Science.gov

Sample records for cd133 gene expression

  1. Expression of CD133 in acute leukemia.

    PubMed

    Tolba, Fetnat M; Foda, Mona E; Kamal, Howyda M; Elshabrawy, Deena A

    2013-06-01

    There have been conflicting results regarding a correlation between CD133 expression and disease outcome. To assess CD133 expression in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and to evaluate its correlation with the different clinical and laboratory data as well as its relation to disease outcome, the present study included 60 newly diagnosed acute leukemic patients; 30 ALL patients with a male to female ratio of 1.5:1 and their ages ranged from 9 months to 48 years, and 30 AML patients with a male to female ratio of 1:1 and their ages ranged from 17 to 66 years. Flow cytometric assessment of CD133 expression was performed on blast cells. In ALL, no correlations were elicited between CD133 expression and some monoclonal antibodies, but in AML group, there was a significant positive correlation between CD133 and HLA-DR, CD3, CD7 and TDT, CD13 and CD34. In ALL group, patients with negative CD133 expression achieved complete remission more than patients with positive CD133 expression. In AML group, there was no statistically significant association found between positive CD133 expression and treatment outcome. The Kaplan-Meier curve illustrated a high significant negative correlation between CD133 expression and the overall survival of the AML patients. CD133 expression is an independent prognostic factor in acute leukemia, especially ALL patients and its expression could characterize a group of acute leukemic patients with higher resistance to standard chemotherapy and relapse. CD133 expression was highly associated with poor prognosis in acute leukemic patients.

  2. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression.

    PubMed

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133(+) colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133(-) cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133(+) and siRNA-induced CD133(-) cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133(+) cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133(+) cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133(+) cells at 96 h after siRNA transfection. From this study, we conclude that CD133(+) cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133(+) colon cancer.

  3. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    SciTech Connect

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  4. Notch1 directly induced CD133 expression in human diffuse type gastric cancers

    PubMed Central

    Konishi, Hidetomo; Asano, Naoki; Imatani, Akira; Kimura, Osamu; Kondo, Yutaka; Jin, Xiaoyi; Kanno, Takeshi; Hatta, Waku; Ara, Nobuyuki; Asanuma, Kiyotaka; Koike, Tomoyuki; Shimosegawa, Tooru

    2016-01-01

    CD133 is considered as a stem-like cell marker in some cancers including gastric cancers, and Notch1 signaling is known to play an important role in the maintenance and differentiation of stem-like cells. We aimed to investigate whether Notch1 signaling contributes to the carcinogenesis of gastric cancers and CD133 induction. CD133 expression was detected in 51.4% of diffuse type gastric cancers while it was not detected in intestinal type gastric cancers. Similarly, only poorly-differentiated gastric cancer cell lines expressed CD133 and activated-Notch1. Inhibiting Notch1 signaling resulted in decreased CD133 expression, side population cells, cell proliferation and anchorage independent cell growth. Chromatin immunoprecipitation suggested that this Notch1 dependent regulation of CD133 was caused by direct binding of activated-Notch1 to the RBP-Jκ binding site in the 5′ promoter region of CD133 gene. In addition, knocking down RBP-Jκ reduced CD133 induction in activated-Notch1 transfected cells. These findings suggested that Notch1 signaling plays an important role in the maintenance of the cancer stem-like phenotype in diffuse type gastric cancer through an RBP-Jκ dependent pathway and that inhibiting Notch1 signaling could be an effective therapy against CD133 positive diffuse type gastric cancers. PMID:27489358

  5. Quantitative analyses of CD133 expression facilitate researches on tumor stem cells.

    PubMed

    Liao, Yongqiang; Hu, Xiaotong; Huang, Xuefeng; He, Chao

    2010-01-01

    CD133 is regarded as a marker of tumor initiating cells in many tumors, including colorectal cancer. O'Brien and Ricci et al. have proved that in primary colorectal tumors there are colorectal tumor stem cells (initiating cells) which are marked by CD133 antigen. Using a genetic knockin lacZ reporter mouse model, Shmelkov et al. challenged this increasingly influential viewpoint and drew two important conclusions that challenge former opinions. First, CD133 is widely distributed throughout the full range of tumor epithelial cells in the colon as opposed to being limited to a few cells. Second, CD133 negative cells of colon tumors are also tumorigenic, and are more inclined to metastasize. Based on these two opinions, we hypothesize that the expression of CD133 is different among tumor cells, and that quantitative but not qualitative analyses of CD133 abundance are necessary to determine the relationship between CD133 expression and tumor stem cell characteristics. To verify this hypothesis, colorectal cancer cell line SW620 was cultured and sorted into CD133(Hi), CD133(Mid) and CD133(Low) subgroups using magnetic microbeads to compare their xenograft biological characteristics. The results showed that the CD133(Hi) subgroup of SW620 is more close to the tumor initiating cells in terms of biological characteristics than CD133(Mid) and CD133(low) subgroups, but the CD133(low) subgroup still maintains the ability of tumorigenicity. It supported that tumor initiating cells are more correlated to the abundance of CD133.

  6. Human α(2)β(1)(HI) CD133(+VE) epithelial prostate stem cells express low levels of active androgen receptor.

    PubMed

    Williamson, Stuart C; Hepburn, Anastasia C; Wilson, Laura; Coffey, Kelly; Ryan-Munden, Claudia A; Pal, Deepali; Leung, Hing Y; Robson, Craig N; Heer, Rakesh

    2012-01-01

    Stem cells are thought to be the cell of origin in malignant transformation in many tissues, but their role in human prostate carcinogenesis continues to be debated. One of the conflicts with this model is that cancer stem cells have been described to lack androgen receptor (AR) expression, which is of established importance in prostate cancer initiation and progression. We re-examined the expression patterns of AR within adult prostate epithelial differentiation using an optimised sensitive and specific approach examining transcript, protein and AR regulated gene expression. Highly enriched populations were isolated consisting of stem (α(2)β(1)(HI) CD133(+VE)), transiently amplifying (α(2)β(1)(HI) CD133(-VE)) and terminally differentiated (α(2)β(1)(LOW) CD133(-VE)) cells. AR transcript and protein expression was confirmed in α(2)β(1)(HI) CD133(+VE) and CD133(-VE) progenitor cells. Flow cytometry confirmed that median (±SD) fraction of cells expressing AR were 77% (±6%) in α(2)β(1)(HI) CD133(+VE) stem cells and 68% (±12%) in α(2)β(1)(HI) CD133(-VE) transiently amplifying cells. However, 3-fold lower levels of total AR protein expression (peak and median immunofluorescence) were present in α(2)β(1)(HI) CD133(+VE) stem cells compared with differentiated cells. This finding was confirmed with dual immunostaining of prostate sections for AR and CD133, which again demonstrated low levels of AR within basal CD133(+VE) cells. Activity of the AR was confirmed in prostate progenitor cells by the expression of low levels of the AR regulated genes PSA, KLK2 and TMPRSS2. The confirmation of AR expression in prostate progenitor cells allows integration of the cancer stem cell theory with the established models of prostate cancer initiation based on a functional AR. Further study of specific AR functions in prostate stem and differentiated cells may highlight novel mechanisms of prostate homeostasis and insights into tumourigenesis.

  7. Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation

    PubMed Central

    Hong, Sung Woo; Hur, Wonhee; Choi, Jung Eun; Kim, Jung-Hee; Hwang, Daehee; Yoon, Seung Kew

    2016-01-01

    We investigated the biological role of CD133-expressing liver cancer stem cells (CSCs) enriched after irradiation of Huh7 cells in cell invasion and migration. We also explored whether a disintegrin and metalloproteinase-17 (ADAM17) influences the metastatic potential of CSC-enriched hepatocellular carcinoma (HCC) cells after irradiation. A CD133-expressing Huh7 cell subpopulation showed greater resistance to sublethal irradiation and specifically enhanced cell invasion and migration capabilities. We also demonstrated that the radiation-induced MMP-2 and MMP-9 enzyme activities as well as the secretion of vascular endothelial growth factor were increased more predominantly in Huh7CD133+ cell subpopulations than Huh7CD133− cell subpopulations. Furthermore, we showed that silencing ADAM17 significantly inhibited the migration and invasiveness of enriched Huh7CD133+ cells after irradiation; moreover, Notch signaling was significantly reduced in irradiated CD133-expressing liver CSCs following stable knockdown of the ADAM17 gene. In conclusion, our findings indicate that CD133-expressing liver CSCs have considerable metastatic capabilities after irradiation of HCC cells, and their metastatic capabilities might be maintained by ADAM17. Therefore, suppression of ADAM17 shows promise for improving the efficiency of current radiotherapies and reducing the metastatic potential of liver CSCs during HCC treatment. PMID:26993601

  8. Clinical significance of radiation-induced CD133 expression in residual rectal cancer cells after chemoradiotherapy.

    PubMed

    Kawamoto, Aya; Tanaka, Koji; Saigusa, Susumu; Toiyama, Yuji; Morimoto, Yuhki; Fujikawa, Hiroyuki; Iwata, Takashi; Matsushita, Kohei; Yokoe, Takeshi; Yasuda, Hiromi; Inoue, Yasuhiro; Miki, Chikao; Kusunoki, Masato

    2012-03-01

    CD133 and CD44 have been considered as markers for colorectal cancer stem cells (CSCs). The association of CD133 and CD44 expression with radiation has not been fully examined in rectal cancer. Both CD133 (PROM) and CD44 mRNA levels were measured in post-chemoradiotherapy (CRT) specimens of 52 rectal cancer patients using real-time RT-PCR and compared to clinicopathological variables and clinical outcome. Their protein levels were examined in the radiation-treated HT29 human colon cancer cell line. Post-CRT CD133 in residual cancer cells was significantly higher than matched pre-CRT CD133 in biopsy specimens (n=30). By contrast, CD44 was significantly lower in post-CRT specimens (P<0.01). CD133 was associated with distant recurrence after CRT followed by surgery (P<0.05). Patients with elevated CD133 in residual cancer cells showed poor disease-free survival (P<0.05). No significant association between post-CRT CD44 and clinical outcome was found. The in vitro study showed that CD133 protein was increased in a radiation dose-dependent manner, despite of the decreased number of clonogenic radiation-surviving cells. CD44 protein was decreased after irradiation. CD133, but not CD44, was increased in radiation-resistant surviving colon cancer cells. Post-CRT CD133 in residual cancer cells may predict metachronous distant recurrence and poor survival of rectal cancer patients after CRT.

  9. [Application of genome-wide genechip for screening and identifying genes related to CD133(+)CD200(+) colorectal cancer stem cells].

    PubMed

    Zhang, Shanshan; Li, Lixuan; Huang, Zaiwei; Xin, Xiaomin; Xiao, Bing

    2013-12-01

    To screen and identity genes related to CD133(+)CD200(+) colorectal cancer stem cells. The two subpopulations of colorectal cancer cells, namely CD133(+)CD200(+) and CD133(-)CD200(-) cells, were sorted and verified by flow cytometry. The gene expression profiles of CD133(+)CD200(+)and CD133(-)CD200(-) colorectal cancer cells were examined using Affymetrix Human U133 Plus2.0 genome-wide genechip. The differentially expressed genes between the two cell subpopulations were analyzed to identify the genes responsible for the main effect in association with colorectal cancer stem cells. Real-time quantitative PCR was performed to confirm some of the differentially expressed genes identified by genechip. The genechip result showed that 655 genes were differentially expressed in CD133(+)CD200(+) colorectal cancer stem cells by at least 3 folds, including 290 up-regulated and 365 down-regulated ones. Bioinformatics analysis and gene co-expression network building identified 3 genes (MDM2, PRKACG, and CACNA1G) with specific expression in CD133(+)CD200(+) colorectal cancer stem cells, and this result was confirmed by real-time quantitative PCR analysis. A specific gene expression profile of colorectal cancer stem cells has been established through screening and identifying genes related to CD133(+)CD200(+)colorectal cancer stem cells by gene genechip technique, which provides a basis for further study of gene targeting therapy of colorectal cancer.

  10. Full-length dysferlin expression driven by engineered human dystrophic blood derived CD133+ stem cells.

    PubMed

    Meregalli, Mirella; Navarro, Claire; Sitzia, Clementina; Farini, Andrea; Montani, Erica; Wein, Nicolas; Razini, Paola; Beley, Cyriaque; Cassinelli, Letizia; Parolini, Daniele; Belicchi, Marzia; Parazzoli, Dario; Garcia, Luis; Torrente, Yvan

    2013-12-01

    The protein dysferlin is abundantly expressed in skeletal and cardiac muscles, where its main function is membrane repair. Mutations in the dysferlin gene are involved in two autosomal recessive muscular dystrophies: Miyoshi myopathy and limb-girdle muscular dystrophy type 2B. Development of effective therapies remains a great challenge. Strategies to repair the dysferlin gene by skipping mutated exons, using antisense oligonucleotides (AONs), may be suitable only for a subset of mutations, while cell and gene therapy can be extended to all mutations. AON-treated blood-derived CD133+ stem cells isolated from patients with Miyoshi myopathy led to partial dysferlin reconstitution in vitro but failed to express dysferlin after intramuscular transplantation into scid/blAJ dysferlin null mice. We thus extended these experiments producing the full-length dysferlin mediated by a lentiviral vector in blood-derived CD133+ stem cells isolated from the same patients. Transplantation of engineered blood-derived CD133+ stem cells into scid/blAJ mice resulted in sufficient dysferlin expression to correct functional deficits in skeletal muscle membrane repair. Our data suggest for the first time that lentivirus-mediated delivery of full-length dysferlin in stem cells isolated from Miyoshi myopathy patients could represent an alternative therapeutic approach for treatment of dysferlinopathies.

  11. AEG-1 expression correlates with CD133 and PPP6c levels in human glioma tissues

    PubMed Central

    Guo, Jia; Chen, Xin; Xi, Ruxing; Chang, Yuwei; Zhang, Xuanwei; Zhang, Xiaozhi

    2014-01-01

    Abstract Astrocyte elevated gene-1 (AEG-1) is associated with tumor genesis and progression in a variety of human cancers. This study aimed to explore the significance of AEG-1 in glioma and investigate whether it correlated with radioresistance of glioma cells. Immunohistochemical staining showed that the intensity of AEG-1, CD133 and PPP6c protein expression in glioma tissues increased significantly, mainly in the cytoplasm. The expression rate of AEG-1, CD133 and PPP6c were 85.9% (67/78), 60.3% (47/78) and 65.8% (51/78), respectively. AEG-1 expression was correlated with age (r = 0.227, P = 0.045), clinical stage (r = 0.491, P<0.001) and clinical grade (r = 0.450, P<0.001). No correlation was found between AEG-1 expression and other clinicopathologic parameters (P>0.05). The expression of AEG-1 was positively correlated with the expression of CD133 (r = 0.240, P  =  0.035) and PPP6c (r =  0.250, P  =  0.027). In addition, retrieved data on TCGA implied co-occurrence of genomic alterations of AEG-1 and PPP6c in glioblastoma. Our findings indicate that AEG-1 is positively correlated with CD133 and AEG-1 expression. It may play an important role in the progression of glioma and may serve as potential novel marker of chemoresistance and radioresistance. PMID:25332711

  12. Association of Vasculogenic Mimicry Formation and CD133 Expression with Poor Prognosis in Ovarian Cancer.

    PubMed

    Liang, Jun; Yang, Bo; Cao, Qinying; Wu, Xiaohua

    2016-01-01

    This study was conducted to investigate the association of vasculogenic mimicry (VM) formation and CD133 expression with the clinical outcomes of patients with ovarian cancer. This retrospective study was performed in 120 ovarian carcinoma samples. VM formation and CD133 expression was identified with CD31/periodic acid-Schiff double-staining and CD133 immunohistochemical staining. Collected clinical and pathological data included age at diagnosis, histologic type, tumor grade, tumor stage, lymph node metastases and response to chemotherapy. The overall survival time was calculated. VM was identified in 52 (43%) of 120 ovarian carcinoma tissues and CD133 expression was found in 56 (47%) cases. Both VM formation and CD133 expression were associated with advanced tumor stage, high-grade carcinoma and non-response to chemotherapy (p < 0.05). They were also associated with shorter overall survival time (p < 0.05) by log-rank test. Combined marker of VM formation and CD133 expression was associated with high-grade ovarian carcinoma, late-stage disease, non-response to chemotherapy and shorter overall survival time (p < 0.05). VM formation and CD133 expression can provide additional prognostic information for patients with ovarian cancer. Combined marker of VM formation and CD133 expression may be a potent predictor for poor prognosis for patients with ovarian cancer. © 2016 S. Karger AG, Basel.

  13. High CD133 Expression Is Associated with Worse Prognosis in Patients with Glioblastoma.

    PubMed

    Zhang, Wei; Chen, Huanran; Lv, Shengqing; Yang, Hui

    2016-05-01

    The CD133 antigen has been identified as a putative stem cell marker in gliomas. However, the prognostic significance of CD133 expression in glioblastoma patients remained controversial. A meta-analysis of published data was performed to comprehensively assess the prognostic role of CD133 expression in glioblastoma patients. Publications assessing the prognostic significance of CD133 expression in glioblastoma patients were identified in PubMed, Embase, and Web of Science up to November 2014. The pooled hazard ratio (HR) with 95% confidence interval (95% CI) was calculated using meta-analysis to evaluate the prognostic significance of CD133 expression in glioblastoma. Ten studies with a total of 715 glioblastoma patients were included into the meta-analysis. Overall, high CD133 expression was associated with poorer overall survival in patients with glioblastoma (HR = 1.96, 95% CI 1.46-2.64, P < 0.001). In addition, high CD133 expression was also associated with poorer progression-free survival in patients with glioblastoma (HR = 2.03, 95% CI 1.43-2.88, P < 0.001). Meta-analyses of studies with high quality showed that high CD133 expression was associated with both poorer overall survival (HR = 2.39, 95% CI 1.77-3.23, P < 0.001) and poorer progression-free survival (HR = 2.17, 95% CI 1.60-2.94, P < 0.001) in patients with glioblastoma. Meta-analysis of studies with adjusted estimates further showed that high CD133 expression was an independent prognostic factor of glioblastoma. High CD133 expression is associated with worse prognosis in patients with glioblastoma. More prospective studies with well-design are needed to confirm this finding.

  14. Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression

    SciTech Connect

    Chang, C.-J.; Hsu, C.-C.; Yung, M.-C.; Chen, K.-Y.; Tzao Ching; Wu, W.-F.; Chou, H.-Y.; Lee, Y.-Y.; Lu, K.-H.; Chiou, S.-H.; Ma, H.-I

    2009-03-06

    CD133-expressing glioma cells play a critical role in tumor recovery after treatment and are resistant to radiotherapy. Herein, we demonstrated that glioblastoma-derived CD133-positive cells (GBM-CD133{sup +}) are capable of self-renewal and express high levels of embryonic stem cell genes and SirT1 compared to GBM-CD133{sup -} cells. To evaluate the role of SirT1 in GBM-CD133{sup +}, we used a lentiviral vector expressing shRNA to knock-down SirT1 expression (sh-SirT1) in GBM-CD133{sup +}. Silencing of SirT1 significantly enhanced the sensitivity of GBM-CD133{sup +} to radiation and increased the level of radiation-mediated apoptosis. Importantly, knock-down of SirT1 increased the effectiveness of radiotherapy in the inhibition of tumor growth in nude mice transplanted with GBM-CD133{sup +}. Kaplan-Meier survival analysis indicated that the mean survival rate of GBM-CD133{sup +} mice treated with radiotherapy was significantly improved by Sh-SirT1 as well. In sum, these results suggest that SirT1 is a potential target for increasing the sensitivity of GBM and glioblastoma-associated cancer stem cells to radiotherapy.

  15. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    PubMed

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  16. CD133 EXPRESSION COULD BE A PREDICTIVE MARKER OF PERIODONTAL REGENERATION.

    PubMed

    Lucarini, G; Zizzi, A; Ferrante, L; D'Angelo, A B; Rubini, C; Aspriello, S D

    2015-01-01

    Periodontal regeneration needs formation of new connective tissue at the root surface, involving periodontal fibre development and angiogenesis. CD133 or prominin-1, is an important regulator of apoptosis, proliferation and angiogenesis. CD133 positive cells seem to be influenced in number and distribution by periodontal inflammatory changes. Studies showed different clinical and radiographic outcomes achieved with the used of Demineralized Freeze-Dried Bone Allografts (DFDBA) for periodontal intrabony defects treatment. Our aim was to investigate the relationship between CD133 expression in gingival biopsies before periodontal treatment and periodontal tissue response in the same site at 12 months post-surgery. We selected fifty-six patients with at least one intrabony defect with clinical attachment level (CAL)≥6 mm and needing periodontal regeneration. A gingival biopsy for each patient was obtained for CD133 immunostaining. Clinical and radiographical parameters were taken at baseline and 12 months post-surgery. We found a positive correlation between gingival CD133 expression and CAL gain achieved by use of DFDBA and measured 12 months post-surgery. Our results suggest that gingival CD133 expression could be a predictive marker of favourable periodontal healing. The CAL gain after periodontal regeneration seems to be related with a native gingival regenerative capacity.

  17. Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells

    PubMed Central

    Tsai, Tung-Hu; How, Chorng-Kuang; Wang, Chien-Ying; Hung, Shih-Chieh; Chang, Yuh-Lih; Tsai, Ming-Long; Lee, Yi-Yen; Ku, Hung-Hai; Chiou, Shih-Hwa

    2008-01-01

    CD133 (prominin-1), a 5-transmembrane glycoprotein, has recently been considered to be an important marker that represents the subset population of cancer stem-like cells. Herein we report the isolation of CD133-positive cells (LC-CD133+) and CD133-negative cells (LC-CD133−) from tissue samples of ten patients with non-small cell lung cancer (LC) and five LC cell lines. LC-CD133+ displayed higher Oct-4 expressions with the ability to self-renew and may represent a reservoir with proliferative potential for generating lung cancer cells. Furthermore, LC-CD133+, unlike LC-CD133−, highly co-expressed the multiple drug-resistant marker ABCG2 and showed significant resistance to chemotherapy agents (i.e., cisplatin, etoposide, doxorubicin, and paclitaxel) and radiotherapy. The treatment of Oct-4 siRNA with lentiviral vector can specifically block the capability of LC-CD133+ to form spheres and can further facilitate LC-CD133+ to differentiate into LC-CD133−. In addition, knock-down of Oct-4 expression in LC-CD133+ can significantly inhibit the abilities of tumor invasion and colony formation, and increase apoptotic activities of caspase 3 and poly (ADP-ribose) polymerase (PARP). Finally, in vitro and in vivo studies further confirm that the treatment effect of chemoradiotherapy for LC-CD133+ can be improved by the treatment of Oct-4 siRNA. In conclusion, we demonstrated that Oct-4 expression plays a crucial role in maintaining the self-renewing, cancer stem-like, and chemoradioresistant properties of LC-CD133+. Future research is warranted regarding the up-regulated expression of Oct-4 in LC-CD133+ and malignant lung cancer. PMID:18612434

  18. Prognostic impact of MGMT promoter methylation and MGMT and CD133 expression in colorectal adenocarcinoma

    PubMed Central

    2014-01-01

    Background New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. Methods MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. Results Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. Conclusions Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility. PMID:25015560

  19. Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression.

    PubMed

    Pfenninger, Cosima V; Steinhoff, Christine; Hertwig, Falk; Nuber, Ulrike A

    2011-01-01

    In contrast to ependymal cells located above the subventricular zone (SVZ) of the adult lateral ventricle wall (LVW), adult spinal cord (SC) ependymal cells possess certain neural stem cell characteristics. The molecular basis of this difference is unknown. In this study, antibodies against multiple cell surface markers were applied to isolate pure populations of SC and LVW ependymal cells, which allowed a direct comparison of their in vitro behavior and in vivo gene expression profile. Isolated CD133(+)/CD24(+)/CD45(-)/CD34(-) ependymal cells from the SC displayed in vitro self-renewal and differentiation capacity, whereas those from the LVW did not. SC ependymal cells showed a higher expression of several genes involved in cell division, cell cycle regulation, and chromosome stability, which is consistent with a long-term self-renewal capacity, and shared certain transcripts with neural stem cells of the embryonic forebrain. They also expressed several retinoic acid (RA)-regulated genes and responded to RA exposure. LVW ependymal cells showed higher transcript levels of many genes regulated by transforming growth factor-β family members. Among them were Dlx2, Id2, Hey1, which together with Foxg1 could explain their potential to turn into neuroblasts under certain environmental conditions.

  20. Clinicopathologic Significance of Survivin Expression in Relation to CD133 Expression in Surgically Resected Stage II or III Colorectal Cancer

    PubMed Central

    Li, Wanlu; Lee, Mi-Ra; Choi, EunHee; Cho, Mee-Yon

    2017-01-01

    Background Cancer stem cells have been investigated as new targets for colorectal cancer (CRC) treatment. We recently reported that CD133+ colon cancer cells showed chemoresistance to 5-fluorouracil through increased survivin expression and proposed the survivin inhibitor YM155 as an effective therapy for colon cancer in an in vitro study. Here, we investigate the relationship between survivin and CD133 expression in surgically resected CRC to identify whether the results obtained in our in vitro study are applicable to clinical samples. Methods We performed immunohistochemical staining for survivin and CD133 in surgically resected tissue from 187 stage II or III CRC patients. We also comparatively analyzed apoptosis according to survivin and CD133 expression using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling. Results The results of the Mantel-Haenszel test established a linear association between nuclear survivin and CD133 expression (p = .018), although neither had prognostic significance, according to immunohistochemical expression level. No correlation was found between survivin expression and the following pathological parameters: invasion depth, lymph node metastasis, or histologic differentiation (p > .05). The mean apoptotic index in survivin+ and CD133+ tumors was higher than that in negative tumors: 5.116 ± 4.894 in survivin+ versus 4.103 ± 3.691 in survivin– (p = .044); 5.165 ± 4.961 in CD133+ versus 4.231 ± 3.812 in CD133– (p = .034). Conclusions As observed in our in vitro study, survivin expression is significantly related to CD133 expression. Survivin may be considered as a new therapeutic target for chemoresistant CRC. PMID:27989099

  1. Characterization of a new human melanoma cell line with CD133 expression.

    PubMed

    Gil-Benso, Rosario; Monteagudo, Carlos; Cerdá-Nicolás, Miguel; Callaghan, Robert C; Pinto, Sandra; Martínez-Romero, Alicia; Pellín-Carcelén, Ana; San-Miguel, Teresa; Cigudosa, Juan C; López-Ginés, Concha

    2012-06-01

    A novel human malignant melanoma cell line, designated MEL-RC08, was established from a pericranial metastasis of a malignant melanoma of the skin. The cell line has been subcultured for more than 150 passages and is tumorigenic in nude mice. Growth kinetics, cytogenetics, flow cytometry, and molecular techniques for analysis of the genes implicated in cell cycle control; mutations in BRAF, NRAS, C-KiT, RB, and TP53 genes; and amplification of MDM2, CDK4, and cyclin D1 have been studied. Cytogenetically, the tumor and the cell line showed a hypertriploid karyotype with many clonal numeric and structural abnormalities. DNA flow cytometry showed an aneuploid peak with a DNA index value of 1.5. Mutations in TP53 and BRAF genes were demonstrated in both tumor and cell line. Furthermore, stem cell marker CD133 expression was detected in most cells, together with other stem cell markers, suggesting the presence of cells with tumor-initiating potential in this cell line.

  2. [Expressions of CD133 and CD82/KAI1 in bladder urothelial carcinoma and their correlation with vasculogenic mimicry].

    PubMed

    Yu, Lan; Wu, Shiwu; Zhou, Lei; Song, Wenqing; Wang, Danna

    2013-09-01

    To explore the expressions of CD133 and CD82/KAI1 in bladder urothelial carcinoma, their association with the clinicopathological factors and their roles in vasculogenic mimicry (VM) in the tumor. The expressions of CD133 and CD82/KAI1 and VM were detected by immunohistochemistry and histochemistry in 90 specimens of bladder urothelial carcinoma and 20 specimens of normal bladder epithelium tissue. The positivity rates of CD133, CD82/KAI1 and VM in normal bladder epithelium tissue were 0, 90% and 0, showing significant differences from the rates of 65.6%, 31.1% and 31.1% in urothelial carcinoma, respectively (P<0.01). Positive expressions of CD133, CD82/KAI1 and VM were significantly correlated with pTNM stage and tumor relapse (P<0.01) but not with gender, age, or tumor numbers (P>0.05). CD133 expression was positively correlated with VM (P=0.487, P<0.05), and CD82/KAI1 expression was negatively correlated with VM (r=-0.452, P<0.01) and CD133 (r=-0.776, P<0.05). The expressions of CD133 and CD82/KAI1 proteins are involved in the occurrence of VM in bladder urothelial carcinoma to contribute to the invasion and relapse of bladder carcinoma.

  3. CD133 expression in oral lichen planus correlated with the risk for progression to oral squamous cell carcinoma.

    PubMed

    Sun, Lili; Feng, Jinqiu; Ma, Lihua; Liu, Wei; Zhou, Zengtong

    2013-12-01

    Oral lichen planus (OLP) is a potentially malignant disorder associated with an increased risk for progression to oral squamous cell carcinoma (OSCC). The objective of this study to determine protein expression of cancer stem cell marker CD133 in tissue samples of patients with OLP and evaluate the correlation between CD133 expression and the risk of progression to OSCC. In this longitudinal case-control study, a total of 110 patients with OLP who received a mean follow-up of 56 months were enrolled, including 100 patients who did not progress to OSCC and 10 patients who had progressed to OSCC. CD133 expression was determined using immunohistochemistry in samples from these patients. Analysis of 10 cases of normal oral mucosa and 6 cases of postmalignant OSCC form previously diagnosed OLP was also performed. The results showed that CD133 expression was observed in 29% cases of nonprogressing OLP and in 80% cases of progressing OLP (P = .002). CD133 was not expressed in normal oral mucosa, but it positively expressed in the 100% cases of OSCC. Logistic regression analysis revealed that the risk of malignant progression in the patients with CD133-positive expression was significantly higher than those with CD133 negativity (odds ratio, 9.79; 95% confidence interval, 1.96-48.92; P = .005). Collectively, CD133 expression was significantly associated with malignant progression in a longitudinal series of patients with OLP. Our findings suggested that CD133 may serve as a novel candidate biomarker for risk assessment of malignant potential of OLP. © 2013.

  4. The Ribonucleic Complex HuR-MALAT1 Represses CD133 Expression and Suppresses Epithelial-Mesenchymal Transition in Breast Cancer.

    PubMed

    Latorre, Elisa; Carelli, Stephana; Raimondi, Ivan; D'Agostino, Vito; Castiglioni, Ilaria; Zucal, Chiara; Moro, Giacomina; Luciani, Andrea; Ghilardi, Giorgio; Monti, Eleonora; Inga, Alberto; Di Giulio, Anna Maria; Gorio, Alfredo; Provenzani, Alessandro

    2016-05-01

    Epithelial-to-mesenchymal transition (EMT) is a core process underlying cell movement during embryonic development and morphogenesis. Cancer cells hijack this developmental program to execute a multi-step cascade, leading to tumorigenesis and metastasis. CD133 (PROM1), a marker of cancer stem cells, has been shown to facilitate EMT in various cancers, but the regulatory networks controlling CD133 gene expression and function in cancer remain incompletely delineated. In this study, we show that a ribonucleoprotein complex including the long noncoding RNA MALAT1 and the RNA-binding protein HuR (ELAVL1) binds the CD133 promoter region to regulate its expression. In luminal nonmetastatic MCF-7 breast cancer cells, HuR silencing was sufficient to upregulate N-cadherin (CDH2) and CD133 along with a migratory and mesenchymal-like phenotype. Furthermore, we found that in the basal-like metastatic cell line MDA-MB-231 and primary triple-negative breast cancer tumor cells, the repressor complex was absent from the CD133-regulatory region, but was present in the MCF-7 and primary ER+ tumor cells. The absence of the complex from basal-like cells was attributed to diminished expression of MALAT1, which, when overexpressed, dampened CD133 levels. In conclusion, our findings suggest that the failure of a repressive complex to form or stabilize in breast cancer promotes CD133 upregulation and an EMT-like program, providing new mechanistic insights underlying the control of prometastatic processes. Cancer Res; 76(9); 2626-36. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Prominin-1 (CD133) Expression in the Prostate and Prostate Cancer: A Marker for Quiescent Stem Cells.

    PubMed

    Pellacani, Davide; Oldridge, Emma E; Collins, Anne T; Maitland, Norman J

    2013-01-01

    The origin and phenotype of stem cells in human prostate cancer remains a subject of much conjecture. In this scenario, CD133 has been successfully used as a stem cell marker in both normal prostate and prostate cancer. However, cancer stem cells have been identified without the use of this marker, opening up the possibility of a CD133 negative cancer stem cell. In this chapter, we review the current literature regarding prostate cancer stem cells, with specific reference to the expression of CD133 as a stem cell marker to identify and purify stem cells in normal prostate epithelium and prostate cancer.

  6. [Clinical significance of CD44 and CD133 expression in oral potentially malignant disorder and oral squamous cell carcinoma].

    PubMed

    Jiajia, Qi; Yan, Sun; Changqing, Yuan; Wenjing, Jiang; Han, Zhao; Yuanpan, Cao; Qiuyan, Liu

    2017-06-01

    This study aims to investigate the expression and relationship of CD44 and CD133 in normal oral mucosa, oral potentially malignant disorder (OPMD), and oral squamous cell carcinoma (OSCC). This work also analyzes the relationship between such expression and clinical factors. This study intends to evaluate the clinical value of using CD44 and CD133 as indices to evaluate the carcinogenic potential of OPMD. Clinical data from 60 patients with OPMD, 60 patients with OSCC, and 10 cases of normal oral mucosa were analyzed. Double immunohistochemical analysis was applied to investigate the expression of CD44 and CD133 in paraffin sections of normal oral mucosa, OPMD, and OSCC tissues. Subsequently, the relationships between such expression and clinical factors were analyzed. The positive rates of CD44 expression in the normal oral mucosa, OPMD, and OSCC tissues were 100.00%, 96.67%, and 71.67% (P<0.05), respectively. Meanwhile, the positive rates of CD133 expression in the normal oral mucosa, OPMD, and OSCC tissues were 0.00%, 35.00%, and 63.33% (P<0.05), respectively. The expression of CD44 and CD133 was found to be correlated (P<0.05). Such expression was related to the clinical stages and lymphatic metastasis of OSCC (P<0.05). CD44 and CD133 can be used individually as clinical indices to evaluate the carcinogenic potential of OPMD.
.

  7. Expression status of CD44 and CD133 as a prognostic marker in esophageal squamous cell carcinoma treated with neoadjuvant chemotherapy followed by radical esophagectomy.

    PubMed

    Okamoto, Koichi; Ninomiya, Itasu; Ohbatake, Yoshinao; Hirose, Atsushi; Tsukada, Tomoya; Nakanuma, Shinichi; Sakai, Seisho; Kinoshita, Jun; Makino, Isamu; Nakamura, Keishi; Hayashi, Hironori; Oyama, Katsunobu; Inokuchi, Masafumi; Nakagawara, Hisatoshi; Miyashita, Tomoharu; Hidehiro, Tajima; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo

    2016-12-01

    Cancer stem cells (CSCs) have self-renewal and pluripotency capabilities and contribute to cancer progression and chemoresistance. It has been proposed that the treatment resistance and heterogeneity of CSCs are deeply involved in the prognosis of patients with esophageal squamous cell carcinoma (ESCC). The objective of this study was to identify the influence of the expression status of the CSC markers CD44 and CD133 on chemotherapeutic efficacy and prognosis in ESCC patients who underwent radical esophagectomy after neoadjuvant chemotherapy (NAC). Endoscopically biopsied specimens taken before NAC and surgically resected specimens after NAC were immunohistochemically assessed for CD44 and CD133 expression for 47 ESCC patients who underwent NAC followed by radical esophagectomy. The correlation between CD44 and CD133 expression status and clinicopathological findings and the prognosis of ESCC patients after NAC followed by esophagectomy were analyzed. The percentages of CD44-positive cells and CD133-positive cells in specimens were increased after NAC. CD44 and CD133 expression status before NAC did not correlate with the degree of tumor progression and had no impact on the chemotherapeutic effect. However, strong expression of CD44 or CD133 and a high proportion of CD133-expressing cells before NAC were significantly associated with poorer esophageal cancer-specific survival. Patients with strong expression of CD44 or CD133 and those with a high ratio of CD133-positive tumor cells showed significantly poor prognosis regardless of the effect of chemotherapy. Multivariate analysis showed that simultaneous strong expression of CD44 and CD133 before NAC, a high rate of CD133-positive tumor cells before NAC, and primary tumor remission assessed by preoperative endoscopy were significant independent prognostic factors for ESCC. Our data indicate that CD44 and CD133 expression status prior to treatment dictates the malignant potential of ESCC and may be a novel

  8. Expression of CXCR4 in cord blood-derived CD133+ cells treated with platelet micro-particles.

    PubMed

    Moghaddam, Farzaneh; Oodi, Arezoo; Nikougoftar Zarif, Mahin; Amani, Maryam; Amirizadeh, Naser

    2016-11-01

    Platelet micro-particles (MPs) contain CXCR4 markers and are able to transfer them into hematopoietic stem cells. Therefore, effect of platelet MPs (PMPs) on the expression levels of CXCR4 and CD34 markers in these cells was examined. Isolated CD 133+ cells cultivated for 5 d in the stem span medium and PMPs. Fold increase of CD34+ cells in the presence of 5 and 10 g/ml of PMPs was increased significantly. CXCR4+ cell percent in the presence of 10 g/ml PMPs compared with control cells (63.8 ± 6.4) was increased (P < 0.05). PMPs were no affect on clonogenicity of hematopoietic progenitor cells. Cord blood CD133+ cells are able to maintain long-term hematopoiesis and to differentiate to hematopoietic lineages. CXCR4 over expression is involved in homing and successful transplantation of hematopoietic stem cells (HSCs) in the bone marrow. PMPs contain CXCR4 markers and are able to transfer them into hematopoietic stem cells. Therefore, considering the importance of CD133+ cells as primitive HSCs, the effect of PMPs on the expression levels of CXCR4 and CD34 markers in these cells was examined. Cord blood CD133+ cells were isolated by MACS. Isolated cells were divided into three groups: (i) control cells, (ii) cells treated with 5 μg/ml PMPs, (iii) cells treated with 10 μg/ml PMPs. Cells were cultivated for 5 d in the stem span medium. Expression of CD 133, CD34, and CXCR4 surface marker was analyzed by flow cytometry. Total cell numbers were counted by hemocytometer and clonogenicity were measured by colony assay. PMPs were no effect on CD133+ cells proliferation, but fold increase of CD34+ cells in the presence of 5 and 10 g/ml of PMPs was increased significantly. CXCR4+ cell percent in the presence of 10 g/ml PMPs compared with control cells (63.8 ± 6.4) was increased (P < 0.05). PMPs were no affect on clonogenicity of hematopoietic progenitor cells. Exposure of CD133+ cells isolated from cord blood to PMPs with 10

  9. CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.

    PubMed

    Barrantes-Freer, Alonso; Renovanz, Mirjam; Eich, Marcus; Braukmann, Alina; Sprang, Bettina; Spirin, Pavel; Pardo, Luis A; Giese, Alf; Kim, Ella L

    2015-01-01

    A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells.

  10. CD133/prominin1 is prognostic for GBM patient's survival, but inversely correlated with cysteine cathepsins' expression in glioblastoma derived spheroids.

    PubMed

    Ardebili, Seyed Y; Zajc, Irena; Gole, Boris; Campos, Benito; Herold-Mende, Christel; Drmota, Sara; Lah, Tamara T

    2011-06-01

    CD133 is a marker for a population of glioblastoma (GBM) and normal neural stem cells (NNSC). We aimed to reveal whether the migratory potential and differentiation of these stem cells is associated with CD133 expression and with cathepsin proteases (Cats). MATERIALS AND METHODS.: The invasiveness of normal NNSC, GBM/CD133+ cell lines and GBM spheroids was evaluated in 3D collagen, as well as of U87-MG and normal astrocytes (NHA) grown in monolayers in 2D Matrigel. Expression of Cats B, L and S was measured at mRNA and activity levels and their relation to invasiveness, to CD133 mRNA in 26 gliomas, and to the survival of these patients. The average yield of CD133+ cells from GBM samples was 9.6 %. Survival of patients with higher CD133 mRNA expression was significantly shorter (p< 0.005). Invasion, associated with proteolytic degradation of matrix, was higher in normal stem cells and GBM spheroids and cells than in isolated GBM CD133+ cells. In glioma samples, there was no correlation between CD133 mRNA expression and Cat mRNAs, but there was an inverse correlation with Cat activities. The study confirms CD133 as a prognostic marker for the survival of GBM patients. We demonstrated that NNSC have higher invasion potential and invade the collagen matrix in a mode different from that of GBM, initiating stem cell spheres. This result could have implications for the design of new therapeutics, including protease inhibitors that specifically target invasive tumour stem cells. Increased activity of cathepsins in CD133- cells suggests their role in the invasive behaviour of GBM.

  11. VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation.

    PubMed

    Gavina, Manuela; Belicchi, Marzia; Rossi, Barbara; Ottoboni, Linda; Colombo, Fabio; Meregalli, Mirella; Battistelli, Maurizio; Forzenigo, Laura; Biondetti, Piero; Pisati, Federica; Parolini, Daniele; Farini, Andrea; Issekutz, Andrew C; Bresolin, Nereo; Rustichelli, Franco; Constantin, Gabriela; Torrente, Yvan

    2006-10-15

    Recently our group demonstrated the myogenic capacity of human CD133(+) cells isolated from peripheral blood when delivered in vivo through the arterial circulation into the muscle of dystrophic scid/mdx mice. CD133(+) stem cells express the adhesion molecules CD44, LFA-1, PSGL-1, alpha4-integrins, L-selectin, and chemokine receptor CCR7. Moreover these cells adhere in vitro to VCAM-1 spontaneously and after stimulation with CCL19. Importantly, after muscle exercise, we found that the expression of VCAM-1 is strongly up-regulated in dystrophic muscle vessels, whereas the number of rolling and firmly adhered CD133(+) stem cells significantly increased. Moreover, human dystrophin expression was significantly increased when muscle exercise was performed 24 hours before the intra-arterial injection of human CD133(+) cells. Finally, treatment of exercised dystrophic mice with anti-VCAM-1 antibodies led to a dramatic blockade of CD133(+) stem cell migration into the dystrophic muscle. Our results show for the first time that the expression of VCAM-1 on dystrophic muscle vessels induced by exercise controls muscle homing of human CD133(+) stem cells, opening new perspectives for a potential therapy of muscular dystrophy based on the intra-arterial delivery of CD133(+) stem cells.

  12. Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity

    PubMed Central

    Brown, Daniel V.; Filiz, Gulay; Daniel, Paul M.; Hollande, Frédéric; Dworkin, Sebastian; Amiridis, Stephanie; Kountouri, Nicole; Ng, Wayne; Morokoff, Andrew P.

    2017-01-01

    Glioblastoma (GBM) is a heterogeneous tumor of the brain with a poor prognosis due to recurrence and drug resistance following therapy. Genome-wide profiling has revealed the existence of distinct GBM molecular subtypes that respond differently to aggressive therapies. Despite this, molecular subtype does not predict recurrence or drug resistance and overall survival is similar across subtypes. One of the key features contributing to tumor recurrence and resistance to therapy is proposed to be an underlying subpopulation of resistant glioma stem cells (GSC). CD133 expression has been used as a marker of GSCs, however recent evidence suggests the relationship between CD133 expression, GSCs and molecular subtype is more complex than initially proposed. The expression of CD133, Olig2 and CD44 was investigated using patient derived glioma stem-like cells (PDGCs) in vitro and in vivo. Different PDGCs exhibited a characteristic equilibrium of distinct CD133+ and CD44+ subpopulations and the influence of environmental factors on the intra-tumor equilibrium of CD133+ and CD44+ cells in PDGCs was also investigated, with hypoxia inducing a CD44+ to CD133+ shift and chemo-radiotherapy inducing a CD133+ to CD44+ shift. These data suggest that surveillance and modulation of intra-tumor heterogeneity using molecular markers at initial surgery and surgery for recurrent GBM may be important for more effective management of GBM. PMID:28241049

  13. Co-expression of CD133, CD44v6 and human tissue factor is associated with metastasis and poor prognosis in pancreatic carcinoma.

    PubMed

    Chen, Kai; Li, Zhonghu; Jiang, Peng; Zhang, Xi; Zhang, Yujun; Jiang, Yan; He, Yu; Li, Xiaowu

    2014-08-01

    The metastasis-related molecules CD133, CD44v6 and human tissue factor (TF) have been shown to be associated with tumor invasion and metastasis. This study aimed to determine whether co-expression of these three molecules was associated with metastasis and overall prognosis in pancreatic carcinoma. We analyzed the expression profiles of these three molecules by immunohistochemistry and evaluated the relationship of their expression profiles with metastasis and prognosis in 109 pancreatic carcinomas. The results showed that the expression levels of CD133, CD44v6 and TF were increased in pancreatic carcinoma. Co-expression of CD133, CD44v6 and TF (tri-expression) was also detected in pancreatic carcinoma. Clinical analysis showed that individual expression of CD133, CD44v6 or TF was associated with vessel invasion, lymph node metastasis and liver metastasis, while tri-expression was associated with lymph node metastasis. Survival analysis showed that patients with co-expression of CD133 and TF or tri-expression had lower and the lowest overall survival rates, respectively. Univariate analysis showed that T-factor, lymph node metastasis, TNM stage, and individual levels or tri-expression of CD133, CD44v6 and TF were survival risk factors. Multivariate analysis showed that tri-expression of CD133, CD44v6 and TF was an independent predictor of survival. These results suggest that overexpression of CD133, CD44v6 and TF is associated with pancreatic carcinoma metastasis. Tri-expression of these three molecules may be a useful predictor for pancreatic carcinoma prognosis.

  14. Cell-surface Vimentin: A mislocalized protein for isolating csVimentin(+) CD133(-) novel stem-like hepatocellular carcinoma cells expressing EMT markers.

    PubMed

    Mitra, Abhisek; Satelli, Arun; Xia, Xueqing; Cutrera, Jeffrey; Mishra, Lopa; Li, Shulin

    2015-07-15

    Recent advances in cancer stem cell biology have shown that cancer stem-like cells with epithelial-mesenchymal transition (EMT) phenotypes are more aggressive and cause relapse; however, absence of a specific marker to isolate these EMT stem-like cells hampers research in this direction. Cell surface markers have been identified for isolating cancer stem-like cells, but none has been identified for isolating cancer stem-like cells with EMT phenotype. Recently, we discovered that Vimentin, an intracellular EMT tumor cell marker, is present on the surface of colon metastatic tumor nodules in the liver. In our study, we examined the potential of targeting cell surface Vimentin (CSV) to isolate stem-like cancer cells with EMT phenotype, by using a specific CSV-binding antibody, 84-1. Using this antibody, we purified the CSV-positive, CD133-negative (csVim(+) CD133(-) ) cell population from primary liver tumor cell suspensions and characterized for stem cell properties. The results of sphere assays and staining for the stem cell markers Sox2 and Oct4A demonstrated that csVim(+) CD133(-) cells have stem-like properties similar to csVim(-) CD133(+) population. Our investigation further revealed that the csVim(+) CD133(-) cells had EMT phenotypes, as evidenced by the presence of Twist and Slug in the nucleus, the absence of EpCAM on the cell surface and basal level of expression of epithelial marker E-cadherin. The csVimentin-negative CD133-positive stem cells do not have any EMT phenotypes. csVim(+) CD133(-) cells exhibited more aggressively metastatic in livers than csVim(-) CD133(+) cells. Our findings indicate that csVim(+) CD133(-) cells are promising targets for treatment and prevention of metastatic hepatocellular carcinoma.

  15. [Investigation of self-renewal mechanism about CD133+ cancer stem cells in human laryngeal carcinoma Hep-2 cell line].

    PubMed

    Wei, Xudong; He, Jian; Gao, Jiangxia; Chen, Jing; Wang, Jingyu

    2014-11-01

    To investigate the self-renewal mechanism of CD133+ cancer stem cells from Hep-2 cell line. The CD133+ cells were sorted by flow cytometry from Hep-2 cell line. Then the sorted CD133+ cells were cultured in RPMI1640. The ability of self-renewal of CD133+ cells were tested by MTT assay. mRNA and protein expression of self-renewal related genes were detected by western blot and RT- PCR. (3.10 ± 0.21)% of Hep-2 cells expressed the membrane antigen CD133. CD133+ fraction was raised to (90.20 ± 5.51)% by flow cytometry. In vitro culture and growth curve showed CD133+ cells had more active proliferation ability than CD133- cells, which showed statistically significant difference between these two group (P < 0.01). RT- PCR and western blot results showed upregulated mRNA and protein expression of Fas, c-myc, survivin in CD133+ group (P < 0.01). In the same time, the ratio of Bcl-2/Bax gene expression was obviously increased in CD133+ group. Self-renewal related gene such as β-catenin, SHH, SMOH and Bmi-1,Gli-1 were all up-regulated in CD133+ group both in mRNA and protein. On the contrary, PTCH gene was down-regulated. CD133 positive cells are a small proportion of a Hep-2 cell line. The results of this experiment verified that CD133 positive cells owned the properties of cancer stem cells. Upregulated anti-apoptotic gene is the foundatiom of self-renewal mechanism of CD133+ cells. Cancer stem cells related signal pathways such as Hedgehog, Wnt and Bmi-1 pathway are in state of activation. The identification of self-renewal mechanism about cancer stem cell provides a powerful tool to investigate the tumorigenic process in the larynx and to develop therapies targeting to these signal pathways.

  16. Androgen Receptor Increases CD133 Expression and Progenitor-Like Population That Associate With Cisplatin Resistance in Endometrial Cancer Cell Line

    PubMed Central

    Chen, Lumin; Chang, Wei-Chun; Hung, Yao-Ching; Chang, Ying-Yi; Bao, Bo-Yin; Huang, Hsin-Ching; Chung, Wei-Min; Shyr, Chih-Rong

    2014-01-01

    Endometrial cancer (EMC) is a sex steroid hormone-related female malignancy. Androgen and androgen receptor (androgen/AR) signals have been implicated in EMC progression. Cancer stem/progenitor cells (CSPCs) are suspected to link to chemoresistance in patients with EMC. In this study, we examined the androgen/AR roles in cisplatin resistance and CSPC population. We found AR expression increased naive EMC side population, CSPC population, cell migration, and epithelial–mesenchymal transition. Meanwhile, it decreased cisplatin cytotoxic effect on EMC cells. Collaterally, endogenous AR expressions in EMC cells were upregulated in the cisplatin-resisting state. Moreover, AR expression could further enhance CD133 expression, CSPC-related markers, and drug-resistance gene messenger RNA expression in EMC cells. Finally, the AR-associated gene expression might go through indirect regulation. This is the first report revealing AR function on EMC cells’ CSPC and cisplatin resistance. PMID:23962788

  17. Role of CD44(high)/CD133(high) HCT-116 cells in the tumorigenesis of colon cancer.

    PubMed

    Zhou, Jin-Yong; Chen, Min; Ma, Long; Wang, Xiaoxiao; Chen, Yu-Gen; Liu, Shen-Lin

    2016-02-16

    This study aimed to explore cell surface biomarkers related to cancer stem cells (CSCs) and their role in the tumorigenesis of colon cancer. Various colon cancer cell lines were screened for CD133 and CD44 expression. CD44(high)/CD133(high) and CD44(low)/CD133(low) cells were separately isolated by Fluorescence-Activated Cell Sorting (FACS). The cell proliferation, colony formation, cell cycle characteristics, and tumorigenic properties in CD44(high)/CD133(high) and CD44(low)/CD133(low) cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression profiles of stem cell-related genes were examined by RT-PCR. With HCT-116 cells, flow cytometry analysis revealed that CD44(high)/CD133(high) cells had higher proliferation potency than CD44(low)/CD133(low) cells. Compared to CD44(low)/CD133(low) cells, CD44(high)/CD133(high) cells had more stem cell-related genes, and displayed increased tumorigenic ability. In summary, CD44(high)/CD133(high) cells isolated from HCT-116 cells harbor CSC properties that may be related to the tumor growth of colon cancer. These results suggest that CD44 and CD133 could be strong markers of colorectal cancer stem cells.

  18. Frequency and pattern of expression of the stem cell marker CD133 have strong prognostic effect on the surgical outcome of colorectal cancer patients.

    PubMed

    Takahashi, Shusaku; Kamiyama, Toshiya; Tomaru, Utano; Ishizu, Akihiro; Shida, Toshiyuki; Osaka, Mineji; Sato, Yutaka; Saji, Yutaka; Ozaki, Michitaka; Todo, Satoru

    2010-11-01

    CD133 has been reported to be a cancer stem cell marker in colorectal cancer (CRC). The aim of this study was to examine the frequency and pattern of CD133 expression by immunohistochemical methods and evaluate their correlation with clinicopathological features, including patient survival (PS) and recurrence. Tissue specimens of 151 CRC patients who underwent surgical treatment for well-differentiated/moderately differentiated adenocarcinoma and stage I-IV tumors (TNM classification) were immunostained for analyzing CD133 expression. The frequency of CD133 expression was 91.4% (138/151), and the pattern of expression was divided into membranous and cytoplasmic expression. Of the 151 patients, 136 (90.1%) showed membranous expression, whereas 44 (29.1%) showed cytoplasmic expression. Both expression patterns were seen in 42 (27.8%) patients. The frequency of CD133 overexpression (>50% of stained cells) was 27.2% (41/151); univariate analysis showed CD133 overexpression to be significantly associated with PS, but not recurrence, and multivariate analysis indicated it to be an independent prognostic factor. Multivariate analysis showed membranous overexpression (>50% of stained tumor cells on the membrane), which significantly correlated with histology and chemoresistance of recurrent and stage IV tumors, to be an independent prognostic factor for PS and recurrence. However, multivariate analysis did not indicate cytoplasmic expression, which significantly correlated with histology, lymph node metastasis, TNM stage and lymphatic invasion, as an independent prognostic factor for PS and recurrence. Our results demonstrated that evaluation of the frequency and pattern of CD133 expression is useful for predicting prognosis, recurrence, and chemosensitivity in CRC patients.

  19. Effect of CXCR4 and CD133 co-expression on the prognosis of patients with stage II~III colon cancer.

    PubMed

    Li, Xiao-Feng; Guo, Xiao-Guang; Yang, Yong-Yan; Liu, Ai-Yong

    2015-01-01

    To explore the relationship between CXCR4, CD133 co-expression and clinicopathological features as well as prognosis of patients with phase II~III colon cancer. Forty-nine paraffin-embedded samples of tumor tissue and epithelial tissue adjacent to cancer were collected from patients with colon cancer undergoing radical surgery in Baotou Cancer Hospital from January, 2010 to June, 2011. CXCR4 and CD133 expression was detected using immunohistochemistry and its relationship with clinicopathological features and the 3-year survival rate was analyzed. In the tumor tissue and colonic epithelial tissue adjacent to cancer, the positive expression rates of CXCR4 were respectively 61.2% (30/49) and 8.16% (4/49), while those of CD133 being 36.7% (18/49) and 6.12% (3/49). CXCR4 and CD133 expression in tumor tissue was not related to patient age, gender, primary focal sites, tumor size, TNM staging, histological type, tumor infiltration depth and presence or absence of lymphatic metastasis, but CXCR4 and CD133 co-expression was associated with TNM staging and lymphatic metastasis. The 3-year survival rate of patients with CXCR4 and CD133 co-expression was 27.3% (3/11), and that of the remainderwas 76.3% (29/38), the difference being significant (χ2=7.0206, p=0.0081). CXCR4 and CD133 co-expression may be a risk factor for poor prognosis of patients with stage II~III colon cancer.

  20. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression.

    PubMed

    Perazzoli, Gloria; Prados, Jose; Ortiz, Raul; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2'-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma multiforme patients.

  1. Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24.

    PubMed

    Panchision, David M; Chen, Hui-Ling; Pistollato, Francesca; Papini, Daniela; Ni, Hsiao-Tzu; Hawley, Teresa S

    2007-06-01

    Although flow cytometry is useful for studying neural lineage relationships, the method of dissociation can potentially bias cell analysis. We compared dissociation methods on viability and antigen recognition of mouse central nervous system (CNS) tissue and human CNS tumor tissue. Although nonenzymatic dissociation yielded poor viability, papain, purified trypsin replacement (TrypLE), and two purified collagenase/neutral protease cocktails (Liberase-1 or Accutase) each efficiently dissociated fetal tissue and postnatal tissue. Mouse cells dissociated with Liberase-1 were titrated with antibodies identifying distinct CNS precursor subtypes, including CD133, CD15, CD24, A2B5, and PSA-NCAM. Of the enzymes tested, papain most aggressively reduced antigenicity for mouse and human CD24. On human CNS tumor cells, CD133 expression remained highest after Liberase-1 and was lowest after papain or Accutase treatment; Liberase-1 digestion allowed magnetic sorting for CD133 without the need for an antigen re-expression recovery period. We conclude that Liberase-1 and TrypLE provide the best balance of dissociation efficiency, viability, and antigen retention. One implication of this comparison was confirmed by dissociating E13.5 mouse cortical cells and performing prospective isolation and clonal analysis on the basis of CD133/CD24 or CD15/CD24 expression. Highest fetal expression of CD133 or CD15 occurred in a CD24(hi) population that was enriched in neuronal progenitors. Multipotent cells expressed CD133 and CD15 at lower levels than did these neuronal progenitors. We conclude that CD133 and CD15 can be used similarly as selectable markers, but CD24 coexpression helps to distinguish fetal mouse multipotent stem cells from neuronal progenitors and postmitotic neurons. This particular discrimination is not possible after papain treatment. Disclosure of potential conflicts of interest is found at the end of this article.

  2. Elevated expression of Nrf2 mediates multidrug resistance in CD133+ head and neck squamous cell carcinoma stem cells

    PubMed Central

    Lu, Bao-Cai; Li, Jing; Yu, Wen-Fa; Zhang, Guo-Zheng; Wang, Hui-Min; Ma, Hui-Min

    2016-01-01

    Enhanced expression of the ATP-binding cassette (ABC) transporter protein ABC sub-family G member 2 (ABCG2) in cancer stem cells (CSCs) plays a major role in chemotherapeutic drug efflux, which results in therapy failure and tumor relapse. In addition to downregulating apoptosis in CSCs, it has been reported that the transcriptional upregulation of the redox sensing factor Nrf2 is involved in the upregulation of ABCG2 expression and consequent chemoresistance. The current study investigated the presence of cancer stem-like side population (SP) cells from head and neck squamous cell carcinoma (HNSCC) samples, and evaluated the Nrf2 expression profile and multidrug resistance properties of HNSCC stem cells. Fluorescence-activated cell sorting was used for SP cells detection, while reverse transcription-polymerase chain reaction was used for the analysis of Nrf2 expression. The present study identified ~2.1% SP cells present in HNSCC specimens, which were positive for cluster of differentiation (CD)133 expression and displayed significantly elevated messenger RNA expression of Nrf2, compared with non-SP cells. These data suggest that the ABC transporter ABCG2 is highly upregulated in SP cells, and this results in multidrug resistance. In addition, these CD133+ cells underwent rapid proliferation and exhibited high self-renewal and tumorigenic properties. Taken together, the present findings suggest that elevated expression of Nrf2 mediated drug resistance in HNSCC CSCs, which may be one of the causative factors for cancer treatment failure. Therefore, novel anti-cancer drugs that downregulate the Nrf2 signaling pathway could effectively improve the treatment and survival rate of patients with HNSCC. PMID:28101198

  3. CD133 Regulates IL-1β Signaling and Neutrophil Recruitment in Glioblastoma

    PubMed Central

    Lee, Seon Yong; Kim, Jun-Kyum; Jeon, Hee-Young; Ham, Seok Won; Kim, Hyunggee

    2017-01-01

    CD133, a pentaspan transmembrane glycoprotein, is generally used as a cancer stem cell marker in various human malignancies, but its biological function in cancer cells, especially in glioma cells, is largely unknown. Here, we demonstrated that forced expression of CD133 increases the expression of IL-1β and its downstream chemokines, namely, CCL3, CXCL3 and CXCL5, in U87MG glioma cells. Although there were no apparent changes in cell growth and sphere formation in vitro and tumor growth in vivo, in vitro trans-well studies and in vivo tumor xenograft assays showed that neutrophil recruitment was markedly increased by the ectopic expression of CD133. In addition, the clinical relevance between CD133 expression and IL-1β gene signature was established in patients with malignant gliomas. Thus, these results imply that glioma cells expressing CD133 are capable of modulating tumor microenvironment through the IL-1β signaling pathway. PMID:28736425

  4. CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis.

    PubMed

    Gay, Denise L; Yang, Chao-Chun; Plikus, Maksim V; Ito, Mayumi; Rivera, Charlotte; Treffeisen, Elsa; Doherty, Laura; Spata, Michelle; Millar, Sarah E; Cotsarelis, George

    2015-01-01

    Genetic studies suggest that the major events of human hair follicle development are similar to those in mice, but detailed analyses of this process are lacking. In mice, hair follicle placode "budding" is initiated by invagination of Wnt-induced epithelium into the underlying mesenchyme. Modification of adherens junctions (AJs) is clearly required for budding. Snail-mediated downregulation of AJ component E-cadherin is important for placode budding in mice. Beta-catenin, another AJ component, has been more difficult to study owing to its essential functions in Wnt signaling, a prerequisite for hair follicle placode induction. Here, we show that a subset of human invaginating hair placode cells expresses the stem cell marker CD133 during early morphogenesis. CD133 associates with membrane beta-catenin in early placodes, and its continued expression correlates with loss of beta-catenin and E-cadherin from the cell membrane at a time when E-cadherin transcriptional repressors Snail and Slug are not implicated. Stabilization of CD133 via anti-CD133 antibody treatment of human fetal scalp explants depresses beta-catenin and E-cadherin membrane localization. We discuss this unique correlation and suggest a hypothetical model whereby CD133 promotes morphogenesis in early hair follicle placodes through the localized removal of membrane beta-catenin proteins and subsequent AJ dissolution.

  5. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    PubMed Central

    Prados, Jose; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Methods Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2’-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Results Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. Conclusions These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma

  6. Resistance of glioma cells to nutrient-deprived microenvironment can be enhanced by CD133-mediated autophagy

    PubMed Central

    Cheng, Kai; Li, Peng; Han, Shuo; Li, Ruizhi; Su, Ming; Zeng, Wotan; Liu, Jinwen; Guo, Jinhai; Liu, Yinan; Zhang, Xiaoyan; He, Qihua; Shen, Li

    2016-01-01

    CD133 is a pentaspan transmembrane protein that can serve as a biomarker for cancer stem cells, although its biochemical mechanism remains unclear. Here we report that CD133 expression enhances glioma cell tolerance of a nutrient-deprived microenvironment. Under starvation conditions, CD133-positive cells exhibited higher survival and decreased levels of apoptosis. These changes were dependent on activation of autophagy-associated gene signaling and were impaired by the autophagic inhibitor chloroquine. Furthermore, rapamycin up-regulated the level of autophagy and inversely reduced CD133 expression. Immunofluorescence confirmed that starvation promoted release of CD133 from the plasma membrane to the cytoplasm, with CD133 also partially co-localizing with LC3 upon starvation. Additionally, CD133 partially co-localized with Beclin1, Atg5, and lysosomes, indicating that CD133 directly participates in the autophagosome membrane fusion process and ultimately undergoes lysosomal degradation. Collectively, our results demonstrate that CD133 contributes to cell survival by regulating autophagy, and that targeting CD133-linked signaling and autophagy may be useful in improving anti-cancer treatments. PMID:27780926

  7. Mobilization of human CD34+ CD133+ and CD34+ CD133(-) stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae--related to modulation of CXCR4 expression by an L-selectin ligand?

    PubMed

    Jensen, Gitte S; Hart, Aaron N; Zaske, Lue A M; Drapeau, Christian; Gupta, Niraj; Schaeffer, David J; Cruickshank, J Alex

    2007-01-01

    The goal of this study was to evaluate effects on human stem cells in vitro and in vivo of an extract from the edible cyanobacterium Aphanizomenon flos-aquae (AFA) enriched for a novel ligand for human CD62L (L-selectin). Ligands for CD62L provide a mechanism for stem cell mobilization in conjunction with down-regulation of the CXCR4 chemokine receptor for stromal derived factor 1. Affinity immunoprecipitation was used to identify a novel ligand for CD62L from a water extract from AFA. The effects of AFA water extract on CD62L binding and CXCR4 expression was tested in vitro using human bone marrow CD34+ cells and the two progenitor cell lines, KG1a and K562. A double-blind randomized crossover study involving 12 healthy subjects evaluated the effects of consumption on stem cell mobilization in vivo. An AFA extract rich in the CD62L ligand reduced the fucoidan-mediated externalization of the CXCR4 chemokine receptor on bone marrow CD34+ cells by 30% and the CD62L+ CD34+ cell line KG1A by 50% but did not alter the CXCR4 expression levels on the CD34(-) cell line K562. A transient, 18% increase in numbers of circulating CD34+ stem cells maximized 1 hour after consumption (P<.0003). When 3 noncompliant volunteers were removed from analysis, the increase in CD34+ cells was 25% (P<.0001). AFA water extract contains a novel ligand for CD62L. It modulates CXCR4 expression on CD34+ bone marrow cells in vitro and triggers the mobilization of CD34+ CD133+ and CD34+ CD133(-) cells in vivo.

  8. CD133+CD24lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like phenotype

    PubMed Central

    Paschall, Amy V.; Yang, Dafeng; Lu, Chunwan; Redd, Priscilla S.; Choi, Jeong-Hyeon; Heaton, Christopher M.; Lee, Jeffrey R.; Nayak-Kapoor, Asha; Liu, Kebin

    2016-01-01

    The chemotherapeutic agent 5-Fluorouracil (5-FU) is the most commonly used drug for patients with advanced colon cancer. However, development of resistance to 5-FU is inevitable in almost all patients. The mechanism by which colon cancer develops 5-FU resistance is still unclear. One recently proposed theory is that cancer stem-like cells underlie colon cancer 5-FU resistance, but the phenotypes of 5-FU-resistant colon cancer stem cells are still controversial. We report here that 5-FU treatment selectively enriches a subset of CD133+ colon cancer cells in vitro. 5-FU chemotherapy also increases CD133+ tumor cells in human colon cancer patients. However, sorted CD133+ colon cancer cells exhibit no increased resistance to 5-FU, and CD133 levels exhibit no correlation with colon cancer patient survival or cancer recurrence. Genome-wide analysis of gene expression between sorted CD133+ colon cancer cells and 5-FU-selected colon cancer cells identifies 207 differentially expressed genes. CD24 is one of the genes whose expression level is lower in the CD133+ and 5-FU-resistant colon cancer cells as compared to CD133+ and 5-FU-sensitive colon cancer cells. Consequently, CD133+CD24lo cells exhibit decreased sensitivity to 5-FU. Therefore, we determine that CD133+CD24lo phenotype defines 5-FU-resistant human colon cancer stem cell-like cells. PMID:27659530

  9. Cobalt chloride improves angiogenic potential of CD133+ cells.

    PubMed

    Zan, Tao; Du, Zijing; Li, Hua; Li, QingFeng; Gu, Bin

    2012-06-01

    Umbilical cord blood-derived CD133+ cells exhibit the ability to differentiate into endothelial cells and induce new blood vessel growth. Hypoxia-inducible factor-1 (HIF-1), a regulator of hypoxia or the hypoxia-mimetic agent response, actives the SDF-1/CXCR4 signaling pathway and thus plays an important role in angiogenesis in-vivo. In this study we aim to investigate whether CD133+ cells enhance angiogenic ability through hypoxia or CoCl2 in vitro. The CD133+ cells were cultured in normoxia (20 Percent O2), hypoxia (10 Percent O2, 3 Percent O2), or in various concentrations of CoCl2 (50 microM/L, 100 microM/L, 200 microM/L) and subjected to in vitro flow cytometric analysis, tubule formation, as well as migration and proliferation assays. The results demonstrate that both environmental hypoxia and CoCl2 induced hypoxia result in significantly increased CD133+ cell migration, proliferation, and tubule-like structure formation compared with normoxia culture conditions. The HIF-1a, SDF-1, and VEGF protein and gene expression level in conditions of hypoxia is higher than that found in normaxia conditions. Collectively, these data suggest that angiogenic potential of CD133+ cells is influenced by hypoxia or a hypoxia mimetic agent in vitro.

  10. HERV-K activation is strictly required to sustain CD133+ melanoma cells with stemness features.

    PubMed

    Argaw-Denboba, Ayele; Balestrieri, Emanuela; Serafino, Annalucia; Cipriani, Chiara; Bucci, Ilaria; Sorrentino, Roberta; Sciamanna, Ilaria; Gambacurta, Alessandra; Sinibaldi-Vallebona, Paola; Matteucci, Claudia

    2017-01-26

    Melanoma is a heterogeneous tumor in which phenotype-switching and CD133 marker have been associated with metastasis promotion and chemotherapy resistance. CD133 positive (CD133+) subpopulation has also been suggested as putative cancer stem cell (CSC) of melanoma tumor. Human endogenous retrovirus type K (HERV-K) has been described to be aberrantly activated during melanoma progression and implicated in the etiopathogenesis of disease. Earlier, we reported that stress-induced HERV-K activation promotes cell malignant transformation and reduces the immunogenicity of melanoma cells. Herein, we investigated the correlation between HERV-K and the CD133+ melanoma cells during microenvironmental modifications. TVM-A12 cell line, isolated in our laboratory from a primary human melanoma lesion, and other commercial melanoma cell lines (G-361, WM-115, WM-266-4 and A375) were grown and maintained in the standard and stem cell media. RNA interference, Real-time PCR, flow cytometry analysis, self-renewal and migration/invasion assays were performed to characterize cell behavior and HERV-K expression. Melanoma cells, exposed to stem cell media, undergo phenotype-switching and expansion of CD133+ melanoma cells, concomitantly promoted by HERV-K activation. Notably, the sorted CD133+ subpopulation showed stemness features, characterized by higher self-renewal ability, embryonic genes expression, migration and invasion capacities compared to the parental cell line. RNA interference-mediated downregulation experiments showed that HERV-K has a decisive role to expand and maintain the CD133+ melanoma subpopulation during microenvironmental modifications. Similarly, non nucleoside reverse transcriptase inhibitors (NNRTIs) efavirenz and nevirapine were effective to restrain the activation of HERV-K in melanoma cells, to antagonize CD133+ subpopulation expansion and to induce selective high level apoptosis in CD133+ cells. HERV-K activation promotes melanoma cells phenotype

  11. Wogonin suppresses stem cell-like traits of CD133 positive osteosarcoma cell via inhibiting matrix metallopeptidase-9 expression.

    PubMed

    Huynh, Do Luong; Kwon, Taeho; Zhang, Jiao Jiao; Sharma, Neelesh; Gera, Meeta; Ghosh, Mrinmoy; Kim, Nameun; Kim Cho, Somi; Lee, Dong Sun; Park, Yang Ho; Jeong, Dong Kee

    2017-06-12

    Several efforts have been deployed to cure osteosarcoma, a high-grade malignant bone tumour in children and adolescents. However, some challenges such as drug resistance, relapse, and tumour metastasis remain owing to the existence of cancer stem cells (CSC). There is an urgent need to develop cost-effective and safe therapies. Wogonin, an extract from the root of Scutellaria baicalensis, has long been considered as a promising natural and safe compound for anti-tumourigenesis, particularly to inhibit tumour invasion and metastasis. Hoechst 33,342 staining, wound healing assay, sphere formation assay, western blotting, and gelatin zymography assays were performed in CD133 positive osteosarcoma cell. In this study, we examined the effect of Wogonin on the mobility of human osteosarcoma CSC. Wogonin induces apoptosis of human osteosarcoma CSC, inhibits its mobility in vitro via downregulation of MMP-9 expression, and represses its renewal ability. We demonstrated that Wogonin decreases the renewal capacity of CSC. By inhibiting the formation of and reducing the size of spheres, Wogonin at a concentration of 40-80 μM effectively minimizes potential risk from CSC. Taken together, we have demonstrated a new approach for developing a potential therapy for osteosarcoma.

  12. Characterization of CD133+ parenchymal cells in the liver: Histology and culture

    PubMed Central

    Yoshikawa, Seiichi; Zen, Yoh; Fujii, Takahiko; Sato, Yasunori; Ohta, Tetsuo; Aoyagi, Yutaka; Nakanuma, Yasuni

    2009-01-01

    AIM: To reveal the characteristics of CD133+ cells in the liver. METHODS: This study examined the histological characteristics of CD133+ cells in non-neoplastic and neoplastic liver tissues by immunostaining, and also analyzed the biological characteristics of CD133+ cells derived from human hepatocellular carcinoma (HCC) or cholangiocarcinoma cell lines. RESULTS: Immunostaining revealed constant expression of CD133 in non-neoplastic and neoplastic biliary epithelium, and these cells had the immunophenotype CD133+/CK19+/HepPar-1-. A small number of CD133+/CK19-/HepPar-1+ cells were also identified in HCC and combined hepatocellular and cholangiocarcinoma. In addition, small ductal structures, resembling the canal of Hering, partly surrounded by hepatocytes were positive for CD133. CD133 expression was observed in three HCC (HuH7, PLC5 and HepG2) and two cholangiocarcinoma cell lines (HuCCT1 and CCKS1). Fluorescence-activated cell sorting (FACS) revealed that CD133+ and CD133- cells derived from HuH7 and HuCCT1 cells similarly produced CD133+ and CD133- cells during subculture. To examine the relationship between CD133+ cells and the side population (SP) phenotype, FACS was performed using Hoechst 33342 and a monoclonal antibody against CD133. The ratios of CD133+/CD133- cells were almost identical in the SP and non-SP in HuH7. In addition, four different cellular populations (SP/CD133+, SP/CD133-, non-SP/CD133+, and non-SP/CD133-) could similarly produce CD133+ and CD133- cells during subculture. CONCLUSION: This study revealed that CD133 could be a biliary and progenitor cell marker in vivo. However, CD133 alone is not sufficient to detect tumor-initiating cells in cell lines. PMID:19842219

  13. Abnormal DNA Methylation of CD133 in Colorectal and Glioblastoma Tumors

    PubMed Central

    Yi, Joo Mi; Tsai, Hsing-Chen; Glöckner, Sabine C.; Lin, Steven; Ohm, Joyce E.; Easwaran, Hari; James, C. David; Costello, Joseph F.; Riggins, Gregory; Eberhart, Charles G.; Laterra, John; Vescovi, Angelo L.; Ahuja, Nita; Herman, James G.; Schuebel, Kornel E.; Baylin, Stephen B.

    2009-01-01

    Much recent effort has focused on identifying and characterizing cellular markers that distinguish tumor propagating cells (TPCs) from more differentiated progeny. We report here an unusual promoter DNA methylation pattern for one such marker, the cell surface antigen CD133 (Prominin 1). This protein has been extensively used to enrich putative cancer propagating stem-like cell populations in epithelial tumors, and especially, glioblastomas. We find that, within individual cell lines of cultured colon cancers and glioblastomas, the promoter CpG island of CD133 is DNA methylated, primarily, in cells with absent or low expression of the marker protein whereas lack of such methylation is evident in purely CD133+ cells. Differential histone modification marks of active versus repressed genes accompany these DNA methylation changes. This heterogeneous CpG island DNA methylation status in the tumors is unusual in that other DNA hypermethylated genes tested in such cultures preserve their methylation patterns between separated CD133+ and CD133− cell populations. Furthermore, the CD133 DNA methylation seems to constitute an abnormal promoter signature since it is not found in normal brain and colon but only in cultured and primary tumors. Thus, the DNA methylation is imposed on the transition between the active versus repressed transcription state for CD133 only in tumors. Our findings provide additional insight for the dynamics of aberrant DNA methylation associated with aberrant gene silencing in human tumors. PMID:18829568

  14. CD133/Src Axis Mediates Tumor Initiating Property and Epithelial-Mesenchymal Transition of Head and Neck Cancer

    PubMed Central

    Chen, Yu-Syuan; Wu, Meng-Ju; Huang, Chih-Yang; Lin, Shu-Chun; Chuang, Tsung-Hsien; Yu, Cheng-Chia; Lo, Jeng-Fan

    2011-01-01

    Background Head and Neck squamous cell carcinoma (HNSCC) is a human lethal cancer with clinical, pathological, phenotypical and biological heterogeneity. Caner initiating cells (CICs), which are responsible for tumor growth and coupled with gain of epithelial-mesenchymal transition (EMT), have been identified. Previously, we enriched a subpopulation of head and neck cancer initiating cells (HN-CICs) with up-regulation of CD133 and enhancement of EMT. Others demonstrate that Src kinase interacts with and phosphorylates the cytoplasmic domain of CD133. However, the physiological function of CD133/Src signaling in HNSCCs has not been uncovered. Methodology/Principal Finding Herein, we determined the critical role of CD133/Src axis modulating stemness, EMT and tumorigenicity of HNSCC and HN-CICs. Initially, down-regulation of CD133 significantly reduced the self-renewal ability and expression of stemness genes, and promoted the differentiation and apoptotic capability of HN-CICs. Additionally, knockdown of CD133 in HN-CICs also lessened both in vitro malignant properties including cell migration/cell invasiveness/anchorage independent growth, and in vivo tumor growth by nude mice xenotransplantation assay. In opposite, overexpression of CD133 enhanced the stemness properties and tumorigenic ability of HNSCCs. Lastly, up-regulation of CD133 increased phosphorylation of Src coupled with EMT transformation in HNSCCs, on the contrary, silence of CD133 or treatment of Src inhibitor inversely abrogated above phenotypic effects, which were induced by CD133 up-regulation in HNSCCs or HN-CICs. Conclusion/Significance Our results suggested that CD133/Src signaling is a regulatory switch to gain of EMT and of stemness properties in HNSCC. Finally, CD133/Src axis might be a potential therapeutic target for HNSCC by eliminating HN-CICs. PMID:22140506

  15. Effect of hepatitis B virus infection on trophoblast cell line (HTR-8/SVneo) and choriocarcinoma cell line (JEG3) is linked to CD133-2 (AC141) expression.

    PubMed

    Cui, Hong; Chen, Jing; Na, Quan

    2016-01-01

    Mother-to-infant transmission of hepatitis B virus (HBV) plays an important role in the chronic carrier state in China. In our studies, the response of trophoblast cell and choriocarcinoma cell to HBV infection regarding the expression of CD133-2 (AC141) was evaluated. Western blot and RT-PCR showed that a high level of CD133-2 protein and mRNA in HTR-8/SVneo cells, but a low level in JEG-3 cells. Lower proliferation and mobility, and higher apoptosis were observed in HTR-8/SVneo cells and JEG-3-CD133-2(+) cells after HBV infection than those in HTR-8-CD133-2(-) cells and JEG-3 cells. Our main finding is that CD133-negative cells (HTR-8-CD133-2(-) and JEG-3) are prone to HBV infection. In the last, our data indicated that the activation of Smad signaling pathway and the induction of epithelial-mesenchymal transition (EMT) in CD133-negative cells after HBV infection. In summary, our study demonstrated that CD133 is a key factor that mediated HBV infection to trophoblast cell and choriocarcinoma cell.

  16. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  17. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line.

    PubMed

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133(+), CD133(-) and spheroid cells. Significant differences of the two experimental groups were compared using student's t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133(+) cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Although CD133(+) derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells.

  18. Resveratrol-Induced Apoptosis and Increased Radiosensitivity in CD133-Positive Cells Derived From Atypical Teratoid/Rhabdoid Tumor

    SciTech Connect

    Kao, C.-L.; Huang, P.-I; Tsai, P.-H.; Tsai, M.-L.; Lo, J.-F.; Lee, Y.-Y.; Chen, Y.-J.; Chen, Y.-W.; Chiou, S.-H.

    2009-05-01

    Purpose: CD133 has recently been proposed as a marker for cancer stem-like cells (CSC) in brain tumors. The aim of the present study was to investigate the possible role of resveratrol (RV) in radiosensitivity of CD133-positive/-negative cells derived from atypical teratoid/rhabdoid tumors (AT/RT-CD133{sup +/-}). Materials and Methods: AT/RT-CD133{sup +/-} were isolated and characterized by flow cytometry and quantitative real-time reverse transcription-polymerase chain reaction, and then treated with RV at different doses. Migratory ability, colony formation, apoptotic activity, and xenotransplantation were assessed for RV alone, ionizing radiation (IR) alone, and IR with RV conditions. Results: AT/RT-CD133{sup +} displayed enhanced self-renewal and highly coexpressed 'stem cell' genes and drug-resistant genes, in addition to showing significant resistance to chemotherapeutic agents and radiotherapy as compared with CD133{sup -} cells. After treatment with 200 {mu}M RV, the in vitro proliferation rates and in vivo tumor restoration abilities of ATRT-CD133{sup +} were dramatically inhibited. Importantly, treatment with 150 {mu}M RV can effectively inhibit the expression of drug-resistant genes in AT/RT-CD133{sup +}, and further facilitate to the differentiation of CD133{sup +} into CD133{sup -}. In addition, treatment with 150 {mu}M RV could significantly enhance the radiosensitivity and IR-mediated apoptosis in RV-treated ATRT-CD133{sup +/-}. Kaplan-Meier survival analysis indicated that the mean survival rate of mice with ATRT-CD133{sup +} that were treated with IR could be significantly improved when IR was combined with 150 {mu}M RV treatment. Conclusions: AT/RT-CD133{sup +} exhibit CSC properties and are refractory to IR treatment. Our results suggest that RV treatment plays crucial roles in antiproliferative, proapoptotic, and radiosensitizing effects on treated-CD133{sup +/-}; RV may therefore improve the clinical treatment of AT/RT.

  19. Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation.

    PubMed

    Bodzin, Adam S; Wei, Zhengyu; Hurtt, Reginald; Gu, Tina; Doria, Cataldo

    2012-07-01

    Hepatocellular carcinoma (HCC) is the major form of primary liver cancer which accounts for more than half million deaths annually worldwide. While the incidence of HCC is still on the rise, options of treatment are limited and the overall survival rate is poor. The acquisition of cancer drug resistance remains one of the key hurdles to successful treatment. Clearly, a thorough understanding of the underlying mechanisms is needed for new strategies to design novel treatments and/or to improve the current therapies. In the present study, we examined the expression of cancer stem cell (CSC) marker CD133, the activation of insulin-like growth factor 1 receptor (IGF-1R) signaling, and the nuclear translocation of IGF-1R in HCC Mahlavu cells under the treatment of gefitinib, a cancer drug that inhibits epidermal growth factor receptor (EGFR) pathway. Our results demonstrated that Mahlavu cells exhibited strong gefitinib resistance and the CD133 expression level was dramatically increased (from 3.88% to 32%) after drug treatment. In addition, the gefitinib treated cells displayed increased levels of phosphorylation in IGF-1R and Akt, indicating the intensified activation of this cancer-associated signaling pathway. Moreover, we revealed that IGF-1R underwent nuclear translocation in gefitinib treated cells using confocal microscopy. The IGF-1R nuclear translocation was enhanced under gefitinib treatment and appeared in a dose-dependent manner. Our findings suggest that increased IGF-1R nuclear translocation after gefitinib treatment may contribute to the drug resistance and IGF1-R activation, which might also associate with the upregulation of CD133 expression.

  20. CD133 and CD44 are universally overexpressed in GIST and do not represent cancer stem cell markers.

    PubMed

    Chen, Junwei; Guo, Tianhua; Zhang, Lei; Qin, Li-Xuan; Singer, Samuel; Maki, Robert G; Taguchi, Takahiro; Dematteo, Ronald; Besmer, Peter; Antonescu, Cristina R

    2012-02-01

    Although imatinib mesylate has been a major breakthrough in the treatment of advanced gastrointestinal stromal tumors (GIST), complete responses are rare and most patients eventually develop resistance to the drug. Thus, the possibility of an imatinib-insensitive cell subpopulation within GIST tumors, harboring stem cell characteristics, may be responsible for the clinical failures. However, the existence of a cancer stem cell component in GIST has not been yet established. This study was aimed to determine whether expression of commonly used stem cell markers in other malignancies, that is, CD133 and CD44, might identify cells with characteristics of cancer stem/progenitor cells in human GIST. CD133 and CD44 expression in GIST explants was analyzed by flow cytometry, immunofluorescence, and gene expression. Their transcription levels were correlated with clinical and molecular factors in a large, well-annotated cohort of GIST patients. FACS sorted GIST cells based on CD133 and CD44 expression were isolated and used to assess phenotypic characteristics, ability to maintain their surface expression, sensitivity to imatinib, and expression signature. The enrichment in CD133/CD44 cells in the side population (SP) assay was also investigated. CD133 expression was consistently found in GIST. CD133(-) cells formed more colonies, were more invasive in a matrigel assay, and showed enrichment in the SP cells, compared to CD133(+) cells. CD133 expression was also detected in the two imatinib-sensitive GIST cell lines, while was absent in the imatinib-resistant lines. Our results show that CD133 and CD44 are universally expressed in GIST, and may represent a lineage rather than a cancer stem cell marker.

  1. CD133+ Renal Progenitor Cells Contribute to Tumor Angiogenesis

    PubMed Central

    Bruno, Stefania; Bussolati, Benedetta; Grange, Cristina; Collino, Federica; Efrem Graziano, Manuela; Ferrando, Ugo; Camussi, Giovanni

    2006-01-01

    In the present study, we tested the hypothesis that resident progenitor cells may contribute to tumor vascularization and growth. CD133+ cells were isolated from 30 human renal carcinomas and characterized as renal resident progenitor cells on the basis of the expression of renal embryonic and mesenchymal stem cell markers. CD133+ progenitors differentiated into endothelial and epithelial cells as the normal CD133+ counterpart present in renal tissue. In the presence of tumor-derived growth factors, these cells were committed to differentiate into endothelial cells able to form vessels in vivo in SCID mice. Undifferentiated CD133+ progenitors were unable to form tumors when transplanted alone in SCID mice. When co-transplanted with renal carcinoma cells, CD133+ progenitors significantly enhanced tumor development and growth. This effect was not attributable to the tumorigenic nature of CD133+ progenitor cells because the same results were obtained with CD133+ cells from normal kidney. CD133+ progenitors contributed to tumor vascularization as the majority of neoformed vessels present within the transplanted tumors were of human origin and derived from the co-transplanted CD133+ progenitors. In conclusion, these results indicate the presence of a renal progenitor cell population in renal carcinomas that may differentiate in endothelial cells and favor vascularization and tumor growth. PMID:17148683

  2. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    PubMed

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  3. [Expression Level of Membrane-associated Proteins Numb in Epithelial Ovarian Carcinoma and Its Relationship with Ovarian Cancer Stem Cell Markers CD117, CD133, ALDH1.

    PubMed

    Jing, Hong; Liu, Xiao-Yu; Chen, Ya-Li; Bai, Li-Ping; Zheng, Ai

    2016-11-01

    To explore the expression level of membrane-associated protein Numb in epithelial ovarian carcinoma and its relationship with ovarian cancer stem cell markers CD117,CD133,acetaldehyde dehydrogenase 1(ALDH1). A total of 136 patients who had ovarian tumors and 22 patients who had not ovarian tumors in Department of Gynaecology and Obstetrics,West China Second University Hospital,Sichuan University were chosen as the study subjects.According to the histopathologic examination results,they were divided into epithelial ovarian carcinoma group (n=92),ovarian borderline tumor group (n=23),ovarian benign tumor group (n=21) and normal ovary group (n=22).Expression levels of Numb protein,CD117,CD133 and ALDH1 in ovarian tissue were detected by immunohistochemical SP method and these several kinds of protein expression differences and correlation statistical analysis were performend. 1 The positive expression rate of Numb protein in epithelial ovarian carcinoma group was higher than that in benign tumor or normal ovary group,also Numb protein positive expression rate in ovarian borderline tumor group was higher than that in normal ovary group,and the differences were statistically significant (P<0.05).2 Numb protein positive expression rate in ovarian tissue in patients with epithelial ovarian carcinoma FIGO stage1-2 was lower than that in stage 3-4,also the same in no lymph nodes metastasis compared with lymph nodes invasion,and the differences of positive expression rate were statistically significant (P<0.05).While there were no significant differences among different age,histopathological types,pathological grades and residual tumor size (P>0.05).3 There was no correlation between Numb protein and CD117 and CD133 positive expression rate in epithelial ovarian carcinoma tissue [correlation coefficient (r)=0.116,P=0.261; r=0.083,P=0.425].However,the positive expression rate of Numb protein and ALDH1 was positively correlated (r=0.296,P=0.261). The expression of Numb protein

  4. CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope.

    PubMed

    Mak, Anthony B; Blakely, Kim M; Williams, Rashida A; Penttilä, Pier-Andrée; Shukalyuk, Andrey I; Osman, Khan T; Kasimer, Dahlia; Ketela, Troy; Moffat, Jason

    2011-11-25

    The AC133 epitope expressed on the CD133 glycoprotein has been widely used as a cell surface marker of numerous stem cell and cancer stem cell types. It has been recently proposed that posttranslational modification and regulation of CD133 may govern cell surface AC133 recognition. Therefore, we performed a large scale pooled RNA interference (RNAi) screen to identify genes involved in cell surface AC133 expression. Gene hits could be validated at a rate of 70.5% in a secondary assay using an orthogonal RNAi system, demonstrating that our primary RNAi screen served as a powerful genetic screening approach. Within the list of hits from the primary screen, genes involved in N-glycan biosynthesis were significantly enriched as determined by Ingenuity Canonical Pathway analyses. Indeed, inhibiting biosynthesis of the N-glycan precursor using the small molecule tunicamycin or inhibiting its transfer to CD133 by generating N-glycan-deficient CD133 mutants resulted in undetectable cell surface AC133. Among the screen hits involved in N-glycosylation were genes involved in complex N-glycan processing, including the poorly characterized MGAT4C, which we demonstrate to be a positive regulator of cell surface AC133 expression. Our study identifies a set of genes involved in CD133 N-glycosylation as a direct contributing factor to cell surface AC133 recognition and provides biochemical evidence for the function and structure of CD133 N-glycans.

  5. CD133+ subpopulation of the HT1080 human fibrosarcoma cell line exhibits cancer stem-like characteristics.

    PubMed

    Feng, Bao-Hua; Liu, Ai-Guo; Gu, Wen-Guang; Deng, Liang; Cheng, Xian-Gyang; Tong, Tie-Jun; Zhang, Hong-Zhi

    2013-08-01

    The cancer stem cell (CSC) theory holds that a minority population within tumors possesses stem cell properties of self-renewal and multilineage differentiation capacity and provides the initiating cells from which tumors are derived and sustained. However, verifying the existence of these CSCs has been a significant challenge. The CD133 antigen is a pentaspan membrane glycoprotein proposed to be a CSC marker for cancer-initiating subpopulations in the brain, colon and various other tissues. Here, CD133+ cells were obtained and characterized from the HT1080 cell line to determine the utility of this marker for isolating CSCs from human fibrosarcoma cells. In this study, CD133+ cells were separated from HT1080 cells using magnetic beads and characterized for their proliferation rate and resistance to chemotherapeutic drugs, cisplatin and doxorubicin, by MTS assay. Relative expression of tumor-associated genes Sox2, Oct3/4, Nanog, c-Myc, Bmi-1 and ABCG2 was measured by real-time polymerase chain reaction (PCR). Clonal sphere formation and the ability of CD133+ cells to initiate tumors in BALB/c nude mice was also evaluated. We found that CD133+ cells showed a high proliferation rate, increased resistance to chemotherapy drugs and overexpression of tumor-associated genes compared with these features in CD133- cells. Additionally, CD133+ cells were able to form spherical clusters in serum-free medium with high clonogenic efficiency, indicating a significantly greater tumor-initiating potential when compared with CD133- cells. These findings indicate that CD133+ cells identified within the HT1080 human fibrosarcoma cell line possess many CSC properties and may facilitate the development of improved therapies for fibrosarcoma.

  6. CD133 induces tumour-initiating properties in HEK293 cells.

    PubMed

    Canis, Martin; Lechner, Axel; Mack, Brigitte; Zengel, Pamela; Laubender, Rüdiger Paul; Koehler, Udo; Heissmeyer, Vigo; Gires, Olivier

    2013-02-01

    The pentaspan protein CD133 (Prominin-1) is part of the signature of tumour-initiating cells for various cancer entities. The aim of the present study was to investigate the impact of ectopic CD133 expression on tumourigenic properties of otherwise CD133-negative, non-tumourigenic cells in vitro and in vivo. CD133 was stably transfected into human embryonic kidney 293 (HEK293) which was then sorted for the expression of CD133. The effects of CD133 on cell proliferation were assessed upon standard cell counting of sorted cells at various time points. Severe combined immunodeficient (SCID) mice (n = 30) were injected with HEK293 CD133(high) and CD133(low) transfectants (5 × 10(3), 1 × 10(5), or 5 × 10(6) cells per injection). The expression of CD133, Ki67, CD44s, CD44v6, and EpCAM was analysed upon immunohistochemical staining of cryosections with specific antibodies. In vitro, ectopic expression of CD133 did influence neither cell proliferation nor cell cycle distribution of otherwise CD133-negative HEK293 cells. However, CD133(high) cells generated tumours in vivo in SCID mice with at least 1,000-fold increased frequency compared to CD133(low) cells. Tumour load was also significantly increased in CD133(high) cells as compared to those tumours formed by high numbers of CD133(low) cells. Immunohistochemistry stainings disclosed no changes in Ki67, CD44s, CD44v6, or EpCAM once tumours were formed by either cell type. CD133 induces tumour-initiating properties in HEK293 cells in vivo and is potentially involved in the regulation of tumourigenicity. Future research will aim at the elucidation of molecular mechanisms of CD133-induced tumourigenicity.

  7. Differential distribution of erbB receptors in human glioblastoma multiforme: expression of erbB3 in CD133-positive putative cancer stem cells

    PubMed Central

    Duhem-Tonnelle, Véronique; Bièche, Ivan; Vacher, Sophie; Loyens, Anne; Maurage, Claude-Alain; Collier, Francis; Baroncini, Marc; Blond, Serge; Prevot, Vincent; Sharif, Ariane

    2010-01-01

    Glioblastomas are the most common CNS tumors in adults, and they remain resistant to current treatments. ErbB1 signaling is frequently altered in these tumors, which indicates that the erbB receptor family is a promising target for molecular therapy. However, data on erbB signaling in glioblastomas are still sparse. Therefore, we undertook a comprehensive analysis of erbB receptor and ligand expression profiles in a panel of nine glioblastomas that were compared to non-neoplastic cerebral tissue containing neocortex and corresponding portions of subcortical convolutional white matter and we determined the distribution patterns of erbB receptors among the main neural cell types that are present in these tumors, particularly the putative tumoral stem cell population. Using quantitative RT-PCR and western blot analysis, we showed that erbB1 signaling and erbB2 receptors exhibited highly variable deregulation profiles among tumors, ranging from under- to overexpression, while erbB3 and erbB4 were down-regulated. Immunohistochemistry revealed an important inter- and intra-tumoral heterogeneity in all four erbB expression profiles. However, each receptor exhibited a distinct repartition pattern among the GFAP-, Olig2-, NeuN- and CD133-positive populations. Interestingly, while erbB1 immunoreactivity was only detected in small subsets of CD133-positive putative tumoral stem cells, erbB3 immunoreactivity was prominent in this cell population thus suggesting that erbB3 may represent a new potential target for molecular therapy. PMID:20467331

  8. Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response.

    PubMed

    El-Khattouti, Abdelouahid; Selimovic, Denis; Haïkel, Youssef; Megahed, Mosaad; Gomez, Christian R; Hassan, Mohamed

    2014-02-01

    The presence and the involvement of cancer stem-like cells (CSCs) in tumor initiation and progression, and chemo-resistance are documented. Herein, we functionally analyzed melanoma stem-like cells (MSC)/CD133(+) cells on their resistance and response to taxol-induced apoptosis. Besides being taxol resistant, the CD133(+) cells demonstrated a growth advantage over the CD133(-) subpopulation. Taxol induced apoptosis on CD133(-) cells, but not on CD133(+) cells. In the CD133(-) subpopulation, the exposure to taxol induced the activation of apoptosis signal-regulating kinase1 (ASK1)/c-jun-N-terminal kinase (JNK), p38, extracellular signal regulated kinase (ERK) pathways and Bax expression, while in CD133(+) cells taxol was able only to enhance the activity of the ERK pathway. In CD133(+) cells, the direct gene transfer of Bax overcame the acquired resistance to taxol. Taken together, our data provide an insight into the mechanistic cascade of melanoma resistance to taxol and suggest Bax gene transfer as a complementary approach to chemotherapy. Published by Elsevier Ireland Ltd.

  9. Differentiation of CD133+ Stem Cells From Amyotrophic Lateral Sclerosis Patients Into Preneuron Cells

    PubMed Central

    Martínez, Héctor R.; Caro-Osorio, Enrique; Cruz-Vega, Delia E.; Hernández-Torre, Martin; Moreno-Cuevas, Jorge E.

    2013-01-01

    Improvements in quality of life and life expectancy have been observed in amyotrophic lateral sclerosis (ALS) patients transplanted with CD133+ stem cells into their frontal motor cortices. However, questions have emerged about the capacity of cells from these patients to engraft and differentiate into neurons. The objective of this work was to evaluate the in vitro capacity of CD133+ stem cells from 13 ALS patients to differentiate into neuron lineage. Stem cells were obtained through leukapheresis and cultured in a control medium or a neuroinduction medium for 2–48 hours. Expression of neuronal genes was analyzed by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical techniques. Fluorescence microscopy demonstrated that CD133+ stem cells from ALS patients incubated for 48 hours in a neuroinduction medium increased the detection of neuronal proteins such as nestin, β-tubulin III, neuronal-specific enolase, and glial fibrillary acidic protein. RT-PCR assays demonstrated an increase in the expression of β-tubulin III, nestin, Olig2, Islet-1, Hb9, and Nkx6.1. No correlation was found between age, sex, or ALS functional scale and the CD133+ stem cell response to the neuroinduction medium. We conclude that CD133+ stem cells from ALS patients, like the stem cells of healthy subjects, are capable of differentiating into preneuron cells. PMID:23341441

  10. Highly enriched CD133(+)CD44(+) stem-like cells with CD133(+)CD44(high) metastatic subset in HCT116 colon cancer cells.

    PubMed

    Chen, Ke-li; Pan, Feng; Jiang, Heng; Chen, Jian-fang; Pei, Li; Xie, Fang-wei; Liang, Hou-jie

    2011-12-01

    Stem-like cancer cells (SLCCs) are distinct cellular subpopulation in colon cancer that is essential for tumor maintenance. Previous studies indicated that SLCCs accounted for only a minor subset in a given cancer model. However, we found that SLCCs frequency varied among a panel of colon cancer cell lines, with HCT116 cells composed mainly of SLCCs, as demonstrated by colonosphere forming capability and CD133 expression. Indeed, flow cytometric analysis revealed more than 60% HCT116 cells co-expressed the putative SLCCs markers CD133 and CD44. Compared with non-CD133(+)CD44(+) cells, FACS sorted CD133(+)CD44(+) cells were undifferentiated, endowed with extensive self-renewal and epithelial lineage differentiation capacity in vitro. CD133(+)CD44(+) exhibited enhanced tumorigeneicity in NOD/SCID mice. One thousand CD133(+)CD44(+) cells initiated xenograft tumors efficiently (3/6) while 1 × 10(5) non-CD133(+)CD44(+) cells could only form palpable nodule with much slower growth rate (1/6). More interestingly, long-term cultured self-renewing CD133(+)CD44(+) cells enriched CD133(+)CD44(high) subset, which expressed epithelial to mesenchymal transition marker, were more invasive in vitro and responsible solely for liver metastasis in vivo. In conclusion, these data demonstrated for the first time that CD133(+)CD44(+) SLCCs were highly enriched in HCT116 cells and that metastatic SLCCs resided exclusively in a CD133(+)CD44(high) subpopulation.

  11. Investigating the Link between Molecular Subtypes of Glioblastoma, Epithelial-Mesenchymal Transition, and CD133 Cell Surface Protein

    PubMed Central

    Zarkoob, Hadi; Taube, Joseph H.; Singh, Sheila K.; Mani, Sendurai A.; Kohandel, Mohammad

    2013-01-01

    In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme. PMID:23734191

  12. CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation.

    PubMed

    Fukamachi, Hiroshi; Shimada, Shu; Ito, Kosei; Ito, Yoshiaki; Yuasa, Yasuhito

    2011-07-01

    CD133 is a universal marker of tissue stem/progenitor cells as well as cancer stem cells, but its physiological significance remains to be elucidated. Here we examined the relationship between expression of CD133 and features of gastric epithelial cells, and found that CD133-positive (CD133[+]) tumor cell lines formed well-differentiated tumors while CD133-negative (CD133[-]) lines formed poorly differentiated ones when subcutaneously injected into nude mice. We also found that CD133(+) and CD133(-) cell populations co-existed in some cell lines. FACS analysis showed that CD133(+) cells were mother cells because CD133(+) cells formed both CD133(+) and CD133(-) cells, but CD133(-) cells did not form CD133(+) cells. In these cell lines, CD133(+) cells formed well-differentiated tumors while CD133(-) cells formed poorly differentiated ones. In human gastric cancers, CD133 was exclusively expressed on the luminal surface membrane of gland-forming cells, and it was never found on poorly differentiated diffuse-type cells. Considering that poorly differentiated tumors often develop from well-differentiated tumors during tumor progression, these results suggest that loss of expression of CD133 might be related to gastric tumor progression. Microarray analysis showed that CD133(+) cells specifically expressed Sox17, a tumor suppressor in gastric carcinogenesis. Forced expression of SOX17 induced expression of CD133 in CD133(-) cells, and reduction of SOX17 caused by siRNA in CD133(+) cells induced a reduction in the level of CD133. These results indicate that Sox17 might be a key transcription factor controlling CD133 expression, and that it might also play a role in the control of gastric tumor progression. © 2011 Japanese Cancer Association.

  13. Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases.

    PubMed

    Jing, Feifeng; Kim, Hun Jin; Kim, Chang Hyun; Kim, Young Jin; Lee, Jae Hyuk; Kim, Hyeong Rok

    2015-04-01

    CD44 and CD133 mRNA expression as cancer stem cell markers in colorectal cancer were correlated with synchronous hepatic metastases and the clinicopathological factors, including patient survival. The CD44 and CD133 mRNA levels in 36 primary colorectal adenocarcinomas with synchronous hepatic metastasis were analyzed by reverse transcriptase polymerase chain reaction, with normalization relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Immunohistochemical analysis was performed on samples with typical mRNA expression patterns to investigate protein expression. Both CD44 and CD133 gene expressions were highest in hepatic metastasis tissue, followed by colorectal cancer and normal mucosa. The differences were statistically significant among groups of normal mucosa, colorectal cancer and hepatic metastasis tissue. CD44 mRNA expression was significantly associated with the tumor location (P=0.019) and histology (P=0.026). With a median follow-up period of 38 months, the 5-year disease-free survival rate of the patients with high CD44 mRNA expression in the CD44 hepatic metastasis tissue group was significantly lower than that of the patients with low expression (P=0.002). While the mRNA expressions in groups of CD44 colorectal tumor, CD133 colorectal tumor, and CD133 hepatic metastasis tissue were not significant. CD44 and CD133 mRNA were highly correlatively co-expressed in colorectal cancer with hepatic metastases. CD44 expression was an independent factor associated with patient survival, while CD133 did not show this pattern. Thus, CD44 is a more reliable marker for predicting hepatic metastases and survival. Larger prospective studies are required to confirm these findings.

  14. Malignant behaviorial characteristics of CD133(+/-) glioblastoma cells from a Northern Chinese population.

    PubMed

    Liu, Xiaozhi; Chen, Lei; Jiang, Zhongmin; Wang, Junfei; Su, Zhiguo; Li, Gang; Yu, Shizhu; Liu, Zhenlin

    2013-01-01

    Following emergence of the tumor stem cell theory, the increasing number of related studies demonstrates the theory's growing importance in cancer research and its potential for clinical applications. Few studies have addressed the in vitro or in vivo properties of glioma stem cells from a Han Chinese population. In the present study, surgically obtained glioblastoma tissue was classified into two subtypes, CD133(+) and CD133(-). The hierarchy, invasiveness, growth tolerance under low nutrient conditions and colony forming abilities of the tissue samples were analyzed. Additionally, the characteristics of tumor cells transplanted subcutaneously or re-transplanted into nude mice were observed. The results demonstrated that CD133(+) glioblastoma cells derived from Han Chinese glioma specimens were more prone to primitive cell differentiation and more invasive than CD133(-) glioblastoma cells, leading to increased tumor malignancy compared with CD133(-) cells. The tumor formation rates of CD133(+) and CD133(-) cells in mice were 26/30 and 2/30, respectively. A comparison of tumor subtypes demonstrated that CD133(+) glioblastoma cells had a lower incidence of cell apoptosis in the tumor tissue and higher protein expression levels of Oct4, Sox2, PCNA, EGFR, Ang2, MMP2 and MMP9 compared with CD133(-) cells. Flow cytometry revealed that in the CD133(+) and CD133(-) glioblastoma cell-induced tumors, the percentage of CD133(+) cells was 2.47±0.67 and 0.44±0.14%, respectively. The tumor formation rates following the re-transplantation of CD133(+) or CD133(-) tumors into nude mice were 10/10 and 4/10, respectively. These findings suggest that the CD133(+) glioblastoma cell subpopulation has a stronger malignant cell phenotype than the CD133(-) subpopulation and that its recurrence rate is increased compared with the primitive tumorigenic rate following in vivo transplantation.

  15. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  16. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer.

    PubMed

    Cioffi, Michele; D'Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-05-28

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4(+)CD133(+) within ovarian cancer cell lines. The sorted population CD133(+)CXCR4(+) demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133(+)CXCR4(+) sorted OVCAR-5 cells. Most strikingly CXCR4(+)CD133(+) sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133(-)CXCR4(-), CD133(+)CXCR4(-), CD133(-)CXCR4(+) cells. CXCR4(+)CD133(+) OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target.

  17. Signal transducer and activator of transcription 3‐mediated CD133 up‐regulation contributes to promotion of hepatocellular carcinoma

    PubMed Central

    Won, Cheolhee; Kim, Byung‐Hak; Yi, Eun Hee; Choi, Kyung‐Ju; Kim, Eun‐Kyung; Jeong, Jong‐Min; Lee, Jae‐Ho; Jang, Ja‐June; Yoon, Jung‐Hwan; Jeong, Won‐Il; Park, In‐Chul; Kim, Tae Woo; Bae, Sun Sik; Factor, Valentina M.; Ma, Stephanie; Thorgeirsson, Snorri S.

    2015-01-01

    Enhanced expression of the cancer stem cell (CSC) marker, CD133, is closely associated with a higher rate of tumor formation and poor prognosis in hepatocellular carcinoma (HCC) patients. Despite its clinical significance, the molecular mechanism underlying the deregulation of CD133 during tumor progression remains to be clarified. Here, we report on a novel mechanism by which interleukin‐6/signal transducer and activator of transcription 3 (IL‐6/STAT3) signaling up‐regulates expression of CD133 and promotes HCC progression. STAT3 activated by IL‐6 rapidly bound to CD133 promoter and increased protein levels of CD133 in HCC cells. Reversely, in hypoxic conditions, RNA interference silencing of STAT3 resulted in decrease of CD133 levels, even in the presence of IL‐6, with a concomitant decrease of hypoxia‐inducible factor 1 alpha (HIF‐1α) expression. Active STAT3 interacted with nuclear factor kappa B (NF‐κB) p65 subunit to positively regulate the transcription of HIF‐1α providing a mechanistic explanation on how those three oncogenes work together to increase the activity of CD133 in a hypoxic liver microenvironment. Activation of STAT3 and its consequent induction of HIF‐1α and CD133 expression were not observed in Toll‐like receptor 4/IL‐6 double‐knockout mice. Long‐term silencing of CD133 by a lentiviral‐based approach inhibited cancer cell‐cycle progression and suppressed in vivo tumorigenicity by down‐regulating expression of cytokinesis‐related genes, such as TACC1, ACF7, and CKAP5. We also found that sorafenib and STAT3 inhibitor nifuroxazide inhibit HCC xenograft formation by blocking activation of STAT3 and expression of CD133 and HIF‐1α proteins. Conclusion: IL‐6/STAT3 signaling induces expression of CD133 through functional cooperation with NF‐κB and HIF‐1α during liver carcinogenesis. Targeting STAT3‐mediated CD133 up‐regulation may represent a novel, effective treatment by eradicating the liver

  18. Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance.

    PubMed

    Zizza, Pasquale; Cingolani, Chiara; Artuso, Simona; Salvati, Erica; Rizzo, Angela; D'Angelo, Carmen; Porru, Manuela; Pagano, Bruno; Amato, Jussara; Randazzo, Antonio; Novellino, Ettore; Stoppacciaro, Antonella; Gilson, Eric; Stassi, Giorgio; Leonetti, Carlo; Biroccio, Annamaria

    2016-02-29

    Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression.In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance

    PubMed Central

    Zizza, Pasquale; Cingolani, Chiara; Artuso, Simona; Salvati, Erica; Rizzo, Angela; D'Angelo, Carmen; Porru, Manuela; Pagano, Bruno; Amato, Jussara; Randazzo, Antonio; Novellino, Ettore; Stoppacciaro, Antonella; Gilson, Eric; Stassi, Giorgio; Leonetti, Carlo; Biroccio, Annamaria

    2016-01-01

    Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression. In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk. PMID:26511095

  20. Clinicopathological characteristics and prognostic value of cancer stem cell marker CD133 in breast cancer: a meta-analysis

    PubMed Central

    Li, Zhan; Yin, Songcheng; Zhang, Lei; Liu, Weiguang; Chen, Bo; Xing, Hua

    2017-01-01

    Background The association of CD133 overexpression with clinicopathological significance and prognosis in patients with breast cancer remains controversial. We thus performed a meta-analysis to evaluate the role of CD133 expression in the development and prognosis of breast cancer. Methods The databases PubMed, Embase, and Cochrane Library (updated to August 1, 2016) were searched. Pooled odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (95% CI) were used to evaluate the impact of CD133 expression on clinicopathological features, overall survival, and disease-free survival. Results A total of 1,734 patients from 13 studies were subject to final analysis. The results showed a significant association between overexpression of CD133 and estrogen receptor status (OR 0.35, 95% CI 0.18–0.70), progesterone receptor status (OR 0.56, 95% CI 0.43–0.74), human epidermal growth factor-2 status (OR 1.81, 95% CI 1.33–2.45), lymph node metastasis (OR 1.98, 95% CI 1.34–2.92), and tumor histological grade (OR 1.79, 95% CI 1.26–2.54) in breast cancer. However, no significant correlation was found between upregulation of CD133 expression and onset age (OR 1.03, 95% CI 0.70–1.53) or tumor size (OR 1.29, 95% CI 0.80–2.09). Moreover, CD133-positive breast cancer patients had a higher risk of mortality (HR 1.91, 95% CI 1.21–3.03) and disease progression (HR 2.70, 95% CI 1.05–6.95). Conclusion This meta-analysis suggested that CD133 might be a predictor of clinical outcomes as well as prognosis and could be a potentially new gene therapy target for breast cancer patients. PMID:28243121

  1. Identification of carcinogenic potential-associated molecular mechanisms in CD133(+) A549 cells based on microRNA profiles.

    PubMed

    Chen, Qing-Yong; Jiao, De-Min; Zhu, Ya; Hu, Huizhen; Wang, Jian; Tang, Xiali; Chen, Jun; Yan, Li

    2016-01-01

    This study aimed to identify carcinogenic potential-related molecular mechanisms in cancer stem cells (CSCs) in lung cancer. CD133(+) and CD133(-) subpopulations were sorted from A549 cells using magnetic-activated cell sorting. The abilities to form sphere and clone, proliferate, migrate, and invade were compared between CD133(+) and CD133(-) cells, as well as drug sensitivity. Thereafter, microRNA (miRNA) profiles were performed to identify differentially expressed miRNAs between CD133(+) and CD133(-) subpopulation. Following, bioinformatic methods were used to predict target genes for differentially expressed miRNAs and perform enrichment analysis. Furthermore, the mammalian target of rapamycin (mTOR) signaling pathways and CSC property-associated signaling pathways were explored and visualized in regulatory network among competitive endogenous RNA (ceRNA), miRNA, and target gene. CD133(+) subpopulation showed greater oncogenic potential than CD133(-) subpopulation. In all, 14 differentially expressed miRNAs were obtained and enriched in 119 pathways, including five upregulated (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, and -4734) and nine downregulated (hsa-miR-1246, -30b-5p, -5096, -6510-5p, has-miR-7110-5p, -7641, -3197, -7108-5p, and -6791-5p). For mTOR signaling pathway, eight differential miRNAs (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, -4734, -1246, -7641, and -3197) and 39 target genes (e.g., AKT1, AKT2, PIK3CB, PIK3CG, PIK3R1, PIK3CA, and PIK3CD) were involved, as well as some ceRNAs. Besides, for CSC property-related signaling pathways, six miRNAs (hsa-miR-1246, -15b-5p, -30b-5p, -3197, -4734, and -7110-5p) were dramatically enriched in Hedgehog, Notch, and Wnt signaling pathways via regulating 108 target genes (e.g., DVL1, DVL3, WNT3A, and WNT5A). The mTOR and CSC property-associated signaling pathways may be important oncogenic molecular mechanisms in CD133(+) A549 cells.

  2. A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells

    PubMed Central

    Sompallae, Ramakrishna; Hofmann, Oliver; Maher, Christopher A.; Gedye, Craig; Behren, Andreas; Vitezic, Morana; Daub, Carsten O.; Devalle, Sylvie; Caballero, Otavia L.; Carninci, Piero; Hayashizaki, Yoshihide; Lawlor, Elizabeth R.; Cebon, Jonathan; Hide, Winston

    2013-01-01

    PROM1 is the gene encoding prominin-1 or CD133, an important cell surface marker for the isolation of both normal and cancer stem cells. PROM1 transcripts initiate at a range of transcription start sites (TSS) associated with distinct tissue and cancer expression profiles. Using high resolution Cap Analysis of Gene Expression (CAGE) sequencing we characterize TSS utilization across a broad range of normal and developmental tissues. We identify a novel proximal promoter (P6) within CD133+ melanoma cell lines and stem cells. Additional exon array sampling finds P6 to be active in populations enriched for mesenchyme, neural stem cells and within CD133+ enriched Ewing sarcomas. The P6 promoter is enriched with respect to previously characterized PROM1 promoters for a HMGI/Y (HMGA1) family transcription factor binding site motif and exhibits different epigenetic modifications relative to the canonical promoter region of PROM1. PMID:24194746

  3. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer.

    PubMed

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R; Keng, Peter; Chen, Yuhchyau

    2016-02-09

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133- cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133- sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133- cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133- and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133- and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133- cells.

  4. Identification of CD133-Positive Radioresistant Cells in Atypical Teratoid/ Rhabdoid Tumor

    PubMed Central

    Chiou, Shih-Hwa; Kao, Chung-Lan; Chen, Yi-Wei; Chien, Chien-Shu; Hung, Shih-Chieh; Lo, Jeng-Fan; Chen, Yann-Jang; Ku, Hung-Hai; Hsu, Ming-Ta; Wong, Tai-Tong

    2008-01-01

    Atypical teratoid/rhabdoid tumor (AT/RT) is an extremely malignant neoplasm in the central nervous system (CNS) which occurs in infancy and childhood. Recent studies suggested that CD133 could be considered a marker for brain cancer stem-like cells (CSCs). However, the role of CD133 in AT/RT has never been investigated. Herein we report the isolation of CD133-positive cells (CD133+), found to have the potential to differentiate into three germ layer tissues, from tissues of nine AT/RT patients. The migration/invasion/malignancy and radioresistant capabilities of CD133+ were significantly augmented when compared to CD133−. The clinical data showed that the amount of CD133+ in AT/RTs correlated positively with the degree of resistance to radiation therapy. Using cDNA microarray analysis, the genotoxic–response profiles of CD133+ and CD133− irradiated with 10 Gy ionizing radiation (IR) were analyzed 0.5, 2, 6, 12 and 24 h post-IR. We then validated these microarray data and showed increased phosphorylation after IR of p-ATM, p-RAD17, and p-CHX2 as well as increased expression of BCL-2 protein in CD133+ compared to CD133−. Furthermore, we found that CD133+ can effectively resist IR with cisplatin- and/or TRAIL-induced apoptosis. Immunohistochemical analysis confirmed the up-regulated expression of p-ATM and BCL-2 proteins in IR-treated CD133+ xenotransgrafts in SCID mice but not in IR-treated CD133−. Importantly, the effect of IR in CD133+ transplanted mice can be significantly improved by a combination of BCL-2 siRNA with debromohymenialdisine, an inhibitor of checkpoint kinases. In sum, this is the first report indicating that CD133+ AT/RT cells demonstrate the characteristics of CSCs. The IR-resistant and anti-apoptotic properties in CD133+ may reflect the clinical refractory malignancy of AT/RTs and thus the activated p-ATM pathway and BCL-2 expression in CD133+ could be possible targets to improve future treatment of deadly diseases like AT/RT. PMID

  5. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  6. Non-Invasive In Vivo Imaging of Tumor-Associated CD133/Prominin

    PubMed Central

    Tsurumi, Chizuko; Esser, Norbert; Firat, Elke; Gaedicke, Simone; Follo, Marie; Behe, Martin; Elsässer-Beile, Ursula; Grosu, Anca-Ligia; Graeser, Ralph; Niedermann, Gabriele

    2010-01-01

    Background Cancer stem cells are thought to play a pivotal role in tumor maintenance, metastasis, tumor therapy resistance and relapse. Hence, the development of methods for non-invasive in vivo detection of cancer stem cells is of great importance. Methodology/Principal Findings Here, we describe successful in vivo detection of CD133/prominin, a cancer stem cell surface marker for a variety of tumor entities. The CD133-specific monoclonal antibody AC133.1 was used for quantitative fluorescence-based optical imaging of mouse xenograft models based on isogenic pairs of CD133 positive and negative cell lines. A first set consisted of wild-type U251 glioblastoma cells, which do not express CD133, and lentivirally transduced CD133-overexpressing U251 cells. A second set made use of HCT116 colon carcinoma cells, which uniformly express CD133 at levels comparable to primary glioblastoma stem cells, and a CD133-negative HCT116 derivative. Not surprisingly, visualization and quantification of CD133 in overexpressing U251 xenografts was successful; more importantly, however, significant differences were also found in matched HCT116 xenograft pairs, despite the lower CD133 expression levels. The binding of i.v.-injected AC133.1 antibodies to CD133 positive, but not negative, tumor cells isolated from xenografts was confirmed by flow cytometry. Conclusions/Significance Taken together, our results show that non-invasive antibody-based in vivo imaging of tumor-associated CD133 is feasible and that CD133 antibody-based tumor targeting is efficient. This should facilitate developing clinically applicable cancer stem cell imaging methods and CD133 antibody-based therapeutics. PMID:21187924

  7. Establishment of CMab-43, a Sensitive and Specific Anti-CD133 Monoclonal Antibody, for Immunohistochemistry.

    PubMed

    Itai, Shunsuke; Fujii, Yuki; Nakamura, Takuro; Chang, Yao-Wen; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Suzuki, Hiroyoshi; Harada, Hiroyuki; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari

    2017-09-14

    CD133, also known as prominin-1, was first described as a cell surface marker on early progenitor and hematopoietic stem cells. It is a five-domain transmembrane protein composed of an N-terminal extracellular tail, two small cytoplasmic loops, two large extracellular loops containing seven potential glycosylation sites, and a short C-terminal intracellular tail. CD133 has been used as a marker to identify cancer stem cells derived from primary solid tumors and as a prognostic marker of gliomas. Herein, we developed novel anti-CD133 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We expressed the full length of CD133 in LN229 glioblastoma cells, immunized mice with LN229/CD133 cells, and performed the first screening using flow cytometry. After limiting dilution, we established 100 anti-CD133 mAbs, reacting with LN229/CD133 cells but not with LN229 cells. Subsequently, we performed the second and third screening with Western blot and immunohistochemical analyses, respectively. Among 100 mAbs, 11 strongly reacted with CD133 in Western blot analysis. One of 11 clones, CMab-43 (IgG2a, kappa), showed a sensitive and specific reaction against colon cancer cells, warranting the use of CMab-43 in detecting CD133 in pathological analyses of CD133-expressing cancers.

  8. Characterization of CD133{sup +} hepatocellular carcinoma cells as cancer stem/progenitor cells

    SciTech Connect

    Suetsugu, Atsushi; Nagaki, Masahito . E-mail: mnagaki@cc.gifu-u.ac.jp; Aoki, Hitomi; Motohashi, Tsutomu; Kunisada, Takahiro; Moriwaki, Hisataka

    2006-12-29

    The CD133 antigen, identified as a hematopoietic stem cell marker, appears in various human embryonic epithelia including the neural tube, gut, and kidney. We herein investigated whether CD133{sup +} cells isolated from human hepatocellular carcinoma cell lines possess cancer stem/progenitor cell-like properties. Among the three cell lines studied, the CD133 antigen was found to be expressed only on the surface of Huh-7 cells. CD133{sup +} cells from Huh-7 performed a higher in vitro proliferative potential and lower mRNA expressions of mature hepatocyte markers, glutamine synthetase and cytochrome P450 3A4, than CD133{sup -} population of Huh-7 cells. When either CD133{sup +} or CD133{sup -} cells were subcutaneously injected into SCID mice, CD133{sup +} cells formed tumors, whereas CD133{sup -} cells induced either a very small number of tumors or none at all. Taken together, the identification of CD133{sup +} cells could thus be a potentially powerful tool to investigate the tumorigenic process in the hepatoma system and to also develop effective therapies targeted against hepatocellular carcinoma.

  9. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma

    PubMed Central

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133− populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133− cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2’-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  10. Identification and characterization of CD133+CD44+ cancer stem cells from human laryngeal squamous cell carcinoma cell lines

    PubMed Central

    Wang, Jue; Wu, Yongyan; Gao, Wei; Li, Fei; Bo, Yunfeng; Zhu, Meixia; Fu, Rong; Liu, Qingqing; Wen, Shuxin; Wang, Binquan

    2017-01-01

    Background: Laryngeal squamous cell carcinoma ranks second among head and neck squamous-cell carcinomas. Cancer stem cells can support cancer growth and malignant behavior. Therefore, cancer stem cells isolated from laryngeal squamous cell carcinoma tissue could be used to investigate the initiation, progression, and treatment strategies of this cancer. Methods: We isolated CD133-CD44-, CD133-CD44+, CD133+CD44- and CD133+CD44+ cell populations from laryngeal squamous-cell carcinoma cell lines Hep2 and TU-177 by magnetic-activated cell sorting. Sphere formation, cell proliferation, migration, invasion, colony formation, resistance to radio- and chemotherapy, and in vivo tumorigenicity of these populations were evaluated. Moreover, we investigated the expression of the stem-cell markers (sex determining region Y)-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4) in CD133-CD44-, CD133-CD44+, CD133+CD44-, CD133+CD44+ cell populations and parental Hep2 and TU-177 cells. Results: As compared with CD133-CD44-, CD133-CD44+, CD133+CD44- populations and parental cells, CD133+CD44+ cells showed higher cell viability, migration and invasive capability and colony formation ability as well as stronger resistance to cisplatin and irradiation. Moreover, levels of SOX2 and OCT4 and tumorigenicity in nude mice were greater in CD133+CD44+ Hep2 and TU-177 cells than other cell populations and parental cells. Conclusion: The CD133+CD44+ population of laryngeal squamous-cell carcinoma Hep2 and TU-177 cells have stem cell properties and showed more malignant features than CD133+CD44- and CD133-CD44+ cell populations. CD133+CD44+ cancer stem cells may be a promising target for developing anticancer drugs and treatment strategies for laryngeal squamous cell carcinoma. PMID:28261352

  11. CD133, Selectively Targeting the Root of Cancer

    PubMed Central

    Schmohl, Jörg U.; Vallera, Daniel A.

    2016-01-01

    Cancer stem cells (CSC) are capable of promoting tumor initiation and self-renewal, two important hallmarks of carcinoma formation. This population comprises a small percentage of the tumor mass and is highly resistant to chemotherapy, causing the most difficult problem in the field of cancer research, drug refractory relapse. Many CSC markers have been reported. One of the most promising and perhaps least ubiquitous is CD133, a membrane-bound pentaspan glycoprotein that is frequently expressed on CSC. There is evidence that directly targeting CD133 with biological drugs might be the most effective way to eliminate CSC. We have investigated two entirely unrelated, but highly effective approaches for selectively targeting CD133. The first involves using a special anti-CD133 single chain variable fragment (scFv) to deliver a catalytic toxin. The second utilizes this same scFv to deliver components of the immune system. In this review, we discuss the development and current status of these CD133 associated biological agents. Together, they show exceptional promise by specific and efficient CSC elimination. PMID:27240402

  12. CD133 is a predictor of poor survival in head and neck squamous cell carcinomas.

    PubMed

    Canis, Martin; Lechner, Axel; Mack, Brigitte; Zengel, Pamela; Laubender, Rüdiger Paul; Koehler, Udo; Heissmeyer, Vigo; Gires, Olivier

    2012-01-01

    The pentaspan protein CD133 (Prominin-1) is a predictive marker and part of the signature of tumour-initiating cells (TICs) for various cancer entities. The correlation of CD133 expression with clinical parameters was assessed in primary samples of head and neck squamous cell carcinomas (n=98) and normal mucosas (n=24). A gradual and inversely proportional correlation between CD133 expression in primary tumours and decreased overall survival was observed, along with a positive correlation with the presence of lymph node metastases. CD133 has the potential of being a novel clinically relevant prognostic marker for head and neck malignancies, which is possibly involved in regulation of tumourigenicity.

  13. Embryonic retinal tumors in SV40 T-Ag transgenic mice contain CD133+ tumor-initiating cells.

    PubMed

    Wadhwa, Lalita; Bond, Wesley S; Perlaky, Laszlo; Overbeek, Paul A; Hurwitz, Mary Y; Chévez-Barrios, Patricia; Hurwitz, Richard L

    2012-06-08

    Human retinoblastomas form during the proliferative phase of retina development and are caused by mutations that result in absent or functionally defective Rb protein. Similar tumors occur in mice only when multiple Rb gene family members are absent. We asked if retinal tumors can arise from an undifferentiated retinal cell. The tumor-initiating cells isolated from these tumors that formed in early embryonic murine retinas were characterized. Transgenic mice were created using a Pax6 promoter to target expression of SV40 large T-antigen (T-Ag) in the undifferentiated murine embryonic retina. T-Ag, which sequesters all Rb family proteins and p53, is expressed in the retina and lens by murine embryonic day 10 (E10) and tumors are observed by E12.5. A cell line that is adherent in serum-containing media and forms neurospheres in supplemented serum-free media was developed from retinal tumors isolated on postnatal day 7. In all, 1.5% of attached cells form neurospheres when transferred to serum-free medium. All cultured cells express T-Ag, confirming that they derive from the original tumors; 0.5% of adherent cells express detectable levels of CD133. CD133+ FACS-sorted cells cultured in serum-free medium form 3-fold more neurospheres than do CD133- cells. Six of seven mice injected with CD133+ cells and one of seven mice injected with CD133- cells formed tumors during a 6-month period. Unlike primary adherent cells, primary and secondary tumors heterogeneously express markers of stem cells and differentiation similar to human retinoblastoma. CD133+ tumor-initiating cells can originate from proliferating undifferentiated precursor cells.

  14. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    PubMed Central

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  15. Role of ursolic acid chalcone, a synthetic analogue of ursolic acid, in inhibiting the properties of CD133+ sphere-forming cells in liver stem cells

    PubMed Central

    Lin, Rui-Xin; Gong, Lu-Lu; Fan, Li-Mei; Zhao, Zhong-Kai; Yang, Shu-Li

    2015-01-01

    The expression of CD133 decreases with differentiation of tumor cell, indicating that CD133 is a specific marker for isolation and identification of CSCs. In the present study the effect of Ursolic acid chalcone (UAC) on CD133+ hepatocellular carcinoma cell (HCC CSCs) differentiation, their self-renewal, tumorigenic capacity and sensitivity to chemotherapeutic drugs was studied. The results demonstrated that UAC inhibits the expression of CD133+ in a dose and time-dependent manner in PLC/PRF/5 and Huh7 HCC cells. The inhibition was significant at 50 μM and on day 8. The percentage of CD133+ cells decreased from an initial 59.3% in PLC/PRF/5 to 37.1% and 78.2% in Huh7 to 59.2% on treatment with UAC. There was inhibition of Oct4, Tert, Bmi1, β-catenin, ABCG2, and tumor sphere-related gene Ep300. In addition it also decreased number of CK19-positive cells and increased number of CK8/18-positive cells. UAC treatment caused a decrease in self-renewal capability and increase in sensitivity to doxorubicin and vincristine drugs in CD133+ HCC CSCs. Therefore, UAC can be a potent therapeutic agent to target differentiation of CSC in HCC. PMID:25973027

  16. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth.

    PubMed

    Liu, Ying; Ren, Shifang; Xie, Liqi; Cui, Chunhong; Xing, Yang; Liu, Chanjuan; Cao, Benjin; Yang, Fan; Li, Yinan; Chen, Xiaoning; Wei, Yuanyan; Lu, Haojie; Jiang, Jianhai

    2015-08-21

    The membrane glycoprotein CD133 is a popular marker for cancer stem cells and contributes to cancer initiation and invasion in a number of tumor types. CD133 promotes tumorigenesis partly through an interaction between its phosphorylated Y828 residue and the PI3K regulatory subunit p85, and the interaction with β-catenin. Although CD133 glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its functions remains unclear. Here we analyzed the exact site(s) of N-glycosylation in CD133 by mass spectrometry and found that all eight potential N-glycosylation sites of CD133 could be indeed occupied by N-glycans. Loss of individual N-glycosylation sites had no effect on the level of expression or membrane localization of CD133. However, mutation at glycosylation site Asn548 significantly decreased the ability of CD133 to promote hepatoma cell growth. Furthermore, mutation of Asn548 reduced the interaction between CD133 and β-catenin and inhibited the activation of β-catenin signaling by CD133 overexpression. Our results identified the characteristics and function of CD133 glycosylation sites. These data could potentially shed light on molecular regulation of CD133 by glycosylation and enhance our understanding of the utility of glycosylated CD133 as a target for cancer therapies.

  17. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth

    PubMed Central

    Xie, Liqi; Cui, Chunhong; Xing, Yang; Liu, Chanjuan; Cao, Benjin; Yang, Fan; Li, Yinan; Chen, Xiaoning; Wei, Yuanyan; Lu, Haojie; Jiang, Jianhai

    2015-01-01

    The membrane glycoprotein CD133 is a popular marker for cancer stem cells and contributes to cancer initiation and invasion in a number of tumor types. CD133 promotes tumorigenesis partly through an interaction between its phosphorylated Y828 residue and the PI3K regulatory subunit p85, and the interaction with β-catenin. Although CD133 glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its functions remains unclear. Here we analyzed the exact site(s) of N-glycosylation in CD133 by mass spectrometry and found that all eight potential N-glycosylation sites of CD133 could be indeed occupied by N-glycans. Loss of individual N-glycosylation sites had no effect on the level of expression or membrane localization of CD133. However, mutation at glycosylation site Asn548 significantly decreased the ability of CD133 to promote hepatoma cell growth. Furthermore, mutation of Asn548 reduced the interaction between CD133 and β-catenin and inhibited the activation of β-catenin signaling by CD133 overexpression. Our results identified the characteristics and function of CD133 glycosylation sites. These data could potentially shed light on molecular regulation of CD133 by glycosylation and enhance our understanding of the utility of glycosylated CD133 as a target for cancer therapies. PMID:26029999

  18. ALDH enzymatic activity and CD133 positivity and response to chemotherapy in ovarian cancer patients.

    PubMed

    Ricci, Francesca; Bernasconi, Sergio; Porcu, Luca; Erba, Eugenio; Panini, Nicolò; Fruscio, Robert; Sina, Federica; Torri, Valter; Broggini, Massimo; Damia, Giovanna

    2013-01-01

    The prognostic/predictive role of both CD133 and Aldehyde dehydrogenase (ALDH) expression in human ovarian cancer remains elusive. This is an observational study that investigated the expression of CD133 and of ALDH enzymatic activity in fresh ovarian cancer samples and their association with different clinic-pathological patient' characteristics and explored their possible predictive/prognostic role. We analyzed the expression of CD133 and ALDH enzymatic activity in 108 human ovarian cancer samples. We found that among the total patients analyzed, 13% of them was completely negative for ALDH activity and 26% was negative for CD133 staining. Both markers were variably expressed within the samples and when both studied in the same tumor sample, no statistically significant correlation between ALDH enzymatic activity and CD133 expression was found. No statistical significant correlation was found also between the percentage values of positive ALDH and CD133 cells and the number of serial passages patient's cultures underwent, suggesting that these markers do not confer by themselves a self-renewal growth advantage to the cultures. Lower levels of CD133 were associated with higher tumor grade. No correlation with response to therapy, progression free survival and overall survival was found. Our data suggest that neither ALDH enzymatic activity nor CD133 expression provide additional predictive/prognostic information in ovarian cancer patients.

  19. CD133-Positive Cells Might Be Responsible for Efficient Proliferation of Human Meningioma Cells

    PubMed Central

    Tang, Hailiang; Gong, Ye; Mao, Ying; Xie, Qing; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Wang, Xuanchun; Chen, Hong; Chen, Xiancheng; Zhou, Liangfu

    2012-01-01

    Owing to lack of appropriate model systems, investigations of meningioma biology have come to a stop. In this study, we developed a comprehensive digestion method and defined a culture system. Using this method and system, primary meningioma cells in conditioned suspension medium and a hypoxic environment could be amplified in spheres and were passaged for more than ten generations. Meningioma sphere cells were positive for meningioma cell markers and negative for markers of neural cell types. Importantly, we found the cells expressed the stem cell marker, CD133, but not nestin. All of the tumor sphere cell populations showed a slower degree of cell proliferation than that of human glioma cells and fetal neural stem cells (NSCs). Further studies showed that the proliferative rate was positively correlated with CD133 expression. The higher the CD133 expression, the faster the cell proliferation. With the increase in cell generations, the cell proliferation rate gradually slowed down, and CD133 expression also decreased. Single CD133+ cells rather than CD133− cells could form spheres. Thus, the results above indicated that those cells expressing CD133 in spheres might be stem-like cells, which may be responsible for efficient amplification of human meningioma cells. Decreased expression of CD133 may lead to the failure of long-term passaging. PMID:22754374

  20. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells.

    PubMed

    Sahlberg, Sara Häggblad; Spiegelberg, Diana; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2014-01-01

    The cell surface proteins CD133, CD24 and CD44 are putative markers for cancer stem cell populations in colon cancer, associated with aggressive cancer types and poor prognosis. It is important to understand how these markers may predict treatment outcomes, determined by factors such as radioresistance. The scope of this study was to assess the connection between EGFR, CD133, CD24, and CD44 (including isoforms) expression levels and radiation sensitivity, and furthermore analyze the influence of AKT isoforms on the expression patterns of these markers, to better understand the underlying molecular mechanisms in the cell. Three colon cancer cell-lines were used, HT-29, DLD-1, and HCT116, together with DLD-1 isogenic AKT knock-out cell-lines. All three cell-lines (HT-29, HCT116 and DLD-1) expressed varying amounts of CD133, CD24 and CD44 and the top ten percent of CD133 and CD44 expressing cells (CD133high/CD44high) were more resistant to gamma radiation than the ten percent with lowest expression (CD133low/CD44low). The AKT expression was lower in the fraction of cells with low CD133/CD44. Depletion of AKT1 or AKT2 using knock out cells showed for the first time that CD133 expression was associated with AKT1 but not AKT2, whereas the CD44 expression was influenced by the presence of either AKT1 or AKT2. There were several genes in the cell adhesion pathway which had significantly higher expression in the AKT2 KO cell-line compared to the AKT1 KO cell-line; however important genes in the epithelial to mesenchymal transition pathway (CDH1, VIM, TWIST1, SNAI1, SNAI2, ZEB1, ZEB2, FN1, FOXC2 and CDH2) did not differ. Our results demonstrate that CD133high/CD44high expressing colon cancer cells are associated with AKT and increased radiation resistance, and that different AKT isoforms have varying effects on the expression of cancer stem cell markers, which is an important consideration when targeting AKT in a clinical setting.

  1. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer.

    PubMed

    Swaminathan, Suresh Kumar; Roger, Emilie; Toti, Udaya; Niu, Lin; Ohlfest, John R; Panyam, Jayanth

    2013-11-10

    Expression of the membrane protein CD133 marks a subset of cancer cells with drug resistant phenotype and enhanced tumor initiating ability in xenotransplantation assays. Because drug resistance and tumor relapse are significant problems, approaches to eliminate these cells are urgently needed. As a step towards achieving this goal, we developed polymeric nanoparticles targeting CD133 by conjugating an anti-CD133 monoclonal antibody to nanoparticles formulated using poly(D,L lactide-co-glycolide) polymer. Nanoparticles were loaded with paclitaxel, a microtubule-stabilizing anticancer agent, as well as with 6-coumarin, a fluorescent probe. CD133-targeted nanoparticles (CD133NPs) were efficiently internalized by Caco-2 cells, which abundantly express CD133 (>9-fold higher uptake than non-targeted control nanoparticles). The effectiveness of CD133NPs in reducing tumor initiating cell (TIC) fraction was investigated using mammosphere formation and soft-agar colony formation assays. Free paclitaxel treatment was not effective in decreasing the TIC population relative to untreated control, whereas CD133NPs effectively decreased the number of mammospheres and colonies formed. In vivo studies in the MDA-MB-231 xenograft model showed that free paclitaxel was initially effective in inhibiting tumor growth but the tumors rebounded rapidly once the treatment was stopped. Tumor regrowth was significantly lower when paclitaxel was delivered through CD133NPs (tumor volume was 518.6±228 vs. 1370.9±295mm(3) for free paclitaxel at 63days; P<0.05). Our studies thus show that encapsulation of paclitaxel in CD133NPs results in a significant decrease in the TIC population and improved therapeutic efficacy compared to that with free paclitaxel treatment. These results indicate the potential of targeting anticancer therapeutics to CD133+ cells for reducing tumor recurrence. © 2013.

  2. Magnetic targeting of human peripheral blood CD133+ cells for skeletal muscle regeneration.

    PubMed

    Ohkawa, Shingo; Kamei, Naosuke; Kamei, Goki; Shi, Ming; Adachi, Nobuo; Deie, Masataka; Ochi, Mitsuo

    2013-08-01

    Skeletal muscle injuries often leave lasting functional damage or pain. Muscle injuries are routinely treated conservatively, but the most effective treatment to promote the repair of injured muscles has not yet been established. Our previous report demonstrated that human peripheral blood-derived CD133(+) cell transplantation to rat skeletal muscle injury models inhibited fibrosis and enhanced myogenesis after injury. However, the acquisition of a sufficient number of cells remains the limitation for clinical application, as the CD133(+) population is rare in human blood. In this study, we applied a magnetic cell targeting system to accumulate transplanted cells in the muscle injury site and to enhance the regenerative effects of CD133(+) cell transplantation, focusing on the fact that CD133(+) cells are labeled with a magnetic bead for isolation. For the magnetic cell targeting, the magnet field generator was set up to adjust the peak of the magnetic gradient to the injury site of the tibialis anterior muscle, and 1×10(4) human peripheral blood CD133(+) cells were locally injected into the injury site. This cell number is 10% of that used in the previous study. In another group, the same number of CD133(+) cells was injected without magnetic force. The CD133(+) cells transplanted with the magnetic force were more accumulated in the muscle injury site compared with the CD133(+) cells transplanted without the magnetic force. In addition, the transplantation of CD133(+) cells under the magnetic control inhibited fibrous scar formation and promoted angiogenesis and myogenesis, and also upregulated the mRNA expression of myogenic transcription factors, including Pax7, MyoD1 and Myogenin. However, the transplantation of CD133(+) cells without the magnetic force failed to demonstrate these effects. Thus, our magnetic cell targeting system enables transplantation of a limited number of CD133(+) cells to promote the repair of skeletal muscle injury.

  3. Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging.

    PubMed

    Chen, Ya-Wen; Liou, Gunn-Guang; Pan, Huay-Ben; Tseng, Hui-Hwa; Hung, Yu-Ting; Chou, Chen-Pin

    2015-01-01

    The use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to visualize cells has been applied clinically, showing the potential for monitoring cells in vivo with magnetic resonance imaging (MRI). USPIO conjugated with anti-CD133 antibodies (USPIO-CD133 Ab) that recognize the CD133 molecule, a cancer stem cell marker in a variety of cancers, was studied as a novel and potent agent for MRI contrast enhancement of tumor cells. Anti-CD133 antibodies were used to conjugate with USPIO via interaction of streptavidin and biotin for in vivo labeling of CD133-positive cells in xenografted tumors and N-ethyl-N-nitrosourea (ENU)-induced brain tumors. The specific binding of USPIO-CD133 Ab to CD133-positive tumor cells was subsequently detected by Prussian blue staining and MRI with T2-weighted, gradient echo and multiple echo recombined gradient echo images. In addition, the cellular toxicity of USPIO-CD133 Ab was determined by analyzing cell proliferation, apoptosis, and reactive oxygen species production. USPIO-CD133 Ab specifically recognizes in vitro and labels CD133-positive cells, as validated using Prussian blue staining and MRI. The assays of cell proliferation, apoptosis, and reactive oxygen species production showed no significant differences in tumor cells with or without labeling of USPIO-CD133 Ab. In vivo imaging of CD133-positive cells was demonstrated by intravenous injection of USPIO-CD133 Ab in mice with HT29 xenografted tumors. The MRI of HT29 xenografts showed several clusters of hypotensive regions that correlated with CD133 expression and Prussian blue staining for iron. In rat, brain tumors induced by transplacental ENU mutagenesis, several clusters of hypointensive zones were observed in CD133-expressing brain tumors by MRI and intravenously administered USPIO-CD133 Ab. Combination of USPIO-CD133 Ab and MRI is valuable in recognizing CD133-expressing tumor cells in vitro, extracellularly labeling for cell tracking and detecting CD133

  4. Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging

    PubMed Central

    Chen, Ya-Wen; Liou, Gunn-Guang; Pan, Huay-Ben; Tseng, Hui-Hwa; Hung, Yu-Ting; Chou, Chen-Pin

    2015-01-01

    Background The use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to visualize cells has been applied clinically, showing the potential for monitoring cells in vivo with magnetic resonance imaging (MRI). USPIO conjugated with anti-CD133 antibodies (USPIO-CD133 Ab) that recognize the CD133 molecule, a cancer stem cell marker in a variety of cancers, was studied as a novel and potent agent for MRI contrast enhancement of tumor cells. Materials and methods Anti-CD133 antibodies were used to conjugate with USPIO via interaction of streptavidin and biotin for in vivo labeling of CD133-positive cells in xenografted tumors and N-ethyl-N-nitrosourea (ENU)-induced brain tumors. The specific binding of USPIO-CD133 Ab to CD133-positive tumor cells was subsequently detected by Prussian blue staining and MRI with T2-weighted, gradient echo and multiple echo recombined gradient echo images. In addition, the cellular toxicity of USPIO-CD133 Ab was determined by analyzing cell proliferation, apoptosis, and reactive oxygen species production. Results USPIO-CD133 Ab specifically recognizes in vitro and labels CD133-positive cells, as validated using Prussian blue staining and MRI. The assays of cell proliferation, apoptosis, and reactive oxygen species production showed no significant differences in tumor cells with or without labeling of USPIO-CD133 Ab. In vivo imaging of CD133-positive cells was demonstrated by intravenous injection of USPIO-CD133 Ab in mice with HT29 xenografted tumors. The MRI of HT29 xenografts showed several clusters of hypotensive regions that correlated with CD133 expression and Prussian blue staining for iron. In rat, brain tumors induced by transplacental ENU mutagenesis, several clusters of hypointensive zones were observed in CD133-expressing brain tumors by MRI and intravenously administered USPIO-CD133 Ab. Conclusion Combination of USPIO-CD133 Ab and MRI is valuable in recognizing CD133-expressing tumor cells in vitro, extracellularly

  5. Culturing in serum-free culture medium on collagen type-I-coated plate increases expression of CD133 and retains original phenotype of HT-29 cancer stem cell.

    PubMed

    Arab-Bafrani, Zahra; Shahbazi-Gahrouei, Daryoush; Abbasian, Mehdi; Saberi, Alihossein; Fesharaki, Mehrafarin; Hejazi, Seyed Hossein; Manshaee, Samira

    2016-01-01

    A sub-population of tumor cells termed cancer stem cells (CSCs) has an important role in tumor initiation, progression, and recurrence. Selecting a suitable procedure for isolation and enrichment of CSCs is the biggest challenge in the study of CSCs. In the present study, the role of the combination of stem cell culture medium and collagen type-I was evaluated for successful isolation and enrichment of HT-29 CSCs. HT-29 cells were cultured in serum-containing medium (parental culture medium: Medium + 10% fetal bovine serum) and serum-free medium (stem cell culture medium); both on collagen-coated plates. Spheres forming ability and CD133 expression, as a potential marker of colorectal CSCs, were evaluated in two culture mediums. The results show spheroids usually give rise completely within 15 days in the stem cell culture medium on the collagen-coated plate. CD133 expression in spheroid cells (84%) is extensively higher than in parental cells (25%). Moreover, relative to parental cells, spheroid cells were more radioresistance. Finding of this study suggested that CSCs derived from colon cancer cell line (HT-29) can be propagated and form colonospheres in serum-free culture medium on collagen type-I. According to maintenance of their original phenotype in these conditions, it seems serum-free culture medium on collagen type-I is a suitable way to drug screening of HT-29 CSCs.

  6. Identification and Characterization of CD133(pos) Subpopulation Cells From a Human Laryngeal Cancer Cell Line.

    PubMed

    Qiu, Hai-ou; Wang, Huifang; Che, Na; Li, Dong; Mao, Yong; Zeng, Qiao; Ge, Rongming

    2016-04-06

    Recent research indicates that CD133 are expressed in several kinds of stem cells, among which, its high expression in laryngeal carcinoma has caused wide concern. To further explore efficaciously targeting drugs to laryngeal carcinoma stem cells (CSCs), we transplanted a solid tumor from CSCs into abdominal subcutaneous tissue of nude mice, and then compared the biological characteristics of laryngeal solid tumors with or without cisplatin intervention. In this study, the expression of CD133 was detected in the Hep-2 cell line by flow cytometry. By applying magnetic cell sorting (MACS) technology, we reported the results of purifying CD133-positive cells from a Hep-2 cell line. Cell proliferation, colony formation, and tumor-forming ability were examined in vitro and in vivo to identify the marker of CSCs in Hep-2 cell line. Upon flow cytometry analysis, CD133 was expressed constantly on 40.12±1.32% in Hep-2 cell line. Cell proliferation and colony formation ability were higher in CD133-positive cells compared to CD133-negative cells, and the in vivo tumorigenesis experiment showed the same results as in vitro assay. The 2 subpopulations cells were both sensitive to DDP, among which, the effect of DPP on proliferation ability and tumor-forming ability of CD133-positive cells was obviously greater than that of CD133-negative cells. Above all, our study revealed that CD133-positive cells have properties of higher proliferation, colony formation, and tumorigenesis in Hep-2 cell line, indicating that CD133 could be a marker to characterize laryngeal cancer stem cells.

  7. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    PubMed

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.

  8. Bilateral Administration of Autologous CD133+ Cells in Ambulatory Patients with Refractory Critical Limb Ischemia: Lessons Learned from a Pilot Randomized, Double blind, Placebo-controlled Trial

    PubMed Central

    Raval, Amish N.; Schmuck, Eric; Tefera, Girma; Leitzke, Cathlyn; Ark, Cassondra Vander; Hei, Derek; Centanni, John M.; de Silva, Ranil; Koch, Jill; Chappell, Richard; Hematti, Peiman

    2014-01-01

    Introduction CD133+ cells confer angiogenic potential and may be beneficial for the treatment of critical limb ischemia (CLI). However, patient selection, blinding methods and endpoints for clinical trials is challenging. We hypothesized that bilateral intramuscular administration of cytokine mobilized CD133+ cells in ambulatory patients with refractory CLI would be feasible and safe. Methods In this double-blind, randomized, sham-controlled trial, subjects received subcutaneous injections of granulocyte colony stimulating factor (10 mcg/kg/d) for 5 days, followed by leukapheresis, and intramuscular administration of 50-400 million sorted CD133+ cells delivered into both legs. Control subjects received normal saline injections, sham leukapheresis and intramuscular injection of placebo buffered solution. Subjects were followed for 1 year. An aliquot of CD133+ cells was collected from each subject to test for genes associated with cell senescence. Results 70 subjects were screened, of whom 10 were eligible. Subject enrollment was suspended due to a high rate of mobilization failure in subjects randomized to treatment. Of 10 subjects enrolled (7 randomized to treatment, 3 randomized to control), there were no differences in serious adverse events at 12 months and blinding was preserved. There were non-significant trends toward improved amputation free survival, 6 minute walk distance, walking impairment questionnaire and quality of life in subjects randomized to treatment. Successful CD133+ mobilizers expressed fewer senescence associated genes compared to poor mobilizers. Conclusion Bilateral administration of autologous CD133+ cell in ambulatory CLI subjects was safe and blinding was preserved. However, poor mobilization efficiency combined with high CD133+ senescence suggests futility in this approach. PMID:25239491

  9. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth

    PubMed Central

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R.; Andl, Thomas; Millar, Sarah E.

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  10. Overactivation of Ras signaling pathway in CD133+ MPNST cells.

    PubMed

    Borrego-Diaz, Emma; Terai, Kaoru; Lialyte, Kristina; Wise, Amanda L; Esfandyari, Tuba; Behbod, Fariba; Mautner, Victor F; Spyra, Melanie; Taylor, Sarah; Parada, Luis F; Upadhyaya, Meena; Farassati, Faris

    2012-07-01

    Cancer stem cells (CSCs) are believed to be the regenerative pool of cells responsible for repopulating tumors. Gaining knowledge about the signaling characteristics of CSCs is important for understanding the biology of tumors and developing novel anti-cancer therapies. We have identified a subpopulation of cells positive for CD133 (a CSC marker) from human primary malignant peripheral nerve sheath tumor (MPNST) cells which were absent in non-malignant Schwann cells. CD133 was also found to be expressed in human tissue samples and mouse MPNST cells. CD133+ cells were capable of forming spheres in non-adherent/serum-free conditions. The activation levels of Ras and its downstream effectors such as ERK, JNK, PI3K, p38K, and RalA were significantly increased in this population. Moreover, the CD133+ cells showed enhanced invasiveness which was linked to the increased expression of β-Catenin and Snail, two important proteins involved in the epithelial to mesenchymal transition, and Paxilin, a focal adhesion protein. Among other important characteristics of the CD133+ population, endoplasmic reticulum stress marker IRE1α was decreased, implying the potential sensitivity of CD133+ to the accumulation of unfolded proteins. Apoptotic indicators seemed to be unchanged in CD133+ cells when compared to the wild (unsorted) cells. Finally, in order to test the possibility of targeting CD133+ MPNST cells with Ras pathway pharmacological inhibitors, we exposed these cells to an ERK inhibitor. The wild population was more sensitive to inhibition of proliferation by this inhibitor as compared with the CD133+ cells supporting previous studies observing enhanced chemoresistance of these cells.

  11. The CD133+ cell as advanced medicinal product for myocardial and limb ischemia.

    PubMed

    Bongiovanni, Dario; Bassetti, Beatrice; Gambini, Elisa; Gaipa, Giuseppe; Frati, Giacomo; Achilli, Felice; Scacciatella, Paolo; Carbucicchio, Corrado; Pompilio, Giulio

    2014-10-15

    Ischemic diseases are the major cause of death and morbidity in Western countries. In the last decade, cell therapy has been suggested to be a promising treatment both in acute/chronic myocardial and peripheral ischemia. Different cell lineages have been tested, including endothelial progenitor cells. A subpopulation of bone marrow-derived immature ECPs, expressing the highly conserved stem cell glycoprotein antigen prominin-1 or CD133 marker, was shown to possess pro-angiogenic and antiapoptotic effects on ischemic tissues. The mechanisms implicated in CD133+ cells ability to contribute to neovascularization processes have been attributed to their ability to directly differentiate into newly forming vessels and to indirectly activate pro-angiogenic signaling by paracrine mechanisms. A large body of in vivo experimental evidences has demonstrated the potential of CD133+ cells to reverse ischemia. Moreover, several clinical trials have reported promising beneficial effects after infusion of autologous CD133+ into ischemic heart and limbs exploiting various delivery strategies. These trials have contributed to characterize the CD133+ manufacturing process as an advanced cell product (AMP). The aim of this review is to summarize available experimental and clinical data on CD133+ cells in the context of myocardial and peripheral ischemia, and to focus on the development of the CD133+ cell as an anti-ischemic AMP.

  12. A Fraction of CD133+ CNE2 Cells Is Made of Giant Cancer Cells with Morphological Evidence of Asymmetric Mitosis

    PubMed Central

    Jiang, Qingping; Zhang, Qianbing; Wang, Shuang; Xie, Siming; Fang, Weiyi; Liu, Zhen; Liu, Jinsong; Yao, Kaitai

    2015-01-01

    CD133 has been suggested as a broad-spectrum marker for cancer stem cells(CSCs). The present study investigated the expression of CD133 in biopsy tissues of nasopharyngeal carcinoma (NPC), NPC cell lines and the immortalized cell line NP69 by immunohistochemistry, flow cytometry and qRT-PCR. CD133+ cancer cells were isolated using magnetic-activated cell sorting technology. The study demonstrated that CD133+ cells are rare in NPC tissues and cell lines and that their self-renewal and proliferation abilities are stronger than those of CD133- cells and suggested that CD133+ NPC cells have characteristics of cancer stem cells. We further observed CD133+ cancer cells using a light microscope and scanning electron microscope. Generally, CD133+ cells are small, regular and round with small microvilli. On the other hand, CD133- cells are more polymorphic and larger with long micromicrovilli. Additionally, in some fields, several giant cancer cells (GCCs) in the CD133+ cell group were identified under the light microscope. Most of them were polynuclear cells. Under the scanning electron microscope, we found indefinite regular small bodies on the surface of or surrounding the giant cancer cells, some of which appeared to be creeping out the parental cells. This phenomenon was not observed in the CD133- cell groups. Through comparison with descriptions of apoptotic bodies in the literature and from the results of the acridine orange test, we propose that some of the small bodies are daughter cells of the GCCs. This phenomenon is a mode of division of cancer cells called neosis, or budding, which is a form of reproduction for simple organisms. Budding is satisfied with the rapid speed of tumor development. GCCs could be isolated by CD133 beads because the daughter cells have stem-cell characteristics and express stem-cell markers. PMID:26535065

  13. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    SciTech Connect

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  14. Therapeutics targeting CD90-integrin-AMPK-CD133 signal axis in liver cancer.

    PubMed

    Chen, Wei-Ching; Chang, Yung-Sheng; Hsu, Hui-Ping; Yen, Meng-Chi; Huang, Hau-Lun; Cho, Chien-Yu; Wang, Chih-Yang; Weng, Tzu-Yang; Lai, Po-Ting; Chen, Ching-Shih; Lin, Yih-Jyh; Lai, Ming-Derg

    2015-12-15

    CD90 is used as a marker for cancer stem cell in liver cancer. We aimed to study the mechanism by which CD90 promoted liver cancer progression and identify the new therapeutic targets on CD90 signal pathway. Ectopic expression of CD90 in liver cancer cell lines enhanced anchorage-independent growth and tumor progression. Furthermore, CD90 promoted sphere formation in vitro and upregulated the expression of the cancer stem cell marker CD133. The CD133 expression was higher in CD45-CD90+ cells in liver cancer specimen. The natural carcinogenic molecules TGF-β-1, HGF, and hepatitis B surface antigen increased the expression of CD90 and CD133. Inhibition of CD90 by either shRNA or antibody attenuated the induction of CD133 and anchorage-independent growth. Lentiviral delivery of CD133 shRNA abolished the tumorigenicity induced by CD90. Ectopic expression of CD90 induced mTOR phosphorylation and AMPK dephosphorylation. Mutation of integrin binding-RLD domain in CD90 attenuated the induction of CD133 and anchorage-independent growth. Similar results were observed after silencing β3 integrin. Signaling analyses revealed that AMPK/mTOR and β3 integrin were required for the induction of CD133 and tumor formation by CD90. Importantly, the energy restriction mimetic agent OSU-CG5 reduced the CD90 population in fresh liver tumor sample and repressed the tumor growth. In contrast, sorafenib did not decrease the CD90+ population. In conclusion, the signal axis of CD90-integrin-mTOR/AMPK-CD133 is critical for promoting liver carcinogenesis. Molecules inhibiting the signal axis, including OSU-CG5 and other inhibitors, may serve as potential novel cancer therapeutic targets in liver cancer.

  15. Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Hai; Liu, Tengfei; Ming, Xiaoyan; Tang, Zhi; Fu, Li; Schmitt-Kopplin, Philippe; Kanawati, Basem; Guan, Xin-Yuan; Cai, Zongwei

    2016-02-01

    Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.

  16. The Importance of the Stem Cell Marker Prominin-1/CD133 in the Uptake of Transferrin and in Iron Metabolism in Human Colon Cancer Caco-2 Cells

    PubMed Central

    Benoit, Jean-Pierre; Garcion, Emmanuel

    2011-01-01

    As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-β-cyclodextrine up regulated Tf uptake at greater intensity in the CD133high situation than in the CD133low situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken

  17. CD133+ cell selection is an alternative to CD34+ cell selection for ex vivo expansion of hematopoietic stem cells.

    PubMed

    Kobari, L; Giarratana, M C; Pflumio, F; Izac, B; Coulombel, L; Douay, L

    2001-04-01

    CD133 is a new stem cell antigen that may provide an alternative to CD34 for the selection and expansion of hematopoietic cells for transplantation. This study compared the expansion capacities of CD133(+) and CD34(+) cells isolated from the same cord blood (CB) samples. After 14 days culture in stroma-free, serum-free medium in the presence of stem cell factor (SCF), Flt3-1, megakaryocyte growth and development factor (MGDF), and granulocyte colony-stimulating factor (G-CSF), the CD133(+) and CD34(+) fractions displayed comparable expansion of the myeloid compartment (CFC, LTC-IC, and E-LTC-IC). The expansion of CD133(+) CB cells was up to 1262-fold for total cells, 99-fold for CD34(+) cells, 109-fold for CD34(+) CD133(+) cells, 133-fold for CFU-GM, 14.5-fold for LTC-IC, and 7.5-fold for E-LTC-IC. Moreover, the expanded population was able to generate lymphoid B (CD19(+)), NK (CD56(+)), and T (CD4(+) CD8(+)) cells in liquid or fetal thymic organ cultures, while expression of the homing antigen CXCR4 was similar on expanded and nonexpanded CD133(+) or CD34(+) cells. Thus, the CD133(+) subset could be expanded in the same manner as the CD34(+) subset and conserved its multilineage capacity, which would support the relevance of CD133 for clinical hematopoietic selection.

  18. Identification of a CD133−CD55− population functions as a fetal common skeletal progenitor

    PubMed Central

    Weng, Lihong; Hu, Xingbin; Kumar, Bijender; Garcia, Mayra; Todorov, Ivan; Jung, Xiaoman; Marcucci, Guido; Forman, Stephen J.; Chen, Ching-Cheng

    2016-01-01

    In this study, we identified a CD105+CD90.1−CD133−CD55− (CD133−CD55−) population in the fetal skeletal element that can generate bone and bone marrow. Besides osteoblasts and chondrocytes, the CD133−CD55− common progenitors can give rise to marrow reticular stromal cells and perivascular mesenchymal progenitors suggesting they function as the fetal common skeletal progenitor. Suppression of CXCL12 and Kitl expression in CD133−CD55− common progenitors severely disrupted the BM niche formation but not bone generation. Thus, CD133−CD55− common progenitors are the main source of CXCL12 and Kitl producing cells in the developing marrow. PMID:27929130

  19. Effect of MUC1/β-catenin interaction on the tumorigenic capacity of pancreatic CD133(+) cells.

    PubMed

    Sousa, Andreia Mota; Rei, Margarida; Freitas, Rita; Ricardo, Sara; Caffrey, Thomas; David, Leonor; Almeida, Raquel; Hollingsworth, Michael Anthony; Santos-Silva, Filipe

    2016-09-01

    Despite the fact that the biological function of cluster of differentiation (CD)133 remains unclear, this glycoprotein is currently used in the identification and isolation of tumor-initiating cells from certain malignant tumors, including pancreatic cancer. In the present study, the involvement of mucin 1 (MUC1) in the signaling pathways of a highly tumorigenic CD133+ cellular subpopulation sorted from the pancreatic cancer cell line HPAF-II was evaluated. The expression of MUC1-cytoplasmic domain (MUC1-CD) and oncogenic signaling transducers (epidermal growth factor receptor, protein kinase C delta, glycogen synthase kinase 3 beta and growth factor receptor-bound protein 2), as well as the association between MUC1 and β-catenin, were characterized in HPAF-II CD133+ and CD133low cell subpopulations and in tumor xenografts generated from these cells. Compared with HPAF CD133(low) cells, HPAF-II CD133+ cancer cells exhibited increased tumorigenic potential in immunocompromised mice, which was associated with overexpression of MUC1 and with the accordingly altered expression profile of MUC1-associated signaling partners. Additionally, MUC1-CD/β-catenin interactions were increased both in the HPAF-II CD133+ cell subpopulation and derived tumor xenografts compared with HPAF CD133(low) cells. These results suggest that, in comparison with HPAF CD133(low) cells, CD133+ cells exhibit higher expression of MUC1, which contributes to their tumorigenic phenotype through increased interaction between MUC1-CD and β-catenin, which in turn modulates oncogenic signaling cascades.

  20. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth.

    PubMed

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A; Andl, Thomas; Zhang, Yuhang

    2016-10-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth

    PubMed Central

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A.; Andl, Thomas; Zhang, Yuhang

    2016-01-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. PMID:27462123

  2. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy.

    PubMed

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu

    2014-02-21

    Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133- cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133- cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G2/M phase, and there were half as many cells in S phase compared with the CD133- cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced when combined with GSI. Interestingly, this effect was especially significant in CD133+ cells, suggesting that Notch pathway blockade may be a useful CSC-targeted therapy in lung cancer.

  3. Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells.

    PubMed

    Gedye, Craig; Quirk, Juliet; Browning, Judy; Svobodová, Suzanne; John, Thomas; Sluka, Pavel; Dunbar, P Rod; Corbeil, Denis; Cebon, Jonathan; Davis, Ian D

    2009-10-01

    "Cancer stem cells" that resist conventional treatments may be a cause of therapeutic failure in melanoma. We report a subpopulation of clonogenic melanoma cells that are characterized by high prominin-1/CD133 expression in melanoma and melanoma cell lines. These cells have enhanced clonogenicity and self-renewal in vitro, and serve as a limited in vitro model for melanoma stem cells. In some cases clonogenic CD133(+) melanoma cells show increased expression of some cancer/testis (CT) antigens. The expression of NY-ESO-1 in an HLA-A2 expressing cell line allowed CD133(+) clonogenic melanoma cells to be targeted for killing in vitro by NY-ESO-1-specific CD8(+) T-lymphocytes. Our in vitro findings raise the hypothesis that if melanoma stem cells express CT antigens in vivo that immune targeting of these antigens may be a viable clinical strategy for the adjuvant treatment of melanoma.

  4. Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells.

    PubMed

    Motegi, Hiroaki; Kamoshima, Yuuta; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Houkin, Kiyohiro

    2014-08-01

    Cancer stem cells are thought to be closely related to tumor progression and recurrence, making them attractive therapeutic targets. Stem cells of various tissues exist within niches maintaining their stemness. Glioblastoma stem cells (GSCs) are located at tumor capillaries and the perivascular niche, which are considered to have an important role in maintaining GSCs. There were some extracellular matrices (ECM) on the perivascular connective tissue, including type 1 collagen. We here evaluated whether type 1 collagen has a potential niche for GSCs. Imunohistochemical staining of type 1 collagen and CD133, one of the GSCs markers, on glioblastoma (GBM) tissues showed CD133-positive cells were located in immediate proximity to type 1 collagen around tumor vessels. We cultured human GBM cell lines, U87MG and GBM cells obtained from fresh surgical tissues, T472 and T555, with serum-containing medium (SCM) or serum-free medium with some growth factors (SFM) and in non-coated (Non-coat) or type 1 collagen-coated plates (Col). The RNA expression levels of CD133 and Nestin as stem cell markers in each condition were examined. The Col condition not only with SFM but SCM made GBM cells more enhanced in RNA expression of CD133, compared to Non-coat/SCM. Semi-quantitative measurement of CD133-positive cells by immunocytochemistry showed a statistically significant increase of CD133-positive cells in Col/SFM. In addition, T472 cell line cultured in the Col/SFM had capabilities of sphere formation and tumorigenesis. Type 1 collagen was found in the perivascular area and showed a possibility to maintain GSCs. These findings suggest that type 1 collagen could be one important niche component for CD133-positive GSCs and maintain GSCs in adherent culture. © 2014 Japanese Society of Neuropathology.

  5. Overexpression of Bmi‑1 promotes epithelial‑mesenchymal transition in CD133+Hep G2 cells.

    PubMed

    Zhang, Zefeng; Wang, Qiyi; Bu, Xiaoling; Zhang, Chuangqiang; Chen, Hao; Sha, Weihong; Liu, Wanwei

    2017-08-24

    Cancer stem cells (CSCs) and epithelial‑mesenchymal transition (EMT) are critical factors contributing to tumor metastasis and recurrence. The BMI1 proto‑oncogene (Bmi‑1) promotes the development and progression of hematologic malignancies and of several types of solid tumors. The aim of the present study was to explore the mechanism by which Bmi‑1 may promote invasion and migration of hepatocellular carcinoma Hep G2 cells. CD133 antigen is a transmembrane glycoprotein and regarded as a cancer stem cells marker in hepatocellular carcinoma. CD133+Hep G2 cells were enriched by magnetic‑activated cell sorting and exhibited greater viability compared with CD133‑Hep G2 cells, as measured by Cell Counting kit‑8 assay. Then, Bmi‑1 was overexpressed in CD133+Hep G2 cells by transfection with the Bmi‑1/pcDNA3.1(+) expression plasmid, and overexpression was confirmed by reverse‑transcription‑polymerase chain reaction and western blotting. Overexpression of Bmi‑1in CD133+Hep G2 cells resulted in the downregulation of E‑cadherin and upregulation of Vimentin at the protein level. The invasion and migration abilities of CD133+Hep G2 cells were increased in the Bmi‑1/pcDNA3.1(+)‑transfected group, as measured by Transwell invasion and wound healing assays, respectively. In conclusion, Bmi‑1 promoted invasion and migration of CD133+Hep G2 cells most likely through inducing EMT. The present findings may offer a potential novel target for the development of hepatocellular carcinoma therapies.

  6. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    PubMed

    Kelly, Sarah E; Di Benedetto, Altomare; Greco, Adelaide; Howard, Candace M; Sollars, Vincent E; Primerano, Donald A; Valluri, Jagan V; Claudio, Pier Paolo

    2010-04-08

    Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-)4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  7. Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications

    PubMed Central

    Kelly, Sarah E.; Di Benedetto, Altomare; Greco, Adelaide; Howard, Candace M.; Sollars, Vincent E.; Primerano, Donald A.; Valluri, Jagan V.; Claudio, Pier Paolo

    2010-01-01

    Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133(+)] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133(+) cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a (+)15-fold proliferation of the CD133(+) cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (−)4.8-fold decrease in the CD133(+)cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133(+) cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates. PMID:20386701

  8. Urinary CD133+ Extracellular Vesicles Are Decreased in Kidney Transplanted Patients with Slow Graft Function and Vascular Damage

    PubMed Central

    Dimuccio, Veronica; Ranghino, Andrea; Praticò Barbato, Loredana; Fop, Fabrizio; Biancone, Luigi; Camussi, Giovanni; Bussolati, Benedetta

    2014-01-01

    Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and can therefore provide information on kidney function. We here evaluated the presence of vesicles expressing the progenitor marker CD133 in the urine of normal subjects and of patients undergoing renal transplant. We found that EV expressing CD133 were present in the urine of normal subjects, but not of patients with end stage renal disease. The first day after transplant, urinary CD133+ EVs were present at low levels, to increase thereafter (at day 7). Urinary CD133+ EVs significantly increased in patients with slow graft function in respect to those with early graft function. In patients with a severe pre-transplant vascular damage of the graft, CD133+ EVs did not increase at day 7. At variance, the levels of EVs expressing the renal exosomal marker CD24 did not vary in the urine of patients with end stage renal disease or in transplanted patients in respect to controls. Sorted CD133+ EVs were found to express glomerular and proximal tubular markers. These data indicate that urinary CD133+ EVs are continuously released during the homeostatic turnover of the nephron and may provide information on its function or regenerative potential. PMID:25100147

  9. Hypoxia promotes radioresistance of CD133-positive Hep-2 human laryngeal squamous carcinoma cells in vitro.

    PubMed

    Wang, Maoxin; Li, Xiaoming; Qu, Yongtao; Xu, Ou; Sun, Qingjia

    2013-07-01

    Hypoxia promotes the radioresistance of laryngeal carcinomas and CD133 is one of the markers expressed by tumor-initiating, human laryngeal carcinoma cells. In order to investigate whether CD133-positive Hep-2 cells exhibit a radioresistant phenotype and to determine whether hypoxia promotes this phenotype, we performed a series of experiments. Hep-2 cells, and Hep-2 cells stably expressing hypoxia-inducible factor (HIF)-targeted small interfering RNA (siRNA) were cultured under hypoxic and normoxic conditions and were treated with varying doses of γ-rays (0, 5, 10, 15 and 20 Gy). MTT and cell cycle assays were subsequently performed. Using fluorescence-activated cell sorting (FACS), CD133-positive Hep-2 cells and CD133-positive HIF-siRNA Hep-2 cells were isolated. These cells were grown as spheres under hypoxic and normoxic conditions for MTT and soft agar colony formation assays. The expression levels of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), survivin, p53 and ataxia-telangiectasia mutated (ATM) were also assayed using flow cytometry. The data showed that the growth of Hep-2 cells exposed to hypoxic conditions and treated with 10 Gy radiation (group A) was less compared to that of groups B-D (P<0.05). In addition, more cells in group A were arrested in the G1 phase of the cell cycle compared to groups B-D (P<0.05). The percentage of CD133+ cells detected after radiation increased and was the highest for group A (P<0.05). In sphere formation assays, significantly more CD133+ cells grew in spheres than CD133- cells (P<0.001). Moreover, sphere formation was the highest for CD133+ Hep-2 cells grown under hypoxic conditions and exposed to irradiation (group E) (P<0.05). Lastly, expression of DNA-PKcs and survivin for group E was the highest (P<0.05), while ATM and p53 levels remained largely unchanged (P>0.05). In conclusion, CD133-positive Hep-2 cells exhibited a radioresistant phenotype that was enhanced with hypoxia. Furthermore, an increase in

  10. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells.

    PubMed

    Pfenninger, Cosima V; Roschupkina, Teona; Hertwig, Falk; Kottwitz, Denise; Englund, Elisabet; Bengzon, Johan; Jacobsen, Sten Eirik; Nuber, Ulrike A

    2007-06-15

    Human brain tumor stem cells have been enriched using antibodies against the surface protein CD133. An antibody recognizing CD133 also served to isolate normal neural stem cells from fetal human brain, suggesting a possible lineage relationship between normal neural and brain tumor stem cells. Whether CD133-positive brain tumor stem cells can be derived from CD133-positive neural stem or progenitor cells still requires direct experimental evidence, and an important step toward such investigations is the identification and characterization of normal CD133-presenting cells in neurogenic regions of the embryonic and adult brain. Here, we present evidence that CD133 is a marker for embryonic neural stem cells, an intermediate radial glial/ependymal cell type in the early postnatal stage, and for ependymal cells in the adult brain, but not for neurogenic astrocytes in the adult subventricular zone. Our findings suggest two principal possibilities for the origin of brain tumor stem cells: a derivation from CD133-expressing cells, which are normally not present in the adult brain (embryonic neural stem cells and an early postnatal intermediate radial glial/ependymal cell type), or from CD133-positive ependymal cells in the adult brain, which are, however, generally regarded as postmitotic. Alternatively, brain tumor stem cells could be derived from proliferative but CD133-negative neurogenic astrocytes in the adult brain. In the latter case, brain tumor development would involve the production of CD133.

  11. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    SciTech Connect

    Kim, Ki Hyung; Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Moon, Soo Hyun; Suh, Dong Soo; Yoon, Man Soo; Park, Eun-Sil; Jeong, Namkung; Eo, Wan-Kyu; Kim, Heung Yeol; Cha, Hee-Jae

    2014-05-02

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.

  12. Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy.

    PubMed

    Tamura, Kaoru; Aoyagi, Masaru; Ando, Noboru; Ogishima, Takahiro; Wakimoto, Hiroaki; Yamamoto, Masaaki; Ohno, Kikuo

    2013-11-01

    Recent evidence suggests that a glioma stem cell subpopulation may determine the biological behavior of tumors, including resistance to therapy. To investigate this hypothesis, the authors examined varying grades of gliomas for stem cell marker expressions and histopathological changes between primary and recurrent tumors. Tumor samples were collected during surgery from 70 patients with varying grades of gliomas (Grade II in 12 patients, Grade III in 16, and Grade IV in 42) prior to any adjuvant treatment. The samples were subjected to immunohistochemistry for MIB-1, factor VIII, GFAP, and stem cell markers (CD133 and nestin). Histopathological changes were compared between primary and recurrent tumors in 31 patients after radiation treatment and chemotherapy, including high-dose irradiation with additional stereotactic radiosurgery. CD133 expression on glioma cells was confined to de novo glioblastomas but was not observed in lower-grade gliomas. In de novo glioblastomas, the mean percentage of CD133-positive glioma cells in sections obtained at recurrence was 12.2% ± 10.3%, which was significantly higher than that obtained at the primary surgery (1.08% ± 1.78%). CD133 and Ki 67 dual-positive glioma cells were significantly increased in recurrent de novo glioblastomas as compared with those in primary tumors (14.5% ± 6.67% vs 2.16% ± 2.60%, respectively). In contrast, secondary glioblastomas rarely expressed CD133 antigen even after malignant progression following radiotherapy and chemotherapy. The authors' results indicate that CD133-positive glioma stem cells could survive, change to a proliferative cancer stem cell phenotype, and cause recurrence in cases with de novo glioblastomas after radiotherapy and chemotherapy.

  13. Efficient Expansion of SALL4-Transduced Umbilical Cord Blood Derived CD133+Hematopoietic Stem Cells.

    PubMed

    Mossahebi-Mohammadi, Majid; Atashi, Amir; Kaviani, Saeid; Soleimani, Masoud

    2017-05-01

    Hematopoietic stem cells (HSCs) were characterized by self-renewal and multilineage potential. Umbilical cord blood-derived (UCB) as an alternative source of HSCs is widely used especially in children for stem cells transplant (SCT). The main limitation in using UCB for transplantation especially in adults is low cell dose. To overcome this limitation besides using double dose UCB, ex vivo expansion is the most important way to increase cell number for transplantation. HSCs are mainly isolated using CD133 or CD34. CD133, as the most primitive marker, shows important physiological role in maintenance and expansion of HSCs. SALL4 plays crucial role in the development and maintaining the pluripotency and self-renewal ability of embryonic stem cells (ESCs) as well as HSCs. Moreover, SALL4 act as a regulator of HSCs expansion, normal hematopoiesis, and hematological malignancies. In the present study, CD133+ cells positively selected and ex vivo expanded in SALL-4 and GFP-transduced group. CD133 expression assessed using flow cytometry at day 0, 7 and 10. Moreover, multilineage differentiation and proliferation potential of expanded cells in both groups evaluated using colony forming unit (CFU) assay, and cells count assay. Karyotyping analysis was performed to assess any chromosomal instability after 7 days of expansion. Obtained results demonstrated that SALL-4 transduced cells showed significant increase in cell number compared to control group. Moreover, immunophenotyping results showed higher expression level of CD133 at day 7 and 10 following expansion in SALL-4 transduced (62 % and 42%) compared to control group (51% and 20.6%). Our results illustrated that SALL4 could act as a positive factor for the expansion of CD133+ derived UCB cells besides maintaining self-renewal and differentiation ability of expanded cell without any numerical and structural chromosomal aberrations .

  14. CD133+ cancer stem cells promoted by VEGF accelerate the recurrence of hepatocellular carcinoma

    PubMed Central

    Liu, Kai; Hao, Meijun; Ouyang, Yabo; Zheng, Jiasheng; Chen, Dexi

    2017-01-01

    The role of cancer stem cells (CSCs) in inducing the recurrence of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA) remains unclear. Here, we found that a dramatic increase in plasma vascular endothelial growth factor (VEGF) and an induction of local CD133+ CSCs are associated with early HCC recurrence, suggesting that VEGF expression and tumour stemness contribute to the relapse. In vitro studies demonstrated that VEGF, via activation of VEGFR2, increased the number of CD133+ CSCs and enhanced their capacity for self-renewal by inducing the expression of Nanog. In vivo studies further demonstrated that VEGF-treated CD133+ CSCs formed tumours larger than those developing from unstimulated cells and VEGF pre-treatment increased the tumorigenic cell frequency of primary HCC cells dependently on the presence of Nanog and VEGFR2. In HCC tissue derived from patients with early recurrence, almost all CD133+ cells were Nanog and p-VEGFR2 positive, suggesting that activation of VEGFR2 is critical for RFA-induced tumour stemness in HCC. In summary, RFA-induced VEGF promotes tumour stemness and accelerates tumourigenesis in HCC in a manner dependent on Nanog and VEGFR2, which is valuable for the prediction of HCC recurrence after RFA and the development of novel therapeutics. PMID:28134312

  15. In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study.

    PubMed

    Negroni, Elisa; Riederer, Ingo; Chaouch, Soraya; Belicchi, Marzia; Razini, Paola; Di Santo, James; Torrente, Yvan; Butler-Browne, Gillian S; Mouly, Vincent

    2009-10-01

    In recent years, numerous reports have identified in mouse different sources of myogenic cells distinct from satellite cells that exhibited a variable myogenic potential in vivo. Myogenic stem cells have also been described in humans, although their regenerative potential has rarely been quantified. In this study, we have investigated the myogenic potential of human muscle-derived cells based on the expression of the stem cell marker CD133 as compared to bona fide satellite cells already used in clinical trials. The efficiency of these cells to participate in muscle regeneration and contribute to the renewal of the satellite cell pool, when injected intramuscularly, has been evaluated in the Rag2(-/-) gammaC(-/-) C5(-/-) mouse in which muscle degeneration is induced by cryoinjury. We demonstrate that human muscle-derived CD133+ cells showed a much greater regenerative capacity when compared to human myoblasts. The number of fibers expressing human proteins and the number of human cells in a satellite cell position are all dramatically increased when compared to those observed after injection of human myoblasts. In addition, CD133+/CD34+ cells exhibited a better dispersion in the host muscle when compared to human myoblasts. We propose that muscle-derived CD133+ cells could be an attractive candidate for cellular therapy.

  16. In Vivo Myogenic Potential of Human CD133+ Muscle-derived Stem Cells: A Quantitative Study

    PubMed Central

    Negroni, Elisa; Riederer, Ingo; Chaouch, Soraya; Belicchi, Marzia; Razini, Paola; Di Santo, James; Torrente, Yvan; Butler-Browne, Gillian S; Mouly, Vincent

    2009-01-01

    In recent years, numerous reports have identified in mouse different sources of myogenic cells distinct from satellite cells that exhibited a variable myogenic potential in vivo. Myogenic stem cells have also been described in humans, although their regenerative potential has rarely been quantified. In this study, we have investigated the myogenic potential of human muscle–derived cells based on the expression of the stem cell marker CD133 as compared to bona fide satellite cells already used in clinical trials. The efficiency of these cells to participate in muscle regeneration and contribute to the renewal of the satellite cell pool, when injected intramuscularly, has been evaluated in the Rag2−/− γC−/− C5−/− mouse in which muscle degeneration is induced by cryoinjury. We demonstrate that human muscle–derived CD133+ cells showed a much greater regenerative capacity when compared to human myoblasts. The number of fibers expressing human proteins and the number of human cells in a satellite cell position are all dramatically increased when compared to those observed after injection of human myoblasts. In addition, CD133+/CD34+ cells exhibited a better dispersion in the host muscle when compared to human myoblasts. We propose that muscle-derived CD133+ cells could be an attractive candidate for cellular therapy. PMID:19623164

  17. CD133(+) human umbilical cord blood stem cells enhance angiogenesis in experimental chronic hepatic fibrosis.

    PubMed

    Elkhafif, Nagwa; El Baz, Hanan; Hammam, Olfat; Hassan, Salwa; Salah, Faten; Mansour, Wafaa; Mansy, Soheir; Yehia, Hoda; Zaki, Ahmed; Magdy, Ranya

    2011-01-01

    The in vivo angiogenic potential of transplanted human umbilical cord blood (UCB) CD133(+) stem cells in experimental chronic hepatic fibrosis induced by murine schistosomiasis was studied. Enriched cord blood-derived CD133(+) cells were cultured in primary medium for 3 weeks. Twenty-two weeks post-Schistosomiasis infection in mice, after reaching the chronic hepatic fibrotic stage, transplantation of stem cells was performed and mice were sacrificed 3 weeks later. Histopathology and electron microscopy showed an increase in newly formed blood vessels and a decrease in the fibrosis known for this stage of the disease. By immunohistochemical analysis the newly formed blood vessels showed positive expression of the human-specific angiogenic markers CD31, CD34 and von Willebrand factor. Few hepatocyte-like polygonal cells showed positive expression of human vascular endothelial growth factor and inducible nitric oxide synthase. The transplanted CD133(+) human stem cells primarily enhanced hepatic angiogenesis and neovascularization and contributed to repair in a paracrine manner by creating a permissive environment that enabled proliferation and survival of damaged cells rather than by direct differentiation to hepatocytes. A dual advantage of CD133(+) cell therapy in hepatic disease is suggested based on its capability of hematopoietic and endothelial differentiation.

  18. Dysplasia of human prostate CD133(hi) sub-population in NOD-SCIDS is blocked by c-myc anti-sense.

    PubMed

    Goodyear, S M; Amatangelo, M D; Stearns, M E

    2009-05-15

    The CD133(hi) sub-population of prostate epithelial cells has been demonstrated to possess tumor-initiating capacity consistent with that of the cancer stem cell theory. However, the involvement of oncogenes such as c-myc has not been fully elucidated in the CD133(hi) sub-population. We have isolated primary prostate cell strains (IBC-10a) and immortalized them by transfection with hTERT. The in vitro and in vivo tumorigenic capacity of isolated CD133(hi) and CD133(lo) cells was evaluated with respect to c-myc expression using specific sense and anti-sense oligonucleotides. Freshly immortalized cells consisted of <3.3% CD133(hi)/CD24(hi) sub-population (SP). "Prostaspheres" generated from single CD133(hi) cells in the presence of EGF consisted of approximately 10% CD133(hi) SPs in 12-21 day cultures. A single Prostasphere generated from single CD133(hi) cells (6-10 cell stage at day 6 injected i.t.) produced dysplastic lesions in NOD-SCID mice (n = 4/5). Treatment of Prostaspheres from CD133(hi) SPs in vitro with c-myc or cyclin D1 anti-sense oligonucleotides totally blocked colony forming ability and growth. Furthermore, treatment of fully formed, 6-day Prostaspheres for 48 hr with c-myc anti-sense significantly reduced c-myc expression and their ability to generate lesions in NOD-SCIDs (n = 10 Prostaspheres injected i.t./mouse). These data demonstrate for the first time that a single CD133(hi) cell is competent to generate Prostaspheres in vitro and that CD133(hi) Prostaspheres require c-myc to grow and form dysplastic lesions in vivo. 2009 Wiley-Liss, Inc.

  19. Nerve growth factor regulates CD133 function to promote tumor cell migration and invasion via activating ERK1/2 signaling in pancreatic cancer.

    PubMed

    Xin, Beibei; He, Xiaodan; Wang, Juan; Cai, Jun; Wei, Wei; Zhang, Ti; Shen, Xiaohong

    Perineural invasion (PNI) is extremely high frequency among the various metastatic routes in pancreatic cancer. Nerve growth factor, secreted by astroglial cells, exerts effects on tumor invasion in some cancer cells, but its function on migration and invasion in pancreatic cancer is still unclear. In the present study, we determined the effects of NGF on modulating tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. NGF and CD133 expression were detected in tumor tissues using immunohistochemical analysis and Western blotting analysis. The effects of NGF on the regulation of CD133 expression and the promotion of cancer migration and invasion were investigated using wound healing and matrigel transwell assay. A related mechanism that NGF regulates CD133's function via activating ERK1/2 signaling also was observed. NGF/CD133 is overexpressed in human pancreatic cancer and promotes the migration and invasion of human pancreatic cancer cells through the activation of the ERK/CD133 signaling cascade. NGF/ERK signaling modulates the cancer cell EMT process, migration and invasion through the regulation of CD133 expression and its subcellular localization. NGF/CD133 signaling initiated the migration and invasion of pancreatic cancer cells. NGF/CD133 might be an effective and potent therapeutic target for pancreatic cancer metastasis, particularly in PNI. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  20. Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours

    PubMed Central

    d'Aquino, Riccardo; De Francesco, Francesco; Pirozzi, Giuseppe; Galderisi, Umberto; Cavaliere, Carlo; De Rosa, Alfredo; Papaccio, Gianpaolo

    2008-01-01

    Background Osteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances. Methodology and Principal Findings In this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency. Conclusions Taken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer. PMID:18941626

  1. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells--implications for stem cell therapies in regenerative medicine.

    PubMed

    Ratajczak, Janina; Kucia, Magda; Mierzejewska, Kasia; Marlicz, Wojciech; Pietrzkowski, Zbigniew; Wojakowski, Wojciech; Greco, Nicholas J; Tendera, Michal; Ratajczak, Mariusz Z

    2013-02-01

    CD133+ cells purified from hematopoietic tissues are enriched mostly for hematopoietic stem/progenitor cells, but also contain some endothelial progenitor cells and very small embryonic-like stem cells. CD133+ cells, which are akin to CD34+ cells, are a potential source of stem cells in regenerative medicine. However, the lack of convincing donor-derived chimerism in the damaged organs of patients treated with these cells suggests that the improvement in function involves mechanisms other than a direct contribution to the damaged tissues. We hypothesized that CD133+ cells secrete several paracrine factors that play a major role in the positive effects observed after treatment and tested supernatants derived from these cells for the presence of such factors. We observed that CD133+ cells and CD133+ cell-derived microvesicles (MVs) express mRNAs for several antiapoptotic and proangiopoietic factors, including kit ligand, insulin growth factor-1, vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8. These factors were also detected in a CD133+ cell-derived conditioned medium (CM). More important, the CD133+ cell-derived CM and MVs chemoattracted endothelial cells and display proangiopoietic activity both in vitro and in vivo assays. This observation should be taken into consideration when evaluating clinical outcomes from purified CD133+ cell therapies in regenerative medicine.

  2. Platelet released growth factors boost expansion of bone marrow derived CD34(+) and CD133(+) endothelial progenitor cells for autologous grafting.

    PubMed

    Lippross, Sebastian; Loibl, Markus; Hoppe, Sven; Meury, Thomas; Benneker, Lorin; Alini, Mauro; Verrier, Sophie

    2011-01-01

    Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell

  3. Tumour-initiating cells vs. cancer 'stem' cells and CD133: What's in the name?

    SciTech Connect

    Neuzil, Jiri; E-mail: j.neuzil@griffith.edu.au; Stantic, Marina; Zobalova, Renata; Chladova, Jaromira; Wang, Xiufang; Prochazka, Lubomir; Dong, Lanfeng; Andera, Ladislav; Ralph, Stephen J.

    2007-04-20

    Recent evidence suggests that a subset of cells within a tumour have 'stem-like' characteristics. These tumour-initiating cells, distinct from non-malignant stem cells, show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumour cells, resistance to chemotherapy or radiation, and they are often characterised by elevated expression of the stem cell surface marker CD133. Understanding the molecular biology of the CD133{sup +} cancer cells is now essential for developing more effective cancer treatments. These may include drugs targeting organelles, such as mitochondria or lysosomes, using highly efficient and selective inducers of apoptosis. Alternatively, agents or treatment regimens that enhance sensitivity of these therapy-resistant 'tumour stem cells' to the current or emerging anti-tumour drugs would be of interest as well.

  4. Combination use of anti-CD133 antibody and SSA lectin can effectively enrich cells with high tumorigenicity.

    PubMed

    Moriwaki, Kenta; Okudo, Kumiko; Haraguchi, Naotsugu; Takeishi, Shunsaku; Sawaki, Hiromichi; Narimatsu, Hisashi; Tanemura, Masahiro; Ishii, Hideshi; Mori, Masaki; Miyoshi, Eiji

    2011-06-01

    Glycans exhibit characteristic changes in their structures during development and thus have been used as markers for stem/progenitor cells. However, the glycan structures unique to cancer stem cells (CSC) remain unknown. In the present study, we examined glycan structures in CD133+ CD13+ CSC, which were recently found to have a high CSC ability, by means of a lectin microarray. Seven sialylated glycan-recognizing lectins, MAL-I, SNA, SSA, TJA-I, ACG, ABA and MAH, showed higher affinity to CD133+ CD13+ CSC than CD133+ cells with a lower CSC ability. In addition, we demonstrated that CD133+ SSA+ cells isolated from Huh7 cells had a significantly higher ability to form tumors in non-obese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice and spheres under serum-free conditions than CD133+ SSA- cells. These results suggest that hepatic CSC highly express sialylated glycans and that SSA lectin can be used as a tool for isolating CSC. This study is the first report to demonstrate the characteristic glycan structures in CSC and to indicate a new methodology involving lectins for isolating CSC. © 2011 Japanese Cancer Association.

  5. CD133(+) CD44(+) Cells Mediate in the Lung Metastasis of Osteosarcoma.

    PubMed

    He, Aina; Yang, Xiaojing; Huang, Yujing; Feng, Tao; Wang, Yonggang; Sun, Yuanjue; Shen, Zan; Yao, Yang

    2015-08-01

    CD133 and CD44 are commonly used markers of cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical value and significance of CD133 and CD44 in lung metastasis of osteosarcoma (OS) remains controversial. The purpose of this study was to investigate whether CD133(+) CD44(+) cells mediates the metastasis of OS. We identified the CD133(+) CD44(+) cells in lung metastatic lesions and OS cell lines, and next demonstrated CD133(+) CD44(+) cells were more aggressive in sphere formation, migration and invasiveness compared with CD133(+) CD44(-) , CD133(-) CD44(+) , or CD133(-) CD44(-) cells. We finally sorted the CD133(+) CD44(+) and CD133(-) CD44(-) cells from Saos-2 cell lines, after intratibial xenograft in nude mice, these cells developed primary tumors, and CD133(+) CD44(+) cells are more potential to form lung metastatic tumors. Thus we concluded that CD133(+) CD44(+) cells may mediate in the lung metastasis of OS. © 2015 Wiley Periodicals, Inc.

  6. Differentiation potential of human CD133 positive hematopoietic stem cells into motor neuron- like cells, in vitro.

    PubMed

    Moghaddam, Sepideh Alavi; Yousefi, Behnam; Sanooghi, Davood; Faghihi, Faezeh; Hayati Roodbari, Nasim; Bana, Nikoo; Joghataei, Mohammad Taghi; Pooyan, Paria; Arjmand, Babak

    2017-07-25

    Spinal cord injuries and motor neuron-related disorders impact on life of many patients around the world. Since pharmacotherapy and surgical approaches were not efficient to regenerate these types of defects; stem cell therapy as a good strategy to restore the lost cells has become the focus of interest among the scientists. Umbilical cord blood CD133(+) hematopoietic stem cells (UCB- CD133(+) HSCs) with self- renewal property and neural lineage differentiation capacity are ethically approved cell candidate for use in regenerative medicine. In this regard the aim of this study was to quantitatively evaluate the capability of these cells to differentiate into motor neuron-like cells (MNL), in vitro. CD133(+) HSCs were isolated from human UCB using MACS system. After cell characterization using flow cytometry, the cells were treated with a combination of Retinoic acid, Sonic hedgehog, Brain derived neurotrophic factor, and B27 through a 2- step procedure for two weeks. The expression of MN-specific markers was examined using qRT- PCR, flow cytometry and immunocytochemistry. By the end of the two-week differentiation protocol, CD133(+) cells acquired unipolar MNL morphology with thin and long neurites. The expression of Isl-1(62.15%), AChE (41.83%), SMI-32 (21.55%) and Nestin (17.46%) was detected using flow cytometry and immunocytochemistry. The analysis of the expression of PAX6, ISL-1, ACHE, CHAT and SMI-32 revealed that MNLs present these neural markers at levels comparable with undifferentiated cells. In Conclusion Human UCB- CD133(+) HSCs are remarkably potent cell candidates to transdifferentiate into motor neuron-like cells, in vitro. Copyright © 2017. Published by Elsevier B.V.

  7. Human Skeletal Muscle-derived CD133(+) Cells Form Functional Satellite Cells After Intramuscular Transplantation in Immunodeficient Host Mice.

    PubMed

    Meng, Jinhong; Chun, Soyon; Asfahani, Rowan; Lochmüller, Hanns; Muntoni, Francesco; Morgan, Jennifer

    2014-05-01

    Stem cell therapy is a promising strategy for treatment of muscular dystrophies. In addition to muscle fiber formation, reconstitution of functional stem cell pool by donor cells is vital for long-term treatment. We show here that some CD133(+) cells within human muscle are located underneath the basal lamina of muscle fibers, in the position of the muscle satellite cell. Cultured hCD133(+) cells are heterogeneous and multipotent, capable of forming myotubes and reserve satellite cells in vitro. They contribute to extensive muscle regeneration and satellite cell formation following intramuscular transplantation into irradiated and cryodamaged tibialis anterior muscles of immunodeficient Rag2-/γ chain-/C5-mice. Some donor-derived satellite cells expressed the myogenic regulatory factor MyoD, indicating that they were activated. In addition, when transplanted host muscles were reinjured, there was significantly more newly-regenerated muscle fibers of donor origin in treated than in control, nonreinjured muscles, indicating that hCD133(+) cells had given rise to functional muscle stem cells, which were able to activate in response to injury and contribute to a further round of muscle regeneration. Our findings provide new evidence for the location and characterization of hCD133(+) cells, and highlight that these cells are highly suitable for future clinical application.

  8. Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice.

    PubMed

    Meng, Jinhong; Chun, Soyon; Asfahani, Rowan; Lochmüller, Hanns; Muntoni, Francesco; Morgan, Jennifer

    2014-05-01

    Stem cell therapy is a promising strategy for treatment of muscular dystrophies. In addition to muscle fiber formation, reconstitution of functional stem cell pool by donor cells is vital for long-term treatment. We show here that some CD133(+) cells within human muscle are located underneath the basal lamina of muscle fibers, in the position of the muscle satellite cell. Cultured hCD133(+) cells are heterogeneous and multipotent, capable of forming myotubes and reserve satellite cells in vitro. They contribute to extensive muscle regeneration and satellite cell formation following intramuscular transplantation into irradiated and cryodamaged tibialis anterior muscles of immunodeficient Rag2-/γ chain-/C5-mice. Some donor-derived satellite cells expressed the myogenic regulatory factor MyoD, indicating that they were activated. In addition, when transplanted host muscles were reinjured, there was significantly more newly-regenerated muscle fibers of donor origin in treated than in control, nonreinjured muscles, indicating that hCD133(+) cells had given rise to functional muscle stem cells, which were able to activate in response to injury and contribute to a further round of muscle regeneration. Our findings provide new evidence for the location and characterization of hCD133(+) cells, and highlight that these cells are highly suitable for future clinical application.

  9. CD20-related signaling pathway is differently activated in normal and dystrophic circulating CD133(+) stem cells.

    PubMed

    Parolini, D; Meregalli, M; Belicchi, M; Razini, P; Lopa, R; Del Carlo, B; Farini, A; Maciotta, S; Bresolin, N; Porretti, L; Pellegrino, M; Torrente, Y

    2009-02-01

    Among the heterogeneous population of circulating hematopoietic and endothelial progenitors, we identified a subpopulation of CD133(+) cells displaying myogenic properties. Unexpectedly, we observed the expression of the B-cell marker CD20 in blood-derived CD133(+) stem cells. The CD20 antigen plays a role in the modulation of intracellular calcium homeostasis through signaling pathways activation. Several observations suggest that an increase in intracellular calcium concentration ([Ca(2+)](i)) could be involved in the etiology of the Duchenne muscular dystrophy (DMD). Here, we show that a CD20-related signaling pathway able to induce an increase in [Ca(2+)](i) is differently activated after brain derived neurotrophic factor (BDNF) stimulation of normal and dystrophic blood-derived CD133(+) stem cells, supporting the assumption of a "CD20-related calcium impairment" affecting dystrophic cells. Presented findings represent the starting point toward the expansion of knowledge on pathways involved in the pathology of DMD and in the behavior of dystrophic blood-derived CD133(+) stem cells.

  10. Prominin-1 (CD133) Reveals New Faces of Pancreatic Progenitor Cells and Cancer Stem Cells: Current Knowledge and Therapeutic Perspectives.

    PubMed

    Hori, Yuichi

    2013-01-01

    Islet transplantation-based therapies were proven successful for type 1 diabetes mellitus, but an extreme shortage of pancreatic islets has motivated recent efforts to develop renewable sources of islet-replacement tissue. Pancreatic progenitor cells hold a promising potential, yet attempts at their prospective isolation are scarce due to the lack of specific marker. We found that prominin-1 (often referred to as CD133 in humans) is expressed by the undifferentiated epithelial cells in the mouse embryonic pancreas. Putative pancreatic epithelial stem and progenitor cells were prospectively enriched in prominin-1(+) cell population by cell sorting and characterized. CD133 is also a cell surface marker of human pancreatic cancer stem cells (CSC), which are resistant to conventional treatments such as chemotherapy and radiotherapy. Therefore, a considerable interest in the specific targeting and eradication of CSC is emerging for the cancer therapy, and CD133 may represent a good molecular target. In this chapter, I will summarize our current knowledge about prominin-1/CD133 in mouse and human pancreas.

  11. Wnt Interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    PubMed Central

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; G, Mary; Johlfs, Ronald R. Fiscus; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-01-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤ 40 nm; intermediates ~40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. PMID:23318676

  12. Chemoresistance to 5-FU inhibited by 635 nm LED irradiation in CD133+ KB cell line.

    PubMed

    Kim, Donghwi; Park, Mineon; Jang, Hyunwoong; Hyun, Hoon; Lim, Wonbong

    2017-09-27

    Consistent with cancer stem cell theory, a small fraction of cancer cells, described as cancer stem cells (CSCs), may promote tumor recurrence and anti-cancer drug resistance. Therefore, much effort has been devoted to the development of CSC targeted therapy to vanquish drug resistance. In this study, we have investigated the effect of multiple light-emitting diode (LED) irradiation treatments with conventional anti-cancer drugs on CSC-like oral cancer cells that acquired stemness by ectopic over expression of CD133. To evaluate combined LED irradiation anti-cancer drug effects, we investigated the chemosensitizing effect of 635 nm irradiation on 5-fluorouracil (5FU)-treated KB(CD133+) and KB(Vec) cells, interrogating the underlying molecular mechanisms associated with stemness and apoptosis that are responsible for chemopreventive activity. In addition, combination therapy with LED irradiation and 5-FU treatment was carried out in KB(CD133+) and KB(Vec) cell-inoculated mouse models. LED irradiation of 635 nm inhibited CSC-like properties consistent with a decrease in OCT4 and NANOG protein expression, reducing colony-forming ability. In addition, LED irradiation enhanced 5-FU-induced cytotoxicity and improved 5-FU chemosensitivity in KB(CD133+) via enhancement of apoptosis. These findings were validated in vivo, wherein LED irradiation combined with 5-FU treatment inhibited tumor growth in KB(CD133+)-inoculated mice. Collectively, our results provide novel evidence for 635 nm irradiation-induced 5-FU chemosensitization of CSC in oral cancer. In addition, this research highlights that 635 nm LED irradiation may serve as an adjunct treatment to conventional chemotherapeutic drugs in patients with oral cancer.

  13. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells

    PubMed Central

    Ni, Miaozhong; Xiong, Min; Zhang, Xinchao; Cai, Guoping; Chen, Huaiwen; Zeng, Qingmin; Yu, Zuochong

    2015-01-01

    Background Cancer stem cells (CSCs) possess the characteristics associated with normal stem cells and are responsible for cancer initiation, recurrence, and metastasis. CD133 is regarded as a CSCs marker of osteosarcoma, which is the most common primary bone malignancy in childhood and adolescence. Salinomycin, a polyether ionophore antibiotic, has been shown to kill various CSCs, including osteosarcoma CSCs. However, salinomycin displayed poor aqueous solubility that hinders its clinical application. The objective of this study was to develop salinomycin-loaded nanoparticles to eliminate CD133+ osteosarcoma CSCs. Methods The salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with CD133 aptamers (Ap-SAL-NP) were developed by an emulsion/solvent evaporation method, and the targeting and cytotoxicity of Ap-SAL-NP to CD133+ osteosarcoma CSCs were evaluated. Results The nanoparticles are of desired particle size (~150 nm), drug encapsulation efficiency (~50%), and drug release profile. After 48 hours treatment of the Saos-2 CD133+ osteosarcoma cells with drugs formulated in Ap-SAL-NP, SAL-NP, and salinomycin, the concentrations needed to kill 50% of the incubated cells were found to be 2.18, 10.72, and 5.07 μg/mL, respectively, suggesting that Ap-SAL-NP could be 4.92 or 2.33 fold more effective than SAL-NP or salinomycin, respectively. In contrast, Ap-SAL-NP was as effective as SAL-NP, and less effective than salinomycin in Saos-2 CD133− cells, suggesting that Ap-SAL-NP possess specific cytotoxicity toward Saos-2 CD133+ cells. Ap-SAL-NP showed the best therapeutic effect in Saos-2 osteosarcoma xenograft mice, compared with SAL-NP or salinomycin. Significantly, Ap-SAL-NP could selectively kill CD133+ osteosarcoma CSCs both in vitro and in vivo, as reflected by the tumorsphere formation and proportion of Saos-2 CD133+ cells. Conclusion Our results suggest that CD133 is a potential target for drug delivery to osteosarcoma CSCs

  14. CD133 Is a Marker For Long-Term Repopulating Murine Epidermal Stem Cells

    PubMed Central

    Charruyer, A; Strachan, LR; Yue, L; Toth, AS; Mancianti, ML; Ghadially, R

    2012-01-01

    Maintenance, repair and renewal of the epidermis are thought to depend on a pool of dedicated epidermal stem cells. Like for many somatic tissues, isolation of a nearly pure population of stem cells is a primary goal in cutaneous biology. We used a quantitative transplantation assay, using injection of keratinocytes into subcutis combined with limiting dilution analysis, to assess the long-term repopulating ability of putative murine epidermal stem populations. Putative epidermal stem cell populations were isolated by FACS sorting. The CD133+ population and the subpopulation of CD133+ cells that exhibits high mitochondrial membrane potential (DΨmhi), were enriched for long-term repopulating epidermal stem cells vs. unfractionated cells (3.9 and 5.2-fold, respectively). Evidence for self-renewal capacity was obtained by serial transplantation of long-term epidermal repopulating units derived from CD133+ and CD133+ΔΨmhi keratinocytes. CD133+ keratinocytes were multipotent and produced significantly more hair follicles than CD133− cells. CD133+ cells were a subset of the previously described integrin α6+CD34+ bulge cell population and 28.9±8.6% were label retaining cells. Thus, murine keratinocytes within the CD133+ and CD133+ΔΨmhi populations contain epidermal stem cells that regenerate epidermis for the long-term, are self-renewing, multipotent, and label-retaining cells. PMID:22763787

  15. CCL21/CCR7 Axis Contributed to CD133+ Pancreatic Cancer Stem-Like Cell Metastasis via EMT and Erk/NF-κB Pathway

    PubMed Central

    Zhang, Lirong; Wang, Dongqing; Li, Yumei; Liu, Yanfang; Xie, Xiaodong; Wu, Yingying; Zhou, Yuepeng; Ren, Jing; Zhang, Jianxin; Zhu, Haitao; Su, Zhaoliang

    2016-01-01

    Background Tumor metastasis is driven by malignant cells and stromal cell components of the tumor microenvironment. Cancer stem cells (CSCs) are thought to be responsible for metastasis by altering the tumor microenvironment. Epithelial-mesenchymal transition (EMT) processes contribute to specific stages of the metastatic cascade, promoted by cytokines and chemokines secreted by stromal cell components in the tumor microenvironment. C-C chemokine receptor 7 (CCR7) interacts with its ligand, chemokine ligand 21(CCL21), to mediate metastasis in some cancer cells lines. This study investigated the role of CCL21/CCR7 in promoting EMT and metastasis of cluster of differentiation 133+ (CD133+) pancreatic cancer stem-like cells. Methods Panc-1, AsPC-1, and MIA PaCa-2 pancreatic cancer cells were selected because of their aggressive invasive potentials. CCR7 expression levels were examined in total, CD133+ and CD133− cell fractions by Immunofluorescence analysis and real time-quantitative polymerase chain reaction (RT-qPCR). The role of CCL21/CCR7 in mediating metastasis and survival of CD133+ pancreatic cancer stem-like cells was detected by Transwell assays and flow cytometry, respectively. EMT and lymph node metastasis related markers (E-cadherin, N- cadherin, LYVE-1) were analyzed by western blot. CCR7 expression levels were analyzed by immunohistochemical staining and RT-qPCR in resected tumor tissues, metastatic lymph nodes, normal lymph nodes and adjacent normal tissues from patients with pancreatic carcinoma. Results CCR7 expression was significantly increased in CD133+ pancreatic cancer stem-like cells, resected pancreatic cancer tissues, and metastatic lymph nodes, compared with CD133− cancer cells, adjacent normal tissues and normal lymph nodes, respectively. CCL21/CCR7 promoted metastasis and survival of CD133+ pancreatic cancer stem-like cells and regulated CD133+ pancreatic cancer stem-like cells metastasis by modulating EMT and Erk/NF-κB pathway

  16. Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer

    PubMed Central

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K.; Perna, Fabiana; Bowman, Robert L.; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N. C.; Feldman, Michael; Mao, Jun J.; Colameco , Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H.; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-01-01

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133hi/ERlo cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133hi/ERlo/IL6hi cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133hi/ERlo/OXPHOSlo. These cells exit metabolic dormancy via an IL6-driven feed-forward ERlo-IL6hi-Notchhi loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133hi CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy. PMID:26858125

  17. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.

    PubMed

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K; Perna, Fabiana; Bowman, Robert L; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N C; Feldman, Michael; Mao, Jun J; Colameco, Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-02-09

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133(hi)/ER(lo) cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133(hi)/ER(lo)/IL6(hi) cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133(hi)/ER(lo)/OXPHOS(lo). These cells exit metabolic dormancy via an IL6-driven feed-forward ER(lo)-IL6(hi)-Notch(hi) loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133(hi) CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133(hi)/ER(lo) cells mediating metastatic progression, which is sensitive to dual targeted therapy.

  18. Transcatheter Arterial Infusion of Autologous CD133+ Cells for Diabetic Peripheral Artery Disease

    PubMed Central

    Zhang, Xiaoping; Lian, Weishuai; Lou, Wensheng; Han, Shilong; Lu, Chenhui; Zuo, Keqiang; Su, Haobo; Xu, Jichong; Cao, Chuanwu; Tang, Tao; Jia, Zhongzhi; Jin, Tao; Uzan, Georges; Gu, Jianping; Li, Maoquan

    2016-01-01

    Microvascular lesion in diabetic peripheral arterial disease (PAD) still cannot be resolved by current surgical and interventional technique. Endothelial cells have the therapeutic potential to cure microvascular lesion. To evaluate the efficacy and immune-regulatory impact of intra-arterial infusion of autologous CD133+ cells, we recruited 53 patients with diabetic PAD (27 of CD133+ group and 26 of control group). CD133+ cells enriched from patients' PB-MNCs were reinfused intra-arterially. The ulcer healing followed up till 18 months was 100% (3/3) in CD133+ group and 60% (3/5) in control group. The amputation rate was 0 (0/27) in CD133+ group and 11.54% (3/26) in control group. Compared with the control group, TcPO2 and ABI showed obvious improvement at 18 months and significant increasing VEGF and decreasing IL-6 level in the CD133+ group within 4 weeks. A reducing trend of proangiogenesis and anti-inflammatory regulation function at 4 weeks after the cells infusion was also found. These results indicated that autologous CD133+ cell treatment can effectively improve the perfusion of morbid limb and exert proangiogenesis and anti-inflammatory immune-regulatory impacts by paracrine on tissue microenvironment. The CD133+ progenitor cell therapy may be repeated at a fixed interval according to cell life span and immune-regulatory function. PMID:26981134

  19. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    SciTech Connect

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  20. Anti-CSC effects in human esophageal squamous cell carcinomas and Eca109/9706 cells induced by nanoliposomal quercetin alone or combined with CD 133 antiserum.

    PubMed

    Zheng, Nai-Gang; Mo, Sai-Jun; Li, Jin-Ping; Wu, Jing-Lan

    2014-01-01

    CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of CD133+ and multidrug resistance 1 (MDR 1)+ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small CD133+ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); CD44+ surrounding the cells appeared in diffuse pattern, and the larger CD44+ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-κBp65, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-κB signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.

  1. Overexpression of angiopoietin-1 increases CD133+/c-kit+ cells and reduces myocardial apoptosis in db/db mouse infarcted hearts.

    PubMed

    Zeng, Heng; Li, Lanfang; Chen, Jian-Xiong

    2012-01-01

    Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts.

  2. Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells

    PubMed Central

    Lin, Kailong; Yin, Pin; Jiang, Lupin; Liang, Zhiqing; Zhu, Bo

    2016-01-01

    Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSCs) can also maintain the ability of self-renewing and differentiation by releasing inflammatory factor. This report we discuss the biological characteristics and the specific molecular mechanism mediated by interleukin-23 (IL-23) and its receptor on the self-renewing of OCSCs. We found that OCSCs had high expression of IL-23 and IL-23R. IL-23 could promote the self-renewal ability of OCSCs and played a very important role to maintain the stable expression of stem cell markers in vitro. Moreover, we verified that IL-23 could maintain the potential tumorigenic of OCSCs in vivo and mediate the self-renewal ability and the formation of tumor in OCSCs by activating the signal pathways of STAT3 and NF-κB. In addition, human low differentiation tissues showed overexpression of IL-23. And IL-23 positively correlated to the expression level of CD133, Nanog and Oct4. In conclusion, Our discoveries demonstrate that autocrine IL-23 contribute to ovarian cancer malignancy through promoting the self-renewal of CD133+ ovarian cancer stem-like cells, and this suggests that IL-23 and its signaling pathway might serve as therapeutic targets for the treatment of ovarian cancer. PMID:27738346

  3. Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery

    PubMed Central

    Fang, D D; Kim, Y J; Lee, C N; Aggarwal, S; McKinnon, K; Mesmer, D; Norton, J; Birse, C E; He, T; Ruben, S M; Moore, P A

    2010-01-01

    Background: Despite earlier studies demonstrating in vitro propagation of solid tumour cancer stem cells (CSCs) as non-adherent tumour spheres, it remains controversial as to whether CSCs can be maintained in vitro. Additional validation of the CSC properties of tumour spheres would support their use as CSC models and provide an opportunity to discover additional CSC cell surface markers to aid in CSC detection and potential elimination. Methods: Primary tumour cells isolated from 13 surgically resected colon tumour specimens were propagated using serum-free CSC-selective conditions. The CSC properties of long-term cultured tumour spheres were established and mass spectrometry-based proteomics performed. Results: Freshly isolated CD133+ colorectal cancer cells gave rise to long-term tumour sphere (or spheroids) cultures maintaining CD133 expression. These spheroid cells were able to self-renew and differentiate into adherent epithelial lineages and recapitulate the phenotype of the original tumour. Relative to their differentiated progeny, tumour spheroid cells were more resistant to the chemotherapeutic irinotecan. Finally, CD44, CD166, CD29, CEACAM5, cadherin 17, and biglycan were identified by mass spectrometry to be enriched in CD133+ tumour spheroid cells. Conclusion: Our data suggest that ex vivo-expanded colon CSCs isolated from clinical specimens can be maintained in culture enabling the identification of CSC cell surface-associated proteins. PMID:20332776

  4. Clinicopathological and prognostic significance of cancer stem cell markers CD44 and CD133 in patients with gastric cancer

    PubMed Central

    Lu, Li; Wu, Menglin; Sun, Longhao; Li, Weidong; Fu, Weihua; Zhang, Xuening; Liu, Tong

    2016-01-01

    Abstract Background: In recent years, CD44 and CD133 have been identified as 2 common used cancer stem cell (CSC) markers in gastric cancer. However, the clinicopathological and prognostic value of these markers in gastric cancer remains controversial; moreover, there is lack of comparison of these 2 markers’ roles in clinical applications. A systematic review and meta-analysis was conducted to elucidate these markers’ clinicopathological features and association with prognosis in patients with gastric cancer. Methods: Eligible studies were identified and odds ratios (ORs), hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated. Heterogeneity and sensitivity were analyzed as well. Publication bias was assessed using funnel plots and Egger tests. Results: The meta-analysis included 26 studies involving 4729 patients. High expression of CD44 was associated with Lauren type (intestinal type) (OR, 1.53 [95% CI, 1.02–2.30]; P = 0.038) and lymphatic vessel invasion (OR, 1.36 [95% CI, 1.06–1.76]; P = 0.021). CD133 overexpression was related to high TNM stage (III/IV) (OR, 3.18 [95% CI, 2.48–4.07]; P = 0.000), high depth of invasion (T3/T4) (OR, 2.97 [95% CI, 2.20–4.03]; P = 0.000), lymph node metastasis (OR, 2.82 [95% CI, 2.16–3.69]; P = 0.000), vascular invasion (OR, 6.71 [95% CI, 1.63–27.63]; P = 0.008), and distant metastasis (OR, 2.32 [95% CI, 1.64–3.29]; P = 0.000). In addition, survival analysis demonstrated a significant association between CD44, as well as CD133 and poor 5-year overall survival (HR, 1.87 [95% CI, 1.55–2.26]; P = 0.000; HR, 2.07 [95% CI, 1.76–2.44]; P = 0.000, respectively). Conclusion: These data suggest that upregulated expression of CD44 and CD133 correlates with several clinicopathological features and poor prognosis. Since the related features do not overlap, combined detection of CD44 and CD133 expression can be an especially effective tool for pathological diagnosis

  5. Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis.

    PubMed

    Ishige-Wada, Mika; Kwon, Sang-Mo; Eguchi, Masamichi; Hozumi, Katsuto; Iwaguro, Hideki; Matsumoto, Taro; Fukuda, Noboru; Mugishima, Hideo; Masuda, Haruchika; Asahara, Takayuki

    2016-01-01

    Notch signaling is involved in cell fate decisions during murine vascular development and hematopoiesis in the microenvironment of bone marrow. To investigate the close relationship between hematopoietic stem cells and human endothelial progenitor cells (EPCs) in the bone marrow niche, we examined the effects of Notch signals [Jagged-1 and Delta-like ligand (Dll)-1] on the proliferation and differentiation of human CD133+ cell-derived EPCs. We established stromal systems using HESS-5 murine bone marrow cells transfected with human Jagged-1 (hJagged-1) or human Dll-1 (hDll-1). CD133+ cord blood cells were co-cultured with the stromal cells for 7 days, and then their proliferation, differentiation, and EPC colony formation was evaluated. We found that hJagged-1 induced the proliferation and differentiation of CD133+ cord blood EPCs. In contrast, hDll-1 had little effect. CD133+ cells stimulated by hJagged-1 differentiated into CD31+/KDR+ cells, expressed vascular endothelial growth factor-A, and showed enhanced EPC colony formation compared with CD133+ cells stimulated by hDll-1. To evaluate the angiogenic properties of hJagged-1- and hDll-1-stimulated EPCs in vivo, we transplanted these cells into the ischemic hindlimbs of nude mice. Transplantation of EPCs stimulated by hJagged-1, but not hDll-1, increased regional blood flow and capillary density in ischemic hindlimb muscles. This is the first study to show that human Notch signaling influences EPC proliferation and differentiation in the bone marrow microenvironment. Human Jagged-1 induced the proliferation and differentiation of CD133+ cord blood progenitors compared with hDll-1. Thus, hJagged-1 signaling in the bone marrow niche may be used to expand EPCs for therapeutic angiogenesis.

  6. Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis

    PubMed Central

    Ishige-Wada, Mika; Kwon, Sang-Mo; Eguchi, Masamichi; Hozumi, Katsuto; Iwaguro, Hideki; Matsumoto, Taro; Fukuda, Noboru; Mugishima, Hideo; Masuda, Haruchika; Asahara, Takayuki

    2016-01-01

    Notch signaling is involved in cell fate decisions during murine vascular development and hematopoiesis in the microenvironment of bone marrow. To investigate the close relationship between hematopoietic stem cells and human endothelial progenitor cells (EPCs) in the bone marrow niche, we examined the effects of Notch signals [Jagged-1 and Delta-like ligand (Dll)-1] on the proliferation and differentiation of human CD133+ cell-derived EPCs. We established stromal systems using HESS-5 murine bone marrow cells transfected with human Jagged-1 (hJagged-1) or human Dll-1 (hDll-1). CD133+ cord blood cells were co-cultured with the stromal cells for 7 days, and then their proliferation, differentiation, and EPC colony formation was evaluated. We found that hJagged-1 induced the proliferation and differentiation of CD133+ cord blood EPCs. In contrast, hDll-1 had little effect. CD133+ cells stimulated by hJagged-1 differentiated into CD31+/KDR+ cells, expressed vascular endothelial growth factor-A, and showed enhanced EPC colony formation compared with CD133+ cells stimulated by hDll-1. To evaluate the angiogenic properties of hJagged-1- and hDll-1-stimulated EPCs in vivo, we transplanted these cells into the ischemic hindlimbs of nude mice. Transplantation of EPCs stimulated by hJagged-1, but not hDll-1, increased regional blood flow and capillary density in ischemic hindlimb muscles. This is the first study to show that human Notch signaling influences EPC proliferation and differentiation in the bone marrow microenvironment. Human Jagged-1 induced the proliferation and differentiation of CD133+ cord blood progenitors compared with hDll-1. Thus, hJagged-1 signaling in the bone marrow niche may be used to expand EPCs for therapeutic angiogenesis. PMID:27846321

  7. Convenient and efficient enrichment of the CD133+ liver cells from rat fetal liver cells as a source of liver stem/progenitor cells.

    PubMed

    Liu, Wei-hui; Li, Ren; Dou, Ke-feng

    2011-03-01

    Although the stem cells are commonly isolated by FACS or MACS, they are very expensive and these is no specific marker for liver stem/progentior cells (LSPCs). This paper applied a convenient and efficient method to enrich LSPCs. The fetal liver cells (FLCs) were firstly enriched by Percoll discontinuous gradient centrifugation (PDGC) from the rat fetal liver. Then the FLCs in culture were purified to be homogeneous in size by differential trypsinization and differential adherence (DTDA). Flow cytometric analysis revealed more than half of the purified FLCs expressed alternative markers of LSPCs (CD117, c-Met, Sca-1, CD90, CD49f and CD133). In other words, the purified FLCs were heterogeneous. Therefore, they were sequentially layered into six fractions by Percoll continuous gradient centrifugation (PCGC). Both CD133 and CD49f expressed decreasingly from fraction 1 to 6. In fraction 1 and 2, about 85% FLCs expressed CD133, which were revealed to be LSPCs by high expressions of AFP and CK-19, low expressions of G-6-P and ALB. To conclude, the purity of CD133(+) LSPCs enriched by combination of PDGC, DTDA and PCGC is close to that obtained by MACS. This study will greatly contribute to two important biological aspects: liver stem cells isolation and liver cell therapy.

  8. CD133 positive progenitor endothelial cell lines from human cord blood.

    PubMed

    Paprocka, Maria; Krawczenko, Agnieszka; Dus, Danuta; Kantor, Aneta; Carreau, Aude; Grillon, Catherine; Kieda, Claudine

    2011-08-01

    Endothelial progenitor cells (EPCs) modulate postnatal vascularization and contribute to vessel regeneration in adults. Stem cells and progenitor cells were found in umbilical cord blood, bone marrow, and mobilized peripheral blood cells, from where they were isolated and cultured. However, the yield of progenitor cells is usually not sufficient for clinical application and the quality of progenitor cells varies. The aim of the study was the immortalization of early progenitor cells with high proliferative potential, capable to differentiate to EPCs and, further, toward endothelial cells. Two cell lines, namely HEPC-CB.1 and HEPC-CB.2 (human endothelial progenitor cells-cord blood) were isolated. As assessed by specific antibody labeling and flow cytometric analysis, they express a panel of stem cell markers: CD133, CD13, CD271, CD90 and also endothelial cell markers: CD202b, CD309 (VEGFR2), CD146, CD105, and CD143 but they do not present markers of finally differentiated endothelial cells: CD31, vWf, nor CD45 which is a specific hematopoietic cell marker. Using the multiplex Cytometric Bead Assay, the simultaneous production of proangiogenic cytokines IL8, angiogenin, and VEGF was demonstrated in normoxia and was shown to be increased by hypoxia. Both cell lines, similarly as mature endothelial cells, underwent in vitro pre-angiogenic process, formed pseudovessel structures and present an accelerated angiogenesis in hypoxic conditions. To date, these are the first CD133 positive established cell lines from human cord blood cells. Copyright © 2011 International Society for Advancement of Cytometry.

  9. A cancer/testis antigen, NY-SAR-35, induces EpCAM, CD44, and CD133, and activates ERK in HEK293 cells.

    PubMed

    Song, Myung-Ha; Kim, Ye-Rin; Bae, Jae-Ho; Shin, Dong-Hoon; Lee, Sang-Yull

    2017-03-04

    The cancer/testis (CT) antigen NY-SAR-35 gene is located on the X chromosome and is aberrantly expressed in various cancers but not in normal tissues, other than testes. Previously, we reported the expression of NY-SAR-35 enhanced cell growth, proliferation, and invasion in HEK293 and cancer cells. To extend understanding of the NY-SAR-35 gene, we used a next generation sequencing (NGS) approach. NY-SAR-35 expression induced growth, proliferation, metastasis, and stemness genes, as indicated by the up-regulations of CXCR4, EpCAM, CD133, and CD44, at the mRNA and protein levels. The expression of NY-SAR-35 in HEK293 cells significantly increased ERK phosphorylation, but not the phosphorylation of AKT. In HEK293/NY-SAR-35 cells, the expressions of pro-apoptotic proteins, including p53, Bax, and p21, were reduced and that of cyclin E was increased. Also, NY-SAR-35 increased the expressions of pluripotency genes (Nanog, Oct-4, and Sox2) and the ability of HEK293 cells to form colonies. Taken together, the present study indicates NY-SAR-35 functions as a CT antigen that triggers oncogenesis and self-renewal. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. MiR-139-5p reverses CD44+/CD133+-associated multidrug resistance by downregulating NOTCH1 in colorectal carcinoma cells

    PubMed Central

    Xu, Ke; Shen, Ke; Liang, Xin; Li, Yueqi; Nagao, Norio; Li, Jiyu; Liu, Jianwen; Yin, Peihao

    2016-01-01

    MiRNAs may promote or inhibit tumor recurrence and drug resistance. MiR-139-5p is reportedly downregulated in colorectal cancer patient samples, but it is unknown whether and how miR-139-5p regulates drug resistance. Cancer stem cells (CSCs) are postulated to be important promoters of multiple drug resistance (MDR). In this study, we established a MDR cell model which strongly expressed the CSC-associated biomarkers CD44 and CD133. MiR-139-5p expression was reduced in MDR cell lines, while overexpression of miR-139-5p reversed CD44+/CD133+-associated MDR. We also identified NOTCH1, an important protein for stem cell maintenance and function, as a direct target of miR-139-5p, both in vitro and in a knockout mouse model. Notch1 expression was upregulated in tumor samples and inversely correlated with expression of miR-139-5p. Silencing NOTCH1 exerted an effect similar to overexpression of miR-139-5p by inhibiting the CD44+ and CD133+ population and reversing the drug-resistant phenotype. In conclusion, miR-139-5p downregulated NOTCH1 signaling to reverse CD44+/CD133+-associated MDR in colorectal cancer cells. Given this insight into the miRNA regulation of MDR, miR-139-5p could be a promising therapeutic target for colorectal cancer therapy. PMID:27738333

  11. Magnet-Bead Based MicroRNA Delivery System to Modify CD133+ Stem Cells

    PubMed Central

    Wiekhorst, Frank; Steinhoff, Gustav

    2016-01-01

    Aim. CD133+ stem cells bear huge potential for regenerative medicine. However, low retention in the injured tissue and massive cell death reduce beneficial effects. In order to address these issues, we intended to develop a nonviral system for appropriate cell engineering. Materials and Methods. Modification of human CD133+ stem cells with magnetic polyplexes carrying microRNA was studied in terms of efficiency, safety, and targeting potential. Results. High microRNA uptake rates (~80–90%) were achieved without affecting CD133+ stem cell properties. Modified cells can be magnetically guided. Conclusion. We developed a safe and efficient protocol for CD133+ stem cell modification. Our work may become a basis to improve stem cell therapeutical effects as well as their monitoring with magnetic resonance imaging. PMID:27795713

  12. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  13. CD133 marks a stem cell population that drives human primary myelofibrosis

    PubMed Central

    Triviai, Ioanna; Stübig, Thomas; Niebuhr, Birte; Hussein, Kais; Tsiftsoglou, Asterios; Fehse, Boris; Stocking, Carol; Kröger, Nicolaus

    2015-01-01

    Primary myelofibrosis is a myeloproliferative neoplasm characterized by bone marrow fibrosis, megakaryocyte atypia, extramedullary hematopoiesis, and transformation to acute myeloid leukemia. To date the stem cell that undergoes the spatial and temporal chain of events during the development of this disease has not been identified. Here we describe a CD133+ stem cell population that drives the pathogenesis of primary myelofibrosis. Patient-derived circulating CD133+ but not CD34+CD133− cells, with a variable burden for JAK2V617F mutation, had multipotent cloning capacity in vitro. CD133+ cells engrafted for up to 10 months in immunocompromised mice and differentiated into JAK2-V617F+ myeloid but not lymphoid progenitors. We observed the persistence of human, atypical JAK2-V617F+ megakaryocytes, the initiation of a prefibrotic state, bone marrow/splenic fibrosis and transition to acute myeloid leukemia. Leukemic cells arose from a subset of CD133+ cells harboring EZH2D265H but lacking a secondary JAK2V617F mutation, consistent with the hypothesis that deregulation of EZH2 activity drives clonal growth and increases the risk of acute myeloid leukemia. This is the first characterization of a patient-derived stem cell population that drives disease resembling both chronic and acute phases of primary myelofibrosis in mice. These results reveal the importance of the CD133 antigen in deciphering the neoplastic clone in primary myelofibrosis and indicate a new therapeutic target for myeloproliferative neoplasms. PMID:25724578

  14. Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury

    PubMed Central

    Aggarwal, Shikhar; Grange, Cristina; Iampietro, Corinne; Camussi, Giovanni; Bussolati, Benedetta

    2016-01-01

    Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis. PMID:27853265

  15. The effect of anti-CD133/fucoidan bio-coatings on hemocompatibility and EPC capture.

    PubMed

    Su, Hong; Xue, Guoneng; Ye, Changrong; Wang, Yan; Zhao, Ansha; Huang, Nan; Li, Jingan

    2017-09-19

    Surface modification by immobilizing biomolecules has been widely proved to enhance biocompatibility of cardiovascular implanted devices. Here, we aimed at developing a multifunctional surface that not only provides good hemocompatibility but also functions well in capturing circulating endothelial progenitor cells (EPCs) in the blood flow to improve the surface endothelialization. In the present work, we preferred to chemically co-immobilize (Michael addition and Schiff base reaction) the anti-CD133 (EPC-specific antibody) and fucoidan (EPC-mobilization factor, which also contribute to better hemocompatibility) onto a polydopamine (PDA) film which is famous for its stability and endothelial cell (EC) compatibility. The quantality of anti-CD133 and other surface characterization (X-ray photoemission spectroscopy, atomic force microscopy and water contact angle measurement) demonstrated successful preparation of the CD133/fucoidan coating. The platelets adhesion/activation test suggested improved hemocompatibility of this bio-coating. The ex vivo experiment on New Zealand white rabbits showed that the anti-CD133/fucoidan coating had good ability on capture the circulating EPC. In addition, the quartz crystal microbalance-D indicated that the EPC behaviors, including adhesion, spreading and extracellular matrix re-molding, were related to the density of anti-CD133 in the coating. We hope this anti-CD133/fucoidan multi-functional coating may provide potential application on surface modification of cardiovascular biomaterials.

  16. Up-modulation of PLC-β2 reduces the number and malignancy of triple-negative breast tumor cells with a CD133(+)/EpCAM(+) phenotype: a promising target for preventing progression of TNBC.

    PubMed

    Brugnoli, Federica; Grassilli, Silvia; Lanuti, Paola; Marchisio, Marco; Al-Qassab, Yasamin; Vezzali, Federica; Capitani, Silvano; Bertagnolo, Valeria

    2017-09-04

    The malignant potential of triple negative breast cancer (TNBC) is also dependent on a sub-population of cells with a stem-like phenotype. Among the cancer stem cell markers, CD133 and EpCAM strongly correlate with breast tumor aggressiveness, suggesting that simultaneous targeting of the two surface antigens may be beneficial in treatment of TNBC. Since in TNBC-derived cells we demonstrated that PLC-β2 induces the conversion of CD133(high) to CD133(low) cells, here we explored its possible role in down-modulating the expression of both CD133 and EpCAM and, ultimately, in reducing the number of TNBC cells with a stem-like phenotype. A magnetic step-by-step cell isolation with antibodies directed against CD133 and/or EpCAM was performed on the TNBC-derived MDA-MB-231 cell line. In the same cell model, PLC-β2 was over-expressed or down-modulated and cell proliferation and invasion capability were evaluated by Real-time cell assays. The surface expression of CD133, EpCAM and CD44 in the different experimental conditions were measured by multi-color flow cytometry immunophenotyping. A CD133(+)/EpCAM(+) sub-population with high proliferation rate and invasion capability is present in the MDA-MB-231 cell line. Over-expression of PLC-β2 in CD133(+)/EpCAM(+) cells reduced the surface expression of both CD133 and EpCAM, as well as proliferation and invasion capability of this cellular subset. On the other hand, the up-modulation of PLC-β2 in the whole MDA-MB-231 cell population reduced the number of cells with a CD44(+)/CD133(+)/EpCAM(+) stem-like phenotype. Since selective targeting of the cells with the highest aggressive potential may have a great clinical importance for TNBC, the up-modulation of PLC-β2, reducing the number of cells with a stem-like phenotype, may be a promising goal for novel therapies aimed to prevent the progression of aggressive breast tumors.

  17. CD133-Positive Membrane Particles in Cerebrospinal Fluid of Patients with Inflammatory and Degenerative Neurological Diseases

    PubMed Central

    Bobinger, Tobias; May, Lisa; Lücking, Hannes; Kloska, Stephan P.; Burkardt, Petra; Spitzer, Philipp; Maler, Juan M.; Corbeil, Denis; Huttner, Hagen B.

    2017-01-01

    Background: Analysis of cerebrospinal fluid (CSF) is a frequently used diagnostic tool in a variety of neurological diseases. Recent studies suggested that investigating membrane particles enriched with the stem cell marker CD133 may offer new avenues for studying neurological disease. In this study, we evaluated the amount of membrane particle-associated CD133 in human CSF in neuroinflammatory and degenerative diseases. Methods: We compared the amount of membrane particle-associated CD133 in CSF samples collected from 45 patients with normal pressure hydrocephalus, parkinsonism, dementia, and cognitive impairment, chronic inflammatory diseases and 10 healthy adult individuals as controls. After ultracentrifugation of CSF, gel electrophoresis and immunoblotting using anti-CD133 monoclonal antibody 80B258 were performed. Antigen-antibody complexes were detected using chemiluminescence. Results: The amount of membrane particle-associated CD133 was significantly increased in patients with normal pressure hydrocephalus (p < 0.001), parkinsonism (p = 0.011) as well as in patients with chronic inflammatory disease (p = 0.008). Analysis of CSF of patients with dementia and cognitive impairment revealed no significant change compared with healthy individuals. Furthermore, subgroup analysis of patients with chronic inflammatory diseases demonstrated significantly elevated levels in individuals with relapsing-remitting multiple sclerosis (p = 0.023) and secondary progressive multiple sclerosis (SPMS; p = 0.010). Conclusion: Collectively, our study revealed elevated levels of membrane particle-associated CD133 in patients with normal pressure hydrocephalus, parkinsonism as well as relapsing-remitting and SPMS. Membrane glycoprotein CD133 may be of clinical value for several neurological diseases. PMID:28396625

  18. Microenvironment-Modulated Metastatic CD133+/CXCR4+/EpCAM- Lung Cancer-Initiating Cells Sustain Tumor Dissemination and Correlate with Poor Prognosis.

    PubMed

    Bertolini, Giulia; D'Amico, Lucia; Moro, Massimo; Landoni, Elena; Perego, Paola; Miceli, Rosalba; Gatti, Laura; Andriani, Francesca; Wong, Donald; Caserini, Roberto; Tortoreto, Monica; Milione, Massimo; Ferracini, Riccardo; Mariani, Luigi; Pastorino, Ugo; Roato, Ilaria; Sozzi, Gabriella; Roz, Luca

    2015-09-01

    Metastasis is the main reason for lung cancer-related mortality, but little is known about specific determinants of successful dissemination from primary tumors and metastasis initiation. Here, we show that CD133(+)/CXCR4(+) cancer-initiating cells (CIC) directly isolated from patient-derived xenografts (PDX) of non-small cell lung cancer are endowed with superior ability to seed and initiate metastasis at distant organs. We additionally report that CXCR4 inhibition successfully prevents the increase of cisplatin-resistant CD133(+)/CXCR4(+) cells in residual tumors and their metastatization. Immunophenotypic analysis of lung tumor cells intravenously injected or spontaneously disseminated to murine lungs demonstrated the survival advantage and increased colonization ability of a specific subset of CD133(+)/CXCR4(+) with reduced expression of epithelial cell adhesion molecule (EpCAM(-)), which also shows the greatest in vitro invasive potential. We next prove that recovered disseminated cells from lungs of PDX-bearing mice enriched for CD133(+)/CXCR4(+)/EpCAM(-) CICs are highly tumorigenic and metastatic. Importantly, microenvironment stimuli eliciting epithelial-to-mesenchymal transition, including signals from cancer-associated fibroblasts, are able to increase the dissemination potential of lung cancer cells through the generation of the CD133(+)/CXCR4(+)/EpCAM(-) subset. These findings also have correlates in patient samples where disseminating CICs are enriched in metastatic lymph nodes (20-fold, P = 0.006) and their detection in primary tumors is correlated with poor clinical outcome (disease-free survival: P = 0.03; overall survival: P = 0.05). Overall, these results highlight the importance of specific cellular subsets in the metastatic process, the need for in-depth characterization of disseminating tumor cells, and the potential of therapeutic strategies targeting both primary tumor and tumor-microenvironment interactions.

  19. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  20. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    SciTech Connect

    Lin, Li; Fuchs, James; Li, Chenglong; Olson, Veronica; Bekaii-Saab, Tanios; Lin, Jiayuh

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  1. An alternatively spliced variant of CXCR3 mediates the metastasis of CD133+ liver cancer cells induced by CXCL9.

    PubMed

    Ding, Qiang; Xia, Yujia; Ding, Shuping; Lu, Panpan; Sun, Liang; Liu, Mei

    2016-03-22

    Metastasis of liver cancer is closely linked to tumor microenvironment, in which chemokines and their receptors act in an important role. The CXCR3, the receptor of chemokine CXCL9, belongs to a superfamily of rhodopsin-like seven transmembrane GPCRs and CXCR subfamily. In HCC tissues, CXCR3 was frequently upregulated and correlated with tumor size, tumor differentiation, portal invasion and metastasis. In the study, CXCR3-A isoform that was bound by CXCL9 was found to cause significant change of ERK1/2 phosphorylation level in the MAPK signaling pathway, consequently upregulating the MMP2 and MMP9 expression and promoting invasion and metastasis of CD133+ liver cancer cells. Also, CXCR3-A suppressed the adhesion ability of CD133+ liver cancer cells that stimulated by CXCL9 for 24h. These findings suggest that CXCR3 and its ligand CXCL9 could promote the metastasis of liver cancer cells and might be a potential target for the intervention of liver cancer metastasis.

  2. Blocking NOTCH Pathway can Enhance the Effect of EGFR Inhibitor through Targeting CD133+ Endometrial Cancer Cells.

    PubMed

    Shang, Chao; Lang, Bin; Meng, Li-Rong

    2016-10-28

    ABSTACT Although the molecular therapeutics targeting key biomarkers such as epithelial growth factor receptor (EGFR), PI3K/AKT/mTOR, and vascular endothelial growth factor (VEGF) shows some success in clinical trials, some internally existing challenges in endothelial cancer biology hinder the drug effects. One of the major challenges stems from cancer stem cell-derived drug resistance. CD133 positive cells are well believed as cancer stem cells (CSC) in endometrial cancers and NOTCH pathway plays a critical role in retaining CD133+ cells by promoting CSC self-renewal and chemoresistance. Here, we initiated a therapeutic strategy to improve effects of EGFR inhibition by targeting NOTCH pathway of CD133+ cells in endometrial cancers. We first detected and purified the CD133+ cell fraction in endometrial cancer cell line Ishikawa (IK), and validated activation of NOTCH pathway in the CD133+ cells that have higher proliferation rate and lower apoptosis rate, comparing to CD133- cells. Results of nude mouse xenograft experiments further demonstrated CD133+ cells retain higher tumorigenesis capacity than CD133- cells, indicating their tumor-initiating property. Last, we applied both NOTCH inhibitor DAPT and EGFR inhibitor AG1478 treatment on endometrial cancer lines IK and HEC-1A and the results suggested improvement effects of the combination therapy compared to the treatments of DAPT or AG1478 alone. These findings indicated targeting NOTCH pathway in CD133+ cells, combining with EGFR inhibition, which provides a novel therapeutic strategy for endometrial cancer diseases.

  3. Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord.

    PubMed

    Kamei, Naosuke; Kwon, Sang-Mo; Alev, Cantas; Nakanishi, Kazuyoshi; Yamada, Kiyotaka; Masuda, Haruchika; Ishikawa, Masakazu; Kawamoto, Atsuhiko; Ochi, Mitsuo; Asahara, Takayuki

    2013-05-15

    Human blood-derived CD133(+) cell populations, which are believed to represent a hematopoietic/endothelial progenitor fraction, have the ability to promote the repair of injured spinal cord in animal models. However, the mechanisms by which CD133(+) cell transplantation promotes spinal cord regeneration remain to be clarified. Another possible hurdle on the way to clinical applicability of these cells is their scarce representation in the overall population of mononuclear cells. We therefore analyzed and compared ex-vivo expanded human cord blood derived CD133(+) cells with freshly isolated CD133(+) cells as well as corresponding CD133(-) control mononuclear cells in respect to their ability to promote spinal cord repair using in vitro assays and cell transplantation into a mouse spinal cord injury model. In vitro, expanded cells as well as fresh CD133(+) cells formed endothelial progenitor cell (EPC) colonies, whereas CD133(-) cells formed no EPC colonies. In vivo, the administration of fresh CD133(+) and expanded cells enhanced angiogenesis, astrogliosis, axon growth and functional recovery after injury. In contrast, the administration of CD133(-) cells failed to promote axon growth and functional recovery, but moderately enhanced angiogenesis and astrogliosis. In addition, high-dose administration of expanded cells was highly effective in the induction of regenerative processes at the injured spinal cord. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. CD133+CD54+CD44+ circulating tumor cells as a biomarker of treatment selection and liver metastasis in patients with colorectal cancer

    PubMed Central

    Wang, Cun; Huang, Qiaorong; Meng, Wentong; Yu, Yongyang; Yang, Lie; Peng, Zhihai; Hu, Jiankun; Li, Yuan; Mo, Xianming; Zhou, Zongguang

    2016-01-01

    Introduction Liver is the most common site of distant metastasis in colorectal cancer (CRC). Early diagnosis and appropriate treatment selection decides overall prognosis of patients. However, current diagnostic measures were basically imaging but not functional. Circulating tumor cells (CTCs) known as hold the key to understand the biology of metastatic mechanism provide a novel and auxiliary diagnostic strategy for CRC with liver metastasis (CRC-LM). Results The expression of CD133+ and CD133+CD54+CD44+ cellular subpopulations were higher in the peripheral blood of CRC-LM patients when compared with those without metastasis (P<0.001). Multivariate analysis proved the association between the expression of CD133+CD44+CD54+ cellular subpopulation and the existence of CRC-LM (P<0.001). The combination of abdominal CT/MRI, CEA and the CD133+CD44+CD54+ cellular subpopulation showed increased detection and discrimination rate for liver metastasis, with a sensitivity of 88.2% and a specificity of 92.4%. Meanwhile, it also show accurate predictive value for liver metastasis (OR=2.898, 95% C.I.1.374–6.110). Materials and Method Flow cytometry and multivariate analysis was performed to detect the expression of cancer initiating cells the correlation between cellular subpopulations and liver metastasis in patients with CRC. The receiver operating characteristic curves combined with the area under the curve were generated to compare the predictive ability of the cellular subpopulation for liver metastasis with current CT and MRI images. Conclusions The identification, expression and application of CTC subpopulations will provide an ideal cellular predictive marker for CRC liver metastasis and a potential marker for further investigation. PMID:27764803

  5. An isocorydine derivative (d-ICD) inhibits drug resistance by downregulating IGF2BP3 expression in hepatocellular carcinoma

    PubMed Central

    Ge, Chao; Chen, Lijuan; Fang, Tao; Li, Hong; Tian, Hua; Liu, Junxi; Chen, Taoyang; Jiang, Guoping; Xie, Haiyang; Cui, Ying; Yao, Ming; Li, Jinjun

    2015-01-01

    In our previous studies, we reported that CD133+ cancer stem cells (CSCs) were chemoresistant in hepatocellular carcinoma (HCC) and that isocorydine treatment decreased the percentage of CD133+ CSCs. Here, we found that a derivative of isocorydine (d-ICD) inhibited HCC cell growth, particularly among the CD133+ subpopulation, and rendered HCC cells more sensitive to sorafenib treatment. d-ICD inhibited IGF2BP3 expression in a time-dependent manner, and IGF2BP3 expression negatively correlated with d-ICD-induced growth suppression. IGF2BP3 overexpression enriched the CD133+ CSC subpopulation in HCC, enhanced tumor sphere formation and suppressed the cytotoxic effects of sorafenib and doxorubicin. The expression of drug resistance-related genes, including ABCB1 and ABCG2, and the CSC marker CD133 expression was increased after IGF2BP3 overexpression. The significance of these observations was underscored by our findings that high IGF2BP3 expression predicted poor survival in a cohort of 236 patients with HCC and positively correlated with ABCG2 and CD133 expression in vivo. These results suggested that the d-ICD may inhibit HCC cells growth by IGF2BP3 decrease and that IGF2BP3 may serve as a therapeutic target for HCC. PMID:26327240

  6. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses

    PubMed Central

    Friedman, Gregory K.; Moore, Blake P.; Nan, Li; Kelly, Virginia M.; Etminan, Tina; Langford, Catherine P.; Xu, Hui; Han, Xiaosi; Markert, James M.; Beierle, Elizabeth A.; Gillespie, G. Yancey

    2016-01-01

    Background Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. Methods Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. Results We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. Conclusions Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted. PMID:26188016

  7. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo.

    PubMed

    Zimmerer, Rüdiger M; Matthiesen, Peter; Kreher, Fritjof; Kampmann, Andreas; Spalthoff, Simon; Jehn, Philipp; Bittermann, Gido; Gellrich, Nils-Claudius; Tavassol, Frank

    2016-03-01

    Tumor angiogenesis is essential for tumor growth and metastasis, and is regulated by a complex network of various types of cells, chemokines, and stimulating factors. In contrast to sprouting angiogenesis, tumor angiogenesis is also influenced by hypoxia, inflammation, and the attraction of bone-marrow-derived cells. Recently, cancer stem cells have been reported to mimic vascularization by differentiating into endothelial cells and inducing vessel formation. In this study, the influence of cancer stem cells on initial angiogenesis was evaluated for the metastatic melanoma cell line D10. Following flow cytometry, CD133+ and CD133- cells were isolated using magnetic cell separation and different cell fractions were transferred to porcine gelatin sponges, which were implanted into the dorsal skinfold chamber of immunocompromised mice. Angiogenesis was analyzed based on microvessel density over a 10-day period using in vivo fluorescence microscopy, and the results were verified using immunohistology. CD133+ D10 cells showed a significant induction of early angiogenesis in vivo, contrary to CD133- D10 cells, unsorted D10 cells, and negative control. Neovascularization was confirmed by visualizing endothelial cells by immunohistology using an anti-CD31 antibody. Because CD133+ cells are rare in clinical specimens and hardly amenable to functional assays, the D10 cell line provides a suitable model to study the angiogenic potential of putative cancer stem cells and the leukocyte-endothelial cell interaction in the dorsal skinfold chamber in vivo. This cancer stem cell model might be useful in the development and evaluation of therapeutic agents targeting tumors.

  8. HGF and SDF-1-mediated mobilization of CD133+ BMSC for hepatic regeneration following extensive liver resection.

    PubMed

    Lehwald, Nadja; Duhme, Constanze; Wildner, Marina; Kuhn, Stephanie; Fürst, Günter; Forbes, Stuart J; Jonas, Sven; Robson, Simon C; Knoefel, Wolfram T; Schmelzle, Moritz; Schulte Am Esch, Jan

    2014-01-01

    The molecular mechanisms of haematopoietic stem cells (HSC) mobilization and homing to the liver after partial hepatectomy (PH) remain largely unexplored. Functional liver volume loss and regain was determined by computerized tomography (CT) volumetry in 30 patients following PH. Peripheral HSC mobilization was investigated by fluorescence-activated cell sorting (FACS) analyses and cytokine enzyme-linked immunosorbent assay assays. Migration of purified HSC towards hepatic growth factor (HGF) and stroma-derived factor-1 (SDF-1) gradients was tested in vitro. Mice after 70% PH were examined for HSC mobilization by FACS and cytokine mRNA expression in the liver. FACS-sorted HSC were administered after PH and hepatocyte proliferation was evaluated by immunohistochemical staining for Ki67. Impaired liver function was noted after extended hepatic resection when compared to smaller resections. Patients with large liver resections were characterized by significantly higher levels of peripheral HSC which were positively correlated with the extent of resected liver volume and its regain after 3 weeks. Increased plasma levels of HGF, SDF-1 and insulin like growth factor (IGF-1) were evident within the first 6 hours post resection. Migration assays of human HSC in vitro showed a specific target-demonstrated migration towards recombinant HGF and SDF-1 gradients in a concentration and specific receptor (c-Met and CXCR4) dependent manner. The evaluation of peripheral human alpha foetoprotein expression demonstrated pronounced stemness following increased CD133(+) HSC in the course of liver regeneration following PH. Our human data were further validated in a murine model of PH and furthermore demonstrated increased hepatocyte proliferation subsequent to CD133(+) HSC treatment. HGF and SDF-1 are required for effective HSC mobilization and homing to the liver after hepatic resection. These findings have significant implications for potential therapeutic strategies targeting

  9. Human renal tubular cells contain CD24/CD133 progenitor cell populations: Implications for tubular regeneration after toxicant induced damage using cadmium as a model.

    PubMed

    Shrestha, Swojani; Somji, Seema; Sens, Donald A; Slusser-Nore, Andrea; Patel, Divyen H; Savage, Evan; Garrett, Scott H

    2017-09-15

    The proximal tubules of the kidney are target sites of injury by various toxicants. Cadmium (Cd(+2)), an environmental nephrotoxicant can cause adverse effects and overt renal damage. To decipher the mechanisms involved in nephrotoxicity, an in vitro model system is required. Mortal cultures of human proximal tubule (HPT) cells have served, as models but are difficult to acquire and do not lend themselves to stable transfection. The immortalized human proximal tubule cell line HK-2, has served as a model but it lacks vectorial active transport and shows signs of lost epithelial features. Recently a new proximal tubule cell line was developed, the RPTEC/TERT1, and the goal of this study was to determine if this cell line could serve as a model to study nephrotoxicity. Global gene expression analysis of this cell line in comparison to the HK-2 and HPT cells showed that the RPTEC/TERT1 cells had gene expression patterns similar to HPT cells when compared to the HK-2 cells. The HPT and the RPTEC/TERT1 cell line had an increased population of stem/progenitor cells co-expressing CD24 and CD133 when compared to the HK-2 cells. The level of expression of cadherins, claudins and occludin molecules was also similar between the RPTEC/TERT1 and the HPT cells. Acute exposure to Cd(+2) resulted in necrosis of the RPTEC/TERT1 cells when compared to the HK-2 cells which died by apoptosis. Thus, the RPTEC/TERT1 cells are similar to HPT cells and can serve as a good model system to study mechanisms involved in toxicant induced renal damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness

    PubMed Central

    Zhou, Xuefeng; Li, Dan; Wang, Xianguo; Zhang, Bo; Zhu, Hua; Zhao, Jinping

    2015-01-01

    Previous studies demonstrated that a subpopulation of cancer cells, which are CD133 positive (CD133+) feature higher invasive and metastatic abilities, are called cancer stem cells (CSCs). By using tumor cells derived from patients with lung adenocarcinoma, we found that galectin-1 is highly overexpressed in the CD133+ cancer cells as compared to the normal cancer cells (CD133−) from the same patients. We overexpressed galectin-1 in CD133− cancer cells and downregulated it in CSCs. We found that overexpression of galectin-1 promoted invasiveness of CD133− cells, while knockdown of galectin-1 suppressed proliferation, colony formation and invasiveness of CSCs. Furthermore, tumor growth was significantly inhibited in CSCs xenografts with knockdown of galectin-1 as compared to CSCs treated with scramble siRNAs. Biochemical studies revealed that galectin-1 knockdown led to the suppression of COX-2/PGE2 and AKT/mTOR pathways, indicating galectin-1 might control the phenotypes of CSCs by regulating these signaling pathways. Finally, a retrospective study revealed that galectin-1 levels in blood circulation negatively correlates with overall survival and positively correlates with lymph node metastasis of the patients. Taken together, these findings suggested that galectin-1 plays a major role on the tumorigenesis and invasiveness of CD133+ cancer cells and might serve as a potential therapeutic target for treatment of human patients with lung adenocarcinoma. PMID:25605013

  11. Adult Human CD133/1+ Kidney Cells Isolated from Papilla Integrate into Developing Kidney Tubules

    PubMed Central

    Ward, Heather H.; Romero, Elsa; Welford, Angela; Pickett, Gavin; Bacallao, Robert; Gattone, Vincent H.; Ness, Scott A.; Wandinger-Ness, Angela; Roitbak, Tamara

    2011-01-01

    Approximately 60,000 patients in the US are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin+ and CD133/1+ cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1+ cells. Isolated CD133/1+ papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1+ progenitors from the papilla and cortex, became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. PMID:21255643

  12. Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells.

    PubMed

    Ma, Nan; Ladilov, Yury; Moebius, Jeannette M; Ong, Leelee; Piechaczek, Christoph; Dávid, Arpád; Kaminski, Alexander; Choi, Yeong-Hoon; Li, Wenzhong; Egger, Dietmar; Stamm, Christof; Steinhoff, Gustav

    2006-07-01

    The regenerative potential of endothelial and hematopoietic progenitor cells in the heart may vary according to their origin. This study was designed to compare the functional effects of CD133+ cells from human cord blood and bone marrow in a mouse model of myocardial injury. 5 x 10(5) CD133+ cells from bone marrow (BM(CD133)) or cord blood (UCB(CD133)) were injected in the necrosis border zone of NOD/SCID (non-obese diabetic/severe combined immunodeficiency) mice with left ventricular cryoinjury (CI+). Transplanted cells were tracked by immunostaining for hNuclear antigen and by PCR for hDNA. Echocardiography was used to measure contractility. Scar size, capillary density, and cardiomyocyte apoptosis were evaluated by histology. In addition, the myogenic and endothelial differentiation capacity of BM(CD133) and UCB(CD133) was compared in vitro. DNA was detected 4 weeks after cell injection by PCR, but hNuc+ cells were found by immunostaining only after 48 h. Capillary density in both BM(CD133) and UCB(CD133) cell-treated CI+ mice was higher than in control CI+ mice, but not different between BM(CD133) and UCB(CD133) cell-treated hearts. There were no differences in scar size and myocardial mass among BM(CD133), UCB(CD133) and control CI+ mice, but cardiomyocyte apoptosis was reduced by both BM(CD133) and UCB(CD133) cells. The post-injury deterioration of shortening fraction (46.2+/-1% in sham-operated mice and 41.3+/-0.8% in control CI+ mice) was prevented by BM(CD133) cells (45.4+/-0.9%), but not by UCB(CD133) cells (40.8+/-0.7%). On the other hand, both BM(CD133) and UCB(CD133) cells abolished post-injury mortality. In vitro, neither cultivated BM(CD133) or UCB(CD133) cells developed into myocytes, but both readily differentiated towards an endothelial cell phenotype. While both cord blood and marrow CD133+ cells have some beneficial effects on post-injury angiogenesis and survival, only marrow cells appear to improve myocardial contractility.

  13. Identification of CD200+ colorectal cancer stem cells and their gene expression profile.

    PubMed

    Zhang, Shan-Shan; Huang, Zai-Wei; Li, Li-Xuan; Fu, Jin-Jin; Xiao, Bing

    2016-10-01

    CD200 is a cell surface glycoprotein that has been implicated in a variety of human cancer cells. It has been proposed as a cancer stem cell (CSC) marker in colon cancer and is closely related to tumor immunosuppression. However, there is little functional data supporting its role as a true CSC marker, and the mechanism by which CD200 contributes to colorectal cancer has not been elucidated. In the present study, CD200+ and CD200- COLO 205 colorectal cancer cells were sorted out by flow cytometry, and colonosphere formation and Transwell migration assays were performed. Affymetrix Human U133 Plus2.0 arrays were used to screen the gene expression profiles of CD200+ and CD200- colorectal cancer cells. The results suggest that there are differentially expressed genes between the two subpopulations, including several important genes that function in cell proliferation, metastasis, apoptosis and the immune response. Pathway analysis revealed that the Wnt, MAPK and calcium signaling pathways were differentially expressed between CD200+ and CD200- cells. Moreover, several key genes upregulated in CD200+ cells were also highly overexpressed in CD44+CD133+ colorectal stem cells compared to the CD44-CD133- fraction of the same cell line. In the present study, we showed for the first time a correlation between CD200 expression and the Wnt signaling pathway in colon cancer cells.

  14. Microenvironment mediated alterations to metabolic pathways confer increased chemo-resistance in CD133+ tumor initiating cells

    PubMed Central

    Nomura, Alice; Dauer, Patricia; Gupta, Vineet; McGinn, Olivia; Arora, Nivedita; Majumdar, Kaustav; III, Charles Uhlrich; Dalluge, Joseph; Dudeja, Vikas; Saluja, Ashok; Banerjee, Sulagna

    2016-01-01

    Chemoresistance in pancreatic cancer has been attributed to tumor-initiating cells (TICs), a minor sub-population of tumor cells. However, the mechanism of chemo-resistance in these cells is still unclear. In the current study, immunohistochemical analysis of LSL-KrasG12D; LSL-Trp53R172H; PdxCre (KPC) murine tumors indicated that hypoxic regions developed through tumor progression. This hypoxic “niche” correlated with increased CD133+ population that had an increased HIF1A activity. Consistent with this observation, CD133+ cells had increased glucose uptake and activity of glycolytic pathway enzymes compared to CD133− cells. Mass spectrometric analysis (UPLC-TQD) following metabolic labeling of CD133+ cells with [13C]-U6 glucose confirmed this observation. Furthermore, although both populations had functionally active mitochondria, CD133+ cells had low mitochondrial complex I and complex IV activity and lesser accumulation of ROS in response to standard chemotherapeutic compounds like paclitaxel, 5FU and gemcitabine. CD133+ cells also showed increased resistance to all three chemotherapeutic compounds and treatment with Glut1 inhibitor (STF31) reversed this resistance, promoting apoptotic death in these cells similar to CD133− cells. Our study indicates that the altered metabolic profile of CD133+ pancreatic TIC protects them against apoptosis, by reducing accumulation of ROS induced by standard chemotherapeutic agents, thereby confering chemoresistance. Since resistance to existing chemotherapy contributes to the poor prognosis in pancreatic cancer, our study paves the way for identifying novel therapeutic targets for managing chemoresistance and tumor recurrence in pancreatic cancer. PMID:27472388

  15. GMP-based CD133+ cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy

    PubMed Central

    Gaipa, Giuseppe; Tilenni, Manuela; Straino, Stefania; Burba, Ilaria; Zaccagnini, Germana; Belotti, Daniela; Biagi, Ettore; Valentini, Marco; Perseghin, Paolo; Parma, Matteo; Campli, Cristiana Di; Biondi, Andrea; Capogrossi, Maurizio C; Pompilio, Giulio; Pesce, Maurizio

    2010-01-01

    Abstract The aim of the present study was to develop and validate a good manufacturing practice (GMP) compliant procedure for the preparation of bone marrow (BM) derived CD133+ cells for cardiovascular repair. Starting from available laboratory protocols to purify CD133+ cells from human cord blood, we implemented these procedures in a GMP facility and applied quality control conditions defining purity, microbiological safety and vitality of CD133+ cells. Validation of CD133+ cells isolation and release process were performed according to a two-step experimental program comprising release quality checking (step 1) as well as ‘proofs of principle’ of their phenotypic integrity and biological function (step 2). This testing program was accomplished using in vitro culture assays and in vivo testing in an immunosuppressed mouse model of hindlimb ischemia. These criteria and procedures were successfully applied to GMP production of CD133+ cells from the BM for an ongoing clinical trial of autologous stem cells administration into patients with ischemic cardiomyopathy. Our results show that GMP implementation of currently available protocols for CD133+ cells selection is feasible and reproducible, and enables the production of cells having a full biological potential according to the most recent quality requirements by European Regulatory Agencies. PMID:19627397

  16. Exploring the clonal evolution of CD133/aldehyde-dehydrogenase-1 (ALDH1)-positive cancer stem-like cells from primary to recurrent high-grade serous ovarian cancer (HGSOC). A study of the Ovarian Cancer Therapy-Innovative Models Prolong Survival (OCTIPS) Consortium.

    PubMed

    Ruscito, Ilary; Cacsire Castillo-Tong, Dan; Vergote, Ignace; Ignat, Iulia; Stanske, Mandy; Vanderstichele, Adriaan; Ganapathi, Ram N; Glajzer, Jacek; Kulbe, Hagen; Trillsch, Fabian; Mustea, Alexander; Kreuzinger, Caroline; Benedetti Panici, Pierluigi; Gourley, Charlie; Gabra, Hani; Kessler, Mirjana; Sehouli, Jalid; Darb-Esfahani, Silvia; Braicu, Elena Ioana

    2017-07-01

    High-grade serous ovarian cancer (HGSOC) causes 80% of all ovarian cancer (OC) deaths. In this setting, the role of cancer stem-like cells (CSCs) is still unclear. In particular, the evolution of CSC biomarkers from primary (pOC) to recurrent (rOC) HGSOCs is unknown. Aim of this study was to investigate changes in CD133 and aldehyde dehydrogenase-1 (ALDH1) CSC biomarker expression in pOC and rOC HGSOCs. Two-hundred and twenty-four pOC and rOC intrapatient paired tissue samples derived from 112 HGSOC patients were evaluated for CD133 and ALDH1 expression using immunohistochemistry (IHC); pOCs and rOCs were compared for CD133 and/or ALDH1 levels. Expression profiles were also correlated with patients' clinicopathological and survival data. Some 49.1% of the patient population (55/112) and 37.5% (42/112) pOCs were CD133+ and ALDH1+ respectively. CD133+ and ALDH1+ samples were detected in 33.9% (38/112) and 36.6% (41/112) rOCs. CD133/ALDH1 coexpression was observed in 23.2% (26/112) and 15.2% (17/112) of pOCs and rOCs respectively. Pairwise analysis showed a significant shift of CD133 staining from higher (pOCs) to lower expression levels (rOCs) (p < 0.0001). Furthermore, all CD133 + pOC patients were International Federation of Gynaecology and Obstetrics (FIGO)-stage III/IV (p < 0.0001) and had significantly worse progression-free interval (PFI) (p = 0.04) and overall survival (OS) (p = 0.02). On multivariate analysis, CD133/ALDH1 coexpression in pOCs was identified as independent prognostic factor for PFI (HR: 1.64; 95% CI: 1.03-2.60; p = 0.036) and OS (HR: 1.71; 95% CI: 1.01-2.88; p = 0.045). Analysis on 52 pts patients with known somatic BRCA status revealed that BRCA mutations did not influence CSC biomarker expression. The study showed that CD133/ALDH1 expression impacts HGSOC patients' survival and first suggests that CSCs might undergo phenotypic change during the disease course similarly to non stem-like cancer cells, providing also a first

  17. Expansion of CD133+ Umbilical Cord Blood Derived Hematopoietic Stem Cells on a Biocompatible Microwells

    PubMed Central

    Soufizomorrod, Mina; Soleimani, Masoud; Hajifathali, Abbas; Mohammadi, Majid Mossahebi; Abroun, Saeed

    2013-01-01

    Umbilical cord Blood (UCB) as a source of Hematopoietic Stem/Progenitor cells (HSPCs) used for Umbilical cord blood transplantation (UCBT). The main obstacle in application of this source as an appropriate source of HSPCs is low volume of this product. So ex vivo expansion of these cells in a microenvironment which mimic body condition is important. In current study we designed biocompatible microwells in which collagene type I is coated by softlitography method. Our findings designated that in 3-Dimensional (3D) microenvironment CD133+ UCB derived HSC expanded significantly compared to 2-Dimensional (2D) microenvironment. PMID:24505514

  18. Cell-Surface MMP-9 Protein Is a Novel Functional Marker to Identify and Separate Proangiogenic Cells from Early Endothelial Progenitor Cells Derived from CD133(+) Cells.

    PubMed

    Kanayasu-Toyoda, Toshie; Tanaka, Takeshi; Kikuchi, Yutaka; Uchida, Eriko; Matsuyama, Akifumi; Yamaguchi, Teruhide

    2016-05-01

    To develop cell therapies for ischemic diseases, endothelial progenitor cells (EPCs) have been expected to play a pivotal role in vascular regeneration. It is desirable to use a molecular marker that is related to the function of the cells. Here, a quantitative polymerase chain reaction array revealed that early EPCs derived from CD133(+) cells exhibited significant expression of MMP-9. Some populations of early EPCs expressed MMP-9 on the cell surface and others did not. We also attempted to separate the proangiogenic fraction from early EPCs derived from CD133(+) cells using a functional cell surface marker, and we then analyzed the MMP-9(+) and MMP-9(-) cell fractions. The MMP-9(+) cells not only revealed higher invasion ability but also produced a high amount of IL-8. Moreover, the stimulative effect of MMP-9(+) cells on angiogenesis in vitro and in vivo was prohibited by anti-IL-8 antibody. These data indicate that MMP-9 is one of the useful cell surface markers for the separation of angiogenic cells. Our treatment of early EPCs with hyaluronidase caused not only a downregulation of cell-surface MMP-9 but also a decrease in invasion ability, indicating that membrane-bound MMP-9, which is one of the useful markers for early EPCs, plays an important role in angiogenesis. Stem Cells 2016;34:1251-1262. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies

    PubMed Central

    Jing, Hua; Weidensteiner, Claudia; Reichardt, Wilfried; Gaedicke, Simone; Zhu, Xuekai; Grosu, Anca-Ligia; Kobayashi, Hisataka; Niedermann, Gabriele

    2016-01-01

    Near-infrared photoimmunotherapy (NIR-PIT), which employs monoclonal antibody (mAb)-phototoxic phthalocyanine dye IR700 conjugates, permits the specific, image-guided and spatiotemporally controlled elimination of tumor cells. Here, we report the highly efficient NIR-PIT of human tumor xenografts initiated from patient-derived cancer stem cells (CSCs). Using glioblastoma stem cells (GBM-SCs) expressing the prototypic CSC marker AC133/CD133, we also demonstrate here for the first time that NIR-PIT is highly effective against brain tumors. The intravenously injected theranostic AC133 mAb conjugate enabled the non-invasive detection of orthotopic gliomas by NIR fluorescence imaging, and reached AC133+ GBM-SCs at the invasive tumor front. AC133-targeted NIR-PIT induced the rapid cell death of AC133+ GBM-SCs and thereby strong shrinkage of both subcutaneous and invasively growing brain tumors. A single round of NIR-PIT extended the overall survival of mice with established orthotopic gliomas by more than a factor of two, even though the harmless NIR light was applied through the intact skull. Humanised versions of this theranostic agent may facilitate intraoperative imaging and histopathological evaluation of tumor borders and enable the highly specific and efficient eradication of CSCs. PMID:27162556

  20. Biology and clinical implications of CD133{sup +} liver cancer stem cells

    SciTech Connect

    Ma, Stephanie

    2013-01-15

    Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver, accounting for 80%–90% of all liver cancers. The disease ranks as the fifth most common cancer worldwide and is the third leading cause of all cancer-associated deaths. Although advances in HCC detection and treatment have increased the likelihood of a cure at early stages of the disease, HCC remains largely incurable because of late presentation and tumor recurrence. Only 25% of HCC patients are deemed suitable for curative treatment, with the overall survival at just a few months for inoperable patients. Apart from surgical resection, loco-regional ablation and liver transplantation, current treatment protocols include conventional cytotoxic chemotherapy. But due to the highly resistant nature of the disease, the efficacy of the latter regimen is limited. The recent emergence of the cancer stem cell (CSC) concept lends insight into the explanation of why treatment with chemotherapy often may seem to be initially successful but results in not only a failure to eradicate the tumor but also possibly tumor relapse. Commonly used anti-cancer drugs in HCC work by targeting the rapidly proliferating and differentiated liver cancer cells that constitute the bulk of the tumor. However, a subset of CSCs exists within the tumor, which are more resistant and are able to survive and maintain residence after treatment, thus, growing and self-renewing to generate the development and spread of recurrent tumors in HCC. In the past few years, compelling evidence has emerged in support of the hierarchic CSC model for solid tumors, including HCC. And in particular, CD133 has drawn significant attention as a critical liver CSC marker. Understanding the characteristics and function of CD133{sup +} liver CSCs has also shed light on HCC management and treatment, including the implications for prognosis, prediction and treatment resistance. In this review, a detailed summary of the recent progress

  1. CD133+ brain tumor-initiating cells are dependent on STAT3 signaling to drive medulloblastoma recurrence

    PubMed Central

    Garg, N; Bakhshinyan, D; Venugopal, C; Mahendram, S; Rosa, D A; Vijayakumar, T; Manoranjan, B; Hallett, R; McFarlane, N; Delaney, K H; Kwiecien, J M; Arpin, C C; Lai, P-S; Gómez-Biagi, R F; Ali, A M; de Araujo, E D; Ajani, O A; Hassell, J A; Gunning, P T; Singh, S K

    2017-01-01

    Medulloblastoma (MB), the most common malignant paediatric brain tumor, is currently treated using a combination of surgery, craniospinal radiotherapy and chemotherapy. Owing to MB stem cells (MBSCs), a subset of MB patients remains untreatable despite standard therapy. CD133 is used to identify MBSCs although its functional role in tumorigenesis has yet to be determined. In this work, we showed enrichment of CD133 in Group 3 MB is associated with increased rate of metastasis and poor clinical outcome. The signal transducers and activators of transcription-3 (STAT3) pathway are selectively activated in CD133+ MBSCs and promote tumorigenesis through regulation of c-MYC, a key genetic driver of Group 3 MB. We screened compound libraries for STAT3 inhibitors and treatment with the selected STAT3 inhibitors resulted in tumor size reduction in vivo. We propose that inhibition of STAT3 signaling in MBSCs may represent a potential therapeutic strategy to treat patients with recurrent MB. PMID:27775079

  2. CD133(+) brain tumor-initiating cells are dependent on STAT3 signaling to drive medulloblastoma recurrence.

    PubMed

    Garg, N; Bakhshinyan, D; Venugopal, C; Mahendram, S; Rosa, D A; Vijayakumar, T; Manoranjan, B; Hallett, R; McFarlane, N; Delaney, K H; Kwiecien, J M; Arpin, C C; Lai, P-S; Gómez-Biagi, R F; Ali, A M; de Araujo, E D; Ajani, O A; Hassell, J A; Gunning, P T; Singh, S K

    2017-02-02

    Medulloblastoma (MB), the most common malignant paediatric brain tumor, is currently treated using a combination of surgery, craniospinal radiotherapy and chemotherapy. Owing to MB stem cells (MBSCs), a subset of MB patients remains untreatable despite standard therapy. CD133 is used to identify MBSCs although its functional role in tumorigenesis has yet to be determined. In this work, we showed enrichment of CD133 in Group 3 MB is associated with increased rate of metastasis and poor clinical outcome. The signal transducers and activators of transcription-3 (STAT3) pathway are selectively activated in CD133(+) MBSCs and promote tumorigenesis through regulation of c-MYC, a key genetic driver of Group 3 MB. We screened compound libraries for STAT3 inhibitors and treatment with the selected STAT3 inhibitors resulted in tumor size reduction in vivo. We propose that inhibition of STAT3 signaling in MBSCs may represent a potential therapeutic strategy to treat patients with recurrent MB.

  3. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition

    PubMed Central

    Qi, Wei; Huang, Jiani; Chen, Junying; He, Luhang; Liang, Zhiqing; Guo, Bo; Li, Yongsheng; Xie, Rongkai; Zhu, Bo

    2015-01-01

    Cancer stem cells (CSCs, also called cancer stem-like cells, CSLCs) can function as “seed cells” for tumor recurrence and metastasis. Here, we report that, in the presence of CD133+ ovarian CSLCs, CD133− non-CSLCs can undergo an epithelial-mesenchymal transition (EMT)-like process and display enhanced metastatic capacity in vitro and in vivo. Highly elevated expression of chemokine (C-C motif) ligand 5 (CCL5) and its receptors chemokine (C-C motif) receptor (CCR) 1/3/5 are observed in clinical and murine metastatic tumor tissues from epithelial ovarian carcinomas. Mechanistically, paracrine CCL5 from ovarian CSLCs activates the NF-κB signaling pathway in ovarian non-CSLCs via binding CCR1/3/5, thereby inducing EMT and tumor invasion. Taken together, our results redefine the metastatic potential of non-stem cancer cells and provide evidence that targeting the CCL5:CCR1/3/5-NF-κB pathway could be an effective strategy to prevent ovarian cancer metastasis. PMID:25788271

  4. Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+ cancer stem-like cells.

    PubMed

    Yang, Qiang; Zhang, Ting; Wang, Chunling; Jiao, Jiao; Li, Jing; Deng, Yihui

    2014-11-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, which constitute a subpopulation of tumor cells, are key drivers of tumorigenesis and potential recurrence of cancer. The CSC theory has brought new opportunities as well as challenges to the development of sophisticated drug delivery systems for treating cancer. In the present study, CD133+ cells were sorted from S180 cell lines by magnetic activated cell sorting and a fraction (approximately 1.01%) of CD133+ cells with higher proliferative potential and stronger tumorigenicity in vivo compared with CD133- cells was identified. Furthermore, a procedure for the coencapsulation of epirubicin (EPI) and metformin (MET) was developed with the primary goal of eradicating the bulk population of CD133- cells and the rare population of CD133+ cancer stem-like cells, thus ultimately preventing tumor relapse. The inhibitory effect of free MET was more potent in CD133+cells than in CD133- cells; in addition, EPI- and MET-coencapsulated liposomes exhibited increased cytotoxicity against CD133+ cells compared with liposomal EPI alone. Meanwhile, tumors in KM mice were completely eliminated upon multiple intravenous injections of liposomal EPI and MET, and tumors virtually eliminated in the experimental period, which could be attributed to the arrest of CD133+ cells in the G0/G1 phase. The coencapsulation of an anti-CSC agent with conventional chemotherapy drugs in liposomes may be a promising drug delivery strategy for fighting cancer and eradicating tumor stem cells.

  5. microRNA-143 is associated with the survival of ALDH1+CD133+ osteosarcoma cells and the chemoresistance of osteosarcoma

    PubMed Central

    Zhou, Jiahui; Chen, Yuxiang; Zhao, Jingfeng; Zhang, Kexiang; Wang, Jianlong; Chen, Shijie

    2015-01-01

    This study investigated the role of miR-143 in the chemoresistance of osteosarcoma tumor cells and the associated mechanisms. Real-time PCR was used to measure miR-143 levels. Western blot was used to detect protein expression. Cell proliferation was analyzed by MTT assay and Matrigel colony formation assay. Forced miR-143 expression was established by adenoviral vector infection. Cell death was detected by Hoechst33342 staining. Loss of miR-143 expression was observed in osteosarcomas, which correlated with shorter survival of patients with osteosarcomas underlying chemotherapy. In chemoresistant SAOS-2 and U2OS osteosarcomas cells, miR-143 levels were significantly downregulated and accompanied by increases in ATG2B, Bcl-2, and/or LC3-II protein levels, high rate of ALDH1+CD133+ cells, and an increase in Matrigel colony formation ability. H2O2 upregulated p53 and miR-143, but downregulated ATG2B, Bcl-2, and LC3-I expression in U2OS cells (wild-type p53) but not in SAOS-2 (p53-null) cells. Forced miR-143 expression significantly reversed chemoresistance as well as downregulation of ATG2B, LC3-I, and Bcl-2 expression in SAOS-2- and U2OS-resistant cells. Forced miR-143 expression significantly inhibited tumor growth in xenograft SAOS-2-Dox and U2OS-Dox animal models. Loss of miR-143 expression is associated with poor prognosis of patients with osteosarcoma underlying chemotherapy. The chemoresistance of osteosarcoma tumor cells to doxorubicin is associated with the downregulation of miR-143 expression, activation of ALDH1+CD133+ cells, activation of autophagy, and inhibition of cell death. miR-143 may play a crucial role in the chemoresistance of osterosarcoma tumors. PMID:25576341

  6. GMP-conformant on-site manufacturing of a CD133(+) stem cell product for cardiovascular regeneration.

    PubMed

    Skorska, Anna; Müller, Paula; Gaebel, Ralf; Große, Jana; Lemcke, Heiko; Lux, Cornelia A; Bastian, Manuela; Hausburg, Frauke; Zarniko, Nicole; Bubritzki, Sandra; Ruch, Ulrike; Tiedemann, Gudrun; David, Robert; Steinhoff, Gustav

    2017-02-10

    CD133(+) stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133(+) stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. CD133(+) stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133(+) cells was evaluated and compared to manually isolated CD133(+) cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 10(6) viable CD133(+) cells with a mean log10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133(+) CP within few hours. Compared to conventional manufacturing processes, future clinical

  7. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial.

    PubMed

    Nasseri, Boris A; Ebell, Wolfram; Dandel, Michael; Kukucka, Marian; Gebker, Rolf; Doltra, Adelina; Knosalla, Christoph; Choi, Yeong-Hoon; Hetzer, Roland; Stamm, Christof

    2014-05-14

    Intra-myocardial transplantation of CD133(+) bone marrow stem cells (BMC) yielded promising results in clinical pilot trials. We now performed the double-blinded, randomized, placebo-controlled CARDIO133 trial to determine its impact on left ventricular (LV) function and clinical symptoms. Sixty patients with chronic ischaemic heart disease and impaired LV function (left ventricular ejection fraction, LVEF <35%) were randomized to undergo either coronary artery bypass grafting (CABG) and injection of CD133(+) BMC in the non-transmural, hypokinetic infarct border zone (CD133), or CABG and placebo injection (placebo). Pre-operative LVEF was 27 ± 6% in CD133 patients and 26 ± 6% in placebo patients. Outcome was assessed after 6 months, and the primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI) at rest. The incidence of adverse events was similar in both groups. There was no difference in 6-min walking distance, Minnesota Living with Heart Failure score, or Canadian Cardiovascular Society (CCS) class between groups at follow-up, and New York Heart Association class improved more in the placebo group (P = 0.004). By cardiac MRI, LVEF at 6 months was 33 ± 8% in the placebo group and 31 ± 7% in verum patients (P = 0.3), with an average inter-group difference of -2.1% (95% CI -6.3 to 2.1). Systolic or diastolic LV dimensions at 6 months were not different, either. In the CD133 group, myocardial perfusion at rest recovered in more LV segments than in the placebo group (9 vs. 2%, P < 0.001). Scar mass decreased by 2.2 ± 5 g in CD133(+) patients (P = 0.05), but was unchanged in the placebo group (0.3 ± 4 g, P = 0.7; inter-group difference in change = 2 g (95% CI -1.1 to 5)). By speckle-tracking echocardiography, cell-treated patients showed a better recovery of regional wall motion when the target area was posterior. Although there may be some improvements in scar size and regional perfusion, intra-myocardial injection of CD133(+) BMC has no

  8. Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells.

    PubMed

    Reichert, Doreen; Scheinpflug, Julia; Karbanová, Jana; Freund, Daniel; Bornhäuser, Martin; Corbeil, Denis

    2016-11-01

    Deciphering all mechanisms of intercellular communication used by hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated whether these cells can produce the thin F-actin-based plasma membrane protrusions referred to as tunneling nanotubes (TNTs), which are known to bridge cells over long distances without contact with the substratum and transfer cargo molecules along them in various biological processes. We found that human primary CD34(+) hematopoietic progenitors and leukemic KG1a cells develop such structures upon culture on primary mesenchymal stromal cells or specific extracellular-matrix-based substrata. Time-lapse video microscopy revealed that cell dislodgement is the primary mechanism responsible for TNT biogenesis. Surprisingly, we found that, among various cluster of differentiation (CD) markers, only the stem cell antigen CD133 is transferred between cells. It is selectively and directionally transported along the surface of TNTs in small clusters, such as cytoplasmic phospho-myosin light chain 2, suggesting that the latter actin motor protein might be implicated in this process. Our data provide new insights into the biology of hematopoietic progenitors that can contribute to our understanding of all facets of intercellular communication in the bone marrow microenvironment under healthy or cancerous conditions.

  9. Prominin-1 (CD133) and the Cell Biology of Neural Progenitors and Their Progeny.

    PubMed

    Sykes, Alex M; Huttner, Wieland B

    2013-01-01

    Our group discovered prominin-1 in search for markers to study the cell polarity of neural stem and progenitor cells in the developing brain. Over the past 15 years, prominin-1, also called CD133, has not only become a frequently used marker of neural stem cells and neural cancer stem cells, as is in fact the case of somatic (cancer) stem cells in general, but has also been used to understand the symmetric versus asymmetric division of the neural stem cells in the context of their apical-basal polarity. Moreover, studying prominin-1 on neural stem cells has revealed a novel fate of the midbody, that is, midbody release, and key differences in this release between normal stem cells and cancer-derived cells. Other subcellular aspects of neural stem cells, the understanding of which has been promoted by studying prominin-1, pertain to the organization of plasma membrane protrusions and the membrane microdomains they contain. Of particular relevance in this context is the primary cilium of neuroepithelial cells and its transformation into the outer segment of retinal photoreceptor cells, a process in which prominin-1 exerts a vital role.

  10. Prognostic value of changes in the expression of stem cell markers in the peripheral blood of patients with colon cancer.

    PubMed

    Padín-Iruegas, Maria-Elena; Herranz-Carnero, Michel; Aguin-Losada, Santiago; Brozos-Vazquez, Elena; Anido-Herranz, U; Antunez-Lopez, Jose-Ramon; Ruibal-Morell, Alvaro; López-López, Rafael

    2013-06-01

    Cancer stem cells play an important role in carcinogenesis and resistance to treatment and may lead to metastasis. The isolation of circulating stem cells involves cell sorting based on the presence of cell surface markers. Many surface markers such as CD133, c-Kit, SOX, OCT4 and TWIST have been reported. In the present study, we determined the expression of different stem cell markers and their variation in expression at different stages of the treatment process. Samples of EDTA blood were collected from metastatic colorectal cancer patients, and circulating cancer stem cells were isolated for the analysis of the expression of stem cell markers using RT-PCR. These findings were correlated with the response to therapy. All statistical analyses were performed using the GraphPad Prism 5.03 software. Significant differences were found in the expression levels of the markers CD133, SOX2, OCT4 and TWIST1. No differences were found in c-Kit expression. Correlation in the expression levels of most of the markers was observed. Expression of CD133, OCT4, SOX2 and TWIST1 had a predictive value for colon cancer behavior. Evaluation of this stem cell gene expression panel may be useful for predicting the response during the process of treatment, and the relative easy access to samples facilitates this method. Moreover the correlation between CD133 and TWIST1 expression may be associated with tumor regrowth and metastatic relapse.

  11. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133

    NASA Astrophysics Data System (ADS)

    Hur, Wonhee; Ryu, Jae Yong; Kim, Hyun Uk; Hong, Sung Woo; Lee, Eun Byul; Lee, Sang Yup; Yoon, Seung Kew

    2017-04-01

    Liver cancer stem cells (LCSCs) have attracted attention because they cause therapeutic resistance in hepatocellular carcinoma (HCC). Understanding the metabolism of LCSCs can be a key to developing therapeutic strategy, but metabolic characteristics have not yet been studied. Here, we systematically analyzed and compared the global metabolic phenotype between LCSCs and non-LCSCs using transcriptome and metabolome data. We also reconstructed genome-scale metabolic models (GEMs) for LCSC and non-LCSC to comparatively examine differences in their metabolism at genome-scale. We demonstrated that LCSCs exhibited an increased proliferation rate through enhancing glycolysis compared with non-LCSCs. We also confirmed that MYC, a central point of regulation in cancer metabolism, was significantly up-regulated in LCSCs compared with non-LCSCs. Moreover, LCSCs tend to have less active fatty acid oxidation. In this study, the metabolic characteristics of LCSCs were identified using integrative systems analysis, and these characteristics could be potential cures for the resistance of liver cancer cells to anticancer treatments.

  12. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133

    PubMed Central

    Hur, Wonhee; Ryu, Jae Yong; Kim, Hyun Uk; Hong, Sung Woo; Lee, Eun Byul; Lee, Sang Yup; Yoon, Seung Kew

    2017-01-01

    Liver cancer stem cells (LCSCs) have attracted attention because they cause therapeutic resistance in hepatocellular carcinoma (HCC). Understanding the metabolism of LCSCs can be a key to developing therapeutic strategy, but metabolic characteristics have not yet been studied. Here, we systematically analyzed and compared the global metabolic phenotype between LCSCs and non-LCSCs using transcriptome and metabolome data. We also reconstructed genome-scale metabolic models (GEMs) for LCSC and non-LCSC to comparatively examine differences in their metabolism at genome-scale. We demonstrated that LCSCs exhibited an increased proliferation rate through enhancing glycolysis compared with non-LCSCs. We also confirmed that MYC, a central point of regulation in cancer metabolism, was significantly up-regulated in LCSCs compared with non-LCSCs. Moreover, LCSCs tend to have less active fatty acid oxidation. In this study, the metabolic characteristics of LCSCs were identified using integrative systems analysis, and these characteristics could be potential cures for the resistance of liver cancer cells to anticancer treatments. PMID:28367990

  13. New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumor-initiating cells

    PubMed Central

    2010-01-01

    Background Growing evidence suggests that the majority of tumors are organized hierarchically, comprising a population of tumor-initiating, or cancer stem cells (CSCs) responsible for tumor development, maintenance and resistance to drugs. Previously we have shown that the CD133high/CD44high fraction of colon cancer cells is different from their bulk counterparts at the functional, morphological and genomic levels. In contrast to the majority of colon cancer cells expressing moderate levels of CD133, CD44 and CD166, cells with a high combined expression of CD133 and CD44 possessed several characteristic stem cell features, including profound self-renewal capacity in vivo and in vitro, and the ability to give rise to different cell phenotypes. The present study was undertaken for two aims: a) to determine stem cell-related genomic characteristics of floating 3D multicellular spheroids induced by CD133high/CD44high colon cancer cells; and b) to evaluate CSC-specific alterations induced by new-generation taxoid SB-T-1214. Results Selected CSC phenotype was isolated from three independent invasive colon cancer cell lines, HCT116, HT29 and DLD-1. A stem cell-specific PCR array assay (SABiosciences) revealed that colonospheres induced by purified CD133high/CD44high expressing cells display profound up-regulation of stem cell-related genes in comparison with their bulk counterparts. The FACS analysis has shown that the 3D colonospheres contained some minority cell populations with high levels of expression of Oct4, Sox2, Nanog and c-Myc, which are essential for stem cell pluripotency and self-renewal. Single administration of the SB-T-1214 at concentration 100 nM-1 μM for 48 hr not only induced growth inhibition and apoptotic cell death in these three types of colon cancer spheroids in 3D culture, but also mediated massive inhibition of the stem cell-related genes and significant down-regulation of the pluripotency gene expression. PCR array and FACS data were confirmed

  14. A Pilot Study Assessing the Potential Role of non-CD133 Colorectal Cancer Stem Cells as Biomarkers

    PubMed Central

    Langan, Russell C.; Mullinax, John E.; Ray, Satyajit; Raiji, Manish T.; Schaub, Nicholas; Xin, Hong-Wu; Koizumi, Tomotake; Steinberg, Seth M.; Anderson, Andrew; Wiegand, Gordon; Butcher, Donna; Anver, Miriam; Bilchik, Anton J.; Stojadinovic, Alexander; Rudloff, Udo; Avital, Itzhak

    2012-01-01

    Introduction: Over 50% of patients with colorectal cancer (CRC) will progress and/or develop metastases. Biomarkers capable of predicting progression, risk stratification and therapeutic benefit are needed. Cancer stem cells are thought to be responsible for tumor initiation, dissemination and treatment failure. Therefore, we hypothesized that CRC cancer stem cell markers (CRCSC) will identify a group of patients at high risk for progression. Methods: Paraffin-embedded tissue cores of normal (n=8), and histopathologically well-defined primary (n= 30) and metastatic (n=10) CRC were arrayed in duplicate on tissue microarrays (TMAs). Expression profiles of non-CD133 CRCSC (CD29, CD44, ALDH1A1, ALDH1B1, EpCam, and CD166) were detected by immunohistochemistry and the association with clinicopathological data and patient outcomes was determined using standard statistical methodology. An independent pathologist, blinded to the clinical data scored the samples. Scoring included percent positive cells (0 to 4, 0 = <10%, 1 = 10 - 24%, 2 = 25 - 49%, 3 = 50 - 74%, 4 = 75 - 100%), and the intensity of positively stained cells (0 to 4; 0 = no staining, 1 = diminutive intensity, 2 = low intensity, 3 = intermediate intensity, 4 = high intensity). The pathologic score represents the sum of these two values, reported in this paper as a combined IHC staining score (CSS). Results: Of 30 patients 7 were AJCC stage IIA, 10 stage IIIB, 7 stage IIIC and 6 stage IV. Median follow-up was 113 months. DFI was 17 months. Median overall survival (OS) was not reached. Stage-specific OS was: II - not reached; III - not reached; IV - 11 months. In a univariate analysis, poor OS was associated with loss of CD29 expression; median OS, 32 months vs. not reached for CSS 3-7 vs. >7.5, respectively; p=0.052 comparing entire curves, after adjustment. In a Cox model analysis, loss of CD29 exhibited a trend toward association with survival (p=0.098) after adjusting for the effect of stage (p=0

  15. Intrathecal injection of CD133-positive enriched bone marrow progenitor cells in children with cerebral palsy: feasibility and safety.

    PubMed

    Zali, Alireza; Arab, Leila; Ashrafi, Farzad; Mardpour, Soura; Niknejhadi, Maryam; Hedayati-Asl, Amir Abbas; Halimi-Asl, Aliasghar; Ommi, Davood; Hosseini, Seyyedeh-Esmat; Baharvand, Hossein; Aghdami, Nasser

    2015-02-01

    Recent studies have proposed that cellular transplantation may have some regenerative and functional efficacy in the treatment of cerebral palsy (CP); however, much remains to be understood regarding its safety, feasibility and efficacy. This study was initiated to evaluate the safety of autologous bone marrow-derived CD133(+) cell intrathecal injection. Children (n = 12), aged 4 to 12 years, who were diagnosed with different types of CP underwent BM aspiration. CD133(+) cells were enriched from the BM samples and intrathecally injected. The Gross Motor Function Measure (GMFM-66), Gross Motor Function Classification System (GMFCS), UK FIM+FAM, Functional Independence Measure (FIM) and Functional Assessment Measure (FAM) were assessed at baseline and 6 months after the procedure. Patients' ability to balance was measured by the Berg Balance Scale (BBS), and severity of spasticity was evaluated by the Modified Ashworth Scale. Magnetic resonance imaging was done at baseline and 6 months after therapy. This study was registered in ClinicalTrials.gov (NCT01404663). There were no adverse events detected by clinical and laboratory tests or imaging studies, with the exception of a seizure in 1 patient. A significant improvement was observed 6 months after cell transplantation versus baseline according to GMFM, GMFCS, FIM+FAM, Ashworth Scale, and BBS outcomes. Subarachnoid injection of CD133-positive enriched bone marrow progenitor cells in children with CP is a safe approach. The results suggest a possible short-term improvement in neurological function. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Paclitaxel-loaded nanoparticles decorated with anti-CD133 antibody: a targeted therapy for liver cancer stem cells

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Yang, Zhaoxu; Yang, Jingyue; Li, Haimin; He, Yong; An, Jiaze; Bai, Ling; Dou, Kefeng

    2014-01-01

    Recent studies have revealed the existence of liver cancer stem cells (CSCs). Therefore, there is an urgent need for new and effective treatment strategies specific to liver CSCs. In this work, the poly( d, l-lactide-coglycolide) nanoparticles containing paclitaxel were prepared by emulsification-solvent evaporation method. The nanoparticles decorated with anti-CD133 antibody, termed targeted nanoparticles, were prepared by carbodiimide chemistry for liver CSCs. The physicochemical characteristics of the nanoparticles (i.e., encapsulation efficiency, particle size distribution, morphology, and in vitro release) were investigated. Cellular uptake and accumulation in tumor tissue of nanoparticles were observed. To assess anti-tumor activity of nanoparticles in vitro and in vivo, cell survival assay and tumor regression study were carried out using liver cancer cell lines (Huh7 and HepG2) and their xenografts. Particle size of targeted nanoparticles was 429.26 ± 41.53 nm with zeta potential of -11.2 mV. Targeted nanoparticles possessed spherical morphology and high encapsulation efficiency (87.53 ± 5.9 %). The accumulation of targeted nanoparticles depends on dual effects of passive and active targeting. Drug-loaded nanoparticles showed cytotoxicity on the tumor cells in vitro and in vivo. Targeted nanoparticles resulted in significant improvement in therapeutic response through selectively eliminating CD133 positive subpopulation. These results suggested that the novel nanoparticles could be a promising candidate with excellent therapeutic efficacy for targeting liver CSCs.

  17. CD133+, CD166+CD44+, and CD24+CD44+ phenotypes fail to reliably identify cell populations with cancer stem cell functional features in established human colorectal cancer cell lines.

    PubMed

    Muraro, Manuele Giuseppe; Mele, Valentina; Däster, Silvio; Han, Junyi; Heberer, Michael; Cesare Spagnoli, Giulio; Iezzi, Giandomenica

    2012-08-01

    Increasing evidence that cancers originate from small populations of so-called cancer stem cells (CSCs), capable of surviving conventional chemotherapies and regenerating the original tumor, urges the development of novel CSC-targeted treatments. Screening of new anticancer compounds is conventionally conducted on established tumor cell lines, providing sufficient material for high-throughput studies. Whether tumor cell lines might comprise CSC populations resembling those of primary tumors, however, remains highly debated. We have analyzed the expression of defined phenotypic profiles, including CD133+, CD166+CD44+, and CD24+CD44+, reported as CSC-specific in human primary colorectal cancer (CRC), on a panel of 10 established CRC cell lines and evaluated their correlation with CSC properties. None of the putative CSC phenotypes consistently correlated with stem cell-like features, including spheroid formation ability, clonogenicity, aldehyde dehydrogenase-1 activity, and side population phenotype. Importantly, CRC cells expressing putative CSC markers did not exhibit increased survival when treated with chemotherapeutic drugs in vitro or display higher tumorigenicity in vivo. Thus, the expression of CD133 or the coexpression of CD166/CD44 or CD24/CD44 did not appear to reliably identify CSC populations in established CRC cell lines. Our findings question the suitability of cell lines for the screening of CSC-specific therapies and underline the urgency of developing novel platforms for anticancer drug discovery.

  18. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    PubMed

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer.

  19. Activation of D2 Dopamine Receptors in CD133+ve Cancer Stem Cells in Non-small Cell Lung Carcinoma Inhibits Proliferation, Clonogenic Ability, and Invasiveness of These Cells.

    PubMed

    Roy, Soumyabrata; Lu, Kai; Nayak, Mukti Kant; Bhuniya, Avishek; Ghosh, Tithi; Kundu, Suman; Ghosh, Sarbari; Baral, Rathindranath; Dasgupta, Partha Sarathi; Basu, Sujit

    2017-01-13

    Lung carcinoma is the leading cause of cancer-related death worldwide, and among this cancer, non-small cell lung carcinoma (NSCLC) comprises the majority of cases. Furthermore, recurrence and metastasis of NSCLC correlate well with CD133+ve tumor cells, a small population of tumor cells that have been designated as cancer stem cells (CSC). We have demonstrated for the first time high expression of D2 dopamine (DA) receptors in CD133+ve adenocarcinoma NSCLC cells. Also, activation of D2 DA receptors in these cells significantly inhibited their proliferation, clonogenic ability, and invasiveness by suppressing extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT, as well as down-regulation of octamer-binding transcription factor 4 (Oct-4) expression and matrix metalloproteinase-9 (MMP-9) secretion by these cells. These results are of significance as D2 DA agonists that are already in clinical use for treatment of other diseases may be useful in combination with conventional chemotherapy and radiotherapy for better management of NSCLC patients by targeting both tumor cells and stem cell compartments in the tumor mass. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57

    PubMed Central

    Zhu, Xuekai; Prasad, Shruthi; Gaedicke, Simone; Hettich, Michael; Firat, Elke; Niedermann, Gabriele

    2015-01-01

    The AC133 epitope of CD133 is a cancer stem cell (CSC) marker for many tumor entities, including the highly malignant glioblastoma multiforme (GBM). We have developed an AC133-specific chimeric antigen receptor (CAR) and show that AC133-CAR T cells kill AC133+ GBM stem cells (GBM-SCs) both in vitro and in an orthotopic tumor model in vivo. Direct contact with patient-derived GBM-SCs caused rapid upregulation of CD57 on the CAR T cells, a molecule known to mark terminally or near-terminally differentiated T cells. However, other changes associated with terminal T cell differentiation could not be readily detected. CD57 is also expressed on tumor cells of neural crest origin and has been preferentially found on highly aggressive, undifferentiated, multipotent CSC-like cells. We found that CD57 was upregulated on activated T cells only upon contact with CD57+ patient-derived GBM-SCs, but not with conventional CD57-negative glioma lines. However, CD57 was not downregulated on the GBM-SCs upon their differentiation, indicating that this molecule is not a bona fide CSC marker for GBM. Differentiated GBM cells still induced CD57 on CAR T cells and other activated T cells. Therefore, CD57 can apparently be upregulated on activated human T cells by mere contact with CD57+ target cells. PMID:25426558

  1. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57.

    PubMed

    Zhu, Xuekai; Prasad, Shruthi; Gaedicke, Simone; Hettich, Michael; Firat, Elke; Niedermann, Gabriele

    2015-01-01

    The AC133 epitope of CD133 is a cancer stem cell (CSC) marker for many tumor entities, including the highly malignant glioblastoma multiforme (GBM). We have developed an AC133-specific chimeric antigen receptor (CAR) and show that AC133-CAR T cells kill AC133+ GBM stem cells (GBM-SCs) both in vitro and in an orthotopic tumor model in vivo. Direct contact with patient-derived GBM-SCs caused rapid upregulation of CD57 on the CAR T cells, a molecule known to mark terminally or near-terminally differentiated T cells. However, other changes associated with terminal T cell differentiation could not be readily detected. CD57 is also expressed on tumor cells of neural crest origin and has been preferentially found on highly aggressive, undifferentiated, multipotent CSC-like cells. We found that CD57 was upregulated on activated T cells only upon contact with CD57+ patient-derived GBM-SCs, but not with conventional CD57-negative glioma lines. However, CD57 was not downregulated on the GBM-SCs upon their differentiation, indicating that this molecule is not a bona fide CSC marker for GBM. Differentiated GBM cells still induced CD57 on CAR T cells and other activated T cells. Therefore, CD57 can apparently be upregulated on activated human T cells by mere contact with CD57+ target cells.

  2. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  3. Quercetin induces cell cycle arrest and apoptosis in CD133(+) cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin.

    PubMed

    Atashpour, Shekoufeh; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Barzegar, Elmira; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-07-01

    The colorectal cancer stem cells (CSCs) with the CD133(+) phenotype are a rare fraction of cancer cells with the ability of self-renewal, unlimited proliferation and resistance to treatment. Quercetin has anticancer effects with the advantage of exhibiting low side effects. Therefore, we evaluated the anticancer effects of quercetin and doxorubicin (Dox) in HT29 cancer cells and its isolated CD133(+) CSCs. The CSCs from HT29 cells were isolated using CD133 antibody conjugated to magnetic beads by MACS. Anticancer effects of quercetin and Dox alone and in combination on HT29 cells and CSCs were evaluated using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. The CD133(+) CSCs comprised about 10% of HT29 cells. Quercetin and Dox alone and in combination inhibited cell proliferation and induced apoptosis in HT29 cells and to a lesser extent in CSCs. Quercetin enhanced cytotoxicity and apoptosis induction of Dox at low concentration in both cell populations. Quercetin and Dox and their combination induced G2/M arrest in the HT29 cells and to a lesser extent in CSCs. The CSCs were a minor population with a significantly high level of drug resistance within the HT29 cancer cells. Quercetin alone exhibited significant cytotoxic effects on HT29 cells and also increased cytoxicity of Dox in combination therapy. Altogether, our data showed that adding quercetin to Dox chemotherapy is an effective strategy for treatment of both CSCs and bulk tumor cells.

  4. Cobblestone-Area Forming Cells Derived from Patients with Mantle Cell Lymphoma Are Enriched for CD133+ Tumor-Initiating Cells

    PubMed Central

    Medina, Daniel J.; Abass-Shereef, Jeneba; Walton, Kelly; Goodell, Lauri; Aviv, Hana; Strair, Roger K.; Budak-Alpdogan, Tulin

    2014-01-01

    Mantle cell lymphoma (MCL) is associated with a significant risk of therapeutic failure and disease relapse, but the biological origin of relapse is poorly understood. Here, we prospectively identify subpopulations of primary MCL cells with different biologic and immunophenotypic features. Using a simple culture system, we demonstrate that a subset of primary MCL cells co-cultured with either primary human mesenchymal stromal cells (hMSC) or murine MS-5 cells form in cobblestone-areas consisting of cells with a primitive immunophenotype (CD19−CD133+) containing the chromosomal translocation t (11;14)(q13;q32) characteristic of MCL. Limiting dilution serial transplantation experiments utilizing immunodeficient mice revealed that primary MCL engraftment was only observed when either unsorted or CD19−CD133+ cells were utilized. No engraftment was seen using the CD19+CD133− subpopulation. Our results establish that primary CD19−CD133+ MCL cells are a functionally distinct subpopulation of primary MCL cells enriched for MCL-initiating activity in immunodeficient mice. This rare subpopulation of MCL-initiating cells may play an important role in the pathogenesis of MCL. PMID:24722054

  5. LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging.

    PubMed

    Roy, Kislay; Kanwar, Rupinder K; Kanwar, Jagat R

    2015-12-01

    This is the first ever attempt to combine anti-cancer therapeutic effects of emerging anticancer biodrug bovine lactoferrin (bLf), and multimodal imaging efficacy of Fe3O4 nanoparticles (NPs) together, as a saturated Fe3O4-bLf. For cancer stem cell specific uptake of nanocapsules/nanocarriers (NCs), Fe3O4-bLf was encapsulated in alginate enclosed chitosan coated calcium phosphate (AEC-CP) NCs targeted (Tar) with locked nucleic acid (LNA) modified aptamers against epithelial cell adhesion molecule (EpCAM) and nucleolin markers. The nanoformulation was fed orally to mice injected with triple positive (EpCAM, CD133, CD44) sorted colon cancer stem cells in the xenograft cancer stem cell mice model. The complete regression of tumor was observed in 70% of mice fed on non-targeted (NT) NCs, with 30% mice showing tumor recurrence after 30 days, while only 10% mice fed with Tar NCs showed tumor recurrence indicating a significantly higher survival rate. From tumor tissue analyses of 35 apoptotic markers, 55 angiogenesis markers, 40 cytokines, 15 stem cell markers and gene expression studies of important signaling molecules, it was revealed that the anti-cancer mechanism of Fe3O4-bLf was intervened through TRAIL, Fas, Fas-associated protein with death domain (FADD) mediated phosphorylation of p53, to induce activation of second mitochondria-derived activator of caspases (SMAC)/DIABLO (inhibiting survivin) and mitochondrial depolarization leading to release of cytochrome C. Induction of apoptosis was observed by inhibition of the Akt pathway and activation of cytokines released from monocytes/macrophages and dendritic cells (interleukin (IL) 27, keratinocyte chemoattractant (KC)). On the other hand, the recurrence of tumor in AEC-CP-Fe3O4-bLf NCs fed mice mainly occurred due to activation of alternative pathways such as mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) and Wnt signaling leading to an increase in expression of survivin

  6. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    PubMed

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury.

    PubMed

    Nichols, Joan E; Niles, Jean A; DeWitt, Douglas; Prough, Donald; Parsley, Margaret; Vega, Stephanie; Cantu, Andrea; Lee, Eric; Cortiella, Joaquin

    2013-01-06

    Nervous system injuries comprise a diverse group of disorders that include traumatic brain injury (TBI). The potential of mesenchymal stem cells (MSCs) to differentiate into neural cell types has aroused hope for the possible development of autologous therapies for central nervous system injury. In this study we isolated and characterized a human peripheral blood derived (HPBD) MSC population which we examined for neural lineage potential and ability to migrate in vitro and in vivo. HPBD CD133+, ATP-binding cassette sub-family G member 2 (ABCG2)+, C-X-C chemokine receptor type 4 (CXCR4)+ MSCs were differentiated after priming with β-mercaptoethanol (β-ME) combined with trans-retinoic acid (RA) and culture in neural basal media containing basic fibroblast growth factor (FGF2) and epidermal growth factor (EGF) or co-culture with neuronal cell lines. Differentiation efficiencies in vitro were determined using flow cytometry or fluorescent microscopy of cytospins made of FACS sorted positive cells after staining for markers of immature or mature neuronal lineages. RA-primed CD133+ABCG2+CXCR4+ human MSCs were transplanted into the lateral ventricle of male Sprague-Dawley rats, 24 hours after sham or traumatic brain injury (TBI). All animals were evaluated for spatial memory performance using the Morris Water Maze (MWM) Test. Histological examination of sham or TBI brains was done to evaluate MSC survival, migration and differentiation into neural lineages. We also examined induction of apoptosis at the injury site and production of MSC neuroprotective factors. CD133+ABCG2+CXCR4+ MSCs consistently expressed markers of neural lineage induction and were positive for nestin, microtubule associated protein-1β (MAP-1β), tyrosine hydroxylase (TH), neuron specific nuclear protein (NEUN) or type III beta-tubulin (Tuj1). Animals in the primed MSC treatment group exhibited MWM latency results similar to the uninjured (sham) group with both groups showing improvements in

  8. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study.

    PubMed

    Langer, Christian; Radmacher, Michael D; Ruppert, Amy S; Whitman, Susan P; Paschka, Peter; Mrózek, Krzysztof; Baldus, Claudia D; Vukosavljevic, Tamara; Liu, Chang-Gong; Ross, Mary E; Powell, Bayard L; de la Chapelle, Albert; Kolitz, Jonathan E; Larson, Richard A; Marcucci, Guido; Bloomfield, Clara D

    2008-06-01

    BAALC expression is considered an independent prognostic factor in cytogenetically normal acute myeloid leukemia (CN-AML), but has yet to be investigated together with multiple other established prognostic molecular markers in CN-AML. We analyzed BAALC expression in 172 primary CN-AML patients younger than 60 years of age, treated similarly on CALGB protocols. High BAALC expression was associated with FLT3-ITD (P = .04), wild-type NPM1 (P < .001), mutated CEBPA (P = .003), MLL-PTD (P = .009), absent FLT3-TKD (P = .005), and high ERG expression (P = .05). In multivariable analysis, high BAALC expression independently predicted lower complete remission rates (P = .04) when adjusting for ERG expression and age, and shorter survival (P = .04) when adjusting for FLT3-ITD, NPM1, CEBPA, and white blood cell count. A gene-expression signature of 312 probe sets differentiating high from low BAALC expressers was identified. High BAALC expression was associated with overexpression of genes involved in drug resistance (MDR1) and stem cell markers (CD133, CD34, KIT). Global microRNA-expression analysis did not reveal significant differences between BAALC expression groups. However, an analysis of microRNAs that putatively target BAALC revealed a potentially interesting inverse association between expression of miR-148a and BAALC. We conclude that high BAALC expression is an independent adverse prognostic factor and is associated with a specific gene-expression profile.

  9. Selected CD133⁺ progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial.

    PubMed

    Jimenez-Quevedo, Pilar; Gonzalez-Ferrer, Juan Jose; Sabate, Manel; Garcia-Moll, Xavier; Delgado-Bolton, Roberto; Llorente, Leopoldo; Bernardo, Esther; Ortega-Pozzi, Aranzazu; Hernandez-Antolin, Rosana; Alfonso, Fernando; Gonzalo, Nieves; Escaned, Javier; Bañuelos, Camino; Regueiro, Ander; Marin, Pedro; Fernandez-Ortiz, Antonio; Neves, Barbara Das; Del Trigo, Maria; Fernandez, Cristina; Tejerina, Teresa; Redondo, Santiago; Garcia, Eulogio; Macaya, Carlos

    2014-11-07

    Refractory angina constitutes a clinical problem. The aim of this study was to assess the safety and the feasibility of transendocardial injection of CD133(+) cells to foster angiogenesis in patients with refractory angina. In this randomized, double-blinded, multicenter controlled trial, eligible patients were treated with granulocyte colony-stimulating factor, underwent an apheresis and electromechanical mapping, and were randomized to receive treatment with CD133(+) cells or no treatment. The primary end point was the safety of transendocardial injection of CD133(+) cells, as measured by the occurrence of major adverse cardiac and cerebrovascular event at 6 months. Secondary end points analyzed the efficacy. Twenty-eight patients were included (n=19 treatment; n=9 control). At 6 months, 1 patient in each group had ventricular fibrillation and 1 patient in each group died. One patient (treatment group) had a cardiac tamponade during mapping. There were no significant differences between groups with respect to efficacy parameters; however, the comparison within groups showed a significant improvement in the number of angina episodes per month (median absolute difference, -8.5 [95% confidence interval, -15.0 to -4.0]) and in angina functional class in the treatment arm but not in the control group. At 6 months, only 1 simple-photon emission computed tomography (SPECT) parameter: summed score improved significantly in the treatment group at rest and at stress (median absolute difference, -1.0 [95% confidence interval, -1.9 to -0.1]) but not in the control arm. Our findings support feasibility and safety of transendocardial injection of CD133(+) cells in patients with refractory angina. The promising clinical results and favorable data observed in SPECT summed score may set up the basis to test the efficacy of cell therapy in a larger randomized trial. © 2014 American Heart Association, Inc.

  10. Application of affinity aqueous two-phase systems for the fractionation of CD133(+) stem cells from human umbilical cord blood.

    PubMed

    González-González, Mirna; Rito-Palomares, Marco

    2015-03-01

    In a further attempt to establish a novel stem cell primary recovery strategy, the use of aqueous two-phase systems (ATPS) complemented with the use of antibodies (known as immunoaffinity ATPS) is explored in this work. This type of liquid-liquid extraction systems exploits antigen-antibody affinity and represents a novel and selective approach for the purification of stem cells. The proposed bioengineering strategies include the implementation of traditional [polyethylene glycol (PEG), dextran (DEX) and ficoll] and novel (Ucon) immunoaffinity ATPS to prove the viability of cluster of differentiation 133 (CD133(+) ) stem cells from human umbilical cord blood. Furthermore, the addition of the antibody is implemented to identify conditions under which contaminants and stem cells of interest concentrate in opposite phases. The objective of this work is to establish the initial basis for the development of a novel and scalable purification bioprocess for the selective recovery of CD133(+) stem cells employing immunoaffinity ATPS. The reported methodology allows a partitioning of 62% CD133(+) stem cells to the top phase of the ficoll 400,000-DEX 70,000 immunoaffinity ATPS. In PEG 8,000-DEX 500,000 and Ucon-DEX 75,000 systems, no difference was observed when compared with the conventional ATPS (without antibody addition), as the CD133 antibody does not have preference for the desired clean top phase. In all experiments, cell viability was at least 98% after ATPS recovery. This research highlights the challenges that must be addressed to allow the potential establishment of a separation process using immunoaffinity ATPS for the recovery and purification of stem cells. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Long-term clinical results of autologous bone marrow CD 133+ cell transplantation in patients with ST-elevation myocardial infarction

    NASA Astrophysics Data System (ADS)

    Kirgizova, M. A.; Suslova, T. E.; Markov, V. A.; Karpov, R. S.; Ryabov, V. V.

    2015-11-01

    The aim of the study was investigate the long-term results of autologous bone marrow CD 133+ cell transplantation in patients with primary ST-Elevation Myocardial Infarction (STEMI). Methods and results: From 2006 to 2007, 26 patients with primary STEMI were included in an open randomized study. Patients were randomized to two groups: 1st - included patients underwent PCI and transplantation of autologous bone marrow CD 133+ cell (n = 10); 2nd - patients with only PCI (n = 16). Follow-up study was performed 7.70±0.42 years after STEMI and consisted in physical examination, 6-min walking test, Echo exam. Total and cardiovascular mortality in group 1 was lower (20% (n = 2) vs. 44% (n = 7), p = 0.1 and 22% (n = 2) vs. 25% (n = 4), (p=0.53), respectively). Analysis of cardiac volumetric parameters shows significant differences between groups: EDV of 100.7 ± 50.2 mL vs. 144.40±42.7 mL, ESV of 56.3 ± 37.8 mL vs. 89.7 ± 38.7 mL in 1st and 2nd groups, respectively. Data of the study showed positive effects of autologous bone marrow CD 133+ cell transplantation on the long-term survival of patients and structural status of the heart.

  12. Hematopoietic Stem Cell Capture and Directional Differentiation into Vascular Endothelial Cells for Metal Stent-Coated Chitosan/Hyaluronic Acid Loading CD133 Antibody

    PubMed Central

    Zhang, Fan; Feng, Bo; Fan, Qingyu; Yang, Feng; Shang, Debin; Sui, Jinghan; Zhao, Hong

    2015-01-01

    A series of metal stents coated with chitosan/hyaluronic acid (CS/HA) loading antibodies by electrostatic self-assembled method were prepared, and the types of cells captured by antibodies and their differentiation in vascular endothelial cells (ECs) evaluated by molecular biology and scanning electron microscope. The results showed that CD133 stent can selectively capture hematopoietic stem cells (HSC),which directionally differentiate into vascular ECs in peripheral blood by (CS/HA) induction, and simultaneously inhibit migration and proliferation of immune cells and vascular smooth muscle cells (MCs). CD34 stent can capture HSC, hematopoietic progenitor cells that differentiate into vascular ECs and immune cells, promoting smooth MCs growth, leading to thrombosis, inflammation, and rejection. CD133 stent can be implanted into miniature pig heart coronary and can repair vascular damage by capturing own HSC, thus contributing to the rapid natural vascular repair, avoiding inflammation and rejection, thrombosis and restenosis. These studies demonstrated that CD133 stent of HSC capture will be an ideal coated metal stent providing a new therapeutic approach for cardiovascular and cerebrovascular disease. PMID:25404533

  13. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine.

  14. Nonadditive gene expression in polyploids.

    PubMed

    Yoo, Mi-Jeong; Liu, Xiaoxian; Pires, J Chris; Soltis, Pamela S; Soltis, Douglas E

    2014-01-01

    Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.

  15. Distinctive effects of CD34- and CD133-specific antibody-coated stents on re-endothelialization and in-stent restenosis at the early phase of vascular injury

    PubMed Central

    Wu, Xue; Yin, Tieying; Tian, Jie; Tang, Chaojun; Huang, Junli; Zhao, Yinping; Zhang, Xiaojuan; Deng, Xiaoyan; Fan, Yubo; Yu, Donghong; Wang, Guixue

    2015-01-01

    It is not clear what effects of CD34- and CD133-specific antibody-coated stents have on re-endothelialization and in-stent restenosis (ISR) at the early phase of vascular injury. This study aims at determining the capabilities of different coatings on stents (e.g. gelatin, anti-CD133 and anti-CD34 antibodies) to promote adhesion and proliferation of endothelial progenitor cells (EPCs). The in vitro study revealed that the adhesion force enabled the EPCs coated on glass slides to withstand flow-induced shear stress, so that allowing for the growth of the cells on the slides for 48 h. The in vivo experiment using a rabbit model in which the coated stents with different substrates were implanted showed that anti-CD34 and anti-CD133 antibody-coated stents markedly reduced the intima area and restenosis than bare mental stents (BMS) and gelatin-coated stents. Compared with the anti-CD34 antibody-coated stents, the time of cells adhesion was longer and earlier present in the anti-CD133 antibody-coated stents and anti-CD133 antibody-coated stents have superiority in re-endothelialization and inhibition of ISR. In conclusion, this study demonstrated that anti-CD133 antibody as a stent coating for capturing EPCs is better than anti-CD34 antibody in promoting endothelialization and reducing ISR. PMID:26813006

  16. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  17. The IMPACT-CABG trial: A multicenter, randomized clinical trial of CD133(+) stem cell therapy during coronary artery bypass grafting for ischemic cardiomyopathy.

    PubMed

    Noiseux, Nicolas; Mansour, Samer; Weisel, Richard; Stevens, Louis-Mathieu; Der Sarkissian, Shant; Tsang, Katherine; Crean, Andrew M; Larose, Eric; Li, Shu-Hong; Wintersperger, Bernd; Vu, Minh Quan; Prieto, Ignacio; Li, Ren-Ke; Roy, Denis Claude; Yau, Terrence M

    2016-12-01

    The IMPACT-CABG trial is the first North American multicenter phase II randomized study of intramyocardial delivery of autologous CD133(+) stem cells in patients with chronic ischemic cardiomyopathy undergoing coronary artery bypass grafting. The primary objective was to demonstrate safety, including freedom from major adverse cardiac events. The secondary objective was to evaluate feasibility of same-day autologous cell preparation. Although the trial was not powered to evaluate LV function, exploratory data were collected. After 7 open-label patients who received cells, patients randomly received stem cells or placebo (N = 40 total, 20 per center). After completion of coronary anastomoses, up to 10 million CD133(+), CD34(+), CD45(+) triple-positive cells or placebo were injected into the infarct and border zones. Patients were followed up clinically and underwent magnetic resonance imaging preoperatively and after 6 months. There were no procedural complications from bone marrow isolation and cell injection, no in-hospital mortality, and no protocol-related complications. Four patients had transient renal insufficiency, with 1 death during 6-month follow-up. Magnetic resonance imaging revealed that left ventricular volumes and ejection fractions improved in all patients (no difference between groups). The trial successfully met both primary and secondary objectives, demonstrating that same-day isolation and autologous CD133(+) cell delivery with coronary artery bypass grafting is safe and feasible. The positive findings support a larger randomized, multicenter trial, with higher numbers of transplanted cells to demonstrate beneficial effects. The upcoming IMPACT-CABG II trial will evaluate higher cell doses and pharmacologic enhancement to determine whether these cells improve perfusion and myocardial function. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  18. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies.

    PubMed

    Stamm, Christof; Kleine, Hans-Dieter; Choi, Yeong-Hoon; Dunkelmann, Simone; Lauffs, Jan-Arne; Lorenzen, Björn; David, Arpad; Liebold, Andreas; Nienaber, Christoph; Zurakowski, David; Freund, Mathias; Steinhoff, Gustav

    2007-03-01

    Cell therapy may offer novel therapeutic options for chronic ischemic heart disease. In a clinical trial, we first assessed the feasibility and safety of intramyocardial CD133+ bone marrow cell injection together with coronary artery bypass grafting (CABG). We then tested the hypothesis that CABG plus CD133+ cell injection would result in better contractile function than CABG alone. Fifteen patients took part in the safety study, followed by 40 patients who underwent either CABG with cell therapy or CABG alone. Bone marrow was harvested from the iliac crest one day before surgery, and purified CD133+ progenitor cells were injected in the infarct border zone during the CABG operation. LV function was measured by echocardiography and myocardial perfusion by SPECT. In the safety study, no procedure-related complications were observed for up to 3 years. LV injection fraction (LVEF) increased from 39.0% +/- 8.7% preoperatively to 50.2% +/- 8.5% at 6 months and 47.9% +/- 6.0% at 18 months (F = 6.03, P = .012). In the efficacy study, LCEF rose form 37.4% +/- 8.4% to 47.1% +/- 8.3% at 6 months in the group with CABG and cell therapy (F = 24.16, P < .0001) but only from 37.9% +/- 10.3% to 41.3% +/- 9.1% in the CABG-only group (F = 7.72, P = .012). LVEF was significantly higher at 6 months in the group with CABG and cell therapy than in the CABG-only group (P = .03). Similarly, perfusion of the infarcted myocardium improved more in patients treated with CABG and cell therapy than in those treated with CABG alone. Intramyocardial delivery of purified bone marrow stem cells together with CABG surgery is safe and provides beneficial effects, though it remains to be seen whether thewe effects produce a lasting clinical advantage.

  19. Effects of flavopiridol on critical regulation pathways of CD133high/CD44high lung cancer stem cells

    PubMed Central

    Bozok Cetintas, Vildan; Acikgoz, Eda; Yigitturk, Gurkan; Demir, Kenan; Oktem, Gulperi; Tezcanli Kaymaz, Burçin; Oltulu, Fatih; Aktug, Huseyin

    2016-01-01

    Abstract Background: Flavopiridol a semisynthetic flavone that inhibits cyclin-dependent kinases (CDKs) and has growth-inhibitory activity and induces a blockade of cell-cycle progression at G1-phase and apoptosis in numerous human tumor cell lines and is currently under investigation in phase II clinical trials. Cancer stem cells (CSCs) are comprised of subpopulation of cells in tumors that have been proposed to be responsible for recurrence and resistance to chemotherapy. The aim of the present study was to investigate the effects of flavopiridol in cancer stem cell cytoskeleton, cell adhesion, and epithelial to mesenchymal transition in CSCs. Methods: The cells were treated with flavopiridol to determine the inhibitory effect. Cell viability and proliferation were determined by using the WST-1 assay. Caspase activity and immunofluorescence analyses were performed for the evaluation of apoptosis, cell cytoskeleton, and epithelial-mesenchymal transition (EMT) markers. The effects of flavopiridol on the cell cycle were also evaluated. Flow cytometric analysis was used to detect the percentages of CSCs subpopulation. We analyzed the gene expression patterns to predict cell cycle and cell cytoskeleton in CSCs by RT-PCR. Results: Flavopiridol-induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspases activity. Cell cycle analyses revealed that flavopiridol induces G1 phase cell cycle arrest. Flavopiridol significantly decreased the mRNA expressions of the genes that regulate the cell cytoskeleton and cell cycle components and cell motility in CSCs. Conclusion: Our results suggest that Flavopiridol has activity against lung CSCs and may be effective chemotherapeutic molecule for lung cancer treatment. PMID:27787370

  20. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  1. The flow of gene expression.

    PubMed

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  2. Discovering modulators of gene expression

    PubMed Central

    Babur, Özgün; Demir, Emek; Gönen, Mithat; Sander, Chris; Dogrusoz, Ugur

    2010-01-01

    Proteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, protein–protein interactions and transcription factor–target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes. PMID:20466809

  3. Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells.

    PubMed

    Genovesi, Laura A; Carter, Kim W; Gottardo, Nicholas G; Giles, Keith M; Dallas, Peter B

    2011-01-01

    Medulloblastoma (MB) is the most common malignant brain tumor in children and a leading cause of cancer-related mortality and morbidity. Several molecular sub-types of MB have been identified, suggesting they may arise from distinct cells of origin. Data from animal models indicate that some MB sub-types arise from multipotent cerebellar neural stem cells (NSCs). Hence, microRNA (miRNA) expression profiles of primary MB samples were compared to CD133+ NSCs, aiming to identify deregulated miRNAs involved in MB pathogenesis. Expression profiling of 662 miRNAs in primary MB specimens, MB cell lines, and human CD133+ NSCs and CD133- neural progenitor cells was performed by qRT-PCR. Clustering analysis identified two distinct sub-types of MB primary specimens, reminiscent of sub-types obtained from their mRNA profiles. 21 significantly up-regulated and 12 significantly down-regulated miRNAs were identified in MB primary specimens relative to CD133+ NSCs (p<0.01). The majority of up-regulated miRNAs mapped to chromosomal regions 14q32 and 17q. Integration of the predicted targets of deregulated miRNAs with mRNA expression data from the same specimens revealed enrichment of pathways regulating neuronal migration, nervous system development and cell proliferation. Transient over-expression of a down-regulated miRNA, miR-935, resulted in significant down-regulation of three of the seven predicted miR-935 target genes at the mRNA level in a MB cell line, confirming the validity of this approach. This study represents the first integrated analysis of MB miRNA and mRNA expression profiles and is the first to compare MB miRNA expression profiles to those of CD133+ NSCs. We identified several differentially expressed miRNAs that potentially target networks of genes and signaling pathways that may be involved in the transformation of normal NSCs to brain tumor stem cells. Based on this integrative approach, our data provide an important platform for future investigations aimed at

  4. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  5. Tuning noise in gene expression.

    PubMed

    Tyagi, Sanjay

    2015-05-05

    The relative contribution of promoter architecture and the associated chromatin environment in regulating gene expression noise has remained elusive. In their recent work, Arkin, Schaffer and colleagues (Dey et al, 2015) show that mean expression and noise for a given promoter at different genomic loci are uncorrelated and influenced by the local chromatin environment.

  6. Monoallelic Gene Expression in Mammals.

    PubMed

    Chess, Andrew

    2016-11-23

    Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.

  7. Convenient and efficient enrichment of the CD133+ liver cells from rat fetal liver as a source of liver stem/progenitor cells.

    PubMed

    Liu, Weihui; You, Nan; Dou, Kefeng

    2012-01-01

    Although stem cells are commonly isolated by fluorescence-activated cell sorting or magnetic affinity cell sorting, they are very expensive, and they need known markers. However, there is no specific marker for liver stem/progenitor cells (LSPCs). Here, we describe a convenient and efficient method (three-step method) to enrich LSPCs. The fetal liver cells (FLCs) were firstly enriched by Percoll discontinuous gradient centrifugation from the rat fetal liver. Then the FLCs in culture were purified to be homogeneous in size by differential trypsinization and differential adherence. Finally, fetal liver stem/progenitor cells (FLSPCs) were enriched from purified FLCs by Percoll continuous gradient centrifugation. Flow cytometric analysis combining with marker CD133 was used to detect the purity of FLSPCs and evaluate the isolating effects of the three-step method.

  8. Impact of intracoronary injection of CD133+ bone marrow stem cells on coronary atherosclerotic progression in patients with STEMI: a COMPARE-AMI IVUS substudy.

    PubMed

    Qiu, Fuyu; Maehara, Akiko; El Khoury, Ramez; Généreux, Philippe; LaSalle, Laura; Mintz, Gary S; Noiseux, Nicolas; Roy, Denis-Claude; Gobeil, François; Stevens, Louis-Mathieu; Reeves, François; Leclerc, Guy; Rivard, Alain; Mansour, Samer

    2016-01-01

    Adverse effects of intracoronary injection of stem cells on in-stent restenosis and atherosclerotic progression remain unclear. We sought to evaluate the adverse effects of intracoronary injection of CD133 cells on in-stent restenosis and atherosclerotic progression in the infarct-related and contralateral arteries using serial intravascular ultrasound (IVUS) analysis. Baseline and 4-month follow-up IVUS images were obtained from 17 patients treated with intracoronary stem cell injection and 20 placebo patients after primary percutaneous coronary intervention in the COMPARE-AMI trial. In the infarct-related artery, the stented segment, 5 mm proximal and distal reference segments, and proximal and distal nonstented segments were analyzed every 1 mm; the entire segment of a contralateral artery was also analyzed every 1 mm. In the infarct-related artery analysis, the median percentage of in-stent neointimal hyperplasia (12.1 vs. 7.6%, P=0.95), the reduction in the minimum lumen area (MLA; -1.6 vs. -1.5 mm(2), P=0.97), and the MLA at follow-up (4.3 vs. 5.3 mm(2), P=0.21) were found to be similar between the stem cell and placebo groups. Changes in proximal and distal nonstented segment lumen areas and plaque burden were also similar between the stem cell and placebo groups; however, there was a decrease in the maximum arc of the attenuated plaque behind the stent from baseline to follow-up in the placebo group (P=0.004), but not in the stem cell group. In the contralateral artery, there were no differences in changes in MLA, plaque burden, or attenuated plaque between stem cell and placebo patients. Intracoronary injection of CD133(+) bone marrow stem cells has no IVUS-detectable effect on neointimal hyperplasia or atherosclerosis progression in either infarct-related or contralateral arteries.

  9. Differential gene expression in glaucoma.

    PubMed

    Jakobs, Tatjana C

    2014-07-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.

  10. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  11. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  12. Stochastic Mechanisms in Gene Expression

    NASA Astrophysics Data System (ADS)

    McAdams, Harley H.; Arkin, Adam

    1997-02-01

    In cellular regulatory networks, genetic activity is controlled by molecular signals that determine when and how often a given gene is transcribed. In genetically controlled pathways, the protein product encoded by one gene often regulates expression of other genes. The time delay, after activation of the first promoter, to reach an effective level to control the next promoter depends on the rate of protein accumulation. We have analyzed the chemical reactions controlling transcript initiation and translation termination in a single such ``genetically coupled'' link as a precursor to modeling networks constructed from many such links. Simulation of the processes of gene expression shows that proteins are produced from an activated promoter in short bursts of variable numbers of proteins that occur at random time intervals. As a result, there can be large differences in the time between successive events in regulatory cascades across a cell population. In addition, the random pattern of expression of competitive effectors can produce probabilistic outcomes in switching mechanisms that select between alternative regulatory paths. The result can be a partitioning of the cell population into different phenotypes as the cells follow different paths. There are numerous unexplained examples of phenotypic variations in isogenic populations of both prokaryotic and eukaryotic cells that may be the result of these stochastic gene expression mechanisms.

  13. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  14. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.

  15. (64)Cu-ATSM therapy targets regions with activated DNA repair and enrichment of CD133(+) cells in an HT-29 tumor model: Sensitization with a nucleic acid antimetabolite.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Matsumoto, Hiroki; Yoshimoto, Mitsuyoshi; Kiyono, Yasushi; Zhang, Ming-Rong; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2016-06-28

    (64)Cu-diacetyl-bis (N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) is a potential theranostic agent targeting the over-reduced state under hypoxia within tumors. Recent clinical Cu-ATSM positron emission tomography studies have revealed a correlation between uptake and poor prognosis; however, the reason is unclear. Here, using a human colon carcinoma HT-29 model, we demonstrated that the intratumoral (64)Cu-ATSM high-uptake regions exhibited malignant characteristics, such as upregulated DNA repair and elevated %CD133(+) cancer stem-like cells. Based on this evidence, we developed a strategy to enhance the efficacy of (64)Cu-ATSM internal radiotherapy (IRT) by inhibiting DNA repair with a nucleic acid (NA) antimetabolite. The results of the analyses showed upregulation of pathways related to DNA repair along with NA incorporation (bromodeoxyuridine uptake) and elevation of %CD133(+) cells in (64)Cu-ATSM high-uptake regions. In an in vivo(64)Cu-ATSM treatment study, co-administration of an NA antimetabolite and (64)Cu-ATSM synergistically inhibited tumor growth, with little toxicity, and effectively reduced %CD133(+) cells. (64)Cu-ATSM therapy targeted malignant tumor regions with activated DNA repair and high concentrations of CD133(+) cells in the HT-29 model. NA antimetabolite co-administration can be an effective approach to enhance the therapeutic effect of (64)Cu-ATSM IRT.

  16. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  17. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman's syndrome and endometrial atrophy: a pilot cohort study.

    PubMed

    Santamaria, Xavier; Cabanillas, Sergio; Cervelló, Irene; Arbona, Cristina; Raga, Francisco; Ferro, Jaime; Palmero, Julio; Remohí, Jose; Pellicer, Antonio; Simón, Carlos

    2016-05-01

    Could cell therapy using autologous peripheral blood CD133+ bone marrow-derived stem cells (BMDSCs) offer a safe and efficient therapeutic approach for patients with refractory Asherman's syndrome (AS) and/or endometrial atrophy (EA) and a wish to conceive? In the first 3 months, autologous cell therapy, using CD133+ BMDSCs in conjunction with hormonal replacement therapy, increased the volume and duration of menses as well as the thickness and angiogenesis processes of the endometrium while decreasing intrauterine adhesion scores. AS is characterized by the presence of intrauterine adhesions and EA prevents the endometrium from growing thicker than 5 mm, resulting in menstruation disorders and infertility. Many therapies have been attempted for these conditions, but none have proved effective. This was a prospective, experimental, non-controlled study. There were 18 patients aged 30-45 years with refractory AS or EA were recruited, and 16 of these completed the study. Medical history, physical examination, endometrial thickness, intrauterine adhesion score and neoangiogenesis were assessed before and 3 and 6 months after cell therapy. After the initial hysteroscopic diagnosis, BMDSC mobilization was performed by granulocyte-CSF injection, then CD133+ cells were isolated through peripheral blood aphaeresis to obtain a mean of 124.39 million cells (range 42-236), which were immediately delivered into the spiral arterioles by catheterization. Subsequently, endometrial treatment after stem cell therapy was assessed in terms of restoration of menses, endometrial thickness (by vaginal ultrasound), adhesion score (by hysteroscopy), neoangiogenesis and ongoing pregnancy rate. The study was conducted at Hospital Clínico Universitario of Valencia and IVI Valencia (Spain). All 11 AS patients exhibited an improved uterine cavity 2 months after stem cell therapy. Endometrial thickness increased from an average of 4.3 mm (range 2.7-5) to 6.7 mm (range 3.1-12) ( ITALIC! P = 0

  18. Accelerated Variant of Idiopathic Pulmonary Fibrosis: Clinical Behavior and Gene Expression Pattern

    PubMed Central

    Selman, Moisés; Carrillo, Guillermo; Estrada, Andrea; Mejia, Mayra; Becerril, Carina; Cisneros, José; Gaxiola, Miguel; Pérez-Padilla, Rogelio; Navarro, Carmen; Richards, Thomas; Dauber, James; King, Talmadge E.; Pardo, Annie; Kaminski, Naftali

    2007-01-01

    Background Idiopathic pulmonary fibrosis (IPF) is characterized by the insidious onset of dyspnea or cough. However, a subset of patients has a short duration of symptoms with rapid progression to end-stage disease. In this study, we evaluated clinical and molecular features of “rapid” and “slow” progressors with IPF. Methods and Findings 26 patients with <6 months of symptoms before first presentation [rapid progressors] and 88 patients with >24 months of symptoms [slow progressors] were studied. Survival was analyzed by the Kaplan-Meyer method and proportional hazard's model. Lung microarrays and tissue proteins were measured in a subset of patients. No differences were found in age, physiologic impairment and bronchoalveolar lavage (BAL) cellular profile. There were more males (OR = 6.5; CI:1.4-29.5; p = 0.006) and smokers (OR = 3.04; CI:1.1-8.3; p = 0.04) in the rapid progressors group. Survival from the beginning of symptoms was significantly reduced in rapid progressors (HR = 9.0; CI:4.48-18.3; p<0.0001) and there was a tendency for decreased survival from the time of diagnosis (HR = 1.5; CI:0.81-2.87; p = 0.18). We identified 437 differentially expressed genes. Lungs of rapid progressors overexpressed genes involved in morphogenesis, oxidative stress, migration/proliferation, and genes from fibroblasts/smooth muscle cells. Upregulation of two of these genes, adenosine-2B receptor and prominin-1/CD133, was validated by immunohistochemistry and were expressed by alveolar epithelial cells. BAL from rapid progressors showed a >2-fold increase of active matrix metalloproteinase-9, and induced a higher fibroblast migration compared with slow progressors and controls [238±98% versus 123±29% (p<0.05) and 30±17% (p<0.01)]. Conclusions/Significance A subgroup of IPF patients, predominantly smoking males, display an accelerated clinical course and have a gene expression pattern that is different from those with slower progression

  19. Regulation of ABO gene expression.

    PubMed

    Kominato, Yoshihiko; Hata, Yukiko; Matsui, Kazuhiro; Takizawa, Hisao

    2005-07-01

    The ABO blood group system is important in blood transfusions and in identifying individuals during criminal investigations. Two carbohydrate antigens, the A and B antigens, and their antibodies constitute this system. Although biochemical and molecular genetic studies have demonstrated the molecular basis of the histo-blood group ABO system, some aspects remain to be elucidated. To explain the molecular basis of how the ABO genes are controlled in cell type-specific expression, during normal cell differentiation, and in cancer cells with invasive and metastatic potential that lack A/B antigens, it is essential to understand the regulatory mechanism of ABO gene transcription. We review the transcriptional regulation of the ABO gene, including positive and negative elements in the upstream region of the gene, and draw some inferences that help to explain the phenomena described above.

  20. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  1. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  2. Human Cord Blood-Derived CD133(+)/C-Kit(+)/Lin(-) Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells.

    PubMed

    Cardenas, Carlos; Kwon, Ja-Young; Maeng, Yong-Sun

    2016-01-01

    Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs or are a mixture of cell lineage-determined progenitors of MSCs or OECs. Here, using CD133(+)/C-kit(+)/Lin(-) mononuclear cells (CKL- cells) isolated from human umbilical cord blood using magnetic cell sorting, we characterized the potency of MNC differentiation. We first found that CKL- cells cultured with conditioned medium of OECs or MSCs differentiated into OECs or MSCs and this differentiation was also induced by cell-to-cell contact. When we cultured single CKL- cells on OEC- or MSC-conditioned medium, the cells differentiated morphologically and genetically into OEC- or MSC-like cells, respectively. Moreover, we confirmed that OECs or MSCs differentiated from CKL- cells had the ability to form capillary-like structures in Matrigel and differentiate into osteoblasts, chondrocytes, and adipocytes. Finally, using microarray analysis, we identified specific factors of OECs or MSCs that could potentially be involved in the differentiation fate of CKL- cells. Together, these results suggest that cord blood-derived CKL- cells possess at least bipotential differentiation capacity toward MSCs or OECs.

  3. Human Cord Blood-Derived CD133+/C-Kit+/Lin− Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells

    PubMed Central

    Cardenas, Carlos; Kwon, Ja-Young

    2016-01-01

    Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs or are a mixture of cell lineage-determined progenitors of MSCs or OECs. Here, using CD133+/C-kit+/Lin− mononuclear cells (CKL− cells) isolated from human umbilical cord blood using magnetic cell sorting, we characterized the potency of MNC differentiation. We first found that CKL− cells cultured with conditioned medium of OECs or MSCs differentiated into OECs or MSCs and this differentiation was also induced by cell-to-cell contact. When we cultured single CKL− cells on OEC- or MSC-conditioned medium, the cells differentiated morphologically and genetically into OEC- or MSC-like cells, respectively. Moreover, we confirmed that OECs or MSCs differentiated from CKL− cells had the ability to form capillary-like structures in Matrigel and differentiate into osteoblasts, chondrocytes, and adipocytes. Finally, using microarray analysis, we identified specific factors of OECs or MSCs that could potentially be involved in the differentiation fate of CKL− cells. Together, these results suggest that cord blood-derived CKL− cells possess at least bipotential differentiation capacity toward MSCs or OECs. PMID:28074098

  4. Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)

    PubMed Central

    Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis

    2016-01-01

    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies. PMID:27701459

  5. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  6. Does FACS perturb gene expression?

    PubMed

    Richardson, Graham M; Lannigan, Joanne; Macara, Ian G

    2015-02-01

    Fluorescence activated cell sorting is the technique most commonly used to separate primary mammary epithelial sub-populations. Many studies incorporate this technique before analyzing gene expression within specific cellular lineages. However, to our knowledge, no one has examined the effects of fluorescence activated cell sorting (FACS) separation on short-term transcriptional profiles. In this study, we isolated a heterogeneous mixture of cells from the mouse mammary gland. To determine the effects of the isolation and separation process on gene expression, we harvested RNA from the cells before enzymatic digestion, following enzymatic digestion, and following a mock FACS sort where the entire cohort of cells was retained. A strict protocol was followed to minimize disruption to the cells, and to ensure that no subpopulations were enriched or lost. Microarray analysis demonstrated that FACS causes minimal disruptions to gene expression patterns, but prior steps in the mammary cell isolation process are followed by upregulation of 18 miRNA's and rapid decreases in their predicted target transcripts. © 2015 International Society for Advancement of Cytometry. © 2015 International Society for Advancement of Cytometry.

  7. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/.

  8. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  9. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  10. Noise in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Blake, William J.; KÆrn, Mads; Cantor, Charles R.; Collins, J. J.

    2003-04-01

    Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.

  11. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    PubMed

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  12. Harnessing Gene Expression Networks to Prioritize Candidate Epileptic Encephalopathy Genes

    PubMed Central

    Oliver, Karen L.; Lukic, Vesna; Thorne, Natalie P.; Berkovic, Samuel F.; Scheffer, Ingrid E.; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets. PMID:25014031

  13. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  14. [Neuronal plasticity and gene expression].

    PubMed

    Sokolova, O O; Shtark, M B; Lisachev, P D

    2010-01-01

    Neuronal plasticity--a fundamental feature of brain--provides adequate interactions with dynamic environment. One of the most deeply investigated forms of the neuronal plasticity is a long-term potentiation (LTP)--a phenomenon underlying learning and memory. Signal paths activated during LTP converge into the nuclear of the neuron, giving rise to launch of the molecular-genetic programs, which mediate structural and functional remodeling of synapses. In the review data concerning involvement of multilevel gene expression into plastic change under neuronal activation are summarized.

  15. Does inbreeding affect gene expression in birds?

    PubMed

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-09-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular.

  16. Crosstalk-eliminated quantitative determination of aflatoxin B1-induced hepatocellular cancer stem cells based on concurrent monitoring of CD133, CD44, and aldehyde dehydrogenase1.

    PubMed

    Ju, Hee; Shim, Yumi; Arumugam, Parthasarathy; Song, Joon Myong

    2016-01-22

    Cancer stem cells (CSCs), known as tumor initiating cells, have become a critically important issue for cancer therapy. Although much research has demonstrated the induction of hepato cellular carcinoma by aflatoxin B1, the formation of hepatocellular CSCs and their quantitative determination is hardly reported. In this work, it was found that hepatocellular CSCs were produced from HepG2 cells by aflatoxin B1-induced mutation, and their amount was quantitatively determined using crosstalk-eliminated multicolor cellular imaging based on quantum dot (Qdot) nanoprobes and an acousto-optical tunable filter (AOTF). Hepatocellular CSCs were acquired via magnetic bead-based sorting and observed using concurrent detection of three different markers: CD133, CD44, and aldehyde dehydrogenase1 (ALDH1). The DNA mutation of HepG2 cells caused by aflatoxin B1 was quantitatively observed via absorbance spectra of aflatoxin B1-8, 9-epoxide-DNA adducts. The percentages of hepatocellular CSCs formed in the entire HepG2 cells were determined to be 9.77±0.65%, 10.9±1.39%, 11.4±1.32%, and 12.8±0.7%, respectively, at 0 μM, 5 μM, 10 μM, and 20 μM of aflatoxin B1. The results matched well with those obtained utilizing flow cytometry. This study demonstrates that aflatoxin mediated mutation induced the conversion of hepatic cancer cell to hepatic CSCs by using a Qdot based constructed multicolor cellular imaging system.

  17. Mechanoregulation of gene expression in fibroblasts

    PubMed Central

    Wang, James H.-C.; Thampatty, Bhavani P.; Lin, Jeen-Shang; Im, Hee-Jeong

    2010-01-01

    Mechanical loads placed on connective tissues alter gene expression in fibroblasts through mechanotransduction mechanisms by which cells convert mechanical signals into cellular biological events, such as gene expression of extracellular matrix components (e.g., collagen). This mechanical regulation of ECM gene expression affords maintenance of connective tissue homeostasis. However, mechanical loads can also interfere with homeostatic cellular gene expression and consequently cause the pathogenesis of connective tissue diseases such as tendinopathy and osteoarthritis. Therefore, the regulation of gene expression by mechanical loads is closely related to connective tissue physiology and pathology. This article reviews the effects of various mechanical loading conditions on gene regulation in fibroblasts and discusses several mechanotransduction mechanisms. Future research directions in mechanoregulation of gene expression are also suggested. PMID:17331678

  18. Differential Gene Expression in Human Cerebrovascular Malformations

    PubMed Central

    Shenkar, Robert; Elliott, J. Paul; Diener, Katrina; Gault, Judith; Hu, Ling-Jia; Cohrs, Randall J.; Phang, Tzulip; Hunter, Lawrence; Breeze, Robert E.; Awad, Issam A.

    2009-01-01

    OBJECTIVE We sought to identify genes with differential expression in cerebral cavernous malformations (CCMs), arteriovenous malformations (AVMs), and control superficial temporal arteries (STAs) and to confirm differential expression of genes previously implicated in the pathobiology of these lesions. METHODS Total ribonucleic acid was isolated from four CCM, four AVM, and three STA surgical specimens and used to quantify lesion-specific messenger ribonucleic acid expression levels on human gene arrays. Data were analyzed with the use of two separate methodologies: gene discovery and confirmation analysis. RESULTS The gene discovery method identified 42 genes that were significantly up-regulated and 36 genes that were significantly down-regulated in CCMs as compared with AVMs and STAs (P = 0.006). Similarly, 48 genes were significantly up-regulated and 59 genes were significantly down-regulated in AVMs as compared with CCMs and STAs (P = 0.006). The confirmation analysis showed significant differential expression (P < 0.05) in 11 of 15 genes (angiogenesis factors, receptors, and structural proteins) that previously had been reported to be expressed differentially in CCMs and AVMs in immunohistochemical analysis. CONCLUSION We identify numerous genes that are differentially expressed in CCMs and AVMs and correlate expression with the immunohistochemistry of genes implicated in cerebrovascular malformations. In future efforts, we will aim to confirm candidate genes specifically related to the pathobiology of cerebrovascular malformations and determine their biological systems and mechanistic relevance. PMID:12535382

  19. Norovirus gene expression and replication.

    PubMed

    Thorne, Lucy G; Goodfellow, Ian G

    2014-02-01

    Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.

  20. Differential gene detection incorporating common expression patterns

    NASA Astrophysics Data System (ADS)

    Oba, Shigeyuki; Ishii, Shin

    2009-12-01

    In detection of differentially expressed (DE) genes between different groups of samples based on a high-throughput expression measurement system, we often use a classical statistical testing based on a simple assumption that the expression of a certain DE gene in one group is higher or lower in average than that in the other group. Based on this simple assumption, the theory of optimal discovery procedure (ODP) (Storey, 2005) provided an optimal thresholding function for DE gene detection. However, expression patterns of DE genes over samples may have such a structure that is not exactly consistent with group labels assigned to the samples. Appropriate treatment of such a structure can increase the detection ability. Namely, genes showing similar expression patterns to other biologically meaningful genes can be regarded as statistically more significant than those showing expression patterns independent of other genes, even if differences in mean expression levels are comparable. In this study, we propose a new statistical thresholding function based on a latent variable model incorporating expression patterns together with the ODP theory. The latent variable model assumes hidden common signals behind expression patterns over samples and the ODP theory is extended to involve the latent variables. When applied to several gene expression data matrices which include cluster structures or 'cancer outlier' structures, the newly-proposed thresholding functions showed prominently better detection performance of DE genes than the original ODP thresholding function did. We also demonstrate how the proposed methods behave through analyses of real breast cancer and lymphoma datasets.

  1. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  2. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  3. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  4. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  5. Amplification of kinetic oscillations in gene expression

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. P.

    2008-10-01

    Because of the feedbacks between the DNA transcription and mRNA translation, the gene expression in cells may exhibit bistability and oscillations. The deterministic and stochastic calculations presented illustrate how the bistable kinetics of expression of one gene in a cell can be influenced by the kinetic oscillations in the expression of another gene. Due to stability of the states of the bistable kinetics of gene 1 and the relatively small difference between the maximum and minimum protein amounts during the oscillations of gene 2, the induced oscillations of gene 1 are found to typically be related either to the low-or high-reactive state of this gene. The quality of the induced oscillations may be appreciably better than that of the inducing oscillations. This means that gene 1 can serve as an amplifier of the kinetic oscillations of gene 2.

  6. Gene expression inference with deep learning.

    PubMed

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Estimation and Testing of Gene Expression Heterosis

    PubMed Central

    Liu, Peng; Nettleton, Dan

    2014-01-01

    Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid off-spring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. To address these shortcomings, we develop a hierarchical model to borrow information across genes. Using our modeling framework, we derive empirical Bayes estimators and an inference strategy to identify gene expression heterosis. Simulation results show that our proposed method outperforms the more traditional strategy used to detect gene expression heterosis. This article has supplementary material online. PMID:25435758

  8. Estimation and Testing of Gene Expression Heterosis.

    PubMed

    Ji, Tieming; Liu, Peng; Nettleton, Dan

    2014-09-01

    Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid off-spring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. To address these shortcomings, we develop a hierarchical model to borrow information across genes. Using our modeling framework, we derive empirical Bayes estimators and an inference strategy to identify gene expression heterosis. Simulation results show that our proposed method outperforms the more traditional strategy used to detect gene expression heterosis. This article has supplementary material online.

  9. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  10. Magnetofection Based on Superparamagnetic Iron Oxide Nanoparticles Weakens Glioma Stem Cell Proliferation and Invasion by Mediating High Expression of MicroRNA-374a

    PubMed Central

    Pan, Zhiguang; Shi, Zhifeng; Wei, Hua; Sun, Fengyan; Song, Jianping; Huang, Yongyi; Liu, Te; Mao, Ying

    2016-01-01

    Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133+ primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfection and expression of a microRNA-374a overexpression plasmid in the glioma stem cells. Transmission electron microscopy detected the presence of significant magnetic nanoparticle substances within the CD133+ glioma stem cells after transfection. The qRT-PCR and Northern blot results showed that the magnetic nanoparticles could be used to achieve the transfection of the microRNA-374a overexpression plasmid into glioma stem cells and the efficient expression of mature microRNA-374a. The MTT and flow cytometry results showed that the proliferation inhibition rate was significantly higher in cells from the microRNA-374a transfection group than in cells from the microRNA-mut transfection group; additionally, the former cells presented significant cell cycle arrest. The Transwell experiments confirmed that the overexpression of microRNA-374a could significantly reduce the invasiveness of CD133+ glioma stem cells. Moreover, the high expression of microRNA-374a mediated by the magnetic nanoparticles effectively reduced the tumourigenicity of CD133+ glioma stem cells in nude mice. The luciferase assays revealed that mature microRNA-374a fragments could bind to the 3'UTR of Neuritin (NRN1), thereby interfering with Neuritin mRNA expression. The qRT-PCR and Western blotting results showed that the overexpression of microRNA-374a significantly reduced the expression of genes such as NRN1, CCND1, CDK4 and Ki67 in glioma stem cells. Thus, magnetic nanoparticles can efficiently mediate the transfection and expression of microRNA expression plasmids in mammalian cells. The overexpression of

  11. Integrating phenotype and gene expression data for predicting gene function.

    PubMed

    Malone, Brandon M; Perkins, Andy D; Bridges, Susan M

    2009-10-08

    This paper presents a framework for integrating disparate data sets to predict gene function. The algorithm constructs a graph, called an integrated similarity graph, by computing similarities based upon both gene expression and textual phenotype data. This integrated graph is then used to make predictions about whether individual genes should be assigned a particular annotation from the Gene Ontology. A combined graph was generated from publicly-available gene expression data and phenotypic information from Saccharomyces cerevisiae. This graph was used to assign annotations to genes, as were graphs constructed from gene expression data and textual phenotype information alone. While the F-measure appeared similar for all three methods, annotations based upon the integrated similarity graph exhibited a better overall precision than gene expression or phenotype information alone can generate. The integrated approach was also able to assign almost as many annotations as the gene expression method alone, and generated significantly more total and correct assignments than the phenotype information could provide. These results suggest that augmenting standard gene expression data sets with publicly-available textual phenotype data can help generate more precise functional annotation predictions while mitigating the weaknesses of a standard textual phenotype approach.

  12. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  13. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  14. Expression of Sox genes in tooth development.

    PubMed

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  15. Cell cycle regulated gene expression in yeasts.

    PubMed

    McInerny, Christopher J

    2011-01-01

    The regulation of gene expression through the mitotic cell cycle, so that genes are transcribed at particular cell cycle times, is widespread among eukaryotes. In some cases, it appears to be important for control mechanisms, as deregulated expression results in uncontrolled cell divisions, which can cause cell death, disease, and malignancy. In this review, I describe the current understanding of such regulated gene expression in two established simple eukaryotic model organisms, the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In these two yeasts, the global pattern of cell cycle gene expression has been well described, and most of the transcription factors that control the various waves of gene expression, and how they are in turn themselves regulated, have been characterized. As related mechanisms occur in all other eukaryotes, including humans, yeasts offer an excellent paradigm to understand this important molecular process. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Expression of Sox genes in tooth development

    PubMed Central

    KAWASAKI, KATSUSHIGE; KAWASAKI, MAIKO; WATANABE, MOMOKO; IDRUS, ERIK; NAGAI, TAKAHIRO; OOMMEN, SHELLY; MAEDA, TAKEYASU; HAGIWARA, NOBUKO; QUE, JIANWEN; SHARPE, PAUL T.; OHAZAMA, ATSUSHI

    2017-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development. PMID:26864488

  17. Gene set analysis for longitudinal gene expression data

    PubMed Central

    2011-01-01

    Background Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information) with accession number GSE6085. PMID

  18. Gene-Ontology-based clustering of gene expression data.

    PubMed

    Adryan, Boris; Schuh, Reinhard

    2004-11-01

    The expected correlation between genetic co-regulation and affiliation to a common biological process is not necessarily the case when numerical cluster algorithms are applied to gene expression data. GO-Cluster uses the tree structure of the Gene Ontology database as a framework for numerical clustering, and thus allowing a simple visualization of gene expression data at various levels of the ontology tree. The 32-bit Windows application is freely available at http://www.mpibpc.mpg.de/go-cluster/

  19. Gene Expression Profiling during Murine Tooth Development.

    PubMed

    Landin, Maria A Dos Santos Silva; Shabestari, Maziar; Babaie, Eshrat; Reseland, Janne E; Osmundsen, Harald

    2012-01-01

    The aim of this study was to describe the expression of genes, including ameloblastin (Ambn), amelogenin X chromosome (Amelx), and enamelin (Enam) during early (pre-secretory) tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24 h intervals, starting at the 11th embryonic day (E11.5), and up to the 7th day after birth (P7). The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx, and Enam). Microarray results where validated using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), and translated proteins identified by Western-blotting. In situ localization of the Ambn, Amelx, and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially expressed (DE; p ≤ 0.05) genes. Microarray results showed a total of 4362 genes including Ambn, Amelx, and Enam to be significant DE throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5-P0) increasing after birth (P1-P7). Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. These mRNAs were expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx, and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western-blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around 35 genes were associated with 15 transcription factors.

  20. Gene Expression Profiling during Murine Tooth Development

    PubMed Central

    Landin, Maria A. dos Santos Silva; Shabestari, Maziar; Babaie, Eshrat; Reseland, Janne E.; Osmundsen, Harald

    2012-01-01

    The aim of this study was to describe the expression of genes, including ameloblastin (Ambn), amelogenin X chromosome (Amelx), and enamelin (Enam) during early (pre-secretory) tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24 h intervals, starting at the 11th embryonic day (E11.5), and up to the 7th day after birth (P7). The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx, and Enam). Microarray results where validated using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), and translated proteins identified by Western-blotting. In situ localization of the Ambn, Amelx, and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially expressed (DE; p ≤ 0.05) genes. Microarray results showed a total of 4362 genes including Ambn, Amelx, and Enam to be significant DE throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5–P0) increasing after birth (P1–P7). Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. These mRNAs were expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx, and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western-blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around 35 genes were associated with 15 transcription factors. PMID:22866057

  1. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Photosynthetic gene expression in higher plants.

    PubMed

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  3. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  4. Portrait of Ependymoma Recurrence in Children: Biomarkers of Tumor Progression Identified by Dual-Color Microarray-Based Gene Expression Analysis

    PubMed Central

    Andreiuolo, Felipe; Puget, Stéphanie; Lacroix, Ludovic; Drusch, Françoise; Scott, Véronique; Varlet, Pascale; Mauguen, Audrey; Dessen, Philippe; Lazar, Vladimir; Vassal, Gilles; Grill, Jacques

    2010-01-01

    Background Children with ependymoma may experience a relapse in up to 50% of cases depending on the extent of resection. Key biological events associated with recurrence are unknown. Methodology/Principal Findings To discover the biology behind the recurrence of ependymomas, we performed CGHarray and a dual-color gene expression microarray analysis of 17 tumors at diagnosis co-hybridized with the corresponding 27 first or subsequent relapses from the same patient. As treatment and location had only limited influence on specific gene expression changes at relapse, we established a common signature for relapse. Eighty-seven genes showed an absolute fold change ≥2 in at least 50% of relapses and were defined as the gene expression signature of ependymoma recurrence. The most frequently upregulated genes are involved in the kinetochore (ASPM, KIF11) or in neural development (CD133, Wnt and Notch pathways). Metallothionein (MT) genes were downregulated in up to 80% of the recurrences. Quantitative PCR for ASPM, KIF11 and MT3 plus immunohistochemistry for ASPM and MT3 confirmed the microarray results. Immunohistochemistry on an independent series of 24 tumor pairs at diagnosis and at relapse confirmed the decrease of MT3 expression at recurrence in 17/24 tumor pairs (p = 0.002). Conversely, ASPM expression was more frequently positive at relapse (87.5% vs 37.5%, p = 0.03). Loss or deletion of the MT genes cluster was never observed at relapse. Promoter sequencing after bisulfite treatment of DNA from primary tumors and recurrences as well as treatment of short-term ependymoma cells cultures with a demethylating agent showed that methylation was not involved in MT3 downregulation. However, in vitro treatment with a histone deacetylase inhibitor or zinc restored MT3 expression. Conclusions/Significance The most frequent molecular events associated with ependymoma recurrence were over-expression of kinetochore proteins and down-regulation of metallothioneins

  5. Improved Mobilization of the CD34+ and CD133+ Bone Marrow-Derived Circulating Progenitor Cells by Freshly Isolated Intracoronary Bone Marrow Cell Transplantation in Patients with Ischemic Heart Disease

    PubMed Central

    Bozdag-Turan, Ilkay; Ortak, Jasmin; Akin, Ibrahim; Kische, Stephan; Schneider, Henrik; Turan, Cem Hakan; Rehders, Tim Christopher; Rauchhaus, Mathias; Kleinfeldt, Tilo; Adolph, Ester; Brehm, Micheal; Yokus, Sedat; Steiner, Stephan; Sahin, Kurtulus; Nienaber, Christoph A.; Ince, Hüseyin

    2011-01-01

    Cell therapy is a promising novel option for treatment of cardiovascular disease. Because the role of bone marrow-derived circulating progenitor cells (BM-CPCs) after cell therapy is less clear, we analyzed in this randomized, controlled study the influence of intracoronary autologous freshly isolated bone marrow cell transplantation (BMC-Tx) by using a point-of-care system on cardiac function and on the mobilization of BM-CPCs in patients with ischemic heart disease (IHD). Fifty-six patients with IHD were randomized to either receive freshly isolated BMC-Tx or a control group that did not receive cell therapy. Peripheral blood concentrations of CD34/45+ and CD133/45+ CPCs were measured by flow cytometry pre-, immediately post-, and at 3, 6, and 12 months postprocedure in both groups. Global ejection fraction and the size of infarct area were determined by left ventriculography. We observed in patients with IHD after intracoronary transplantation of autologous freshly isolated BMCs-Tx at 3 and 12 months follow-up a significant reduction of the size of infarct area and increase of global ejection fraction as well as infarct wall movement velocity. The mobilization of CD34/45+ and CD133/45+ BM-CPCs significantly increased at 3, 6, and 12 months after cell therapy when compared with baseline in patients with IHD, although no significant changes were observed between pre- and immediately postintracoronary cell therapy administration. In the control group without cell therapy, there was no significant difference of CD34/45+ and CD133/45+ BM-CPCs mobilization between pre- and at 3, 6, and 12 months postcoronary angiography. Intracoronary transplantation of autologous freshly isolated BMCs by using a point-of-care system in patients with IHD may enhance and prolong the mobilization of CD34/45+ and CD133/45+ BM-CPCs in peripheral blood and this might increase the regenerative potency in IHD. PMID:21190450

  6. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  7. The functional landscape of mouse gene expression

    PubMed Central

    Zhang, Wen; Morris, Quaid D; Chang, Richard; Shai, Ofer; Bakowski, Malina A; Mitsakakis, Nicholas; Mohammad, Naveed; Robinson, Mark D; Zirngibl, Ralph; Somogyi, Eszter; Laurin, Nancy; Eftekharpour, Eftekhar; Sat, Eric; Grigull, Jörg; Pan, Qun; Peng, Wen-Tao; Krogan, Nevan; Greenblatt, Jack; Fehlings, Michael; van der Kooy, Derek; Aubin, Jane; Bruneau, Benoit G; Rossant, Janet; Blencowe, Benjamin J; Frey, Brendan J; Hughes, Timothy R

    2004-01-01

    Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics. PMID:15588312

  8. Gene expression in the etiology of schizophrenia.

    PubMed

    Bray, Nicholas J

    2008-05-01

    Gene expression represents a fundamental interface between genes and environment in the development and ongoing plasticity of the human brain. Individual differences in gene expression are likely to underpin much of human diversity, including psychiatric illness. In the past decade, the development of microarray and proteomic technology has enabled global description of gene expression in schizophrenia. However, it is difficult on the basis of gene expression assays alone to distinguish between those changes that constitute primary etiology and those that reflect secondary pathology, compensatory mechanisms, or confounding influences. In this respect, tests of genetic association with schizophrenia will be instructive because changes in gene expression that result from gene variants that are associated with the disorder are likely to be of primary etiological significance. However, regulatory polymorphism is extremely difficult to recognize on the basis of sequence interrogation alone. Functional assays at the messenger RNA and/or protein level will be essential in elucidating the molecular mechanisms underlying genetic association with schizophrenia and are likely to become increasingly important in the identification of regulatory variants with which to test for association with the disorder and related traits. Once established, etiologically relevant changes in gene expression can be recapitulated in model systems in order to elucidate the molecular and physiological pathways that may ultimately give rise to the condition.

  9. Noise minimisation in gene expression switches.

    PubMed

    Monteoliva, Diana; McCarthy, Christina B; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators.

  10. Noise Minimisation in Gene Expression Switches

    PubMed Central

    Monteoliva, Diana; McCarthy, Christina B.; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators. PMID:24376783

  11. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  12. Regulation of Flagellar Gene Expression in Bacteria.

    PubMed

    Osterman, I A; Dikhtyar, Yu Yu; Bogdanov, A A; Dontsova, O A; Sergiev, P V

    2015-11-01

    The flagellum of a bacterium is a supramolecular structure of extreme complexity comprising simultaneously both a unique system of protein transport and a molecular machine that enables the bacterial cell movement. The cascade of expression of genes encoding flagellar components is closely coordinated with the steps of molecular machine assembly, constituting an amazing regulatory system. Data on structure, assembly, and regulation of flagellar gene expression are summarized in this review. The regulatory mechanisms and correlation of the process of regulation of gene expression and flagellum assembly known from the literature are described.

  13. Gene Expression Patterns in Human Liver Cancers

    PubMed Central

    Chen, Xin; Cheung, Siu Tim; So, Samuel; Fan, Sheung Tat; Barry, Christopher; Higgins, John; Lai, Kin-Man; Ji, Jiafu; Dudoit, Sandrine; Ng, Irene O.L.; van de Rijn, Matt; Botstein, David; Brown, Patrick O.

    2002-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Using cDNA microarrays to characterize patterns of gene expression in HCC, we found consistent differences between the expression patterns in HCC compared with those seen in nontumor liver tissues. The expression patterns in HCC were also readily distinguished from those associated with tumors metastatic to liver. The global gene expression patterns intrinsic to each tumor were sufficiently distinctive that multiple tumor nodules from the same patient could usually be recognized and distinguished from all the others in the large sample set on the basis of their gene expression patterns alone. The distinctive gene expression patterns are characteristic of the tumors and not the patient; the expression programs seen in clonally independent tumor nodules in the same patient were no more similar than those in tumors from different patients. Moreover, clonally related tumor masses that showed distinct expression profiles were also distinguished by genotypic differences. Some features of the gene expression patterns were associated with specific phenotypic and genotypic characteristics of the tumors, including growth rate, vascular invasion, and p53 overexpression. PMID:12058060

  14. Digital gene expression signatures for maize development.

    PubMed

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  15. Sexual differences of imprinted genes' expression levels.

    PubMed

    Faisal, Mohammad; Kim, Hana; Kim, Joomyeong

    2014-01-01

    In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation. © 2013 Elsevier B.V. All rights reserved.

  16. Gene expression studies in multiple sclerosis.

    PubMed

    Tajouri, Lotti; Fernandez, Francesca; Griffiths, Lyn R

    2007-05-01

    Multiple sclerosis (MS) is a serious neurological disorder affecting young Caucasian individuals, usually with an age of onset at 18 to 40 years old. Females account for approximately 60x of MS cases and the manifestation and course of the disease is highly variable from patient to patient. The disorder is characterised by the development of plaques within the central nervous system (CNS). Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in MS. Human tissues and experimental mice were used in these gene-profiling studies and a very valuable and interesting set of data has resulted from these various expression studies. In general, genes showing variable expression include mainly immunological and inflammatory genes, stress and antioxidant genes, as well as metabolic and central nervous system markers. Of particular interest are a number of genes localised to susceptible loci previously shown to be in linkage with MS. However due to the clinical complexity of the disease, the heterogeneity of the tissues used in expression studies, as well as the variable DNA chips/membranes used for the gene profiling, it is difficult to interpret the available information. Although this information is essential for the understanding of the pathogenesis of MS, it is difficult to decipher and define the gene pathways involved in the disorder. Experiments in gene expression profiling in MS have been numerous and lists of candidates are now available for analysis. Researchers have investigated gene expression in peripheral mononuclear white blood cells (PBMCs), in MS animal models Experimental Allergic Encephalomyelitis (EAE) and post mortem MS brain tissues. This review will focus on the results of these studies.

  17. Increased plasma microRNA and CD133/CK18-positive cancer cells in the pleural fluid of a pancreatic cancer patient with liver and pleural metastases and correlation with chemoresistance.

    PubMed

    Ren, Chuanli; Chen, Hui; Han, Chongxu; Wang, Daxin; Fu, Deyuan

    2012-10-01

    We report a case of notably increased plasma levels of microRNA (miR)-21, miR-25, miR-103 and miR-151 in a pancreatic cancer patient with liver and pleural metastases. CD45-coated immunomagnetic beads detected an enrichment of malignant cancer cells in the pleural fluid, and CD133(+)CK18(+) cancer cells were identified. Using computer tomography (CT) combined with cancer cells stained in the pleural fluid, a previously healthy 60-year-old male was diagnosed with pancreatic cancer with multiple liver tumor metastases. Cancer antigen 19-9 (CA19-9), alkaline phosphatase (ALP) and γ-glutamate-transpeptidase (γ-GT) were notably increased in the serum, and carcinoembryonic antigen (CEA) was increased in the pleural fluid. The patient succumbed to the disease three months following standard chemotherapy. The increased levels of plasma miR-21, miR-25, miR-103 and miR-151, as well as the identification of CD133(+)CK18(+) cells in the pleural fluid of a pancreatic cancer patient with liver metastases, may regulate the molecular mechanisms involved in chemoresistance. The patient was insensitive to chemotherapy and succumbed 3 months later. Full elucidation of the molecular and pathological features of pancreatic cancer may be a novel strategy for diagnosis and tailored therapy.

  18. Unmasking ultradian rhythms in gene expression

    PubMed Central

    van der Veen, Daan R.; Gerkema, Menno P.

    2017-01-01

    Biological oscillations with an ultradian time scale of 1 to several hours include cycles in behavioral arousal, episodic glucocorticoid release, and gene expression. Ultradian rhythms are thought to have an extrinsic origin because of a perceived absence of ultradian rhythmicity in vitro and a lack of known molecular ultradian oscillators. We designed a novel, non–spectral-analysis method of separating ultradian from circadian components and applied it to a published gene expression dataset with an ultradian sampling resolution. Ultradian rhythms in mouse hepatocytes in vivo have been published, and we validated our approach using this control by confirming 175 of 323 ultradian genes identified in a prior study and found 862 additional ultradian genes. For the first time, we now report ultradian expression of >900 genes in vitro. Sixty genes exhibited ultradian transcriptional rhythmicity, both in vivo and in vitro, including 5 genes involved in the cell cycle. Within these 60 genes, we identified significant enrichment of specific DNA motifs in the 1000 bp proximal promotor, some of which associate with known transcriptional factors. These findings are in strong support of instrinsically driven ultradian rhythms and expose potential molecular mechanisms and functions underlying ultradian rhythms that remain unknown.—Van der Veen, D. R., Gerkema, M. P. Unmasking ultradian rhythms in gene expression. PMID:27871062

  19. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  20. Expression of polarity genes in human cancer.

    PubMed

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  1. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  2. Expression of Polarity Genes in Human Cancer

    PubMed Central

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function. PMID:25991909

  3. Dynamic modeling of gene expression data

    PubMed Central

    Holter, Neal S.; Maritan, Amos; Cieplak, Marek; Fedoroff, Nina V.; Banavar, Jayanth R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small. PMID:11172013

  4. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  5. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  6. A comparison of Affymetrix gene expression arrays.

    PubMed

    Robinson, Mark D; Speed, Terence P

    2007-11-15

    Affymetrix GeneChips are an important tool in many facets of biological research. Recently, notable design changes to the chips have been made. In this study, we use publicly available data from Affymetrix to gauge the performance of three human gene expression arrays: Human Genome U133 Plus 2.0 (U133), Human Exon 1.0 ST (HuEx) and Human Gene 1.0 ST (HuGene). We studied probe-, exon- and gene-level reproducibility of technical and biological replicates from each of the 3 platforms. The U133 array has larger feature sizes so it is no surprise that probe-level variances are smaller, however the larger number of probes per gene on the HuGene array seems to produce gene-level summaries that have similar variances. The gene-level summaries of the HuEx array are less reproducible than the other two, despite having the largest average number of probes per gene. Greater than 80% of the content on the HuEx arrays is expressed at or near background. Biological variation seems to have a smaller effect on U133 data. Comparing the overlap of differentially expressed genes, we see a high overall concordance among all 3 platforms, with HuEx and HuGene having greater overlap, as expected given their design. We performed an analysis of detection rates and area under ROC curves using an experiment made up of several mixtures of 2 human tissues. Though it appears that the HuEx array has worse performance in terms of detection rates, all arrays have similar ability to separate differentially expressed and non-differentially expressed genes. Despite noticeable differences in the probe-level reproducibility, gene-level reproducibility and differential expression detection are quite similar across the three platforms. The HuEx array, an all-encompassing array, has the flexibility of measuring all known or predicted exonic content. However, the HuEx array induces poorer reproducibility for genes with fewer exons. The HuGene measures just the well-annotated genome content and appears to

  7. Mucin gene expression in hypertrophic adenoids.

    PubMed

    Ali, Mahmoud S; Wilson, J A; Bennett, M; Pearson, Jeffrey P

    2007-10-01

    Membrane-bound mucin MUC4 represents the predominant mucin expressed in the adenoid epithelium followed by MUC5AC (gel-forming mucin). This may suggest that membrane-bound mucins could be involved in pathogen binding and immunological stimulation. The aim of this study was to investigate mucin expression in hypertrophic adenoids. Adenoidal samples were obtained from 12 children. The expression of eight mucin genes, MUC1-4, MUC5AC, 5B, 6 and 7 was studied by in situ hybridization utilizing digoxigenin-labelled oligonucleotide probes. The dominant mucin genes were MUC4, 3 and 5AC, while MUC1, 2, 5B and 7 were sparsely expressed and MUC6 was not expressed. Expression patterns were very different from those in the upper airways. Most samples expressed two membrane-bound mucins (MUC4 and 3) and one secretory mucin (MUC5AC).

  8. Mining Gene Expression Data of Multiple Sclerosis

    PubMed Central

    Zhu, Zhenli; Huang, Zhengliang; Li, Ke

    2014-01-01

    Objectives Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example. Materials and methods Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control) were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models’ performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined. Results An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score. Conclusions The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases. PMID:24932510

  9. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  10. Over Expression of BCL2 and Low Expression of Caspase 8 Related to TRAIL Resistance in Brain Cancer Stem Cells.

    PubMed

    Qi, Ling; Ren, Kuang; Fang, Fang; Zhao, Dong-Hai; Yang, Ning-Jiang; Li, Yan

    2015-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been investigated as an effective agent to treat various cancers. Cancer stem cells are resistant to TRAIL treatment, but the mechanism of TRAIL resistance remains unknown. In this study, brain cancer stem cells were isolated by CD133 magnetic sorting, and the number of CD133 positive cells detected by flow cytometry. The self-renewing capacity of brain cancer stem cells was examined by a neurosphere formation assay, and the percentage of cell death after TRAIL treatment was examined by an MTS assay. Expression of DR5, FADD, caspase 8 and BCL2 proteins was detected by western blot. The amount of CD133 positive cells was enriched to 71% after CD133 magnetic sorting. Brain cancer stem cell neurosphere formation was significantly increased after TRAIL treatment. TRAIL treatment also reduced the amount of viable cells and this decrease was inhibited by a caspase 8 inhibitor or by the pan-caspase inhibitor z-VAD (P<0.05). Brain cancer stem cells expressed lower levels caspase 8 protein and higher levels of BCL2 protein when compared with CD133 negative cells (P<0.05). Our data suggest that TRAIL resistance is related to overexpression of BCL2 and low expression of caspase 8 which limit activation of caspase 8 in brain cancer stem cells.

  11. Imputing gene expression to maximize platform compatibility.

    PubMed

    Zhou, Weizhuang; Han, Lichy; Altman, Russ B

    2017-02-15

    Microarray measurements of gene expression constitute a large fraction of publicly shared biological data, and are available in the Gene Expression Omnibus (GEO). Many studies use GEO data to shape hypotheses and improve statistical power. Within GEO, the Affymetrix HG-U133A and HG-U133 Plus 2.0 are the two most commonly used microarray platforms for human samples; the HG-U133 Plus 2.0 platform contains 54 220 probes and the HG-U133A array contains a proper subset (21 722 probes). When different platforms are involved, the subset of common genes is most easily compared. This approach results in the exclusion of substantial measured data and can limit downstream analysis. To predict the expression values for the genes unique to the HG-U133 Plus 2.0 platform, we constructed a series of gene expression inference models based on genes common to both platforms. Our model predicts gene expression values that are within the variability observed in controlled replicate studies and are highly correlated with measured data. Using six previously published studies, we also demonstrate the improved performance of the enlarged feature space generated by our model in downstream analysis.

  12. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  13. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  14. TRP genes family expression in colorectal cancer.

    PubMed

    Sozucan, Y; Kalender, M E; Sari, I; Suner, A; Oztuzcu, S; Arman, K; Yumrutas, O; Bozgeyik, I; Cengiz, B; Igci, Y Z; Balakan, O; Camci, C

    2015-09-01

    Colorectal cancer (CRC) is the most common cancer of the gastrointestinal tract. Different factors are responsible for the development of CRC. Transient Receptor Potential (TRP) which is an important component of calcium channel is associated with several pathological conditions like cancer, neurodegenerative and cardiovascular diseases. Thirty members of the family of TRP ion channel in mammals have been determined till now. The aim of this study is to investigate TRPM, TRPV and TRPC gene expression levels in tumor tissues of CRC patients and to analyze the relationship of expression in tumor tissue of CRC with other known prognostic factors. In this study, 93 CRC patients were included. The level of TRP gene expression in paraffin blocks of normal and cancerous colorectal tissue samples were studied at the level of mRNA with Real-time PCR. The mRNA expression level of TRPV3, TRPV4, TRPV5, TRPM4 and TRPC6 genes in 37 female and 56 male patients diagnosed with CRC was revealed lower in tumor tissue as compared to normal tissue (p < 0.05). No statistically significant differences of mRNA expression levels of other TRP genes were found. TRP gene family like TRPV3, TRPV4, TRPV5, TRPM4 and TRPC6 may be thought as potential genes contributing to tumorigenesis as their expression decreases in CRC as compared to normal tissues.

  15. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  16. Bayesian modeling of differential gene expression.

    PubMed

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  17. Gene expression changes in children with autism.

    PubMed

    Gregg, Jeffrey P; Lit, Lisa; Baron, Colin A; Hertz-Picciotto, Irva; Walker, Wynn; Davis, Ryan A; Croen, Lisa A; Ozonoff, Sally; Hansen, Robin; Pessah, Isaac N; Sharp, Frank R

    2008-01-01

    The objective of this study was to identify gene expression differences in blood differences in children with autism (AU) and autism spectrum disorder (ASD) compared to general population controls. Transcriptional profiles were compared with age- and gender-matched, typically developing children from the general population (GP). The AU group was subdivided based on a history of developmental regression (A-R) or a history of early onset (A-E without regression). Total RNA from blood was processed on human Affymetrix microarrays. Thirty-five children with AU (17 with early onset autism and 18 with autism with regression) and 14 ASD children (who did not meet criteria for AU) were compared to 12 GP children. Unpaired t tests (corrected for multiple comparisons with a false discovery rate of 0.05) detected a number of genes that were regulated more than 1.5-fold for AU versus GP (n=55 genes), for A-E versus GP (n=140 genes), for A-R versus GP (n=20 genes), and for A-R versus A-E (n=494 genes). No genes were significantly regulated for ASD versus GP. There were 11 genes shared between the comparisons of all autism subgroups to GP (AU, A-E, and A-R versus GP) and these genes were all expressed in natural killer cells and many belonged to the KEGG natural killer cytotoxicity pathway (p=0.02). A subset of these genes (n=7) was tested with qRT-PCR and all genes were found to be differentially expressed (p<0.05). We conclude that the gene expression data support emerging evidence for abnormalities in peripheral blood leukocytes in autism that could represent a genetic and/or environmental predisposition to the disorder.

  18. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  19. Resource Sharing Controls Gene Expression Bursting.

    PubMed

    Caveney, Patrick M; Norred, S Elizabeth; Chin, Charles W; Boreyko, Jonathan B; Razooky, Brandon S; Retterer, Scott T; Collier, C Patrick; Simpson, Michael L

    2017-02-17

    Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.

  20. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  1. Tonicity-regulated gene expression.

    PubMed

    Ferraris, Joan D; Burg, Maurice B

    2007-01-01

    Hypertonicity activates several different transcription factors, including TonEBP/OREBP, that in turn increase transcription of numerous genes. Hypertonicity elevates TonEBP/OREBP transcriptional activity by moving it into the nucleus, where it binds to its cognate DNA element (ORE), and by increasing its transactivational activity. This chapter presents protocols for measuring the transcriptional activity of TonEBP/OREBP and determining its subcellular localization, its binding to OREs, and activity of its transactivation domain.

  2. Modulation of imprinted gene expression following superovulation.

    PubMed

    Fortier, Amanda L; McGraw, Serge; Lopes, Flavia L; Niles, Kirsten M; Landry, Mylène; Trasler, Jacquetta M

    2014-05-05

    Although assisted reproductive technologies increase the risk of low birth weight and genomic imprinting disorders, the precise underlying causes remain unclear. Using a mouse model, we previously showed that superovulation alters the expression of imprinted genes in the placenta at 9.5days (E9.5) of gestation. Here, we investigate whether effects of superovulation on genomic imprinting persisted at later stages of development and assess the surviving fetuses for growth and morphological abnormalities. Superovulation, followed by embryo transfer at E3.5, as compared to spontaneous ovulation (controls), resulted in embryos of normal size and weight at 14.5 and 18.5days of gestation. The normal monoallelic expression of the imprinted genes H19, Snrpn and Kcnq1ot1 was unaffected in either the placentae or the embryos from the superovulated females at E14.5 or E18.5. However, for the paternally expressed imprinted gene Igf2, superovulation generated placentae with reduced production of the mature protein at E9.5 and significantly more variable mRNA levels at E14.5. We propose that superovulation results in the ovulation of abnormal oocytes with altered expression of imprinted genes, but that the coregulated genes of the imprinted gene network result in modulated expression. Copyright © 2014. Published by Elsevier Ireland Ltd.

  3. Vitamin D-mediated gene expression.

    PubMed

    Lowe, K E; Maiyar, A C; Norman, A W

    1992-01-01

    The steroid hormone 1,25(OH)2D3 modulates the expression of a wide variety of genes in a tissue- and developmentally specific manner. It is well established that 1,25(OH)2D3 can up- or downregulate the expression of genes involved in cell proliferation, differentiation, and mineral homeostasis. The hormone exerts its genomic effects via interactions with the vitamin D receptor or VDR, a member of the superfamily of hormone-activated nuclear receptors which can regulate eukaryotic gene expression. The ligand-bound receptor acts as a transcription factor that binds to specific DNA sequences, HREs, in target gene promoters. The DNA-binding domains of the steroid hormone receptors are highly conserved and contain two zinc-finger motifs that recognize the HREs. The spacing and orientation of the HRE half-sites, as well as the HRE sequence, are critical for proper discrimination by the various receptors. Other nuclear factors such as fos and jun can influence vitamin D-mediated gene expression. A wide range of experimental techniques has been used to increase our understanding of how 1,25(OH)2D3 and its receptor play a central role in gene expression.

  4. Gene Expression Analysis of Breast Cancer Progression

    DTIC Science & Technology

    2005-07-01

    representation of the retroviral vectors SFG-tdRFP-cmvFLuc, constitutively expressing tdRFP and firefly luciferase; and Cis-TGFD1-Smads- HSV1 - tk/GFP...AD Award Number: DAMD 17-02-1-0484 TITLE: Gene Expression Analysis of Breast Cancer Progression PRINCIPAL INVESTIGATOR: William L. Gerald, M.D., Ph.D...CONTRACT NUMBER Gene Expression Analysis of Breast Cancer Progression 5b. GRANT NUMBER DAMD17-02-1-0484 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 6d

  5. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage.

    PubMed

    Iantorno, Stefano A; Durrant, Caroline; Khan, Asis; Sanders, Mandy J; Beverley, Stephen M; Warren, Wesley C; Berriman, Matthew; Sacks, David L; Cotton, James A; Grigg, Michael E

    2017-09-12

    Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal "somy" (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection.IMPORTANCELeishmania is a genus of unicellular eukaryotic parasites that is responsible for a spectrum of human diseases that range from cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL) to life-threatening visceral leishmaniasis (VL). Developmental and strain-specific gene expression is largely thought to be due to mRNA message stability or posttranscriptional regulatory networks for this species, whose genome is organized into polycistronic gene clusters in the absence of promoter-mediated regulation of transcription initiation of nuclear genes. Genetic hybridization has been demonstrated to yield dramatic structural genomic variation, but whether such changes in gene

  6. Chemically regulated gene expression in plants.

    PubMed

    Padidam, Malla

    2003-04-01

    Chemically inducible systems that activate or inactivate gene expression have many potential applications in the determination of gene function and in plant biotechnology. The precise timing and control of gene expression are important aspects of chemically inducible systems. Several systems have been developed and used to analyze gene function, marker-free plant transformation, site-specific DNA excision, activation tagging, conditional genetic complementation, and restoration of male fertility. Chemicals that are used to regulate transgene expression include the antibiotic tetracycline, the steroids dexamethasone and estradiol, copper, ethanol, the inducer of pathogen-related proteins benzothiadiazol, herbicide safeners, and the insecticide methoxyfenozide. Systems that are suitable for field application are particularly useful for experimental systems and have potential applications in biotechnology.

  7. Gene expression of the endolymphatic sac.

    PubMed

    Friis, Morten; Martin-Bertelsen, Tomas; Friis-Hansen, Lennart; Winther, Ole; Henao, Ricardo; Sørensen, Mads Sølvsten; Qvortrup, Klaus

    2011-12-01

    The endolymphatic sac is part of the membranous inner ear and is thought to play a role in the fluid homeostasis and immune defense of the inner ear; however, the exact function of the endolymphatic sac is not fully known. Many of the detected mRNAs in this study suggest that the endolymphatic sac has multiple and diverse functions in the inner ear. The objective of this study was to provide a comprehensive review of the genes expressed in the endolymphatic sac in the rat and perform a functional characterization based on measured mRNA abundance. Microarray technology was used to investigate the gene expression of the endolymphatic sac with the surrounding dura. Characteristic and novel endolymphatic sac genes were determined by comparing with expressions in pure dura. In all, 463 genes were identified specific for the endolymphatic sac. Functional annotation clustering revealed 29 functional clusters.

  8. Modeling gene expression in time and space.

    PubMed

    Rué, Pau; Garcia-Ojalvo, Jordi

    2013-01-01

    Cell populations rarely exhibit gene-expression profiles that are homogeneous in time and space. In the temporal domain, dynamical behaviors such as oscillations and pulses of protein production pervade cell biology, underlying phenomena as diverse as circadian rhythmicity, cell cycle control, stress and damage responses, and stem-cell pluripotency. In multicellular populations, spatial heterogeneities are crucial for decision making and development, among many other functions. Cells need to exquisitely coordinate this temporal and spatial variation to survive. Although the spatiotemporal character of gene expression is challenging to quantify experimentally at the level of individual cells, it is beneficial from the modeling viewpoint, because it provides strong constraints that can be probed by theoretically analyzing mathematical models of candidate gene and protein circuits. Here, we review recent examples of temporal dynamics and spatial patterning in gene expression to show how modeling such phenomenology can help us unravel the molecular mechanisms of cellular function.

  9. Protein structure protection commits gene expression patterns.

    PubMed

    Chen, Jianping; Liang, Han; Fernández, Ariel

    2008-01-01

    Gene co-expressions often determine module-defining spatial and temporal concurrences of proteins. Yet, little effort has been devoted to tracing coordinating signals for expression correlations to the three-dimensional structures of gene products. We performed a global structure-based analysis of the yeast and human proteomes and contrasted this information against their respective transcriptome organizations obtained from comprehensive microarray data. We show that protein vulnerability quantifies dosage sensitivity for metabolic adaptation phases and tissue-specific patterns of mRNA expression, determining the extent of co-expression similarity of binding partners. The role of protein intrinsic disorder in transcriptome organization is also delineated by interrelating vulnerability, disorder propensity and co-expression patterns. Extremely vulnerable human proteins are shown to be subject to severe post-transcriptional regulation of their expression through significant micro-RNA targeting, making mRNA levels poor surrogates for protein-expression levels. By contrast, in yeast the expression of extremely under-wrapped proteins is likely regulated through protein aggregation. Thus, the 85 most vulnerable proteins in yeast include the five confirmed prions, while in human, the genes encoding extremely vulnerable proteins are predicted to be targeted by microRNAs. Hence, in both vastly different organisms protein vulnerability emerges as a structure-encoded signal for post-transcriptional regulation. Vulnerability of protein structure and the concurrent need to maintain structural integrity are shown to quantify dosage sensitivity, compelling gene expression patterns across tissue types and temporal adaptation phases in a quantifiable manner. Extremely vulnerable proteins impose additional constraints on gene expression: They are subject to high levels of regulation at the post-transcriptional level.

  10. CIRCADIAN CLOCK AND CELL CYCLE GENE EXPRESSION

    PubMed Central

    Metz, Richard P.; Qu, Xiaoyu; Laffin, Brian; Earnest, David; Porter, Weston W.

    2009-01-01

    Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation and differentiation marker genes. Expression of the clock genes, Per1 and Bmal1, were elevated in differentiated HC-11 cells whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, while Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels while Per1 and Bmal1 expression changed in conjunction with ß-casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. PMID:16261617

  11. Differential gene expression during multistage carcinogenesis

    SciTech Connect

    Bowden, G.T. ); Krieg, P. )

    1991-06-01

    The use of the mouse skin multistage model of carcinogenesis has aided our understanding of critical target genes in chemical carcinogenesis. The mutagenic activation of the Harvey-ras proto-oncogene has been found to be an early event associated with the initiation of mouse skin tumors by the polycyclic aromatic hydrocarbon 7,12 dimethylbenz(a)anthracene and the pure initiator ethyl carbamate (urethane). In contrast to chemical initiation of mouse skin tumors, ionizing radiation-initiated malignant skin tumors have been shown to possess distinct non-ras transforming gene(s). Differential screening of cDNA libraries made from chemically initiated malignant skin tumors has been used to identify a number of cellular gene transcripts that are overexpressed during mouse skin tumor progression. These differentially expressed genes include {beta}-actin, ubiquitin, a hyperproliferative keratin (K6), a gene whose product is a member of a fatty acid or lipid-binding protein family, and a gene called transin or stromelysin. The overexpression of the stromelysin gene, which encodes a metalloproteinase that degrades proteins in the basement membrane, is hypothesized to play a functional role in malignant tumor cell invasion and metastasis. The authors believe that the cloning, identification, and characterization of gene sequences that are differentially expressed during tumor progression could lead to the discovery of gene products that either play functional roles in skin tumor progression or in the maintenance of various progressive tumor phenotypes.

  12. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage

    PubMed Central

    Iantorno, Stefano A.; Durrant, Caroline; Khan, Asis; Sanders, Mandy J.; Warren, Wesley C.; Berriman, Matthew; Sacks, David L.

    2017-01-01

    ABSTRACT Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal “somy” (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection. PMID:28900023

  13. Regulation of gene expression in human tendinopathy

    PubMed Central

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  14. Paternally expressed genes predominate in the placenta.

    PubMed

    Wang, Xu; Miller, Donald C; Harman, Rebecca; Antczak, Douglas F; Clark, Andrew G

    2013-06-25

    The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.

  15. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  16. Soybean physiology and gene expression during drought.

    PubMed

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  17. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  18. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering.

  19. Regulatory mechanisms for floral homeotic gene expression.

    PubMed

    Liu, Zhongchi; Mara, Chloe

    2010-02-01

    Proper regulation of floral homeotic gene (or ABCE gene) expression ensures the development of floral organs in the correct number, type, and precise spatial arrangement. This review summarizes recent advances on the regulation of floral homeotic genes, highlighting the variety and the complexity of the regulatory mechanisms involved. As flower development is one of the most well characterized developmental processes in higher plants, it facilitates the discovery of novel regulatory mechanisms. To date, mechanisms for the regulation of floral homeotic genes range from transcription to post-transcription, from activators to repressors, and from microRNA- to ubiquitin-mediated post-transcriptional regulation. Region-specific activation of floral homeotic genes is dependent on the integration of a flower-specific activity provided by LEAFY (LFY) and a region- and stage-specific activating function provided by one of the LFY cofactors. Two types of regulatory loops, the feed-forward and the feedback loop, provide properly timed gene activation and subsequent maintenance and refinement in proper spatial and temporal domains of ABCE genes. Two different microRNA/target modules may have been independently recruited in different plant species to regulate C gene expression. Additionally, competition among different MADS box proteins for common interacting partners may represent a mechanism in whorl boundary demarcation. Future work using systems approaches and the development of non-model plants will provide integrated views on floral homeotic gene regulation and insights into the evolution of morphological diversity in flowering plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Expression of myriapod pair rule gene orthologs

    PubMed Central

    2011-01-01

    Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor. PMID:21352542

  1. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  2. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  3. Gene expression profiling for targeted cancer treatment.

    PubMed

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  4. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor

  5. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells.

    PubMed

    Khan, Mohammed I; Czarnecka, Anna M; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells-stem cell-like cancer cells (SCLCCs)-which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers-CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent's human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have

  6. Predicting metastasized seminoma using gene expression.

    PubMed

    Ruf, Christian G; Linbecker, Michael; Port, Matthias; Riecke, Armin; Schmelz, Hans U; Wagner, Walter; Meineke, Victor; Abend, Michael

    2012-07-01

    Treatment options for testis cancer depend on the histological subtype as well as on the clinical stage. An accurate staging is essential for correct treatment. The 'golden standard' for staging purposes is CT, but occult metastasis cannot be detected with this method. Currently, parameters such as primary tumour size, vessel invasion or invasion of the rete testis are used for predicting occult metastasis. Last year the association of these parameters with metastasis could not be validated in a new independent cohort. Gene expression analysis in testis cancer allowed discrimination between the different histological subtypes (seminoma and non-seminoma) as well as testis cancer and normal testis tissue. In a two-stage study design we (i) screened the whole genome (using human whole genome microarrays) for candidate genes associated with the metastatic stage in seminoma and (ii) validated and quantified gene expression of our candidate genes (real-time quantitative polymerase chain reaction) on another independent group. Gene expression measurements of two of our candidate genes (dopamine receptor D1 [DRD1] and family with sequence similarity 71, member F2 [FAM71F2]) examined in primary testis cancers made it possible to discriminate the metastasis status in seminoma. The discriminative ability of the genes exceeded the predictive significance of currently used histological/pathological parameters. Based on gene expression analysis the present study provides suggestions for improved individual decision making either in favour of early adjuvant therapy or increased surveillance. To evaluate the usefulness of gene expression profiling for predicting metastatic status in testicular seminoma at the time of first diagnosis compared with established clinical and pathological parameters. Total RNA was isolated from testicular tumours of metastasized patients (12 patients, clinical stage IIa-III), non-metastasized patients (40, clinical stage I) and adjacent 'normal' tissue

  7. Gene expression analysis of flax seed development.

    PubMed

    Venglat, Prakash; Xiang, Daoquan; Qiu, Shuqing; Stone, Sandra L; Tibiche, Chabane; Cram, Dustin; Alting-Mees, Michelle; Nowak, Jacek; Cloutier, Sylvie; Deyholos, Michael; Bekkaoui, Faouzi; Sharpe, Andrew; Wang, Edwin; Rowland, Gordon; Selvaraj, Gopalan; Datla, Raju

    2011-04-29

    Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as

  8. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  9. Polyandry and sex-specific gene expression.

    PubMed

    Mank, Judith E; Wedell, Nina; Hosken, David J

    2013-03-05

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype-phenotype chain, and although in its early stages, understanding the sexual selection-transcription relationship will provide significant insights into this critical association.

  10. Polyandry and sex-specific gene expression

    PubMed Central

    Mank, Judith E.; Wedell, Nina; Hosken, David J.

    2013-01-01

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype–phenotype chain, and although in its early stages, understanding the sexual selection–transcription relationship will provide significant insights into this critical association. PMID:23339238

  11. Evolutionary approach for relative gene expression algorithms.

    PubMed

    Czajkowski, Marcin; Kretowski, Marek

    2014-01-01

    A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other relative expression algorithms and allows exploring much larger solution space.

  12. Evolutionary Approach for Relative Gene Expression Algorithms

    PubMed Central

    Czajkowski, Marcin

    2014-01-01

    A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other relative expression algorithms and allows exploring much larger solution space. PMID:24790574

  13. Genomic positions of co-expressed genes: echoes of chromosome organisation in gene expression data.

    PubMed

    Szczepińska, Teresa; Pawłowski, Krzysztof

    2013-06-13

    The relationships between gene expression and nuclear structure, chromosome territories in particular, are currently being elucidated experimentally. Each chromosome occupies an individual, spatially-limited space with a preferential position relative to the nuclear centre that may be specific to the cell and tissue type. We sought to discover whether patterns in gene expression databases might exist that would mirror prevailing or recurring nuclear structure patterns, chromosome territory interactions in particular. We used human gene expression datasets, both from a tissue expression atlas and from a large set including diverse types of perturbations. We identified groups of positional gene clusters over-represented in gene expression clusters. We show that some pairs of chromosomes and pairs of 10 Mbp long chromosome regions are significantly enriched in the expression clusters. The functions of genes involved in inter-chromosome co-expression relationships are non-random and predominantly related to cell-cell communication and reaction to external stimuli. We suggest that inter-chromosomal gene co-expression can be interpreted in the context of nuclear structure, and that even expression datasets that include very diverse conditions and cell types show consistent relationships.

  14. Visualizing gene expression in situ

    NASA Astrophysics Data System (ADS)

    Burlage, Robert S.

    1999-02-01

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  15. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  16. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  17. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  18. DNA replication timing influences gene expression level

    PubMed Central

    2017-01-01

    Eukaryotic genomes are replicated in a reproducible temporal order; however, the physiological significance is poorly understood. We compared replication timing in divergent yeast species and identified genomic features with conserved replication times. Histone genes were among the earliest replicating loci in all species. We specifically delayed the replication of HTA1-HTB1 and discovered that this halved the expression of these histone genes. Finally, we showed that histone and cell cycle genes in general are exempt from Rtt109-dependent dosage compensation, suggesting the existence of pathways excluding specific loci from dosage compensation mechanisms. Thus, we have uncovered one of the first physiological requirements for regulated replication time and demonstrated a direct link between replication timing and gene expression. PMID:28539386

  19. Characterization of sphere-forming HCT116 clones by whole RNA sequencing

    PubMed Central

    Chung, Eunkyung; Oh, Inkyung

    2016-01-01

    Purpose To determine CD133+ cells defined as cancer stem cells (CSCs) in colon cancer, we examined whether CD133+ clones in HCT116 demonstrate known features of CSCs like sphere-forming ability, chemodrug-resistance, and metastatic potential. Methods Magnetic cell isolation and cell separation demonstrated that <1% of HCT116 cells expressed CD133, with the remaining cells being CD133- clones. In colon cancer cells, radioresistance is also considered a CSC characteristic. We performed clonogenic assay using 0.4 Gy γ-irradiation. Results Interestingly, there were no differences between HCT116 parental and HCT116 CD133+ clones when the cells comprised 0.5% of the total cells, and CD133- clone demonstrated radiosensitive changes compared with parental and CD133+ clones. Comparing gene expression profiles between sphere-forming and nonforming culture conditions of HCT116 subclones by whole RNA sequencing failed to obtain specific genes expressed in CD133+ clones. Conclusion Despite no differences of gene expression profiles in monolayer attached culture conditions of each clone, sphere-forming conditions of whole HCT116 subclones, parental, CD133+, and CD133- increased 1,761 coding genes and downregulated 1,384 genes related to CSCs self-renewal and survival. Thus, spheroid cultures of HCT116 cells could be useful to expand colorectal CSCs rather than clonal expansion depending on CD133 expressions. PMID:27073788

  20. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate

    PubMed Central

    Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.

    2015-01-01

    Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179

  1. Gene expression profile in pelvic organ prolapse†

    PubMed Central

    Brizzolara, S.S.; Killeen, J.; Urschitz, J.

    2009-01-01

    It was hypothesized that the processes contributing to pelvic organ prolapse (POP) may be identified by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. In order to test this, we performed a frequency-matched case–control study of women undergoing hysterectomy for POP and controls. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32 878 genes. Significance Analysis of Microarrays (Stanford University, CA, USA) identified differentially expressed genes used for ontoanalysis. Quantitative PCR (qPCR) confirmed results. Light microscopy confirmed the tissue type and assessed inflammatory infiltration. The analysis of 34 arrays revealed 249 differentially expressed genes with fold changes (FC) larger than 1.5 and false discovery rates ≤5.2%. Immunity and defense was the most significant biological process differentially expressed in POP. qPCR confirmed the elevated steady-state mRNA levels for four genes: interleukin-6 (FC 9.8), thrombospondin 1 (FC 3.5) and prostaglandin-endoperoxide synthase 2 (FC 2.4) and activating transcription factor 3 (FC 2.6). Light microscopy showed all the samples were composed of fibromuscular connective tissue with no inflammatory infiltrates. In conclusion, genes enriched for ‘immunity and defense’ contribute to POP independent of inflammatory infiltrates. PMID:19056808

  2. Facilitated diffusion buffers noise in gene expression.

    PubMed

    Schoech, Armin P; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  3. Facilitated diffusion buffers noise in gene expression

    NASA Astrophysics Data System (ADS)

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  4. Facilitated diffusion buffers noise in gene expression

    PubMed Central

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise. PMID:25314467

  5. Objective and subjective probability in gene expression.

    PubMed

    Velasco, Joel D

    2012-09-01

    In this paper I address the question of whether the probabilities that appear in models of stochastic gene expression are objective or subjective. I argue that while our best models of the phenomena in question are stochastic models, this fact should not lead us to automatically assume that the processes are inherently stochastic. After distinguishing between models and reality, I give a brief introduction to the philosophical problem of the interpretation of probability statements. I argue that the objective vs. subjective distinction is a false dichotomy and is an unhelpful distinction in this case. Instead, the probabilities in our models of gene expression exhibit standard features of both objectivity and subjectivity.

  6. Mechanical Feedback and Arrest in Gene Expression

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart; Levine, Herbert

    The ability to watch biochemical events at the single-molecule level has increasingly revealed that stochasticity plays a leading role in many biological phenomena. One important and well know example is the noisy, ``bursty'' manner of transcription. Recent experiments have revealed relationships between the level and noise in gene expression hinting at deeper stochastic connections. In this talk we will discuss how the mechanical nature of transcription can explain this relationship and examine the limits that the physical aspects of transcription place on gene expression.

  7. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  8. Control of gene expression by proteolysis.

    PubMed

    Pahl, H L; Baeuerle, P A

    1996-06-01

    The proteasome and the small protein ubiquitin are key elements in the intracellular pathway of general protein degradation. Recent evidence shows that the proteasome and other less well defined cytoplasmic proteases can participate in specific events which control inducible gene expression. A number of eukaryotic transcriptional regulators, including NF-kappa B/l kappa B, p53, c-Jun, Notch, sterol regulated element binding proteins and MAT2 alpha, have recently been shown to be regulated by proteolytic events, a regulation which results in the activation or inactivation of gene expression.

  9. Genes Expressed in Human Tumor Endothelium

    NASA Astrophysics Data System (ADS)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  10. Genomic signatures of germline gene expression.

    PubMed

    McVicker, Graham; Green, Phil

    2010-11-01

    Transcribed regions in the human genome differ from adjacent intergenic regions in transposable element density, crossover rates, and asymmetric substitution and sequence composition patterns. We tested whether these differences reflect selection or are instead a byproduct of germline transcription, using publicly available gene expression data from a variety of germline and somatic tissues. Crossover rate shows a strong negative correlation with gene expression in meiotic tissues, suggesting that crossover is inhibited by transcription. Strand-biased composition (G+T content) and A → G versus T → C substitution asymmetry are both positively correlated with germline gene expression. We find no evidence for a strand bias in allele frequency data, implying tha