in the bays and harbors. The metal accumulation levels by molluscs ranked following the order of Cd > Cu > As > Zn > Pb > Cr, and the ecological risks introduced by heavy metals in different areas were in the order of Zhanjiang > Yangmao > Shantou > Shanhui.

  17. Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of South China Sea.

    PubMed

    Gu, Yang-Guang; Lin, Qin; Huang, Hong-Hui; Wang, Liang-Gen; Ning, Jia-Jia; Du, Fei-Yan

    2017-01-30

    The concentrations of heavy metals (Cd, Pb, Cr, Ni, Cu and Zn) were determined in four commercially valuable fish species (Thunnus obesus, Decapterus lajang, Cubiceps squamiceps and Priacanthus macracanthus), collected in the western continental shelf of the South China Sea. Concentrations of Cd, Pb, Cr, Ni, Cu, and Zn in fish muscles were 0.006-0.050, 0.13-0.68, 0.18-0.85, 0.11-0.25, 0.12-0.77, and 2.41-4.73μg/g, wet weight, respectively. Concentrations of heavy metals in all species were below their acceptable daily upper limit, suggesting human consumption of these wild fish species may be safe, with health risk assessment based on the target hazard quotients (THQ) and total THQ, indicating no significant adverse health effects with consumption. The average concentrations of Zn were higher in gills than in stomach contents, backbones or muscle, while conversely, the other heavy metals had higher concentrations in stomach contents than in other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of elements in ayurvedic medicinal plants by AAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teerthe, Santoshkumar S.; Kerur, B. R., E-mail: kerurbrk@yahoo.com

    India has a rich country for the uses of Ayurvedic medicinal plants for treatment and also the north- Karnataka boasts an unparallel diversity of medicinal plants. The present study attempts to estimate and compare the level of trace and heavy metals in some selected leaves and root samples of Ayurvedic medicinal plants such as Mg, Al, K, Cr, Mn, Fe, Cu, Zn, and Cd. The samples are collected from different places of North-Karnataka regions and sample solutions prepared as the ratio of 1:25:25+950ml=1000ppm.the trace and heavy elemental concentration was estimated using Atomic Absorption Spectrometric (AAS) Method. The average concentrations ofmore » Mg, Mn, Fe and Zn, are ranging from 2ppm to 5250.2ppm and potassium (K) has more concentration as compare to all other. The other elements likes Al, Cr, Cu, and Cd were also estimed and presented in the table. Therefore, these medicinal plants are rich in some essential minerals, especially K, Mg, Mn, Fe and Zn which are essential for human health.« less

  19. Field based investigation on phytoremediation potentials of Lemna minor and Azolla filiculoides in tropical, semiarid regions: Case of Ethiopia.

    PubMed

    Amare, Elfu; Kebede, Fassil; Berihu, Tesfay; Mulat, Worku

    2017-10-16

    This study investigated the concurrent accumulation of eight heavy metals by two floating aquatic macrophytes (Lemna minor and Azolla filiculoides) cultivated in ambient media and blended wastewaters in the semiarid regions of Ethiopia. Both species accumulated heavy metals in varying degrees with a significant concentration gradient within the immediate water media. Highest bioconcentration factor was determined for Mn and Fe in both plants. Results revealed that L. minor was high phytoaccumulator for Fe, Mn, Zn and Co but moderate for Cd, Cu, Ni and Cr. On the other hand, A. filiculoides was a high accumulator for Fe, Mn, Zn and Cu, but its potency was moderate for Co, Cr and Ni, but lower for Cd. Both species exhibited significant difference in accumulating Co, Zn and Mn (p < 0.05). In general, the bioconcentration factors for both plants were comparable within the same treatment. In this study, stronger associations between the heavy metal concentrations in the plant tissues and in the grown water media were observed for A. filiculoides.

  20. Seasonal study of concentration of heavy metals in waters from lower São Francisco River basin, Brazil.

    PubMed

    Souza, A M; Salviano, A M; Melo, J F B; Felix, W P; Belém, C S; Ramos, P N

    2016-01-01

    In this study we determined the concentration of metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the water lower São Francisco River basin, to evaluate the influence of urbanization and industrialization on environmental changes in the water resource. All samples were analyzed using the IUPAC adapted method and processed in an atomic absorption spectrophotometer. The sampling stations located near the industrial areas were influenced by industrialization because they presented higher concentrations of Cd, Cr, Ni and Cu. The other sampled locations showed changes with regard the trace elements probably originating in the soil, like Fe, Zn and Pb. There was a gradual increase in the concentrations of metals, in general, in the period of highest rainfall of the hydrographic network. Overall, except for Zn and Mn, the trace elements exceeded the maximum allowed value established by national legislation (CONAMA). Lower São Francisco River basin has suffered interference from urbanization and industrialization, so awareness programs should be developed so as to control and lessen future problems.

  1. Temporal variations of heavy metals in coral Porites lutea from Guangdong Province, China: Influences from industrial pollution, climate and economic factors

    USGS Publications Warehouse

    Peng, Z.; Liu, J.; Zhou, C.; Nie, B.; Chen, T.

    2006-01-01

    The correlation coefficients among the metals and climatic and economic factors indicate that the metals Ni, Zn, and Cd behave similarly. Copper and Mn are positively correlated, and cobalt is negatively correlated with Cr, Ni, Zn, and Cd. Lead is not correlated with any other metals but is correlated with sea surface water temperature, air temperature, GDP and industrial-agricultural production in Dianbai County. Lead in corals is related to the enhanced pollution level of ocean waters as a result of increased industrial activities.

  2. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding desert. Metals pollution in these newer areas is much lower than in the city core due to their distance from legacy, traditional, and ongoing sources. Thus there is a strong risk gradient for exposure to heavy metals from contaminated soil from the higher levels in the city core to the lower levels in newer residential neighborhoods. NIEHS Grant 1RO1-ES11367

  3. Spatial distribution and ecological risk assessment of heavy metals in coastal surface sediments in the Hebei Province offshore area, Bohai Sea, China.

    PubMed

    Ding, Xigui; Ye, Siyuan; Yuan, Hongming; Krauss, Ken W

    2018-06-01

    Seven hundred and nine surface sediment samples, along with deeper sediment samples, were collected from Hebei Province along the coastal section of the Bohai Sea, China, and analyzed for grain size, concentrations of organic carbon (Corg) and heavy metals (Cu, Pb, Zn, Cr, Cd, As, and Hg). Results indicated that the average concentrations in the sediments were 16.1 mg/kg (Cu), 19.4 mg/kg (Pb), 50 mg/kg (Zn), 48.8 mg/kg (Cr), 0.1 mg/kg (Cd), 8.4 mg/kg (As), and 20.3 μg/kg (Hg). These concentrations generally met the China Marine Sediment Quality criteria. However, both pollution assessments indicated moderate to strong Cd and Hg contamination in the study area. The potential ecological risk index suggested that the combined ecological risk of the seven studied metals may be low, but that 24.5% of the sites, where sediments were finer and higher in Corg concentration, had high ecological risk in Hg and Cd pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Ecological risks and potential sources of heavy metals in agricultural soils from Huanghuai Plain, China.

    PubMed

    Zhou, Lingli; Yang, Bing; Xue, Nandong; Li, Fasheng; Seip, Hans Martin; Cong, Xin; Yan, Yunzhong; Liu, Bo; Han, Baolu; Li, Huiying

    2014-01-01

    A total of 224 agricultural soil samples from Huanghuai Plain in China were investigated for the concentrations of seven heavy metals (As, Cd, Cr, Hg, Ni, Pb, and Zn). The mean concentrations of the metals were 12, 0.17, 79, 0.04, 35, 25, and 74 mg/kg, respectively. These values are similar or slightly higher than background values in this region, except for Cd with a mean nearly twice the background value. The estimated ecological risks based on contamination factors and potential ecological risk indexes are also mostly low, but considerable for Cd and Hg. Multivariate analysis (including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) clearly revealed three distinct metal groups, i.e., Cr/Ni/Zn, As/Cd/Pb, and Hg, whose concentrations were closely associated with the distribution and pollution characteristics of industries in and around the plain. The main anthropogenic sources for the three metal groups were identified as atmospheric deposition, sewage irrigation/fertilizers usage, and atmospheric deposition/irrigation water, respectively. The present results are well suited for planning, risk assessment, and decision making by environmental managers of this region.

  5. [Pollution Evaluation and Risk Assessment of Heavy Metals from Atmospheric Deposition in the Parks of Nanjing].

    PubMed

    Wang, Cheng; Qian, Xin; Li, Hui-ming; Sun, Yi-xuan; Wang, Jin-hua

    2016-05-15

    Contents of heavy metals involving As, Cd, Cr, Cu, Ni, Pb and Zn from atmospheric deposition in 10 parks of Nanjing were analyzed. The pollution level, ecological risk and health risk were evaluated using Geoaccumulation Index, Potential Ecological Risk Index and the US EPA Health Risk Assessment Model, respectively. The results showed that the pollution levels of heavy metals in Swallow Rock Park, Swallow Rock Park and Mochou Lake Park were higher than the others. Compared to other cities such as Changchun, Wuhan and Beijing, the contents of heavy metals in atmospheric deposition of parks in Nanjing were higher. The evaluation results of Geoaccumulation Index showed that Pb was at moderate pollution level, Zn and Cu were between moderate and serious levels, while Cd was between serious and extreme levels. The ecological risk level of Cd was high. The assessment results of Health Risk Assessment Model indicated that there was no non-carcinogenic risk for all the seven heavy metals. For carcinogenic risk, the risks of Cd, Cr and Ni were all negligible (Risk < 1 x 10⁻⁶), whereas As had carcinogenic risk possibility but was considered to be acceptable (10⁻⁶ < Risk < 10⁻⁴).

  6. Heavy metals binding properties of esterified lemon.

    PubMed

    Arslanoglu, Hasan; Altundogan, Hamdi Soner; Tumen, Fikret

    2009-05-30

    Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.

  7. Role of the Ca-pectates on the accumulation of heavy metals in the root apoplasm.

    PubMed

    Castaldi, Paola; Lauro, Giampaolo; Senette, Caterina; Deiana, Salvatore

    2010-12-01

    In order to better understand the processes that regulate the accumulation in the apoplasm of heavy metals and their mobilization by the plant metabolites it is essential to study the mechanisms that regulate the interactions between metal ions and pectins. In such a context, the sorption of Cd(II), Zn(II), Cu(II) and Pb(II) from single and multi-metal solutions, by a Ca-polygalacturonate gel with a degree of esterification of 18.0 (PGAM(1)) and 65.5% (PGAM(2)) was studied in the 3.0-6.0 pH range in the presence of CaCl(2) 2.5mM. The sorption of Cr(III) from single metal solution was also considered. The results show that the amount of each metal ion sorbed increases with increasing the initial metal ion concentration and pH. The data from the single metal solution tests show that at pH 6.0 the affinity of the metal ions towards the PGAM(1) matrix follows the order: Cr(III)>Cu(II)≅Pb(II)≫Zn(II)≅Cd(II). The simultaneous sorption of the bivalent metal ions by the PGAM(1) gels indicates that Pb(II) is selectively sorbed. The FT-IR spectra show that the carboxylate groups are mainly responsible for the metal ion coordination. The ability of PGAM(2) to accumulate Cr(III), Cu(II), and Pb(II) was lower than that found in the PGAM(1) systems whereas the sorption of Zn(II) and Cd(II) was negligible. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  8. Tracing potential soil contamination in the historical Solvay soda ash plant area, Jaworzno, Southern Poland.

    PubMed

    Sutkowska, Katarzyna; Teper, Leslaw; Stania, Monika

    2015-11-01

    This study of soil conditions was carried out on 30 meadow soil (podzol) samples from the vicinity of the soda ash heap in Jaworzno, supplemented by analyses of 18 samples of waste deposited on the heap. In all samples, the total content of macroelements (Ca and Na) and heavy metals (Cd, Cr, Ni, Pb and Zn) as well as pH were analysed. The element concentrations were measured using inductively coupled plasma optical emission spectrometry (ICP-OES). The materials examined were neutral to ultra-alkaline. Total accumulations (mg kg(-1)) of chemical elements in the soil vary from 130.24 to 14076.67 for Ca, 41.40-926.23 for Na, 0.03-3.34 for Cd, 0.94-103.62 for Cr, 0.94-35.89 for Ni, 3.51-76.47 for Pb and 12.05-279.13 for Zn, whereas quantities of the same elements in the waste samples vary from 171705.13 to 360487.94 for Ca, 517.64-3152.82 for Na, 0.2-9.89 for Cd, 1.16-20.40 for Cr, 1.08-9.79 for Ni, 0.1-146.05 for Pb and 10.26-552.35 for Zn. The vertical distribution of the metals was determined in each soil profile. Despite enrichment of heavy metals in the uppermost horizon on the top of the heap, the results lead to the conclusion that the relation of historical production of soda ash in Jaworzno to current contamination of the local soil environment is insignificant.

  9. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    PubMed

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  10. Accumulation and health risk assessment of trace elements in Carassius auratus gibelio from subsidence pools in the Huainan coalfield in China.

    PubMed

    Lu, Lanlan; Liu, Guijian; Wang, Jie; Liu, Yuan

    2017-08-30

    Microelement (As, Cd, Cr, Cu, Ni, Pb, and Zn) concentrations were determined in the muscle, skin, gill, and liver tissues of Carassius auratus gibelio collected from subsidence pools at three different coal mines in the Huainan coalfield in China. The concentrations of elements in the water were within the allowable levels for raising fish. However, the higher levels of these metals in sediment may pose potential harm on fish. It was found that the concentrations of Cr, Ni, and Zn in all fish tissues were higher, while As, Cd, and Pb levels were relatively low. Microelement accumulation appeared to be more widespread in subsidence pools than that in natural water. Elements accumulated in fish tissues differently: the highest metal concentrations were generally found in the liver tissues of the fish analyzed, whereas the lowest were recorded in the muscles. The mean element concentrations in muscle tissue from C. auratus gibelio collected from subsidence pools (As, 0.16 mg/kg; Cd, 0.06 mg/kg; Cr, 6.21 mg/kg; Cu, 1.61 mg/kg; Ni, 3.88 mg/kg; Pb, 1.76 mg/kg; and Zn, 12.80 mg/kg dry weight) were far below the allowable limit of the hygienic standard in fish proposed by the Ministry of Health in China, suggesting that the fish were safe for human consumption. A health risk assessment also suggested there was no risk from the analyzed elements for inhabitants near the Huainan coalfield that consume fish.

  11. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.

    PubMed

    Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun

    2016-02-01

    Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.

  12. Environmental Pollution and Related Hazards at Agbara Industrial Area, Ogun State.

    PubMed

    Z O, Ojekunle; O O E, Jinadu; T A, Afolabi; A M, Taiwo

    2018-04-24

    This study aimed at assessing the environmental pollution and related hazards of industries at Agbara, Ogun State, Nigeria. A total of five sampling points were identified and selected at random. Environmental samples were collected on a weekly basis for duration of 10 weeks. Air pollutants measured were CO 2 , CO, NO, NO x , VOCs, H 2 S, SO 2 , NH 3 , PM 2.5 andPM 10 using standard procedure. Dust and plant samples were also collected and analyzed for heavy metals (Pb, Cr, Cd, Cu and Zn) using the Atomic Absorption Spectrophotometer (AAS). Data was evaluated for descriptive and inferential statistics using SPSS for Windows version 22.0. Air pollution data were also subjected to SPE-risk model. The results of highest measured air parameters were: CO (5.50 ± 2.32 ppm), CO 2 (3.00 ± 2.05%), NO x (0.90 ± 0.32 ppm), NO (0.60 ± 0.52 ppm), PM 10 (0.40 ± 0.52 mg/m 3 ) and PM 2.5 (0.20 ± 0.42 mg/m 3 ). The results of heavy metal concentrations in dust samples were: 57.40 ± 13.28 mg/kg for Cu, 45.36 ± 12.37 mg/kg for Cr, 22.80 ± 17.36 mg/kg for Zn, 13.76 ± 3.08 mg/kg for Pb and 0.32 ± 0.36 mg/kg for Cd. Metal concentrations in plants were: Cu (70.07 ± 16.24 mg/kg), Zn (67.69 ± 14.50 mg/kg), Cr (22.46 ± 9.35 mg/kg), Pb (13.76 ± 3.08 mg/kg) and Cd (2.25 ± 3.04 mg/kg). This study revealed the concentrations of CO 2 , NO x and NO higher than the World Health Organization (WHO) permissible standards while Pb, Cu, Cr, Cd and Zn values in dust samples were also found above the National Environmental Standards and Regulations Enforcement Agency (NESREA) and the WHO standards. Results of SPE-RISK model indicated that CO 2 , CO, Pb, Cu and Zn posed the greatest health risks, while the Principal Component Analysis (PCA) indentified pollutant sources from industrial and vehicle exhaust.

  13. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005).

    PubMed

    Meybeck, Michel; Lestel, Laurence; Bonté, Philippe; Moilleron, Régis; Colin, Jean Louis; Rousselot, Olivier; Hervé, Daniel; de Pontevès, Claire; Grosbois, Cécile; Thévenot, Daniel R

    2007-04-01

    The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very specific: there is a marked decontamination from 1970 to 2000, but the leakage ratio remains very high (10 to 20%) during this period. Drivers and Pressures are poorly known prior to 1985; State evolution since 1935 has been reconstructed from flood plain cores analysis; Impacts were maximum between 1950 and 1970 but remained unknown due to analytical limitation and lack of awareness. Some Responses are lagging 10 y behind monitoring and have much evolved in the past 10 y.

  14. Enrichment and Bioavailability of Trace Elements in Soil in Vicinity of Railways in Japan.

    PubMed

    Wang, Zhen; Watanabe, Izumi; Ozaki, Hirozaku; Zhang, Jianqiang

    2018-01-01

    This study focuses on the concentrations, distribution, pollution levels, and bioavailability of 12 trace elements in soils along 6 different railways in Japan. Three diesel powered railways and three electricity powered railways were chosen as target. Surface soils (< 3 cm) were collected in vicinity of railways for analysis. Digestion and extraction were performed before concentration and bioavailability analysis. Enrichment factor was applied to investigate contamination levels of selected elements. The mean concentrations of Cr, Co, Ni, Cu, Zn, Sn, and Pb in soil samples were higher than soil background value in Japan. Concentrations of trace elements in soils along different railway had different characteristics. Horizontal distribution of Cu, Zn, Cd, Sn, and Pb in soil samples showed obviously downtrend with distance along railways with high frequency. Concentrations of V, Mn, Fe, and Co were higher in soils along railways which pass through city center. According to principal component analysis and cluster analysis, concentrations of Cu, Zn, Sn, and Pb could be considered as the indicators of soil contamination level along electricity powered trains, whereas indicators along diesel powered trains were not clear. Enrichment factor analysis proved that operation of freight trains had impact on pollution level of Cr, Ni, and Cd. Bioavailability of Mn, Co, Zn, and Cd in soil along electricity-powered railways were higher, and bioavailability of Pb in railways located in countryside was lower. Thus, enrichment and bioavailability of trace elements can be indicators of railway-originated trace elements pollution in soil.

  15. Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in Taiwan: An ecological study

    PubMed Central

    2013-01-01

    Background Numerous studies have examined the association between heavy metal contamination (including arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], nickel [Ni], lead [Pb], and zinc [Zn]) and lung cancer. However, data from previous studies on pathological cell types are limited, particularly regarding exposure to low-dose soil heavy metal contamination. The purpose of this study was to explore the association between soil heavy metal contamination and lung cancer incidence by specific cell type in Taiwan. Methods We conducted an ecological study and calculated the annual averages of eight soil heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) by using data from the Taiwan Environmental Protection Administration from1982 to 1986. The age-standardized incidence rates of lung cancer according to two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]) were obtained from the National Cancer Registry Program conducted in Taiwan from 2001 to 2005. A geographical information system was used to plot the maps of soil heavy metal concentration and lung cancer incidence rates. Poisson regression models were used to obtain the adjusted relative ratios (RR) and 95% confidence intervals (CI) for the lung cancer incidence associated with soil heavy metals. Results For males, the trend test for lung SCC incidence caused by exposure to Cr, Cu, Hg, Ni, and Zn showed a statistically significant dose–response relationship. However, for lung AC, only Cu and Ni had a significant dose–response relationship. As for females, those achieving a statistically significant dose–response relationship for the trend test were Cr (P = 0.02), Ni (P = 0.02), and Zn (P= 0.02) for lung SCC, and Cu (P < 0.01) and Zn (P = 0.02) for lung AC. Conclusion The current study suggests that a dose–response relationship exists between low-dose soil heavy metal concentration and lung cancer occurrence by specific cell-type; however, the relevant mechanism should be explored further. PMID:23575356

  16. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.

    PubMed

    Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M

    2018-03-01

    The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.

  17. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China.

    PubMed

    Zhang, Pengyan; Qin, Chengzhe; Hong, Xin; Kang, Guohua; Qin, Mingzhou; Yang, Dan; Pang, Bo; Li, Yanyan; He, Jianjian; Dick, Richard P

    2018-08-15

    The level of concentration of heavy metal in soil is detrimental to soil quality. The Heigangkou-Liuyuankou irrigation area in the lower-reach of Yellow River irrigation, as home to a large population and a major site to agricultural production, is vulnerable to heavy metal pollution. This study examined soil quality in Heigangkou-Liuyuankou irrigation areas of Kaifeng, China. Pollution in soil and potential risks introduced by heavy metal accumulation were assessed using Nemerow, Geoaccumulation, and Hakanson's ecological risk indices. Statistics and Geographic Information Systems (GIS) were used to model and present the spatiotemporal changes of the pollution sources and factors affecting the levels of pollution. The heavy metals found in the sampled soil are Cr, Ni, Cu, Zn, Cd, Pb, As, and Hg. Among them, Cd is more concentrated than the others. The southwestern region of the studied area confronts the most serious heavy metal pollution. There exist spatial disparities of low concentrations of different heavy metals in the study area. Hg and Cd are found to pose the highest potential ecological risks. However, their risk levels are not the same across the study area. Levels concentration of Ni, Cu, Zn, Cd, Pb, As, and Hg in soil are highly correlated. In combination, they post an additional threat to the ecological environment. Transportation, rural settlements, and water bodies are found to be the major sources of Cr, Ni, Cu, Zn, Cd, Pb, and Hg pollution in the soil; among the major sources, transportation is the most significant factor. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Ruby; Singh, Sudhir Kumar; Shukla, D. N.

    2017-11-01

    The present study includes a systematic analysis of sediment contamination by heavy metals of the River Ghaghara flowing through the Uttar Pradesh and Bihar in Indian Territory. To estimate the geochemical environment of the river, seven heavy metals, namely Co, Cu, Cr, Ni, Cd, Zn, and Pb were examined from the freshly deposited river bed sediment. All the sediment samples were collected on a seasonal basis for the assessment of fluctuation in 2014-2015 and after preparation samples were analyzed using standard procedure. Result showed that heavy metal concentration ranged between 11.37 and 18.42 mg/kg for Co, 2.76 and 11.74 mg/kg for Cu, 61.25 and 87.68 mg/kg for Cr, 15.29 and 25.59 mg/kg for Ni, 0.21 and 0.28 mg/kg for Cd, 13.26 and 17.59 mg/kg for Zn, 10.71 and 14.26 mg/kg for Pb in different season. Metal contamination factor indicates the anthropogenic input in the river sediment was in the range of (0.62-0.97) for Co, (0.04-0.26) for Cu, (0.68-0.97) for Cr, (0.22-0.38) for Ni, (0.70-0.93) for Cd, (0.14-0.19) for Zn, and (0.54-0.71) for Pb. The highest contamination degree of the sediment was noticed as 4.01 at Ayodhya and lowest as 3.16 at Katerniaghat. Geo-accumulation index was noted between (0 and 1) which showed that sediment was uncontaminated to moderately contaminated and may have adverse affects on freshwater ecology of the river. Pollution load index (PLI) was found highest at Chhapra which was 0.45 and lowest at Katerniaghat which was 0.35 and it indicates that the river sediment has a low level of contamination. Significant high correlation was observed between Co, Cu, and Zn, it suggests same source of contamination input is mainly due to human settlement and agriculture activity. Positive correlation between Zn, Co, Cu, Cr, and Ni indicated a natural origin of these elements in the river sediment. Cluster analysis suggests grouping of similar polluted sites. The strong similarity between Co, Zn, Pb, Ni, Cu, and Cd showed relationship of these metals come from the same origin, which is possibly from natural and anthropogenic input which was also confirmed by correlation analysis. Using the various pollution indicators it was found that the river bed sediment is less contaminated by toxic metals during the study but the sediment quality may degrade in the near future due to increasing anthropogenic inputs in the river basin, hence proper management strategies are required to control the direct dumping of wastewater in the river.

  19. [Distribution Characteristics, Sources and Pollution Assessment of Trace Elements in Surficial Sediments of the Coastal Wetlands, Northeastern Hainan Island].

    PubMed

    Zhang, Wei-kun; Gan, Hua-yang; Bi, Xiang-yang; Wang, Jia-sheng

    2016-04-15

    Totally 128 surficial sediments samples were collected from the coastal wetlands, northeastern Hainan Island and analyzed for their concentrations of 14 elements including Al2O3, Fe2O3, MnO, Cu, Ni, Sr, Zn, V, Pb, Cr, Zr, As, Cd and Hg, TOC and grain sizes. The mean concentrations of trace metals V, Cr, Ni, Cu, Zn, As, Pb, Cd and Hg were (40.13 +/- 32.65), (35.92 +/- 26.90), (13.03 +/- 11.46), (11.56 +/- 10.27)-, (48.75 +/- 27.00), (5.48 +/- 1.60), ( 18.70 +/- 8.66), (0.054 +/- 0.045 ), (0.050 +/- 0.050) microg x g(-1), respectively, which were much lower than those in Pearl River Estuary, Yangzi River Estuary, Bohai Bay, upper crust and average shale. The average concentrations of Sr and Zr were much higher, reaching up to (1253.60 +/- 1649.58) microg x g(-1) and (372.40 +/- 516.49) microg x g(-1), respectively. The spatial distribution patterns of Al2O3, Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr, Cd and Hg concentrations were the same as each other except for those of As, Sr and Zr. Generally, relatively high concentrations of these elements only appeared in the Haikou Bay, Nandu estuary, Dongzhai Harbor, Qinglan Harbor and Xiaohai in study area. The factor analysis revealed that the trace elements Al2O3 Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr and part of Hg were mainly originated from the rock material by natural weathering processes, while the Cd and a part of Hg were from the biological source controlled by TOC. As and part of MnO were influenced by anthropogenic source, especially by aquacultures. Zr and some MnO were derived from heavy minerals dominated by the coarse grain of sediments. In contrast to the ERL, ERM and the results of enrichment factors (EF) , the environment of study area was good in general and the degree of contamination by trace elements was low on the whole. However, there are still some places where anthropogenic input have caused serious enrichments of trace elements and the occasional adverse effect on benthic organism induced by Ni could probably occur in 22% areas of all the sampling stations.

  20. Effect of aerotechnogenic emissions on the content of heavy metals in herbaceous plants of the Lower Don region

    NASA Astrophysics Data System (ADS)

    Minkina, T. M.; Mandzhieva, S. S.; Chaplygin, V. A.; Motuzova, G. V.; Burachevskaya, M. V.; Bauer, T. V.; Sushkova, S. N.; Nevidomskaya, D. G.

    2017-06-01

    The effect of soil properties and distance from the source of technogenic emission on the input of Pb, Zn, Cd, Cu, Mn, Cr, and Ni into daisy family plants ( Asteraceae) has been studied. It has been found that the high level of anthropogenic load related to the atmospheric emissions from the Novocherkassk power plant (NPP) favors the accumulation of heavy metals (HMs) in herbaceous plants. Contamination with Pb, Cd, Cr, and Ni is revealed in plants growing near the NPP. The main factors affecting the distribution of HMs in the above- and underground organs of plants include individual physiological features of plant species controlling the barrier functions of different plant organs. Ambrosia artemisiifolia L., Artemisia austriaca Pall. ex. Wild. Jack., and Tanacetum vulgare L. are accumulators of HMs. The resistance of herbaceous plants to pollution has been determined from the acropetal coefficient and actual biogeochemical mobility of HMs. Ambrosia artemisiifolia L. is most resistant to contamination with Mn; Achillea nobilis L. is most resistant to Pb, Ni, and Cd; Cichorium intybus L. is most resistant to Zn and Cu.

  1. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model.

    PubMed

    Hu, Junli; Wu, Fuyong; Wu, Shengchun; Cao, Zhihong; Lin, Xiangui; Wong, Ming Hung

    2013-04-01

    A systematic survey of heavy metal (HM) concentrations and bioaccessibilities in market vegetables in Hong Kong were carried out for assessing potential health risk to local inhabitants. The average concentrations of Cd, Pb, Cr, Ni, Cu, and Zn in nine major groups of fresh vegetable varied within 0.007-0.053, 0.05-0.17, 0.05-0.24, 0.26-1.1, 0.62-3.0, and 0.96-4.3 mg kg(-1), respectively, and their average bioaccessibilities varied within 21-96%, 20-68%, 24-62%, 29-64%, 30-77%, and 69-94%, respectively. The bioaccessible estimated daily intakes (BEDIs) of Cd, Pb, Cr, Ni, Cu, and Zn from vegetables were far below the tolerable limits. The total bioaccessible target hazard quotient (TBTHQ) of the six HMs was 0.18 and 0.64 for average and high consumers, respectively, with Cd and leafy vegetable being the major risk contributors. Risk assessment of HMs from foods should be modified by taking bioaccessibility into account. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Characterizing the environmental impact of metals in construction and demolition waste.

    PubMed

    Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben

    2018-05-01

    Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.

  3. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil-plant-atmosphere transfers in urban areas, South China.

    PubMed

    Xiong, TianTian; Dumat, Camille; Pierart, Antoine; Shahid, Muhammad; Kang, Yuan; Li, Ning; Bertoni, Georges; Laplanche, Christophe

    2016-12-01

    The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil-plant-atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg -1 ): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China's Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60-79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.

  4. Effects of wastewater irrigation on chemical and physical properties of Petroselinum crispum.

    PubMed

    Keser, Gonca; Buyuk, Gokhan

    2012-06-01

    The present study was carried out to assess the impact of wastewater on parsley (Petroselinum crispum). The parameters determined for soil were pH, electrical conductivity (EC), soil organic matter (SOM), nutrient elements (Ca, Mg, Na, K, Mn, Cu, Zn, and Fe), and heavy metals (Cd, Cr, Ni, and Pb), while the parameters determined for the plant included pigment content, dry matter, nutrient element, and heavy metals. SOM, EC, and clay contents were higher, and pH was slightly acidic in soil treated with wastewater compared to control soil. The enrichment factors (EF) of the nutrient elements in contaminated soil are in the sequence of Na (2) > Ca (1.32) > Mn = Mg (1.17) > Cu (1.11) > Zn (1.08) > Fe (1.07) > K (0.93), while EF in parsley are Na (6.63) > Ca (1.60) > Mg (1.34) > Zn (1.15) > Fe (0.95) > Cu = K (0.90) > Mn (0.85). Application of wastewater significantly decreased dry matter, while photosynthetic pigment content increased in parsley. The enrichment of the heavy metals is in the sequence: Cd (1.142) > Pb (1.131) > Ni (1.112) > Cr (1.095). P. crispum shows a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant. Thus, although the wastewater irrigation in parsley production aims to produce socioeconomic benefits, study results indicated that municipal wastewater is not suitable for irrigation of parsley because it has negative effects on plant and causes heavy metal accumulation.

  5. Traffic-related heavy metals uptake by wild plants grow along two main highways in Hunan Province, China: effects of soil factors, accumulation ability, and biological indication potential.

    PubMed

    Zhai, Yunbo; Dai, Qingyun; Jiang, Kang; Zhu, Yun; Xu, Bibo; Peng, Chuan; Wang, Tengfei; Zeng, Guangming

    2016-07-01

    This study was performed to investigate pollution of traffic-related heavy metals (HMs-Zn, Pb, Cu, Cr, and Cd) in roadside soils and their uptake by wild plants growing along highways in Hunan Province, China. For this, we analyzed the concentration and chemical fractionation of HMs in soils and plants. Soil samples were collected with different depths in the profile and different distances from highway edge. And leaves and barks of six high-frequency plants were collected. Results of the modified European Community Bureau of Reference (BCR) showed that the mobile fraction of these HMs was in the order of Cd > Pb > Zn > Cu > Cr. A high percentage of the mobile fraction indicates Cd, Pb, and Zn were labile and available for uptake by wild plants. The total concentration and values of risk assessment code (RAC) showed that Cd was the main risk factor, which were in the range high to very high risk. The accumulation ability of HMs in plants was evaluated by the biological accumulation factor (BAF) and the metal accumulation index (MAI), and the results showed that all those plant species have good phyto-extraction ability, while accumulation capacity for most HMs plants tissues was bark > leaf. The highest MAI value (5.99) in Cinnamomum camphora (L) Presl indicates the potential for bio-monitoring and a good choice for planting along highways where there is contamination with HMs.

  6. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors.

    PubMed

    Wang, Meie; Zhang, Haizhen

    2018-05-24

    Heavy metal contamination in roadside soil due to traffic emission has been recognized for a long time. However, seldom has been reported regarding identification of critical factors influencing the accumulation of heavy metals in urban roadside soils due to the frequent disturbances such as the repair of damaged roads and green belt maintanance. Heavy metals in the roadside soils of 45 roads in Xihu district, Hangzhou city were investigated. Results suggested the accumulation of Cu, Pb, Cd, Cr, and Zn in roadside soil was affected by human activity. However, only two sites had Pb and Zn excessing the standards for residential areas, respectively, according to Chinese Environmental Quality Standards for soils. The concentrations of Cu, Pb, Cd, and Zn were significantly and positively correlated to soil pH and organic matter. An insignificant correlation between the age of the roads or vegetation cover types and the concentration of heavy metals was found although they were reported closely relating to the accumulation of heavy metals in roadside soils of highways. The highest Pb, Cd, and Cr taking place in sites with heavy traffic and significant differences in the concentrations of Cu, Pb, Cd, and Zn among the different categories of roads suggested the contribution of traffic intensity. However, it was difficult to establish a quantitative relationship between traffic intensity and the concentrations of heavy metals in the roadside soil. It could be concluded that impaction of traffic emission on the accumulation of heavy metals in roadside soils in urban area was slight and soil properties such as pH and organic matters were critical factors influencing the retention of heavy metals in soils.

  7. Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization.

    PubMed

    da Rosa Couto, Rafael; Faversani, Jéssica; Ceretta, Carlos Alberto; Ferreira, Paulo Ademar Avelar; Marchezan, Carina; Basso Facco, Daniela; Garlet, Luana Paula; Silva, Jussiane Souza; Comin, Jucinei José; Bizzi, Cezar Augusto; Flores, Erico Marlon Moraes; Brunetto, Gustavo

    2018-05-30

    Heavy metals and bromine (Br) derived from organic and industrialized fertilizers can be absorbed, transported and accumulated into parts of plants ingested by humans. This study aimed to evaluate in an experiment conducted under no-tillage for 10 years, totaling 14 applications of pig slurry manure (PS), pig deep-litter (PL), dairy slurry (DS) and mineral fertilizer (MF), the heavy metal and Br contents in soil and in whether the grains produced by corn (Zea mays L.) and wheat (Triticum aestivum L.) under these conditions could result in risk to human health. The total contents of As, Cd, Pb, Cr, Ni, Cu, Zn and Br were analyzed in samples of fertilizers, waste, soil, shoots and grains of corn and wheat. Afterwards, enrichment factor (EF), accumulation factor (AF), health risk index (HRI), target hazard quotient (THQ) and target cancer risk (TCR) were determined. Mineral fertilizer exhibited the highest As and Cr content, while the highest levels of Cu and Zn were found in animal waste. The contents of As, Cd, Cr, Cu, Ni, Pb and Zn in soil were below the limits established by environmental regulatory agencies. However, a significant enrichment factor was found for Cu in soil with a history of PL application. Furthermore, high Zn contents were found in shoots and grains of corn and wheat, especially when the plants were grown in soil with organic waste application. Applications of organic waste and mineral fertilizer provided high HRI and THQ for Br and Zn, posing risks to human health. The intake of corn and wheat fertilized with pig slurry manure, swine deep bed, liquid cattle manure and industrialized mineral fertilizer did not present TCR. Copyright © 2018. Published by Elsevier Inc.

  8. Assessing pollution in Izmir Bay from rivers in western Turkey: heavy metals.

    PubMed

    Akinci, Gorkem; Guven, Duyusen E; Ugurlu, Sanem Keles

    2013-12-01

    Urban rivers having different catchment areas and properties are investigated in order to infer their heavy metal contribution to the Izmir Inner Bay. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the waters and sediments of these rivers were measured and compared with the limit values given in the Sediment Quality Guidelines and Screening Quick Reference Tables (SQuiRTs). Metal concentrations in the sediments were determined to be between 0.5 and 3.5 mg kg(-1), 10 to 221.5 mg kg(-1), 28 to 153.5 mg kg(-1), 13 to 103.5 mg kg(-1), 31.5 to 157 mg kg(-1), and 124 to 1065.5 mg kg(-1) for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. Higher metal concentrations in river waters were observed in rainy seasons, and Cu and Zn were frequently found above the critical limits. The correlations between the concentrations in waters, sediments, and wash off fluxes of the river catchments were statistically investigated and evaluated. Strong correlations between Ni-Cr (r = 0.618, p < 0.01), Ni-Zn (r = 0.578, p < 0.01), and Zn-Pb (r = 0.590, p < 0.01) concentrations in water were found. The metal load entering the inner bay was found to be 28.2 tons per year. The fluxes (mg m(-2) per day) were generally high in large catchments with high annual flows, in regions with high runoff coefficients, and in areas hosting industrial activities. The strong correlations between the heavy metal fluxes suggest that the atmospheric pollution, which influences the whole city, may be the major source of these metals.

  9. Structural behavior of ZnCr 2S 4 spinel under pressure

    DOE PAGES

    Efthimiopoulos, I.; Lochbiler, T.; Tsurkan, V.; ...

    2016-12-15

    Here, the series of Cr-chalcogenide spinels ACr 2X 4 (A = Zn, Cd, Hg; X = S, Se) exhibits a rich phase diagram upon compression, as revealed by our recent investigations. There exist, however, some open questions regarding the role of cations in the observed structural transitions. In order to address these queries, we have performed X-ray diffraction and Raman spectroscopic studies on the ZnCr 2S 4 spinel up to 42 GPa, chosen mainly due to the similarity of the Zn 2+ and Cr 3+ cationic radii. Two reversible structural transitions were identified at 22 and 33 GPa, into a I4 1/ amd and an orthorhombic phase, respectively. Close comparison with the behavior of relevant Cr-spinels revealed that the structural transitions are mainly governed by the competition of the magnetic exchange interactions present in these systems, and not by steric effects. In addition, careful inspection of the starting Fdmore » $$\\bar{3}$$m phase revealed a previously unnoticed isostructural transition. The latter is intimately related to changes in the electronic properties of these systems, as evidenced by our Raman studies. Our results provide insights for tuning the physical and chemical properties of these materials, even under moderate compression, as well as promoting the understanding of similar pressure-induced effects in relevant systems.« less

  10. Temporally intensive study of trace metals in sediments and bivalves from a large river-estuarine system: Suisun Bay/delta in San Francisco Bay

    USGS Publications Warehouse

    Luoma, S.N.; Dagovitz, R.; Axtmann, E.

    1990-01-01

    Distributions in time and space of Ag, Cd, Cr, Cu, Pb and Zn were determined in fine-grained sediments and in the filter-feeding bivalve Corbicula sp. of Suisun Bay/delta at the mouth of the Sacramento and San Joaquin Rivers in North San Francisco Bay. Samples were collected from seven stations at near-monthly intervals for 3 years. Aggregated data showed little chronic contamination with Ag, Zn and Pb in the river and estuary. Substantial chronic contamination with Cd, Cu and Cr in Suisun Bay/delta occurred, especially in Corbicula, compared with the lower San Joaquin River. Salinity appeared to have secondary effects, if any, on metal concentrations in sediments and metal bioavailability to bivalves. Space/time distributions of Cr were controlled by releases from a local industry. Analyses of time series suggested substantial inputs of Cu might originate from the Sacramento River during high inflows to the Bay, and Cd contamination had both riverine and local sources. Concentrations of metals in sediments correlated with concentrations in Corbicula only in annually or 3-year aggregated data. Condition index for Corbicula was reduced where metal contamination was most severe. The biological availability of Cu and Cd to benthos was greater in Suisun Bay than in many other estuaries. Thus small inputs into this system could have greater impacts than might occur elsewhere; and organisms were generally more sensitive indicators of enrichment than sediments in this system.

  11. Analysis of trace metal concentrations in raw cow's milk from three dairy farms in North Gondar, Ethiopia: chemometric approach.

    PubMed

    Akele, M L; Abebe, D Z; Alemu, A K; Assefa, A G; Madhusudhan, A; de Oliveira, R R

    2017-09-11

    Concentrations of essential (Cu, Mn, and Zn) and toxic (Cr, Cd, and Pb) trace metals in 30 raw cow's milk samples were quantified using flame atomic absorption spectrometry. The samples were collected from the Nara-Awudarda, Tana-Abo, and Kosoye Amba-Rass sites in North Gondar, Ethiopia, preserved in a deep freezer (-20 °C), and then digested by Kjeldahl apparatus with HNO 3 /H 2 O 2 (5:2; v/v) at 300 °C for 2.5 h. The data were subject to principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Overall hazard quotient (HQ) and carcinogenic risk (CR) values were also estimated to assess metal-related health risks. The mean concentrations of Cr, Mn, Cu, Zn, Cd, and Pb in the milk samples ranged 0.468-0.828, 1.614-2.806, 0.840-1.532, 1.208-5.267, ND-0.330, and ND-0.186 mg/kg, respectively. The lowest values were obtained for Kosoye Amba-Rass milk samples, while the highest were found for those collected from Nara-Awudarda milk samples, probably due to high mineral enrichment and metal leaching (especially Cd and Pb) from coal deposits. PCA revealed clustering of samples with respect to their geographic origin. Validation of PLS-DA model showed 100% classification efficiency using external validation samples and detected Cd and Cu as trace metal markers. The HQ and CR values were within the safe level; however, the former is close to the alert threshold level for Nara-Awudarda milk samples. Thus, further studies on common foodstuffs, constituting a higher proportion in the local diet, are required in this area to provide a complete risk assessment.

  12. Distribution of heavy metals, stable isotope ratios (δ13C and δ15N) and risk assessment of fish from the Yellow River Estuary, China.

    PubMed

    Liu, Houqi; Liu, Guijian; Wang, Shanshan; Zhou, Chuncai; Yuan, Zijiao; Da, Chunnian

    2018-06-05

    This study measured the concentrations of eight heavy metals, including copper (Cu), zinc (Zn), lead (Pb), chromium (Cr), cadmium (Cd), iron (Fe), manganese (Mn) and nickel (Ni), and the stable isotope ratios of δ 13 C and δ 15 N in 129 fish samples collected from the Yellow River Estuary (YRE) of China. Accumulation characteristics and possible sources of these heavy metals (HMs) were analyzed. The levels of HMs presented high variations among sampling sites, higher concentrations of ∑HMs were observed at the sites closest to the estuary. Cu and Cd in fishes of the YRE were much higher than those found in the fishes of other rivers of China. Furthermore, the mean concentrations of Cu, Zn, Pb, Cr and Cd were also significantly higher than those measured in the fishes of the same region twenty years ago. According to the results of correlation analysis and principal components analysis (PCA), Pb, Cr, Fe, Mn and Ni might be originated from similar sources. The values of δ 13 C and δ 15 N presented high variation in fishes, indicating a wide range of energy sources and trophic status of the investigated fish species. The mean concentrations of Pb, Cr and Cd in fishes were all lower than the recommended values enacted by the Chinese government. The human health risk assessment showed that the estimated daily intake (EDI) of these HMs did not exceed the permissible tolerable daily intake (PTDI) and oral reference dose (RfD), indicating a situation of no potential health risk for consumption of these fish species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city

    NASA Astrophysics Data System (ADS)

    Kong, Shaofei; Lu, Bing; Bai, Zhipeng; Zhao, Xueyan; Chen, Li; Han, Bin; Li, Zhiyong; Ji, Yaqin; Xu, Yonghai; Liu, Yong; Jiang, Hua

    2011-08-01

    30 re-suspended dust samples were collected from building surfaces of an oilfield city, then re-suspended through PM 2.5, PM 10 and PM 100 inlets and analyzed for 10 metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb by inductively coupled plasma-mass spectroscopy. Metals concentrations in different fractions and locations were studied. Metals sources were identified by cluster and primary component analysis. The potential risk to human health was assessed by human exposure model. Results showed that Zn, Mn, Pb and Cu were higher in all the three fractions. V, Cr, Mn and Co ranged close to the background values of Chinese soil indicating that they were mainly from crustal materials. Concentrations of Zn, Mn, Pb, V, Cr, Ni, Co and Cd were higher in old district than that in new district for the three fractions. The PM 2.5/PM 10, PM 10/PM 100 and PM 2.5/PM 100 ratios were higher for Zn, Cd, Cu, Pb, Ni, As and Cr (all higher than 1.0), and lower for Co, Mn and V (all less than or close to 1.0) which meant that anthropologic sources associated metals were more easily accumulated in finer particles than metals from crustal materials. Spatial variations indicated that the ten metals peaked at surroundings near railway station, gas stations, industrial boilers and machine manufacturing plant implying the influence of local vehicle emission, fossil fuel combustion and industrial activities as well as crustal materials which was verified by cluster analysis and primary component analysis results. Ingestion of dust particles appeared to be the main route of exposure to re-suspended dust. Hazard Indexes of As were both highest for children and adult which could be a potential threat to human health for non-cancer effect and it also exhibited the highest values for cancer effect as 1.01E-06, 7.04E-07 and 7.21E-07 for PM 2.5, PM 10 and PM 100, respectively.

  14. Spatial and temporal characterization of trace elements and nutrients in the Rawal Lake Reservoir, Pakistan using multivariate analysis techniques.

    PubMed

    Malik, Riffat Naseem; Nadeem, Muhammad

    2011-12-01

    Rawal Lake Reservoir is renowned for its ecological significance and is the sole source of drinking water of the third largest city of Pakistan. However, fish kill in recent years and anthropogenic impacts from human-related activities in its catchment area have resulted in deterioration of its surface water quality. This study aims to characterize spatial and temporal variations in surface water quality, identify contaminant sources, and compare their levels with quality guidelines. Surface water samples were collected from 10 sites and analyzed for 27 physicochemical parameters for a period of 2 years on a seasonal basis. Concentration of metals in surface water in pre-monsoon were in the order: Fe > Mg > Ca > Mn > Zn > Ni > Cr > Cu > Co > Pb, whereas in post-monsoon, the order of elemental concentrations was: Ca > Mg > Na > Fe > K > Zn > Cr > Li > Pb > Co > Ni > Cu > Mn > Cd. Metals (Ni, Fe, Zn, and Ca), pH, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), and nutrients (PO (4) (3-) , NO(3)-N, and SO (4) (2-) ) were measured higher in pre-monsoon, whereas concentration of Cu, Mn, Cr, Co, Pb, Cd, K, Na, Mg, Li, Cl(-), and NH(4)-N were recorded higher in post-monsoon. Results highlighted serious metal pollution of surface water. Mean concentration of Zn, Cd, Ni, Cu, Fe, Cr, and Pb in both seasons and Mn in post-monsoon were well above the permissible level of surface water quality criteria. Results stress the dire need to reduce heavy-metal input into the lake basin and suggest that heavy-metal contamination should be considered as an integral part of future planning and management strategies for restoration of water quality of the lake reservoir.

  15. ONR Tokyo Scientific Bulletin. Volume 5, Number 1, January-March 1980,

    DTIC Science & Technology

    1980-03-01

    alloys studied are in die AI-Zn, Al -Mg, Al -Si. Al - Cu . Cu - Al . and Cu -Fe... alloys Digital processing Measuring N 20. Abstract (cont.) with certain reports also being contributed by visiting stateside scientist. Occasionally a...atomic absorption spectrophotometer with tubes for the determination of Zn, Cu , Pb, Cr, Fe, Mg, Mn, Al , Co, Cd, Si, Ti, Zr, Ga, Au, Ag, Ni, Na, and

  16. Assessment of metal contents in spices and herbs from Saudi Arabia.

    PubMed

    Seddigi, Z S; Kandhro, G A; Shah, F; Danish, E; Soylak, Mustafa

    2016-02-01

    In the recent years, there has been a growing interest in monitoring heavy metal contamination of spices/herbs. Spices and herbs are sources of many bioactive compounds that can improve the tastes of food as well as influence digestion and metabolism processes. In the present study, the levels of some essential and toxic elements such as iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), lead (Pb), and cadmium (Cd), present in common spices/herbs that were purchased from the local market in Saudi Arabia, were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide mixture. Samples from the following spices/herbs were used: turmeric, cloves, black pepper, red pepper, cumin, legume, cinnamon, abazir, white pepper, ginger, and coriander. The concentration ranges for the studied elements were found as 48.8-231, 4.7-19.4, 2.5-10.5, below detection level (BDL)-1.0, 8.8-490, 1.0-2.6, and BDL-3.7 µg g(-1) for Fe, Zn, Cu, Cr, Mn, Ni, and Pb, respectively, while Cd and Co levels were below the detection limit. Consumers of these spices/herbs would not be exposed to any risk associated with the daily intake of 10 g of spices per day as far as metals Fe, Zn, Cu, Cr, Mn, Ni, and Pb are concerned. © The Author(s) 2013.

  17. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers.

    PubMed

    Sierra, Jordi; Roig, Neus; Giménez Papiol, Gemma; Pérez-Gallego, Elena; Schuhmacher, Marta

    2017-12-15

    The aim of this work is to predict the bioavailability of the Potentially Toxic Elements (PTEs) Cd, Pb, Hg, Ni, Cu, Zn, As, Cr and Se in 6 sites within the Ebro River basin. In situ Diffusive gradient in thin-films (DGTs) and classical sampling have been used and compared. The potentially bioavailable fractions of each PTE was estimated by modelling their chemical speciation using three programs (WHAM 7.0, Visual MINTEQ 3.1 and Bio-met), following the suggestions published in recent European regulations. Results of the equilibrium-based models WHAM 7.0 and Visual MINTEQ 3.1 indicate that As, Cd, Ni, Se and Zn, predominate as free metals ions or forming inorganic soluble complexes. Copper, Pb and Hg bioavailability is conditioned by their affinity to dissolved humic substances. According to Visual MINTEQ 3.1, Cr is subjected to redox reactions, being Cr (VI) present (at low concentrations) in the studied rivers. According to Bio-met model, the bioavailability of Cu and Zn is highly influenced by soluble organic matter and water hardness, respectively. For most PTEs, the bioavailability estimated by deploying DGTs in river waters tends to be slightly lower than the estimation obtained with speciation models, since in real conditions more environmental factors take place comparing to the finite number of parameters considered in models. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    PubMed

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Accumulation of metal ions by pectinates

    NASA Astrophysics Data System (ADS)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd(II). Surprisingly, simultaneous sorption tests and SEM analyses indicate that a different mechanism regulates the sorption of Cu(II) and Pb(II) by PGAE1. In fact, the amount of Pb(II) sorbed (0.92 moles mg-1of PGAE1) by PGAE1 was nearly independent by the presence of Cu(II) ions, at least at the three different concentrations tested, that indicates a higher affinity of Pb(II). Such an aspect was further confirmed by exchange experiments. Samples of PGAE1 saturated with 1.96 moles mg-1of Cu(II) or 2.01 moles mg-1of Pb(II) were put in contact with 100 mL of solutions containing 97.3 moles of Pb(II) or 99.4 moles Cu(II), respectively. The exchange kinetics show that about 80% of Cu(II) was stochiometrically exchanged by Pb(II). In contrast, only about 10% of Pb(II) complexed by PGAE1 was exchanged by Cu(II). The kinetics of simultaneous sorption of all the metal ions tested indicate that Pb(II) is selectively sorbed by the PGAE1 gels. Cd(II) and Zn(II) show a similar affinity towards PGAE1. Thus, in the simultaneous presence of these ions, their selectivity towards this matrix follows the order: Pb > Cu > Cd ? Zn. Sorption of Cr(III) in the presence of the ions considered was not possible to carry out due to interference phenomena. The sorption of the same ions by 50 mg of PGAE2 evidences that the amount of Cu(II), Pb(II), and Cr(III) sorbed is markedly lower than that found for PGAE1. By considering that two carboxylic groups are involved in the complexation of a metal ion, the data show that such a stoichiometry is respected only for Pb(II). The amount of Cu(II) sorbed is about 50% lower than that of Pb(II) at all the pH values tested whereas those of Zn(II) and Cd(II) are negligible whereas that of Cr(III) is the highest. The different behaviour of Cu(II) compared to Pb(II) can be explained taking into account for both hydrophobic and steric effects of the methyl groups as well as to their different charge density. Thus, it can be concluded that the accumulation of metals at the soil-root interface strictly depends on the esterification degree of the root pectinates which, even highly esterified, do not loose the ability to accumulate metals, mainly Pb(II) and Cr(III).

  20. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China.

    PubMed

    Li, Peizhong; Lin, Chunye; Cheng, Hongguang; Duan, Xiaoli; Lei, Kai

    2015-03-01

    Anthropogenic emissions of toxic metals from smelters are a global problem. The objective of this study was to investigate the distribution of toxic metals in soils around a 60 year-old Pb/Zn smelter in a town in Yunnan Province of China. Topsoil and soil core samples were collected and analyzed to determine the concentrations of various forms of toxic metals. The results indicated that approximately 60 years of Pb/Zn smelting has led to significant contamination of the local soil by Zn, Pb, Cd, As, Sb, and Hg, which exhibited maximum concentrations of 8078, 2485, 75.4, 71.7, 25.3, and 2.58mgkg(-1), dry wet, respectively. Other metals, including Co, Cr, Cu, Mn, Ni, Sc, and V, were found to originate from geogenic sources. The concentrations of smelter driven metals in topsoil decreased with increasing distance from the smelter. The main contamination by Pb, Zn, and Cd was found in the upper 40cm of soil around the Pb/Zn smelter, but traces of Pb, Zn, and Cd contamination were found below 100cm. Geogenic Ni in the topsoil was mostly bound in the residual fraction (RES), whereas anthropogenic Cd, Pb, and Zn were mostly associated with non-RES fractions. Therefore, the smelting emissions increased not only the concentrations of Cd, Pb, and Zn in the topsoil but also their mobility and bioavailability. The hazard quotient and hazard index showed that the topsoil may pose a health risk to children, primarily due to the high Pb and As contents of the soil. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China.

    PubMed

    Qiutong, Xu; Mingkui, Zhang

    2017-08-01

    Vegetable production in China is suffering increasingly heavy metal damages from various pollution sources including agricultural, industrial and other activities. It is of practical significance to understand the effects of human activities on the accumulation and exchangeability of soil heavy metals in vegetable fields. In this study, seventy-two arable layer samples of vegetable soils were collected from the Shaoxing coastal plain, a representative region of the coastal plain of eastern Zhejiang province, China for characterizing the effects of fertilization methods on accumulation and exchangeable heavy metals in soils (Exchangeable heavy metals in the soil samples were extracted by 0.01molL -1 CaCl 2 ). The different origins of heavy metals in the vegetable soils were investigated by multivariate statistical techniques, including principal component analysis (PCA) and cluster analysis (CA). Marked increases were noted for soil heavy metals due to long-term manure or chemical fertilizer application. Three significant components were extracted by PCA, explaining 78.86% of total variance. Mn, Co, Ni, Fe, and Al were associated in lithogenic components, while an anthropogenic origin was identified for Cu, Cr, Pb, Zn, Cd, Hg. However, As level was due to the geochemical background and was not linked to soil management. The results obtained by cluster analysis elucidated individual relationships between metals and agreed with PCA. Cu, Cr, Pb, and Zn in the soils that were mainly associated with the application of chemical fertilizers, organic manures or other activities regarding soil management. Although the origin of Cd, Hg, and As was also attributed to soil management, other sources like vehicle exhaust or aerial depositions were not discarded as possible contributors. Soil amended with organic fertilizer contained more Cu, Pb, Zn and Cr; whereas the soil amended with chemical fertilizer had more Cd. Application of fertilizers also had significant effect on the concentrations of exchangeable heavy metals. Higher mean concentrations of exchangeable Cd and Pb were found in the soils amended with chemical fertilizers, while those of exchangeable Cu and Zn were found in the soils amended with organic fertilizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir.

    PubMed

    Liang, Ao; Wang, Yechun; Guo, Hongtao; Bo, Lei; Zhang, Sheng; Bai, Yili

    2015-10-01

    To assess the heavy metal pollution in Changshou Lake, sediments were collected from nine sites at three periods (dry, normal, and wet) in 2013. The Hg, As, Cr, Cd, Pb, Cu, and Zn levels were then determined. The index of geoaccumulation (I geo) and the sediment pollution index (SPI) were applied to the sediment assessment, and Pearson's correlation analysis and factor analysis (FA) were performed to identify common pollution sources in the basin. The results showed that heavy metals presented significant spatial variations with Cr, Cd, Pb, Cu, Zn, Hg, and As concentrations of 29.66~42.58, 0.62~0.91, 24.91~37.96, 21.18~74.91, 41.65~86.86, 0.079~0.152, and 20.17~36.88 mg kg(-1), respectively, and no obvious variations were found among the different periods. The average contents of the metals followed the order Zn > Cu > Cr > Pb > As > Cd > Hg, which showed a high pollution in the sediments collected from open water and at the river mouth. The assessment results indicated that toxic heavy metals presented obvious pollution with I Hg of 0.64~1.36 (moderately polluted), I Cd of 1.66~2.22 (moderately to heavily polluted), and I As of 1.21~2.07 (moderately to heavily polluted). The heavy metal pollution states followed the order Cd > As > Hg > Cu > Pb > Zn > Cr, and the SPI showed that the sediment collected from open water area was more polluted than those obtained from the tributaries and the river mouth. Cr, Cd, Hg, Pb, Cu, As, and Zn were mainly attributed to sediment weathering with Hg, Pb, and Cu and partially due to domestic sewage from the upper reaches. These results indicate that the more attention should be paid to the inner loads of sediment in order to achieve improvements in reservoir water quality after the control of external pollution.

  3. Intake of essential minerals and metals via consumption of seafood from the Mediterranean Sea.

    PubMed

    Storelli, M M

    2009-05-01

    Edible marine species (fish and cephalopod molluscs) from the Mediterranean Sea were analyzed for their metal content (Hg, Cd, Pb, Cr, Cu, Zn, and Ni). Human health risks posed by these elements via dietary intake of seafood were assessed based on the provisional tolerable weekly intake, reference dose, and recommended dietary allowances. Metal concentrations varied widely among the different organisms, indicating species-specific accumulation. On a wet weight basis, the maximum concentrations of Hg were found in fish (1.56 microg g(-1)), and the maximum concentrations of cadmium were found in cephalopod molluscs (0.82 microg g(-1)), whereas for Pb the concentrations were generally low (fish, 0.01 to 1.18 microg g(-1); cephalopod molluscs, 0.03 to 0.09 microg g(-1)). For the essential metals, cephalopods had higher concentrations (Cr, 0.40 microg g(-1); Zn, 33.03 microg g(-1); Cu, 23.77 microg g(-1); Ni, 2.12 microg g(-1)) than did fish (Cr, 0.17 microg g(-1); Zn, 8.43 microg g(-1); Cu, 1.35 microg g(-1); Ni, 1.13 microg g(-1)). The estimated weekly intake of Cd and Pb indicated increased health risks through the consumption of various seafoods. Conversely, a health risk was ascribed to the intake of Hg from consumption of certain fish, such as albacore (10.92 microg kg(-1) body weight) and thornback ray (5.25 microg kg(-1) body weight). Concerning the essential metals, cephalopod mollusc consumption made an important contribution to daily dietary intake of Cu, Zn, and Ni.

  4. Assessment of metals pollution on agricultural soil surrounding a lead-zinc mining area in the Karst region of Guangxi, China.

    PubMed

    Zhang, Chaolan; Li, Zhongyi; Yang, Weiwei; Pan, Liping; Gu, Minghua; Lee, DoKyoung

    2013-06-01

    Soil samples were collected on farmland in a lead-zinc mining area in the Karst region of Guangxi, China. The contamination of the soil by eight metals (Cd, Hg, As, Cu, Pb, Cr, Zn, Ni) was determined. Among all these metals, Cd is the most serious pollutant in this area. Zn, Hg as well asPb can also be measured at high levels, which may affect the crop production. All other metals contributed marginally to the overall soil contamination. Besides the evaluation of single metals, the Nemerow synthetic index indicated that the soil is not suitable for agricultural use.

  5. Potential human health risks from metals and As via Odontesthes bonariensis consumption and ecological risk assessments in a eutrophic lake.

    PubMed

    Monferran, Magdalena V; Garnero, Paola Lorena; Wunderlin, Daniel A; Bistoni, María de los Angeles

    2016-07-01

    The concentration of Al, Cr, Fe, Mn, Ni, Cu, Zn, Hg, Sr, Mo, Ag, Cd, Pb and As was analyzed in water, sediment, and muscle of Odontesthes bonariensis from the eutrophic San Roque Lake (Córdoba-Argentina). The monitoring campaign was performed during the wet, dry and intermediate season. The concentration of Cr, Fe, Pb, Zn, Al and Cd in water exceeded the limits considered as hazardous for aquatic life. The highest metal concentrations were observed in sediment, intermediate concentrations, in fish muscle, and the lowest in water, with the exception of Cr, Zn, As and Hg, which were the highest in fish muscle. Potential ecological risk analysis of heavy metal concentrations in sediment indicated that the San Roque Lake posed a low ecological risk in all sampling periods. The target hazard quotients (THQs) and carcinogenic risk (CR) for individual metals showed that As in muscle was particularly hazardous, posing a potential risk for fishermen and the general population during all sampling periods. Hg poses a potential risk for fishermen only in the intermediate season. It is important to highlight that none of these two elements exceeded the limits considered as hazardous for aquatic life in water and sediment. This result proves the importance of performing measurements of contaminants, in both abiotic and biotic compartments, to assess the quality of food resources. These results suggest that the consumption of this fish species from this reservoir is not completely safe for human health. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Environmentally safe sewage sludge disposal: the impact of liming on the behaviour of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P

    2001-02-01

    Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.

  7. Heavy metals distribution and risk assessment in soil from an informal E-waste recycling site in Lagos State, Nigeria.

    PubMed

    Isimekhai, Khadijah A; Garelick, Hemda; Watt, John; Purchase, Diane

    2017-07-01

    Informal E-waste recycling can pose a risk to human health and the environment which this study endeavours to evaluate. The distribution of a number of heavy metals in soil from an informal recycling site in the largest market for used and new electronics and electrical equipment in West Africa was investigated. The potential bioavailability of heavy metals, extent of contamination, potential risk due to the recycling activities and impact of external factors such as rainfall were also assessed. The concentrations of all the heavy metals tested were higher in the area where burning of the waste occurred than at the control site, suggesting an impact of the recycling activities on the soil. The order of total metal concentrations was Cu > Pb > Zn > Mn > Ni > Sb > Cr > Cd for both the dry and wet seasons. The total concentrations of Cd, Cu, Mn, Ni and Zn were all significantly higher (p < 0.001) in the dry season than in the wet season. The concentrations of Cu (329-7106 mg kg -1 ), Pb (115-9623 mg kg -1 ) and Zn (508-8178 mg kg -1 ) were consistently higher than international soil guideline values. Using a sequential extraction method, the potential bioavailability of the heavy metals was indicated as Cd > Sb > Zn > Cu > Ni > Pb > Cr. When the risk was assessed using the Potential Ecological Risk Index (PERI), Cu was found to contribute the most to the potential ecological risk and Cd gave rise to the greatest concern due to its high toxic-response factor within the study site. Similarly, utilising the Risk Assessment Code (RAC) suggested that Cd posed the most risk in this site. This research establishes a high level of contamination in the study site and underscores the importance of applying the appropriate chemical speciation in risk assessment.

  8. Heavy metals in estuarine surface sediments of the Hai River Basin, variation characteristics, chemical speciation and ecological risk.

    PubMed

    Lei, Pei; Zhang, Hong; Shan, Baoqing; Lv, Shucong; Tang, Wenzhong

    2016-04-01

    The Hai River Basin (HRB) is considered to be one of the most polluted areas in China due to the high regional population density and rapid economic development. The estuaries of the HRB, which receive pollutants from terrestrial rivers, may subsequently suffer potential pollution and result in ecological risk of heavy metals. Six heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) were measured in estuarine surface sediments from 10 estuaries of the HRB to investigate their variation characteristics and ecological risks. The spatial difference of Cr, Ni, Pb, and Zn in sediments was higher than that of the rest two elements. The Yongdingxin Estuary (YDX) and Ziyaxin Estuary (ZYX) in the Northern Hai River System (NHRS) were the most severe in terms of heavy metal contamination. According to the Risk Assessment Code (RAC) classification, Cd associated with the exchangeable and carbonate fraction (the average of 21.3 %) indicated medium risk to high risk. More than 50 % of Cr, Cu, Ni, and Zn on average were associated with the residual fraction. Based on the sum of the first three fractions (exchangeable and carbonate + reducible + oxidizable), the mobility order of these heavy metals was Cd >Pb > Zn ≈ Cu > Ni > Cr. Compared to the background values of cinnamon soil, the potential ecological risk index (RI) values ranged from 25.6 to 168, with an average of 91.2, indicating a low ecological risk in estuarine sites of the HRB. Cd and Pb were the dominant contributors to the toxic-response factor (45.8 and 25.5 %, respectively). The results give insight into the different control measures pertaining to heavy metal pollution and risk for both relatively clean estuaries and urban seriously polluted areas, respectively, for the formation of protect strategies of aquatic environment in the HRB.

  9. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China.

    PubMed

    Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing

    2013-05-01

    The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.

  10. Electronic, Magnetic, and Redox Properties of [MFe(3)S(4)] Clusters (M = Cd, Cu, Cr) in Pyrococcus furiosus Ferredoxin.

    PubMed

    Staples, Christopher R.; Dhawan, Ish K.; Finnegan, Michael G.; Dwinell, Derek A.; Zhou, Zhi Hao; Huang, Heshu; Verhagen, Marc F. J. M.; Adams, Michael W. W.; Johnson, Michael K.

    1997-12-03

    The ground- and excited-state properties of heterometallic [CuFe(3)S(4)](2+,+), [CdFe(3)S(4)](2+,+), and [CrFe(3)S(4)](2+,+) cubane clusters assembled in Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR and variable-temperature/variable-field magnetic circular dichroism (MCD) studies. The results indicate Cd(2+) incorporation into [Fe(3)S(4)](0,-) cluster fragments to yield S = 2 [CdFe(3)S(4)](2+) and S = (5)/(2) [CdFe(3)S(4)](+) clusters and Cu(+) incorporation into [Fe(3)S(4)](+,0) cluster fragments to yield S = (1)/(2) [CuFe(3)S(4)](2+) and S = 2 [CuFe(3)S(4)](+) clusters. This is the first report of the preparation of cubane type [CrFe(3)S(4)](2+,+) clusters, and the combination of EPR and MCD results indicates S = 0 and S = (3)/(2) ground states for the oxidized and reduced forms, respectively. Midpoint potentials for the [CdFe(3)S(4)](2+,+), [CrFe(3)S(4)](2+,+), and [CuFe(3)S(4)](2+,+) couples, E(m) = -470 +/- 15, -440 +/- 10, and +190 +/- 10 mV (vs NHE), respectively, were determined by EPR-monitored redox titrations or direct electrochemistry at a glassy carbon electrode. The trends in redox potential, ground-state spin, and electron delocalization of [MFe(3)S(4)](2+,+) clusters in P. furiosus ferredoxin are discussed as a function of heterometal (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Tl).

  11. Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific).

    PubMed

    Bustamante, P; Garrigue, C; Breau, L; Caurant, F; Dabin, W; Greaves, J; Dodemont, R

    2003-01-01

    Liver, muscle and blubber tissues of two short-finned pilot whales (Globicephala macrorhynchus) and two pygmy sperm whales(Kogia breviceps) stranded on the coast of New Caledonia have been analysed for 12 trace elements (Al, Cd, Co, Cr, Cu. Fe, organic and total Hg, Mn, Ni, Se, V, and Zn). Liver was shown to be the most important accumulating organ for Cd, Cu, Fe, Hg, Se, and Zn in both species, G. macrorhynchus having the highest Cd, Hg, Se and Zn levels. In this species, concentrations of total Hg are particularly elevated, reaching up to 1452 microg g(-1) dry wt. Only a very low percentage of the total Hg was organic. In both species,the levels of Hg are directly related to Se in liver. Thus, a molar ratio of Hg:Se close to 1.0 was found for all specimens, except for the youngest K. breviceps. Our results suggest that G. macrorhynchus have a physiology promoting the accumulation of high levels of naturally occurring toxic elements. Furthermore, concentrations of Ni, Cr and Co are close to or below the detection limit in the liver and muscles of all specimens. This suggests that mining activity in New Caledonia, which typically elevates the levels of these contaminants in the marine environment, does not seem to be a significant source of contamination for these pelagic marine mammals.

  12. Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran.

    PubMed

    Moore, Farid; Sheykhi, Vahideh; Salari, Mohammad; Bagheri, Adel

    2016-04-01

    This paper is a comprehensive assessment of the quality of soil in the Nakhlak mining district in Central Iran with special reference to potentially toxic metals. In this regard, an integrated approach involving geostatistical, correlation matrix, pollution indices, and chemical fractionation measurement is used to evaluate selected potentially toxic metals in soil samples. The fractionation of metals indicated a relatively high variability. Some metals (Mo, Ag, and Pb) showed important enrichment in the bioavailable fractions (i.e., exchangeable and carbonate), whereas the residual fraction mostly comprised Sb and Cr. The Cd, Zn, Co, Ni, Mo, Cu, and As were retained in Fe-Mn oxide and oxidizable fractions, suggesting that they may be released to the environment by changes in physicochemical conditions. The spatial variability patterns of 11 soil heavy metals (Ag, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn) were identified and mapped. The results demonstrated that Ag, As, Cd, Mo, Cu, Pb, Sb, and Zn pollution are associated with mineralized veins and mining operations in this area. Further environmental monitoring and remedial actions are required for management of soil heavy metals in the study area. The present study not only enhanced our knowledge regarding soil pollution in the study area but also introduced a better technique to analyze pollution indices by multivariate geostatistical methods.

  13. Structural classification of RAO/sub 3/(MO)/sub n/ compounds (R = Sc, In, Y, or lanthanides; A = Fe(III), Ga, Cr, or Al; M = divalent cation; n = 1-11)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    A series of new compounds (RAO/sub 3/MO)/sub n/ (n = 1-11) having spinel, YbFe/sub 2/O/sub 4/, or InFeO/sub 3/(ZnO)/sub n/ types of structures were newly synthesized (R = Sc, In, Y, Lu, Yb, Tm, or Er; A = Fe(III), Ga, Cr, or Al; M = Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO/sub 1.5/, (FeZn)O/sub 2.5/, and ZnO layers for InFeO/sub 3/(ZnO)/sub 10/ and the TmO/sub 1.5/, (AlZn)O/sub 2.5/, and ZnO layers for TmAlO/sub 3/(ZnO)/sub 11/ are presented,more » respectively. The crystal structures of the (RAO/sub 3/)/sub m/(MO)/sub n/ phases R = Sc, In, Y, or lanthanide elements; A = Fe(III), Ga, Cr, or Al; M = divalent cation elements; m and n = integer are classified into four crystal structure types (K/sub 2/NiF/sub 4/, CaFe/sub 2/O/sub 4/, YbFe/sub 2/O/sub 4/, and spinel), based upon the constituent cations R, A, and M.« less

  14. Determination of metal concentrations in certified plastic reference materials after small-size autoclave and microwave-assisted digestion followed with inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Lehtimäki, Esa; Väisänen, Ari

    2017-01-01

    The digestion methods for the determination of As, Cd, Cr, Pb, Sb, Sn and Zn concentrations in plastic samples using microwave-assisted digestion (MW-AD) and small-size autoclave digestion was developed. The certified polyethylene, polypropylene, polyvinyl chloride and acrylonitrile butadiene styrene certified reference materials were used in order to find digestion method working properly for several sample matrices. Efficiency of the digestion methods was evaluated by analyzing the residual carbon in digests by TOC analyzer. MW-AD using a mixture of 7 mL of HNO3 and 3 mL of H2O2 as a digestion solution resulted in excellent recoveries for As, Cd, Pb, Sb and Zn, and were in the range of 92-107% for all the analytes except Pb in polyethylene material. Autoclave digestion using 5 mL of concentrated HNO3 as a digestion solution resulted in similar recoveries with the exception of a higher As recovery (98%). Tin recovery resulted in low level after both MW-AD and autoclave digestion. Autoclave digestion was further developed resulting in a partially open two-step digestion process especially for the determination of Sn and Cr. The method resulted in higher recoveries of Sn and Cr (87 and 76%) but with the lower concentration of easily volatile As, Cd and Sb.

  15. Source identification and spatial distribution of heavy metals in tobacco-growing soils in Shandong province of China with multivariate and geostatistical analysis.

    PubMed

    Liu, Haiwei; Zhang, Yan; Zhou, Xue; You, Xiuxuan; Shi, Yi; Xu, Jialai

    2017-02-01

    Samples of surface soil from tobacco (Nicotiana tabacum L.) fields were analysed for heavy metals and showed the following concentrations (mean of 246 samples, mg/kg): As, 5.10; Cd, 0.11; Cr, 49.49; Cu, 14.72; Hg, 0.08; Ni, 19.28; Pb. 20.20 and Zn, 30.76. The values of the index of geoaccumulation (I geo ) and of the enrichment factor indicated modest enrichment with As, Cd, Cr, Hg, Ni or Pb. Principal component analysis and cluster analysis correctly allocated each investigated element to its source, whether anthropogenic or natural. The results were consistent with estimated inputs of heavy metals from fertilizers, irrigation water and atmospheric deposition. The variation in the concentrations of As, Cd, Cu, Pb and Zn in the soil was mainly due to long-term agricultural practises, and that of Cr and Ni was mainly due to the soil parent material, whereas the source of Hg was industrial activity, which ultimately led to atmospheric deposition. Atmospheric deposition was the main exogenous source of heavy metals, and fertilizers also played an important role in the accumulation of these elements in soil. Identifying the sources of heavy metals in agricultural soils can serve as a basis for appropriate action to control and reduce the addition of heavy metals to cultivated soils.

  16. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    PubMed

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers. © 2013 Published by Elsevier Inc.

  17. Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te

    NASA Technical Reports Server (NTRS)

    Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.

    1997-01-01

    Transition metal doped solids are of significant current interest for the development of tunable solid-state lasers for the near and mid-infrared (1-4 pm) spectral region. Applications of these lasers include basic research in atomic, molecular, and solid-state physics, optical communication, medicine, and environmental studies of the atmosphere. In transition metal based laser materials, absorption and emission of light arises from electronic transitions between crystal field split energy levels of 3d transition metal ions. The optical spectra generally exhibit broad bands due to the strong interaction between dopant and host (electron-phonon coupling). Broad emission bands offer the prospect of tunable laser activity over a wide wavelength range, e.g. the tuning range of Ti:Sapphire extends from 700-1100 run. The only current transition metal laser operating in the mid-infrared wavelength region (1.8-2.4 micro-m) is CO(2+):MgF2, but its performance is severely limited due to strong nonradiative decay at room temperature. Based on lifetime data, the quantum efficiency is estimated to be less than 3 deg/0 11,21. In general, the probability for non-radiative decay via multi-phonon relaxation increases with decreasing energy gap between ground and excited state. Therefore, efficient transition metal lasers beyond -1.6 micro-m are rare. Recently, tunable laser activity around 2.3 micro-m was observed from Cr doped ZnS and ZnSe. The new lasing center in these materials was identified as Cr(2+) occupying the tetrahedral Zn site. Tetrahedrally coordinated optical centers are rather unusual among transition metal lasers. Their potential usefulness, however, has been demonstrated by the recent development of near infrared laser materials such as Cr:forsterite and Cr:YAG, which are based on tetrahedrally coordinated Cr(4+) ions. According to the Laporte selection rule, electric-dipole transition within the optically active 3d-electron shells are parity forbidden. However, a static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.

  18. Heavy metals in wild rice from northern Wisconsin

    USGS Publications Warehouse

    Bennett, J.P.; Chiriboga, E.; Coleman, J.; Waller, D.M.

    2000-01-01

    Wild rice grain samples from various parts of the world have been found to have elevated concentrations of heavy metals, raising concern for potential effects on human health. It was hypothesized that wild rice from north-central Wisconsin could potentially have elevated concentrations of some heavy metals because of possible exposure to these elements from the atmosphere or from water and sediments. In addition, no studies of heavy metals in wild rice from Wisconsin had been performed, and a baseline study was needed for future comparisons. Wild rice plants were collected from four areas in Bayfield, Forest, Langlade, Oneida, Sawyer and Wood Counties in September, 1997 and 1998 and divided into four plant parts for elemental analyses: roots, stems, leaves and seeds. A total of 194 samples from 51 plants were analyzed across the localities, with an average of 49 samples per part depending on the element. Samples were cleaned of soil, wet digested, and analyzed by ICP for Ag, As, Cd, Cr, Cu, Hg, Mg, Pb, Se and Zn. Roots contained the highest concentrations of Ag, As, Cd, Cr, Hg, Pb, and Se. Copper was highest in both roots and seeds, while Zn was highest just in seeds. Magnesium was highest in leaves. Seed baseline ranges for the 10 elements were established using the 95% confidence intervals of the medians. Wild rice plants from northern Wisconsin had normal levels of the nutritional elements Cu, Mg and Zn in the seeds. Silver, Cd, Hg, Cr, and Se were very low in concentration or within normal limits for food plants. Arsenic and Pb, however, were elevated and could pose a problem for human health. The pathway for As, Hg and Pb to the plants could be atmospheric.

  19. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam

    PubMed Central

    Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi

    2016-01-01

    Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment. PMID:27827965

  20. Priority substances in sediments of the "Carska Bara" special nature reserve, a natural scientific research area on the UNESCO list.

    PubMed

    Grba, Nenad; Krčmar, Dejan; Isakovski, Marijana Kragulj; Jazić, Jelena Molnar; Maletić, Snežana; Pešić, Vesna; Dalmacija, Božo

    2016-11-01

    Surface sediments were subject to systematic long-term monitoring (2002-2014) in the Republic of Serbia (Province of Vojvodina). Eight heavy metals (Ni, Zn, Cd, Cr, Cu, Pb, As and Hg), mineral oils (total petroleum hydrocarbons), 16 EPA PAHs, selected pesticides and polychlorinated biphenyls (PCB) were monitored. As part of this research, this paper presents a sediment contamination spatial and temporal trend study of diverse pollution sources and the ecological risk status of the alluvial sediments of Carska Bara at three representative sampling sites (S1S3), in order to establish the status of contamination and recommend substances of interest for more widespread future monitoring. Multivariate statistical methods including factor analysis of principal component analysis (PCA/FA), Pearson correlation and several synthetic indicators were used to evaluate the extent and origin of contamination (anthropogenic or natural, geogenic sources) and potential ecological risks. Hg, Cd, As, mineral oils and PAHs (dominated by dibenzo(a,h)anthracene and benzo(a)pyrene, contributing 85.7% of the total) are derived from several anthropogenic sources, whereas Ni, Cu, Cr and Zn are convincingly of geogenic origin, and exhibit dual origins. Cd and Hg significantly raise the levels of potential ecological risk for all sampling locations, demonstrating the effect of long-term bioaccumulation and biomagnification. Pb is isolated from the other parameters, implying unique sources. This research suggests four heavy metals (Zn, Cr, Cu and As) and dibenzo(a,h)anthracene be added to the list of priority pollutants within the context of the application of the European Water Framework Directive (WFD), in accordance with significant national and similar environmental data from countries in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Geochemical survey of an illegal waste disposal site under a waste emergency scenario (Northwest Naples, Italy).

    PubMed

    Ferrara, L; Iannace, M; Patelli, A M; Arienzo, M

    2013-03-01

    Since the mid 1980s, Naples and the Campania region have suffered from the dumping of wastes into overfilled landfills. The aim was to characterise a former cave located in Roccarainola (Naples, Italy) for its eventual destination to a controlled landfill site. A detailed hydro-geochemical survey of the area was carried out through drilling of 14 boreholes and four monitoring wells. Samples of water, sediment and soil were analysed for heavy metals and organic contaminants from a dew pond placed in the middle of the cave. The underneath aquifer was also surveyed. The nature of gases emitted from the site was investigated. Results of the geognostic survey revealed the presence of huge volumes of composite wastes, approximately half a million of cubic metre, which accumulated up to a thickness of 25.6 m. In some points, wastes lie below the free surface level of the aquifer. The sampled material from the boreholes revealed levels of As, Cd, Cr, Cu, Hg, Pb, Sn, Tl and Zn exceeding the intervention legal limits. Outstanding loads of Cd, Pb and Zn were found, with levels exceeding of about 50, 100 and 1,870 times the limit. In several points, polycyclic aromatic hydrocarbon load was extremely high, 35 vs 1 mg kg(-1) of the threshold. The aquifer was also very heavily polluted by Cd, Cr-tot, Cu, Fe, Mn, Ni, Pb and Zn, with impressive high load of Cr and Mn, up to 250-370 times the limits. Hot gases up to 62 °C with presence of xylene and ethylbenzene were found. Results indicated that the site needs an urgent intervention of recovery to avoid compromising the surrounding areas and aquifers of the Campania plain.

  2. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam.

    PubMed

    Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi

    2016-11-05

    Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg -1 . Manganese and iron concentrations averaged 811 µg·g -1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.

  3. Use of neutralized industrial residue to stabilize trace elements (Cu, Cd, Zn, As, Mo, and Cr) in marine dredged sediment from South-East of France.

    PubMed

    Taneez, Mehwish; Marmier, Nicolas; Hurel, Charlotte

    2016-05-01

    Management of marine dredged sediments polluted with trace elements is prime issue in the French Mediterranean coast. The polluted sediments possess ecological threats to surrounding environment on land disposal. Therefore, stabilization of contaminants in multi-contaminated marine dredged sediment is a promising technique. Present study aimed to assess the effect of gypsum neutralized bauxaline(®) (bauxite residue) to decrease the availability of pollutants and inherent toxicity of marine dredged sediment. Bauxaline(®), (alumia industry waste) contains high content of iron oxide but its high alkalinity makes it not suitable for the stabilization of all trace elements from multi-contaminated dredged sediments. In this study, neutralized bauxaline(®) was prepared by mixing bauxaline(®) with 5% of plaster. Experiments were carried out for 3 months to study the effect of 5% and 20% amendment rate on the availability of Cu, Cd, Zn, As, Mo, and Cr. Trace elements concentration, pH, EC and dissolved organic carbon were measured in all leachates. Toxicity of leachates was assessed against marine rotifers Brachionus plicatilis. The Results showed that both treatments have immobilization capacity against different pollutants. Significant stabilization of contaminants (Cu, Cd, Zn) was achieved with 20% application rate whereas As, Mo, and Cr were slightly stabilized. Toxicity results revealed that leachates collected from treated sediment were less toxic than the control sediment. These results suggest that application of neutralized bauxaline(®) to dredged sediment is an effective approach to manage large quantities of dredged sediments as well as bauxite residue itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-07-01

    Quantification of the contributions from anthropogenic sources to soil heavy metal loadings on regional scales is challenging because of the heterogeneity of soil parent materials and high variability of anthropogenic inputs, especially for the species that are primarily of lithogenic origin. To this end, we developed a novel method for apportioning the contributions of natural and anthropogenic sources by combining sequential extraction and stochastic modeling, and applied it to investigate the heavy metal pollution in the surface soils of the Pearl River Delta (PRD) in southern China. On the average, 45-86% of Zn, Cu, Pb, and Cd were present in the acid soluble, reducible, and oxidizable fractions of the surface soils, while only 12-24% of Ni, Cr, and As were partitioned in these fractions. The anthropogenic contributions to the heavy metals in the non-residual fractions, even the ones dominated by natural sources, could be identified and quantified by conditional inference trees. Combination of sequential extraction, Kriging interpolation, and stochastic modeling reveals that approximately 10, 39, 6.2, 28, 7.1, 15, and 46% of the As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively, in the surface soils of the PRD were contributed by anthropogenic sources. These results were in general agreements with those obtained through subtraction of regional soil metal background from total loadings, and the soil metal inputs through atmospheric deposition as well. In the non-residual fractions of the surface soils, the anthropogenic contributions to As, Cd, Cr, Cu, Ni, Pb, and Zn, were 48, 42, 50, 51, 49, 24, and 70%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health.

    PubMed

    Li, Peimiao; Gao, Xuelu

    2014-11-01

    One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Heavy metal contamination in soils around the Tunçbilek Thermal Power Plant (Kütahya, Turkey).

    PubMed

    Özkul, Cafer

    2016-05-01

    Tunçbilek, one of the major thermal power plants (TTPP) in Turkey running on coal, has capacity to generate 365 MW (per year) electricity. Fifty top soil samples were collected from a depth about 0-20 cm in the close vicinity of the TTPP from random points and at different distances. The samples were analyzed using ICP-MS for heavy metals. Heavy metal contents in soils around TTPP varied from 4.4 to 317.5 mg/kg for As, 0.03 to 0.26 mg/kg for Cd, 20.3 to 1028 mg/kg for Cr, 4.8 to 76.8 mg/kg for Cu, 0.09 to 9.3 mg/kg for Hg, 16.6 to 2385 mg/kg for Ni, 4.8 to 58.6 mg/kg for Pb, and 14.5 to 249.5 mg/kg for Zn. Geoaccumulation index (I geo) and enrichment factor (EF) have been calculated in order to evaluate heavy metal pollution in the soils. According to the I geo calculations, the surface soils around TTPP are contaminated by As, Hg, and Ni from uncontaminated to extremely contaminated. I geo values for Cr show practically uncontaminated to be heavily contaminated. The contamination of soil samples changes from practically uncontaminated to moderately contaminated degree for Pb and Zn. The soil samples were uncontaminated for Cd and Cu metals. The enrichment factors of As, Cr, Hg, and Ni in most of the sampling locations indicate significant to extremely high enrichment. The EF for Pb is also high and indicates moderate to very high enrichment of chromium in the soils. The average EF values for Cd, Cu, and Zn are showing moderate enrichment.

  7. Metals in the Scheldt estuary: From environmental concentrations to bioaccumulation.

    PubMed

    Van Ael, Evy; Blust, Ronny; Bervoets, Lieven

    2017-09-01

    To investigate the relationship between metal concentrations in abiotic compartments and in aquatic species, sediment, suspended matter and several aquatic species (Polychaeta, Oligochaeta, four crustacean species, three mollusc species and eight fish species) were collected during three seasons at six locations along the Scheldt estuary (the Netherlands-Belgium) and analysed on their metal content (Ag, Cd, Co, Cr, Cu, Ni, Pb, Zn and the metalloid As). Sediment and biota tissue concentrations were significantly influenced by sampling location, but not by season. Measurements of Acid Volatile Sulphides (AVS) concentrations in relation to Simultaneously Extracted Metals (SEM) in the sediment suggested that not all metals in the sediment will be bound to sulphides and some metals might be bioavailable. For all metals but zinc, highest concentrations were measured in invertebrate species; Ag and Ni in periwinkle, Cr, Co and Pb in Oligochaete worms and As, Cd and Cu in crabs and shrimp. Highest concentrations of Zn were measured in the kidney of European smelt. In fish, for most of the metals, the concentrations were highest in liver or kidney and lowest in muscle. For Zn however, highest concentrations were measured in the kidney of European smelt. For less than half of the metals significant correlations between sediment metal concentrations and bioaccumulated concentrations were found (liver/hepatopancreas or whole organism). To calculate the possible human health risk by consumption, average and maximum metal concentrations in the muscle tissues were compared to the minimum risk levels (MRLs). Concentrations of As led to the highest risk potential for all consumable species. Cadmium and Cu posed only a risk when consuming the highest contaminated shrimp and shore crabs. Consuming blue mussel could result in a risk for the metals As, Cd and Cr. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing].

    PubMed

    Xiang, Li; Li, Ying-Xia; Shi, Jiang-Hong; Liu, Jing-Ling

    2010-01-01

    This paper investigated the contamination levels of heavy metal and polycyclic aromatic hydrocarbons (PAHs) in street dusts in different functional areas in urban Beijing. Results show that the mean concentrations of Cd, Hg, Cr, Cu, Ni, Pb and Zn in street dusts in Beijing are 710 ng/g, 307 ng/g, 85.0 microg/g, 78.3 microg/g, 41.1 microg/g, 69.6 microg/g and 248.5 microg/g, respectively, which are significantly lower than those in most cities around the world and Shenyang, Shanghai in China. The mean concentration of Sigma 16PAHs in street dusts in Beijing is 0.398 microg/g, which is also lower than those of Handan, Tianjin and Shanghai. Non-parametric Friedman test demonstrates significant differences of heavy metal contents on street dusts from different functional zones. Street dusts in residential area and parks have lower heavy metal and PAHs concentrations than the street dusts from areas of high traffic density. The concentrations of heavy metals follow the order Zn > Cr > Cu > Pb > Ni > Cd > Hg, which is consistent with the situation in other cities around the world. The geoaccumulation index analysis shows that street dust in urban Beijing is moderately polluted by Cd, Zn and Cu, little polluted by Cr and Pb and practically unpolluted by Ni. The contamination levels of Sigma 16PAHs on street dusts vary greatly in different functional zones with parks little polluted, residential areas moderately to strongly polluted and traffic related areas strongly polluted to extremely polluted. Mass loading of heavy metals and PAHs is largely associated with street dusts of size range < 300 microm. Therefore, the urban sweeping vehicles should update the dust sweeping devices to remove not only the fine particle but also the coarser particles.

  9. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China

    PubMed Central

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

  10. Mitigation and treatment of pollutants from railway and highway runoff by pocket wetland system; A case study.

    PubMed

    Senduran, Cem; Gunes, Kemal; Topaloglu, Duygu; Dede, Omer Hulusi; Masi, Fabio; Kucukosmanoglu, Ozen Arli

    2018-08-01

    This study performed in Sapanca Lake catchment area, used as a drinking water resource. Two highways located at northern and southern shores, and a railway at its south are significant sources of pollution. As a possible solution for protecting water quality a pocket wetland constructed and operated. Performances statistically interpreted by Spearman's Correlation test and univariate analysis of variance on collected data. The mean removal efficiencies obtaited were 52% (TSS), 4% (Nitrate), 26% (TN), -5% (TOC), 63% (TP), 4.5% (Chloride), 3% (Sulfate), 33% (Cr), 39% (Co), -19.5% (Ni), 7% (Cu), 55% (Zn), 36% (As), 38% (Cd) and 18% (Pb). TSS removal was in positive significant medium correlation with Co, Cu, Zn, and Pb removal respectively (p < 0.05). Other statistically significant positive high correlations calculated between removal efficiency of Nitrate-TN, Chloride-Sulfate, Cr-Co-Cu-As-Cd. According to ANOVA and Kruskal-Wallis test results, removal efficiencies of TSS and TOC partially affected by different temperature (p < 0.1 for TSS and p < 0.05 for TOC) and pH ranges (p < 0.1 for both removal efficiencies), TP removal efficiency significantly affected by different pH ranges (p < 0.001), and Chloride and Sulfate removal efficiencies were significantly (p < 0.001) affected by different temperature ranges. Regardless of geographical location and climatic factors, pocket wetland systems can be relied upon for minimizing heavy metals such as Cr, Co, Zn, As, Cd and Pb and critical pollutants such as TP and TSS caused by highway runoff. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River.

    PubMed

    Yi, Yu-Jun; Zhang, Shang-Hong

    2012-11-01

    The objective of this paper is to assess the regulation of the accumulation of heavy metals in the aquatic environment and different fish species. Water and fish samples were collected from upper to lower reaches of the Yangtze River. The heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in the muscle tissue of seven fishes were measured. Additionally, the relationships between heavy metal concentrations in fish tissue and fish size (length and weight), condition factor, water layer distribution, and trophic level were investigated. Metal concentrations (milligrams per kilogram wet weight) were found to be distributed differently among different fish species. The highest concentrations of Cu (1.22 mg/kg) and Zn (7.55 mg/kg) were measured in Pelteobagrus fulvidraco, the highest concentrations of Cd (0.115 mg/kg) and Hg (0.0304 mg/kg) were measured in Silurus asotus, and the highest concentrations of Pb (0.811 mg/kg) and Cr (0.239 mg/kg) were measured in Carassius auratus and Cyprinus carpio. A positive relationship was found between fish size and metal level in most cases. The variance of the relationships may be the result of differences in habitat, swimming behavior, and metabolic activity. In this study, fishes living in the lower water layer and river bottom had higher metals concentrations than in upper and middle layers. Benthic carnivorous and euryphagous fish had higher metals concentrations than phytoplankton and herbivorous fish. Generally, fish caught from the lower reach had higher metals concentrations than those from the upper reach. Cadmium and lead concentrations in several fishes exceeded the permissible food consumption limits, this should be considered to be an important warning signal.

  12. In situ removal of dissolved and suspended contaminants from a eutrophic pond using hybrid sand-filter.

    PubMed

    Vijayaraghavan, K; Joshi, Umid Man; Ping, Han; Reuben, Sheela; Burger, David F

    2014-01-01

    In this study, in situ hybrid sand filters were designed to remove dissolved and suspended contaminants from eutrophic pond. Currently, there are no attempts made to eradicate dissolved as well as suspended contaminants from eutrophic water system in a single step. Monitoring studies revealed that examined pond contain high chlorophyll-a content (101.8 μg L(-1)), turbidity (39.5 NTU) and total dissolved solids concentration (0.04 g L(-1)). Samples were further exposed to extensive water quality analysis, which include examining physicochemical parameters (pH, conductivity, total dissolved solids, salinity, turbidity and chlorophyll-a), metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Cr, and Ni) and anions (NO3, NO2, PO4, SO4, Cl, F and Br). To tackle pollutants, filtration system was designed to comprise of several components including fine sand, coarse sand/sorbent mix and gravel from top to bottom loaded in fiberglass tanks. All the filters (activated carbon, Sargassum and zeolite) completely removed algal biomass and showed potential to decrease pH during entire operational period of 20 h at 120 L h(-1). To examine the efficiency of filters in adverse conditions, the pond water was spiked with heavy metals (Cu, Cd, Pb, Zn, Cr, and Ni). Of the different filter systems, Sargassum-loaded filter performed exceedingly well with concentrations of heavy metals never exceeded the Environmental protection agency regulations for freshwater limits during total operational period. The total uptake capacities at the end of the fifth event were 24.9, 20.5, 0.58, 5.2, 0.091 and 2.8 mg/kg for Cr, Ni, Cu, Zn, Cd and Pb, respectively.

  13. Evaluated the Twenty-Six Elements in the Pectoral Muscle of As-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Sun, Bonan; Xing, Mingwei

    2016-02-01

    This study assessed the impacts of dietary arsenic trioxide on the contents of 26 elements in the pectoral muscle of chicken. A total of 100 Hy-line laying cocks were randomly divided into two groups (n = 50), including an As-treated group (basic diet supplemented with arsenic trioxide at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and drinking water. The elements lithium (Li), boron (B), natrum (Na), magnesium (Mg), aluminium (AI), silicium (Si), kalium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), ferrum (Fe), cobalt (Co.), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), barium (Ba), hydrargyrum (Hg), thallium (Tl) and plumbum (Pb) in the pectoral muscles were determined using inductively coupled plasma mass spectrometry (ICP-MS). The resulted data indicated that Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl and Pb were significantly increased (P < 0.05) in chicken exposed to As2O3 compared to control chicken, while Mg, Si, K, As and Cd decreased significantly (P < 0.05). These results suggest that ICP-MS determination of elements in chicken tissues enables a rapid analysis with good precision and accuracy. Supplementation of high levels of As affected levels of 20 elements (Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl, Pb, Mg, Si, K, As and Cd) in the pectoral muscles of chicken. Thus, it is needful to monitor the concentration of toxic metal (As) in chicken for human health.

  14. Desulfurization: Critical step towards enhanced selenium removal from industrial effluents.

    PubMed

    Staicu, Lucian C; Morin-Crini, Nadia; Crini, Grégorio

    2017-04-01

    Selenium (Se) removal from synthetic solutions and from real Flue Gas Desulfurization (FGD) wastewater generated by a coal-fired power plant was studied for the first time using a commercial iron oxide impregnated strong base anion exchange resin, Purolite ® FerrIX A33E. In synthetic solutions, the resin showed high affinity for selenate and selenite, while sulfate exhibited a strong competition for both oxyanions. The FGD wastewater investigated is a complex system that contains Se (∼1200 μg L -1 ), SO 4 2- (∼1.1 g L -1 ), Cl - (∼9.5 g L -1 ), and Ca 2+ (∼5 g L -1 ), alongside a broad spectrum of toxic trace metals including Cd, Cr, Hg, Ni, and Zn. The resin performed poorly against Se in the raw FGD wastewater and showed moderate to good removal of several trace elements such as Cd, Cr, Hg, and Zn. In FGD effluent, sulfate was identified as a powerful competing anion for Se, having high affinity for the exchange active sites of the resin. The desulfurization of the FGD effluent using BaCl 2 led to the increase in Se removal from 3% (non-desulfurized effluent) to 80% (desulfurized effluent) by combined precipitation and ion exchange treatment. However, complete desulfurization using equimolar BaCl 2 could not be achieved due to the presence of bicarbonate that acts as a sulfate competitor for barium. In addition to selenium and sulfate removal, several toxic metals were efficiently removed (Cd: 91%; Cr: 100%; Zn: 99%) by the combined (desulfurization and ion exchange) treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Heavy metal contents and transfer capacities of Phragmites australis and Suaeda salsa in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Bai, Junhong; Wang, Wei; Huang, Laibing; Zhang, Guangliang; Wang, Dawei

    2018-04-01

    Plant samples including roots, stems and leaves of Phragmites australis and Suaeda salsa were collected in the short-term flooding and tidal flooding wetlands of the Yellow River Delta of China. Six heavy metals (e.g., As, Cd, Cr, Cu, Pb, and Zn) were measured in roots, stems and leaves of each plant species using inductively coupled plasma atomic absorption spectrometry (ICP-AAS) to investigate the levels, and transfer capabilities of heavy metals in these two plant species. Our results showed that in the tidal flooding wetlands, the contents of As, Cr and Cd in roots of Phragmites australis and Suaeda salsa were higher than those in their stems and leaves. Suaeda salsa showed higher contents of Pb and Zn in leaves than those in roots and stems, whereas lower levels of Pb and Zn were observed in Phragmites australis. In the short-term flooding wetlands, heavy metal contents exhibited a big difference between different tissues of Phragmites australis and Suaeda salsa, and both plant species showed higher levels of Pb and Zn in leaves. Suaeda salsa roots enriched more As and Cd, whereas higher enrichment levels were observed in Phragmites australis leaves, which indicated different transfer capacities of these two wetland plants. The transfer factors for stems and leaves of Phragmites australis in the tidal flooding wetlands significantly differed from those in the short-term flooding wetlands, however, no significant differences in transfer factors for stems and leaves of Suaeda salsa were observed between these two types of wetlands.

  16. Heavy metals in the surface sediments of the northern portion of the South China Sea shelf: distribution, contamination, and sources.

    PubMed

    Xu, Fangjian; Tian, Xu; Yin, Feng; Zhao, Yongfang; Yin, Xuebo

    2016-05-01

    The concentrations of seven heavy metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) in the surface sediments of the northern portion of the South China Sea (SCS) shelf collected between 2012 and 2014 were measured to assess the potential contamination levels and determine the environmental risks that are associated with heavy metals in the area. The measured concentrations in the sediments were 12.4-72.5 mg kg(-1) for Cr, 4.4-29.2 mg kg(-1) for Ni, 7.1-38.1 mg kg(-1) for Cu, 19.3-92.5 mg kg(-1) for Zn, 1.3-12.1 mg kg(-1) for As, 0.03-0.24 mg kg(-1) for Cd, and 8.5-24.4 mg kg(-1) for Pb. These results indicate that the heavy metal concentrations in the sediments generally meet the China Marine Sediment Quality criteria and suggest that the overall sediment quality of the northern portion of the SCS shelf has not been significantly impacted by heavy metal pollution. However, the enrichment factor (EF) and geoaccumulation index (I geo) clearly show that elevated concentrations of Cd occur in the region. A Pearson's correlation analysis was performed, and the results suggest that Cr, Ni, Cu, and Zn have a natural origin; Cd is primarily sourced from anthropogenic activities, with partial lithogenic components, and As and Pb may be affected by factors such as varying input sources or pathways (i.e., coal burning activities and aerosol precipitation). Heavy metal contamination mostly occurred to the east of Hainan Island, mainly because of the rapid economic and social developments in the Hainan Island. The results of this study will be useful for marine environment managers for the remediation of pollution sources.

  17. Risk Assessment and Implication of Human Exposure to Road Dust Heavy Metals in Jeddah, Saudi Arabia

    PubMed Central

    Shabbaj, Ibrahim I.; Alghamdi, Mansour A.; Shamy, Magdy; Alsharif, Musaab M.; Khoder, Mamdouh I.

    2017-01-01

    Data dealing with the assessment of heavy metal pollution in road dusts in Jeddah, Saudi Arabia and its implication to human health risk of human exposure to heavy metals, are scarce. Road dusts were collected from five different functional areas (traffic areas (TA), parking areas (PA), residential areas (RA), mixed residential commercial areas (MCRA) and suburban areas (SA)) in Jeddah and one in a rural area (RUA) in Hada Al Sham. We aimed to measure the pollution levels of heavy metals and estimate their health risk of human exposure applying risk assessment models described by United States Environmental Protection Agency (USEPA). Using geo-accumulation index (Igeo), the pollution level of heavy metals in urban road dusts was in the following order Cd > As > Pb > Zn > Cu > Ni > Cr > V > Mn > Co > Fe. Urban road dust was found to be moderately to heavily contaminated with As, Pb and Zn, and heavily to extremely contaminated with Cd. Calculation of enrichment factor (EF) revealed that heavy metals in TA had the highest values compared to that of the other functional areas. Cd, As, Pb, Zn and Cu were severely enriched, while Mn, V, Co, Ni and Cr were moderately enriched. Fe was considered as a natural element and consequently excluded. The concentrations of heavy metals in road dusts of functional areas were in the following order: TA > PA > MCRA > SA > RA > RUA. The study revealed that both children and adults in all studied areas having health quotient (HQ) < 1 are at negligible non-carcinogenic risk. The only exception was for children exposed to As in TA. They had an ingestion health quotient (HQing) 1.18 and a health index (HI) 1.19. The most prominent exposure route was ingestion. The cancer risk for children and adults from exposure to Pb, Cd, Co, Ni, and Cr was found to be negligible (≤1 × 10−6). PMID:29278373

  18. Heavy metals in sediments and soft tissues of the Antarctic clam Laternula elliptica: more evidence as a possible biomonitor of coastal marine pollution at high latitudes?

    PubMed

    Vodopivez, Cristian; Curtosi, Antonio; Villaamil, Edda; Smichowski, Patricia; Pelletier, Emilien; Mac Cormack, Walter P

    2015-01-01

    Studies on metal contamination in 25 de Mayo Island, Antarctica, yielded controversial results. In this work, we analyzed Antarctic marine sediments and Antarctic clam (Laternula elliptica) tissues to investigate the possible use of this mollusk as a biomonitor of metals and to identify the sources of metal pollution. Different types of paint from several buildings from Carlini Station were examined to assess their contribution to the local and random metal pollution. Five sediment samples, 105 L. elliptica specimens (40.2-78.0mm length) and four types of paint were analyzed to quantify Cd, Cr, Cu, Fe, Mn, Pb and Zn using inductively coupled plasma-optical emission spectrometry. Metal concentrations in sediments were lower than the global averages of the earth's crust, with the exception of Cd and Cu. These results were related to the contribution of the local fresh-water runoff. The different varieties of paint showed low levels of Cu, Mn, Fe and Zn, whereas a broad range of values were found in the case of Cr and Pb (20-15,100 μg·g(-1) and 153-115,500 μg·g(-1) respectively). The remains of the paint would be responsible for the significant increases in Cr and Pb which are randomly detected by us and by other authors. High levels of Fe and Cd, in comparison to other Antarctic areas, appear to be related to the terrigenous materials transported by the local streams. Accumulation indexes suggested that kidney tissue from L. elliptica could be an adequate material for biomonitoring pollution with Cd, Zn and probably also Pb. In general, relationships between size and metal contents reported by other authors were not verified, suggesting that this issue should be revised. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy.

    PubMed

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-15

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-01

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region.

  1. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  2. Potential health risks via consumption of six edible shellfish species collected from Piura - Peru.

    PubMed

    Loaiza, I; De Troch, M; De Boeck, G

    2018-05-11

    Scallops and their potential predators were collected in Sechura Bay and in front of the Illescas Reserved Zone (north Peru), during El Niño-Southern Oscillation (ENSO) 2016, and analyzed for the metals chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). This study showed that ~20% of the molluscs exceeded the maximum residual levels (MRLs) for human consumption in inorganic As, while ~30% of the crustaceans did. For Cd, around 10% and 40% of the molluscs and the crustaceans were above the MRLs, respectively. The cephalopod Octopus mimus exhibited As concentrations, but not Cd concentrations, that exceeded the MRLs. Cr, Ni, Cu, Zn and Pb in muscle exhibited generally concentrations below the MRLs. Integrated risk indices were estimated to determine if there is a health risk for consumption. Target hazard quotients (THQs) and total hazard indices (HIs) were mostly < 1, implying no human health risk. Provisional tolerable weekly intake (PTWI) for Cd was exceeded in Bursa ventricosa at Illescas Reserved Zone. Target cancer risks (TRs) for inorganic As were always higher than the threshold (1 × 10 -6 ), therefore an actual cancer risk is present. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The accumulation and health risk of heavy metals in vegetables around a zinc smelter in northeastern China.

    PubMed

    Li, Bo; Wang, Yanhong; Jiang, Yong; Li, Guochen; Cui, Jiehua; Wang, Ying; Zhang, Hong; Wang, Shicheng; Xu, Sheng; Wang, Ruzhen

    2016-12-01

    Mining and smelting activities engender soil contamination by metals severely. A field survey was conducted to investigate the present situation and health risk of heavy metals (Cd, Pb, Zn, Cu, Cr, As, and Hg) in soils and vegetables in the surrounding area of an 80-year-old zinc smelter in northeastern China. Soil pH, organic matter (SOM), and cation exchange capacity (CEC) were determined, and their relations with heavy metal contents in edible parts of vegetables were analyzed. Results showed that the smelting had led to the significant contamination of the local soils by Cd and Zn, with average concentrations of 3.88 and 403.89 mg kg -1 , respectively. Concentrations of Cd and Zn in greenhouse soils were much lower than those in open farmland soils. Cd concentrations in vegetable edible parts exceeded the permissible limits severely, while other metal concentrations were much lower than the corresponding standards. Leaf and root vegetables had higher concentrations and bioaccumulation factors (BCFs) of Cd than fruit vegetables. Hazard quotient and hazard index showed that cadmium is imposing a health risk to local residents via vegetable consumption. Cd uptake of some vegetables can be predicted by empirical models with the following parameters: soil pH, SOM, CEC, Zn concentrations, and Cd concentrations. Vegetables such as cabbage, Chinese cabbage, tomato, cucumber, and green bean were screened out as being suitable to grow in the studied area.

  4. Study of the ambient air metallic elements Cr, Cu, Zn, Cd and Pb at HAF sampling sites.

    PubMed

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Wen-Chuan

    2017-08-01

    This study characterized diurnal variations in the compositions of total suspended particulates (TSP) and dry deposits of particulates from ambient air, and the metallic elements that are contained in them at harbor, airport and farmland (HAF) sampling sites from August, 2013 to July, 2014. Two-way ANOVA of the amounts of metallic elements in the TSP and dry deposits was carried out in all four seasons at the HAF sampling sites. The metallic elements Cr and Cu originated in local emission sources at the airport. Metallic elements Zn and Pb originated in local emission sources at the harbor. Finally, metallic element Cd originated in local emissions form farmland. The following results were also obtained. (1) The metallic composition of the TSP differed significantly from that of the dry deposits in all four seasons at the harbor and farmland sampling sites, but not at the airport sampling site. (2) High correlations coefficients were found between the amounts of metallic elements Cr and Cu in the TSP and those in the dry deposits at the airport sampling site. (3) Pb was present in the TSP and the dry deposits at the harbor sampling site.

  5. Assessment of the distribution, bioavailability and ecological risks of heavy metals in the lake water and surface sediments of the Caohai plateau wetland, China.

    PubMed

    Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie

    2017-01-01

    In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources.

  6. Assessment of the distribution, bioavailability and ecological risks of heavy metals in the lake water and surface sediments of the Caohai plateau wetland, China

    PubMed Central

    Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie

    2017-01-01

    In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources. PMID:29253896

  7. Factors influencing the contents of metals and as in soils around the watershed of Guanting Reservoir, China.

    PubMed

    Xu, Li; Wang, Tieyu; Luo, Wei; Ni, Kun; Liu, Shijie; Wang, Lin; Li, Qiushuang; Lu, Yonglong

    2013-03-01

    Topsoil samples from 61 sites around the Guanting Reservoir, China, were measured for Cu, Zn, Cr, Ni, Cd, Pb and As concentrations. The mean concentrations of Cu, Zn, Cr, Ni, Cd, Pb and As were 16.8, 59.4, 37.8, 18.3, 0.32, 20.1 and 8.67 mg/kg dry weight, respectively. Factors that influence the dynamics of these metals in soils around the watersheds of Beijing reservoirs were examined. The influence of atmospheric deposition, land use, soil texture, soil type and soil chemical parameters on metal contents in soils was investigated. Atmospheric deposition, land use and soil texture were the important factors affecting heavy metal residues. Soil type and soil chemical parameters were also involved in heavy metal retention in soils. The data provided in this study are considered crucial for reservoir remediation, especially since the Guanting Reservoir will serve as one of the main drinking water sources for Beijing in the foreseeable future.

  8. Heavy metals analysis and quality assessment in drinking water - Khorramabad city, Iran.

    PubMed

    Ghaderpoori, Mansour; Kamarehie, Bahram; Jafari, Ali; Ghaderpoury, Afshin; Karami, Mohammadamin

    2018-02-01

    Continuous monitoring of drinking water quality is essential in terms of heavy metals and toxic substances. The general objective of this study were to determine the concentration of heavy metals in drinking water of Khorramabad city and to determine the water quality indices (The heavy metal pollution index and heavy metal evaluation index). According to the city map, 45 points were selected for drinking water sampling through the city distribution system. The results of this study showed that the average concentration of heavy metals such as Zn, Pb, Cd, Cr, and Cu were 47.01 μg/l, 3.2 μg/l, 0.42 μg/l, 5.08 μg/l, and 6.79 μg/l, respectively. The HPI and HEI (water quality indices) for Zn, Pb, Cd, Cr, and Cu were 46.58, 46.58, respectively. According to the indices, the city drinking water quality is good in terms of heavy metals.

  9. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  10. Evaluation of Soil Contamination Indices in a Mining Area of Jiangxi, China

    PubMed Central

    Wu, Jin; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Jiao, Xudong

    2014-01-01

    There is currently a wide variety of methods used to evaluate soil contamination. We present a discussion of the advantages and limitations of different soil contamination assessment methods. In this study, we analyzed seven trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) that are indicators of soil contamination in Dexing, a city in China that is famous for its vast nonferrous mineral resources in China, using enrichment factor (EF), geoaccumulation index (Igeo), pollution index (PI), and principal component analysis (PCA). The three contamination indices and PCA were then mapped to understand the status and trends of soil contamination in this region. The entire study area is strongly enriched in Cd, Cu, Pb, and Zn, especially in areas near mine sites. As and Hg were also present in high concentrations in urban areas. Results indicated that Cr in this area originated from both anthropogenic and natural sources. PCA combined with Geographic Information System (GIS) was successfully used to discriminate between natural and anthropogenic trace metals. PMID:25397401

  11. Heavy metal assessment in surface sediments off Coromandel Coast of India: Implication on marine pollution.

    PubMed

    N, Anbuselvan; D, Senthil Nathan; M, Sridharan

    2018-06-01

    The present study investigates the distribution of heavy metals (Fe, Cd, Co, Cr, Cu, Ni, Zn and Pb) in the surface sediments along the Coromandel Coast of Bay of Bengal as an indicator of marine pollution. Pollution indices such as Contamination factor (CF), Enrichment factor (EF) and Geo-accumulation index (I) were performed to assess the spatial distribution and pollution status of the study area. The heavy metal concentration in the study area is closely associated with grain size and organic matter. Both geoaccumulation index and metal contamination factor indicate that the sediments are free from contamination with regards to the metals Cr and Ni, followed by uncontamination to moderate contamination of Co, Cu and Zn. However, sediments are found to be extremely polluted with respect to Cd and Pb. Factor analysis reveals that the accumulation of these heavy metals in the shelf sediments are due to anthropogenic inputs from the adjacent land area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Metal enrichment of soils following the April 2012-2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico.

    PubMed

    Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado

    2015-11-01

    We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.

  13. Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland.

    PubMed

    Chowdhury, Ranju; Favas, Paulo J C; Jonathan, M P; Venkatachalam, Perumal; Raja, P; Sarkar, Santosh Kumar

    2017-11-30

    The study accentuated the trace metal accumulation and distribution pattern in individual organs of 13 native mangrove plants along with rhizosediments in the Indian Sundarban Wetland. Enrichment of the essential micronutrients (Mn, Fe, Zn, Cu, Co, Ni) was recorded in all plant organs in comparison to non-essential ones, such as Cr, As, Pb, Cd, Hg. Trunk bark and root/pneumatophore showed maximum metal accumulation efficiency. Rhizosediment recorded manifold increase for most of the trace metals than plant tissue, with the following descending order: Fe>Mn>Zn>Cu>Pb>Ni>Cr>Co>As>Cd>Hg. Concentrations of Cu, Ni, Pb and Hg were found to exceed prescribed sediment quality guidelines (SQGs) indicating adverse effect on adjacent biota. Both index of geoaccumulation (I geo ) and enrichment factor (EF) also indicated anthropogenic contamination. Based on high (>1) translocation factor (TF) and bioconcentration factor (BCF) values Sonneratiaapetala and Avicenniaofficinalis could be considered as potential accumulators, of trace metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Trace metals in sediments and benthic animals from aquaculture ponds near a mangrove wetland in Southern China.

    PubMed

    Wu, Hao; Liu, Jinling; Bi, Xiangyang; Lin, Guanghui; Feng, Christopher C; Li, Zhengjie; Qi, Fei; Zheng, Tianling; Xie, Liqi

    2017-04-15

    In this study, we measured the concentrations of trace metals (Cr, Cu, Zn, As, Cd, Pb and Hg) in typical cultured animals (crabs, clams, and shrimps) and sediments from aquaculture ponds nearby mangrove wetlands in Zhangjiang estuary, China. The contents of Cr, Cu, Cd, and Pb in mangrove sediments were significantly higher than those in pond sediments, while an inverse distribution was observed for Zn, As, and Hg. Significantly higher concentrations of trace metals were found in clams from the mangrove mudflats compared to those from the aquaculture ponds. The sources of trace metals in the clams were primarily from organic fertilizer, whereas those in the shrimp were from contaminated sediment. The results of geo-accumulation index and the ecological risk assessment indicated that the aquaculture ponds near the mangrove wetlands in this subtropical estuary posed a special risk of endogenous and exogenous trace metal pollution to nearby systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China.

    PubMed

    Geng, Junjie; Wang, Yiping; Luo, Hanjin

    2015-12-30

    Riverine samples were collected at various locations in the Pearl River Delta (PRD) to determine the concentrations of heavy metals (Cr, Ni, Cu, Mn, Zn, Cd, and Pb) in time and space and to estimate the fluxes of heavy metals to the coastal waters off South China. Most of the elements exhibit clear temporal and spatial trends. Principal component analysis shows that surface erosion is the major factor affecting metal concentrations in particulates in the PRD. Natural geology is an important source of these heavy metals. The annual fluxes of Cr, Ni, Cu, Mn, Zn, Cd, and Pb in upstream and downstream were 445, 256, 241, 3293, 1279, 12, and 317 t/year and 1823, 1144, 1786, 15,634, 6183, 74, and 2017 t/year, respectively. A comparison indicated that the annual fluxes of Mn accounted for 1.3% of the global river fluxes, whereas other elements contribute <1%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessment of trace metal pollution in sediments and intertidal fauna at the coast of Cameroon.

    PubMed

    Ngeve, Magdalene N; Leermakers, Martine; Elskens, Marc; Kochzius, Marc

    2015-06-01

    Coastal systems act as a boundary between land and sea. Therefore, assessing pollutant concentrations at the coast will provide information on the impact that land-based anthropogenic activities have on marine ecosystems. Sediment and fauna samples from 13 stations along the whole coast of Cameroon were analyzed to assess the level of trace metal pollution in sediments and intertidal fauna. Sediments showed enrichment of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. However, pollution of greater concern was observed for Cd, Cr, Cu, Ni, and Zn at the northern stations. Some sites recorded trace metal levels higher than recommended in sediment quality guidelines. Species diversity was low, and high bioaccumulation of trace metals was observed in biological samples. Some edible gastropod species accumulated trace metals above the safety limits of the World Health Organization, European Medicine Agency, and the US Environment Protection Agency. Although industrial pollution is significant along Cameroon's coast, natural pollution from the volcano Mount Cameroon is also of concern.

  17. Spatial distribution and contamination assessment of heavy metals in marine sediments of the southern coast of Sfax, Gabes Gulf, Tunisia.

    PubMed

    Naifar, Ikram; Pereira, Fernando; Zmemla, Raja; Bouaziz, Moncef; Elleuch, Boubaker; Garcia, Daniel

    2018-06-01

    In order to investigate the current distribution of metal concentrations in surface marine sediments of the southern coast of Sfax (Tunisia), thirty-nine samples were collected in the vicinity of a mixed industrial and domestic wastewater effluent discharge. In comparison with the threshold effect level and probable effect level, the majority of metals had high ecological and biological risks. Enrichment factor and geoaccumulation Index showed that the majority of sediments are unpolluted by As, Ni and Pb, moderately polluted by Cr and Cu and moderately to strongly polluted by P, Y, Zn. Besides, all sites are extremely polluted by Cd. Principal component analysis indicates that As, Cu and Ni were mainly from lithogenic sources, whereas Cd, Cr, F, P, Pb, Y and Zn were mainly derived from anthropogenic source. Findings of this research can be used as suitable reference for future studies and environmental management plans in the region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect.

    PubMed

    Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco

    2017-12-01

    Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Contaminant concentration in environmental samples using LIBS and CF-LIBS

    NASA Astrophysics Data System (ADS)

    Pandhija, S.; Rai, N. K.; Rai, A. K.; Thakur, S. N.

    2010-01-01

    The present paper deals with the detection and quantification of toxic heavy metals like Cd, Co, Pb, Zn, Cr, etc. in environmental samples by using the technique of laser-induced breakdown spectroscopy (LIBS) and calibration-free LIBS (CF-LIBS). A MATLABTM program has been developed based on the CF-LIBS algorithm given by earlier workers and concentrations of pollutants present in industrial area soil have been determined. LIBS spectra of a number of certified reference soil samples with varying concentrations of toxic elements (Cd, Zn) have been recorded to obtain calibration curves. The concentrations of Cd and Zn in soil samples from the Jajmau area, Kanpur (India) have been determined by using these calibration curves and also by the CF-LIBS approach. Our results clearly demonstrate that the combination of LIBS and CF-LIBS is very useful for the study of pollutants in the environment. Some of the results have also been found to be in good agreement with those of ICP-OES.

  20. Bioavailable metals in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa.

    PubMed

    Vetrimurugan, E; Jonathan, M P; Roy, Priyadarsi D; Shruti, V C; Ndwandwe, O M

    2016-04-15

    Acid Leachable Trace Metal (ALTMs) concentrations in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa were assessed. 53 surface sediment samples were collected from five different beaches (Kwambonambi Long Beach; Nhlabane Beach; Five Mile Beach; Alkanstrand Beach and Port Durnford Beach). The results of ALTMs (Fe, Mn, Cr, Cu, Ni, Co, Pb, Cd, Zn, As, Hg) suggest that they are enriched naturally and with some local industrial sources for (avg. in μgg(-1)) Fe (3530-7219), Mn (46-107.11), Cd (0.43-1.00) and Zn (48-103.98). Statistical results indicate that metal concentrations were from natural origin attributed to leaching, weathering process and industrial sources. Comparative studies of metal concentrations with sediment quality guidelines and ecotoxicological values indicate that there is no adverse biological effect. Enrichment factor and geoaccumulation indices results indicate moderate enhancement of Fe (Igeo class 1 in FMB), Cd (EF>50; Igeo classes 2-4) and Zn (Igeo classes 1 & 2). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Behavior of suspended particles in the Changjiang Estuary: Size distribution and trace metal contamination.

    PubMed

    Yao, Qingzhen; Wang, Xiaojing; Jian, Huimin; Chen, Hongtao; Yu, Zhigang

    2016-02-15

    Suspended particulate matter (SPM) samples were collected along a salinity gradient in the Changjiang Estuary in June 2011. A custom-built water elutriation apparatus was used to separate the suspended sediments into five size fractions. The results indicated that Cr and Pb originated from natural weathering processes, whereas Cu, Zn, and Cd originated from other sources. The distribution of most trace metals in different particle sizes increased with decreasing particle size. The contents of Fe/Mn and organic matter were confirmed to play an important role in increasing the level of heavy metal contents. The Cu, Pb, Zn, and Cd contents varied significantly with increasing salinity in the medium-low salinity region, thus indicating the release of Cu, Pb, Zn, and Cd particles. Thus, the transfer of polluted fine particles into the open sea is probably accompanied by release of pollutants into the dissolved compartment, thereby amplifying the potential harmful effects to marine organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic

    NASA Astrophysics Data System (ADS)

    Ru, Qitian; Kawamori, Taiki; Lee, Nathaniel; Chen, Xuan; Zhong, Kai; Mirov, Mike; Vasilyev, Sergey; Mirov, Sergey B.; Vodopyanov, Konstantin L.

    2018-02-01

    We demonstrate an optical parametric oscillator (OPO) based on random phase matching in a polycrystalline χ(2) material, ZnSe. The subharmonic OPO utilized a 1.5-mm-long polished ZnSe ceramic sample placed at the Brewster's angle and was synchronously pumped by a Kerr-lens mode-locked Cr:ZnS laser with a central wavelength of 2.35 μm, a pulse duration of 62 fs, and a repetition frequency of 79 MHz. The OPO had a 90-mW pump threshold, and produced an ultrabroadband spectrum spanning 3-7.5 μm. The observed pump depletion was as high as 79%. The key to success in achieving the OPO action was choosing the average grain size of the ZnSe ceramic to be close to the coherence length ( 100 μm) for our 3-wave interaction. This is the first OPO that uses random polycrystalline material with quadratic nonlinearity and the first OPO based on ZnSe. Very likely, random phase matching in ZnSe and similar random polycrystalline materials (ZnS, CdS, CdSe, GaP) represents a viable route for generating few-cycle pulses and multi-octave frequency combs, thanks to a very broadband nonlinear response.

  3. Toxic and essential elements in five tree nuts from Hangzhou market, China.

    PubMed

    Ni, Zhanglin; Tang, Fubin; Yu, Qing; Liu, Yihua

    2016-12-01

    In this study, a total of 35 tree nut samples of walnut, pecan, pine seed, hickory nut and torreya were obtained from 5 farm product markets in Hangzhou, China, and investigated for essential (Cr, Mn, Fe, Mo, Cu, Zn, Se and Sr) and toxic (Al, As, Cd and Pb) elements by inductively coupled plasma-mass spectroscopy. Mean elemental concentrations of different tree nuts were in the following ranges: Cr 0.26-0.78 mg kg -1 , Mn 42.1-174 mg kg -1 , Fe 33.7-43.9 mg kg -1 , Mo 0.11-0.48 mg kg -1 , Cu 10.3-17.6 mg kg -1 , Zn 21.6-56.1 mg kg -1 , Se 0.015-0.051 mg kg -1 , Al 1.44-37.6 mg kg -1 , As 0.0062-0.047 mg kg -1 , Cd 0.016-0.18 mg kg -1 and Pb 0.0069-0.029 mg kg -1 . The estimated provisional tolerable daily intake of Al, As, Cd and Pb was much lower than the provisional tolerable daily intake.

  4. Evaluation of environmental compatibility of EAFD using different leaching standards.

    PubMed

    Sebag, M G; Korzenowski, C; Bernardes, A M; Vilela, A C

    2009-07-30

    A study on laboratory scale to evaluate the environmental compatibility of electric arc furnace dust (EAFD) is reported in this article. EAFD, a waste by-product of the steel-making process, was generated on a steel plant located in Brazil. Different leaching tests, NBR10005 (Brazilian), AFNORX31-210 (French), JST-13 (Japanese), DIN38414-S4 (German), TCLP (American), and NEN 7343 (Netherland) were conducted. These leaching procedures are batch tests and are columns conducted in a way that an equilibrium condition should be achieved. The pH of the medium showed a crucial parameter governing the release of metals from the solid phase into solution. As the pH of the medium varies with the leachant used, this determines the dissolution of the elements. Zn, Pb, Mn, Cd, and Cu presented high leachability at NBR10005 procedures (acid pH). Except Pb and Cr, the leachability of all others metals in leaching tests with alkaline pH decreases with the increase of the pH. NBR10005 classifies the EAFD as a hazardous waste due to high concentration of Pb and Cd in leachate. The column tests are presented in the following order of leaching: Pb>Cr>Zn>Mn>Cu>Cd.

  5. Risk assessment, spatial distribution, and source apportionment of heavy metals in Chinese surface soils from a typically tobacco cultivated area.

    PubMed

    Liu, Haiwei; Wang, Haiyun; Zhang, Yan; Yuan, Jumin; Peng, Yaodong; Li, Xiuchun; Shi, Yi; He, Kuanxin; Zhang, Qiming

    2018-06-01

    The heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in the surface soils of tobacco (Nicotiana tabacum L.) fields in Jiangxi Province were analyzed, and the mean heavy metal concentrations were 3.55, 0.19, 25.89, 14.96, 0.25, 10.89, 27.80, and 44.00 mg/kg, respectively. Spatial distribution analysis showed that the highest concentrations were recorded in the north-western, south-western, and mid-eastern parts of the study area. The index of geo-accumulation and pollution index indicated modest enrichment with Cd and Hg, which were the only two metals posing a potentially high ecological risk to the local agricultural environment. The health risk assessment showed no considerable non-carcinogenic or carcinogenic risks for children and adults from these elements. The principal component analysis (PCA) and cluster analysis (CA) found that the variations in the Cr and Ni concentrations were largely on account of the soil parent rocks, but the As, Cd, Cu, and Hg variations in the soil were largely owing to agricultural practices of years. However, the main factor influencing Pb and Zn was atmospheric deposition.

  6. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns.

    PubMed

    Cheraghi, Mehrdad; Lorestani, Bahareh; Merrikhpour, Hajar

    2012-01-01

    The use of phosphate fertilizers is essential in agriculture, because they supply farmland with nutrients for growing plants. However, heavy metals might be included as impurities in natural materials and minerals, so heavy metals can also be present in phosphate fertilizers or other chemical fertilizers. The aim of this work was to assess the heavy metal content and contamination status of agricultural soils in the Hamadan province of Iran used for the cultivation of different crops, including cucumber, potatoes, and sugar beet. Surface soil samples were collected and analyzed to determine the total concentration of specific elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), before the pollution index was calculated for each element. Soils used for the cultivation of the three types of crop were not contaminated with As, Cr, Cu, Pb, or Zn. However, the pollution indices for Cd were 1.1, 4.4, and 3.8 in cucumber, potato, and sugar beet fields, respectively, which indicated moderate, high, and high levels of contamination, respectively. Soils from potato and sugar beet fields were heavily contaminated with Cd, which may have resulted from long-term overuse of phosphate fertilizers.

  7. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China.

    PubMed

    Shen, Zhang Jun; Xu, De Cong; Chen, Yan Song; Zhang, Zhen

    2017-09-01

    Fengdan (Paeonia ostii) is one of Chinese 34 famous medicinal materials. This study investigated the concentrations of Arsenic (As), Chromium (Cr), Cadmium (Cd), Copper (Cu), Lead (Pb), Iron (Fe), Manganese (Mn), and Zinc (Zn) in rhizosphere soils, cortex mouton and seeds of Fengdan planted in a metal mining area, China. The mean concentrations of As, Cd, Cu, and Zn in the rhizosphere soils were above the limits set by the Chinese Soil Environmental Quality Standard (GB 15618-1995). The contamination factor (CF) of Cd was >5, while it was >2for As, Cu, Pb, and Zn in all the soils. The integrated pollution index for all the soils was >3 and ˂ 5. Metal concentrations in the edible parts of Fengdan were in the following decreasing order: Mn>Fe>Zn>Cu>Pb>As>Cr≥Cd. The transfer factor mean values for As, Cu, Cd and Fe in the cortex moutan of old Fengdan (over 6 years) were significantly higher than in young Fengdan. Available metal concentrations, pH and soil organic matter content influenced the metal concentrations of the cortex moutan. The results indicated that mining and smelting operations have led to heavy metals contamination of soils and medicinal parts of Fengdan. The major metal pollutants were elemental Cd, Cu, Pb, and Zn. Heavy metals mainly accumulated in the cortex moutan of Fengdan. The mean concentrations of Cd, Cu, and Pb in the old cortex moutan (over 6 years) were above those of the Chinese Green Trade Standards for Medicinal Plants and Preparations in Foreign Trade (WM/T2-2004). Copyright © 2017. Published by Elsevier Inc.

  8. Geochemical Assessment and Spatial Analysis of Heavy Metals in the Surface Sediments in the Eastern Beibu Gulf: A Reflection on the Industrial Development of the South China Coast

    PubMed Central

    Lin, Jing; Qian, Bihua; Wu, Zhai; Huang, Peng; Chen, Kai; Li, Tianyao; Cai, Minggang

    2018-01-01

    The Beibu Gulf (also named the Gulf of Tonkin), located in the northwest of the South China Sea, is representative of a bay suffering from turbulence and contamination associated with rapid industrialization and urbanization. In this study, we aim to provide the novel baseline levels of heavy metals for the research area. Concentrations of five heavy metals (i.e., Cu, Pb, Zn, Cd and Cr) were determined in surface sediments from 35 sites in the eastern Beibu Gulf. The heavy metal content varied from 6.72 to 25.95 mg/kg for Cu, 16.99 to 57.98 mg/kg for Pb, 73.15 to 112.25 mg/kg for Zn, 0.03 to 0.12 mg/kg for Cd, and 20.69 to 56.47 mg/kg for Cr, respectively. With respect to the Chinese sediment quality criteria, sediments in the eastern Beibu Gulf have not been significantly affected by coastal metal pollutions. The results deduced from the geoaccumulation index (Igeo) showed that the study area has been slightly polluted by Pb, which might be caused by non-point sources. Relatively high concentrations of Cu, Pb and Cd were found around the coastal areas of Guangxi province, the Leizhou Peninsula and the northwest coast of Hainan Island, whereas the highest concentrations of Zn and Cr were found on the northwest coast of Hainan Island. Spatial distribution patterns of the heavy metals showed that bioavailable fractions of Pb were higher than in the residual fractions, while Cu and Cd concentrations in exchangeable and carbonate fractions were relatively higher than those in the bioavailable fractions. Hierarchical clustering analysis suggested that the sampling stations could be separated into three groups with different geographical distributions. Accompanying their similar spatial distribution in the study area, significant correlation coefficients among Cu, Cd and Pb were also found, indicating that these three metals might have had similar sources. Overall, the results indicated that the distribution of these heavy metals in the surface sediments collected from the Beibu Gulf was complex. PMID:29534527

  9. Chromate reduction and heavy metal fixation in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwitzgebel, K.

    In situ reduction of chromates and the fixation of the metals Cr, Pb, Zn, Cu, Cd and Ni in soil was investigated using Fe II and soluble silica. Fe II fulfills two functions. It reduces chromates (CrVI) at soil pH to CrIII and the reaction products, Fe(OH)[sub 3] and Cr(OH)[sub 3], coprecipitate/adsorb heavy metals. In the absence of CrVI iron is added as FeIII. Destabilized silica also fulfills two functions. It reacts with the metal and metal hydroxides and reduces the soil permeability. The leaching rate (mg/m[sup 2]s) of a metal is the product of leachate flow rate ([ell]/M[sup 2]s)more » and the leachate concentration (mg/[ell]). The leachate flow rate is directly proportional to the hydraulic coefficient (Darcy's Law). Treatment with destabilized silica reduces the hydraulic coefficient of virgin soil (K[sub h] = 10[sup [minus]2]...10[sup [minus]4]) to K[sub h]=10[sup [minus]7] (cm/s) resulting in a flow rate reduction of 3--5 orders of magnitude. Iron plus silica treatment results in a leachate concentration reduction of up to 2 orders of magnitude (Cr:95--99%;Pb:99%;Zn 95--99%; Cd:93--99%; Ni:75--94%). Combined effect of flow rate reduction and leachate concentration reduction results in a potential leaching rate reduction of five to seven orders of magnitude. Iron-silica treatment may be developed into an efficient containment technology, provided the silica gel integrity does not change with time.« less

  10. Chromate reduction and heavy metal fixation in soil. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwitzgebel, K.

    In situ reduction of chromates and the fixation of the metals Cr, Pb, Zn, Cu, Cd and Ni in soil was investigated using Fe II and soluble silica. Fe II fulfills two functions. It reduces chromates (CrVI) at soil pH to CrIII and the reaction products, Fe(OH){sub 3} and Cr(OH){sub 3}, coprecipitate/adsorb heavy metals. In the absence of CrVI iron is added as FeIII. Destabilized silica also fulfills two functions. It reacts with the metal and metal hydroxides and reduces the soil permeability. The leaching rate (mg/m{sup 2}s) of a metal is the product of leachate flow rate ({ell}/M{sup 2}s)more » and the leachate concentration (mg/{ell}). The leachate flow rate is directly proportional to the hydraulic coefficient (Darcy`s Law). Treatment with destabilized silica reduces the hydraulic coefficient of virgin soil (K{sub h} = 10{sup {minus}2}...10{sup {minus}4}) to K{sub h}=10{sup {minus}7} (cm/s) resulting in a flow rate reduction of 3--5 orders of magnitude. Iron plus silica treatment results in a leachate concentration reduction of up to 2 orders of magnitude (Cr:95--99%;Pb:99%;Zn 95--99%; Cd:93--99%; Ni:75--94%). Combined effect of flow rate reduction and leachate concentration reduction results in a potential leaching rate reduction of five to seven orders of magnitude. Iron-silica treatment may be developed into an efficient containment technology, provided the silica gel integrity does not change with time.« less

  11. Distribution of heavy metals and hydrocarbon contents in an alfisol contaminated with waste-lubricating oil amended with organic wastes.

    PubMed

    Adesodun, J K; Mbagwu, J S C

    2008-05-01

    Contamination of soil and groundwater with mineral oil-based products is among the most common sources of pollution in Nigeria. This study evaluated the distribution of some heavy metals and hydrocarbon content in soil contaminated with waste-lubricating oil (spent oil), and the effectiveness of some abundantly available organic wastes from animal source as remediation alternative to the expensive chemical and physical methods. The main-plot treatments include control (C), cow dung (CD), poultry manure (PM) and pig waste (PW) applied at 10Mg/ha each; while the sub-plot treatments were control (0%), 0.5%, 2.5% and 5% spent oil (SP) applied at 10, 50 and 100 Mg/ha, respectively arranged in a split-plot in Randomized Complete Block Design (RCBD) with four replications. These treatments were applied once each year for two consecutive years. Soil samples (0-20 cm) were collected at 3, 6 and 12 months each year and analyzed for Cr, Ni, Pb and Zn, while the residual total hydrocarbon content (THC) was determined at the end of the 2 years study. Results show significant (p<0.05) accumulation of these metals with spent oil pollution following the sequence 5%SP>2.5%SP>0.5%SP, indicating higher metal pollution with increase in oil pollution. General distribution of Cr, Ni, Pb and Zn, relative to sampling periods, followed 3 months>6 months>12 months in the 1st year indicating reduction in metal levels with time. The trend for 2nd year indicated higher accumulation of Cr and Ni in 12 months, while Pb and Zn decreased with time of sampling. The results further showed higher accumulation of Cr followed by Zn, relative to other metals, with oil pollution. However, addition of organic wastes to the oil polluted soils significantly (p<0.05) led to reduction in the levels of the metals and THC following the order PM>PW>CD.

  12. Metal concentration in the tourist beaches of South Durban: An industrial hub of South Africa.

    PubMed

    Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Kunene, N W; Villegas, Lorena Elizabeth Campos

    2017-04-15

    South Durban basin of South Africa has witnessed tremendous urban, industrial expansion and mass tourism impacts exerting significant pressure over marine environments. 43 sediment samples from 7 different beaches (Bluff beach; Ansteys beach; Brighton beach; Cutting beach; Isipingo beach; Tiger Rocks beach; Amanzimtoti beach) were analyzed for acid leachable metals (ALMs) Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg. The metal concentrations found in all the beaches were higher than the background reference values (avg. in μgg -1 ) for Cr (223-352), Cu (27.67-42.10), Mo (3.11-4.70), Ni (93-118), Co (45.52-52.44), Zn (31.26-57.01) and Hg (1.13-2.36) suggesting the influence of industrial effluents and harbor activities in this region. Calculated geochemical indexes revealed that extreme contamination of Cr and Hg in all the beach sediments and high Cr and Ni levels poses adverse biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Labile trace metal contribution of the runoff collector to a semi-urban river.

    PubMed

    Villanueva, J D; Granger, D; Binet, G; Litrico, X; Huneau, F; Peyraube, N; Le Coustumer, P

    2016-06-01

    In this study, the distribution of labile trace metals (LTMs; Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a semi-urban runoff collector was examined to assess its influence to a natural aqueous system (Jalle River, Bordeaux, France). This river is of high importance as it is part of a natural reserve dedicated to conserving aquatic flora and fauna. Two sampling campaigns with a differing precipitation condition (period 1, spring season; and period 2, summer season associated with storms) were considered. Precipitation and water flow were monitored. The collector is active as it is receptive to precipitation changes. It influences the river through discharging water, contributing LTMs, and channeling the mass fluxes. During period 2 where precipitation rate is higher, 25 % of the total water volume of the river was supplied by the collector. LTMs were detected at the collector. Measurements were done by using diffusive gradient in thin films (DGT) probes deployed during 1, 7, and 14 days in each period. The results showed that in an instantaneous period (day 1 or D1), most of these trace metals are above the environmental quality standards (Cd, Co, Cr, and Zn). The coefficient of determination (r (2) > 0.50) employed confirmed that the LTM concentrations in the downstream can be explained by the collector. While Co and Cr are from the upstream and the collector, Cd, Cu, and Zn are mostly provided by the collector. Ni, however, is mostly delivered by the upstream. Using the concentrations observed, the river can be affected by the collector in varying ways: (1) adding effect, resulting from the mix of the upstream and the collector (if upstream ˂ downstream); (2) diluted (if upstream ˃ downstream); and (3) conservative or unaffected (upstream ~ downstream). The range of LTM mass fluxes that the collector holds are as follows: (1) limited range or ˂10 g/day, Cd (0.04-1.75 g/day), Co (0.08-05.42 g/day), Ni (0.06-1.45 g/day), and Pb (0.08-9.89 g/day); (2) moderate range or 11-50 g/day, Cr (0.23-33.26 g/day) and Cu (0.77-37.88 g/day); and (3) wide range or ˃50 g/day, Zn (26.33-676.61 g/day). Hence, the collector is a major source of concern in terms of contamination. This is as the water with considerable LTMs is channeled openly to the river without any treatment.

  14. Spatial assessment of potential ecological risk of heavy metals in soils from informal e-waste recycling in Ghana.

    PubMed

    Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson Manukure; Ephraim, James

    2017-01-01

    The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn). Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area.

  15. Spatial assessment of potential ecological risk of heavy metals in soils from informal e-waste recycling in Ghana

    PubMed Central

    Greve, Klaus; Atiemo, Sampson Manukure

    2017-01-01

    The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb) and zinc (Zn). Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area. PMID:29056034

  16. Cation hydrolysis and the regulation of trace metal composition in seawater

    NASA Astrophysics Data System (ADS)

    Kumar, M. Dileep

    1987-08-01

    Thermodynamic calculations have been performed for cation hydrolysis, including temperatures from 2°C to the high values of significance near Mid-Oceanic Ridge Systems (MORS). Eighteen elements with wide range of residence times ( t) in seawater (Mn, Th, Al, Bi, Ce, Co, Cr(III), Fe, Nd, Pb, Sc, Sm, Ag, Cd, Cu, Hg, Ni and Zn) have been considered. A model for the regulation of trace metal composition in seawater by cation hydrolytic processes, including those at MORS, is presented. Results show an increase in the abundance of neutral metal hydroxyl species with increase in temperature. During hydrothermal mixing, as the temperature increases, transformation from lower positive hydroxyl complexes to higher or neutral complexes would occur for Cd, Ce, Co, Cr(III), Cu, Mn, Nd, Ni, Pb, Sm and Zn. pH values for adsorption of the metal ion onto solid surfaces have direct relation with pH values of hydrolysis. Co, Mn and Pb could be oxidized to higher states (at Mn-oxide surfaces) that would occur even at MORS. Ce can also be oxidized at 25°C. Solubility calculations show that Al, Bi, Cr(III), Sc, Fe and Th are saturated while Ce, Nd and Sm are not with respect to their oxyhydroxide solids at their concentrations in seawater at 25°C. Cu, Hg, Ni and Zn reach saturation equilibrium at 250°C, whereas Co, Mn and Pb exhibit unsaturation. The results suggest an increase in scavenging capacity of a cation with rise in temperature.

  17. Long-term records of trace metal content of western Mediterranean seagrass (Posidonia oceanica) meadows: Natural and anthropogenic contributions

    NASA Astrophysics Data System (ADS)

    Tovar-SáNchez, Antonio; Serón, Juan; Marbã, Núria; Arrieta, Jesús M.; Duarte, Carlos M.

    2010-06-01

    We discuss Al, Ag, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn contents in seagrass Posidonia oceanica rhizomes from the Balearic Archipelago for the last 3 decades. Time series of metal concentration in P. oceanica were measured by dating rhizomes using retrospective procedures. The highest concentrations of Al (174.73 μg g-1), Cd (3.56 μg g-1), Cr (1.34 μg g-1), Cu (32.15 μg g-1), Pb (8.51 μg g-1), and Zn (107.14 μg g-1) were measured in meadows located around the largest and most densely populated island (Mallorca Island). There was a general tendency for Ag concentration to decrease with time (up to 80% from 1990 to 2005 in sample from Mallorca Island), which could be attributed to a reduction of the anthropogenic sources. Nickel and Zn concentrations were the unique elements that showed a consistent temporal trend in all samples, increasing their concentrations since year 1996 at all studied stations; this trend matched with the time series of UV-absorbing aerosols particles in the air (i.e., aerosols index) over the Mediterranean region (r2: 0.78, p < 0.001 for Cabrera Island), suggesting that P. oceanica could be an efficient recorder of dust events. A comparison of enrichment factors in rhizomes relative to average crustal material indicates that suspended aerosol is also the most likely source for Cr and Fe to P. oceanica.

  18. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  19. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines.

    PubMed

    Navarrete, Ian A; Gabiana, Christella C; Dumo, Joan Ruby E; Salmo, Severino G; Guzman, Maria Aileen Leah G; Valera, Nestor S; Espiritu, Emilyn Q

    2017-04-01

    Limited data have been published on the chemistry of urban soils and vegetation in the Philippines. The aim of this study is to quantify the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in soils and vegetation in the urban landscape of Quezon City, Philippines, and to elucidate the relationships between soil properties and the concentration of heavy metals pertaining to different land uses [i.e., protected forest (LM), park and wildlife area (PA), landfill (PL), urban poor residential and industrial areas (RA), and commercial areas (CA)]. Soil (0-15 cm) and senescent plant leaves were collected and were analyzed for soil properties and heavy metal concentrations. Results revealed that the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in urban soils were higher in areas where anthropogenic activities or disturbance (PL, RA, and CA) were dominant as compared to the less disturbed areas (LM and PA). Organic matter and available phosphorous were strongly correlated with heavy metal concentrations, suggesting that heavy metal concentrations were primarily controlled by these soil properties. The average foliar heavy metal concentrations varied, ranging from 0 to 0.4 mg/kg for Cd, 0-10 mg/kg for Cr, 2-22 mg/kg for Cu, 0-5 mg/kg for Pb, and 11-250 mg/kg for Zn. The concentrations of Cd and Cr exceeded the critical threshold concentrations in some plants. Leaves of plants growing in PL (i.e., landfill) showed the highest levels of heavy metal contamination. Our results revealed that anthropogenic activities and disturbance caused by the rapid urbanization of the city are major contributors to the heavy metal accumulation and persistence in the soils in these areas.

  1. Ecological risk assessment of a coastal zone in Southern Vietnam: Spatial distribution and content of heavy metals in water and surface sediments of the Thi Vai Estuary and Can Gio Mangrove Forest.

    PubMed

    Costa-Böddeker, Sandra; Hoelzmann, Philipp; Thuyên, Lê Xuân; Huy, Hoang Duc; Nguyen, Hoang Anh; Richter, Otto; Schwalb, Antje

    2017-01-30

    Enrichment of heavy metals was assessed in the Thi Vai Estuary and in the Can Gio Mangrove Forest (SE, Vietnam). Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn contents in water and in sediments were measured. Total organic carbon, nitrogen, phosphorus and C/N ratios were determined. Cu and Cr values were higher than threshold effect level of toxicity, while Ni exceeded probable effect level, indicating the risk of probable toxicity effects. Enrichment factors (EF), contamination factor (CF) and Geo-accumulation index (I-geo) were determined. CF reveals moderate to considerable pollution with Cr and Ni. EF suggests anthropogenic sources of Cr, Cu and Ni. I-geo indicates low contamination with Co, Cu and Zn and moderate contamination with Cr and Ni. Overall metal contents were lower than expected for this highly industrialized region, probably due to dilution, suggesting that erosion rates and hydrodynamics may also play a role in metal contents distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys.

    PubMed

    Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun

    2017-04-01

    The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.

  3. Determination of mineral contents of wild Boletus edulis mushroom and its edible safety assessment.

    PubMed

    Su, Jiuyan; Zhang, Ji; Li, Jieqing; Li, Tao; Liu, Honggao; Wang, Yuanzhong

    2018-04-06

    This study aimed to determine the contents of main mineral elements of wild Boletus edulis and to assess its edible safety, which may provide scientific evidence for the utilization of this species. Fourteen mineral contents (Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Sr, V and Zn) in the caps and stipes of B. edulis as well as the corresponding surface soils collected from nine different geographic regions in Yunnan Province, southwest China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrometer (ICP-AES) after microwave digestion. Measurement data were analyzed using variance and Pearson correlation analysis. Edible safety was evaluated according to the provisionally tolerable weekly intake (PTWI) of heavy metals recommended by United Nations Food and Agriculture Organization and World Health Organization (FAO/WHO). Mineral contents were significantly different with the variance of collection areas. B. edulis showed relative abundant contents of Ca, Fe, Mg and Na, followed by Ba, Cr, Cu, Mn and Zn, and the elements with the lower content less were Cd, Co, Ni, Sr and V. The elements accumulation differed significantly in caps and stipes. Among them, Cd and Zn were bioconcentrated (BCF > 1) while others were bioexcluded (BCF < 1). The mineral contents in B. edulis and its surface soil were positively related, indicating that the elements accumulation level was related to soil background. In addition, from the perspective of food safety, if an adult (60 kg) eats 300 g fresh B. edulis per week, the intake of Cd in most of tested mushrooms were lower than PTWI value whereas the Cd intakes in some other samples were higher than this standard. The results indicated that the main mineral contents in B. edulis were significantly different with respect to geographical distribution, and the Cd intake in a few of regions was higher than the acceptable intakes with a potential risk.

  4. Heavy metals in apple orchard soils and fruits and their health risks in Liaodong Peninsula, Northeast China.

    PubMed

    Wang, Quanying; Liu, Jingshuang; Cheng, Shuai

    2015-01-01

    This study aimed to assess the heavy metal concentrations in soils and fruits and their possible human health risk in apple orchards of Liaodong Peninsula-a well-known fruit-producing area of China. The soil pollution index (PI) and health risk assessment methods (daily intake of metals (DIM) and health risk index (HRI)) were employed to explore the soil pollution levels and the potential health hazards of heavy metals in fruits. The results showed that all orchard soils were with low PI values (PI ≤1) for Cd and Zn, while 2.78 and 5.56% of the soil samples exceeded the allowable levels of Cr and Cu for orchard soil, respectively. The Cd, Cu, and Zn concentrations for the apple flesh samples were all lower than the national maximum permissible concentrations. While 6.34% of apple peel samples for Cd, 76.5% of apple peel samples and 65.6% of apple flesh samples for Cr, and 28.1% of apple peel samples for Zn exceeded the national maximum permissible levels, respectively. Furthermore, both the DIM and the HRI values for all the apple flesh samples were within the safe limits, indicating that no health risk was found for heavy metals in the fruits of the study area. In order to protect the consumers from fruits that might cause health risks, results from this study suggested that the regular survey of heavy metal pollution levels should be conducted for the orchards of Liaodong Peninsula.

  5. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  6. Concentrations of trace elements in marine fish and its risk assessment in Malaysia.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke

    2005-01-01

    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.

  7. Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant "Kolubara".

    PubMed

    Krgović, Rada; Trifković, Jelena; Milojković-Opsenica, Dušanka; Manojlović, Dragan; Marković, Marijana; Mutić, Jelena

    2015-07-01

    The objectives of this study were to determine the concentrations of Pb, Cd, As, Cr, Cu, Co, Ni, Zn, Ba, Fe, Al and Ag in Erigeron canadensis L. growing on fly ash landfill of power plant "Kolubara", Serbia. The content of each element was determined in every part of plant separately (root, stalk and inflorescence) and correlated with the content of elements in each phase of sequential extraction of fly ash. In order to ambiguously select the factors that are able to decidedly characterize the particular part of plant, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed. The bioconcentration factors and translocation factors for each metal were calculated in order to determine the feasibility of the use of plant E. canadensis L. for phytoremediation purpose. There were strong positive correlations between metals in every part of plant samples, and metals from pseudo total form of sequential extraction indicate that the bioavailability of elements in fly ash is similarly correlated with total form. Retained Al, Fe, Cr and Co in the root indicate its suitability for phytostabilization. This plant takes up Cd and Zn from the soil (bioconcentration factors (BCFs) greater than 1), transporting them through the stalk into the inflorescence (translocation factors (TFs) higher than 1). Regarding its dominance in vegetation cover and abundance, E. canadensis L. can be considered adequate for phytoextraction of Cd and Zn from coal ash landfills at Kolubara.

  8. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system.

    PubMed

    Xia, Fang; Qu, Liyin; Wang, Ting; Luo, Lili; Chen, Han; Dahlgren, Randy A; Zhang, Minghua; Mei, Kun; Huang, Hong

    2018-09-01

    Heavy metal pollution of aquatic environments in rapidly developing industrial regions is of considerable global concern due to its potential to cause serious harm to aquatic ecosystems and human health. This study assessed heavy metal contamination of sediments in a highly industrialized urban watershed of eastern China containing several historically unregulated manufacturing enterprises. Total concentrations and solid-phase fractionation of Cu, Zn, Pb, Cr and Cd were investigated for 39 river sediments using multivariate statistical analysis and geographically weighted regression (GWR) methods to quantitatively examine the relationship between land use and heavy metal pollution at the watershed scale. Results showed distinct spatial patterns of heavy metal contamination within the watershed, such as higher concentrations of Zn, Pb and Cd in the southwest and higher Cu concentration in the east, indicating links to specific pollution sources within the watershed. Correlation and PCA analyses revealed that Zn, Pb and Cd were dominantly contributed by anthropogenic activities; Cu originated from both industrial and agricultural sources; and Cr has been altered by recent pollution control strategies. The GWR model indicated that several heavy metal fractions were strongly correlated with industrial land proportion and this correlation varied with the level of industrialization as demonstrated by variations in local GWR R 2 values. This study provides important information for assessing heavy metal contaminated areas, identifying heavy metal pollutant sources, and developing regional-scale remediation strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect.

    PubMed

    Jayaprakash, M; Kumar, R Senthil; Giridharan, L; Sujitha, S B; Sarkar, S K; Jonathan, M P

    2015-10-01

    Accumulation of trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were investigated in water, sediment (n=20) along with six fish of diverse feeding guilds (Sillago sihama, Liza parsia, Etroplus suratensis, Oreochromis mossambicus, Arius parkii and Gerres oyena) from the Ennore creek, northern part of Chennai metropolitan megacity, southeast coast of India. Dissolved trace metals (DTMs) in surface water samples and total trace metals (TTMs) in surface sediments (top 0-10cm) indicate that concentration pattern of metals was higher in the discharge point of the river/channels entering the main creek. The maximum mean values of DTMs exhibited the following decreasing order (expressed in µg/L): Fe (1698)>Mn (24)>Zn (14.50)>Pb (13.89)>Ni (6.73)>Cu (3.53)>Co (3.04)>Cr (2.01) whereas the trend is somewhat different in sediments (µgg(-1)): Fe (4300)>Mn (640)>Cr (383)>Zn (155)>Cu (102)>Ni (35)>Pb (32)>Cd (0.51) are mainly due to the industrial complexes right on the banks of the river/channels. Species-specific heterogeneous patterns of tissue metal loads were apparent and the overall metal enrichment exhibited the following decreasing order (expressed in µgg(-1)): Cu (7.33)>Fe (6.53)>Zn (4.91)>Cr (1.67)>Pb (1.33)>Ni (0.44)>Mn (0.43)>Co (0.36)>Cd (0.11). This indicates that metals are absorbed onto the different organs, which is also endorsed by the calculated values of bioaccumulation factor (BAFs) (avg. muscle 117, gill 126, liver 123, intestine 118) in fishes. The high calculated biota sediment accumulation factor (BSAF) (0.437) for the species Arius parkii is considered to be a potential bioindicator in this region. The enrichment of trace metals is also supported by the association of metals in water, sediments and different body organs (muscle, gill, liver, intestine) of fish samples. Comparative studies with other coastal regions indicate considerable enrichment of DTMs & TTMs in sediments as well as in various organs of fish samples. Holistic spatial, temporal monitoring and comprehensive regional strategies are required to prevent health risks and ensure nutritional safety conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. [Speciation and Risk Characteristics of Heavy Metals in the Sediments of the Yangtze Estuary].

    PubMed

    Yin, Su; Feng, Cheng-hong; Li, Yang-yang; Yin, Li-feng; Shen, Zhen-yao

    2016-03-15

    Based on the investigation on the distribution of total contents and speciation of 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the surface sediments at 14 typical sites of the Yangtze Estuary during three hydrological seasons ( wet, normal, and dry seasons) , this study applied equilibrium partitioning approach to build the sediment quality guidelines (SQGs) of the Yangtze Estuary, and assessed ecological risks of the heavy metals. The relationship between ecological risk and speciation of heavy metals was also revealed. The results showed that, except for Cd, the residual fraction was the main speciation of heavy metals, especially for As, Cr and Hg, their residual fraction proportions were all over 90%. The sediment quality guidelines of the Yangtze Estuary for As, Cd, Cr, Cu, Hg, Ni, Pb, Zn were 43.29, 0.672, 79.65, 19.08, 0.569, 339.09, 30.87, 411.36 µg · g⁻¹, respectively. Cu had the highest ecological risk to aquatic organisms. The upstream of Yangtze Estuary was mainly affected by Yangtze River runoff, where the risks were relatively high in wet season and relatively low in normal and dry seasons. However, the downstream of the estuary was mainly affected by municipal sewage of cities like Shanghai, where the risks were relatively high, especially in normal and dry seasons. There were three different relationships between the ecological risks and speciation of the eight heavy metals.

  11. Trace-element interactions in Rook Corvus frugilegus eggshells along an urbanisation gradient.

    PubMed

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-11-01

    Concentrations of seven trace elements [arsenic (As), chromium (Cr), nickel (Ni), lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd)] in the eggshells of Rooks Corvus frugilegus, a focal bird species of Eurasian agricultural environments, are increased above background levels and exceed levels of toxicological concern. The concentrations of Cr, Ni, Pb, Cu, and Zn are greater in eggshells from urban rookeries (large cities) compared with rural areas (small towns and villages) suggesting an urbanisation gradient effect among eggs laid by females. In the present study, the investigators assessed whether the pattern of relationships among the seven trace elements in eggshells change along an urbanisation/pollution gradient. Surprisingly, we found that eggshells with the greatest contaminant burden, i.e., from urban rookeries, showed far fewer significant relationships (n = 4) than eggshells from villages (n = 10), small towns (n = 6), or rural areas (n = 8). In most cases, the relationships were positive. As was an exception: Its concentration was negatively correlated with Ni and Cd levels in eggshells from small town rookeries (where As levels were the highest), whereas eggshells from villages (with a lower As level) showed positive relationships between As and Cd. Our findings suggest that at low to intermediate levels, interactions between the trace elements in Rook eggshells are of a synergistic character and appear to operate as parallel coaccumulation. A habitat-specific excess of some elements (primarily Cr, Ni, Cu, As) suggests their more competitively selective sequestration.

  12. Cement Dust Exposure and Perturbations in Some Elements and Lung and Liver Functions of Cement Factory Workers

    PubMed Central

    Richard, Egbe Edmund; Augusta Chinyere, Nsonwu-Anyanwu; Jeremaiah, Offor Sunday; Opara, Usoro Chinyere Adanna; Henrieta, Etukudo Maise; Ifunanya, Egbe Deborah

    2016-01-01

    Background. Cement dust inhalation is associated with deleterious health effects. The impact of cement dust exposure on the peak expiratory flow rate (PEFR), liver function, and some serum elements in workers and residents near cement factory were assessed. Methods. Two hundred and ten subjects (50 workers, 60 residents, and 100 controls) aged 18–60 years were studied. PEFR, liver function {aspartate and alanine transaminases (AST and ALT) and total and conjugated bilirubin (TB and CB)}, and serum elements {lead (Pb), copper (Cu), manganese (Mn), iron (Fe), cadmium (Cd), selenium (Se), chromium (Cr), zinc (Zn), and arsenic (As)} were determined using peak flow meter, colorimetry, and atomic absorption spectrometry, respectively. Data were analysed using ANOVA and correlation at p = 0.05. Results. The ALT, TB, CB, Pb, As, Cd, Cr, Se, Mn, and Cu were significantly higher and PEFR, Fe, and Zn lower in workers and residents compared to controls (p < 0.05). Higher levels of ALT, AST, and Fe and lower levels of Pb, Cd, Cr, Se, Mn, and Cu were seen in cement workers compared to residents (p < 0.05). Negative correlation was observed between duration of exposure and PEFR (r = −0.416, p = 0.016) in cement workers. Conclusions. Cement dust inhalation may be associated with alterations in serum elements levels and lung and liver functions while long term exposure lowers peak expiratory flow rate. PMID:26981118

  13. Distribution of Cd, Pb, Zn and Cu and their chemical speciations in soils from a peri-smelter area in northeast China

    NASA Astrophysics Data System (ADS)

    Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng

    2008-07-01

    An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.

  14. Heavy metals in soils and crops in Southeast Asia. 1. Peninsular Malaysia.

    PubMed

    Zarcinas, Bernhard A; Ishak, Che Fauziah; McLaughlin, Mike J; Cozens, Gill

    2004-12-01

    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).

  15. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China

    PubMed Central

    Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan

    2017-01-01

    Land use of sewage sludge is the primary disposal method in Shanxi, accounting for 42.66% of all. To determine the ecological risk of heavy metals in sewage sludge, contents of seven heavy metals in sewage sludge from 9 municipal waste water treatment plants (WWTPs) that had the highest application for land use were determined. The order of the measured concentrations was: Zn > Cr > Cu > Ni > Pb > As > Cd, and all heavy metals contents were within the threshold limit values of the Chinese Control Standards for Pollutants in Sludge from Agriculture Use (GB4284-84). Four indices were used to assess the pollution and the ecological risk of heavy metals. By the mean values of the geoaccumulation index (Igeo), heavy metals were ranked in the following order: Cd > Zn > Cu > As > Cr > Ni > Pb. The values showed that the pollution of Zn in station 3 and Cd in station 1, 2, 3, 4, 8 and 9 were heavily; Cu in station 8 and 9, Zn in station 1, 2, 4, 8 and 9 and Cd in station 5 and 7 were moderately to heavily, and the accumulation of other heavy metals were not significant. The single-factor pollution index (PI) suggested that none of the stations had heavy metals contamination, except for Cu in station 9, Zn in station 3 and 8, and Cd in station 1 and 9, which were at a moderate level. According to the results of the Nemerow’s synthetic pollution index (PN), sewage sludge from all stations was safe for land use with respect to heavy metals contamination, except for stations 3, 8 and 9, which were at the warning line. The monomial potential ecological risk coefficient (Eri) revealed that heavy metals ecological risks in most stations were low. However, station 9 had a moderate risk for Cu; station 6 had a moderate risk, stations 5 and 7 had high risk, other stations had very high risk for Cd. According to the results of the potential ecological risk index (RI), station 1, 8 and 9 had high risk; station 2, 3, 4, 5 and 7 had a moderate risk, and station 6 had a low risk. The preliminary results indicated that the potential risk of land exposure to heavy metals in sewage sludge was relatively low, with Zn and Cd as the main contributor to the ecological risk for the applying of sewage sludge on land. Additionally, stations 3, 8 and 9 require more attention regarding the land applications related to heavy metals pollution. PMID:28753993

  16. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China.

    PubMed

    Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan

    2017-07-21

    Land use of sewage sludge is the primary disposal method in Shanxi, accounting for 42.66% of all. To determine the ecological risk of heavy metals in sewage sludge, contents of seven heavy metals in sewage sludge from 9 municipal waste water treatment plants (WWTPs) that had the highest application for land use were determined. The order of the measured concentrations was: Zn > Cr > Cu > Ni > Pb > As > Cd, and all heavy metals contents were within the threshold limit values of the Chinese Control Standards for Pollutants in Sludge from Agriculture Use (GB4284-84). Four indices were used to assess the pollution and the ecological risk of heavy metals. By the mean values of the geoaccumulation index (I geo ), heavy metals were ranked in the following order: Cd > Zn > Cu > As > Cr > Ni > Pb. The values showed that the pollution of Zn in station 3 and Cd in station 1, 2, 3, 4, 8 and 9 were heavily; Cu in station 8 and 9, Zn in station 1, 2, 4, 8 and 9 and Cd in station 5 and 7 were moderately to heavily, and the accumulation of other heavy metals were not significant. The single-factor pollution index (PI) suggested that none of the stations had heavy metals contamination, except for Cu in station 9, Zn in station 3 and 8, and Cd in station 1 and 9, which were at a moderate level. According to the results of the Nemerow's synthetic pollution index (PN), sewage sludge from all stations was safe for land use with respect to heavy metals contamination, except for stations 3, 8 and 9, which were at the warning line. The monomial potential ecological risk coefficient (Eri) revealed that heavy metals ecological risks in most stations were low. However, station 9 had a moderate risk for Cu; station 6 had a moderate risk, stations 5 and 7 had high risk, other stations had very high risk for Cd. According to the results of the potential ecological risk index (RI), station 1, 8 and 9 had high risk; station 2, 3, 4, 5 and 7 had a moderate risk, and station 6 had a low risk. The preliminary results indicated that the potential risk of land exposure to heavy metals in sewage sludge was relatively low, with Zn and Cd as the main contributor to the ecological risk for the applying of sewage sludge on land. Additionally, stations 3, 8 and 9 require more attention regarding the land applications related to heavy metals pollution.

  17. Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils of different land uses in Erbil metropolis, Kurdistan Region, Iraq.

    PubMed

    Amjadian, Keyvan; Sacchi, Elisa; Rastegari Mehr, Meisam

    2016-11-01

    Urban soil contamination is a growing concern for the potential health impact on the increasing number of people living in these areas. In this study, the concentration, the distribution, the contamination levels, and the role of land use were investigated in Erbil metropolis, the capital of Iraqi Kurdistan. A total of 74 soil samples were collected, treated, and analyzed for their physicochemical properties, and for 7 heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) and 16 PAH contents. High concentrations, especially of Cd, Cu Pb, and Zn, were found. The Geoaccumulation index (I geo ), along with correlation coefficients and principal component analysis (PCA) showed that Cd, Cu, Pb, and Zn have similar behaviors and spatial distribution patterns. Heavy traffic density mainly contributed to the high concentrations of these metals. The total concentration of ∑PAHs ranged from 24.26 to 6129.14 ng/g with a mean of 2296.1 ng/g. The PAH pattern was dominated by 4- and 5-ring PAHs, while diagnostic ratios and PCA indicated that the main sources of PAHs were pyrogenic. The toxic equivalent (TEQ) values ranged from 3.26 to 362.84 ng/g, with higher values in central parts of the city. A statistically significant difference in As, Cd, Cu, Pb, Zn, and ∑PAH concentrations between different land uses was observed. The highest As concentrations were found in agricultural areas while roadside, commercial, and industrial areas had the highest Cd, Cu, Pb, Zn, and ∑PAH contents.

  18. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    PubMed

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  19. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag.

    PubMed

    Zhou, Xian; Zhou, Min; Wu, Xian; Han, Yi; Geng, Junjun; Wang, Teng; Wan, Sha; Hou, Haobo

    2017-09-01

    Fly ash is a hazardous byproduct of municipal solid waste incineration (MSWI). Cementitious material that is based on ground-granulated blast furnace slag (GGBFS) has been tested and proposed as a binder to stabilize Pb, Cd, and Zn in MSWI fly ash (FA). Cr, however, still easily leaches from MSWI FA. Different reagents, such as ascorbic acid (VC), NaAlO 2 , and trisodium salt nonahydrate, were investigated as potential Cr stabilizers. The results of the toxicity characteristic leaching procedure (TCLP) showed that VC significantly improved the stabilization of Cr via the reduction of Cr(VI) to Cr(III). VC, however, could interfere with the hydration process. Most available Cr was transformed into stable Cr forms at the optimum VC content of 2 wt%. Cr leaching was strongly pH dependent and could be represented by a quintic polynomial model. The results of X-ray diffraction and scanning electron microscopy-energy dispersive analysis revealed that hollow spheres in raw FA were partially filled with hydration products, resulting in the dense and homogeneous microstructure of the solidified samples. The crystal structures of C-S-H and ettringite retained Zn and Cr ions. In summary, GGBFS-based cementitious material with the low addition of 2 wt% VC effectively immobilizes Cr-bearing MSWI FA. Copyright © 2017. Published by Elsevier Ltd.

  20. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China.

    PubMed

    Liu, Hongbo; Yang, Jian; Gan, Juli

    2010-11-01

    Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.

  1. [Distribution and Pollution Assessment of Nutrient and Heavy Metals in Surface Sediments from Lake Gehu in Southern Jiangsu Province, China].

    PubMed

    Xiong, Chun-hui; Zhagn, Rui-lei; Wu, Xiao-dong; Feng, Li-hui; Wang, Li-qing

    2016-03-15

    This study investigated the horizontal distribution characteristics of nutrients and heavy metals (Zn, As, Cr, Cu, Ni, Pb, Cd and Hg) in January, 2014, and assessed the potential ecological risk of Lake Gehu. It was found that the average contents of TN and TP were 2,207.94 and 708.62 mg · kg⁻¹ respectively. TN and TP contents of the sediments at the centre were significantly highei than those in the north, while the TN content in the south was also significantly higher than that in the north of Lake Gehu. The average contents of Zn, As, Cr, Cu, Ni, Pb, Cd, Hg were 766.59, 350.66, 307.98, 59.54, 122.67, 168.97, 2.34, 0.41 mg · kg⁻¹, respectively. The content of Cu at the centre was significantly higher than that in the north, and the Zn content at the centre was significantly greater than that in the south of Lake Gehu, however the difference in the content of other heavy metals at these three areas was not significant. Furthermore, the obvious correlation between elements and granularity was only found in the aspect of TP, Cu and Hg. The comprehensive pollution index (PI) indicated that the Lake Gehu was heavily polluted, especially the centre and south areas. The potential ecological risk index (RI) showed that Cd, As and Hg had caused serious pollution in Lake Gehu while the other heavy metals only induced slight or medium pollution. According to the contribution of Cd, As and Hg to RI, it was concluded that the sediments in Lake Gehu were at a serious potential ecological risk.

  2. Spectroscopic geochemical study of vanadiferous marine sediments of the Gibellini claims, southern Fish Creek Range, Eureka County, Nevada

    USGS Publications Warehouse

    Böhlke, J.K.; Radtke, A.S.; Heropoulos, Chris; Lamothe, P.J.

    1981-01-01

    Samples of cuttings from three drill holes in the Gibellini claims were analyzed by emission spectroscopic techniques for a large suite of major and trace elements. Unoxidized siliceous "black shale" from drill hole NGA 7 is strongly enriched in Cd, Mo, Sb, Se, V, and Zn, and also contains relatively high concentrations of As, Ba, Cu, Ni, and Tl compared with nonmetalliferous shales. Analyses of 103 samples plotted against depth in drill holes NGA, NG31, and NGA7, and selected XRD data, show the following: 1. Groups of elements with distinct distribution patterns define most of major mineralogic components of the rocks. The "normal shale" component, which includes several detrital and authigenic phases, is indicated by covariations among Ti, Al, Fe, Na, Mg, K, B, Be, Co, Cr, Ga, La, Sc, Sr, and Zr. The shale component is diluted by varying amounts of the following minerals (and associated elements): silica (Si); dolomite (Mg, Ca, Mn, Sr); apatite (Ca, Be, Cr, La, Sr, Y); barite (Ba, Sr); sphalerite (Zn, Cd, Fe?); smithsonite (Cd, Co, Mn, Ni, Zn); bianchite (Cd, Ni, Zn) ; and bokite (V). Pyrite, gypsum, and jarosite were also identified.2. The highly siliceous kerogenous metalliferous Gibellini facies is underlain by argillaceous and (or) dolomitic rocks. The transition zone deduced from the chemical data is not well defined in all instances, but probably represents the bottom of the black shale deposit. 3. Oxidation has reached to variable depths up to at least 150 ft, and has caused profound changes in the distributions of the enriched metals. Molybdenum, Se, and V have been partially removed from the upper parts of the sections and are concentrated near or slightly above the base of the Gibellini facies. Cadmium, Ni, and Zn have been strongly leached and now occur at or below the base of the Gibellini facies. The variable depth of oxidation, the redistribution and separation of the metals, and the complex mineralogy of the deposit may make development of the claim complicated.

  3. Test of tree core sampling for screening of toxic elements in soils from a Norwegian site.

    PubMed

    Algreen, Mette; Rein, Arno; Legind, Charlotte N; Amundsen, Carl Einar; Karlson, Ulrich Gosewinkel; Trapp, Stefan

    2012-04-01

    Tree core samples have been used to delineate organic subsurface plumes. In 2009 and 2010, samples were taken at trees growing on a former dump site in Norway and analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averages (dw) 30 mg/kg for Zn, 2 mg/kg for Cu, and < 1 mg/kg for Cd, Cr, As and Ni. The concentrations in wood samples from the polluted test site were compared to those derived from a reference site. For all except one case, mean concentrations from the test site were higher than those from the reference site, but the difference was small and not always significant. Differences between tree species were usually higher than differences between reference and test site. Furthermore, all these elements occur naturally, and Cu, Ni, and Zn are essential minerals. Thus, all trees will have a natural background of these elements, and the occurrence alone does not indicate soil pollution. For the interpretation of the results, a comparison to wood samples from an unpolluted reference site with same species and similar soil conditions is required. This makes the tree core screening method less reliable for heavy metals than, e.g., for chlorinated solvents.

  4. Evaluating levels and health risk of heavy metals in exposed workers from surgical instrument manufacturing industries of Sialkot, Pakistan.

    PubMed

    Junaid, Muhammad; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem

    2016-09-01

    The study aimed to monitor heavy metal (chromium, Cr; cadmium, Cd; nickel, Ni; copper, Cu; lead, Pb; iron, Fe; manganese, Mn; and zinc, Zn) footprints in biological matrices (urine, whole blood, saliva, and hair), as well as in indoor industrial dust samples, and their toxic effects on oxidative stress and health risks in exposed workers. Overall, blood, urine, and saliva samples exhibited significantly higher concentrations of toxic metals in exposed workers (Cr; blood 16.30 μg/L, urine 58.15 μg/L, saliva 5.28 μg/L) than the control samples (Cr; blood 5.48 μg/L, urine 4.47 μg/L, saliva 2.46 μg/L). Indoor industrial dust samples also reported to have elevated heavy metal concentrations, as an example, Cr quantified with concentration of 299 mg/kg of dust, i.e., more than twice the level of Cr in household dust (136 mg/kg). Superoxide dismutase (SOD) level presented significant positive correlation (p ≤ 0.01) with Cr, Zn, and Cd (Cr > Zn > Cd) which is an indication of heavy metal's associated raised oxidative stress in exposed workers. Elevated average daily intake (ADI) of heavy metals resulted in cumulative hazard quotient (HQ) range of 2.97-18.88 in workers of different surgical units; this is an alarming situation of health risk implications. Principal component analysis-multiple linear regression (PCA-MLR)-based pie charts represent that polishing and cutting sections exhibited highest metal inputs to the biological and environmental matrices than other sources. Heavy metal concentrations in biological matrices and dust samples showed a significant positive correlation between Cr in dust, urine, and saliva samples. Current study will help to generate comprehensive base line data of heavy metal status in biomatrices and dust from scientifically ignored industrial sector. Our findings can play vital role for health departments and industrial environmental management system (EMS) authorities in policy making and implementation.

  5. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa.

    PubMed

    Kamunda, Caspah; Mathuthu, Manny; Madhuku, Morgan

    2016-06-30

    The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10(-4) implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10(-4)). These carcinogenic risk values were both higher than acceptable values.

  6. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.

    PubMed

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-01-01

    The ability of Phragmites australis to take up heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn, and Hg) and other trace elements (As, Se, Ba), from estuarine sediments was investigated using a pilot plant experimental approach. Bioaccumulation (BCF) and translocation factors (TF) were calculated in vegetative and senescence periods for two populations of P. australis, from contaminated (MIC) and non-contaminated (GAL) estuarine sediments, respectively, both growing in estuarine contaminated sediment (RIA) from ría del Carmen y Boo, Santander Bay, Spain. The highest BCF values were obtained for Ni (0.43), Ba (0.43) Mo (0.36), Cr (0.35), and Cd (0.31) for plants collected from site GAL following the senescence period. The highest BCF values recorded for plants collected from MIC following the senescence period were for Mo (0.22) and Cu (0.22). Following senescence, plants collected from GAL and MIC presented TF>1 for Ni, Mo, Se, and Zn, and in addition plants collected from MIC presented TF>1 for Ba, Cr, and Mn. A substantial increase of Micedo's rhizosphere, six times higher than Galizano's rhizosphere, suggested adaptation to contaminated sediment. The evaluated communities of P. australis demonstrated their suitability for phytoremediation of heavy metals contaminated estuarine sediments.

  7. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa

    PubMed Central

    Kamunda, Caspah; Mathuthu, Manny; Madhuku, Morgan

    2016-01-01

    The study evaluates the health risk caused by heavy metals to the inhabitants of a gold mining area. In this study, 56 soil samples from five mine tailings and 17 from two mine villages were collected and analyzed for Asernic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu) and Zinc (Zn) using ICP-MS. Measured concentrations of these heavy metals were then used to calculate the health risk for adults and children. Their concentrations were such that Cr > Ni > As > Zn > Cu > Co > Pb > Hg > Cd, with As, Cr and Ni higher than permissible levels. For the adult population, the Hazard Index value for all pathways was found to be 2.13, making non-carcinogenic effects significant to the adult population. For children, the Hazard Index value was 43.80, a value >>1, which poses serious non-carcinogenic effect to children living in the gold mining area. The carcinogenic risk was found to be 1.7 × 10−4 implying that 1 person in every 5882 adults may be affected. In addition, for children, in every 2725 individuals, 1 child may be affected (3.67 × 10−4). These carcinogenic risk values were both higher than acceptable values. PMID:27376316

  8. Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran.

    PubMed

    Salahinejad, Maryam; Aflaki, Fereydoon

    2010-04-01

    The metal contents of eleven black tea samples, four cultivated in Iran and seven imported, and their tea infusions were determined. Twelve elements consisting toxic metals (Al, As, Pb, Cr, Cd, and Ni) and essential mineral elements (Fe, Zn, Cu, Mn, Ca, and Mg) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Al, Ca, Mg, and Mn ranged in black tea leaves at mg g(-1) levels, while Cr, Fe, Ni, Cu, Zn were at microg g(-1) levels. Analysis of variance showed no statistically significant differences among most elements determined in cultivated and imported black teas in Iran except for Ni and Cu. The extraction efficiency of each element into tea infusions was evaluated. The solubility of measured metals in infusion extracts varied widely and ranged from 0 to 59.3%. Among the studied elements, Cr, Pb, and Cd showed the lowest rates of solubility and Ni had the highest rates of solubility. The amount of toxic metals and essential mineral elements that one may take up through consumption of black tea infusion was estimated. The amount of realizing each element into tea infusions and acceptable daily intake, for safety consumption of black tea, was compared.

  9. [Spatial variations of heavy metals in precipitation at Mount Taishan region].

    PubMed

    Wang, Yan; Liu, Xiao-Huan; Jin, Ling-Ren; Yue, Tai-Xing; Wang, De-Zhong; Wang, Wen-Xing

    2007-11-01

    Zn, Al, Mn, Fe, Pb, Cu, Ni, Cr, As, Cd in rain samples collected from two sites at Mount Taishan region were determined by ICP-MS, to evaluate the spatial variation characteristics of heavy metals in precipitation. Individual rain events were sampled for one whole year from Jan. to Dec. 2006. High concentrations of heavy metals were found at both sites, indicating serious heavy metal pollution. Zn was the most abundant element, accounting for 54% - 57% of the total metals concentrations. Its volume-weighted mean concentrations of precipitation at Mt-top and Mt-foot sites were 92.94 microg/L and 70.41 microg/L respectively. The following elements were Fe, Al and Mn and their concentrations were much higher than toxic heavy metals (As, Cd and Cd) except Pb (8.04 microg/L and 7.79 microg/L at two sites respectively). Comparison results between two sites suggested that heavy metal characteristics of precipitation at two sites were different, due to the influences of different ambient air conditions. Correlation analysis between two sites showed that Al, Mn, Fe, As, Cd, Pb influenced by air mass origin greatly, while Ni, Cu, Zn affected by other different factors.

  10. Adsorption of trace elements from poultry litter by montmorillonite clay.

    PubMed

    Subramanian, Bhaskaran; Gupta, Gian

    2006-01-16

    Poultry litter (PL) is used as fertilizer on agricultural lands because of its high nutrient content. However, the litter also contains trace elements such as As, Cd, Cu, Pb, and Zn. On land application of PL, these trace elements may be absorbed by crops, leach into groundwater, or enter the aquatic system as run-off. The objective of this research was to study the effect of the addition of montmorillonite clay-mineral (CM) in reducing the release of trace elements from PL. Cd, Cu, and Zn showed significant decreases of 29, 34, and 22%, respectively, in PL aqueous leachate (compared with the control-PL without CM) on mixing with 0.05 g CM but no change in As, Co, and Cr concentrations was observed. Lead showed a significant increase in PL aqueous leachate on mixing with 0.2 g CM but Pb concentration was two orders of magnitude less than in CM aqueous leachate alone. On washing, the settled precipitate (PL+CM) in the centrifuge tubes with water (desorption study) most of the adsorbed metals (Cd 85%, Cu 61%, and Zn 100%) were released. The results of this study show that the addition of CM resulted in significant adsorption of Cd and Cu from PL.

  11. Heavy metals in urban soils of East St. Louis, IL, Part I: Total concentration of heavy metals in soils.

    PubMed

    Kaminski, M D; Landsberger, S

    2000-09-01

    The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.

  12. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.

  13. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico.

    PubMed

    Mendoza-Carranza, Manuel; Sepúlveda-Lozada, Alejandra; Dias-Ferreira, Celia; Geissen, Violette

    2016-03-01

    Despite the increasing impact of heavy metal pollution in southern Mexico due to urban growth and agricultural and petroleum activities, few studies have focused on the behavior and relationships of these pollutants in the biotic and abiotic components of aquatic environments. Here, we studied the bioaccumulation of heavy metals (Cd, Cr, Ni, Pb, V, Zn) in suspended load, sediment, primary producers, mollusks, crustaceans, and fish, in a deltaic lagoon habitat in the Tabasco coast, with the aim to assess the potential ecological risk in that important wetland. Zn showed the highest concentrations, e.g., in suspended load (mean of 159.58 mg kg(-1)) and aquatic consumers (15.43-171.71 mg kg(-1)), particularly Brachyura larvae and ichthyoplankton (112.22-171.71 mg kg(-1)), followed by omnivore Callinectes sp. crabs (113.81-128.07 mg kg(-1)). The highest bioconcentration factors (BCF) of Zn were observed for planktivore and omnivore crustaceans (3.06-3.08). Zn showed a pattern of distribution in the food web through two pathways: the pelagic (where the higher concentrations were found), and the benthic (marsh plants, sediment, mollusk, fish). The other heavy metals had lower occurrences in the food web. Nevertheless, high concentrations of Ni and Cr were found in phytoplankton and sediment (37.62-119.97 mg kg(-1)), and V in epiphytes (68.64 mg kg(-1)). Ni, Cr, and Cd concentrations in sediments surpassed international and national threshold values, and Cd entailed a "considerable" potential risk. These heavy metals are most likely transferred into the food web up to fishes through the benthic pathway. Most of the collected fishes are residents in this type of habitat and have commercial importance. Our results show that the total potential ecological risk in the area can be considered as "moderate". Nevertheless, heavy metal values were similar or surpassed the values from other highly industrialized tropical coastal regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Extent of Heavy Metal Pollution and Their Potential Health Risk in Topsoils of the Massively Urbanized District of Shanghai.

    PubMed

    Jaffar, Syed Taseer Abbas; Luo, Fan; Ye, Rong; Younas, Hassan; Hu, Xue-Feng; Chen, Long-Zhu

    2017-10-01

    Urbanization and industrialization increase the concentrations of heavy metals in soils, which affect human health. A total of 127 topsoil samples were collected from the massively urbanized and industrialized district of Shanghai: Baoshan District. The sampling sites were isolated based on the land-use practice: industrial area, roadside area, residential area, and agricultural area. The absolute concentrations of heavy metals (Zn, Cr, Ni, Mn, Cu, Pb, and Cd) were determined using atomic absorption spectrometry and compared with Shanghai and the National soil background values. The geoaccumulation index (Igeo) and Nemerow pollution index were used to determine the existence and severity of the pollution of heavy metals. Enrichment factor (EF) analysis, spatial variability of pollution, and multivariate statistical analyses also were employed to determine the anthropogenic loading of heavy metals, their spatial dependency, and correlation among their sources, respectively. Moreover, potential ecological risk and human health risk [carcinogenic risk (RI) and noncarcinogenic hazard (HI)] were evaluated. The average concentration of all the metals (accounted as 229, 128, 56, 719, 55, 119, and 0.3 mg kg -1 for Zn, Cr, Ni, Mn, Cu, Pb, and Cd, respectively) was many folds higher than the background values. The indices depicted that the pollution exists in all the sites and severity decreases in the following order: industrial soils > roadside soil > residential soils > agricultural soils. However, Zn, Pb, and Cd showed high levels of pollution in all the soils. The EF values suggested that the majority of heavy metals are anthropogenically loaded; spatial variability showed that the pollution is more concentrated in Songnan town; Pearson's correlation, principal component analysis (PCA), and cluster analysis suggested different sources of origin for the majority of the heavy metals. RI of Cr and Pb ranged between 2.8E-04 and 2.7E-07. However, HI was site-specific (only for Cr, Pb, Mn), and most of the sites were in Songnan town. This study could be used as a significant piece of information for management purposes to prevent heavy metal pollution and to protect human health.

  15. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  16. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J.R.; Price, M.; Thurston, J.

    The rates of uptake by a turtle grass (Thalassia testudinum) ecosystem of Cd, Cr, Cu, Ni, Pb, and Zn which were leached from sewage sludge by seawater were determined. The experimental design used aerated flowing seawater (8.4l min/sup -1/), which passed over a 0.1 m/sup 3/ bed of sewage sludge before traversing the model ecosystem.

  18. Environmental radiation and potential ecological risk levels in the intertidal zone of southern region of Tamil Nadu coast (HBRAs), India.

    PubMed

    Punniyakotti, J; Ponnusamy, V

    2018-02-01

    Natural radioactivity content and heavy metal concentration in the intertidal zone sand samples from the southern region of Tamil Nadu coast, India, have been analyzed using gamma ray spectrometer and ICP-OES, respectively. From gamma spectral analysis, the average radioactivity contents of 238 U, 232 Th, and 40 K in the intertidal zone sand samples are 12.13±4.21, 59.03±4.26, and 197.03±26.24Bq/kg, respectively. The average radioactivity content of 232 Th alone is higher than the world average value. From the heavy metal analysis, the average Cd, Cr, Cu, Ni, Pb, and Zn concentrations are 3.1, 80.24, 82.84, 23.66, 91.67, and 137.07ppm, respectively. The average Cr and Ni concentrations are lower, whereas other four metal (Cd, Cu, Pb, and Zn) concentrations are higher than world surface rock average values. From pollution assessment parameter values, the pollution level is "uncontaminated to moderately contaminated" in the study area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Environmental factors affecting soil metals near outlet roads in Poznań, Poland: impact of grain size, soil depth, and wind dispersal.

    PubMed

    Ciazela, Jakub; Siepak, Marcin

    2016-06-01

    We determined the Cd, Cr, Cu, Ni, Pb, and Zn concentrations in soil samples collected along the eight main outlet roads of Poznań. Samples were collected at distances of 1, 5, and 10 m from the roadway edges at depth intervals of 0-20 and 40-60 cm. The metal content was determined in seven grain size fractions. The highest metal concentrations were observed in the smallest fraction (<0.063 mm), which were up to four times higher than those in sand fractions. Soil Pb, Cu, and Zn (and to a lesser extent Ni, Cr, and Cd) all increased in relation to the geochemical background. At most sampling sites, metal concentrations decreased with increasing distance from roadway edges and increasing depth. In some locations, the accumulation of metals in soils appears to be strongly influenced by wind direction. Our survey findings should contribute in predicting the behavior of metals along outlet road, which is important by assessing sources for further migration of heavy metals into the groundwater, plants, and humans.

  20. Environmental background values of trace elements in sediments from the Jiaozhou Bay catchment, Qingdao, China.

    PubMed

    Xu, Fangjian; Liu, Zhaoqing; Yuan, Shengqiang; Zhang, Xilin; Sun, Zhilei; Xu, Feng; Jiang, Zuzhou; Li, Anchun; Yin, Xuebo

    2017-08-15

    Selected trace elements (As, Cr, Zn, Cu, Cd, Co, Pb and Ni) in 76 surface sediment samples collected from the rivers and the intertidal zone of Jiaozhou Bay (JZB) were evaluated to assess their environmental background values in the JZB catchment. Overall, the sediment quality in the area meets the China Marine Sediment Quality criteria. The background values (ranges) of the elements As, Cr, Zn, Cu, Cd, Co, Pb and Ni were, respectively, 8.28 (4.10-12.46), 67.96 (38.40-97.52), 56.80 (16.42-196.51), 19.13 (5.71-64.06), 0.10 (0.02-0.42), 6.51 (2.08-20.40), 17.97 (12.26-55.84) and 20.69 (10.43-30.95)mg/kg. The background values of most of the trace elements were lower than those in Chinese soil, the upper continental crust, global shales and global preindustrial sediments. The results may assist in defining future coastal and river management measures specifically targeted at monitoring trace element contamination in the JZB catchment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Distribution and relationships of trace metals in the isopod Saduria entomon and adjacent bottom sediments in the southern Baltic.

    PubMed

    Góral, Marta; Szefer, Piotr; Ciesielski, Tomasz; Warzocha, Jan

    2009-10-01

    The concentrations of Ag, Cd, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn in Saduria entomon and adjacent bottom sediments from the southern Baltic were determined by FAAS. In order to estimate the strength of correlations between accumulated elements in these crustaceans and surficial sediment, bioaccumulation factors (BAFs) were calculated. The results of factor analysis (FA) and the Kruskal-Wallis analysis of variance (ANOVA) clearly indicate geographical differences between the concentrations of these elements. Cd, Co, Fe, Ni, Pb and Zn levels were higher in S. entomon from the Gulf of Gdańsk, whereas Cr and Mn levels were higher in the crustaceans inhabiting open Baltic waters. The concentrations of Ag and Cu were comparable in both regions. There was a tendency for metal concentrations to distinguish organisms inhabiting the muddy bottom from those living in sandy sediments. The granulometric composition of the sediment appears to influence trace metal bioavailability. The results show that S. entomon could be a valuable sentinel organism for biomonitoring heavy metal contamination in the southern Baltic.

  2. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea.

    PubMed

    Gu, Yang-Guang; Huang, Hong-Hui; Liu, Yong; Gong, Xiu-Yu; Liao, Xiu-Li

    2018-04-01

    We investigated heavy metal concentrations in wild marine organisms from Maowei Sea, a significant gulf of low-latitude developing regions of the Beibu Gulf, South China Sea. Twenty species, comprising fish, cephalopods, and crustaceans were collected and analyzed for heavy metals. Heavy metal levels (mg/kg, wet weight) in the aquatic organism samples were: 0.003-1.800 for Cd, 0.02-0.14 for Pb, 0.10-0.63 for Cr, 0.20-77.50 for Cu, 9.50-64.60 for Zn, 0.006-0.066 for Hg, and 0.10-1.50 for As. Non-metric multidimensional scaling coupled with cluster analysis revealed two groupings that mainly resulted from different species of the metals in marine organisms. The highest concentrations of Cd, Pb, Cr, Ni, Cu, Zn, Hg, and As were found in species of cephalopods. Health risk assessment based on the target hazard quotients (THQ) and total THQ indicated no significant adverse health effects from consumption of marine organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Soil contamination by heavy metals: measurements from a closed unlined landfill.

    PubMed

    Kasassi, A; Rakimbei, P; Karagiannidis, A; Zabaniotou, A; Tsiouvaras, K; Nastis, A; Tzafeiropoulou, K

    2008-12-01

    The aim of the present study was the characterization of soil samples of a closed unlined landfill located northwest of Thessaloniki, North Greece, in relation to heavy metals values. Samples were obtained by drilling in different depths (2.5-17.5m). Then they were analyzed by atomic absorption spectrophotometry for Cd, Cr, Cu, Ni, Pb and Zn investigation. The chemical analysis showed that the metal values varied over a wide range: from 0.50 to 18.75mg/kg for Cd, 3.88-171.88mg/kg for Cr, 8.13-356.25mg/kg for Cu, 5.63-63.75mg/kg for Ni, 2.50-92.50mg/kg for Pb and 6.38-343.75mg/kg for Zn. The highest values found in three of the six drillings, in depths over 2.5m. Although the area is heavily industrialized, the presented results indicated that local industries have not constituted an extensive metal pollution source for the site. Finally, after all necessary preparatory operations of site cleaning and flattening, surface planting selected and applied as a phytoremediation rehabilitation method of the site.

  4. Pollution Assessment and Sources Identification of Heavy Metals in Surface Sediments from the Nantaizi Lake, Middle China

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Li, Fei; Jia, Xiaolin; Zhang, Jingdong

    2018-01-01

    The total contents of heavy metal elements including Cr, Cd, Cu, Zn, Pb and As were investigated in sediments from the Nantaizi Lake in Hanyang district of Wuhan. The heavy metal pollution level of Nantaizi Lake was calculated by potential ecological risk index and the main sources of pollutants were researched by correlation analysis and principal component analysis. The results show that heavy metal concentration of Nantaizi Lake sediments is within the Chinese Environmental Quality Standard for Soils (GB 15618-1995) level-II standard limitation. According to the result of potential ecological risk index, ecological hazard rank of heavy metal element of Nantaizi Lake sediments is: Cd>Cu>As>Pb>Zn>Cr, and whole water environment of lake is slightly polluted. Through correlation analysis and principal component analysis, it is found that industrial sewage and domestic wastewater in human activities are the main contributors to heavy metal sources of Nantaizi Lake, and chemical processes, such as endogenous microbial activities of lake etc., also affect heavy metal sources in sediments simultaneously.

  5. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    PubMed

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  6. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    PubMed

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Anode materials for lithium ion batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2017-04-11

    An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  8. Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China.

    PubMed

    Wang, Zhiqiang; Hong, Chen; Xing, Yi; Wang, Kang; Li, Yifei; Feng, Lihui; Ma, Silu

    2018-06-15

    The characterization of the content and source of heavy metals are essential to assess the potential threat of metals to human health. The present study collected 140 topsoil samples around a Cu-Mo mine (Wunugetushan, China) and investigated the concentrations and spatial distribution pattern of Cr, Ni, Zn, Cu, Mo and Cd in soil using multivariate and geostatistical analytical methods. Results indicated that the average concentrations of six heavy metals, especially Cu and Mo, were obviously higher than the local background values. Correlation analysis and principal component analysis divided these metals into three groups, including Cr and Ni, Cu and Mo, Zn and Cd. Meanwhile, the spatial distribution maps of heavy metals indicated that Cr and Ni in soil were no notable anthropogenic inputs and mainly controlled by natural factors because their spatial maps exhibited non-point source contamination. The concentrations of Cu and Mo gradually decreased with distance away from the mine area, suggesting that human mining activities may be crucial in the spreading of contaminants. Soil contamination of Zn were associated with livestock manure produced from grazing. In addition, the environmental risk of heavy metal pollution was assessed by geo-accumulation index. All the results revealed that the spatial distribution of heavy metals in soil were in agreement with the local human activities. Investigating and identifying the origin of heavy metals in pasture soil will lay the foundation for taking effective measures to preserve soil from the long-term accumulation of heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. An ecological risk assessment of heavy metal contamination in the surface sediments of Bosten Lake, northwest China.

    PubMed

    Mamat, Zulpiya; Haximu, Sadiguli; Zhang, Zhao Yong; Aji, Rouzi

    2016-04-01

    Bosten Lake, a typical rump lake in an oasis in northwest China, was chosen to evaluate the distribution, sources, pollution status, and potential ecological risk of heavy metals. Sediment samples were collected from the lake, and results showed that the values of the eight heavy metals all fell within the Second Soil National Standard, while the average and maximum values of the metals were higher than the background values of the study. Multivariate statistical analysis showed that sediment concentrations of Cd, Pb, Hg, and Zn were mainly influenced by man sources. In comparison, Cu, Ni, Cr, and As were primarily natural in origin. Enrichment factor analysis (EF) and the geo-accumulation index evaluation method (I geo) showed that Cd, Hg, and Pb fell under low and partial serious pollution levels, while Zn, As, Cr, Ni, and Cu mainly were characterized under no pollution and low pollution levels. The potential ecological hazards index (RI) showed that among the eight heavy metals, Pb, Hg, and Cd posed the highest potential ecological risk, with potential ecological hazards indices (RI) of 29.06, 27.71, and 21.54 %, respectively. These findings demonstrated that recent economic development in the area of the basin has led to heavy metal accumulation in the surface sediments of the lake.

  10. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    PubMed Central

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established. PMID:22606058

  11. Potential risk assessment of metals in edible fish species for human consumption from the Eastern Aegean Sea.

    PubMed

    Pazi, Idil; Gonul, L Tolga; Kucuksezgin, Filiz; Avaz, Gulsen; Tolun, Leyla; Unluoglu, Aydın; Karaaslan, Yakup; Gucver, S Mine; Koc Orhon, Aybala; Siltu, Esra; Olmez, Gulnur

    2017-07-15

    The levels of Hg, Cd, Pb, Cr, Cu and Zn were measured in the tissues of four edible fish species namely: Diplodus annularis, Pagellus erythrinus, Merluccius merluccius and Mullus barbatus, collected from the Turkish Coast of the Aegean Sea. Except for D. annularis, the levels of Cd and Pb in all fish tissues sampled in Aliaga Bay in 2009 were above the tolerable limits according to the Food and Agriculture Organization of the United Nations (FAO). Hg in P. erythrinus and M. barbatus were higher than the maximum permitted limits (FAO), while D. annularis and M. merluccius were lower than the limit for biota in the district of Aliaga. Although the Target Hazard Quotient (THQ) values for Cd, Pb, Cu, Cr, Zn in all fish samples were lower than 1.0, the THQ for Hg levels were higher than 1.0 for most of the samples. According to the THQ values, M. merluccius may be consumed in moderation from Aliaga Bay, while the consumption of M. barbatus and P. erythrinus collected from Aliaga Bay are potentially hazardous to human health due to the Hg concentrations. Fish collected from Izmir Bay can be consumed safely. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.

    PubMed

    Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui

    2018-03-15

    Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.

  13. Transformation of metals speciation in a combined landfill leachate treatment.

    PubMed

    Wu, Yanyu; Zhou, Shaoqi; Chen, Dongyu; Zhao, Rong; Li, Huosheng; Lin, Yiming

    2011-04-01

    Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter >0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction <0.45 μm were considered as dissolved. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Microelements in solonchaks of the western Trans-Baikal region

    NASA Astrophysics Data System (ADS)

    Sosorova, S. B.; Merkusheva, M. G.; Boloneva, L. N.; Baldanova, A. L.; Ubugunov, L. L.

    2016-04-01

    Distribution patterns of microelements (Mn, Zn, Ni, Cu, Cr, Co, Pb, and Cd) in solonchaks of the western Trans-Baikal region were studied. It was found that their concentrations in typical solonchaks of haloxerophytic steppe differed from those in solonchaks of moistened habitats (playa, gleyed, and dark solonchaks) because of the differences in their landscape positions and ecological conditions. A general rise in the contents of the microelements was observed from the northeast to the southwest in agreement with changes in the parent materials. Different degrees of correlation of the contents of the microelements and their exchangeable forms with the contents of soluble salts, humus, and physical clay in the soils and the soil reaction were found. The average and extreme concentrations of the microelements were determined. The studied typical solonchaks differed from the zonal chestnut soils in the higher contents of Co, Cr, and Cd; whereas solonchaks of moistened habitats were enriched in Mn, Co, and Cd.

  15. Environmental exposures of trace elements assessed using keratinized matrices from patients with chronic kidney diseases of uncertain etiology (CKDu) in Sri Lanka.

    PubMed

    Diyabalanage, Saranga; Fonseka, Sanjeewani; Dasanayake, D M S N B; Chandrajith, Rohana

    2017-01-01

    An alarming increase in chronic kidney disease with unknown etiology (CKDu) has recently been reported in several provinces in Sri Lanka and chronic exposures to toxic trace elements were blamed for the etiology of this disease. Keratinized matrices such as hair and nails were investigated to determine the possible link between CKDu and toxic element exposures. Elements Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Hg and Pb of hair and nails of patients and age that matched healthy controls were determined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that trace element contents in the hair of patients varies in the order of Zn>Fe>Al>Mn>Cu>Ba>Sr>Ni>Pb>Cr>B>Hg>Se>Mo>Co>As>Li>Cd while Fe>Al>Zn>Ni>Cu>Mn>Cr>Ba>Sr>B>Pb>Se>Mo>Co>Hg>Li>As>Cd in nail samples. The hair As levels of 0.007-0.165μgg -1 were found in CKDu subjects. However, no significant difference was observed between cases and controls. The total Se content in hair of CKDu subjects ranged from 0.043 to 0.513μgg -1 while it was varied from 0.031 to 1.15μgg -1 in controls. Selenium in nail samples varied from 0.037μgg -1 to 4.10μgg -1 in CKDu subjects and from 0.042μgg -1 to 2.19μgg -1 in controls. This study implies that substantial proportions of Sri Lankan population are Se deficient irrespective of gender, age and occupational exposure. Although some cutaneous manifestations were observed in patient subjects, chemical analyses of hair and nails indicated that patients were not exposed to toxic levels of arsenic or the other studied toxic elements. Therefore the early suggested causative factors such as exposure to environmental As and Cd, can be ruled out. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake.

    PubMed

    Niu, Yong; Jiao, Wei; Yu, Hui; Niu, Yuan; Pang, Yong; Xu, Xiangyang; Guo, Xiaochun

    2015-11-27

    With regard to the size of China's freshwater lakes, Taihu Lake ranks third and it plays an important role in the supply of drinking water, flood prevention, farming and navigation, as well as in the travelling industry. The problem of environmental pollution has attracted widespread attention in recent years. In order to understand the levels, distribution and sources of heavy metals in sediments of Taihu Lake, random selection was carried out to obtain 59 samples of surface sediment from the entire lake and study the concentrations of Pb, Cd, Cu, Zn, Cr and Ni. Toxic units were also calculated to normalize the toxicities caused by various heavy metals. As a result, Cd and Cu in sediment were considered lower than the effect range low (ERL) at all regions where samples were gathered, while Pb and Ni were categorized into ERL-effect range median (ERM) at over 22% of the regions where samples were obtained. Nevertheless, all average concentrations of the samples were below the level of potential effect. According to the findings of this research, significant spatial heterogeneity existed in the above heavy metals. In conclusion, the distribution areas of heavy metals with higher concentrations were mainly the north bays, namely Zhushan Bay, Meiliang Bay as well as Gonghu Bay. The distribution areas of Cu, Zn, Cr and Ni with higher concentration also included the lake's central region, whereas the uniform distribution areas of those with lower concentrations were the lake's southeast region. In addition, it was most probable that the spatial distribution of heavy metals was determined by river inputs, whereas atmospheric precipitation caused by urban and traffic contamination also exerted considerable effects on the higher concentrations of Pb and Cd. Through evaluating the total amount of toxic units (ΣTU), it was found that higher toxicity existed primarily in the north bays and central region of the lake. If the heavy metals were sorted by the reduction of mean heavy metal toxic units in Taihu Lake in descending order, it would be Pb, Cr, Ni, Cd, Zn and Cu. Generally speaking, these result of analyses are conducive to alleviating the contamination of heavy metals in Taihu Lake.

  17. Highway increases concentrations of toxic metals in giant panda habitat.

    PubMed

    Zheng, Ying-Juan; Chen, Yi-Ping; Maltby, Lorraine; Jin, Xue-Lin

    2016-11-01

    The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda's habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered.

  18. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial variation distribution, uncertainties and control policies

    NASA Astrophysics Data System (ADS)

    Tian, H. Z.; Zhu, C. Y.; Gao, J. J.; Cheng, K.; Hao, J. M.; Wang, K.; Hua, S. B.; Wang, Y.; Zhou, J. R.

    2015-04-01

    Anthropogenic atmospheric emissions of typical toxic heavy metals have received worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available representation of time-varying emission factors with S-shape curves, we established the multiyear comprehensive atmospheric emission inventories of 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) from primary anthropogenic activities in China for the period of 1949-2012 for the first time. Further, we allocated the annual emissions of these heavy metals in 2010 at a high spatial resolution of 0.5° × 0.5° grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Our results show that the historical emissions of Hg, As, Se, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn during the period of 1949-2012, have been increased by about 22-128 times at an annual average growth rate of 5.1-8.0%, amounting to about 79 570 t in 2012. Nonferrous metal smelting, coal combustion of industrial boilers, brake and tyre wear, and ferrous metals smelting represent the dominant sources for Hg / Cd, As / Se / Pb / Cr / Ni / Mn / Co, Sb / Cu, and Zn, respectively. In terms of spatial variation, the majority of emissions were concentrated in relatively developed regions, especially for the northern, eastern and southern coastal regions. In addition, because of the flourishing nonferrous metals smelting industry, several southwestern and central-southern provinces play a prominent role in some specific toxic heavy metals emissions, like Hg in Guizhou and As in Yunnan. Finally, integrated countermeasures are proposed to minimize the final toxic heavy metals discharge on accounting of the current and future demand of energy-saving and pollution reduction in China.

  19. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    NASA Astrophysics Data System (ADS)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage works, run-off) and uncontrolled discharges. Applying mass balance modeling, medicaments were described as relevant socio-economic indicators, which can give a picture of main social aspects of the region.

  20. Multi-Target Risk Assessment of Potentially Toxic Elements in Farmland Soil Based on the Environment-Ecological-Health Effect.

    PubMed

    Wang, Zhongyang; Meng, Bo; Zhang, Wei; Bai, Jinheng; Ma, Yingxin; Liu, Mingda

    2018-05-28

    There are potential impacts of Potentially Toxic Elements (PTEs) (e.g., Cd, Cr, Ni, Cu, As, Zn, Hg, and Pb) in soil from the perspective of the ecological environment and human health, and assessing the pollution and risk level of soil will play an important role in formulating policies for soil pollution control. Lingyuan, in the west of Liaoning Province, China, is a typical low-relief terrain of a hilly area. The object of study in this research is the topsoil of farmland in this area, of which 71 soil samples are collected. In this study, research methods, such as the Nemerow Index, Potential Ecological Hazard Index, Ecological Risk Quotient, Environmental Exposure Hazard Analysis, Positive Matrix Factorization Model, and Land Statistical Analysis, are used for systematical assessment of the pollution scale, pollution level, and source of PTEs, as well as the ecological environmental risks and health risks in the study area. The main conclusions are: The average contents of As, Cd, Cr, Cu, Hg, Zn, Ni, and Pb of the soil are 5.32 mg/kg, 0.31 mg/kg, 50.44 mg/kg, 47.05 mg/kg, 0.03 mg/kg, 79.36 mg/kg, 26.01 mg/kg, and 35.65 mg/kg, respectively. The contents of Cd, Cu, Zn, and Pb exceed the background value of local soil; Cd content of some study plots exceeds the National Soil Environmental Quality Standard Value (0.6 mg/kg), and the exceeding standard rate of study plots is 5.63%; the comprehensive potential ecological hazard assessment in the study area indicates that the PTEs are at a slight ecological risk; probabilistic hazard quotient assessment indicates that the influence of PTEs on species caused by Cu is at a slight level ( p = 10.93%), and Zn, Pb, and Cd are at an acceptable level. For the ecological process, Zn is at a medium level ( p = 25.78%), Cu is at a slight level (19.77%), and the influence of Cd and Pb are acceptable; human health hazard assessment states that the Non-carcinogenic comprehensive health hazard index HI = 0.16 < 1, indicating that PTEs in soil have no significant effect on people's health through exposure; the PMF model (Positive Matrix Factorization) shows that the contribution rates of agricultural source, industrial source, atmospheric dust source, and natural source are 13.15%, 25.33%, 18.47%, and 43.05%, respectively.

  1. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China.

    PubMed

    Zhang, Zhaoyong; Juying, Li; Mamat, Zulpiya; QingFu, Ye

    2016-04-01

    The current study focused on the Bortala River - a typical inland river located in an oasis of arid area in northwestern China. The sediment and soil samples were collected from the river and drainage basin. Results showed that: (1) the particle size of the sand fraction of the sediments was 78-697 µm, accounting for 78.82% of the total samples; the average concentrations of eight heavy metals fell within the concentration ranges recommended by the Secondary National Standard of China, while the maximum concentrations of Pb, Cd, and Hg exceeded these standards; (2) results from multivariate statistical analysis indicated that Cu, Ni, As, and Zn originated primarily from natural geological background, while Cd, Pb, Hg and Cr in the sediments originated from human activities; (3) results of the enrichment factor analysis and the geo-accumulation index evaluation showed that Cd, Hg, and Pb were present in the surface sediments of the river at low or partial serious pollution levels, while Zn, Cr, As, Ni, and Cu existed at zero or low pollution levels; (4) calculation of the potential ecological hazards index showed that among the eight tested heavy metals, Cd, Pb, Hg, and Cr were the main potential ecological risk factors, with relative contributions of 25.43%, 22.23%, 21.16%, and 14.87%, respectively; (5) the spatial distribution of the enrichment factors (EF(S)), the Geo-accumulation index (I(geo)), and the potential ecological risk coefficient (E(r)(i)) for eight heavy metals showed that there was a greater accumulation of heavy metals Pb, Cd, and Hg in the sediments of the central and eastern parts of the river. Results of this research can be a reference for the heavy metals pollution prevention, the harmony development of the ecology protection and the economy development of the oases of inland river basin of arid regions of China, Central Asia and also other parts of the world. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China.

    PubMed

    Wang, Xiangqin; Zeng, Xiaoduo; Chuanping, Liu; Li, Fangbai; Xu, Xianghua; Lv, Yahui

    2016-08-01

    Heavy metal contents (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 99 pairs of soil-rice plant samples were evaluated from the downwind directions of a large thermal power plant in Shaoguan City, Guangdong Province, China. Results indicate that there is a substantial buildup of As, Cd, Cu, Pb, and Zn in the predominant wind direction of the power plant. The significant correlations between S and heavy metals in paddy soil suggest that the power plant represents a source of topsoil heavy metals in Shaoguan City due to sulfur-rich coal burning emissions. Elevated Cd concentrations were also found in rice plant tissues. Average Cd (0.69 mg kg(-1)) and Pb (0.39 mg kg(-1)) contents in rice grain had exceeded their maximum permissible limits (both were 0.2 mg kg(-1)) in foods of China (GB2762-2005). The enrichment of Cd and Pb in rice grain might pose a potential health risk to the local residents.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less

  4. Bioaccumulation of elements in three selected mushroom species from southwest Poland.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Mikołajczak, Patrycja; Goliński, Piotr; Gąsecka, Monika; Sobieralski, Krzysztof; Dawidowicz, Luiza; Szymańczyk, Mateusz

    2015-01-01

    The contents of 16 minerals and trace elements (Ag, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Pt, Ti and Zn) were analyzed in edible mushrooms (Leccinum scabrum, Boletus edulis and Boletus badius) collected in southwest Poland. Content of Co, Ni and Pb was similar in all tested mushroom species, while content of Ag, Ca, Cd, Hg and Ti was significantly higher in B. edulis than in L. scabrum and B. badius. The largest differences between these species were observed for Fe and Zn accumulation. The highest contents of these elements were noted in B. badius bodies (202 ± 88 and 137 ± 24 mg kg(-1) dry matter, respectively), lower in B. edulis (131 ± 99 and 89 ± 26 mg kg(-1) dry matter, respectively) and lowest in L. scabrum. Differences in As, Cu and Cr content between tested species were observed mainly between L. scabrum and B. badius fruiting bodies. Content of Pt was below 0.01 mg kg(-1) dry matter). In the case of Mg and Mn accumulation, differences between B. edulis and B. badius were not observed (478 and 440 mg kg(-1) dry matter for Mg and 23 and 19 mg kg(-1) dry matter for Mn), and the results showed significantly higher content of these elements than in L. scabrum bodies (312 and 10 mg kg(-1) dry matter, respectively). It is worth underlining that clear accumulation shown by the bioconcentration factor (BCF>1) observed for all three mushroom species was noted in the case of elements Ag, Cd, Co, Cu, Hg, Ni and Zn only.

  5. Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China.

    PubMed

    Zhou, Jie; Feng, Ke; Li, Yinju; Zhou, Yang

    2016-08-01

    The objectives of this study are to analyse the pollution status and spatial correlation of soil heavy metals and identify natural and anthropogenic sources of these heavy metals at different spatial scales. Two hundred and twenty-four soil samples (0-20 cm) were collected and analysed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn and Ni) in soils of different land-use types in the Yangtze River Delta of Eastern China. The multivariate methods and factorial Kriging analysis were used to achieve the research objectives. The results indicated that the human and natural effects of different land-use types on the contents of soil heavy metals were different. The Cd, Hg, Cu, Pb and Zn in soils of industrial area were affected by human activities, and the pollution level of these heavy metals in this area was moderate. The Pb in soils of traffic area was affected by human activities, and eight heavy metals in soils of residential area and farmland area were affected by natural factor. The ecological risk status of eight heavy metals in soils of the whole study area was light. The heavy metals in soils showed three spatial scales (nugget effect, short range and long range). At the nugget effect and short range scales, the Cd, Hg, Cu, Pb and Zn in soils were affected by human and natural factors. At three spatial scales, the As, Cr and Ni in soils were affected by soil parent materials.

  6. Sediment heavy metals and benthic diversities in Hun-Tai River, northeast of China.

    PubMed

    Qu, Xiaodong; Ren, Ze; Zhang, Min; Liu, Xiaobo; Peng, Wenqi

    2017-04-01

    In aquatic ecosystems, metal contamination in sediments has become a ubiquitous environmental problem, causing serious issues. Hun-Tai River, located in northeast of China, flows through an important heavy industry region and metropolitan area. This study examined the heavy metals (Cd, Cr, Cu, Fe, Mn, Pb, Ni, and Zn) of sediments and diversities (taxa richness, Shannon diversity, and evenness) of benthic assemblages (benthic algae and macroinvertebrate) in Hun-Tai River. The results clearly described the spatial patterns of metal contamination in terms of geo-accumulation index and contamination factor, as well as the spatial patterns of benthic diversities in terms of taxa richness, Shannon index, and evenness by kriging interpolation. The sediments were largely contaminated by Cd, followed by Cu, Fe, Zn, Mn, and Ni. Cd and Zn had similar spatial patterns and similar sources. Cu, Fe, Mn, and Ni showed similar spatial patterns and similar sources. The surface sediments were unpolluted by Cr and Pb. The metal mines and the heavy industry in the major cities were the potential pollution sources. Benthic algae and macroinvertebrate responded similarly to the heterogeneous environment and metal contamination, with high taxa richness and Shannon index in middle-upper reaches of Hun-Tai River. Evenness showed complex spatial patterns. Under low contamination, both taxa richness, Shannon diversity, and evenness had a large variation range. However, under the moderate and high contamination, the taxa richness and Shannon diversity kept to a low level but the evenness had a high level. This study provided insights into the sediment heavy metal contamination in Hun-Tai River.

  7. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash.

    PubMed

    Wang, Feng-He; Zhang, Fan; Chen, Ya-Jun; Gao, Jay; Zhao, Bin

    2015-12-30

    Investigated in this paper were the content, specification distribution, and risk assessment code (RAC) determination of six targeted heavy metals and potentially toxic metals in fly ashes from a municipal solid waste incinerator in China. Contained in it is a comparison of the solidification/stabilization performance of two novel solidifying agents of sixthio guanidine acid (SGA) and tetrathio bicarbamic acid (TBA) with sodium dimethyldithiocarbamate (SDD) and Na2S, and analysis of their leachability in accordance with TCLP 1311 of the US EPA and the extraction procedures of China (HJ/T 299-2007 and HJ/T300-2007). The total concentration of Zn, Cu, Ni, Pb, Cr, Cd is 37383.47, 3080.77, 1583.92, 1356.43, 566.15, and 77.83 mg/kg, respectively. Cr (3.7%) and Pb (7.50%) pose low risk; and Ni (12.93%) and Zn (15.45%) have a medium risk; while Cu (69.84%) and Cd (82.5%) have a very high risk according to their RAC score. Compared with SDD and Na2S, SGA and TBA show an excellent overall solidifying performance due to their multiply hydrosulfide groups that bind with heavy metals very efficiently. The obtained results indicate that the leaching content of Cd, Ni, Pb and Zn is higher than the thresholds prescribed in GB5085.3-2007, and the excessive acetic acid makes its binding capacity stronger in HJ/T 300-2007 than in TCLP 1311. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quantitative assessment of metal elements using moss species as biomonitors in downwind area of lead-zinc mine.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Andonovska, Katerina Bačeva

    2017-02-23

    Distributions of a total of 21 elements were monitored in significantly lead-zinc polluted area using moss species (Hypnum cupressiforme and Camptothecium lutescens) used interchangeably, covering a denser sampling network. Interspecies comparison was conducted using Box-Cox transformed values, due to their skewed distribution. The median concentrations of trace elements in the both mosses examined decreased in the following order: Fe>Mn>Zn>Pb>Cu>Ni∼Cr∼As>Co>Cd>Hg. For almost all analyzed elements, H. cupressiforme revealed higher bio-accumulative abilities. For arsenic contents was obtained ER-value in favor of C. lutescens. The ER for the element contents according to the distance from the pollution source in selected areas was significantly enriched for the anthropogenic introduced elements As, Cd, Cu, Pb and Zn. After Box-Cox transformation of the content values, T B was significantly different for As (4.82), Cd (3.84), Cu (2.95), Pb (4.38), and Zn (4.23). Multivariate factor analysis singled out four elemental associations: F1 (Al-Co-Cr-Fe-Li-Ni-V), F2 (Cd-Pb-Zn), F3 (Ca-Mg-Na-P) and F4 (Cu) with a total variance of 89%. Spatial distribution visualized the hazardously higher contents of "hot spots" of Cd > 1.30 mg/kg, Cu > 22 mg/kg, Pb > 130 mg/kg and Zn > 160 mg/kg. Therefore, main approach in moss biomonitoring should be based on data management of the element distribution by reducing the effect of extreme values (considering Box-Cox data transformation); the interspecies variation in sampling media does not deviate in relation to H. cupressiforme vs. C. lutescens.

  9. [Source identification and potential ecological hazards assessment of trace metalloid/heavy metals in the soil of Tianshan Mountains, Xinjiang, China].

    PubMed

    Zhang, Zhao-Yong; Jilili, Abuduwailil; Jiang, Feng-Qing

    2014-11-01

    In this study, the contents of ten metalloid/heavy metals (As, Pb, Ni, Cd, Co, Hg, Cu, Mn, Zn and Cr) in soil samples collected from three sections including the central Urumqi-Akesu, eastern Blikun-Yiwu and western Zhaosu-Tekesi in Tianshan Mountains were determined, and their sources were identified by using typical statistical and multivariate statistical methods. The potential ecological risks of these heavy metals were assessed by employing pollution index method, potential ecological risk index and the background values of Tianshan Mountains, and Xinjiang, and also the Second National Standard of the Soil Qualities of China. The results showed that the contents of the heavy metals (Pb, Ni, Cd, Co, Hg, Cu, Mn Zn and Cr) and metalloid As were all higher than the soil background values of the Tianshan Mountain or Xinjiang, and their variation co- efficients belonged to the medium variation. In general, the contents of the ten metalloid/heavy metals in the soil of Tianshan Mountains were low. Principal component analysis showed that the ten metalloid/heavy metals could be identified as two principal components, among which PC1 (Cd, Pb, Hg, Mn and Zn) could be seen as 'human influence sources factor', PC2 (Cu, Ni, Cr, Co and As) as 'natural sources factor'. Mn and As had larger loads both in PC1 and PC2, and they could be co-influenced by human and natural sources. The pollution assessment showed that Hg and Cd in central Urumuqi-Akesu section and As in western Zhaosu-Tekesi section were all at alert level, while the other heavy metals in other sections were all at security level. From the comprehensive pollution indices (P(z)) of heavy metals, it was found that the ten metalloid/heavy metals in the soils of central Urumqi-Akesu section were at low pollution level, but those in the other two sections were at clean level. The potential ecological risk assessment showed that the potential ecological risk coefficient (E(i)r) and the ecological damage index (RI) of Hg and Cd in central Urumqi-Akesu section and that of As in western Zhaosu-Tekesi section were relatively high.

  10. Heavy metal speciation, leaching and toxicity status of a tropical rain-fed river Damodar, India.

    PubMed

    Pal, Divya; Maiti, Subodh Kumar

    2018-03-26

    Speciations of metals were assessed in a tropical rain-fed river, flowing through the highly economically important part of the India. The pattern of distribution of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) were evaluated in water and sediment along with mineralogical characterization, changes with different water quality parameters and their respective health hazard to the local population along the Damodar River basin during pre-monsoon and post-monsoon seasons. The outcome of the speciation analysis using MINTEQ indicated that free metal ions, carbonate, chloride and sulfate ions were predominantly in anionic inorganic fractions, while in cationic inorganic fractions metal loads were negligible. Metals loads were higher in sediment phase than in the aqueous phase. The estimated values of I geo in river sediment during both the seasons showed that most of the metals were found in the I geo class 0-1 which represents unpolluted to moderately polluted sediment status. The result of partition coefficient indicated the strong retention capability of Cr, Pb, Co and Mn, while Cd, Zn, Cu and Ni have resilient mobility capacity. The mineralogical analysis of sediment samples indicated that in Damodar River, quartz, kaolinite and calcite minerals were dominantly present. The hazard index values of Cd, Co and Cr were > 1 in river water, which suggested potential health risk for the children. A combination of pragmatic, computational and statistical relationship between ionic species and fractions of metals represented a strong persuasion for identifying the alikeness among the different sites of the river.

  11. Distribution and Multivariate Pollution Risks Assessment of Heavy Metals and Natural Radionuclides Around Abandoned Iron-Ore Mines in North Central Nigeria

    NASA Astrophysics Data System (ADS)

    Isinkaye, Omoniyi Matthew

    2018-02-01

    The Itakpe abandoned iron-ore mines constitute the largest iron-ore deposits in Nigeria with an estimated reserve of about three million metric tons of ore. The present effort is a part of a comprehensive study to estimate the environmental and radiological health hazards associated with previous mining operations in the study area. In this regard, heavy metals (Fe, Zn, Cu, Cd, Cr, Mn, Pb, Ni, Co and As) and natural radionuclides (U, Th and K) were measured in rock, soil and water samples collected at different locations within the mining sites. Atomic absorption and gamma-ray spectrometry were utilized for the measurements. Fe, Mn, Zn, Cu, Ni, Cd, Cr, Co Pb and As were detected at varying concentrations in rock and soil samples. Cd, Cr, Pb and As were not detected in water samples. The concentrations of heavy metals vary according to the following pattern; rock ˃ soil ˃ water. The mean elemental concentrations of K, U and Th are 2.9%, 0.8 and 1.2 ppm and 1.3%, 0.7 and 1.7 ppm, respectively, for rock and soil samples. Pearson correlation analyses of the results indicate that the heavy metals are mostly negatively correlated with natural radionuclides in the study area. Cancer and non-cancer risks due to heavy metals and radiological hazards due to natural radionuclides to the population living within the vicinity of the abandoned mines are lower than acceptable limits. It can, therefore, be concluded that no significant environmental or radiological health hazard is envisaged.

  12. Assessment and potential sources of metals in the surface sediments of the Yellow River Delta, Eastern China.

    PubMed

    Cheng, Qingli; Lou, Guangyan; Huang, Wenhai; Li, Xudong

    2017-07-01

    The Yellow River Delta is the most intact estuary wetland in China and suffers from great pressure of metals. Seventy-seven surface sediment samples were collected in the delta, and contents of Cu, Pb, Cd, Cr, Zn, Ni, and Mn were analyzed by inductively coupled plasma spectrometry and those of Hg and As by atomic fluorescence spectrometry. The results showed that means of metal contents (ppm, dry weight) were as follows: Hg, 0.04; Cr, 61.72; Cu, 20.97; Zn, 60.73; As, 9.47; Pb, 21.91; Cd, 0.12; Ni, 27.24; and Mn, 540.48. 43.8% of Hg and 14.3% of Cd were from the allogenic source while others from the authigenic source. The results of the geoaccumulation indexes appeared that 6.5% of sites from the estuarine and the Gudao areas were moderately polluted by Hg. All ecological risk index values of Hg and 37.7% of Cd were more than 40, which were the main factors of strongly and moderately potential ecological risks of 37.7% of sites in the delta. High Cd contents may be due to the alkaline conditions of the delta and the unreasonable management of the farmland, while the abnormal distribution of Hg to the wet or dry deposition and the erosion of the seawater. It was suggested to monitor Hg content in the atmosphere of the Yellow River Delta. The results were expected to update the pollution status of metals in the delta and created awareness of preserving the sound condition of the Yellow River Delta.

  13. Distribution of potentially hazardous trace elements in coals from Shanxi province, China

    USGS Publications Warehouse

    Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.

    2004-01-01

    Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.

  14. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah--feeding tributary of the Rawal Lake Reservoir, Pakistan.

    PubMed

    Zahra, Azmat; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Ahmed, Zulkifl

    2014-02-01

    Heavy metal concentrations in sediments of the Kurang stream: a principal feeding tributary of the Rawal Lake Reservoir were investigated using enrichment factor (EF), geoaccumulation index (Igeo) and metal pollution index (MPI) to determine metal accumulation, distribution and its pollution status. Sediment samples were collected from twenty one sites during two year monitoring in pre- and post-monsoon seasons (2007-2008). Heavy metal toxicity risk was assessed using Sediment Quality Guidelines (SQGs), effect range low/effect range median values (ERL/ERM), and threshold effect level/probable effect level (TEL/PEL). Greater mean concentrations of Ni, Mn and Pb were recorded in post-monsoon season whereas metal accumulation pattern in pre-monsoon season followed the order: Zn>Mn>Ni>Cr>Co>Cd>Pb>Cu>Li. Enrichment factor (EF) and geoaccumulation (Igeo) values showed that sediments were loaded with Cd, Zn, Ni and Mn. Comparison with uncontaminated background values showed higher concentrations of Cd, Zn and Ni than respective average shale values. Concentrations of Ni and Zn were above ERL values; however, Ni concentration exceeded the ERM values. Sediment contamination was attributed to anthropogenic and natural processes. The results can be used for effective management of fresh water hilly streams of Pakistan. © 2013.

  15. Atmospheric deposition of trace elements at urban and forest sites in central Poland - Insight into seasonal variability and sources

    NASA Astrophysics Data System (ADS)

    Siudek, Patrycja; Frankowski, Marcin

    2017-12-01

    This paper includes the results of chemical composition of bulk deposition samples collected simultaneously at urban (Poznań city) and forest (Jeziory) sites in central Poland, between April 2013 and October 2014. Rainwater samples were analyzed for trace elements (As, Zn, Ni, Pb, Cu, Cr, Cd) and physicochemical parameters. Overall, three metals, i.e. Zn, Pb and Cu were the most abundant anthropogenic constituents of rainwater samples from both locations. In Poznań city, the rainwater concentrations of trace elements did not differ significantly between spring and summer. However, they were elevated and more variable during the cold season (fall and winter), suggesting strong contribution from local high-temperature processes related to coal combustion (commercial and residential sector). In contrast to the urban site, relatively low variability in concentrations was found for Cu, Ni, Zn at the forest site, where direct impact of emission from vehicle traffic and coal-fired combustion (power plants) was much lower. The bulk deposition fluxes of Ni, As, Pb and Zn at this site exhibited a clear trend, with higher values during the cold season (fall and winter) than in spring and summer. At the urban site, the sums of total bulk deposition fluxes of Zn, Cu, Pb, Ni, As, Cr, Cd were as follows: 8460.4, 4209.2, 2247.4, 1882.1, 606.6, 281.6 and 31.4 μg m- 2. In addition, during the winter season, a significantly higher deposition fluxes of Cu and Zn were observed for rain (on average 103.8 and 129.4 μg m- 2, respectively) as compared to snow (19.7 μg Cu m- 2 and 54.1 μg Zn m- 2). This suggests that different deposition pattern of trace elements for rain, mixed and snow was probably the effect of several factors: precipitation type, changes in emission and favorable meteorological situation during rain events.

  16. Sediment quality assessment in a coastal lagoon (Ravenna, NE Italy) based on SEM-AVS and sequential extraction procedure.

    PubMed

    Pignotti, Emanuela; Guerra, Roberta; Covelli, Stefano; Fabbri, Elena; Dinelli, Enrico

    2018-09-01

    Sediments from the Pialassa Piomboni coastal lagoon (NE Italy) were studied to assess the degree of contamination and ecological risk related to trace metals by combining a geochemical characterization of bulk sediments with the assessment of the bioavailable forms of trace metals. With this purpose, sediment contamination (Cd, Cu, Hg, Ni, Pb, and Zn) was assessed by Enrichment Factors (EFs), and potential bioavailability by the Simultaneously Extracted Metals and Acid Volatile Sulfides (SEM-AVS) approach (Cd, Cu, Ni, Pb, and Zn), and by Sequential Extraction Procedure (Co, Cr, Cu, Ni, Pb, and Zn). On average, Cr and Ni exhibited no contamination (EF ≤1.5), and a predominance in the residual fraction of the sediment, indicating natural origin for these metals. Cu, Pb and Zn displayed a local contamination, which resulted in a higher proportion of Cu bound to the reducible and oxidizable fractions (~30% and ~40% as median, respectively), and Pb mostly associated with the reducible phase (~60% as median). Hence, Cu and Pb could be mobilized when environmental conditions become reducing or oxidizing. Zn resulted mainly partitioned into the reducible and residual fractions (~50% as median, in both fractions). The Risk Assessment Code (RAC) indicated that approximately 30% of samples had >10% of total Zn weakly bound to the sediment, suggesting a medium risk of exposure for aquatic organisms. RAC results were consistent with the ∑SEM-AVS findings, pointing to possible adverse effects for aquatic biota in ~30% of samples, with Zn mostly accounting for the total metal bioavailability. Hg showed a moderate to very severe enrichment, indicating that a substantial amount of this metal derives from anthropogenic sources and may pose adverse effects on the aquatic biota of the Pialassa Piomboni lagoon. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  18. EFFECT OF HUMIC ACID ON UPTAKE AND TRANSFER OF COPPER FROM MICROBES TO CILIATES TO COPEPODS

    EPA Science Inventory

    This research is part of an ongoing project designed to determine the effect of humic acid on the uptake and transfer of metals by marine organisms at the lower end of the food chain. Binding affinities for Cu, Cd, Zn, and Cr to Suwannee River humic acid were determined at variou...

  19. Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)

    NASA Astrophysics Data System (ADS)

    Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.

    2017-03-01

    This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.

  20. Spatial distribution and risk assessment of heavy metals and As pollution in the sediments of a shallow lake.

    PubMed

    Deng, Jiancai; Wang, Yuansheng; Liu, Xin; Hu, Weiping; Zhu, Jinge; Zhu, Lin

    2016-05-01

    The concentrations and spatial distributions of eight heavy metals in surface sediments and sediment core samples from a shallow lake in China were investigated to evaluate the extent of the contamination and potential ecological risks. The results showed that the heavy metal concentrations were higher in the northern and southwestern lake zones than those in the other lake zones, with lower levels of As, Hg, Zn, Cu, Pb, Cr, and Ni primarily observed in the central and eastern lake regions and Cd primarily confined to areas surrounding the lake. The concentrations of the eight heavy metals in the sediment profiles tended to decrease with increasing sediment depth. The contents of Ni, Cu, Zn, Pb, and Cd in the surface sediment were approximately 1.23-18.41-fold higher than their background values (BVs), whereas the contents of Cr, As, and Hg were nearly identical to their BVs. The calculated pollution load index (PLI) suggested that the surface sediments of this lake were heavily polluted by these heavy metals and indicated that Cd was a predominant contamination factor. The comprehensive potential ecological risk index (PERI) in the surface sediments ranged from 99.2 to 2882.1, with an average of 606.1. Cd contributed 78.7 % to the PERI, and Hg contributed 8.4 %. Multivariate statistical analyses revealed that the surface sediment pollution with heavy metals mainly originated from industrial wastewater discharged by rivers located in the western and northwestern portion of the lake.

Top