Sample records for cd19 complex formation

  1. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis

    PubMed Central

    Luo, Yongting; Duan, Hongxia; Qian, Yining; Feng, Liqun; Wu, Zhenzhen; Wang, Fei; Feng, Jing; Yang, Dongling; Qin, Zhihai; Yan, Xiyun

    2017-01-01

    The persistence of cholesterol-engorged macrophages (foam cells) in the artery wall fuels the development of atherosclerosis. However, the mechanism that regulates the formation of macrophage foam cells and impedes their emigration out of inflamed plaques is still elusive. Here, we report that adhesion receptor CD146 controls the formation of macrophage foam cells and their retention within the plaque during atherosclerosis exacerbation. CD146 is expressed on the macrophages in human and mouse atheroma and can be upregulated by oxidized low-density lipoprotein (oxLDL). CD146 triggers macrophage activation by driving the internalization of scavenger receptor CD36 during lipid uptake. In response to oxLDL, macrophages show reduced migratory capacity toward chemokines CCL19 and CCL21; this capacity can be restored by blocking CD146. Genetic deletion of macrophagic CD146 or targeting of CD146 with an antibody result in much less complex plaques in high-fat diet-fed ApoE−/− mice by causing lipid-loaded macrophages to leave plaques. Collectively, our findings identify CD146 as a novel retention signal that traps macrophages within the artery wall, and a promising therapeutic target in atherosclerosis treatment. PMID:28084332

  2. Analysis of the Enhanced Stability of R(+)-Alpha Lipoic Acid by the Complex Formation with Cyclodextrins

    PubMed Central

    Ikuta, Naoko; Sugiyama, Hironori; Shimosegawa, Hiroshi; Nakane, Rie; Ishida, Yoshiyuki; Uekaji, Yukiko; Nakata, Daisuke; Pallauf, Kathrin; Rimbach, Gerald; Terao, Keiji; Matsugo, Seiichi

    2013-01-01

    R(+)-alpha lipoic acid (RALA) is one of the cofactors for mitochondrial enzymes and, therefore, plays a central role in energy metabolism. RALA is unstable when exposed to low pH or heat, and therefore, it is difficult to use enantiopure RALA as a pharma- and nutra-ceutical. In this study, we have aimed to stabilize RALA through complex formation with cyclodextrins (CDs). α-CD, β-CD and γ-CD were used for the formation of these RALA-CD complexes. We confirmed the complex formation using differential scanning calorimetry and showed by using HPLC analysis that complexed RALA is more stable than free RALA when subjected to humidity and high temperature or acidic pH conditions. Scanning electron microscopy studies showed that the particle size and shape differed depending on the cyclodextrin used for complexation. Further, the complexes of CD and RALA showed a different particle size distribution pattern compared with that of CD itself or that of the physical mixture of RALA and CD. PMID:23434662

  3. Structural evaluation of crystalline ternary γ-cyclodextrin complex.

    PubMed

    Higashi, Kenjirou; Ideura, Saori; Waraya, Haruka; Moribe, Kunikazu; Yamamoto, Keiji

    2011-01-01

    The structure of a crystalline γ-cyclodextrin (γ-CD) ternary complex containing salicylic acid (SA) and flurbiprofen (FBP) prepared by sealed heating was investigated. FBP/γ-CD inclusion complex was prepared by coprecipitation; its molar ratio was determined as 1/1. Powder X-ray diffraction measurements showed that the molecular packing of γ-CD changed from hexagonal to monoclinic columnar form by sealed heating of SA with dried FBP/γ-CD inclusion complex, indicating ternary complex formation. The stoichiometry of SA/FBP/γ-CD was estimated as 2/1/1. Solid-state transformation of γ-CD molecular packing upon water vapor adsorption and desorption was irreversible for this ternary complex, in contrast to the reversible transition for the FBP/γ-CD inclusion complex. The ternary complex contained one FBP molecule in the cavity of γ-CD and two SA molecules in the intermolecular space between neighboring γ-CD column stacks. Infrared and (13) C solid-state NMR spectroscopies revealed that the molecular states of SA and FBP changed upon ternary complex formation. In the complex, dimer FBP molecules were sandwiched between two γ-CD molecules whereas each monomer SA molecule was present in the intermolecular space of γ-CD. Ternary complex formation was also observed for other drug-guest systems using naproxen and ketoprofen. Thus, the complex can be used to formulate variety of drugs. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  4. β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Jiang, Ling-Juan; Zhang, Yan-Ping; Li, Jun-Bo

    2012-09-01

    In this work, the optimal clathration condition was investigated for the preparation of aspirin-β-cyclodextrin (Asp-β-CD) inclusion complex using design of experiment (DOE) methodology. A 3-level, 3-factor Box-Behnken design with a total of 17 experimental runs was used. The Asp-β-CD inclusion complex was prepared by saturated solution method. The influence on the embedding rate was investigated, including molar ratio of β-CD to Asp, clathration temperature and clathration time, and the optimum values of such three test variables were found to be 0.82, 49°C and 2.0 h, respectively. The embedding rate could be up to 61.19%. The formation of the bonding between -COOH group of Asp and O-H group of β-CD might play an important role in the process of clathration according to FT-IR spectra. Release kinetics of Asp from inclusion complex was studied for the evaluation of drug release mechanism and diffusion coefficients. The results showed that the drug release from matrix occurred through Fickian diffusion mechanism. The cumulative release of Asp reached only 40% over 24 h, so the inclusion complex could potentially be applied as a long-acting delivery system.

  5. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    PubMed

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ab initio calculations of supramolecular complexes of fullerene C60 with CdTe and CdS

    NASA Astrophysics Data System (ADS)

    Kvyatkovskii, O. E.; Zakharova, I. B.; Ziminov, V. M.

    2014-06-01

    This paper presents the results of ab initio quantum-chemical calculations of supramolecular complexes C60CdHal, [C60]4CdHal, and [C60]6CdHal (Hal = S, Te), which simulate the defects forming in fullerite during the absorption or adsorption of cadmium telluride (sulfide). Calculations of the electronic structure of complexes with inclusion of their relaxation to the equilibrium state have been performed in terms of the density functional theory with the B3LYP hybrid functional. The obtained enthalpies of formation of complexes show that their formation leads to the energy gain of the order of 0.5-1.5 eV depending on the complex type. It has been shown that the formation of tetrahedral complexes [C60]4CdTe with the intercalated CdTe molecule is possible only with a considerable distortion of the tetrahedral void. The energy spectrum of low-lying excited electron states for the linear and octahedral complexes has been calculated. It has been found that a decrease in symmetry with the formation of complexes leads to the appearance of excited states of allowed singlet transitions in the electron spectrum, which are forbidden in optical spectra of initial components.

  7. Cl-doping of Te-rich CdTe: Complex formation, self-compensation and self-purification from first principles

    NASA Astrophysics Data System (ADS)

    Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.

    2015-08-01

    The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.

  8. CD3+/CD19+-depleted grafts in HLA-matched allogeneic peripheral blood stem cell transplantation lead to early NK cell cytolytic responses and reduced inhibitory activity of NKG2A.

    PubMed

    Eissens, D N; Schaap, N P M; Preijers, F W M B; Dolstra, H; van Cranenbroek, B; Schattenberg, A V M; Joosten, I; van der Meer, A

    2010-03-01

    Natural killer (NK) cells have an important function in the anti-tumor response early after stem cell transplantation (SCT). As part of a prospective randomized phase III study, directly comparing the use of CD3(+)/CD19(+)-depleted peripheral blood stem cell (PBSC) harvests with CD34(+)-selected PBSC harvests in allogeneic human leukocyte antigen-matched SCT, we here show that the use of CD3(+)/CD19(+)-depleted PBSC grafts leads to early NK cell repopulation and reconstitution of the CD56(dim) and CD56(bright) NK cell subsets, with concomitant high cytolytic capacity. In the CD34 group, this process took significantly longer. Moreover, in the CD3/19 group after reconstitution, a higher percentage of killer immunoglobulin-like receptor-positive NK cells was found. Although similar percentages of CD94-positive NK cells were found in both groups, in the CD34 group, almost all expressed the inhibitory CD94:NKG2A complex, whereas in the CD3/19 group, the inhibitory CD94:NKG2A and the activating CD94:NKG2C complex were equally distributed. This preferential development of NKG2C-expressing NK cells in the CD3/19 group was paralleled by a loss of NKG2A-mediated inhibition of NK cell degranulation. These results show that the use of CD3(+)/CD19(+)-depleted grafts facilitates strong NK cell cytolytic responses directly after SCT, and the rapid emergence of an NK cell receptor phenotype that is more prone to activation.

  9. Preparation, characterization and molecular modeling studies of the inclusion complex of Caffeine with Beta-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Prabu, Samikannu; Swaminathan, Meenakshisundaram; Sivakumar, Krishnamoorthy; Rajamohan, Rajaram

    2015-11-01

    The formation through supramolecular interaction of a host-guest inclusion complex of caffeine (CA) with nano-hydrophobic cavity beta-cyclodextrin (β-CD) is achieved by a physical mixture, a kneading method and a co-precipitation method. The formation of the inclusion complex of CA with β-CD in solution state is confirmed by UV-visible spectrophotometer, fluorescence spectrophotometer and time-resolved fluorescence spectrophotometer. The stoichiometry of the inclusion complex is 1:1; the imidazole ring and pyrimidine ring of caffeine is deeply entrapped in the beta-cyclodextrin as confirmed by spectral shifts. The Benesi-Hildebrand plot is used to calculate the binding constant of the inclusion complex of CA with β-CD at room temperature. The Gibbs free energy change of the inclusion complex process is calculated and the process is found to be spontaneous. The thermal stability of the inclusion complex of CA with β-CD is analyzed using differential scanning calorimetry. The crystal structure modification of a solid inclusion complex is confirmed by scanning electron microscopy image analysis. The formation of the inclusion complex of CA with β-CD in the solid phase is also confirmed by FT-IR and XRD. The formation of the inclusion complex between CA and β-CD, as confirmed by molecular docking studies, is in good relationship with the results obtained through different experimental methods.

  10. Selection of a novel CD19 aptamer for targeted delivery of doxorubicin to lymphoma cells.

    PubMed

    Hu, Yan; Li, Xiaoou; An, Yacong; Duan, Jinhong; Yang, Xian-Da

    2018-06-01

    CD19 is overexpressed in most human B cell malignancies and considered an important tumor marker for diagnosis and treatment. Aptamers are oligonucleotides that may potentially serve as tumor-homing ligand for targeted cancer therapy with excellent affinity and specificity. In this study, we selected a novel CD19 aptamer (LC1) that was a 59-nucleotide single strand DNA. The aptamer could bind to recombinant CD19 protein with a K d of 85.4 nM, and had minimal cross reactivity to bovine serum albumin (BSA) or ovalbumin (OVA). Moreover, the aptamer was found capable of binding with the CD19-positive lymphoma cells (Ramos and Raji), but not the CD19-negative cell lines (Jurkat and NB4). An aptamer-doxorubicin complex (Apt-Dox) was also formulated, and selectively delivered doxorubicin to CD19-positive lymphoma cells in vitro . The results indicate that aptamer LC1 can recognize CD19-positive tumor cells and may potentially function as a CD19-targeting ligand.

  11. Exploring inclusion complexes of ionic liquids with α- and β- cyclodextrin by NMR, IR, mass, density, viscosity, surface tension and conductance study

    NASA Astrophysics Data System (ADS)

    Barman, Biraj Kumar; Rajbanshi, Biplab; Yasmin, Ananya; Roy, Mahendra Nath

    2018-05-01

    The formation of the host-guest inclusion complexes of ionic liquids namely [BMIm]Cl and [HMIm]Cl with α-CD and β-CD were studied by means of physicochemical and spectroscopic methods. Conductivity and surface tension study were in good agreement with the 1H NMR and FT-IR studies which confirm the formation of the inclusion complexes. The Density and viscosity study also supported the formation of the ICs. Further the stoichiometry was determined 1:1 for each case and the association constants and thermodynamic parameters derived supported the most feasible formation of the [BMIm]Cl- β-CD inclusion complex.

  12. Complexation of Contaminants and Aqueous-Phase Ozone with Cyclodextrin for Emerging Contaminant Oxidative Degradation

    NASA Astrophysics Data System (ADS)

    Khan, N. A.; Carroll, K. C.

    2016-12-01

    Recalcitrant emerging contaminants in groundwater, such as 1,4-dioxane, require strong oxidants for complete mineralization, whereas strong oxidant efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay, reactivity, and non-specificity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed but HPβCD proved to be sufficiently resilient and only partially degraded in the presence of O3. The formation of a HPβCD:O3 inclusion clathrate complex was observed, and multiple methods for binding constant measurements carried out and compared for HPβCD complexes with O3 and multiple contaminants. The presence of HPβCD increased the O3 half-life linearly with increasing HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions, and complexation reversibility was confirmed. Decay rate coefficients increased for 1,4-dioxane, trichloroethene, and trichloroethane likely due to the formation of HPβCD-O3-contaminant ternary complexes. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3 treatment of groundwater impacted by recalcitrant emerging contaminants.

  13. Organic matter and salinity modify cadmium soil (phyto)availability.

    PubMed

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2018-01-01

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood.more » Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.« less

  15. Encapsulation of citral isomers in extracted lemongrass oil with cyclodextrins: molecular modeling and physicochemical characterizations.

    PubMed

    Rungsardthong Ruktanonchai, Uracha; Srinuanchai, Wanwisa; Saesoo, Somsak; Sramala, Issara; Puttipipatkhachorn, Satit; Soottitantawat, Apinan

    2011-01-01

    The complexation between two isomers of citral in lemongrass oil and varying types of cyclodextrins (CDs), α-CD, β-CD, and HP-β-CD, were studied by molecular modeling and physicochemical characterization. The results obtained revealed that the most favorable complex formation governing between citrals in lemongrass oil and CDs were found at a 1:2 mole ratio for all CDs. Complex formation between E-citral and CD was more favorable than between Z-citral and CD. The thermal stability of the inclusion complex was observed compared to the citral in the lemongrass oil. The release time course of citral from the inclusion complex was the diffusion control, and it correlated well with Avrami's equation. The release rate constants of the E- and Z-citral inclusion complexes at 50 °C, 50% RH were observed at 1.32×10(-2) h(-1) and 1.43×10(-2) h(-1) respectively.

  16. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor

    NASA Astrophysics Data System (ADS)

    Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.

    2016-10-01

    Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4.

  17. Human Lipopolysaccharide-binding Protein (LBP) and CD14 Independently Deliver Triacylated Lipoproteins to Toll-like Receptor 1 (TLR1) and TLR2 and Enhance Formation of the Ternary Signaling Complex*

    PubMed Central

    Ranoa, Diana Rose E.; Kelley, Stacy L.; Tapping, Richard I.

    2013-01-01

    Bacterial lipoproteins are the most potent microbial agonists for the Toll-like receptor 2 (TLR2) subfamily, and this pattern recognition event induces cellular activation, leading to host immune responses. Triacylated bacterial lipoproteins coordinately bind TLR1 and TLR2, resulting in a stable ternary complex that drives intracellular signaling. The sensitivity of TLR-expressing cells to lipoproteins is greatly enhanced by two lipid-binding serum proteins known as lipopolysaccharide-binding protein (LBP) and soluble CD14 (sCD14); however, the physical mechanism that underlies this increased sensitivity is not known. To address this, we measured the ability of LBP and sCD14 to drive ternary complex formation between soluble extracellular domains of TLR1 and TLR2 and a synthetic triacylated lipopeptide agonist. Importantly, addition of substoichiometric amounts of either LBP or sCD14 significantly enhanced formation of a TLR1·TLR2 lipopeptide ternary complex as measured by size exclusion chromatography. However, neither LBP nor sCD14 was physically associated with the final ternary complex. Similar results were obtained using outer surface protein A (OspA), a naturally occurring triacylated lipoprotein agonist from Borrelia burgdorferi. Activation studies revealed that either LBP or sCD14 sensitized TLR-expressing cells to nanogram levels of either the synthetic lipopeptide or OspA lipoprotein agonist. Together, our results show that either LBP or sCD14 can drive ternary complex formation and TLR activation by acting as mobile carriers of triacylated lipopeptides or lipoproteins. PMID:23430250

  18. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Adam; Ball, Raymond; Boving, Thomas B.

    Recalcitrant organic groundwater contaminants, such as 1,4-dioxane, may require strong oxidants for complete mineralization. However, their efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay and reactivity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous-phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed. However, HPβCD proved to be sufficiently recalcitrant, because it was only partially degraded in the presence of O3. The formation of a HPβCD:O3 clathrate complex was observed, which stabilized decay of O3. The presence of HPβCD increased the O3 half-life linearly with increasingmore » HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions. Observed O3 release from HPβCD and indigo oxidation confirmed that the formation of the inclusion complex is reversible. This proof-of-concept study demonstrates that HPβCD can complex O3 while preserving its reactivity. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3treatment of groundwater contaminated with recalcitrant compounds.« less

  19. Suppression of Akt-mediated HDAC3 expression and CDK2 T39 phosphorylation by a bichalcone analog contributes to S phase retardation of cancer cells.

    PubMed

    Hung, Kuang-Chen; Lin, Meng-Liang; Hsu, Shih-Wei; Lee, Chuan-Chun; Huang, Ren-Yu; Wu, Tian-Shung; Chen, Shih-Shun

    2018-06-15

    Targeting cell cycle regulators has been a suggested mechanism for therapeutic cancer strategies. We report here that the bichalcone analog TSWU-CD4 induces S phase arrest of human cancer cells by inhibiting the formation of cyclin A-phospho (p)-cyclin-dependent kinase 2 (CDK2, threonine [Thr] 39) complexes, independent of mutant p53 expression. Ectopic expression of CDK2 (T39E), which mimics phosphorylation of the Thr 39 residue of CDK2, partially rescues the cells from TSWU-CD4-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TSWU-CD4-triggered S phase arrest. Decreased histone deacetylase 3 (HDAC3) expression after TSWU-CD4 treatment was demonstrated, and TSWU-CD4 induced S phase arrest and inhibitory effects on cyclin A expression and CDK2 Thr 39 phosphorylation, while cyclin A-p-CDK2 (Thr 39) complex formation was suppressed by ectopic wild-type HDAC3 expression. The co-transfection of CDK2 (T39E) along with HDAC3 completely restored cyclin A expression, Thr 39-phosphorylated CDK2, cyclin A-p-CDK2 (Thr 39) complex formation, and the S phase population to normal levels. Protein kinase B (Akt) inactivation was required for TSWU-CD4-induced S phase cell cycle arrest, because constitutively active Akt1 blocks the induction of S phase arrest and the suppression of cyclin A and HDAC3 expression, CDK2 Thr 39 phosphorylation, and cyclin A-p-CDK2 (Thr 39) complex formation by TSWU-CD4. Taken together, our results indicate that TSWU-CD4 induces S phase arrest by inhibiting Akt-mediated HDAC3 expression and CDK2 Thr 39 phosphorylation to suppress the formation of cyclin A-p-CDK2 (Thr 39) complexes. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling.

    PubMed Central

    Cakir-Kiefer, C; Muller-Steffner, H; Oppenheimer, N; Schuber, F

    2001-01-01

    CD38/NAD(+) glycohydrolase is a type II transmembrane glycoprotein widely used to study T- and B-cell activation and differentiation. CD38 is endowed with two different activities: it is a signal transduction molecule and an ectoenzyme that converts NAD(+) into ADP-ribose (NAD(+) glycohydrolase activity) and small proportions of cADP-ribose (cADPR; ADP-ribosyl cyclase activity), a calcium-mobilizing metabolite, which, ultimately, can also be hydrolysed (cADPR hydrolase activity). The relationship between these two properties, and strikingly the requirement for signalling in the formation of free or enzyme-complexed cADPR, is still ill-defined. In the present study we wanted to test whether the CD38-cADPR complex is kinetically competent in the conversion of NAD(+) into the reaction product ADP-ribose. In principle, such a complex could be invoked for cross-talk, via conformational changes, with neighbouring partner(s) of CD38 thus triggering the signalling phenomena. Analysis of the kinetic parameters measured for the CD38/NAD(+) glycohydrolase-catalysed hydrolysis of 2'-deoxy-2'-aminoribo-NAD(+) and ADP-cyclo[N1,C1']-2'-deoxy-2'-aminoribose (slowly hydrolysable analogues of NAD(+) and cADPR respectively) ruled out that the CD38-cADPR complex can accumulate under steady-state conditions. This was borne out by simulation of the prevalent kinetic mechanism of CD38, which involve the partitioning of a common E.ADP-ribosyl intermediate in the formation of the enzyme-catalysed reaction products. Using this mechanism, microscopic rate conditions were found which transform a NAD(+) glycohydrolase into an ADP-ribosyl cyclase. Altogether, the present work shows that if the cross-talk with a partner depends on a conformational change of CD38, this is most probably not attributable to the formation of the CD38-cADPR complex. In line with recent results on the conformational change triggered by CD38 ligands [Berthelier, Laboureau, Boulla, Schuber and Deterre (2000) Eur. J. Biochem. 267, 3056-3064], we believe that the Michaelis CD38-NAD(+) complex could play such a role instead. PMID:11513738

  1. Study of complex formation of 5,5'-(2 E, 2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) (HYT) macrocyclic ligand with Cd2+ cation in non-aqueous solution by spectroscopic and conductometric methods

    NASA Astrophysics Data System (ADS)

    Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya

    2014-12-01

    In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (Δ G ∘, Δ H ∘, and Δ S ∘) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.

  2. Evidence of formation of site-selective inclusion complexation between beta-cyclodextrin and poly(ethylene oxide)-block-poly(propylene oxide)- block-poly(ethylene oxide) copolymers.

    PubMed

    Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D

    2010-05-28

    A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.

  3. Evidence of formation of site-selective inclusion complexation between β-cyclodextrin and poly(ethylene oxide)-block-poly(propylene oxide)- block-poly(ethylene oxide) copolymers

    NASA Astrophysics Data System (ADS)

    Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M.; Graham, Matthew J.; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z. D.

    2010-05-01

    A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with β-cyclodextrin (β-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state C13 NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the β-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in C13 solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after β-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of β-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that β-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using H1 NMR, and a 3:1 (PO unit to β-CD) was found for all inclusion complexes, which indicated that the number of threaded β-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the β-CD in the inclusion complex formed a channel-like structure that is different from the pure β-CD crystal structure.

  4. The Fas/CD95 Receptor Regulates the Death of Autoreactive B Cells and the Selection of Antigen-Specific B Cells

    PubMed Central

    Koncz, Gabor; Hueber, Anne-Odile

    2012-01-01

    Cell death receptors have crucial roles in the regulation of immune responses. Here we review recent in vivo data confirming that the Fas death receptor (TNFSR6) on B cells is important for the regulation of autoimmunity since the impairment of only Fas function on B cells results in uncontrolled autoantibody production and autoimmunity. Fas plays a role in the elimination of the non-specific and autoreactive B cells in germinal center, while during the selection of antigen-specific B cells different escape signals ensure the resistance to Fas-mediated apoptosis. Antigen-specific survival such as BCR or MHCII signal or coreceptors (CD19) cooperating with BCR inhibits the formation of death inducing signaling complex. Antigen-specific survival can be reinforced by antigen-independent signals of IL-4 or CD40 overproducing the anti-apoptotic members of the Bcl-2 family proteins. PMID:22848207

  5. Clotrimazole-cyclodextrin based approach for the management and treatment of Candidiasis - A formulation and chemistry-based evaluation.

    PubMed

    Mohammed, Noorullah Naqvi; Pandey, Pankaj; Khan, Nayaab S; Elokely, Khaled M; Liu, Haining; Doerksen, Robert J; Repka, Michael A

    2016-08-01

    Clotrimazole (CT) is a poorly soluble antifungal drug that is most commonly employed as a topical treatment in the management of vaginal candidiasis. The present work focuses on a formulation approach to enhance the solubility of CT using cyclodextrin (CD) complexation. A CT-CD complex was prepared by a co-precipitation method. Various characterization techniques such as differential scanning calorimetry, infrared (IR) and X-ray spectroscopy, scanning electron microscopy and nuclear magnetic resonance (NMR) spectroscopy were performed to evaluate the complex formation and to understand the interactions between CT and CD. Computational molecular modeling was performed using the Schrödinger suite and Gaussian 09 program to understand structural conformations of the complex. The phase solubility curve followed an AL-type curve, indicating formation of a 1:1 complex. Molecular docking studies supported the data obtained through NMR and IR studies. Enthalpy changes confirmed that complexation was an exothermic and enthalpically favorable phenomenon. The CT-CD complexes were formulated in a gel and evaluated for release and antifungal activity. The in vitro release studies performed using gels demonstrated a sustained release of CT from the CT-CD complex with the complex exhibiting improved release relative to the un-complexed CT. Complexed CT-CD exhibited better fungistatic activity toward different Candida species than un-complexed CT.

  6. Tissue factor expression in rheumatoid synovium: a potential role in pannus invasion of rheumatoid arthritis.

    PubMed

    Chen, Lujun; Lu, Yahua; Chu, Yang; Xie, Jun; Ding, Wen'ge; Wang, Fengming

    2013-09-01

    Angiogenesis, as well as pannus formation within the joint, plays an important role in the erosion of articular cartilage and bone in the pathological process of rheumatoid arthritis (RA). Tissue factor (TF), an essential initiator of the extrinsic pathway of blood coagulation, is also involved in the angiogenesis and the pannus formation of RA progression. In the present study, we used immunofluorescence and confocal scanning methods to characterize TF immunolocalization in RA synovium. We showed that positive staining of TF could be immunolocalized in synoviocytes, CD19(+) B cells and CD68(+) macrophages, whereas weak or negative staining of tissue factor could be found in CD34(+) endothelial cells of neo-vessels, CD3(+) T cells and CD14(+) monocytes in RA synovium tissues. Our study demonstrates a detailed local expression of TF in the rheumatoid synovium, and supports the notion that TF, expressed not only by the synoviocytes themselves, but also the infiltrating CD19(+) B cells and CD68(+) macrophages, is involved in the pannus invasion in the progression of rheumatoid arthritis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell

    PubMed Central

    Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.

    2014-01-01

    Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385

  8. Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy.

    PubMed

    Urak, Ryan; Walter, Miriam; Lim, Laura; Wong, ChingLam W; Budde, Lihua E; Thomas, Sandra; Forman, Stephen J; Wang, Xiuli

    2017-01-01

    Insufficient persistence and effector function of chimeric antigen receptor (CAR)-redirected T cells have been challenging issues for adoptive T cell therapy. Generating potent CAR T cells is of increasing importance in the field. Studies have demonstrated the importance of the Akt pathway in the regulation of T cell differentiation and memory formation. We now investigate whether inhibition of Akt signaling during ex vivo expansion of CAR T cells can promote the generation of CAR T cells with enhanced antitumor activity following adoptive therapy in a murine leukemia xenograft model. Various T cell subsets including CD8+ T cells, bulk T cells, central memory T cells and naïve/memory T cells were isolated from PBMC of healthy donors, activated with CD3/CD28 beads, and transduced with a lentiviral vector encoding a second-generation CD19CAR containing a CD28 co-stimulatory domain. The transduced CD19CAR T cells were expanded in the presence of IL-2 (50U/mL) and Akt inhibitor (Akti) (1 μM) that were supplemented every other day. Proliferative/expansion potential, phenotypical characteristics and functionality of the propagated CD19CAR T cells were analyzed in vitro and in vivo after 17-21 day ex vivo expansion. Anti-tumor activity was evaluated after adoptive transfer of the CD19CAR T cells into CD19+ tumor-bearing immunodeficient mice. Tumor signals were monitored with biophotonic imaging, and survival rates were analyzed by the end of the experiments. We found that Akt inhibition did not compromise CD19CAR T cell proliferation and expansion in vitro, independent of the T cell subsets, as comparable CD19CAR T cell expansion was observed after culturing in the presence or absence of Akt inhibitor. Functionally, Akt inhibition did not dampen cell-mediated effector function, while Th1 cytokine production increased. With respect to phenotype, Akti-treated CD19CAR T cells expressed higher levels of CD62L and CD28 as compared to untreated CD19CAR T cells. Once adoptively transferred into CD19+ tumor-bearing mice, Akti treated CD19CAR T cells exhibited more antitumor activity than did untreated CD19CAR T cells. Inhibition of Akt signaling during ex vivo priming and expansion gives rise to CD19CAR T cell populations that display comparatively higher antitumor activity.

  9. Thiol surface complexation on growing CdS clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swayambunathan, V.; Hayes, D.; Schmidt, K.H.

    1990-05-09

    The growth of small CdS colloidal particles has been initiated by pulse radiolytic release of sulfide from thiol (3-mercapto-1,2-propanediol, RSH) in the presence of Cd{sup 2+} ions. The kinetics and stoichiometry of the ensuring reactions were followed by conductivity, absorption spectroscopy, and light-scattering techniques. The final CdS product has been identified by electron diffraction. The formation of Cd-thiolate complexes at the surface of the particles is indicated by conductivity and by energy dispersive analysis of X-ray (EDAX) results. The rate of formation of CdS clusters is strongly pH dependent due to the pH effect on the stability of Dd{sup 2+}/HS{supmore » {minus}} complexes. At low pHs (4.0-5.3) the growth mechanism is proposed to be primarily a cluster-molecule process. At this pH range Cd{sup 2+} ions at the CdS particle surface complex with thiolate ions stronger than in the bulk of the solution. The size control of the particles by thiols is proposed to result from a competition of thiolate ions with HS{sup {minus}} ions for cadmium ions at the surface of the growing particles.« less

  10. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    PubMed

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.

  11. Blocking the Formation of Zn2+/Dye Complexes in Dye-Sensitized Solar Cells by Inserting CdS Quantum Dots into Sandwich Layer

    NASA Astrophysics Data System (ADS)

    Sun, Yunfei; Liu, Chunling; Yang, Lili; Wei, Maobin; Lv, Shiquan; Sui, Yingrui; Cao, Jian; Chen, Gang; Yang, Jinghai

    2018-06-01

    ZnO NRAs are grown on ITO substrates by a simple chemical method. CdS QDs were deposited on ZnO NRAs by SILAR. N719 was synthesized by dipping method. J-V analysis indicates that by inserting a layer of CdS QDs, the conversion efficiency of DSSCs was improved obviously. The device with CdS QDs shows the higher conversion efficiency due to the three reasons: (1) CdS QDs enhanced adsorption spectra of DSSCs in the visible region; (2) CdS QDs block the formation of Zn2+/dye complex, it is beneficial for electros transport from dye to ZnO photoanode. It is the key to obtain higher conversion efficiency; (3) FRET dynamics exists by the introduction of CdS QDs.

  12. Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin.

    PubMed

    Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E

    2009-02-25

    Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods.

  13. A supramolecular complex between proteinases and beta-cyclodextrin that preserves enzymatic activity: physicochemical characterization.

    PubMed

    Denadai, Angelo M L; Santoro, Marcelo M; Lopes, Miriam T P; Chenna, Angélica; de Sousa, Frederico B; Avelar, Gabriela M; Gomes, Marco R Túlio; Guzman, Fanny; Salas, Carlos E; Sinisterra, Rubén D

    2006-01-01

    Cyclodextrins are suitable drug delivery systems because of their ability to subtly modify the physical, chemical, and biological properties of guest molecules through labile interactions by formation of inclusion and/or association complexes. Plant cysteine proteinases from Caricaceae and Bromeliaceae are the subject of therapeutic interest, because of their anti-inflammatory, antitumoral, immunogenic, and wound-healing properties. In this study, we analyzed the association between beta-cyclodextrin (betaCD) and fraction P1G10 containing the bioactive proteinases from Carica candamarcensis, and described the physicochemical nature of the solid-state self-assembled complexes by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and nuclear magnetic resonance (NMR), as well as in solution by circular dichroism (CD), isothermal titration calorimetry (ITC), and amidase activity. The physicochemical analyses suggest the formation of a complex between P1G10 and betaCD. Higher secondary interactions, namely hydrophobic interactions, hydrogen bonding and van der Waals forces were observed at higher P1G10 : betaCD mass ratios. These results provide evidence of the occurrence of strong solid-state supramolecular non-covalent interactions between P1G10 and betaCD. Microcalorimetric analysis demonstrates that complexation results in a favorable enthalpic contribution, as has already been described during formation of similar betaCD inclusion compounds. The amidase activity of the complex shows that the enzyme activity is not readily available at 24 hours after dissolution of the complex in aqueous buffer; the proteinase becomes biologically active by the second day and remains stable until day 16, when a gradual decrease occurs, with basal activity attained by day 29. The reported results underscore the potential for betaCDs as candidates for complexing cysteine proteinases, resulting in supramolecular arrays with sustained proteolytic activity.

  14. Molecular cytogenetic identification of a rearrangement involving 10q23 in a patient with ALL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosemblum-Vos, L.S.; Frantz, C.N.; Punzalan, C.M.

    A patient with pre-B cell acute lymphocytic leukemia (ALL) demonstrated a novel complex karyotype, elucidated by fluorescence in situ hybridization (FISH), which involved the region of a rare heritable fragile site at 10q23-q24. An asymptomatic two-year-old white female presented with anemia; her physical examination was normal. WBC was 6,200 with 8% blasts, and 35% atypical lymphocytes. Her bone marrow showed 50% lymphoblasts, expressing CD9, CD10, CD19, CD22, CD24, CD45, and HLA-DR, consistent with B-cell lineage. Cytogenetic examination of a bone marrow biopsy yielded GTG-banded chromosomes of sub-optimal morphology. The karyotype was initially interpreted as mosaic 46,X,-X,+4,-10,+13,der(19)/46,XX with 40% abnormal cells.more » Subsequent FISH studies revealed the der(19) to be an unbalanced form of the 1;19 translocation frequently found in pre-B cell ALL. Using FISH, we also identified a complex rearrangement in which an X chromosome segment was inserted interstitially into 10q at the q23.3/q24 junction, the location of a rare heritable fragile site. The karyotype has been reinterpreted as 46,X,del(X)(:p11.2{r_arrow}qter), ins(10;X)(q23.3;p11.2p22.3),der(19)t(1;19)(q23p13)/46,XX. To our knowledge, this is only the second reported case involving this breakpoint in ALL-L1, the other being a patient with biphenotypic pre-B/myeloid acute leukemia. Our patient is currently being investigated for this fragile site. The complete elucidation of the chromosomes involved in this complex rearrangement and the possible implications of the chromosome 10 breakpoint would have gone undetected without the application of FISH.« less

  15. A water-based topical Chinese traditional medicine (Zicao) for wound healing developed using 2-hydroxypropyl-β-cyclodextrin.

    PubMed

    Chen Chen, Ta; Yu, Song-Cu; Hsu, Chin-Mu; Tsai, Fuu-Jen; Tsai, Yuhsin

    2018-05-01

    Zicao is a traditional Chinese herbal medicine that has been used for the topical treatment of wounds in the form of oil-based ointment for several hundred years. To overcome the disadvantages of oil-based ointment such as irritation, discomfort, and difficulty in cleaning, this study developed a water-based topical formulation of Zicao. An ethanol extract of Zicao was included in 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to form a water-soluble Zicao-HP-β-CD complex. The formation of the Zicao-HP-β-CD complex was determined using LC-MS, 1 H NMR, ROSEY, and solubility analysis. The bioactivity of Zicao-HP-β-CD complex in aqueous solution was evaluated using cellular uptake in vitro and experimental excision wounds in vivo. The LC-MS, 1 H NMR, ROESY, and solubility analyses results show that Zicao extract was successfully included by the HP-β-CD. The results of the cellular uptake in vitro and wound healing in vivo suggest that the effect of Zicao was enhanced following the formation of the Zicao-HP-β-CD complex. Therefore, we concluded that complexation with HP-β-CD might provide a potential method for developing an effective water-based topical solution of Zicao. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Preparation, characterization and binding behaviors of host-guest inclusion complexes of metoclopramide hydrochloride with α- and β-cyclodextrin molecules

    NASA Astrophysics Data System (ADS)

    Barman, Siti; Barman, Biraj Kumar; Roy, Mahendra Nath

    2018-03-01

    The supramolecular interaction of metoclopramide hydrochloride (MP) with α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) has been inspected by ultraviolet-visible (UV-vis) light, infra-red (IR) light, fluorescence and 1H NMR spectroscopy. The formation of an inclusion complex greatly affects the physical-chemical properties of the guest molecules, such as solubility, chemical reactivity and the spectroscopic and electrochemical properties. Thus the changes in the spectral properties and physico-chemical properties confirm the inclusion complex formation. Surface tension, conductivity studies and Job's plot indicate a 1: 1 stoichiometry of the MP:CD host-guest inclusion complexes. The binding/association constants have been evaluated by both UV-Vis and fluorescence spectroscopic study indicating a higher degree of encapsulation for β-cyclodextrin (β-CD). Furthermore, the negative value of thermodynamic parameter (ΔG°) of the host-guest system suggests that the inclusion process proceeded spontaneously at 298.15 K. Based on the NMR data, the plausible mode of interaction of MP:α-CD and MP:β-CD complexes were proposed, which suggested that lipophilic aromatic ring of the MP entered into the cavity of CDs from the wider side, with the amide (sbnd CONH) and methoxy (-OMe) residues inside the CD cavity.

  17. Hydrogen passivation and multiple hydrogen-Hg vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te

    NASA Astrophysics Data System (ADS)

    Xue, L.; Tang, D. H.; Qu, X. D.; Sun, L. Z.; Lu, Wei; Zhong, J. X.

    2011-09-01

    Using first-principles method within the framework of the density functional theory, we study the formation energies and the binding energies of multiple hydrogen-mercury vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te. We find that, when mercury vacancies exist in Hg0.75Cd0.25Te, the formation of the complex impurity between H and VHg (1H-VHg) is easy and its binding energy is up to 0.56 eV. In this case, the deep acceptor level of mercury vacancy is passivated. As the hydrogen concentration increases, we find that the complex impurity between VHg and two hydrogen atoms (2H-VHg) is more stable than 1H-VHg. This complex passivates both the two acceptor levels introduced by mercury vacancy and neutralizes the p-type dopant characteristics of VHg in Hg0.75Cd0.25Te. Moreover, we find that the complex impurities formed by one VHg and three or four H atoms (3H-VHg, 4H-VHg) are still stable in Hg0.75Cd0.25Te, changing the VHg doped p-type Hg0.75Cd0.25Te to n-type material.

  18. Physicochemical and thermodynamic characterization of the encapsulation of methyl jasmonate by natural and modified cyclodextrins using reversed-phase high-pressure liquid chromatography.

    PubMed

    López-Nicolás, José Manuel; Escorial Camps, Marta; Pérez-Sánchez, Horacio; García-Carmona, Francisco

    2013-11-27

    Although the combinations of methyl jasmonate (MeJA) and cyclodextrins (CDs) have been used by different authors to stimulate the production of several metabolites, no study has been published about the possible formation of MeJA-CD complexes when these two molecules are added together to the reaction medium as elicitors. For this reason and because knowledge of the possible complexation process of MeJA with CD under different physicochemical conditions is essential if these two molecules are to be used in cell cultures, this paper looks at the complexation of MeJA with natural and modified CDs using a reversed-phase high-pressure liquid chromatography (RP-HPLC) system. The interaction of MeJA with β-CD was more efficient than with α- and γ-CDs. However, a modified CD, HP-β-CD, was the most effective of all of the CDs tested. Moreover, MeJA formed complexes with CD with a 1:1 stoichiometry, and the formation constants of these complexes were strongly dependent upon the temperature of the mobile phase used but not the pH. To obtain information about the mechanism of the affinity of MeJA for CD, the thermodynamic parameters ΔG°, ΔH°, and ΔS° were calculated. Finally, molecular modeling studies were carried out to propose which molecular interactions are established in the complexation process.

  19. Nanoaggregation of inclusion complexes of glibenclamide with cyclodextrins.

    PubMed

    Lucio, David; Irache, Juan Manuel; Font, María; Martínez-Ohárriz, María Cristina

    2017-03-15

    Glibenclamide is a sulfonylurea used for the oral treatment of type II diabetes mellitus. This drug shows low bioavailability as consequence of its low solubility. In order to solve this problem, the interaction with cyclodextrin has been proposed. This study tries to provide an explanation about the processes involved in the formation of GB-βCDs complexes, which have been interpreted in different ways by several authors. Among native cyclodextrins, βCD presents the most appropriate cavity to host glibenclamide molecules showing A L solubility diagrams (K 1:1 ≈1700M -1 ). However, [Formula: see text] solubility profiles were found for βCD derivatives, highlighting the coexistence of several phenomena involved in the drug solubility enhancement. At low CD concentration, the formation of inclusion complexes can be studied and the stability constants can be calculated (K 1:1 ≈1400M -1 ). Whereas at high CD concentration, the enhancement of GB solubility would be mainly attributed to the formation of nanoaggregates of CD and GB-CD complexes (sizes between 100 and 300nm). The inclusion mode into βCD occurs through the cyclohexyl ring of GB, adopting a semi-folded conformation which maximizes the hydrogen bond network. As consequence of all these phenomena, a 150-fold enhancement of drug solubility has been achieved using β-cyclodextrin derivatives. Thus, its use has proven to be an interesting tool to improve the oral administration of glibenclamide in accordance with dosage bulk and dose/solubility ratio requirements. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cyclodextrin Enhances Corneal Tolerability and Reduces Ocular Toxicity Caused by Diclofenac

    PubMed Central

    Abdelkader, Hamdy; Fathalla, Zeinab; Moharram, Hossam; Ali, Taha F. S.

    2018-01-01

    With advances in refractive surgery and demand for cataract removal and lens replacement, the ocular use of nonsteroidal anti-inflammatory drugs (NSAIDs) has increased. One of the most commonly used NSAIDs is diclofenac (Diclo). In this study, cyclodextrins (CDs), α-, β-, γ-, and HP-β-CDs, were investigated with in vitro irritation and in vivo ulceration models in rabbits to reduce Diclo toxicity. Diclo-, α-, β-, γ-, and HP-β-CD inclusion complexes were prepared and characterized and Diclo-CD complexes were evaluated for corneal permeation, red blood cell (RBCs) haemolysis, corneal opacity/permeability, and toxicity. Guest- (Diclo-) host (CD) solid inclusion complexes were formed only with β-, γ-, and HP-β-CDs. Amphipathic properties for Diclo were recorded and this surfactant-like functionality might contribute to the unwanted effects of Diclo on the surface of the eye. Contact angle and spreading coefficients were used to assess Diclo-CDs in solution. Reduction of ocular toxicity 3-fold to16-fold and comparable corneal permeability to free Diclo were recorded only with Diclo-γ-CD and Diclo-HP-β-CD complexes. These two complexes showed faster healing rates without scar formation compared with exposure to the Diclo solution and to untreated groups. This study also highlighted that Diclo-γ-CD and Diclo-HP-β-CD demonstrated fast healing without scar formation. PMID:29636847

  1. Solubility profiles, hydration and desolvation of curcumin complexed with γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Shityakov, Sergey; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Roewer, Norbert; Förster, Carola; Broscheit, Jens

    2017-04-01

    In this study, we investigated curcumin (CUR) solubility profiles and hydration/desolvation effects of this substance formulated with γ-cyclodextrin (γ-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) excipients. The CUR/HP-γ-CD complex was found to be more stable in solution with the highest apparent stability constant for CUR/HP-γ-CD (Kc = 1.58*104 M-1) as the more soluble form in distilled water. The in silico calculations, including molecular docking, Monte Carlo (MC), and molecular dynamics (MD) simulations, indicated that water molecules play an important role in host-guest complexation mediating the CUR binding to cyclodextrins via hydrogen bond formations. The CUR hydration/desolvation effects contributed to the complex formation by elevating the CUR binding affinity to both CDs. The CUR/HP-γ-CD complex after the CUR hydration was determined with a minimal Gibbs free energy of binding (ΔGbind = -9.93 kcal*mol-1) due to the major hydrophobic (vdW) forces. Overall, the results of this study can aid a development of cyclodextrin-based drug delivery vectors, signifying the importance of water molecules during the formulation processes.

  2. Effect of salinity on the precipitation of dissolved metals in the wastewater that produced during fly ash disposal

    NASA Astrophysics Data System (ADS)

    Lv, Lina; Yang, Yanling; Tian, Junguo; Li, Yaojian; Li, Jun; Yan, Shengjun

    2018-02-01

    In this study, a salinity wastewater was produced during the fly ash treatment in the waste incineration plant. Chemical precipitation method was applied for heavy metals removal in the salinity wastewater. The effect of salinity on the removal of dissolved heavy metal ions (Zn2+, Cu2+, Pb2+, Ni2+ and Cd2+) was studied, especially on the removal of Pb2+ and Cd2+. Because of the formation of [PbCl3]- and [PbCl4]2- complexes, the residual concentration of dissolved Pb2+ increased from 0.02 mg/L to 4.08 mg/L, as the NaCl concentration increased from 0 % to 10 %. And the residual concentration of dissolved Cd2+ increased from 0.02 mg/L to 1.39 mg/L, due to the formation of [CdCl3]-, [CdCl4]2- and [CdCl6]4- complexes.

  3. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response

    PubMed Central

    Barinov, Aleksandr; Galgano, Alessia; Krenn, Gerald; Tanchot, Corinne; Vasseur, Florence

    2017-01-01

    CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation. PMID:28686740

  4. The effect of pH and triethanolamine on sulfisoxazole complexation with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Gladys, Granero; Claudia, Garnero; Marcela, Longhi

    2003-11-01

    A novel complexation of sulfisoxazole with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was studied. Two systems were used: binary complexes prepared with HP-beta-CD and multicomponent system (HP-beta-CD and the basic compound triethanolamine (TEA)). Inclusion complex formation in aqueous solutions and in solid state were investigated by the solubility method, thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)), Fourier-transform infrared spectroscopy (FT-IR) and dissolution studies. The solid complexes of sulfisoxazole were prepared by freeze-drying the homogeneous concentrated aqueous solutions in molar ratios of sulfisoxazole:HP-beta-CD 1:1 and 1:2, and sulfisoxazole:TEA:HP-beta-CD 1:1:2. FT-IR and thermal analysis showed differences among sulfisoxazole:HP-beta-CD and sulfisoxazole:TEA:HP-beta-CD and their corresponding physical mixtures and individual components. The HP-beta-CD solubilization of sulfisoxazole could be improved by ionization of the drug molecule through pH adjustments. However, larger improvements of the HP-beta-CD solubilization are obtained when multicomponent systems are used, allowing to reduce the amount of CD necessary to prepare the target formulation.

  5. Nanostructures formed by cyclodextrin covered procainamide through supramolecular self assembly - Spectral and molecular modeling study

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Mohandoss, T.; Sankaranarayanan, R. K.

    2015-02-01

    Inclusion complexation behavior of procainamide (PCA) with two cyclodextrins (α-CD and β-CD) were analyzed by absorption, fluorescence, scanning electron microscope (SEM), transmission electron microscope (TEM), Raman image, FT-IR, differential scanning colorimeter (DSC), Powder X ray diffraction (XRD) and 1H NMR. Blue shift was observed in β-CD whereas no significant spectral shift observed in α-CD. The inclusion complex formation results suggest that water molecules also present in the inside of the CD cavity. The present study revealed that the phenyl ring of the PCA drug is entrapped in the CD cavity. Cyclodextrin studies show that PCA forms 1:2 inclusion complex with α-CD and β-CD. PCA:α-CD complex form nano-sized particles (46 nm) and PCA:β-CD complex form self-assembled to micro-sized tubular structures. The shape-shifting of 2D nanosheets into 1D microtubes by simple rolling mechanism were analysed by micro-Raman and TEM images. Thermodynamic parameters (ΔH, ΔG and ΔS) of inclusion process were determined from semiempirical PM3 calculations.

  6. Aminoacid N-substituted 1,4,7-triazacyclononane and 1,4,7,10-tetraazacyclododecane Zn2+, Cd2+ and Cu2+ complexes. A preparative, potentiometric titration and NMR spectroscopic study.

    PubMed

    Plush, Sally E; Lincoln, Stephen F; Wainwright, Kevin P

    2004-05-07

    The pK(a)s and Zn2+, Cd2+ and Cu2+ complexation constants (K) for 1,4,7-tris[(2''S)-acetamido-2''-(methyl-3''-phenylpropionate)]-1,4,7-triazacyclononane, 1, 1,4,7-tris[(2''S)-acetamido-2''-(1''-carboxy-3''-phenylpropane)]-1,4,7-triazacyclononane, H(3)2, 1,4,7-tris[(2''S)-acetamido-2''-(methyl-3''-(1H-3-indolyl)propionate)]-1,4,7-triazacyclononane, 3, and 1,4,7,10-tetrakis[(2''S)-acetamido-2''-(methyl-3''-phenylpropionate)]-1,4,7,10-tetraazacyclododecane, 4, 1,4,7,10-tetrakis[(2''S)-acetamido-2''-(1''-carboxy-3''-phenylpropane)]-1,4,7,10-tetraazacyclododecane, H(4)5, in 20 : 80 v/v water-methanol solution are reported. The pK(a)s within the potentiometric detection range for H(3)1(3+) = 8.69 and 3.59, for H(6)2(3+) = 9.06, 6.13, 4.93 and 4.52, H(3)3(3+) = 8.79 and 3.67, H(4)4(4+) = 8.50, 5.62 and 3.77 and for H(8)5(4+) = 9.89, 7.06, 5.53, 5.46, 4.44 and 4.26 where each tertiary amine nitrogen is protonated. The complexes of 1: [Zn(1)]2+(9.00), [Cd(1)]2+ (6.49), [Cd(H1)]3+ (4.54) and [Cu(1)]2+ (10.01) are characterized by the log(K/dm3 mol(-1)) values shown in parentheses. Analogous complexes are formed by 3 and 4: [Zn(3)]2+ (10.19), [Cd(3)]2+ (8.54), [Cu(3)]2+ (10.77), [Zn(4)]2+ (11.41) [Cd(4)]2+ (9.16), [Cd(H4)]3+ (6.16) and [Cu(4)]2+ (11.71). The tricarboxylic acid H(3)2 generates a greater variety of complexes as exemplified by: [Zn(2)-] (10.68) [Zn(H2)] (6.60) [Zn(H(2)2)+] (5.15), [Cd(2)](-) (4.99), [Cd(H2)] (4.64), [Cd(H2(2))]+ (3.99), [Cd(H(3)2)]2+ (3.55), [Cu(2)](-) (12.55) [Cu(H2)] (7.66), [Cu(H(2)2)]+ (5.54) and [Cu(2)2](4-) (3.23). The complexes of H(4)5 were insufficiently soluble to study in this way. The 1H and 13C NMR spectra of the ligands are consistent with formation of a predominant Zn2+ and Cd2+ Delta or Lambda diastereomer. The preparations of the new pendant arm macrocycles H(3)2, 3, 4 and H(4)5 are reported.

  7. Blocking and Blending: Different Assembly Models of Cyclodextrin and Sodium Caseinate at the Oil/Water Interface.

    PubMed

    Xu, Hua-Neng; Liu, Huan-Huan; Zhang, Lianfu

    2015-08-25

    The stability of cyclodextrin (CD)-based emulsions is attributed to the formation of a solid film of oil-CD complexes at the oil/water interface. However, competitive interactions between CDs and other components at the interface still need to be understood. Here we develop two different routes that allow the incorporation of a model protein (sodium caseinate, SC) into emulsions based on β-CD. One route is the components adsorbed simultaneously from a mixed solution to the oil/water interface (route I), and the other is SC was added to a previously established CD-stabilized interface (route II). The adsorption mechanism of β-CD modified by SC at the oil/water interface is investigated by rheological and optical methods. Strong sensitivity of the rheological behavior to the routes is indicated by both steady-state and small-deformation oscillatory experiments. Possible β-CD/SC interaction models at the interface are proposed. In route I, the protein, due to its higher affinity for the interface, adsorbs strongly at the interface with blocking of the adsorption of β-CD and formation of oil-CD complexes. In route II, the protein penetrates and blends into the preadsorbed layer of oil-CD complexes already formed at the interface. The revelation of interfacial assembly is expected to help better understand CD-based emulsions in natural systems and improve their designs in engineering applications.

  8. Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice.

    PubMed

    Rodrigues, Lindaiane Bezerra; Martins, Anita Oliveira Brito Pereira Bezerra; Ribeiro-Filho, Jaime; Cesário, Francisco Rafael Alves Santana; E Castro, Fyama Ferreira; de Albuquerque, Thaís Rodrigues; Fernandes, Maria Neyze Martins; da Silva, Bruno Anderson Fernandes; Quintans Júnior, Lucindo José; Araújo, Adriano Antunes de Sousa; Menezes, Paula Dos Passos; Nunes, Paula Santos; Matos, Isabella Gonçalves; Coutinho, Henrique Douglas Melo; Goncalves Wanderley, Almir; de Menezes, Irwin Rose Alencar

    2017-11-01

    Cyclodextrins (CDs) are cyclic oligosaccharides can enhance the bioavailability of drugs. Ocimum basilicum is an aromatic plant found in Brazil used in culinary. The essential oil of this plant presents anti-edematogenic and anti-inflammatory activities in acute and chronic inflammation. The aim of this study was to investigate the anti-inflammatory effects of the essential oil obtained from O. basilicum complexed with β - cyclodextrin (OBEO/β-CD) in mice. The complexation with β-cyclodextrin (β-CD) was performed by different methods and analyzed by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). The anti-inflammatory activity was evaluated using mice models of paw edema induced by carrageenan, dextran, histamine and arachidonic acid (AA); vascular permeability and peritonitis induced by carrageenan and granuloma induced by cotton block introduction. The DSC, TG and SEM analysis indicated that the OBEO was successfully complexed with β-CD. The oral administration of OEOB/β-CD prevented paw edema formation by decreasing vascular permeability in vivo, inhibited leukocyte recruitment to the peritoneal cavity, and inhibited granuloma formation in mice. Our results indicate that conjugation with β-CD improves the anti-inflammatory effects of OBEO in mice models of acute and chronic inflammation, indicating that this complex can be used in anti-inflammatory drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Hydration Differences Explain the Large Variations in the Complexation Thermodynamics of Modified γ-Cyclodextrins with Bile Salts.

    PubMed

    Køhler, Jonatan; Schönbeck, Christian; Westh, Peter; Holm, René

    2016-01-28

    The structure and thermodynamics of inclusion complexes of seven different γ-cyclodextrins (γCDs) and three biologically relevant bile salts (BS) were investigated in the present study. Natural γCD and six modified γCDs [two methyl-γCDs, one sulfobutyl ether-γCD (SBEγCD), and three 2-hydroxypropyl-γCDs (HPγCD)] and their complexes with BS were investigated by isothermal titration calorimetry, NMR, and molecular dynamics simulations. With the exception of the fully methylated γCD, which did not bind the BSs investigated, all of the γCDs formed 1:1 complexes with the BS, and the structures were similar to those with natural γCD; i.e., the modifications of the γCD had limited structural impact on the formation of complexes. Isothermal titration calorimetry was carried out over in the temperature interval 5-55 °C to enable the calculation of the stability constant (K) and the thermodynamic parameters enthalpy (ΔH°), entropy (ΔS°), and heat capacity (ΔCp°). The stability constants decreased with an increased degree of substitution (DS), with methyl substituents having a lower effect on the stability constant than the sulfobutyl ether and hydroxypropyl substituents on the stability constants. Enthalpy-entropy compensation was observed, since both enthalpy and entropy increased with the degree of substitution, which may reflect dehydration of the hydrophobic surface on both CD and BS. Calculations based on ΔCp° data suggested that each of the substituents dehydrated 10-20 (hydroxypropyl), 22-33 (sulfobutyl ether), and 10-15 Å(2) (methyl) of the BS surface area, in reasonable agreement with estimates from the molecular dynamics simulations. Combined with earlier investigations on modified βCDs, these results indicate general trends of the substituents on the thermodynamics of complex formation.

  10. Chemometric analysis of voltammetric data on metal ion binding by selenocystine.

    PubMed

    Gusmão, Rui; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2012-06-28

    The behavior of selenocystine (SeCyst) alone or in the presence of various metal ions (Bi(3+), Cd(2+), Co(2+), Cu(2+), Cr(3+), Ni(2+), Pb(2+), and Zn(2+)) was studied using differential pulse voltammetry (DPV) over a wide pH range. Voltammetric data matrices were analyzed using chemometric tools recently developed for nonlinear data: pHfit and Gaussian Peak Adjustment (GPA). Under the experimental conditions tested, no evidence was found for the formation of metal complexes with Bi(3+), Cu(2+), Cr(3+), and Pb(2+). In contrast, SeCyst formed electroinactive complexes with Co(2+) and Ni(2+) and kinetically inert but electroactive complexes with Cd(2+) and Zn(2+). Titrations with Cd(2+), Co(2+), Ni(2+), and Zn(2+) produced data that were reasonably consistent with the formation of stable 1:1 M(SeCyst) complexes.

  11. Study on the interaction of a cyanine dye with human serum transferrin.

    PubMed

    Zhang, Xiu-feng; Chen, Lei; Yang, Qian-fan; Li, Qian; Sun, Xiao-ran; Chen, Hong-bo; Yang, Guang; Tang, Ya-lin

    2015-12-01

    Complexation between the primary carrier of ligands in blood plasma, human serum transferrin (Tf), and a cyanine dye, 3,3'-di(3-sulfopropyl)-4,5,4',5'-dibenzo-9-phenyl-thiacarbocyanine-triethylam monium salt (PTC) was investigated using fluorescence spectra, UV/Vis absorption spectra, synchronous fluorescence spectra, circular dichroism (CD) and molecular dynamic docking. The experimental results demonstrate that the formation of PTC-Tf complex is stabilized by van der Waal's interactions and hydrogen bonds, and the binding constants were found to be 8.55 × 10(6), 8.19 × 10(6) and 1.75 × 10(4) M(-1). Moreover, fluorescence experiments prove that the operational mechanism for the fluorescence quenching is static quenching and non-radiative energy transfer. Structural investigation of the PTC-Tf complexes via synchronous fluorescence spectra and CD showed that the structure of Tf became more stable with a major increase in the α-helix content and increased polarity around the tryptophan residues after PTC binding. In addition, molecular modeling highlights the residues located in the N-lobe, which retain high affinity for PTC. The mode of action of the PTC-Tf complex is illustrated by these results, and may provide an effective pathway for the transport and targeted delivery of antitumor agents. Copyright © 2015 John Wiley & Sons, Ltd.

  12. A pH-independent instantaneous release of flurbiprofen: a study of the preparation of complexes, their characterization and in vitro/in vivo evaluation.

    PubMed

    Wang, Han-Bing; Yang, Fei-Fei; Gai, Xiu-Mei; Cheng, Bing-Chao; Li, Jin-Yu; Pan, Hao; Yang, Xing-Gang; Pan, Wei-San

    2017-09-01

    In this study, furbiprofen/hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complexes were prepared to improve the drug dissolution and facilitate its application in hydrophilic gels. Inclusion complexes were prepared using a supercritical fluid processing and a conventional optimized co-lypholization method was employed as a reference. The entrapment efficacy and drug loading of both methods were investigated. Evaluation of drug dissolution enhancement was conducted in deionized water as well as buffer solutions of different pH. Carbopol 940 gels of both flurbiprofen and flurbiprofen/HPβCD inclusion complexes, with or without penetration enhancers, were prepared and percutaneous permeation studies were performed using rat abdominal skin samples. Formation of flurbiprofen/HPβCD inclusion complexes was confirmed by Fourier transform-infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. The results obtained showed that SCF processing produced a higher EE (81.91 ± 1.54%) and DL (6.96 ± 0.17%) compared with OCL with values of 69.11 ± 2.23% and 4.00 ± 1.01%, respectively. A marked instantaneous release of flurbiprofen/HPβCD inclusion complexes prepared by SCF processing (103.04 ± 2.66% cumulative release within 5 min, a 10-fold increase in comparison with flurbiprofen alone) was observed. In addition, this improvement in dissolution was shown to be pH-independent (the percentage cumulative release at pH 1.2, 4.5, 6.8 and 7.4 at 5 min was 95.19 ± 1.71, 101.75 ± 1.44, 105.37 ± 4.58 and 96.84 ± 0.56, respectively). Percutaneous permeability of flurbiprofen-in-HPβCD-in-gels could be significantly accelerated by turpentine oil and was related to the water content in the system. An in vivo pharmacokinetic study showed a 2-fold increase in C max and a shortened T max as well as a comparable relative bioavailability when compared with the commercial flurbiprofen Cataplasms (Zepolas ® ). With their superior dissolution, these flurbiprofen/HPβCD inclusion complexes prepared by SCF processing could provide improved applications for flurbiprofen.

  13. Encapsulation of serotonin in β-cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sudip; Chakraborty, Sandipan; Sengupta, Pradeep K.

    2010-06-01

    Serotonin is a physiologically important biogenic amine, deficiency of which leads to mental disorders such as Alzheimer's disease, schizophrenia, infantile autism, and depression. Both β-cyclodextrin (β-CD) and its chemically substituted synthetic varieties (often possessing enhanced aqueous solubility and improved drug complexing abilities) are finding wide applications as drug delivery vehicles. Here we have studied the encapsulation of serotonin in β-CD and succinyl-2-hydroxypropyl β-cyclodextrin (SHP-β-CD) by exploiting the intrinsic serotonin fluorescence. Enhanced fluorescence emission intensity (which increases by ˜18% and 34% in β-CD and SHPβ-CD respectively) and anisotropy ( r) ( r = 0.075 and 0.1 in β-CD and SHPβ-CD respectively) are observed in presence of the cyclodextrins. From the fluorescence data host-guest interaction with 1:1 stoichiometry is evident, the association constants ( K) being 126.06 M -1 and 461.62 M -1 for β-CD and SHPβ-CD respectively. Additionally, molecular docking and semiempirical calculations have been carried out which provide, for the first time, detailed insights regarding the encapsulation process. In particular, it is evident that the indole ring is inserted within the β-CD cavity with the aliphatic amine side chain protruding towards the primary rim of the β-CD cavity. Docking calculations reveal that hydrogen bonding interactions are involved in the formation of the inclusion complex. Semiempirical calculations indicate that formation of the 1:1 inclusion complex is energetically favorable which is consistent with the fluorescence data.

  14. Five chiral Cd(II) complexes with dual chiral components: Effect of positional isomerism, luminescence and SHG response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lin, E-mail: lcheng@seu.edu.cn; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189; Wang, Jun

    2015-01-15

    Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N{sup 1},N{sup 2}-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO{sub 3}){sub 2}. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized bymore » using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties.« less

  15. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    PubMed

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  16. Production, Characterization, and Stability of Orange or Eucalyptus Essential Oil/β-Cyclodextrin Inclusion Complex.

    PubMed

    Kringel, Dianini Hüttner; Antunes, Mariana Dias; Klein, Bruna; Crizel, Rosane Lopes; Wagner, Roger; de Oliveira, Roberto Pedroso; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-11-01

    The aim of this study was to produce and characterize inclusion complexes (IC) between β-cyclodextrin (β-CD) and orange essential oil (OEO) or eucalyptus essential oil (EEO), and to compare these with their pure compounds and physical mixtures. The samples were evaluated by chemical composition, morphology, thermal stability, and volatile compounds by static headspace-gas chromatography (SH-GC). Comparing the free essential oil and physical mixture with the inclusion complex, of both essential oils (OEO and EEO), it was observed differences occurred in the chemical composition, thermal stability, and morphology. These differences show that there was the formation of the inclusion complex and demonstrate the necessity of the precipitation method used to guarantee the interaction between β-CD and essential oils. The slow loss of the volatile compounds from both essential oils, when complexed with β-CD, showed a higher stability when compared with their physical mixtures and free essential oils. Therefore, the results showed that the chemical composition, molecular size, and structure of the essential oils influence the characteristics of the inclusion complexes. The application of the β-CD in the formation of inclusion complexes with essential oils can expand the potential applications in foods. © 2017 Institute of Food Technologists®.

  17. Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: A molecular modeling approach

    NASA Astrophysics Data System (ADS)

    Suliman, FakhrEldin O.; Elbashir, Abdalla A.

    2012-07-01

    Using capillary electrophoresis baclofen (BF) enantiomers were separated only in the presence of β-cyclodextrin (βCD) as a chiral selector when added to the background electrolyte. Proton nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) techniques were used to determine the structure of the BF-βCD inclusion complexes. From the MS data BF was found to form a 1:1 complex with α- and βCD, while the NMR data suggest location of the aromatic ring of BF into the cyclodextrin cavity. A molecular modeling study, using the semiempirical PM6 calculations was used to investigate the mechanism of enantiodifferentiation of BF with cyclodextrins. Optimization of the structures of the complexes by PM6 method indicated that separation is obtained in the presence of β-CD due to a large binding energy difference (ΔΔE) of 46.8 kJ mol-1 between S-BF-βCD and R-BF-βCD complexes. In the case of αCD complexes ΔΔE was 1.3 kJ mol-1 indicating poor resolution between the two enantiomers. Furthermore, molecular dynamic simulations show that the formation of more stable S-BF-βCD complex compared to R-BF-β-CD complex is primarily due to differences in intermolecular hydrogen bonding.

  18. Design of Safer Flame Retardant Textiles through Inclusion Complex Formation with Cyclodextrins: A Combined Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Zhang, Nanshan

    Triphenyl phosphate (TPP) is widely used as a phosphorus flame retardant. It is also one component of a commercial flame retardant mixture known as Firemaster 550. TPP is likely to be released into the environment due to its high volatility and has been detected at a concentration as high as 47,000 ng/m3 in air. Recent studies have also indicated that FRs like TPP could contribute to obesity and osteoporosis in humans. Cyclodextrins (CDs) are enzymatic degradation products of starch and consist of several (alpha-1,4)-linked alpha-Dglucopyranose units. CDs own a hydrophilic outside and a hydrophobic inner cavity, which enables the formation of non-covalently bonded cyclodextrin inclusion complexes (CD-ICs) with a vast array of molecules. We hypothesize that the formation of inclusion complexes between TPP and cyclodextrins will reduce its exposure yet also retain flame retarding properties of TPP, since the formation of FR-CD-ICs is expected to eliminate unnecessary loss of FRs, especially volatile FR compounds like TPP, and release them only during a fire when they are actually needed. After creating the TPP-beta-CD-IC, we applied it to polyethylene terephthalate (PET) films by a hot press technique. Flame tests indicated TPP-beta-CD-IC exhibited flame resistant performance matching that of neat TPP, even though much less TPP was contained in its beta-CD-IC. Incorporation of FRs and other chemical additives into textile substrates in the form of their crystalline CD-ICs is a promising way to reduce the exposure of hazardous chemicals to humans and to our environment while not impacting their efficacy. Two other parent CDs (alpha-CD and gamma-CD) were applied and their abilities to form ICs with guest TPP were studied. Results from a series of characterization methods, including FTIR, DSC, TGA, XRD and NMR indicated the successful synthesis of TPP-gamma-CD-IC via two routes. However, alpha-CD appears unable to form an IC with TPP, which is likely attributable to a size mismatch between them. A novel analytical chemistry technique - tandem mass spectrometry (ESI-Q-TOF) was used to study the inclusion complexes of TPP and CDs. Successful formation of TPP-beta-/gamma-CD-IC was further proved by ESI mass spec in the positive mode. Experimental results demonstrated that 1:1 inclusion complex ions of the guest FR and the host CDs were detected. Experimentally alpha-CD cannot form an IC with TPP and this was further confirmed by tandem mass spec. Mass spectrometry provides a fast and accurate method to investigate cyclodextrin inclusion complexes and verify the formation of ICs. Computational methods were applied to help understand the energetically favorable geometry of TPP and beta-/gamma-CD in their IC form. Semi-empirical theoretical methods (PM3 and PM6) were used to find the global minima of TPP-CD geometry and density functional theory calculations at a B3LYP/6-31G(d) level were employed for elaborate geometry optimization. Solvent effect was also considered using the polarized continuum model (IEF-PCM). Analysis of the results indicated that after optimization, IC geometries provided by PM6 had stronger interactions and were more energetically favorable than the ones calculated by PM3. DFT calculations are more accurate than PM3/PM6 and enabled more interactions between the host and the guest than two semi-empirical approaches. DFT calculations also proved that initial structures prepared by PM6 were more favorable in H-bonding profiles and key energy parameters. For TPP-beta-CD system in vacuum and water, Model A owned a lower total and complexation energy while a stronger interaction between them was present in Model B. In TPP-gamma-CD system, Model B was preferred than Model A in both vacuum and water. This was potentially attributed to more H-bonds formed between TPP and gamma-CD in Model B and its ability to retain most of the internal linkages among primary hydroxyl groups.

  19. Characteristic effects of substituent and external pressure on group-inclusion complexation with p-sulfonatocalix[8]arene and γ-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Miyazono, Keitaro; Hanaya, Tadashi; Sueishi, Yoshimi

    2014-07-01

    By synthesizing unique nitroxide probes (α-substituted phenyl-2,4,6-trimethoxybenzyl(t-butyl)nitroxide), we have shown that p-sulfonatocalix[8]arene (Calix-S8) and γ-cyclodextin (γ-CD) form electron spin resonance spectroscopically separable group-inclusion complexes (α-substituted phenyl-in (R-in) and t-butyl-in complexes) and determined the group-inclusion constants of Calix-S8 and γ-CD. Using nitroxide probes, we have examined the effects of substituent and external pressure on group-inclusion complexation with Calix-S8 and γ-CD. Experiments on pressure dependence enabled us to calculate the reaction volume (Δ V) for R-in and t-butyl-in complex formations. Δ V for group-in complexation with Calix-S8 had negative values. In contrast, Δ V values for γ-CD showed positive values, which is responsible for the repelled water molecules in the CD cavity. The characteristic pressure effects on group-in complexation suggest that group recognition by γ-CD is sensitive when compared with that by Calix-S8.

  20. Formation of β-cyclodextrin inclusion enhances the stability and aqueous solubility of natural borneol.

    PubMed

    Su, Jianyu; Chen, Jianping; Li, Lin; Li, Bing; Shi, Lei; Chen, Ling; Xu, Zhenbo

    2012-06-01

    The aims of this study were to optimize the preparation conditions of natural borneol/β-cyclodextrin (NB/β-CD) inclusion complex by ultrasound method, and to investigate its improvement of stability and solubility. The complex was characterized by different various spectroscopic techniques including Fourier transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry. The results demonstrate that NB could be efficiently loaded into β-CD to form an inclusion complex by ultrasound method at a molar ratio of 1: 1and mass ratio of 1: 6. The complex exhibited different physicochemical characteristics from that of free NB. Typically, formation of β-CD inclusion significantly enhanced the stability and aqueous solubility of NB. Natural borneol (NB) has the potential to be widely used in the fields of medical and functional food, due to its specificity. However, the disadvantages of unstability in the preparation and storage process due to its easy sublimation and the low water solubility limit its application. This research provides an effective way to improve the solubility and stability of NB by preparing NB/β-CD inclusion complex. Furthermore, theoretical basis is also provided for the application development of NB. © 2012 Institute of Food Technologists®

  1. Solution NMR investigation of the CD95/FADD homotypic death domain complex suggests lack of engagement of the CD95 C terminus.

    PubMed

    Esposito, Diego; Sankar, Andrew; Morgner, Nina; Robinson, Carol V; Rittinger, Katrin; Driscoll, Paul C

    2010-10-13

    We have addressed complex formation between the death domain (DD) of the death receptor CD95 (Fas/APO-1) with the DD of immediate adaptor protein FADD using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and size-exclusion chromatography with in-line light scattering. We find complexation to be independent of the C-terminal 12 residues of CD95 and insensitive to mutation of residues that engage in the high-order clustering of CD95-DD molecules in a recently reported crystal structure obtained at pH 4. Differential NMR linewidths indicate that the C-terminal region of the CD95 chains remains in a disordered state and (13)C-methyl TROSY data are consistent with a lack of high degree of symmetry for the complex. The overall molecular mass of the complex is inconsistent with that in the crystal structure, and the complex dissociates at pH 4. We discuss these findings using sequence analysis of CD95 orthologs and the effect of FADD mutations on the interaction with CD95. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Antibody Conjugated, Raman Tagged Hollow Gold-Silver Nanospheres for Specific Targeting and Multimodal Dark-Field/SERS/Two Photon-FLIM Imaging of CD19(+) B Lymphoblasts.

    PubMed

    Nagy-Simon, Timea; Tatar, Andra-Sorina; Craciun, Ana-Maria; Vulpoi, Adriana; Jurj, Maria-Ancuta; Florea, Adrian; Tomuleasa, Ciprian; Berindan-Neagoe, Ioana; Astilean, Simion; Boca, Sanda

    2017-06-28

    In this Research Article, we propose a new class of contrast agents for the detection and multimodal imaging of CD19(+) cancer lymphoblasts. The agents are based on NIR responsive hollow gold-silver nanospheres conjugated with antiCD19 monoclonal antibodies and marked with Nile Blue (NB) SERS active molecules (HNS-NB-PEG-antiCD19). Proof of concept experiments on specificity of the complex for the investigated cells was achieved by transmission electron microscopy (TEM). The microspectroscopic investigations via dark field (DF), surface-enhanced Raman spectroscopy (SERS), and two-photon excited fluorescence lifetime imaging microscopy (TPE-FLIM) corroborate with TEM and demonstrate successful and preferential internalization of the antibody-nanocomplex. The combination of the microspectroscopic techniques enables contrast and sensitivity that competes with more invasive and time demanding cell imaging modalities, while depth sectioning images provide real time localization of the nanoparticles in the whole cytoplasm at the entire depth of the cells. Our findings prove that HNS-NB-PEG-antiCD19 represent a promising type of new contrast agents with great possibility of being detected by multiple, non invasive, rapid and accessible microspectroscopic techniques and real applicability for specific targeting of CD19(+) cancer cells. Such versatile nanocomplexes combine in one single platform the detection and imaging of cancer lymphoblasts by DF, SERS, and TPE-FLIM microspectroscopy.

  3. New insights on the spectrophotometric determination of melatonin pKa values and melatonin-βCD inclusion complex formation constant

    NASA Astrophysics Data System (ADS)

    Zafra-Roldán, A.; Corona-Avendaño, S.; Montes-Sánchez, R.; Palomar-Pardavé, M.; Romero-Romo, M.; Ramírez-Silva, M. T.

    2018-02-01

    Using UV-Vis spectrophotometry a stability study of melatonin at different pH values was done in aqueous media, finding that at acidic pH melatonin is unstable when interacting with the environment, however it becomes stable protecting it from light and oxygen. From the UV-Vis spectra and SQUAD software, melatonin pKa values, in a completely protected aqueous medium, were estimated as 5.777 ± 0.011 and 10.201 ± 0.024. Using the same techniques, the melatonin and β-cyclodextrin inclusion complex formation constants were assessed at pH 3, 7 and 11.5, giving the values of log β = (3.07 ± 0.06), (2.94 ± 0.01) and (3.07 ± 0.06) M- 1, respectively. From the global acidity formation constants and the complexes' formation constants, the molar fractions were determined for each species of MT and MT - βCD, to build the molar fraction-[βCD]-pH 3D diagram and the molar fraction-pH 2D diagrams, where it was possible to observe the predominance of the MT species with and without βCD. A voltammetric study at pH 3, allowed obtaining a value of log β = (3.15 ± 0.01) M- 1, which corroborates that obtained through UV-Vis spectrophotometry, supporting strongly the rationale behind using simple, straightforward techniques.

  4. Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Manosroi, Jiradej; Apriyani, Maria Goretti; Foe, Kuncoro; Manosroi, Aranya

    2005-04-11

    The aim of this study was to investigate the release rates of azelaic acid and azelaic acid-hydroxypropyl-beta-cyclodextrin (HPbetaCD) inclusion complex through three types of synthetic membranes, namely cellophane, silicone and elastomer membranes. Solid inclusion complexes of azelaic acid-HPbetaCD at the molar ratio of 1:1 were prepared by coevaporation and freeze-drying methods, subsequently characterized by differential scanning calorimetry, X-ray diffractometry and dissolution studies. Solid inclusion complex obtained by coevaporation method which exhibited the inclusion of azelaic acid in the HPbetaCD cavity and gave the highest dissolution rate of azelaic acid was selected for the release study. Release studies of azelaic acid and this complex through the synthetic membranes were conducted using vertical Franz diffusion cells at 30 degrees C for 6 days. The release rates of azelaic acid through the synthetic membranes were enhanced by the formation of inclusion complex with HPbetaCD at the molar ratio of 1:1, with the increasing fluxes of about 41, 81 and 28 times of the uncomplexed system in cellophane, silicone and elastomer membranes, respectively. The result from this study can be applied for the development of azelaic acid for topical use.

  5. Zn–Se–Cd–S Interlayer Formation at the CdS/Cu 2 ZnSnSe 4 Thin-Film Solar Cell Interface

    DOE PAGES

    Bär, Marcus; Repins, Ingrid; Weinhardt, Lothar; ...

    2017-06-14

    The chemical structure of the CdS/Cu 2ZnSnSe 4 (CZTSe) interface was studied by a combination of electron and X-ray spectroscopies with varying surface sensitivity. We find the CdS chemical bath deposition causes a 'redistribution' of elements in the proximity of the CdS/CZTSe interface. In detail, our data suggest that Zn and Se from the Zn-terminated CZTSe absorber and Cd and S from the buffer layer form a Zn-Se-Cd-S interlayer. Here, we find direct indications for the presence of Cd-S, Cd-Se, and Cd-Se-Zn bonds at the buffer/absorber interface. Thus, we propose the formation of a mixed Cd(S,Se)-(Cd,Zn)Se interlayer. We also suggestmore » the underlying chemical mechanism is an ion exchange mediated by the amine complexes present in the chemical bath.« less

  6. Solvent influence on complex formation between Cd2+ and 2-hydroxy-1,4-naphthoquinone in binary mixed nonaqueous solvents at 15-45°C

    NASA Astrophysics Data System (ADS)

    Farazandeh, R.; Rounaghi, G. H.; Ebrahimi, M.; Basafa, S.

    2017-04-01

    The complexation reaction of Cd2+ cation with 2-hydroxy-1,4-naphthoquinone (HNQ) was studied in acetonitrile (AN), 2-PrOH, ethyl acetate (EtOAc), EtOH, dimethylformamide (DMF) and in binary solutions AN-2-PrOH, AN-DMF, AN-EtOH, and AN-EtOAc using conductometric method at 15-45°C. The conductance data show that the stoichiometry of the Cd2+ complex with HNQ in all solvent systems is 1 : 1. In the pure solvents the stability of the complex changes in the order AN > 2-PrOH > EtOH > DMF. The stability of the complex at 25°C in the studied mixtures changes in the following order : AN-EtOAc > AN-2-PrOH > AN-EtOH > AN-DMF. These orders are affected by the nature and composition of the solvent systems and by the temperature. From the temperature dependence data, the thermodynamic functions values (Δ H° and Δ S°) for the complex formation were calculated.

  7. Preparation, physicochemical characterization and release behavior of the inclusion complex of trans-anethole and β-cyclodextrin.

    PubMed

    Zhang, Wenwen; Li, Xinying; Yu, Taocheng; Yuan, Lun; Rao, Gang; Li, Defu; Mu, Changdao

    2015-08-01

    Trans-anethole (AT) has a variety of antimicrobial properties and is widely used as food functional ingredient. However, the applications of AT are limited due to its low water solubility, strong odor and low physicochemical stability. Therefore, the aim of this work was to encapsulate AT with β-cyclodextrin (β-CD) for obtaining inclusion complex by co-precipitation method. The measurements effectively confirmed the formation of inclusion complex between AT and β-CD. The results showed that the inclusion complex presented new solid crystalline phases and was more thermally stable than the physical mixture and β-CD. The phase solubility study showed that the aqueous solubility of AT was increased by being included in β-CD. The calculated stability constant of inclusion complex was 1195M -1 , indicating the strong interaction between AT and β-CD. Furthermore, the release study suggested that β-CD provided the protection for AT against evaporation. The release behavior of AT from the inclusion complex was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    PubMed Central

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  9. The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.

    PubMed

    Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise

    2016-08-31

    Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.

  10. Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins.

    PubMed

    Liu, Benguo; Li, Wei; Nguyen, Tien An; Zhao, Jian

    2012-09-15

    The inclusion complexation of (2-hydroxypropyl)-cyclodextrins with flavanones was investigated by phase solubility measurements, as well as thermodynamic and quantum chemical methods. Inclusion complexes were formed between (2-hydroxypropyl)-α-cyclodextrin (HP-α-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), (2-hydroxypropyl)-γ-cyclodextrin (HP-γ-CD) and β-cyclodextrin (β-CD) and four flavanones (naringenin, naringin, hesperetin and dihydromyricetin) in aqueous solutions and their phase solubility was determined. For all the flavanones, the stability constants of their complexes formed with different CDs followed the rank order: HP-β-CD (MW 1540)>HP-β-CD (MW 1460)>HP-β-CD (MW 1380)>β-CD>HP-γ-CD>HP-α-CD. Experimental results and quantum chemical calculations showed that the ability of flavanones to form inclusion complex with (2-hydroxypropyl)-cyclodextrins was determined by both the steric effect and hydrophobicity of the flavanones. For flavanones that have similar molecular volumes, the hydrophobicity of the molecule was the main determining factor of its ability to form inclusion complexes with HP-β-CD, and the hydrophobicity parameter Log P is highly correlated with the stability constant of the complexes. Results of thermodynamic study demonstrated that hydrophobic interaction is the main driving force for the formation process of the flavanone-CD inclusion complexes. Quantum chemical analysis of the most active hydroxyl groups and HOMO (the highest occupied molecular orbital) showed that the B ring of the flavanones was most likely involved in hydrogen bonding with the side groups in the cavity of the CDs, through which the inclusion complex was stabilised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development.

    PubMed

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-04-07

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.

  12. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development

    PubMed Central

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-01-01

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ɛ proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development. PMID:20150895

  13. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property.

    PubMed

    Celebioglu, Asli; Kayaci-Senirmak, Fatma; İpek, Semran; Durgun, Engin; Uyar, Tamer

    2016-07-13

    Vanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w). Vanillin has a volatile nature yet, after electrospinning, a significant amount of vanillin was preserved due to complex formation depending on the CD types. Maximum preservation of vanillin was observed for vanillin/MβCD-IC NFs which is up to ∼85% w/w, besides, a considerable amount of vanillin (∼75% w/w) was also preserved for vanillin/HPβCD-IC NFs and vanillin/HPγCD-IC NFs. Phase solubility studies suggested a 1 : 1 molar complexation tendency between guest vanillin and host CD molecules. Molecular modelling studies and experimental findings revealed that vanillin : CD complexation was strongest for MβCD when compared to HPβCD and HPγCD in vanillin/CD-IC NFs. For vanillin/CD-IC NFs, water solubility and the antioxidant property of vanillin was improved significantly owing to inclusion complexation. In brief, polymer-free vanillin/CD-IC NFs are capable of incorporating a much higher loading of vanillin and effectively preserve volatile vanillin. Hence, encapsulation of volatile active agents such as flavor, fragrance and essential oils in electrospun polymer-free CD-IC NFs may have potential for food related applications by integrating the particularly large surface area of NFs with the non-toxic nature of CD and inclusion complexation benefits, such as high temperature stability, improved water solubility and an enhanced antioxidant property, etc.

  14. Encapsulation of lemongrass oil with cyclodextrins by spray drying and its controlled release characteristics.

    PubMed

    Phunpee, Sarunya; Ruktanonchai, Uracha Rangsadthong; Yoshii, Hidefumi; Assabumrungrat, Suttichai; Soottitantawat, Apinan

    2017-04-01

    Inclusion of the two isomers of citral (E-citral and Z-citral), components of lemongrass oil, was investigated within the confines of various cyclodextrin (α-CD, β-CD and γ-CD) host molecules. Aqueous complex formation constants for E-citral with α-CD, β-CD and γ-CD were determined to be 123, 185, and 204 L/mol, respectively, whereas Z-citral exhibited stronger affinities (157, 206, and 253 L/mol, respectively). The binding trend γ-CD > β-CD > α-CD is a reflection of the more favorable geometrical accommodation of the citral isomers with increasing cavity size. Encapsulation of lemongrass oil within CDs was undertaken through shaking citral:CD (1:1, 1.5:1, and 2:1 molar ratio) mixtures followed by spray drying. Maximum citral retention occurred at a 1:1 molar ratio with β-CD and α-CD demonstrating the highest levels of total E-citral and Z-citral retention, respectively. Furthermore, the β-CD complex demonstrated the slowest release rate of all inclusion complex powders.

  15. A mechanistic approach on the self-organization of the two-component thermoreversible hydrogel of riboflavin and melamine.

    PubMed

    Saha, Abhijit; Manna, Swarup; Nandi, Arun K

    2007-12-18

    The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (

  16. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application.

    PubMed

    Mangolim, Camila Sampaio; Moriwaki, Cristiane; Nogueira, Ana Claudia; Sato, Francielle; Baesso, Mauro Luciano; Neto, Antônio Medina; Matioli, Graciette

    2014-06-15

    Curcumin was complexed with β-CD using co-precipitation, freeze-drying and solvent evaporation methods. Co-precipitation enabled complex formation, as indicated by the FT-IR and FT-Raman techniques via the shifts in the peaks that were assigned to the aromatic rings of curcumin. In addition, photoacoustic spectroscopy and X-ray diffraction, with the disappearance of the band related to aromatic rings, by Gaussian fitting, and modifications in the spectral lines, respectively, also suggested complex formation. The possible complexation had an efficiency of 74% and increased the solubility of the pure colourant 31-fold. Curcumin-β-CD complex exhibited a sunlight stability 18% higher than the pure colourant. This material was stable to pH variations and storage at -15 and 4°C. With an isothermal heating at 100 and 150°C for 2h, the material exhibited a colour retention of approximately 99%. The application of curcumin-β-CD complex in vanilla ice creams intensified the colour of the products and produced a great sensorial acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Encapsulation of boswellic acid with β- and hydroxypropyl-β-cyclodextrin: Synthesis, characterization, in vitro drug release and molecular modelling studies

    NASA Astrophysics Data System (ADS)

    Tambe, Amruta; Pandita, Nancy; Kharkar, Prashant; Sahu, Niteshkumar

    2018-02-01

    Boswellic acids (BAs) are a group of pentacyclic triterpenes present in gum-resin of Boswellia serrata. They are well known for their anti-inflammatory, hypolipidemic, immunomodulatory and anti-tumor activity, but they have poor aqueous solubility and limited bioavailability. In order to enhance their aqueous solubility, inclusion complexes of BAs with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were synthesized and their drug release profiles were studied. Molecular associations of β-CD and HP-β-CD with BAs were investigated by phase solubility studies. The stability constants were found to be 380.2 and 145.9 M-1 for BA: β-CD and BA: HP-β-CD inclusion complexes, respectively with AN- type curve. BA: β-CD and BA: HP-β-CD inclusion complexes were synthesized using kneading (KN), co-precipitation (CP) and solvent evaporation (SE) methods in 1:1 as well as 1:2 ratios. Further these were characterized by Fourier transform infrared (FTIR) spectrophotometry, Powder X-ray Diffraction (P-XRD) and Differential scanning calorimetric (DSC) analysis. FTIR analysis showed shifting of frequencies in complexes as compared to CDs and BAs. P-XRD data obtained for BA: β-CD complexes synthesized by CP and SE methods showed amorphous pattern. Also, DSC analysis showed a change in thermal behaviour for synthesized complexes. In vitro drug release studies of BA: β-CD complexes showed enhanced release with 1:2 complexes than 1:1 complexes at pH 1.2 and pH 6.8. Similarly, drug release enhancement was observed more with BA: HP-β-CD complexes in 1:2 ratio than 1:1. To understand the interaction of BAs with CD cavity molecular modelling studies were performed which favored 1:2 complex formation over 1:1 complexes. The study thus highlights that CDs can be used for solubility and dissolution enhancement of BAs.

  18. Quantitative immunophenotypic analysis of antigen-presenting cells involved in ectromelia virus antigen presentation in BALB/c and C57BL/6 mice.

    PubMed

    Szulc-Dąbrowska, Lidia; Gieryńska, Małgorzata; Boratyńska-Jasińska, Anna; Martyniszyn, Lech; Winnicka, Anna; Niemiałtowski, Marek G

    2013-08-01

    During mousepox in resistant (C57BL/6) or susceptible (BALB/c) strains of mice, stimulation of Th1 or Th2 cytokine immune response, respectively, is observed. Because mechanisms of different polarization of T cells remain elusive, in this study, we quantitatively assessed the phenotype of antigen-presenting cells (APCs) involved in ectromelia virus (ECTV) antigen presentation and cluster formation with effector cells in secondary lymphoid organs of BALB/c and C57BL/6 mice. We showed that both strains of mice display similar dynamics and kinetics of viral antigen presentation by CD11c(+) , CD11b(+) , and CD19(+) cells. CD11c(+) and CD11b(+) cells highly participated in viral antigen presentation during all stages of mousepox, whereas CD19(+) cells presented viral peptides later in infection. The main population of dendritic cells (DCs) engaged in ECTV antigen presentation and cell junction formation with effector cells was a population of myeloid CD11b(+) DCs (mDCs). We suggest that, on the one hand, ECTV may differentially affect the functions of APCs depending on the strain of mice. On the other hand, we suggest that some types of APCs, such as mDCs or other DCs subsets, have different abilities to direct the shape of immune response depending on the host resistance to mousepox. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Supramolecular structure of glibenclamide and β-cyclodextrins complexes.

    PubMed

    Lucio, David; Irache, Juan Manuel; Font, María; Martínez-Ohárriz, María Cristina

    2017-09-15

    Glibenclamide is an antidiabetic drug showing low bioavailability as consequence of its low solubility. To solve this drawback, the interaction with cyclodextrins has been proposed. The formation of GB-βCDs inclusion complexes was carried out using different methods, βCD derivatives and drug-to-cyclodextrin ratios. The structures of the corresponding complexes have been studied by molecular modelling, X-ray diffraction and differential thermal analysis. The dissolution behavior of inclusion complexes has been compared to that of pure GB. Dimeric inclusion complexes were obtained with different CD disposals, head-to-head for βCD and head-to-tail for HPβCD and RMβCD. Amorphous inclusion complexes were obtained by employing methods of freeze-drying or coevaporation in ammonia-water. However, crystalline structures were formed by kneading and coevaporation in ethanol/water in the case of GB-βCD complexes. The arrangement of these structures depended on the GB:βCD ratio, yielding cage type structures for 1:3 and 1:5 ratios and channel-type structures for higher GB contents. The amount of GB released and its dissolution rate was considerably increased by the use of amorphous inclusion complexes; whereas, slower GB release rates were found from crystalline inclusion complexes formed by kneading or coevaporation in ethanol/water. In addition, it was found that the porous structure strongly conditioned the GB dissolution rate from crystalline products. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Thermodynamic study on the effects of β-cyclodextrin inclusion with berberine

    NASA Astrophysics Data System (ADS)

    Yu, Jun-Sheng; Wei, Fang-Di; Gao, Wei; Zhao, Chang-Chun

    2002-01-01

    The fluorescence enhancement of berberine (Berb) as a result of complex with β-cyclodextrin (β-CD) is investigated. The association constants of α-CD and β-CD with Berb are 60 and 137 M -1 at 20 °C in pH 7.20 aqueous solution. Effects of temperature on the forming inclusion complexes of β-CD with Berb have been examined through using fluorescence titration. Enthalpy and entropy values calculated from fluorescence data are -33.7·kJ mol -1 and 74.3 J·mol -1·K -1, respectively. It was found that the dielectric constant of β-CD cavity is about 24 in a rough analogy with absolute alcohol. These results suggest that the extrusion of 'high energy water' molecules from the cavity of β-CD and hydrophobic interaction upon the inclusion complex formation are the main forces of the inclusion reaction. Effect of pH on the association of β-CD with Berb was also studied. Mechanism of the inclusion of β-CD with Berb is further studied by absorption and NMR measurements. Results show that β-CD forms a 1:1 inclusion complex with Berb.

  1. Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex.

    PubMed

    Wang, Xinge; Luo, Zhigang; Xiao, Zhigang

    2014-01-30

    β-Cyclodextrin (β-CD), which is widely used to increase the stability, solubility, and bioavailability of guests, can form host-guest inclusion complexes with a wide variety of organic molecules. In this study the β-CD/soybean lecithin inclusion complex was prepared. The effect of reaction parameters such as reaction temperature, reaction time and the molar ratio of β-CD/soybean lecithin on inclusion ratio were studied. The inclusion ratio of the product prepared under the optimal conditions of β-CD/soybean lecithin molar ratio 2:1, reaction temperature 60°C reaction time 2h was 40.2%. The results of UV-vis, DSC, XRD and FT-IR spectrum indicated the formation of inclusion complex. The thermal stability experiment indicated that the thermal stability of soybean lecithin in inclusion complex was significantly improved compared with free soybean lecithin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. [Effect of β-cyclodextrin inclusion complex on transport of major components of Xiangfu Siwu decoction essential oil in Caco-2 cell monolayer model].

    PubMed

    Xi, Jun-zuan; Qian, Da-wei; Duan, Jin-ao; Liu, Pei; Zhu, Yue; Zhu, Zhen-hua; Zhang, Li

    2015-08-01

    Although the essential oil of Xiangfu Siwu decoction (XFSWD) has strong pharmacological activity, its special physical and chemical properties restrict the clinical application and curative effect. In this paper, Xiangfu Siwu decoction essential oil (XFS-WO) was prepared by forming inclusion complex with β-cyclodextrin (β-CD). The present study is to investigate the effect of β-CD inclusion complex on the transport of major components of XFSWO using Caco-2 cell monolayer model, thus to research the effect of this formation on the absorption of drugs with low solubility and high permeability, which belong to class 2 in biopharmaceutics classification system. A sensitive and rapid UPLC-MS/MS method was developed for simultaneous quantification of senkyunolide A, 3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone and α-cyperone, which are active compounds in XFSWO. The transport parameters were analyzed and compared in free oil and its β-CD inclusion complex. The result revealed that the formation of XFSWO/β-CD inclusion complex has significantly increased the transportation and absorption of major active ingredients than free oil. Accordingly, it can be speculated that cyclodextrin inclusion complex can improve bioavailability of poorly water-soluble drugs. Above all these mentioned researches, it provided foundation and basis for physiological disposition and pharmaceutical study of XFSWD.

  3. The influence of dissolved H2O content in supercritical carbon dioxide to the inclusion complexes formation of ketoprofen/β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Goenawan, Joshua; Trisanti, P. N.; Sumarno

    2015-12-01

    This work studies the relation between dissolved H2O content in supercritical carbon dioxide (SC-CO2) with the formation of ketoprofen (KP)/β-cyclodextrin(CD) inclusion complexes. The process involves a physical mixture of these two compounds into contact with the supercritical carbon dioxide which had been previously saturated with H2O over a certain duration. The pressure used for saturation process is 130 bar and saturation temperature was ranged between 30 °C to 50 °C. The inclusion process was achieved by keeping it for 2 hours at 160 bar and 200 bar with inclusion temperature of 50 °C. The results enable us to suggest explanations for the inclusion formation. The inclusion complexes can be formed by contacting the dissolved H2O in SC-CO2 to the physical mixture of KP and CD. An increase in the temperature of saturation process resulted in an increase of dissolved H2O content in the supercritical carbon dioxide. The increasing levels of this water soluble resulted an increase in the inclusion complexes that has been formed. The formation of inclusion complexes includes the water molecules enhancing the emptying of the CD cavities and being replaced by KP, towards a more stable energy state. The drug release used for analyzing the dissolution rate of the KP/CD complexes. The results vary from 79,85% to 99,98% after 45 minutes which is above the rate that has been assigned by Farmakope Indonesia at 70% dissolution rate for KP. The use of SC-CO2 offers a new methods for increasing the rate of dissolution of drugs that are hydrophobic such as KP. CO2 used as a supercritical fluid because of its relatively low cost, easily obtainable supercritical conditions, and lack of toxicity. The material samples were characterized by DSC and Spectrophotometer UV-vis technique.

  4. Use of reversed phase high pressure liquid chromatography for the physicochemical and thermodynamic characterization of oxyresveratrol/beta-cyclodextrin complexes.

    PubMed

    Rodríguez-Bonilla, Pilar; López-Nicolás, José Manuel; García-Carmona, Francisco

    2010-06-01

    Knowledge of the complexation process of oxyresveratrol with beta-cyclodextrin (beta-CD) under different physicochemical conditions is essential if this potent antioxidant compound is to be used successfully in both food and pharmaceutical industries as ingredient of functional foods or nutraceuticals, despite its poor stability and bioavailability. In this paper, the complexation of oxyresveratrol with natural CDs was investigated for first time using RP-HPLC and mobile phases to which alpha-, beta-, and gamma-CD were added. Among natural CDs, the interaction of oxyresveratrol with beta-CD was more efficient than with alpha- and gamma-CD. The decrease in the retention times with increasing concentrations of beta-CD (0-4 mM) showed that the formation constants (KF) of the oxyresveratrol/beta-CD complexes were strongly dependent on both the water-methanol proportion and the temperature of the mobile phase employed. However, oxyresveratrol formed complexes with beta-CD with a 1:1 stoichiometry in all the physicochemical conditions tested. Moreover, to obtain information about the mechanism of the oxyresveratrol affinity for beta-CD, the thermodynamic parameters DeltaG degrees, DeltaH degrees and DeltaS degrees were obtained. Finally, to gain information on the effect of the structure of different compounds belonging to the stilbenoids family on the KF values, the complexation of other molecules, resveratrol, pterostilbene and pinosylvin, was studied and compared with the results obtained for the oxyresveratrol/beta-CD complexes. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Chronic endurance exercise affects paracrine action of CD31+ and CD34+ cells on endothelial tube formation

    PubMed Central

    Landers-Ramos, Rian Q.; Sapp, Ryan M.; Jenkins, Nathan T.; Murphy, Anna E.; Cancre, Lucile; Chin, Eva R.; Spangenburg, Espen E.

    2015-01-01

    We aimed to determine if chronic endurance-exercise habits affected redox status and paracrine function of CD34+ and CD34−/CD31+ circulating angiogenic cells (CACs). Subjects were healthy, nonsmoking men and women aged 18–35 yr and categorized by chronic physical activity habits. Blood was drawn from each subject for isolation and culture of CD34+ and CD34−/CD31+ CACs. No differences in redox status were found in any group across either cell type. Conditioned media (CM) was generated from the cultured CACs and used in an in vitro human umbilical vein endothelial cell-based tube assay. CM from CD34+ cells from inactive individuals resulted in tube structures that were 29% shorter in length (P < 0.05) and 45% less complex (P < 0.05) than the endurance-trained group. CD34−/CD31+ CM from inactive subjects resulted in tube structures that were 26% shorter in length (P < 0.05) and 42% less complex (P < 0.05) than endurance-trained individuals. Proteomics analyses identified S100A8 and S100A9 in the CM. S100A9 levels were 103% higher (P < 0.05) and S100A8 was 97% higher in the CD34−/CD31+ CM of inactive subjects compared with their endurance-trained counterparts with no significant differences in either protein in the CM of CD34+ CACs as a function of training status. Recombinant S100A8/A9 treatment at concentrations detected in inactive subjects' CD34−/CD31+ CAC CM also reduced tube formation (P < 0.05). These findings are the first, to our knowledge, to demonstrate a differential paracrine role in CD34+ and CD34−/CD31+ CACs on tube formation as a function of chronic physical activity habits and identifies a differential secretion of S100A9 by CD34−/CD31+ CACs due to habitual exercise. PMID:26055789

  6. Characterization, phase solubility and molecular modeling of α-cyclodextrin/pyrimethamine inclusion complex

    NASA Astrophysics Data System (ADS)

    Araujo, Marcia Valeria Gaspar de; Macedo, Osmir F. L.; Nascimento, Cristiane da Cunha; Conegero, Leila Souza; Barreto, Ledjane Silva; Almeida, Luis Eduardo; Costa, Nivan Bezerra da; Gimenez, Iara F.

    2009-02-01

    An inclusion complex between the dihydrofolate reductase inhibitor pyrimethamine (PYR) and α-cyclodextrin (α-CD) was prepared and characterized. From the phase-solubility diagram, a linear increase of PYR solubility was verified as a function of α-CD concentration, suggesting the formation of a soluble complex. A 1:1 host-guest stoichiometry can be proposed according to the Job's plot, obtained from the difference of PYR fluorescence intensity in the presence and absence of α-CD. Differential scanning calorimetry (DSC) measurements provided additional evidences of complexation such as the absence of the endothermic peak assigned to the melting of the drug. The inclusion mode characterized by two-dimensional 1H NMR spectroscopy (ROESY) involves penetration of the p-chlorophenyl ring into the α-CD cavity, in agreement to the orientation optimized by molecular modeling methods.

  7. Comparison of ibuprofen release from minitablets and capsules containing ibuprofen: β-cyclodextrin complex.

    PubMed

    Salústio, P J; Cabral-Marques, H M; Costa, P C; Pinto, J F

    2011-05-01

    Mixtures containing ibuprofen (IB) complexed with β-cyclodextrin (βCD) obtained by two complexation methods [suspension/solution (with water removed by air stream, spray- and freeze-drying) and kneading technique] were processed into pharmaceutical dosage forms (minitablets and capsules). Powders (IB, βCD and IBβCD) were characterized for moisture content, densities (true and bulk), angle of repose and Carr's index, X-ray and NMR. From physical mixtures and IBβCD complexes without other excipients were prepared 2.5-mm-diameter minitablets and capsules. Minitablets were characterized for the energy of compaction, tensile strength, friability, density and IB release (at pH 1.0 and 7.2), whereby capsules were characterized for IB release. The results from the release of IB were analyzed using different parameters, namely, the similarity factor (f(2)), the dissolution efficiency (DE) and the amounts released at a certain time (30, 60 and 180 min) and compared statistically (α=0.05). The release of IB from the minitablets showed no dependency on the amount of water used in the formation of the complexes. Differences were due to the compaction force used or the presence of a shell for the capsules. The differences observed were mostly due to the characteristics of the particles (dependent on the method considered on the formation of the complexes) and neither to the dosage form nor to the complex of the IB. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. International Conference (4th) on Nanostructured Materials Held in Stockholm, Sweden on 14-19 June 1998. Book of Abstracts

    DTIC Science & Technology

    1998-06-19

    Coatings P2-67 Kuruvilla, B.A.; Nanda, J.; Sarma, D.D.; India Optical Properties ofPbS- CdS Coated Semiconductor Nanoparticles P2-68 Misra, S.; India...including phosphors, pigments and magnetic materials. In this study, the synthesis of ZnS, CdS and Ce2S3 nanoparticles by mechanochemical reaction has...formation of separated nanoparticles ; ZnS, CdS and Ce2S3 nanoparticles of ~7 nm, ɠ nm and -20 nm, respectively, were obtained. The average size of CdS

  9. GDP-mannose-4,6-dehydratase (GMDS) Deficiency Renders Colon Cancer Cells Resistant to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor- and CD95-mediated Apoptosis by Inhibiting Complex II Formation*

    PubMed Central

    Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji

    2011-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835

  10. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    PubMed

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  12. Cd(2+) Triggered the FRET "ON": A New Molecular Switch for the Ratiometric Detection of Cd(2+) with Live-Cell Imaging and Bound X-ray Structure.

    PubMed

    Aich, Krishnendu; Goswami, Shyamaprosad; Das, Sangita; Mukhopadhyay, Chitrangada Das; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-08-03

    On the basis of the Förster resonance energy transfer mechanism between rhodamine and quinoline-benzothiazole conjugated dyad, a new colorimetric as well as fluorescence ratiometric probe was synthesized for the selective detection of Cd(2+). The complex formation of the probe with Cd(2+) was confirmed through Cd(2+)-bound single-crystal structure. Capability of the probe as imaging agent to detect the cellular uptake of Cd(2+) was demonstrated here using living RAW cells.

  13. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 2: Characterization of complexed powders and determination of crystalline structure.

    PubMed

    Ho, Thao M; Howes, Tony; Jack, Kevin S; Bhandari, Bhesh R

    2016-09-01

    This study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.b.) at 0.4 and 1.6MPa pressure for 72h. The results of (13)C NMR, SEM, DSC and X-ray analyses showed that these MC levels were high enough to induce crystallization of CO2-α-CD complexed powders during encapsulation, by which amount of CO2 encapsulated by amorphous α-CD powder was significantly increased. The formation of inclusion complexes were well confirmed by results of FTIR and (13)C NMR analyses through an appearance of a peak associated with CO2 on the FTIR (2334cm(-1)) and NMR (125.3ppm) spectra. Determination of crystal packing patterns of CO2-α-CD complexed powders showed that during crystallization, α-CD molecules were arranged in cage-type structure in which CO2 molecules were entrapped in isolated cavities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Gallic acid/hydroxypropyl-β-cyclodextrin complex: Improving solubility for application on in vitro/ in vivo Candida albicans biofilms

    PubMed Central

    Teodoro, Guilherme Rodrigues; Salvador, Marcos José; Koga-Ito, Cristiane Yumi

    2017-01-01

    The aim of this study was to increase the solubility of gallic acid (GA) for the treatment of Candida albicans biofilm, which is very difficult to treat and requires high drug concentrations. Cyclodextrins (CDs) were used for this purpose. Complexes were evaluated by phase-solubility studies, prepared by spray drying and characterized by drug loading, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The complexes were tested on C. albicans biofilm using in vitro and in vivo models. HPβCD formed soluble inclusion complexes with GA. The percentage of GA in GA/HPβCD was 10.8 ± 0.01%. The SEM and DSC analyses confirmed the formation of inclusion complexes. GA/HPβCD maintained the antimicrobial activity of the pure GA. GA/HPβCD was effective on C. albicans biofilms of 24 and 48h. The in vivo results showed an anti-inflammatory activity of GA/HPβCD with no difference in invading hypha counting among the groups. This study encourages the development of new antifungal agents. PMID:28700692

  15. Self-recognition of the racemic ligand in the formation of homochiral dinuclear V(V) complex: In vitro anticancer activity, DNA and HSA interaction.

    PubMed

    Kazemi, Zahra; Amiri Rudbari, Hadi; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Kajani, Abolghasem Abbasi; Azimi, Gholamhassan

    2017-07-28

    The reaction of a racemic mixture of Schiff base tridentate ligand with vanadium(V) affords homochiral vanadium complex, (VO(R-L)) 2 O and (VO(S-L)) 2 O due to ligand "self-recognition" process. The formation of homochiral vanadium complex was confirmed by 1 H NMR, 13 C NMR and X-ray diffraction. The HSA- and DNA-binding of the resultant complex is assessed by absorption, fluorescence and circular dichroism (CD) spectroscopy methods. Based on the results, the HSA- and DNA-binding constant, K b , were found to be 8.0 × 10 4 and 1.9 × 10 5  M -1 , respectively. Interestingly, in vitro cytotoxicity assay revealed the potent anticancer activity of this complex on two prevalent cancer cell lines of MCF-7 (IC50 value of 14 μM) and HeLa (IC50 value of 36 μM), with considerably low toxicity on normal human fibroblast cells. The maximum cell mortality of 12.3% obtained after 48 h incubation of fibroblast cells with 100 μM of the complex. Additionally, the specific DNA- and HSA-binding was also shown using molecular docking method. The synthesized complex displayed high potential for biomedical applications especially for development of novel and efficient anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Evidence for Chemical and Electronic Nonuniformities in the Formation of the Interface of RbF-Treated Cu(In,Ga)Se2 with CdS.

    PubMed

    Nicoara, Nicoleta; Kunze, Thomas; Jackson, Philip; Hariskos, Dimitrios; Duarte, Roberto Félix; Wilks, Regan G; Witte, Wolfram; Bär, Marcus; Sadewasser, Sascha

    2017-12-20

    We report on the initial stages of CdS buffer layer formation on Cu(In,Ga)Se 2 (CIGSe) thin-film solar cell absorbers subjected to rubidium fluoride (RbF) postdeposition treatment (PDT). A detailed characterization of the CIGSe/CdS interface for different chemical bath deposition (CBD) times of the CdS layer is obtained from spatially resolved atomic and Kelvin probe force microscopy and laterally integrating X-ray spectroscopies. The observed spatial inhomogeneity in the interface's structural, chemical, and electronic properties of samples undergoing up to 3 min of CBD treatments is indicative of a complex interface formation including an incomplete coverage and/or nonuniform composition of the buffer layer. It is expected that this result impacts solar cell performance, in particular when reducing the CdS layer thickness (e.g., in an attempt to increase the collection in the ultraviolet wavelength region). Our work provides important findings on the absorber/buffer interface formation and reveals the underlying mechanism for limitations in the reduction of the CdS thickness, even when an alkali PDT is applied to the CIGSe absorber.

  17. Physicochemical and in vitro biological evaluations of furazolidone-based β-cyclodextrin complexes in Leishmania amazonensis.

    PubMed

    Carvalho, Suzana Gonçalves; Siqueira, Larissa Ataíde; Zanini, Marcos Santos; Dos Santos Matos, Ana Paula; Quaresma, Carla Holandino; da Silva, Luisa Mota; de Andrade, Sérgio Faloni; Severi, Juliana Aparecida; Villanova, Janaina Cecília Oliveira

    2018-06-15

    Recently, there have been numerous cases of leishmaniasis reported in different Brazilian states. The use of furazolidone (FZD) to treat leishmaniasis has been previously described; however, the drug is associated with adverse effects such as anorexia, weight loss, incoordination, and fatigue in dogs. Thus, in the present study, we prepared and evaluated inclusion complexes between FZD and β-cyclodextrin (β-CD) to guarantee increased drug solubility and reduce the toxicity associated with high doses. The FZD:β-CD complexes were prepared by two different techniques (kneading and lyophilization) prior to incorporation in an oral pharmaceutical dosage form. Formation of the complexes was confirmed using appropriate physicochemical methods. Antileishmanial activity against L. amazonensis was tested in vitro via a microplate assay using resazurin dye and cytotoxicity was determined using the fibroblast L929 lineage. Solubility studies showed the formation of complexes with complexation efficiencies lower than 100%. Physicochemical analysis revealed that FZD was inserted into the β-CD cavity after complexation by both methods. Biological in vitro evaluations demonstrated that free FZD and the FZD:β-CD complexes presented significant leishmanicidal activity against L. amazonensis with IC 50 values of 6.16 μg/mL and 1.83 μg/mL for the complexes prepared by kneading and lyophilization, respectively. The data showed that these complexes reduced the survival of promastigotes and presented no toxicity for tested cells. Our results indicate that the new compounds could be a cost-effective alternative for use in the pharmacotherapy of leishmaniasis in dogs infected with L. amazonensis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Study on vitamin K 3-cyclodextrin inclusion complex and analytical application

    NASA Astrophysics Data System (ADS)

    Zhenming, Dong; Xiuping, Liu; Guomei, Zhang; Shaomin, Shuang; Jinghao, Pan

    2003-07-01

    The inclusion interaction of the complexes between Vitamin K3 (VK3) and β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD) were studied by using steady-state fluorescence measurements. The various factors affecting the inclusion process were examined in detail. The formation constants and inclusion stoichiometry for VK3-CDs were determined. The results showed that the inclusion ability of β-CD and its derivatives was the order: SBE-β-CD>HP-β-CD>β-CD. The related inclusion mechanism is proposed to explain the inclusion process. A method of determining VK3 was established with the linear range was 2.5×10-6-5.0×10-4 M, and was used to determine the VK3 tablets. The recoveries were in the range of 97.52-103.5%. The results were satisfactory.

  19. The influence of the preparation methods on the inclusion of model drugs in a beta-cyclodextrin cavity.

    PubMed

    Salústio, P J; Feio, G; Figueirinhas, J L; Pinto, J F; Cabral Marques, H M

    2009-02-01

    The work aims to prove the complexation of two model drugs (ibuprofen, IB and indomethacin, IN) by beta-cyclodextrin (betaCD), and the effect of water in such a process, and makes a comparison of their complexation yields. Two methods were considered: kneading of a binary mixture of the drug, betaCD, and inclusion of either IB or IN in aqueous solutions of betaCD. In the latter method water was removed by air stream, spray-drying and freeze-drying. To prove the formation of complexes in final products, optical microscopy, UV spectroscopy, IR spectroscopy, DSC, X-ray and NMR were considered. Each powder was added to an acidic solution (pH=2) to quantify the concentration of the drug inside betaCD cavity. Other media (pH=5 and 7) were used to prove the existence of drug not complexed in each powder, as the drugs solubility increases with the pH. It was observed that complexation occurred in all powders, and that the fraction of drug inside the betaCD did not depend neither on the method of complexation nor on the processes of drying considered.

  20. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method.

    PubMed

    Zu, Yuangang; Wu, Weiwei; Zhao, Xiuhua; Li, Yong; Zhong, Chen; Zhang, Yin

    2014-12-30

    This study selected γ-cyclodextrin (γ-CD) as the inclusion material and prepared inclusion complex of taxifolin-γ-CD by the emulsion solvent evaporation and the freeze drying combination method to achieve the improvement of the solubility and oral bioavailability of taxifolin. We selected ethyl acetate as the oil phase, deionized water as the water phase. The taxifolin emulsion was prepared using adjustable speed homogenate machine in the process of this experiment, whose particle size was related to the concentration of taxifolin solution, the volume ratio of water phase to oil phase, the speed and time of homogenate. We knew through the single-factor test that, the optimum conditions were: the concentration of taxifolin solution was 40 mg/ml, the volume ratio of water phase to oil phase was 1.5, the speed of homogenate was 5,000 rpm, the homogenate time was 11 min. Taxifolin emulsion with a MPS of 142.5 nm was obtained under the optimum conditions, then the high-concentration taxifolin solution (3mg/ml) was obtained by the rotary evaporation process. Finally, the inclusion complex of taxifolin-γ-CD was prepared by vacuum freeze-dry. The characteristics of the inclusion complex of taxifolin-γ-CD were analyzed using SEM, FTIR, XRD, DSC, and TG. The FTIR results analyzed the interaction of taxifolin and γ-CD and determined the molecular structure of the inclusion complex of taxifolin-γ-CD. The analysis results of XRD, DSC and TG indicated that the inclusion complex of taxifolin-γ-CD was obtained and showed significantly different characteristics with taxifolin. In addition, dissolving capability test, antioxidant capacity test, solvent residue test were also carried out. The experimental datas showed that the solubility of inclusion complex of taxifolin-γ-CD at 25°C and 37°C were about 18.5 times and 19.8 times of raw taxifolin, the dissolution rate of inclusion complex of taxifolin-γ-CD were about 2.84 times of raw taxifolin, the bioavailability of inclusion complex of taxifolin-γ-CD increased 3.72 times compared with raw taxifolin, and the antioxidant capacity of inclusion complex of taxifolin-γ-CD was also superior to raw taxifolin. Furthermore, the amounts of residual solvent of the inclusion complex of taxifolin-γ-CD were suitable for pharmaceutical use. These results suggested that inclusion complex of taxifolin-γ-CD may have potential value to become a new oral taxifolin formulation with high solubility. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hydroxypropyl-β-CD vs. its α-homologue for a 3D modified polyrotaxane network formation and properties: the relationship between modified CD and polymer revealed through comparison.

    PubMed

    Li, Zhao; Zheng, Zhen; Su, Shan; Yu, Lin; Wang, Xinling

    2016-09-14

    The threading mechanism of the hydroxypropyl-cyclodextrin (Hy-CD)/tetrahedron-like poly(ethylene glycol) (tetra-PEG) based host-guest complex and the relationship between Hy-CD and poly(ethylene oxide) (PEO) in the three-dimensional modified polyrotaxane (PR) formed by the complex were revealed through the comparison between Hy-β-CD/tetra-PEG and Hy-α-CD/tetra-PEG based systems from the macroscopic material view to the microscopic molecular view. The complexation between Hy-CD and tetra-PEG in water experiences a threading-dethreading-rethreading process which is controlled by the intermolecular interaction intensity or molecular hindrance depending on the feed ratio of Hy-CD to tetra-PEG. In the 3D modified PR, the methyl group of the Hy part on one Hy-CD can insert into the cavity of the adjacent Hy-CD and interacts with both the interior surface of the cavity and the PEO segment within the cavity if the cavity of Hy-CD is large enough. The threaded Hy-CD in the PR straightens the chain of PEO and suppresses the segment motion of the PEO. With the decrease of the cavity size of Hy-CD, the degree of suppression on the segment motion of PEO increases. Hy-CD threaded on the PEO chain can also deform when the 3D modified PR is compressed, and the degree of deformation increases with the increase of the cavity size of Hy-CD. These results of the modified CD/PEG based complex system set it apart from the unmodified CD/PEG based one, and reveal the structure-property relationship of this new type of Hy-CD/tetra-PEG based 3D modified PR material.

  2. Mathematical modelling of the transport of hydroxypropyl-β-cyclodextrin inclusion complexes of ranitidine hydrochloride and furosemide loaded chitosan nanoparticles across a Caco-2 cell monolayer.

    PubMed

    Sadighi, Armin; Ostad, S N; Rezayat, S M; Foroutan, M; Faramarzi, M A; Dorkoosh, F A

    2012-01-17

    Chitosan nanoparticles (CS-NPs) have been used to enhance the permeability of furosemide and ranitidine hydrochloride (ranitidine HCl) which were selected as candidates for two different biopharmaceutical drug classes having low permeability across Caco-2 cell monolayers. Drugs loaded CS-NPs were prepared by ionic gelation of CS and pentasodium tripolyphosphate (TPP) which added to the drugs inclusion complexes with hydroxypropyl-β-cyclodextrin (HP-βCD). The stability constants for furosemide/HP-βCD and ranitidine HCl/HP-βCD were calculated as 335 M(-1) and 410 M(-1), whereas the association efficiencies (AE%) of the drugs/HP-βCD inclusion complexes with CS-NPs were determined to be 23.0 and 19.5%, respectively. Zetasizer and scanning electron microscopy (SEM) were used to characterise drugs/HP-βCD-NPs size and morphology. Transport of both nano and non-nano formulations of drugs/HP-βCD complexes across a Caco-2 cell monolayer was assessed and fitted to mathematical models. Furosemide/HP-βCD-NPs demonstrated transport kinetics best suited for the Higuchi model, whereas other drug formulations demonstrated power law transportation behaviour. Permeability experiments revealed that furosemide/HP-βCD and ranitidine HCl/HP-βCD nano formulations greatly induce the opening of tight junctions and enhance drug transition through Caco-2 monolayers. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A K(+)-mediated G-quadruplex formation enhancement fluorescence polarization system based on quantum dots for detection of Hg2+ and biothiols.

    PubMed

    Zhang, Juanni; Tian, Jianniao; He, Yanlong; Zhao, Yanchun; Zhao, Shulin

    2014-02-25

    A fluorescence polarization homogenous system based on CdTe/CdS QDs that employed a K(+)-mediated G-quadruplex as an enhancer was identified for sensitive and selective detection of Hg(2+) and biothiols in complex samples.

  4. Electrochemical and surface plasmon resonance characterization of β-cyclodextrin-based self-assembled monolayers and evaluation of their inclusion complexes with glucocorticoids

    NASA Astrophysics Data System (ADS)

    Frasconi, Marco; Mazzei, Franco

    2009-07-01

    This paper describes the characterization of a self-assembled β-cyclodextrin (β-CD)-derivative monolayer (β-CD-SAM) on a gold surface and the study of their inclusion complexes with glucocorticoids. To this aim the arrangement of a self-assembled β-cyclodextrin-derivative monolayer on a gold surface was monitored in situ by means of surface plasmon resonance (SPR) spectroscopy and double-layer capacitance measurements. Film thickness and dielectric constant were evaluated for a monolayer of β-CD using one-color-approach SPR. The selectivity of the β-CD host surface was verified by using electroactive species permeable and impermeable in the β-CD cavity. The redox probe was selected according to its capacity to permeate the β-CD monolayer and its electrochemical behavior. In order to evaluate the feasibility of an inclusion complex between β-CD-SAM with some steroids such as cortisol and cortisone, voltammetric experiments in the presence of the redox probes as molecules competitive with the steroids have been performed. The formation constant of the surface host-guest by β-CD-SAM and the steroids under study was calculated.

  5. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang

    2014-01-01

    The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270

  6. Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro

    PubMed Central

    McLaughlin, Kerry; Seago, Julian; Robinson, Lucy; Kelly, Charles; Charleston, Bryan

    2010-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock. PMID:20167197

  7. Chimeric antigen receptor-engineered cytokine-induced killer cells overcome treatment resistance of pre-B-cell acute lymphoblastic leukemia and enhance survival.

    PubMed

    Oelsner, Sarah; Wagner, Juliane; Friede, Miriam E; Pfirrmann, Verena; Genßler, Sabrina; Rettinger, Eva; Buchholz, Christian J; Pfeifer, Heike; Schubert, Ralf; Ottmann, Oliver G; Ullrich, Evelyn; Bader, Peter; Wels, Winfried S

    2016-10-15

    Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.28.z). In vitro analysis revealed high and specific cell killing activity of CD19-targeted CIK/63.28.z cells against otherwise CIK-resistant cancer cell lines and primary B-ALL blasts, which was dependent on CD19 expression and CAR signaling. In a xenograft model in immunodeficient mice, treatment with CIK/63.28.z cells in contrast to therapy with unmodified CIK cells resulted in complete and durable molecular remissions of established primary pre-B-ALL. Our results demonstrate potent antileukemic activity of CAR-engineered CIK cells in vitro and in vivo, and suggest this strategy as a promising approach for adoptive immunotherapy of refractory pre-B-ALL. © 2016 UICC.

  8. Development of carvedilol-cyclodextrin inclusion complexes using fluid-bed granulation: a novel solid-state complexation alternative with technological advantages.

    PubMed

    Alonso, Ellen C P; Riccomini, Karina; Silva, Luis Antônio D; Galter, Daniela; Lima, Eliana M; Durig, Thomas; Taveira, Stephania F; Martins, Felipe Terra; Cunha-Filho, Marcílio S S; Marreto, Ricardo N

    2016-10-01

    This study sought to evaluate the achievement of carvedilol (CARV) inclusion complexes with modified cyclodextrins (HPβCD and HPγCD) using fluid-bed granulation (FB). The solid complexes were produced using FB and spray drying (SD) and were characterised by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction, SEM, flowability and particle size analyses and in vitro dissolution. The DSC, FTIR and powder X-ray diffraction findings suggested successful CARV inclusion in the modified β- and γ-cyclodextrins, which was more evident in acidic media. The CARV dissolution rate was ~7-fold higher for complexes with both cyclodextrins prepared using SD than for raw CARV. Complexes prepared with HPβCD using FB also resulted in a significant improvement in dissolution rate (~5-fold) and presented superior flowability and larger particle size. The findings suggested that FB is the best alternative for large-scale production of solid dosage forms containing CARV. Additionally, the results suggest that HPγCD could be considered as another option for CARV complexation because of its excellent performance in inclusion complex formation in the solid state. © 2016 Royal Pharmaceutical Society.

  9. Peptide Fragmentation by Corona Discharge Induced Electrochemical Ionization

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2010-01-01

    Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species [M]+•, thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: 1. Complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; 2. Electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e− → Fe +•); 3. Radical fragmentation of the complexed compound. 4. Electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites. PMID:20869880

  10. Properties of Cadmium-(bis)dodecylthiolate and Polymeric Composites Based on It

    PubMed Central

    Agareva, Nadezhda; Smirnov, Anton A.; Afanasiev, Andrey; Sologubov, Semen; Markin, Alexey; Salomatina, Evgenia; Smirnova, Larisa; Bityurin, Nikita

    2015-01-01

    We study the thermo-physical and photoluminescence (PL) properties of cadmium-(bis)dodecylthiolate (Cd(C12H25S)2). Significant attention is drawn to characterization of Cd(C12H25S)2 by different methods. The laser-induced PLs of Cd(C12H25S)2 and Cd(C12H25S)2/(polymethyl methacrylate) (PMMA) composites are studied. Samples of Cd(C12H25S)2/PMMA are synthesized by the polymerization method. Ultraviolet (UV)-pulsed laser irradiation of the samples under relatively small fluences leads to the formation of induced PL with the maximum near the wavelength of 600 nm. This process can be attributed to the transformation of Cd(C12H25S)2 within the precursor grains. Another PL peak at 450–500 nm, which appears under the higher fluences, relies on the formation of CdS complexes with a significant impact of the polymer matrix. PMID:28793738

  11. Monitoring dediazoniation product formation by high-performance liquid chromatography after derivatization.

    PubMed

    Bravo-Díaz, Carlos; González-Romero, Elisa

    2003-03-14

    A derivatization protocol that exploits the rapid reaction between arenediazonium ions and a suitable coupling agent followed by high-performance liquid chromatography analyses of the reaction mixture was employed to determine the product distribution, the rate constants for product formation and the association constant of 4-nitrobenzenediazonium, PNBD, ion with beta-cyclodextrin, beta-CD. The derivatization of PNBD with the coupling agent leads to the formation of a stable azo dye that prevents by-side reactions of PNBD with the solvents of the mobile phase, including water, or the metallic parts of the chromatographic system that would eventually lead to erroneous identification and quantification of dediazoniation products. The results show that in the presence of beta-CD, nitrobenzene is formed at the expense of 4-nitrophenol, which is the major product in its absence. The observed rate constants for the interaction between PNBD and beta-CD increase upon increasing [beta-CD] showing a saturation profile indicative of the formation of an inclusion complex between PNBD and beta-CD. By fitting the experimental data to a simplified Lineaweaver-Burk equation, the corresponding association constant and the maximum acceleration rate of beta-CD towards PNBD were estimated. The protocol is applicable under a variety of experimental conditions provided that the rate of the coupling reaction is much faster than that of dediazoniation.

  12. Regulation of invadopodia formation and activity by CD147

    PubMed Central

    Grass, G. Daniel; Bratoeva, Momka; Toole, Bryan P.

    2012-01-01

    A defining feature of malignant tumor progression is cellular penetration through the basement membrane and interstitial matrices that separate various cellular compartments. Accumulating evidence supports the notion that invasive cells employ specialized structures termed invadopodia to breach these structural barriers. Invadopodia are actin-based, lipid-raft-enriched membrane protrusions containing membrane-type-1 matrix metalloproteinase (MT1-MMP; also known as matrix metalloproteinase 14; MMP14) and several signaling proteins. CD147 (emmprin, basigin), an immunoglobulin superfamily protein that is associated with tumor invasion and metastasis, induces the synthesis of various matrix metalloproteinases in many systems. In this study we show that upregulation of CD147 is sufficient to induce MT1-MMP expression, invasiveness and formation of invadopodia-like structures in non-transformed, non-invasive, breast epithelial cells. We also demonstrate that CD147 and MT1-MMP are in close proximity within these invadopodia-like structures and co-fractionate in membrane compartments with the properties of lipid rafts. Moreover, manipulation of CD147 levels in invasive breast carcinoma cells causes corresponding changes in MT1-MMP expression, invasiveness and invadopodia formation and activity. These findings indicate that CD147 regulates invadopodia formation and activity, probably through assembly of MT1-MMP-containing complexes within lipid-raft domains of the invadopodia. PMID:22389410

  13. Increased Numbers of CD4+CD25+ and CD8+CD25+ T-Cells in Peripheral Blood of Patients with Rheumatoid Arthritis with Parvovirus B19 Infection.

    PubMed

    Naciute, Milda; Maciunaite, Gabriele; Mieliauskaite, Diana; Rugiene, Rita; Zinkeviciene, Aukse; Mauricas, Mykolas; Murovska, Modra; Girkontaite, Irute

    2017-01-01

    To investigate T-cell subpopulations in peripheral blood of human parvovirus B19 DNA-positive (B19 + ) and -negative (B19 - ) patients with rheumatoid arthritis (RA) and healthy persons. Blood samples were collected from 115 patients with RA and 47 healthy volunteers; 27 patients with RA and nine controls were B19 + Cluster of differentiation (CD) 4, 8, 25 and 45RA were analyzed on blood cells. CD25 expression on CD4 + CD45RA + , CD4 + CD45RA - , CD8 + CD45RA + , CD8 + CD45RA - subsets were analyzed by flow cytometry. The percentage of CD25 low and CD25 hi cells was increased on CD4 + CD45RA + , CD4 + CD45RA - T-cells and the percentage of CD25 + cells was increased on CD8 + CD45RA + , CD8 + CD45RA - T-cells of B19 + patients with RA in comparison with B19 - patients and controls. Raised levels of CD4 and CD8 regulatory T-cells in B19 + RA patients could cause down-regulation of antiviral clearance mechanisms and lead to activation of persistent human parvovirus B19 infection in patients with RA. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Increased Numbers of CD4+CD25+ and CD8+CD25+ T-Cells in Peripheral Blood of Patients with Rheumatoid Arthritis with Parvovirus B19 Infection

    PubMed Central

    NACIUTE, MILDA; MACIUNAITE, GABRIELE; MIELIAUSKAITE, DIANA; RUGIENE, RITA; ZINKEVICIENE, AUKSE; MAURICAS, MYKOLAS; MUROVSKA, MODRA; GIRKONTAITE, IRUTE

    2017-01-01

    Aim: To investigate T-cell subpopulations in peripheral blood of human parvovirus B19 DNA-positive (B19+) and -negative (B19−) patients with rheumatoid arthritis (RA) and healthy persons. Patients and Methods: Blood samples were collected from 115 patients with RA and 47 healthy volunteers; 27 patients with RA and nine controls were B19+. Cluster of differentiation (CD) 4, 8, 25 and 45RA were analyzed on blood cells. CD25 expression on CD4+CD45RA+, CD4+CD45RA−, CD8+CD45RA+, CD8+CD45RA− subsets were analyzed by flow cytometry. Results: The percentage of CD25low and CD25hi cells was increased on CD4+CD45RA+, CD4+CD45RA− T-cells and the percentage of CD25+ cells was increased on CD8+CD45RA+, CD8+CD45RA− T-cells of B19+ patients with RA in comparison with B19− patients and controls. Conclusion: Raised levels of CD4 and CD8 regulatory T-cells in B19+ RA patients could cause down-regulation of antiviral clearance mechanisms and lead to activation of persistent human parvovirus B19 infection in patients with RA PMID:28358698

  15. Complexation induced fluorescence and acid-base properties of dapoxyl dye with γ-cyclodextrin: a drug-binding application using displacement assays.

    PubMed

    Pal, Kaushik; Mallick, Suman; Koner, Apurba L

    2015-06-28

    Host-guest complexation of dapoxyl sodium sulphonate (DSS), an intramolecular charge transfer dye with water-soluble and non-toxic macrocycle γ-cyclodextrin (γ-CD), has been investigated in a wide pH range. Steady-state absorption, fluorescence and time-resolved fluorescence measurements confirm the positioning of DSS into the hydrophobic cavity of γ-CD. A large fluorescence enhancement ca. 30 times, due to 1 : 2 complex formation and host-assisted guest-protonation have been utilised for developing a method for the utilisation of CD based drug-delivery applications. A simple fluorescence-displacement based approach is implemented at physiological pH for the assessment of binding strength of pharmaceutically useful small drug molecules (ibuprofen, paracetamol, methyl salicylate, salicylic acid, aspirin, and piroxicam) and six important antibiotic drugs (resazurin, thiamphenicol, chloramphenicol, ampicillin, kanamycin, and sorbic acid) with γ-CD.

  16. An ocular drug delivery system containing zinc diethyldithiocarbamate and HPbetaCD inclusion complex--corneal permeability, anti-cataract effects and mechanism studies.

    PubMed

    Wang, Siling; Li, Dexin; Ito, Yoshimasa; Liu, Xia; Zhang, Jinghai; Wu, Chunfu

    2004-10-01

    Our purpose was to study the formulation and anti-cataract effects of aqueous eye drops containing a high concentration of zinc diethyldithiocarbamate (Zn-DDC). A possible mechanism of the anti-cataract effect of Zn-DDC was also studied. Zn-DDC and hydroxypropyl-beta-cyclodextrin (HPbetaCD) inclusion complex (Zn-DDC/HPbetaCD) was studied using the saturation solution method and characterized by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (IR). Suitable formulations for Zn-DDC eye drops were established by means of in-vitro trans-corneal penetration experiments. The anti-cataract effect of the selected formulation was demonstrated by the delay in lens opacity development in hereditary shumuya cataract rats (SCRs). Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to study the effect of diethyldithiocarbamate (DDC), a metabolite of Zn-DDC, on the transcription inducible nitric oxide synthase (iNOS) mRNA in human lens epithelial cells (HLEC). In the presence of 22% (w/v) HPbetaCD, the solubility of Zn-DDC in water (0.2 mM) was increased almost 850 fold (to 17 mM), by the formation of Zn-DDC/HPbetaCD. The stoichiometry of Zn-DDC inclusion was 1:1. The Zn-DDC/HPbetaCD stability constant, Ks (1:1) was estimated to be 3453 M(-1). The ophthalmic preparation containing 0.1% HPMC and 0.1% poloxamer 188 (P188) exhibited better permeability than the others in-vitro, and significantly delayed cataract formation in SCRs compared with non-treated SCRs. DDC inhibits the transcription of iNOS mRNA in HLEC. We concluded that this drug delivery system increases both the drug solubility in aqueous eye drops and the permeability of drug through the rabbit cornea, by the formation of a drug-cyclodextrin inclusion complex and the addition of polymers and penetration enhancers. The preparation effectively prevented the development of cataracts in SCRs. DDC, the metabolite of Zn-DDC, may be one of the factors in the prevention of cataract formation because it inhibits the transcription of iNOS mRNA.

  17. Structural investigations of transition metal (II) tetracyanonickelate complexes of 3-chloropyridine using Fourier transform-infrared and laser Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Akyüz, Sevim; Akyüz, Tanil; Eric, J.; Davies, D.

    1992-01-01

    The FT-IR and laser-Raman spectra of five new complexes of the formula ML 2Ni(CN) 4 (where MMn, Fe, Ni, Zn or Cd; L3-chloropyridine) are reported. The complexes are shown to have a structure consisting of two dimensional polymeric layers formed with Ni(CN) 4 ions bridged by ML 2 cations. For a given series of isomorphous complexes, the effects of metal ligand bond formation on the ligand vibrational modes are examined and the metal-sensitivity sequence of the ligand frequencies is found to be Mn≈Cd

  18. Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2012-01-09

    Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.

  19. Deletion of the membrane complement inhibitor CD59a drives age and gender-dependent alterations to bone phenotype in mice.

    PubMed

    Bloom, Anja C; Collins, Fraser L; Van't Hof, Rob J; Ryan, Elizabeth S; Jones, Emma; Hughes, Timothy R; Morgan, B Paul; Erlandsson, Malin; Bokarewa, Maria; Aeschlimann, Daniel; Evans, Bronwen A J; Williams, Anwen S

    2016-03-01

    Degenerative joint diseases such as osteoarthritis are characterised by aberrant region-specific bone formation and abnormal bone mineral content. A recent study suggested a role for the complement membrane attack complex in experimental models of osteoarthritis. Since CD59a is the principal regulator of the membrane attack complex in mice, we evaluated the impact of CD59a gene deletion upon maintenance of bone architecture. In vivo bone morphology analysis revealed that male CD59a-deficient mice have increased femur length and cortical bone volume, albeit with reduced bone mineral density. However, this phenomenon was not observed in female mice. Histomorphometric analysis of the trabecular bone showed increased rates of bone homeostasis, with both increased bone resorption and mineral apposition rate in CD59a-deficient male mice. When bone cells were studied in isolation, in vitro osteoclastogenesis was significantly increased in male CD59a-deficient mice, although osteoblast formation was not altered. Our data reveal, for the first time, that CD59a is a regulator of bone growth and homeostasis. CD59a ablation in male mice results in longer and wider bones, but with less density, which is likely a major contributing factor for their susceptibility to osteoarthritis. These findings increase our understanding of the role of complement regulation in degenerative arthritis. Copyright © 2016 Amgen Inc. Published by Elsevier Inc. All rights reserved.

  20. [The role of Cd-binding proteins and phytochelatins in the formation of cadmium resistance in Nicotiana plumbaginifolia cell lines].

    PubMed

    Fenik, S I; Solodushko, V G; Kaliniak, T B; Blium, Ia B

    2007-01-01

    Nicotiana plumbaginifolia callus lines with the equal resistance to cadmium have been produced under different selective conditions--either without inhibition of the phytochelatin synthesis (line Cd-R) or in the presence of the inhibitor butionine sulfoximine (line Cd-Ri). The level of phytochelatin synthesis in the line Cd-R five-fold exceeded the control value and in the line Cd-Ri it was twice as much as in the control. It was shown that in the control line mainly three cadmium-binding proteins are expressed of the molecular weihgts 41, 34 and 19 kD. The common feature of the both resistant lines is the expression of the cadmium-binding proteins of 40, 37 and 19 kD. The resistant lines differ with respect to the synthesis of relatively low-molecular cadmium-binding proteins. The proteins of the molecular weights 12.5, 11.5 and 9 kD are expressed in the line Cd-R, while the proteins of 13 and 10 kD are expressed in the line Cd-Ri. It was supposed that both the phytochelatins and the Cd-binding proteins contribute to the resisitance of N. plumbaginifolia callus lines to cadmium and the lack of the phytochelatins can be equilibrated by the changes in the low-molecular Cd-binding protein synthesis.

  1. Contribution of the Receptor/Ligand Interaction Between CD44 and Osteopontin to Formation of Breast Cancer Metastases

    DTIC Science & Technology

    2001-07-01

    mismatch repair gene Pms2 reduces the number of intestinal tumors as compared to mice with targeted deletion of this gene [27]. In contrast, deletion of the...Liskay. 1998. Enhanced intestinal adenomatous polyp formation in Pms2 "/;Min mice. Cancer Res. 58:1087-1089. 19 Weber et al. 28. Wilson, C.L., K.J

  2. Characterization of the host-guest complex of a curcumin analog with β-cyclodextrin and β-cyclodextrin-gemini surfactant and evaluation of its anticancer activity.

    PubMed

    Poorghorban, Masoomeh; Das, Umashankar; Alaidi, Osama; Chitanda, Jackson M; Michel, Deborah; Dimmock, Jonathan; Verrall, Ronald; Grochulski, Pawel; Badea, Ildiko

    2015-01-01

    Curcumin analogs, including the novel compound NC 2067, are potent cytotoxic agents that suffer from poor solubility, and hence, low bioavailability. Cyclodextrin-based carriers can be used to encapsulate such agents. In order to understand the interaction between the two molecules, the physicochemical properties of the host-guest complexes of NC 2067 with β-cyclodextrin (CD) or β-cyclodextrin-gemini surfactant (CDgemini surfactant) were investigated for the first time. Moreover, possible supramolecular structures were examined in order to aid the development of new drug delivery systems. Furthermore, the in vitro anticancer activity of the complex of NC 2067 with CDgemini surfactant nanoparticles was demonstrated in the A375 melanoma cell line. Physicochemical properties of the complexes formed of NC 2067 with CD or CDgemini surfactant were investigated by synchrotron-based powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Synchrotron-based small- and wide-angle X-ray scattering and size measurements were employed to assess the supramolecular morphology of the complex formed by NC 2067 with CDgemini surfactant. Lastly, the in vitro cell toxicity of the formulations toward A375 melanoma cells at various drug-to-carrier mole ratios were measured by cell viability assay. Physical mixtures of NC 2067 and CD or CDgemini surfactant showed characteristics of the individual components, whereas the complex of NC 2067 and CD or CDgemini surfactant presented new structural features, supporting the formation of the host-guest complexes. Complexes of NC 2067 with CDgemini surfactants formed nanoparticles having sizes of 100-200 nm. NC 2067 retained its anticancer activity in the complex with CDgemini surfactant for different drug-to-carrier mole ratios, with an IC50 (half-maximal inhibitory concentration) value comparable to that for NC 2067 without the carrier. The formation of host-guest complexes of NC 2067 with CD or CDgemini surfactant has been confirmed and hence the CDgemini surfactant shows good potential to be used as a delivery system for anticancer agents.

  3. Characterization of the host–guest complex of a curcumin analog with β-cyclodextrin and β-cyclodextrin–gemini surfactant and evaluation of its anticancer activity

    PubMed Central

    Poorghorban, Masoomeh; Das, Umashankar; Alaidi, Osama; Chitanda, Jackson M; Michel, Deborah; Dimmock, Jonathan; Verrall, Ronald; Grochulski, Pawel; Badea, Ildiko

    2015-01-01

    Background Curcumin analogs, including the novel compound NC 2067, are potent cytotoxic agents that suffer from poor solubility, and hence, low bioavailability. Cyclodextrin-based carriers can be used to encapsulate such agents. In order to understand the interaction between the two molecules, the physicochemical properties of the host–guest complexes of NC 2067 with β-cyclodextrin (CD) or β-cyclodextrin–gemini surfactant (CDgemini surfactant) were investigated for the first time. Moreover, possible supramolecular structures were examined in order to aid the development of new drug delivery systems. Furthermore, the in vitro anticancer activity of the complex of NC 2067 with CDgemini surfactant nanoparticles was demonstrated in the A375 melanoma cell line. Methods Physicochemical properties of the complexes formed of NC 2067 with CD or CDgemini surfactant were investigated by synchrotron-based powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Synchrotron-based small- and wide-angle X-ray scattering and size measurements were employed to assess the supramolecular morphology of the complex formed by NC 2067 with CDgemini surfactant. Lastly, the in vitro cell toxicity of the formulations toward A375 melanoma cells at various drug-to-carrier mole ratios were measured by cell viability assay. Results Physical mixtures of NC 2067 and CD or CDgemini surfactant showed characteristics of the individual components, whereas the complex of NC 2067 and CD or CDgemini surfactant presented new structural features, supporting the formation of the host–guest complexes. Complexes of NC 2067 with CDgemini surfactants formed nanoparticles having sizes of 100–200 nm. NC 2067 retained its anticancer activity in the complex with CDgemini surfactant for different drug-to-carrier mole ratios, with an IC50 (half-maximal inhibitory concentration) value comparable to that for NC 2067 without the carrier. Conclusion The formation of host–guest complexes of NC 2067 with CD or CDgemini surfactant has been confirmed and hence the CDgemini surfactant shows good potential to be used as a delivery system for anticancer agents. PMID:25609956

  4. Subsurface cadmium loss from a stony soil-effect of cow urine application.

    PubMed

    Gray, Colin William; Chrystal, Jane Marie; Monaghan, Ross Martin; Cavanagh, Jo-Anne

    2017-05-01

    Cadmium (Cd) losses in subsurface flow from stony soils that have received cow urine are potentially important, but poorly understood. This study investigated Cd loss from a soil under a winter dairy-grazed forage crop that was grazed either conventionally (24 h) or with restricted grazing (6 h). This provided an opportunity to test the hypothesis that urine inputs could increase Cd concentrations in drainage. It was thought this would be a result of cow urine either (i) enhancing dissolved organic carbon (DOC) concentrations via an increase in soil pH, resulting in the formation of soluble Cd-organic carbon complexes and, or (ii) greater inputs of chloride (Cl) via cow urine, promoting the formation of soluble Cd-Cl complexes. Cadmium concentrations in subsurface flow were generally low, with a spike above the water quality guidelines for a month after the 24-h grazing. Cadmium fluxes were on average 0.30 g Cd ha -1  year -1 (0.27-0.32 g Cd ha -1  year -1 ), in line with previous estimates for agricultural soils. The mean Cd concentration in drainage from the 24-h grazed plots was significantly higher (P < 0.05) than 6-h plots. No increase in DOC concentrations between the treatments was found. However, Cl concentrations in drainage were significantly higher (P < 0.001) from the 24-h than the 6-h grazed treatment plots, and positively correlated with Cd concentrations, and therefore, a possible mechanism increasing Cd mobility in soil. Further study is warranted to confirm the mechanisms involved and quantities of Cd lost from other systems.

  5. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells.

    PubMed

    Kochenderfer, James N; Yu, Zhiya; Frasheri, Dorina; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-11

    Adoptive T-cell therapy with anti-CD19 chimeric antigen receptor (CAR)-expressing T cells is a new approach for treating advanced B-cell malignancies. To evaluate anti-CD19-CAR-transduced T cells in a murine model of adoptive T-cell therapy, we developed a CAR that specifically recognized murine CD19. We used T cells that were retrovirally transduced with this CAR to treat mice bearing a syngeneic lymphoma that naturally expressed the self-antigen murine CD19. One infusion of anti-CD19-CAR-transduced T cells completely eliminated normal B cells from mice for at least 143 days. Anti-CD19-CAR-transduced T cells eradicated intraperitoneally injected lymphoma cells and large subcutaneous lymphoma masses. The antilymphoma efficacy of anti-CD19-CAR-transduced T cells was critically dependent on irradiation of mice before anti-CD19-CAR-transduced T-cell infusion. Anti-CD19-CAR-transduced T cells had superior antilymphoma efficacy compared with the anti-CD19 monoclonal antibody from which the anti-CD19 CAR was derived. Our results demonstrated impressive antilymphoma activity and profound destruction of normal B cells caused by anti-CD19-CAR-transduced T cells in a clinically relevant murine model.

  6. Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19- specific CD8(+) T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients.

    PubMed

    Greten, T F; Slansky, J E; Kubota, R; Soldan, S S; Jaffee, E M; Leist, T P; Pardoll, D M; Jacobson, S; Schneck, J P

    1998-06-23

    Human T lymphotropic virus type 1 (HTLV-1) -associated myelopathy/tropic spastic paraparesis is a demyelinating inflammatory neurologic disease associated with HTLV-1 infection. HTLV-1 Tax11-19-specific cytotoxic T cells have been isolated from HLA-A2-positive patients. We have used a peptide-loaded soluble HLA-A2-Ig complex to directly visualize HTLV-1 Tax11-19-specific T cells from peripheral blood and cerebrospinal fluid without in vitro stimulation. Five of six HTLV-1-associated myelopathy/tropic spastic paraparesis patients carried a significant number (up to 13.87%) of CD8(+) lymphocytes specific for the HTLV-1 Tax11-19 peptide in their peripheral blood, which were not found in healthy controls. Simultaneous comparison of peripheral blood and cerebrospinal fluid from one patient revealed 2.5-fold more Tax11-19-specific T cells in the cerebrospinal fluid (23.7% vs. 9.4% in peripheral blood lymphocyte). Tax11-19-specific T cells were seen consistently over a 9-yr time course in one patient as far as 19 yrs after the onset of clinical symptoms. Further analysis of HTLV-1 Tax11-19-specific CD8(+) T lymphocytes in HAM/TSP patients showed different expression patterns of activation markers, intracellular TNF-alpha and gamma-interferon depending on the severity of the disease. Thus, visualization of antigen-specific T cells demonstrates that HTLV-1 Tax11-19-specific CD8(+) T cells are activated, persist during the chronic phase of the disease, and accumulate in cerebrospinal fluid, showing their pivotal role in the pathogenesis of this neurologic disease.

  7. [Lentivirus-mediated RNA interference of CD133 inhibits the proliferation of CD133(+) liver cancer stem cells and increases their cisplatin chemosensitivity].

    PubMed

    Lan, Xi; Wang, Yong; Cao, Shu; Zou, Dongling; Li, Fang; Li, Shaolin

    2012-12-01

    To study the effects of CD133 suppression by lentivirus-mediated RNA interference (RNAi) on the proliferation and chemosensitivity of CD133(+) cancer stem cells (CSCs) sorted from HepG2 cell line. CD133(+) and CD133- cells were sorted from HepG2 cell line by flow cytometry, and the expression of CD133 before and after cell sorting were detected. The stem cell property of sorted CD133(+) cells were validated by sphere-forming assay in vitro and xenograft experiments in vivo. Lentivirus-mediated short hairpin RNA (shRNA) targeting CD133 were transfected into CD133(+) cells, and CD133 mRNA and protein expressions of the transfected cells were detected by RT-PCR and Western blotting, respectively. Before and after the transfection, the proliferative ability of CD133(+) cells was evaluated by colony formation assay, and the cell growth inhibition rate and apoptosis following cisplatin exposure were detected using CCK-8 assay and flow cytometry. The sorted CD133(+) cells showed a high purity of (88.74∓3.19)%, as compared with the purity of (3.36∓1.80)% before cell sorting. CD133(+) cells showed a high tumor sphere formation ability and tumorigenesis capacity compared with CD133- cells. CD133 shRNA transfection significantly inhibited CD133 mRNA and protein expressions in CD133(+) cells (P<0.01), resulting also in a significantly lowered cell proliferative ability (P<0.01) and an increased growth inhibition rate (P<0.01) and obviously increased cell apoptosis (P<0.05) after cisplatin exposure. Lentivirus-mediated RNAi for CD133 suppression inhibits the proliferation of CD133(+) liver cancer stem cells and increases their chemosensitivity to cisplatin.

  8. Complexation of polyoxometalates with cyclodextrins.

    PubMed

    Wu, Yilei; Shi, Rufei; Wu, Yi-Lin; Holcroft, James M; Liu, Zhichang; Frasconi, Marco; Wasielewski, Michael R; Li, Hui; Stoddart, J Fraser

    2015-04-01

    Although complexation of hydrophilic guests inside the cavities of hydrophobic hosts is considered to be unlikely, we demonstrate herein the complexation between γ- and β-cyclodextrins (γ- and β-CDs) with an archetypal polyoxometalate (POM)--namely, the [PMo12O40](3-) trianion--which has led to the formation of two organic-inorganic hybrid 2:1 complexes, namely [La(H2O)9]{[PMo12O40]⊂[γ-CD]2} (CD-POM-1) and [La(H2O)9] {[PMo12O40]⊂[β-CD]2} (CD-POM-2), in the solid state. The extent to which these complexes assemble in solution has been investigated by (i) (1)H, (13)C, and (31)P NMR spectroscopies and (ii) small- and wide-angle X-ray scattering, as well as (iii) mass spectrometry. Single-crystal X-ray diffraction reveals that both complexes have a sandwich-like structure, wherein one [PMo12O40](3-) trianion is encapsulated by the primary faces of two CD tori through intermolecular [C-H···O═Mo] interactions. X-ray crystal superstructures of CD-POM-1 and CD-POM-2 show also that both of these 2:1 complexes are lined up longitudinally in a one-dimensional columnar fashion by means of [O-H···O] interactions. A beneficial nanoconfinement-induced stabilizing effect is supported by the observation of slow color changes for these supermolecules in aqueous solution phase. Electrochemical studies show that the redox properties of [PMo12O40](3-) trianions encapsulated by CDs in the complexes are largely preserved in solution. The supramolecular complementarity between the CDs and the [PMo12O40](3-) trianion provides yet another opportunity for the functionalization of POMs under mild conditions by using host-guest chemistry.

  9. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate.

    PubMed

    Numanoğlu, Ulya; Sen, Tangül; Tarimci, Nilüfer; Kartal, Murat; Koo, Otilia M Y; Onyüksel, Hayat

    2007-10-19

    The aim of this study was to increase the stability and water solubility of fragrance materials, to provide controlled release of these compounds, and to convert these substances from liquid to powder form by preparing their inclusion complexes with cyclodextrins (CDs). For this purpose, linalool and benzyl acetate were chosen as the fragrance materials. The use of beta-cyclodextrin (beta CD) and 2-hydroxypropyl-beta-cyclodextrin (2-HP beta CD) for increasing the solubility of these 2 fragrance materials was studied. Linalool and benzyl acetate gave a B-type diagram with beta CD, whereas they gave an A(L)-type diagram with 2-HP beta CD. Therefore, complexes of fragrance materials with 2-HP beta CD at 1:1 and 1:2 molar ratios (guest:host) were prepared. The formation of inclusion complexes was confirmed using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and circular dichroism spectroscopy. The results of the solubility studies showed that preparing the inclusion complex with 2-HP beta CD at a 1:1 molar ratio increased the solubility of linalool 5.9-fold and that of benzyl acetate 4.2-fold, whereas the complexes at a 1:2 molar ratio increased the solubility 6.4- and 4.5-fold for linalool and benzyl acetate, respectively. The stability and in vitro release studies were performed on the gel formulations prepared using uncomplexed fragrance materials or inclusion complexes of fragrance materials at a 1:1 molar ratio. It was observed that the volatility of both fragrance materials was decreased by preparing the inclusion complexes with 2-HP beta CD. Also, in vitro release data indicated that controlled release of fragrances could be possible if inclusion complexes were prepared.

  10. Syntheses, structures and luminescent properties of zero-/two-dimensional Cd(II) and Eu(III) complexes

    NASA Astrophysics Data System (ADS)

    Fan, Rui-Qing; Wang, Li-Yuan; Wang, Ping; Chen, Hong; Sun, Cun-fa; Yang, Yu-Lin; Su, Qing

    2012-12-01

    Three metal-organic complexes Cd(HBIDC)(phen)2·4H2O (1), [Cd(BIC)(phen)]n (2) and {[Eu(HBIDC)(H2BIDC)(H2O)]·H2O}n (3) (H3BIDC=benzimidazole-5,6-dicarboxylic acid, H2BIC=benzimidazole-6-carboxylic acid, phen=1,10-phenanthroline) have been synthesized under hydro(solvo)thermal conditions and structurally characterized by elemental analysis, IR spectrum, and single-crystal X-ray diffraction. With similar reaction conditions, reactions of the same ligand with different metal cations selected from different blocks (d-block and f-block) result in different coordination modes of carboxylate groups and final frameworks of complexes 1 and 3. The decarboxylation was observed in complex 2 and resulted in the formation of BIC2- ligand. Complexes 1-3 have intense fluorescent emissions at room temperature in dimethylsulfoxide (DMSO) solution and in the solid-state, which indicate they are potential fluorescence materials. The quantum yields and fluorescence lifetimes of these three complexes were systematically studied.

  11. Peripheral CD24hi CD27+ CD19+ B cells subset as a potential biomarker in naïve systemic lupus erythematosus.

    PubMed

    Jin, Lin; Weiqian, Chen; Lihuan, Yue

    2013-12-01

    B cells are likely to play critical roles in the pathogenesis of systemic lupus erythematosus (SLE). Our aim was to investigate the role of peripheral CD24(hi) CD27(+) CD19(+) B cells in Chinese patients with new-onset SLE. Peripheral CD24(hi) CD27(+) CD19(+) B cells were analyzed in 55 new-onset lupus and 36 healthy controls by flow cytometry. All SLE cases were treated with prednisolone and hydroxychloroquine during a 1-year follow-up. Thirteen cases were added with cyclophosphamide or mycophenolate mofetil. The CD24(hi) CD27(+) CD19(+) B cells were analyzed at days 0, 7, 14 and months 1, 3, 6, 9 and 12. Interleukin-10 (IL-10)-producing B cell was detected in eight naïve lupus and 10 healthy controls. Compared to healthy controls, the frequency and number of primary circulating CD24(hi) CD27(+) CD19(+) B cells was significantly reduced in SLE cases (8.22 ± 3.48% vs. 31.67 ± 5.53%, P < 0.0001; 4.04 ± 2.85 vs. 38.66 ± 10.22 10(3) cells/mL, P = 0.0001) before treatment; IL-10(+) CD19(+) B cells and IL-10(+) CD24(hi) CD27(+) CD19(+) B cells also decreased in SLE. Interestingly, primary CD24(hi) CD27(+) CD19(+) B cells inversely correlated with SLE disease activity index (SLEDAI) score. Patients with arthritis and hematologic disorders had a lower primary CD24(hi) CD27(+) CD19(+) B cells. In 48 SLE cases who finished the 1-year follow-up, the frequency and number of CD24(hi) CD27(+) CD19(+) B cells increased from 8.26 ± 3.61% to 25.51 ± 4.56%; 3.99 ± 2.86 to 28.64 ± 11.81 10(3) cells/mm(3) (P < 0.0001), accompanied by a significantly decreased SLEDAI score. Of note, CD24(hi) CD27(+) CD19(+) B cells decreased in some flare cases with an elevated SLEDAI score. These results demonstrate that a lower primary CD24(hi) CD27(+) CD19(+) B cells may be an immunologic aspect of new-onset SLE. CD24(hi) CD27(+) CD19(+) B cells may be a useful tool to evaluate lupus activity and monitor the response to therapy. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  12. Temperature sensitive poly[N-isopropylacrylamide-co-(acryloyl beta-cyclodextrin)] for improved drug release.

    PubMed

    Zhang, Jian-Tao; Huang, Shi-Wen; Liu, Ji; Zhuo, Ren-Xi

    2005-03-15

    The model drugs ibuprofen (IBU) and tegafur (T-Fu) were loaded into poly[N-isopropylacrylamide-co-(acryloyl beta-cyclodextrin)] [P(NIPA-co-A-CD)] and PNIPA hydrogels by immersing dried gels in IBU or T-Fu alcohol solutions until they reached equilibrium. Drug release studies were carried out in water at 25 degrees C. In contrast to the release time of conventional PNIPA hydrogel, that of IBU from the beta-CD incorporated hydrogel was significantly prolonged and the drug loading was also greatly increased, which may be the result of the formation of inclusion complexes between CD and ibuprofen. However, another hydrophilic drug, tegafur, did not display these properties because it could not form a complex with the CD groups. [diagram in text].

  13. Two-photon absorption properties of cationic 1,4-bis(styryl)benzene derivative and its inclusion complexes with cyclodextrins.

    PubMed

    Nag, Okhil Kumar; Nayak, Rati Ranjan; Lim, Chang Su; Kim, In Hong; Kyhm, Kwangseuk; Cho, Bong Rae; Woo, Han Young

    2010-07-29

    Two-photon absorption properties of 1,4-bis{4'-[N,N-bis(6''-trimethylammoniumhexyl)amino]styryl}benzene tetrabromide (C1) and its inclusion complexes (ICs) with cyclodextrins (CDs) have been studied. Upon complexation with CDs, the absorption spectra of C1 showed a slight red shift, whereas the emission spectra showed a blue shift with concomitant increase in the fluorescence quantum efficiency. A Stern-Volmer study using K(3)Fe(CN)(6) as a quencher revealed significant reduction in the photoinduced charge transfer quenching, in accord with the IC formation. Comparison of the spectroscopic results reveals that C1 forms increasingly more stable ICs in the order C1/beta-CD < C1/gamma-CD < C1/(3gamma:beta)-CD (gamma-CD/beta-CD 3:1, mole ratio). Moreover, the two-photon action cross section of C1 increased from 200 GM for C1 to 400 GM for C1/beta-CD, 460 GM for C1/gamma-CD, and 650 GM for C1/(3gamma:beta)-CD, respectively. Furthermore, the two-photon microscopy images of HeLa cells stained with C1 emitted strong two-photon excited fluorescence in the plasma membrane. These results provide a useful guideline for the development of efficient two-photon materials for bioimaging applications.

  14. Spectral, thermal, and molecular modeling studies on the encapsulation of selected sulfonamide drugs in β-cyclodextrin nano-cavity

    NASA Astrophysics Data System (ADS)

    Bani-Yaseen, Abdulilah Dawoud; Mo'ala, Abeer

    2014-10-01

    In the present work the inclusion complexation of three sulfonamide (SA) drugs, namely sulfisoxazole (SSX), sulfamethizole (SMZ), and Sulfamethazine (STM) with β-cyclodextrin (β-CD) has been investigated using UV-Vis spectroscopy, DSC, 1H NMR spectroscopy, and molecular modeling methods. The binding constant (Kb) of SA:β-CD inclusion complexation was determined via applying the modified form of Benesi-Hildebrand equation employing the changes in absorbance at λmax. Obtained results revealed that SA drugs form 1:1 inclusion complex with β-CD with Kb of 650, 1532, 714 M-1 at 25 °C for SSX, SMZ, and STM, respectively. The UV-Vis absorption spectra displayed solvatochromic behavior of bathochromic shift with decreasing solvent polarity that in turn is good agreement with their behavior in the presence of β-CD in terms of environment polarity dependency. The inclusion complex formation between β-CD and tested SA drugs in liquid and solid states was confirmed by 1H NMR and DSC, respectively. Using semi-empirical quantum chemistry methods at PM3 theoretical level, inclusion complexes' structures as well as energetic and thermodynamic parameters of encapsulation were elucidated. Obtained results revealed that the encapsulation is favorably energetic and enthalpic in nature with the inclusion of the aniline moiety through the wide rim side of β-CD nano-cavity. Further, molecular modeling revealed that β-CD encapsulation of SA drugs reduced their (EHOMO - ELUMO) gap.

  15. Preparation, characterization and in vivo evaluation of formulation of repaglinide with hydroxypropyl-β-cyclodextrin.

    PubMed

    Liu, Meina; Cao, Wen; Sun, Yinghua; He, Zhonggui

    2014-12-30

    The therapeutic efficacy of repaglinide (RPG) is limited by the low and variable oral bioavailability owing to its limited aqueous solubility. In our present study, the development and evaluation of inclusion complex applying hydroxypropyl-β-cyclodextrin (HP-β-CD) for the improvement of oral bioavailability of repaglinide was investigated systematically. The inclusion complex of repaglinide was prepared by lyophilization technique using drug: hydroxypropyl-β-cyclodextrin (1:15 mole). The prepared complexation was characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), NMR spectroscopy and evaluated by dissolution studies. The (1)H NMR was used in the structure study of repaglinide-HP-β-CD (RPG-HP-β-CD) inclusion complex. The analysis proved the higher probability of the repaglinide A-ring into the narrow rim of the β-cyclodextrin molecule. All the characterization information confirmed the formation of RPG-HP-β-CD inclusion complex. The in vivo pharmacokinetics of RPG-HP-β-CD and their physical mixture were performed in beagle dogs. For the first time, a simple, rapid, and sensitive LC-MS/MS method for determination of RPG in beagle dog plasma was developed. The Cmax and AUC0-t of RPG-HP-β-CD were 2.5 and 2 times higher than that of the physical mixture. These results suggested that the interaction of repaglinide with HP-β-CD could notably improve the dissolution rate and bioavailability of repaglinide comparing with its physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Separation of enilconazole enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes by using nuclear magnetic resonance spectroscopy.

    PubMed

    Gogolashvili, Ann; Tatunashvili, Elene; Chankvetadze, Lali; Sohajda, Tamas; Szeman, Julianna; Salgado, Antonio; Chankvetadze, Bezhan

    2017-08-01

    In the present study, the enantiomer migration order (EMO) of enilconazole in the presence of various cyclodextrins (CDs) was investigated by capillary electrophoresis (CE). Opposite EMO of enilconazole were observed when β-CD or the sulfated heptakis(2-O-methyl-3,6-di-O-sulfo)-β-CD (HMDS-β-CD) was used as the chiral selectors. Nuclear magnetic resonance (NMR) spectroscopy was used to study the mechanism of chiral recognition between enilconazole enantiomers and those two cyclodextrins. On the basis of rotating frame nuclear Overhauser (ROESY) experiments, the structure of an inclusion complex between enilconazole and β-CD was derived, in which (+)-enilconazole seemed to form a tighter complex than the (-)-enantiomer. This correlates well with the migration order of enilconazole enantiomers observed in CE. No evidence of complexation between enilconazole and HMDS-β-CD could be gathered due to lack of intermolecular nuclear Overhauser effect (NOE). Most likely the interaction between enilconazole and HMDS-β-CD leads to formation of a shallow external complex that is sufficient for separation of enantiomers in CE but cannot be evidenced based on ROESY experiment. Thus, in this particular case CE documents the presence of intermolecular interactions which are at least very difficult to be evidenced by other instrumental techniques. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes.

    PubMed

    Thiry, Justine; Krier, Fabrice; Ratwatte, Shenelka; Thomassin, Jean-Michel; Jerome, Christine; Evrard, Brigitte

    2017-01-01

    The aim of this study was to evaluate hot-melt extrusion (HME) as a continuous process to form cyclodextrin (CD) inclusion complexes in order to increase the solubility and dissolution rate of itraconazole (ITZ), a class II model drug molecule of the Biopharmaceutics Classification System. Different CD derivatives were tested in a 1:1 (CD:ITZ) molar ratio to obtain CD ternary inclusion complexes in the presence of a polymer, namely Soluplus ® (SOL). The CD used in this series of experiments were β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD) with degrees of substitution of 0.63 and 0.87, randomly methylated β-cyclodextrin (Rameb ® ), sulfobutylether-β-cyclodextrin (Captisol ® ) and methyl-β-cyclodextrin (Crysmeb ® ). Rheology testing and mini extrusion using a conical twin screw mini extruder were performed to test the processability of the different CD mixtures since CD are not thermoplastic. This allowed Captisol ® and Crysmeb ® to be discarded from the study due to their high impact on the viscosity of the SOL/ITZ mixture. The remaining CD were processed by HME in an 18mm twin screw extruder. Saturation concentration measurements confirmed the enhancement of solubility of ITZ for the four CD formulations. Biphasic dissolution tests indicated that all four formulations had faster release profiles compared to the SOL/ITZ solid dispersion. Formulations of HPβCD 0.63 and Rameb ® even reached 95% of ITZ released in both phases after 1h. The formulations were characterized using thermal differential scanning calorimetry and attenuated total reflectance infra-red analysis. These analyses confirmed that the increased release profile was due to the formation of ternary inclusion complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Gold nanoparticles interacting with β-cyclodextrin-phenylethylamine inclusion complex: a ternary system for photothermal drug release.

    PubMed

    Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás

    2015-07-22

    We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest.

  19. Study on preparation and formation mechanism of n-alkanol/water emulsion using alpha-cyclodextrin.

    PubMed

    Hashizaki, Kaname; Kageyama, Takashi; Inoue, Motoki; Taguchi, Hiroyuki; Ueda, Haruhisa; Saito, Yoshihiro

    2007-11-01

    Surfactants are usually used for the preparation of emulsions; however, some have an adverse effect on the human body such as skin irritation, hemolysis, and protein denaturation, etc. In this study, we examined the preparation and formation mechanism of n-alkanol/water emulsions using alpha-cyclodextrin (alpha-CD) as an emulsifier. Emulsions were prepared by mixing oil and water phases for 4 min at 2500 rpm using a vortex mixer. The mechanism of emulsification was investigated with some physico-chemical techniques. From phase diagrams of n-alkanol/alpha-CD/water systems, the emulsion phase extended as the chain length of n-alkanols and the amount of alpha-CD added increased. Furthermore, the emulsion was not formed in the region where the n-alkanol/alpha-CD complex didn't precipitate; however, the emulsion was formed in the region where the complex precipitated. In addition, it was clear that the emulsions have a yield stress value and correspond to the Maxwell model from rheological measurement. Our experiments clearly showed that the stable emulsions are formed because the precipitated complexes form a dense film at the oil-water interface and prevent aggregation among dispersed phases. Furthermore, it is suggested that the creation of a three-dimensional network structure formed by precipitated complexes in the continuous phase contributes to the stabilization of the emulsion. Thus, we concluded that the n-alkanol/water emulsions using alpha-cyclodextrin were a kind of the Pickering emulsion.

  20. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies

    PubMed Central

    Barrett, David M.; Shestova, Olga; Hofmann, Ted J.; Perazzelli, Jessica; Klichinsky, Michael; Aikawa, Vania; Nazimuddin, Farzana; Kozlowski, Miroslaw; Scholler, John; Lacey, Simon F.; Melenhorst, Jan J.; Morrissette, Jennifer J.D.; Christian, David A.; Hunter, Christopher A.; Kalos, Michael; Porter, David L.; June, Carl H.; Grupp, Stephan A.

    2016-01-01

    Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies PMID:27571406

  1. Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid.

    PubMed

    Li, Yu-jiao; Hu, Peng-jie; Zhao, Jie; Dong, Chang-xun

    2015-04-01

    Composite washing of cadmium (Cd)- and lead (Pb)-contaminated agricultural soil from Hunan province in China using mixtures of chlorides (FeCl3, CaCl2) and citric acid (CA) was investigated. The concentrations of composite washing agents for metal removal were optimized. Sequential extraction was conducted to study the changes in metal fractions after soil washing. The removal of two metals at optimum concentration was reached. Using FeCl3 mixed with CA, 44% of Cd and 23% of Pb were removed, and 49 and 32% by CaCl2 mixed with CA, respectively. The mechanism of composite washing was postulated. A mixture of chlorides and CA enhanced metal extraction from soil through the formation of metal-chloride and metal-citrate complexes. CA in extract solutions promoted the formation of metal-chloride complexes and reduced the solution pH. Composite washing reduced Cd and Pb in Fe-Mn oxide forms significantly. Chlorides and CA exerted a synergistic effect on metal extraction during composite washing.

  2. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy.

    PubMed

    Fry, Terry J; Shah, Nirali N; Orentas, Rimas J; Stetler-Stevenson, Maryalice; Yuan, Constance M; Ramakrishna, Sneha; Wolters, Pamela; Martin, Staci; Delbrook, Cindy; Yates, Bonnie; Shalabi, Haneen; Fountaine, Thomas J; Shern, Jack F; Majzner, Robbie G; Stroncek, David F; Sabatino, Marianna; Feng, Yang; Dimitrov, Dimiter S; Zhang, Ling; Nguyen, Sang; Qin, Haiying; Dropulic, Boro; Lee, Daniel W; Mackall, Crystal L

    2018-01-01

    Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent effects in relapsed and/or refractory pre-B cell acute lymphoblastic leukemia (B-ALL), but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed in most cases of B-ALL and is usually retained following CD19 loss. We report results from a phase 1 trial testing a new CD22-targeted CAR (CD22-CAR) in 21 children and adults, including 17 who were previously treated with CD19-directed immunotherapy. Dose-dependent antileukemic activity was observed, with complete remission obtained in 73% (11/15) of patients receiving ≥1 × 10 6 CD22-CAR T cells per kg body weight, including 5 of 5 patients with CD19 dim or CD19 - B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted CD22 + cell escape from killing by CD22-CAR T cells. These results are the first to establish the clinical activity of a CD22-CAR in B-ALL, including leukemia resistant to anti-CD19 immunotherapy, demonstrating potency against B-ALL comparable to that of CD19-CAR at biologically active doses. Our results also highlight the critical role played by antigen density in regulating CAR function.

  3. [Proportion and significance of CD1d(hi)CD5⁺CD19⁺ regulatory B cell in peripheral blood of patients with neuromyelitis optica].

    PubMed

    Yang, Fen; Huang, Dehui; Cheng, Chen; Wu, Weiping

    2015-03-01

    To detect the proportion of CD1d(hi)CD5⁺CD19⁺ regulatory B cells (Bregs) in peripheral blood of the patients with neuromyelitis optica (NMO), and explore whether CD1d(hi)CD5⁺CD19⁺ Bregs can play a role as a biomarker in the diagnosis of NMO versus multiple sclerosis (MS). Flow cytometry was performed to detect the proportion of CD1d(hi)CD5⁺CD19⁺ Bregs in peripheral blood from 44 cases of NMO, 38 cases of MS, and 30 healthy controls. The serum level of aquaporin-4 antibody (AQP4-Ab) of patients with NMO was detected by indirect immunofluorescence assay. The proportion of CD1d(hi)CD5⁺CD19⁺ Bregs in CD19⁺ B cells and lymphocytes was significantly lower in NMO group than in MS and control groups; however, there was no significant difference between MS group and control group. The proportion of CD1d(hi)CD5⁺CD19⁺ Bregs in CD19⁺ B cells and lymphocytes was lower in AQP4-Ab-positive NMO patients than in AQP4-Ab-negative NMO patients, and the difference was statistically significant. CD1d(hi)CD5⁺CD19⁺ Bregs may be a biomarker in the differential diagnosis of NMO versus MS.

  4. Quantitative ROESY analysis of computational models: structural studies of citalopram and β-cyclodextrin complexes by (1) H-NMR and computational methods.

    PubMed

    Ali, Syed Mashhood; Shamim, Shazia

    2015-07-01

    Complexation of racemic citalopram with β-cyclodextrin (β-CD) in aqueous medium was investigated to determine atom-accurate structure of the inclusion complexes. (1) H-NMR chemical shift change data of β-CD cavity protons in the presence of citalopram confirmed the formation of 1 : 1 inclusion complexes. ROESY spectrum confirmed the presence of aromatic ring in the β-CD cavity but whether one of the two or both rings was not clear. Molecular mechanics and molecular dynamic calculations showed the entry of fluoro-ring from wider side of β-CD cavity as the most favored mode of inclusion. Minimum energy computational models were analyzed for their accuracy in atomic coordinates by comparison of calculated and experimental intermolecular ROESY peak intensities, which were not found in agreement. Several least energy computational models were refined and analyzed till calculated and experimental intensities were compatible. The results demonstrate that computational models of CD complexes need to be analyzed for atom-accuracy and quantitative ROESY analysis is a promising method. Moreover, the study also validates that the quantitative use of ROESY is feasible even with longer mixing times if peak intensity ratios instead of absolute intensities are used. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Thermodynamics of arsenates, selenites and sulfates in the oxidation zone of sulfide ores: XII. Mineral equilibria in the Cd-Se-H2O system at 25°C

    NASA Astrophysics Data System (ADS)

    Charykova, M. V.; Vishnevsky, A. V.; Krivovichev, V. G.; Fokina, E. L.; Ivanova, N. M.; Platonova, N. V.; Semenova, V. V.

    2016-12-01

    Understanding the mechanisms of cadmium and selenium behavior under near-surface conditions is very important for solving certain environmental problems. The principal aim of this study is physicochemical analysis of the formation conditions of synthetic cadmium selenite CdSeO3 · H2O and experimental investigation of its thermal stability and dehydration and dissociation mechanisms. The synthesis was performed by boiling-dry aqueous solutions of cadmium nitrate and sodium selenite. The obtained samples were identified with electron microprobe and powder X-ray diffraction. Complex thermal analysis (thermogravimetry and differential scanning calorimetry) have shown that CdSeO3 · H2O is dehydrated at 177-241°C in two stages, apparently corresponding to the formation of CdSeO3 · 2/3H2O. The Eh-pH diagrams were calculated using the Geochemist's Workbench (GWB 9.0) software package. The Eh-pH diagrams have been calculated for the Cd-Se-H2O and Cd-Se-CO2-H2O systems for the average content of these elements in underground waters. The formation of cadmium selenite, CdSeO3 · H2O in the oxidation medium is quite possible. The existence of CdSeO3 is possible at high temperature.

  6. Individual and epistatic effects of genetic polymorphisms of B-cell co-stimulatory molecules on susceptibility to pemphigus foliaceus.

    PubMed

    Malheiros, D; Petzl-Erler, M L

    2009-09-01

    Following the candidate gene approach we analyzed the CD40L, CD40, BLYS and CD19 genes that participate of B-cell co-stimulation, for association with pemphigus foliaceus (PF), an organ-specific autoimmune disease, characterized by the detachment of epidermal cells from each other (acantholysis) and presence of autoantibodies specific for desmoglein 1 (dsg1), an epidermal cell-adhesion molecule. The disease is endemic in certain regions of Brazil and also is known as fogo selvagem. Complex interactions among environmental and genetic susceptibility factors contribute to the manifestation of this multifactorial disease. The sample included 179 patients and 317 controls. Strong significant association was found with CD40L-726T>C (odds ratio, OR=5.54 and 0.30 for T+ and C+ genotypes, respectively). In addition, there were significant negative associations with CD40 -1T (OR=0.61) and BLYS-871T (OR=0.62) due to the decrease of the frequency of both homo- and heterozygotes in the patient group. No associations were found with variants of CD19 gene. Gene-gene interactions were observed between CD40 and BLYS, and between CD40L and BLYS. So, the dominant protective effects of CD40L-726C and of CD40 -1T only manifest in BLYS-871T+ individuals, and vice versa. We conclude that genetic variability of CD40L, CD40 and BLYS is an important factor for PF pathogenesis.

  7. CD19+ B cell subsets in the peripheral blood and skin lesions of psoriasis patients and their correlations with disease severity

    PubMed Central

    Lu, J.; Ding, Y.; Yi, X.; Zheng, J.

    2016-01-01

    T lymphocytes are important in the pathogenesis of psoriasis, and increasing evidence indicates that B cells also play an important role. The mechanisms of action, however, remain unclear. We evaluated the ratios of CD19+ B cells in peripheral blood mononuclear cells (PBMCs) from 157 patients with psoriasis (65 patients with psoriasis vulgaris, 32 patients with erythrodermic psoriasis, 30 patients with arthropathic psoriasis, and 30 patients with pustular psoriasis) and 35 healthy controls (HCs). Ratios of CD19+ B cells in skin lesions were compared with non-lesions in 7 erythrodermic psoriasis patients. The Psoriasis Area Severity Index (PASI) was used to measure disease severity. CD19+ B cell ratios in PBMCs from psoriasis vulgaris (at both the active and stationary stage) and arthropathic psoriasis patients were higher compared with HCs (P<0.01), but ratios were lower in erythrodermic and pustular psoriasis patients (P<0.01). CD19+ B cell ratios in erythrodermic psoriasis skin lesions were higher than in non-lesion areas (P<0.001). Different subsets of CD19+CD40+, CD19+CD44+, CD19+CD80+, CD19+CD86+, CD19+CD11b+, and CD19+HLA-DR+ B cells in PBMCs were observed in different psoriasis clinical subtypes. PASI scores were positively correlated with CD19+ B cell ratios in psoriasis vulgaris and arthropathic psoriasis cases (r=0.871 and r=0.692, respectively, P<0.01), but were negatively correlated in pustular psoriasis (r=-0.569, P<0.01). The results indicated that similar to T cells, B cells activation may also play important roles in different pathological stages of psoriasis. PMID:27532281

  8. The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection.

    PubMed Central

    Bour, S; Geleziunas, R; Wainberg, M A

    1995-01-01

    Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established. PMID:7708013

  9. Removal of cadmium from contaminated Lentinula edodes by optimized complexation and coagulation.

    PubMed

    Wang, Yi; Wang, Chen; Cheng, Wei; Bian, Yinbing; Guo, Peng

    2017-03-01

    Heavy metal pollution is a serious problem for Lentinula edodes ; however, the treatment of contaminated L. edodes has seldom been studied. This study investigated the removal of cadmium (Cd) from contaminated L. edodes and its lentinan by complexation and coagulation. Some influencing factors, such as pH, medical dosage, and preoxidation were examined. Cd complexation from contaminated L .  edodes was shown to be more efficient under acidic conditions (pH 5.0), with a clearance rate of 80.47% in 25 mmol/L EDTA and 78.45% in 25 mmol/L sodium citrate. The Cd content in the lentinan of the contaminated L. edodes was markedly lower than that in the powdered mushroom (2.77 mg/kg vs. 19.49 mg/kg) and was easier to remove. The maximum Cd clearance rate (96.3%) for lentinan was obtained using an optimized process that involved preoxidation with 0.5 mg/L KMnO 4 , complexing with 25 mmol/L EDTA and 25 mmol/L sodium citrate, and coagulation with 50 mg/L activated carbon (AC) at pH 10.0.

  10. Clinical Trials Using Anti-CD19/CD28/CD3zeta CAR Gammaretroviral Vector-transduced Autologous T Lymphocytes KTE-C19

    Cancer.gov

    NCI supports clinical trials that test new and more effective ways to treat cancer. Find clinical trials studying anti-cd19/cd28/cd3zeta car gammaretroviral vector-transduced autologous t lymphocytes kte-c19.

  11. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells.

    PubMed

    Schofield, L; McConville, M J; Hansen, D; Campbell, A S; Fraser-Reid, B; Grusby, M J; Tachado, S D

    1999-01-08

    Immunoglobulin G (IgG) responses require major histocompatibility complex (MHC)-restricted recognition of peptide fragments by conventional CD4(+) helper T cells. Immunoglobulin G responses to glycosylphosphatidylinositol (GPI)- anchored protein antigens, however, were found to be regulated in part through CD1d-restricted recognition of the GPI moiety by thymus-dependent, interleukin-4-producing CD4(+), natural killer cell antigen 1.1 [(NK1.1)+] helper T cells. The CD1-NKT cell pathway regulated immunogobulin G responses to the GPI-anchored surface antigens of Plasmodium and Trypanosoma and may be a general mechanism for rapid, MHC-unrestricted antibody responses to diverse pathogens.

  12. Coexpression of CD14 and CD326 discriminate hepatic precursors in the human fetal liver.

    PubMed

    Fomin, Marina E; Tai, Lung-Kuo; Bárcena, Alicia; Muench, Marcus O

    2011-07-01

    The molecular and cellular profile of liver cells during early human development is incomplete, complicating the isolation and study of hepatocytes, cholangiocytes, and hepatic stem cells from the complex amalgam of hepatic and hematopoietic cells, that is, the fetal liver. Epithelial cell adhesion molecule, CD326, has emerged as a marker of hepatic stem cells, and lipopolysaccharide receptor CD14 is known to be expressed on adult hepatocytes. Using flow cytometry, we studied the breadth of CD326 and CD14 expression in midgestation liver. Both CD45(+) hematopoietic and CD45(-) nonhematopoietic cells expressed CD326. Moreover, diverse cell types expressing CD326 were revealed among CD45(-) cells by costaining for CD14. Fluorescence-activated cell sorting was used to isolate nonhematopoietic cells distinguished by expression of high levels of CD326 and low CD14 (CD326(++)CD14(lo)), which were characterized for gene expression associated with liver development. CD326(++)CD14(lo) cells expressed the genes albumin, α-fetoprotein, hepatic nuclear factor 3α, prospero-related homeobox 1, cytochrome P450 3A7, α(1)-antitrypsin, and transferrin. Proteins expressed included cell-surface CD24, CD26, CD29, CD34, CD49f, CD243, and CD324 and, in the cytoplasm, cytokeratins-7/8 (CAM 5.2 antigen) and some cytokeratin-19. Cultured CD326(++)CD14(lo) cells yielded albumin(+) hepatocytes, cytokeratin-19(+) cholangiocytes, and hepatoblasts expressing both markers. Using epifluorescence microscopy we observed CD326 and CD14 expression on fetal hepatocytes comprising the liver parenchyma, as well as on cells associated with ductal plates and surrounding large vessels. These findings indicate that expression of CD14 and CD326 can be used to identify functionally distinct subsets of fetal liver cells, including CD326(++)CD14(lo) cells, representing a mixture of parenchymal cells, cholangiocytes, and hepatoblasts.

  13. Synthesis, characterization and in vitro anticancer activity of 18-membered octaazamacrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II)

    NASA Astrophysics Data System (ADS)

    Kareem, Abdul; Zafar, Hina; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali

    2014-10-01

    An effective series of 18 membered octaazamacrocyclic complexes of the type [MLX2], where X = Cl or NO3 have been synthesized by template condensation reaction of oxalyl dihydrazide with dibenzoylmethane and metal salt in 2:2:1 molar ratio. The formation of macrocyclic framework, stereochemistry and their overall geometry have been characterized by various physico-chemical studies viz., elemental analysis, electron spray ionization-mass spectrometry (ESI-MS), I.R, UV-Vis, 1H NMR, 13C NMR spectroscopy, X-ray diffraction (XRD) and TGA/DTA studies. These studies suggest formation of octahedral macrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II). The molar conductance values suggest nonelectrolytic nature for all the complexes. Thermogravimatric analysis shows that all the complexes are stable up to 600 °C. All these complexes have been tested against different human cancer cell lines i.e. human hepatocellular carcinoma (Hep3B), human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF7) and normal cells (PBMC). The newly synthesized 18-membered octaazamacrocyclic complexes during in vitro anticancer evaluation, displayed moderate to good cytotoxicity on liver (Hep3B), cervical (HeLa) and breast (MCF7) cancer cell lines, respectively. The most effective anticancer cadmium complex (C34H28N10CdO10) was found to be active with IC50 values, 2.44 ± 1.500, 3.55 ± 1.600 and 4.82 ± 1.400 in micro-molar on liver, cervical and breast cancer cell lines, respectively.

  14. Complexes between methyltestosterone and β-cyclodextrin for application in aquaculture production.

    PubMed

    Carvalho, Lucas Bragança de; Burusco, Kepa Koldo; Jaime, Carlos; Venâncio, Tiago; Carvalho, Aline Ferreira Souza de; Murgas, Luis David Solis; Pinto, Luciana de Matos Alves

    2018-01-01

    The inclusion complexes between 17-α-methyltestosterone (MT) and β-cyclodextrin (bCD) were prepared and characterized in dissolution and solid phase. The complex promoted a sixfold increment in solubility of the hormone. It has a limited solubility and stoichiometry of 2:1 (bCD:MT) determined by DSC, NMR and solubility experiments, the association constant Ka=2846Lmol -1 and complex fraction of 76% (assessed by DOSY-NMR, in (1:3) DMSO/D 2 O). The association constant obtained in water by the solubility isotherms is 7540Lmol -1 . 2D-ROESY experiments indicate the intermolecular orientation (complete inclusion of the hormone in the cavity). Simulations by molecular dynamics agreed with the formation of the inclusion complex 2:1. Release tests showed the slower release for the complexes, with 50% for lyophilization and 56% for malaxation. These results clearly demonstrate the complexation of MT in bCD, which formulations are promising for further applications involving this steroid in aquaculture, both for sexual reversal and in technologies of hormone in water sequestration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Volcanoes of the Wrangell Mountains and Cook Inlet region, Alaska: selected photographs

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Diggles, Michael F.

    2001-01-01

    Alaska is home to more than 40 active volcanoes, many of which have erupted violently and repeatedly in the last 200 years. This CD-ROM contains 97 digitized color 35-mm images which represent a small fraction of thousands of photographs taken by Alaska Volcano Observatory scientists, other researchers, and private citizens. The photographs were selected to portray Alaska's volcanoes, to document recent eruptive activity, and to illustrate the range of volcanic phenomena observed in Alaska. These images are for use by the interested public, multimedia producers, desktop publishers, and the high-end printing industry. The digital images are stored in the 'images' folder and can be read across Macintosh, Windows, DOS, OS/2, SGI, and UNIX platforms with applications that can read JPG (JPEG - Joint Photographic Experts Group format) or PCD (Kodak's PhotoCD (YCC) format) files. Throughout this publication, the image numbers match among the file names, figure captions, thumbnail labels, and other references. Also included on this CD-ROM are Windows and Macintosh viewers and engines for keyword searches (Adobe Acrobat Reader with Search). At the time of this publication, Kodak's policy on the distribution of color-management files is still unresolved, and so none is included on this CD-ROM. However, using the Universal Ektachrome or Universal Kodachrome transforms found in your software will provide excellent color. In addition to PhotoCD (PCD) files, this CD-ROM contains large (14.2'x19.5') and small (4'x6') screen-resolution (72 dots per inch; dpi) images in JPEG format. These undergo downsizing and compression relative to the PhotoCD images.

  16. Synthesis, characterization and anticancer activity of a Cd(II) complex with in situ formation of (E)-1-(5-chloro-2-hydroxy-benzylideneamino)-pyrrolidin-2-one ligand

    NASA Astrophysics Data System (ADS)

    Huang, Qiu-Ying; Zheng, Ze-Bao; Diao, Yun-Peng

    2015-05-01

    A new complex of Cd(II) with (E)-1-(5-chloro-2-hydroxybenzylideneamino)-pyrrolidin-2-one [Cd(L)2ṡ2DMF] was synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction. Where the HL ligand is formed in situ by the intramolecular nucleophilic substitution of (E)-N‧-(5-chloro-2-hydroxybenzyli-dene)-4-(quinolin-8-yloxy)butanehydrazide (H2L‧). The cadmium(II) ion is hexacoordinated by two tridentate L- ligands and giving a distorted octahedral coordination geometry. A cytotoxicity of [Cd(L)2ṡ2DMF] against liver (SMMC-7721) and cervical (HeLa) cancer cells have been studied. The results revealed that this cadmium(II) complex exhibited an effective and selective anticancer activity against HeLa over SMMC-7721 cell line with IC50 of 1.54 ± 0.25 and 31.02 ± 3.76 μmol/dm-3.

  17. Dual fluorescence of syringaldazine

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    The absorption and fluorescence spectra of syringaldazine (SYAZ) has been recorded in solvents of different polarity, pH and β-cyclodextrin (β-CD) and compared with syringaldehyde (SYAL). The inclusion complex of SYAZ with β-CD is investigated by UV-vis, fluorimetry, AM 1, FT-IR, 1H NMR and scanning electron microscope (SEM). Δ G value suggests the inclusion process is an exothermic and spontaneous. In all solvents a dual fluorescence is observed for SYAZ, whereas, SYAL shows a dual luminescence only in polar solvents. The excitation spectra for the 410 nm is different from 340 nm indicate two different species present in this molecule. In pH solutions: (i) a large red shifted maxima is observed in the dianion and is due to large interactions between the aromatic ring and (ii) the large blue shift at pH ˜4.5, is due to dissociation of azine group and formation of aldehyde. β-CD studies reveal that, SYAZ forms a 1:2 complex from 1:1 complex with β-CD.

  18. Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes.

    PubMed

    Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin

    2018-01-01

    The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy ( 1 H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1 H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.

  19. Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes

    PubMed Central

    Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin

    2018-01-01

    The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.

  20. Analyses of polycyclic aromatic hydrocarbon (PAH) and chiral-PAH analogues-methyl-β-cyclodextrin guest-host inclusion complexes by fluorescence spectrophotometry and multivariate regression analysis.

    PubMed

    Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O

    2017-03-05

    The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized light. Published by Elsevier B.V.

  1. An age-related numerical and functional deficit in CD19(+) CD24(hi) CD38(hi) B cells is associated with an increase in systemic autoimmunity.

    PubMed

    Duggal, Niharika A; Upton, Jane; Phillips, Anna C; Sapey, Elizabeth; Lord, Janet M

    2013-10-01

    Autoimmunity increases with aging indicative of reduced immune tolerance, but the mechanisms involved are poorly defined. In recent years, subsets of B cells with immunoregulatory properties have been identified in murine models of autoimmune disorders, and these cells downregulate immune responses via secretion of IL10. In humans, immature transitional B cells with a CD19(+) CD24(hi) CD38(hi) phenotype have been reported to regulate immune responses via IL10 production. We found the frequency and numbers of CD19(+) CD24(hi) CD38(hi) cells were reduced in the PBMC pool with age. IL10 expression and secretion following activation via either CD40, or Toll-like receptors was also impaired in CD19(+) CD24(hi) CD38(hi) B cells from healthy older donors. When investigating the mechanisms involved, we found that CD19(+) CD24(hi) CD38(hi) B-cell function was compromised by age-related effects on both T cells and B cells: specifically, CD40 ligand expression was lower in CD4 T cells from older donors following CD3 stimulation, and signalling through CD40 was impaired in CD19(+) CD24(hi) CD38(hi) B cells from elders as evidenced by reduced phosphorylation (Y705) and activation of STAT3. However, there was no age-associated change in expression of costimulatory molecules CD80 and CD86 on CD19(+) CD24(hi) CD38(hi) cells, suggesting IL10-dependent immune suppression is impaired, but contact-dependent suppressive capacity is intact with age. Finally, we found a negative correlation between CD19(+) CD24(hi) CD38(hi) B-cell IL10 production and autoantibody (Rheumatoid factor) levels in older adults. We therefore propose that an age-related decline in CD19(+) CD24(hi) CD38(hi) B cell number and function may contribute towards the increased autoimmunity and reduced immune tolerance seen with aging. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Base Mechanism to the Hydrolysis of Phosphate Triester Promoted by the Cd2+/Cd2+ Active site of Phosphotriesterase: A Computational Study.

    PubMed

    Chagas, Marcelo A; Pereira, Eufrásia S; Godinho, Marina P B; Da Silva, Júlio Cosme S; Rocha, Willian R

    2018-05-21

    In the present work, density functional theory (DFT) calculations at the B3LYP/6-31+G(d) and including dispersion effects were used to investigate the hydrolysis of paraoxon, using a cluster model of the active site of Cd 2+ /Cd 2+ -phosphotriesterase (PTE) from Pseudomonas diminuta. The mechanism proposed here consist of (i) Exchange of the coordinated water molecule and coordination of the substrate to the more solvent exposed Cd β center in monodentate fashion, (ii) protonation of the μ-hydroxo bridge by the uncoordinated water molecule and in situ formation of the nucleophile, (iii) formation of a pentacoordinate intermediate with significant bond breaking to the leaving group and bond formation to the nucleophile, and (iv) protonation of the Asp301 residue and restoration of the active site through the coordination of another water molecule of the medium. The water molecules initially coordinated to the active site play a crucial role in stabilizing the transition states and the pentacoordinate intermediate. The reaction takes place in a two-step (A N + D N ) mechanism, with energy barriers of 12.9 and 1.9 kcal/mol for the first and second steps, respectively, computed at the B3LYP-D3/6-311++G(2d,2p) level of theory, in excellent agreement with the experimental findings. Dispersion effects alone contribute to diminish the energy barriers as much as 26%. The base mechanism for the Cd 2+ /Cd 2+ -PTE proposed here, in conjunction with the agreement found with the experimental energetic value for the energy barrier, makes it a consistent and kinetically viable mechanistic proposal for the hydrolysis of phosphate triesters promoted by the Cd 2+ substituted PTE enzyme.

  3. A study on the inhibitory mechanism for cholesterol absorption by α-cyclodextrin administration

    PubMed Central

    Furune, Takahiro; Ikuta, Naoko; Ishida, Yoshiyuki; Okamoto, Hinako; Nakata, Daisuke; Terao, Keiji

    2014-01-01

    Summary Background: Micelle formation of cholesterol with lecithin and bile salts is a key process for intestinal absorption of lipids. Some dietary fibers commonly used to reduce the lipid content in the body are thought to inhibit lipid absorption by binding to bile salts and decreasing the lipid solubility. Amongst these, α-cyclodextrin (α-CD) is reportedly one of the most powerful dietary fibers for decreasing blood cholesterol. However, it is difficult to believe that α-CD directly removes cholesterol because it has a very low affinity for cholesterol and its mechanism of action is less well understood than those of other dietary fibers. To identify this mechanism, we investigated the interaction of α-CD with lecithin and bile salts, which are essential components for the dissolution of cholesterol in the small intestine, and the effect of α-CD on micellar solubility of cholesterol. Results: α-CD was added to Fed-State Simulated Intestinal Fluid (FeSSIF), and precipitation of a white solid was observed. Analytical data showed that the precipitate was a lecithin and α-CD complex with a molar ratio of 1:4 or 1:5. The micellar solubility of cholesterol in the mixture of FeSSIF and α-CD was investigated, and found to decrease through lecithin precipitation caused by the addition of α-CD, in a dose-dependent manner. Furthermore, each of several other water-soluble dietary fibers was added to the FeSSIF, and no precipitate was generated. Conclusion: This study suggests that α-CD decreases the micellar solubility of cholesterol in the lumen of the small intestine via the precipitation of lecithin from bile salt micelles by complex formation with α-CD. It further indicates that the lecithin precipitation effect on the bile salt micelles by α-CD addition clearly differs from addition of other water-soluble dietary fibers. The decrease in micellar cholesterol solubility in the FeSSIF was the strongest with α-CD addition. PMID:25550749

  4. Study on the luminescence behavior of sulfobutylether-β-cyclodextrin with risperidone and its analytical application.

    PubMed

    Wu, Min; Chen, Donghua; Song, Zhenghua

    2012-10-01

    The interaction of sulfobutylether-β-cyclodextrin (SBE-β-CD) with risperidone (RISP) was first described with luminol-SBE-β-CD chemiluminescence (CL) system by flow injection analysis (FIA). In luminol-SBE-β-CD CL system, the 1:1 SBE-β-CD···luminol(*) complexation could enhance CL intensity of luminol and produce the effect of complexation enhancement of CL (CEC). It was found that RISP could quench the CL intensity of SBE-β-CD···luminol(*) and caused the effect of complexation enhancement of quenching (CEQ), the formation constant K(R-CD) 3.4×10(4) L mol(-1) and the stoichiometric ratio 1:1 of RISP···SBE-β-CD complex were obtained by the proposed CL model. Association degree α 0.036 of RISP···SBE-β-CD complex was also given by CL method. Based on the linear relationship to the decrement of luminol-SBE-β-CD-RISP CL intensity and the logarithm of RISP concentration, RISP also can be quantified in the linear range of 3.0-500.0 nmol L(-1) with a detection limit of 1.0 nmol L(-1) (3σ). The proposed method was successfully applied to monitoring excreted RISP in human urine. It was found that RISP reached its maximum after oral administration for 1.5 h with the total excretion of 14.26% within 8.5 h; the elimination rate constant k and half-life time t(1/2) were 0.474 and 1.5 h, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy

    PubMed Central

    Chen, Can; Tan, Wee-Kiat; Chi, Zhixia; Xu, Xue-Hu; Wang, Shu

    2016-01-01

    Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer. PMID:27598655

  6. Simultaneous analysis and retention behavior of major isoflavonoids in Radix Puerariae lobatae and Radix Puerariae thomsonii by high performance liquid chromatography with cyclodextrins as a mobile phase modifier.

    PubMed

    Zeng, Aiguo; Xing, Jianfeng; Wang, Changhe; Song, Jie; Li, Cong; Yang, Xin; Yang, Guangde

    2012-01-27

    In order to differentiate two species of Radix Puerariae (Radix Puerariae lobatae and Radix Puerariae thomsonii) and to determine major isoflavonoids (puerarin, daidzin, daidzein and genistein) in the samples, a simple high performance liquid chromatography (HPLC) method with isocratic elution employing cyclodextrins (CDs) as mobile phase additives was developed. Various factors affecting the retention of isoflavonoids in the C(18) reversed-phase column, such as the nature of CDs, the concentration of hydroxypropyl-β-cyclodextrin (HP-β-CD) and the methanol percentage in the mobile phase, were studied. Experimental results confirmed that HP-β-CD, as a very effective mobile phase additive, could markedly reduce the retention of isoflavonoids, especially daidzein and genistein. The elution of four isoflavonoids could be achieved on a Kromasil(®) C(18) column within 56 min by using the methanol-water contained 5 mM HP-β-CD (25/75, v/v) mixture as the mobile phase. The formation of the inclusion complexes between isoflavonoids and HP-β-CD explained the modification of the retention of analytes. The apparent formation constants determined by HPLC confirmed that the stoichiometry of HP-β-CD-isoflavonoid complexes was 1:1, and the stability of the complexes depended on the size and property of isoflavonoids. The optimized method was successfully applied for the simultaneous determination of major isoflavonoids in P. lobatae and P. thomsonii samples. This work provides a useful method for the analysis of traditional Chinese herbs. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity.

    PubMed

    Eichner, Ruth; Heider, Michael; Fernández-Sáiz, Vanesa; van Bebber, Frauke; Garz, Anne-Kathrin; Lemeer, Simone; Rudelius, Martina; Targosz, Bianca-Sabrina; Jacobs, Laura; Knorn, Anna-Maria; Slawska, Jolanta; Platzbecker, Uwe; Germing, Ulrich; Langer, Christian; Knop, Stefan; Einsele, Herrmann; Peschel, Christian; Haass, Christian; Keller, Ulrich; Schmid, Bettina; Götze, Katharina S; Kuster, Bernhard; Bassermann, Florian

    2016-07-01

    Immunomodulatory drugs (IMiDs), such as thalidomide and its derivatives lenalidomide and pomalidomide, are key treatment modalities for hematologic malignancies, particularly multiple myeloma (MM) and del(5q) myelodysplastic syndrome (MDS). Cereblon (CRBN), a substrate receptor of the CRL4 ubiquitin ligase complex, is the primary target by which IMiDs mediate anticancer and teratogenic effects. Here we identify a ubiquitin-independent physiological chaperone-like function of CRBN that promotes maturation of the basigin (BSG; also known as CD147) and solute carrier family 16 member 1 (SLC16A1; also known as MCT1) proteins. This process allows for the formation and activation of the CD147-MCT1 transmembrane complex, which promotes various biological functions, including angiogenesis, proliferation, invasion and lactate export. We found that IMiDs outcompete CRBN for binding to CD147 and MCT1, leading to destabilization of the CD147-MCT1 complex. Accordingly, IMiD-sensitive MM cells lose CD147 and MCT1 expression after being exposed to IMiDs, whereas IMiD-resistant cells retain their expression. Furthermore, del(5q) MDS cells have elevated CD147 expression, which is attenuated after IMiD treatment. Finally, we show that BSG (CD147) knockdown phenocopies the teratogenic effects of thalidomide exposure in zebrafish. These findings provide a common mechanistic framework to explain both the teratogenic and pleiotropic antitumor effects of IMiDs.

  8. Anionic Carbosilane Dendrimers Destabilize the GP120-CD4 Complex Blocking HIV-1 Entry and Cell to Cell Fusion.

    PubMed

    Guerrero-Beltran, Carlos; Rodriguez-Izquierdo, Ignacio; Serramia, Ma Jesus; Araya-Durán, Ingrid; Márquez-Miranda, Valeria; Gomez, Rafael; de la Mata, Francisco Javier; Leal, Manuel; González-Nilo, Fernando; Muñoz-Fernández, M Angeles

    2018-05-16

    Cell-to-cell transmission is the most effective pathway for the spread of human immunodeficiency virus (HIV-1). Infected cells expose virus-encoded fusion proteins on their surface as a consequence of HIV-1 replicative cycle that interacts with noninfected cells through CD4 receptor and CXCR4 coreceptor leading to the formation of giant multinucleated cells known as syncytia. Our group previously described the potent activity of dendrimers against CCR5-tropic viruses. Nevertheless, the study of G1-S4, G2-S16, and G3-S16 dendrimers in the context of X4-HIV-1 tropic cell-cell fusion referred to syncytium formation remains still unknown. These dendrimers showed a suitable biocompatibility in all cell lines studied and our results demonstrated that anionic carbosilane dendrimers G1-S4, G2-S16, and G3-S16 significantly inhibit the X4-HIV-1 infection, as well as syncytia formation, in a dose dependent manner. We also demonstrated that G2-S16 and G1-S4 significantly reduced syncytia formation in HIV-1 Env-mediated cell-to-cell fusion model. Molecular modeling and in silico models showed that G2-S16 dendrimer interfered with gp120-CD4 complex and demonstrated its potential use for a treatment.

  9. A c-Myc and surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice.

    PubMed

    Poe, Jonathan C; Minard-Colin, Veronique; Kountikov, Evgueni I; Haas, Karen M; Tedder, Thomas F

    2012-09-01

    Malignant B cells responding to external stimuli are likely to gain a growth advantage in vivo. These cells may therefore maintain surface CD19 expression to amplify transmembrane signals and promote their expansion and survival. To determine whether CD19 expression influences this process, Eμ-Myc transgenic (c-Myc(Tg)) mice that develop aggressive and lethal B cell lymphomas were made CD19 deficient (c-Myc(Tg)CD19⁻/⁻). Compared with c-Myc(Tg) and c-Myc(Tg)CD19⁺/⁻ littermates, the median life span of c-Myc(Tg)CD19⁻/⁻ mice was prolonged by 81-83% (p < 0.0001). c-Myc(Tg)CD19⁻/⁻ mice also lived 42% longer than c-Myc(Tg) littermates following lymphoma detection (p < 0.01). Tumor cells in c-Myc(Tg) and c-Myc(Tg)CD19⁻/⁻ mice were B lineage derived, had a similar phenotype with a large blastlike appearance, invaded multiple lymphoid tissues, and were lethal when adoptively transferred into normal recipient mice. Importantly, reduced lymphomagenesis in c-Myc(Tg)CD19⁻/⁻ mice was not due to reductions in early B cell numbers prior to disease onset. In mechanistic studies, constitutive c-Myc expression enhanced CD19 expression and phosphorylation on active sites. Reciprocally, CD19 expression in c-Myc(Tg) B cells enhanced c-Myc phosphorylation at regulatory sites, sustained higher c-Myc protein levels, and maintained a balance of cyclin D2 expression over that of cyclin D3. These findings define a new and novel c-Myc:CD19 regulatory loop that positively influences B cell transformation and lymphoma progression.

  10. Supra-molecular inclusion complexation of ionic liquid 1-butyl-3-methylimidazolium octylsulphate with α- and β-cyclodextrins

    NASA Astrophysics Data System (ADS)

    Banjare, Manoj Kumar; Behera, Kamalakanta; Satnami, Manmohan L.; Pandey, Siddharth; Ghosh, Kallol K.

    2017-12-01

    Host-guest complexation between ionic liquid (IL) 1-butyl-3-methylimidazolium octylsulphate [Bmim][OS] and cyclodextrins (α- and β- CDs) have been studied. Surface tension, conductivity measurements revealed the formation of 1:1 (M) stoichiometry for inclusion complexes (ICs) and further confirmed by UV-Visible and FT-IR results. The nature of the complexes has been established using interfacial and thermodynamic parameters. The aggregation number, Stern-Volmer constants, association constants were obtained from fluorescence quenching and Benesi-Hildebrand methods. The critical micelle concentration (cmc) and association constants of [Bmim][OS] are higher for β-CD as compared to α-CD. FT-IR spectra indicated that CDs and [Bmim][OS] could from ICs with stoichiometry 1:1 (M).

  11. Autocrine stimulation of IL-10 is critical to the enrichment of IL-10-producing CD40(hi)CD5(+) regulatory B cells in vitro and in vivo.

    PubMed

    Kim, Hyuk Soon; Lee, Jun Ho; Han, Hee Dong; Kim, A-Ram; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Lee, Dajeong; Lee, Min Bum; Park, Yeong Min; Kim, Hyung Sik; Kim, Young Mi; You, Ji Chang; Choi, Wahn Soo

    2015-01-01

    IL-10-producing B (Breg) cells regulate various immune responses. However, their phenotype remains unclear. CD40 expression was significantly increased in B cells by LPS, and the Breg cells were also enriched in CD40(hi)CD5(+) B cells. Furthermore, CD40 expression on Breg cells was increased by IL-10, CD40 ligand, and B cell-activating factor, suggesting that CD40(hi) is a common phenotype of Breg cells. LPS-induced CD40 expression was largely suppressed by an anti-IL-10 receptor antibody and in IL-10(-/-)CD5(+)CD19(+) B cells. The autocrine effect of IL-10 on the CD40 expression was largely suppressed by an inhibitor of JAK/STAT3. In vivo, the LPS treatment increased the population of CD40(hi)CD5(+) Breg cells in mice. However, the population of CD40(hi)CD5(+) B cells was minimal in IL-10(-/-) mice by LPS. Altogether, our findings show that Breg cells are largely enriched in CD40(hi)CD5(+) B cells and the autocrine effect of IL-10 is critical to the formation of CD40(hi)CD5(+) Breg cells.

  12. Metal sulfide thin films by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Krunks, Malle; Mellikov, Enn

    2001-04-01

    CdS, ZnS and CuS thin films were prepared by spray pyrolysis method using metal chlorides and thiourea (tu) as starting materials. Metal sulfide films form as products of thermal decomposition of complexes Cd(tu)2Cl2, Zn(tu)2Cl2 and Cu(tu)Cl(DOT)1/2H2O, originally formed in aqueous solution at precursors molar ratio 1:2. The metal-ligand bonding is thermally stable up to 220 degrees Celsius, followed by multistep degradation process of complexes. The TG/DTA analysis show similar thermal behavior of complexes up to 300 degrees Celsius with the formation of metal sulfides in this decomposition step. In air intensive oxidation processes are detected close to 400, 600 and 720 degrees Celsius for Cu, Cd and Zn complexes, respectively. The results of thermoanalytical study and XRD of sprayed films show that CdS and ZnS films could be grown at 450 degrees Celsius even in air while deposition of copper sulfide films should be performed in an inert atmosphere. High total impurities content of 10 wt% in CdS films prepared at 240 degrees Celsius is originated from the precursor and reduced to 2 wt% by increasing the growth temperature up to 400 degrees Celsius.

  13. New formulation of an old drug in hypertension treatment: the sustained release of captopril from cyclodextrin nanoparticles

    PubMed Central

    de Azevedo, Mariangela de Burgos M; Tasic, Ljubica; Fattori, Juliana; Rodrigues, Fábio HS; Cantos, Fabiana C; Ribeiro, Leandro P; de Paula, Vanice; Ianzer, Danielle; Santos, Robson AS

    2011-01-01

    Captopril (CAP) was the first angiotensin I-converting enzyme (ACE) inhibitor to be developed and is widely used in hypertension treatment. On the other hand, cyclodextrins (CDs) are cyclic oligosaccharides whose cone-shaped cavity allows formation of noncovalent inclusion complexes with appropriately sized guest molecules, thus modifying guest physical, chemical, and biological properties. Herein, the physicochemical characterization and in vivo ACE inhibition evaluation of seven CAP/CD complexes are reported. The inclusion complexes were prepared by spray-drying, freeze-drying, kneading, or lyophilization methods and characterized by nuclear magnetic resonance, Fourier-transformed infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy techniques. In vivo assays compared CAP and CAP/CD complex administration (0.5 mg kg−1 or 0.09 mg kg−1, n = 4–7) to evaluate the ACE inhibition by continuous infusion of angiotensin I (30 ng 50 μL−1 min−1) in conscious Wistar rats. The physicochemical analysis demonstrated complete amorphization and complexation between CAP and CDs, indicating the substitution of water molecules inside the CD cavity with CAP. During the infusion of angiotensin I, the administration of all CAP/CD complexes induced a reduction in mean arterial pressure similar to that observed upon CAP administration. The nanoparticles obtained by the kneading method (CAP/α-CD:KM) showed a potent and long-lasting inhibitory activity (∼22 hours) on the angiotensin I pressor effect. The results suggest that the inclusion complex of CAP and α-CD can function as a novel antihypertensive formulation that may improve therapeutic use of CAP by reducing its oral dose administration to once per day, thus providing better quality of life for almost 25% of the world’s population who suffer from hypertension. PMID:21720512

  14. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    NASA Astrophysics Data System (ADS)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  15. Altered CD19/CD22 balance in Egyptian children and adolescents with systemic lupus erythematosus.

    PubMed

    El-Sayed, Zeinab A; Ragab, Seham M; Khalifa, Khaled A; El Ashmawy, Ramy A

    2009-01-01

    B cells from systemic lupus erythematosus (SLE) patients display signalling defects that may underlie disease pathogenesis activity.CD19 and CD22 play a major role as regulators of B-cell response. The aim of this study was to clarify the relationship between B cell surface markers namely CD19, CD20 and CD22 expression and clinical and laboratory indices of SLE activity. The study included 33 SLE patients and 20 healthy children and adolescents as controls. Flowcytometric assay of dual markers, CD19/CD20, and CD20/CD22 was done. SLE disease activity was assessed by SLEDAI score. CD22% was significantly higher while CD20% was significantly lower in the study compared to the control group. No significant difference was observed in both groups with respect to CD19% or CD19/CD22% ratio. The level of CD22 expression was significantly lower in high and very high active cases than in mild and moderate cases and negatively correlated with SLDEAI score and ESR. Results obtained showed that, B cell surface receptors CD20 and CD22 are significantly affected in patients with SLE, pointing to their possible involvement in the aetiopathogenesis of the disease and in the regulatory mechanisms in response to the immune disturbance.

  16. Prolonged absorption of antimony(V) by the oral route from non-inclusion meglumine antimoniate-beta-cyclodextrin conjugates.

    PubMed

    Ribeiro, Raul R; Ferreira, Weverson A; Martins, Patricia S; Neto, Rubens L M; Rocha, Olguita G F; Le Moyec, Laurence; Demicheli, Cynthia; Frézard, Frédéric

    2010-03-01

    The orally active composition comprising meglumine antimoniate (MA) and beta-cyclodextrin (beta-CD) differs markedly from conventional drug-CD complexes, since it combines a water-soluble drug and a hydrophilic CD. In order to obtain insights into the mechanism(s) responsible for the improved oral delivery of the drug, physicochemical and pharmacokinetic studies were carried out. The composition investigated here was prepared at a 7:1 antimony(Sb)/beta-CD molar ratio, a condition that improves its solubility in water and allows the oral administration of a high dose of Sb in large animals. It was characterized by circular dichroism, (1)H-NMR, ESI-MS and photon correlation spectroscopy. Pharmacokinetic data were obtained in Beagle dogs after oral administration of the composition at 100 mg Sb/kg. (1)H-NMR and ESI-MS data supported the formation of non-inclusion complexes between MA and beta-CD. Sub-micron assemblies were also evidenced that slowly dissociate and presumably release the MA drug, upon reconstitution of the composition in water. Pharmacokinetic studies of MA and MA/beta-CD in dogs showed a prolongation of the serum mean residence time of Sb from 4.1 to 6.8 h, upon complexation of MA with beta-CD. Evidence was also obtained that Sb remains essentially under the form of pentavalent Sb-meglumine complex, following gastro-intestinal absorption from the MA/beta-CD composition. In conclusion, the present data support the model that the sustained drug release property of 7:1 MA/beta-CD composition resulted in the prolongation of MA absorption by the oral route and, consequently, in the increase of the drug mean residence time in serum. Copyright (c) 2009 John Wiley & Sons, Ltd.

  17. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    PubMed

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  18. Altered Distribution of Peripheral Blood Memory B Cells in Humans Chronically Infected with Trypanosoma cruzi

    PubMed Central

    Fernández, Esteban R.; Olivera, Gabriela C.; Quebrada Palacio, Luz P.; González, Mariela N.; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L.; Ledesma Patiño, Oscar S.; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans. PMID:25111833

  19. [The Influence of UV-Light on the Sub-Populational Composition and Expression of Membrane Markers of Lymphocytes of Donor Blood].

    PubMed

    Artyukhov, V G; Basharina, O V; Zemchenkova, O V; Ryazantsev, S V

    2016-01-01

    The influence of UV-light (240-390 nm) at dozes of 151 and 755 J/m2 on the content of membrane markers of lymphocytes using the method of flow cytometry was investigated. It was demonstrated that during incubation of UV-irradiated lymphocytes the change of their populational and sub-populational composition occurs. Expression of complexes of CD3, CD 19,.CD8, CD 16, CD25 and CD95 increased. This increase was caused mainly by de novo synthesis. UV-light had immunostimulating effect on CD8+ T-lymphocyte population. Together with the increase of cytotoxic cells and NK-cells, activation of lymphocytes (increased amount of CD25+ and CD95+ cells) took place. Amount of cells undergone apoptosis or necrosis increased proportionally to the dosage. These changes were more expressed during incubation of lymphocytes in nutrition medium without autological blood serum, e.g. under deficiency of growth factors and antioxidants.

  20. Upregulation of CD19⁺CD24(hi)CD38(hi) regulatory B cells is associated with a reduced risk of acute lung injury in elderly pneumonia patients.

    PubMed

    Song, Haihan; Xi, Jianjun; Li, Guang-Gang; Xu, Shumin; Wang, Chunmei; Cheng, Tingting; Li, Hongqiang; Zhang, Ying; Liu, Xiandong; Bai, Jianwen

    2016-04-01

    Acute lung injury (ALI) is a common complication in elderly pneumonia patients who have a rapid progression, and is accompanied by a high mortality rate. Because the treatment options of ALI are limited to supportive care, identifying pneumonia patients who are at higher risk of ALI development is the emphasis of many studies. Here, we approach this problem from an immunological perspective by examining CD19(+)CD24(hi)CD38(hi) B cells, an important participant in acute and chronic inflammation. We find that elderly pneumonia patients have elevated CD19(+)CD24(hi)CD38(hi) B cell frequency compared to healthy individuals. This B cell population may express a higher level of IL-10, which has been was shown to suppress CD4(+) T cell-mediated proinflammatory cytokine interferon gamma (IFNg) and tumor necrosis factor alpha (TNFa) production, through an IL-10-dependent mechanism. We also observe that the frequency of CD19(+)CD24(hi)CD38(hi) B cell is positively correlated with the frequency of CD4(+)CD25(+)Foxp3(+)Tregs in peripheral blood. Moreover, consistent with CD19(+)CD24(hi)CD38(hi) B cell's anti-inflammatory role, we find that pneumonia patients who later developed ALI have reduced level of CD19(+)CD24(hi)CD38(hi) B cells. Together, our results demonstrated that CD19(+)CD24(hi)CD38(hi) B cells in pneumonia patients possess regulatory function in vivo, and are associated with a reduced ALI risk.

  1. Cyclodextrin-complexation effects on the low-frequency vibrational dynamics of ibuprofen by combined inelastic light and neutron scattering experiments.

    PubMed

    Crupi, Vincenza; Fontana, Aldo; Giarola, Marco; Guella, Graziano; Majolino, Domenico; Mancini, Ines; Mariotto, Gino; Paciaroni, Alessandro; Rossi, Barbara; Venuti, Valentina

    2013-04-11

    The effect of the inclusion into cyclodextrins (CD) cavity on the low-frequency vibrational dynamics of the anti-inflammatory drug ibuprofen (IBP) is here investigated by using Raman and inelastic neutron scattering (INS) experiments. The differences observed in the frequency regime 0-100 cm(-1) between the vibrational modes of uncomplexed racemic and enantiomeric IBP are discussed on the basis of comparison with the quantum chemical computation results, taking into account the distinct symmetry properties of the molecules involved in the formation of the host-guest complex. Subsequently, the inspection of the same frequency range in the spectra of pure host methyl-β-CD and its IBP-inclusion complexes allows one to identify significant modifications in the vibrational dynamics of the guest molecule after their confinement into CD cavity. The experimental Raman and neutron spectra and the derived Raman coupling function C(R)(ω) show that the complexation process gives rise to a complete amorphization of the drug, as well as to a partial hindering, in the vibrational dynamics of complexes, of the modes between 50 and 150 cm(-1) attributed to CD molecule. The comparison between the Raman and neutron spectra of free and complexed IBP in the energy range of the Boson peak (BP) gives evidence that the dynamics related to this specific vibrational feature is sensitive to complexation phenomena.

  2. CD3-T cell receptor modulation is selectively induced in CD8 but not CD4 lymphocytes cultured in agar.

    PubMed Central

    Oudrhiri, N; Farcet, J P; Gourdin, M F; M'Bemba, E; Gaulard, P; Katz, A; Divine, M; Galazka, A; Reyes, F

    1990-01-01

    The CD3-T cell receptor (TcR) complex is central to the immune response. Upon binding by specific ligands, internalized CD3-TcR molecules increase, and either T cell response or unresponsiveness may ensue depending on the triggering conditions. Using semi-solid agar culture, we have shown previously that quiescent CD4 but not CD8 lymphocytes generate clonal colonies under phytohaemagglutinin stimulation. Here we have demonstrated that the agar induces selective CD3-TcR modulation in the CD8 and not in the CD4 subset. CD8 lymphocytes preactivated in liquid culture and recultured in agar with exogenous recombinant interleukin-2 generate colonies with a modulated CD3-TcR surface expression. The peptides composing the CD3-TcR complex are synthesized in CD8 colonies as well as in CD4; however, the CD3 gamma chain is phosphorylated at a higher level in CD8 colonies. A component of the agar polymer, absent in agarose, appears to be the ligand that induces differential CD3-TcR modulation in the CD8 subset. In contrast to agar culture, CD8 colonies can be derived from quiescent CD8 lymphocytes in agarose. These CD8 colonies express unmodulated CD-TcR. CD3-TcR modulation with anti-CD3 monoclonal antibody prior to culturing in agarose inhibits the colony formation. We conclude that given triggering conditions can result in both CD3-TcR modulation and inhibition of the proliferative response selectively in the CD8 lymphocyte subset and not in the CD4. Images Fig. 3 Fig. 4 Fig. 5 PMID:2146997

  3. Identification of CD34+ and CD34− leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia

    PubMed Central

    Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki

    2015-01-01

    Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34−CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34−CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34− cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38−CD19−CD33− cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38−CD19−CD33− cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34− LICs but not in CD34+CD38−CD19−CD33− HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041

  4. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    PubMed

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Aripiprazole-Cyclodextrin Binary Systems for Dissolution Enhancement: Effect of Preparation Technique, Cyclodextrin Type and Molar Ratio

    PubMed Central

    M. Badr-Eldin, Shaimaa; A. Ahmed, Tarek; R Ismail, Hatem

    2013-01-01

    Objective(s): The aim of this work was to investigate the effect of the natural and the chemically modified form of cyclodextrins namely; β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) respectively on the solubility and dissolution rate of aripiprazole; an antipsychotic medication showing poor aqueous solubility. Materials and Methods: Phase solubility of aripiprazole with the studied CDs and the complexation efficiency values (CE) which reflect the solubilizing power of the CDs towards the drug was performed. Solid binary systems of aripiprazole with CDs were prepared by kneading, microwave irradiation and freeze-drying techniques at 1:1 and 1:2 (drug to CD) molar ratios. Drug-CD physical mixtures were also prepared in the same molar ratios for comparison. The dissolution of aripiprazole-binary systems was carried out to select the most appropriate CD type, molar ratio and preparation technique. Results: Phase solubility study indicated formation of higher order complexes and the complexation efficiency values was higher for HP-β-CD compared to β-CD. Drug dissolution study revealed that aripiprazole dissolution was increased upon increasing the CD molar ratio and, the freeze-drying technique was superior to the other studied methods especially when combined with the HP-β-CD. The cyclodextrin type, preparation technique and molar ratio exhibited statistically significant effect on the drug dissolution at P≤ 0.05. Conclusion: The freeze-dried system prepared at molar ratio 1:2 (drug: CD) can be considered as efficient tool for enhancing aripiprazole dissolution with the possibility of improving its bioavailability. PMID:24570827

  6. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    PubMed

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CD8+ TCR repertoire formation is guided primarily by the peptide component of the antigenic complex.

    PubMed

    Koning, Dan; Costa, Ana I; Hoof, Ilka; Miles, John J; Nanlohy, Nening M; Ladell, Kristin; Matthews, Katherine K; Venturi, Vanessa; Schellens, Ingrid M M; Borghans, Jose A M; Kesmir, Can; Price, David A; van Baarle, Debbie

    2013-02-01

    CD8(+) T cells recognize infected or dysregulated cells via the clonotypically expressed αβ TCR, which engages Ag in the form of peptide bound to MHC class I (MHC I) on the target cell surface. Previous studies have indicated that a diverse Ag-specific TCR repertoire can be beneficial to the host, yet the determinants of clonotypic diversity are poorly defined. To better understand the factors that govern TCR repertoire formation, we conducted a comprehensive clonotypic analysis of CD8(+) T cell populations directed against epitopes derived from EBV and CMV. Neither pathogen source nor the restricting MHC I molecule were linked with TCR diversity; indeed, both HLA-A and HLA-B molecules were observed to interact with an overlapping repertoire of expressed TRBV genes. Peptide specificity, however, markedly impacted TCR diversity. In addition, distinct peptides sharing HLA restriction and viral origin mobilized TCR repertoires with distinct patterns of TRBV gene usage. Notably, no relationship was observed between immunodominance and TCR diversity. These findings provide new insights into the forces that shape the Ag-specific TCR repertoire in vivo and highlight a determinative role for the peptide component of the peptide-MHC I complex on the molecular frontline of CD8(+) T cell-mediated immune surveillance.

  8. MicroRNA-19a and CD22 Comprise a Feedback Loop for B Cell Response in Sepsis.

    PubMed

    Jiang, Yinan; Zhou, Hongmin; Ma, Dandan; Chen, Zhonghua Klaus; Cai, Xun

    2015-05-28

    MicroRNA-19a (miR-19a), an oncogenic microRNA, has been recently reported to target CD22 in B cell lymphoma cell lines, but its role in inflammatory response is unclear. CD22 is a negative regulator for BCR signaling, and we hypothesize that miR-19a regulates B cell response by targeting CD22 in sepsis. In order to determine whether miR-19a-CD22 pathway was involved in sepsis, and what role it played in the regulatory mechanisms, we detected the levels of miR-19a in B cells obtained from patients with sepsis, and measured the levels of miR-19a and CD22 expression in B cells activated by LPS in vitro. Additionally, we investigated the correlation between miR-19a and CD22, as well as the influence of this pathway on BCR signaling, in transfected B cells. We found that septic patients displayed up-regulated miR-19a in B cells. In vitro, miR-19a was increased in activated B cells, with CD22 expression initially enhanced but subsequently decreased. Moreover, overexpression of miR-19a resulted in an amplified BCR signaling, while overexpression of CD22 attenuated the effect of miR-19a and increased its expression. Our study demonstrated that miR-19a and CD22 comprised a feedback loop for B cell response in sepsis, providing a potential therapeutic target to recover the immune homeostasis.

  9. MicroRNA-19a and CD22 Comprise a Feedback Loop for B Cell Response in Sepsis

    PubMed Central

    Jiang, Yinan; Zhou, Hongmin; Ma, Dandan; Chen, Zhonghua Klaus; Cai, Xun

    2015-01-01

    Background MicroRNA-19a (miR-19a), an oncogenic microRNA, has been recently reported to target CD22 in B cell lymphoma cell lines, but its role in inflammatory response is unclear. CD22 is a negative regulator for BCR signaling, and we hypothesize that miR-19a regulates B cell response by targeting CD22 in sepsis. Material/Methods In order to determine whether miR-19a-CD22 pathway was involved in sepsis, and what role it played in the regulatory mechanisms, we detected the levels of miR-19a in B cells obtained from patients with sepsis, and measured the levels of miR-19a and CD22 expression in B cells activated by LPS in vitro. Additionally, we investigated the correlation between miR-19a and CD22, as well as the influence of this pathway on BCR signaling, in transfected B cells. Results We found that septic patients displayed up-regulated miR-19a in B cells. In vitro, miR-19a was increased in activated B cells, with CD22 expression initially enhanced but subsequently decreased. Moreover, overexpression of miR-19a resulted in an amplified BCR signaling, while overexpression of CD22 attenuated the effect of miR-19a and increased its expression. Conclusions Our study demonstrated that miR-19a and CD22 comprised a feedback loop for B cell response in sepsis, providing a potential therapeutic target to recover the immune homeostasis. PMID:26017478

  10. Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL.

    PubMed

    Wang, Xiuli; Popplewell, Leslie L; Wagner, Jamie R; Naranjo, Araceli; Blanchard, M Suzette; Mott, Michelle R; Norris, Adam P; Wong, ChingLam W; Urak, Ryan Z; Chang, Wen-Chung; Khaled, Samer K; Siddiqi, Tanya; Budde, Lihua E; Xu, Jingying; Chang, Brenda; Gidwaney, Nikita; Thomas, Sandra H; Cooper, Laurence J N; Riddell, Stanley R; Brown, Christine E; Jensen, Michael C; Forman, Stephen J

    2016-06-16

    Myeloablative autologous hematopoietic stem cell transplantation (HSCT) is a mainstay of therapy for relapsed intermediate-grade B-cell non-Hodgkin lymphoma (NHL); however, relapse rates are high. In phase 1 studies designed to improve long-term remission rates, we administered adoptive T-cell immunotherapy after HSCT, using ex vivo-expanded autologous central memory-enriched T cells (TCM) transduced with lentivirus expressing CD19-specific chimeric antigen receptors (CARs). We present results from 2 safety/feasibility studies, NHL1 and NHL2, investigating different T-cell populations and CAR constructs. Engineered TCM-derived CD19 CAR T cells were infused 2 days after HSCT at doses of 25 to 200 × 10(6) in a single infusion. In NHL1, 8 patients safely received T-cell products engineered from enriched CD8(+) TCM subsets, expressing a first-generation CD19 CAR containing only the CD3ζ endodomain (CD19R:ζ). Four of 8 patients (50%; 95% confidence interval [CI]: 16-84%) were progression free at both 1 and 2 years. In NHL2, 8 patients safely received T-cell products engineered from enriched CD4(+) and CD8(+) TCM subsets and expressing a second-generation CD19 CAR containing the CD28 and CD3ζ endodomains (CD19R:28ζ). Six of 8 patients (75%; 95% CI: 35-97%) were progression free at 1 year. The CD4(+)/CD8(+) TCM-derived CD19 CAR T cells (NHL2) exhibited improvement in expansion; however, persistence was ≤28 days, similar to that seen by others using CD28 CARs. Neither cytokine release syndrome nor delayed hematopoietic engraftment was observed in either trial. These data demonstrate the safety and feasibility of CD19 CAR TCM therapy after HSCT. Trials were registered at www.clinicaltrials.gov as #NCT01318317 and #NCT01815749. © 2016 by The American Society of Hematology.

  11. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.

    PubMed

    Kochenderfer, James N; Rosenberg, Steven A

    2013-05-01

    Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies.

  12. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    PubMed Central

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  13. Multiparameter cell affinity chromatography: separation and analysis in a single microfluidic channel.

    PubMed

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-10-02

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.

  14. Increased numbers of circulating ICOS⁺ follicular helper T and CD38⁺ plasma cells in patients with newly diagnosed primary biliary cirrhosis.

    PubMed

    Wang, Li; Sun, Xiguang; Qiu, Jinpeng; Cai, Yanjun; Ma, Liang; Zhao, Pingwei; Jiang, Yanfang

    2015-02-01

    Aberrant activation of follicular helper T (TFH) and B cells is associated with the development of autoimmune diseases. However, little is known about the potential role of these cells in the development of primary biliary cirrhosis (PBC). This study aimed at characterizing the numbers of different subsets of circulating Tfh and B cells as well as evaluating their potential association with the levels of immunoglobulins and autoantibodies in newly diagnosed PBC patients. The numbers of circulating CD27(+), CD38(+), CD86(+) and CD95(+) B cells as well as inducible T cell costimulator (ICOS)(+) and programmed death-1 (PD-1)(+), IL-21(+) TFH cells were examined in 58 patients with newly diagnosed PBC and 30 matched healthy controls (HCs). The numbers of circulating CD38(+)CD19(+), CD86(+)CD19(+), and CD95(+)CD19(+) B cells; CD3(+)CD4(+)CXCR5(+)ICOS(+) and CD3(+)CD4(+)CXCR5(+)PD-1(+) Tfh cells; and the levels of serum IL-21 in the PBC patients were significantly greater, but the numbers of CD27(+)CD19(+) B cells were significantly less than those in the HCs (p < 0.05). The numbers of CD3(+)CD4(+)CXCR5(+)ICOS(+) Tfh cells were positively correlated with the numbers of CD38(+)CD19(+) and CD86(+)CD38(+)CD19(+) B cells and the levels of serum anti-mitochondrial antibodies against M2 antigen (AMA-M2), AMA and immunolgubin M (IgM) in the PBC patients. The levels of serum IL-21 were positively correlated with the levels of serum AMA-M2, AMA, IgG and IgM, but negatively with the numbers of CD27(+)CD19(+) B cells in the PBC patients. Increased numbers of circulating ICOS(+) and IL-21(+) Tfh and CD38(+) plasma cells may be exhibited by patients with recent diagnoses of PBC.

  15. Development of CdS Nanostructures by Thermal Decomposition of Aminocaproic Acid-Mixed Cd-Thiourea Complex Precursor: Structural, Optical and Photocatalytic Characterization.

    PubMed

    Patel, Jayesh D; Mighri, Frej; Ajji, Abdellah; Chaudhuri, Tapas K

    2015-04-01

    The present work deals with two different CdS nanostructures produced via hydrothermal and solvothermal decompositions of aminocaproic acid (ACA)-mixed Cd-thiourea complex precursor at 175 °C. Both nanostructures were extensively characterized for their structural, morphological and optical properties. The powder X-ray diffraction characterization showed that the two CdS nanostructures present a wurtzite morphology. Scanning electron microscopy and energy-dispersive X-ray characterizations revealed that the hydrothermal decomposition produced well-shaped CdS flowers composed of six dendritic petals, and the solvothermal decomposition produced CdS microspheres with close stoichiometric chemical composition. The UV-vis absorption and photoluminescence spectra of CdS dendritic flowers and microsphere nanostructures showed that both nanostructures present a broad absorption between 200 and 700 nm and exhibit strong green emissions at 576 and 520 nm upon excitations at 290 nm and 260 nm, respectively. The transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) characterizations confirmed that CdS microspheres were mesoporous and were composed of small nanocrystals. A possible growth mechanism in the formation of the CdS nanostructures was proposed based on morphology evolution as a function of the reaction time. Furthermore, the as-synthesized CdS nanostructures were found to exhibit highly efficient photocatalytic activities for the degradation of methyl orange (MeO) and rhodamine B (RhB) dyes.

  16. A conserved αβ transmembrane interface forms the core of a compact T-cell receptor–CD3 structure within the membrane

    PubMed Central

    Krshnan, Logesvaran; Park, Soohyung; Im, Wonpil; Call, Melissa J.; Call, Matthew E.

    2016-01-01

    The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR–CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling. PMID:27791034

  17. A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane.

    PubMed

    Krshnan, Logesvaran; Park, Soohyung; Im, Wonpil; Call, Melissa J; Call, Matthew E

    2016-10-25

    The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR-CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling.

  18. Investigation of trypsin-CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity.

    PubMed

    Kaur, Gurvir; Tripathi, S K

    2015-01-05

    The paper presents the interactions between trypsin and water soluble cadmium selenide (CdSe) quantum dots investigated by spectrophotometric methods. CdSe quantum dots have strong ability to quench the intrinsic fluorescence of trypsin by a static quenching mechanism. The quenching has been studied at three different temperatures where the results revealed that electrostatic interactions exist between CdSe quantum dots and trypsin and are responsible to stabilize the complex. The Scatchard plot from quenching revealed 1 binding site for quantum dots by trypsin, the same has been confirmed by making isothermal titrations of quantum dots against trypsin. The distance between donor and acceptor for trypsin-CdSe quantum dot complexes is calculated to be 2.8 nm by energy transfer mechanisms. The intrinsic fluorescence of CdSe quantum dots has also been enhanced by the trypsin, and is linear for concentration of trypsin ranging 1-80 μl. All the observations evidence the formation of trypsin-CdSe quantum dot conjugates, where trypsin retains the enzymatic activity which in turn is temperature and pH dependent. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging.

    PubMed

    Wen, Peng; Zhu, Ding-He; Feng, Kun; Liu, Fang-Jun; Lou, Wen-Yong; Li, Ning; Zong, Min-Hua; Wu, Hong

    2016-04-01

    A novel antimicrobial packaging material was obtained by incorporating cinnamon essential oil/β-cyclodextrin inclusion complex (CEO/β-CD-IC) into polylacticacid (PLA) nanofibers via electrospinning technique. The CEO/β-CD-IC was prepared by the co-precipitation method and SEM and FT-IR spectroscopy analysis indicated the successful formation of CEO/β-CD-IC, which improved the thermal stability of CEO. The CEO/β-CD-IC was then incorporated into PLA nanofibers by electrospinning and the resulting PLA/CEO/β-CD nanofilm showed better antimicrobial activity compared to PLA/CEO nanofilm. The minimum inhibitory concentration (MIC) of PLA/CEO/β-CD nanofilm against Escherichia coli and Staphylococcus aureus was approximately 1 mg/ml (corresponding CEO concentration 11.35 μg/ml) and minimum bactericidal concentration (MBC) was approximately 7 mg/ml (corresponding CEO concentration 79.45 μg/ml). Furthermore, compared with the casting method, the mild electrospinning process was more favorable for maintaining greater CEO in the obtained film. The PLA/CEO/β-CD nanofilm can effectively prolong the shelf life of pork, suggesting it has potential application in active food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. VTVH-MCD and DFT studies of thiolate bonding to [FeNO]7/[FeO2]8 complexes of isopenicillin N synthase: substrate determination of oxidase versus oxygenase activity in nonheme Fe enzymes.

    PubMed

    Brown, Christina D; Neidig, Michael L; Neibergall, Matthew B; Lipscomb, John D; Solomon, Edward I

    2007-06-13

    Isopenicillin N synthase (IPNS) is a unique mononuclear nonheme Fe enzyme that catalyzes the four-electron oxidative double ring closure of its substrate ACV. A combination of spectroscopic techniques including EPR, absorbance, circular dichroism (CD), magnetic CD, and variable-temperature, variable-field MCD (VTVH-MCD) were used to evaluate the geometric and electronic structure of the [FeNO]7 complex of IPNS coordinated with the ACV thiolate ligand. Density Function Theory (DFT) calculations correlated to the spectroscopic data were used to generate an experimentally calibrated bonding description of the Fe-IPNS-ACV-NO complex. New spectroscopic features introduced by the binding of the ACV thiolate at 13 100 and 19 800 cm-1 are assigned as the NO pi*(ip) --> Fe dx2-y2 and S pi--> Fe dx2-y2 charge transfer (CT) transitions, respectively. Configuration interaction mixes S CT character into the NO pi*(ip) --> Fe dx2-y2 CT transition, which is observed experimentally from the VTVH-MCD data from this transition. Calculations on the hypothetical {FeO2}8 complex of Fe-IPNS-ACV reveal that the configuration interaction present in the [FeNO]7 complex results in an unoccupied frontier molecular orbital (FMO) with correct orientation and distal O character for H-atom abstraction from the ACV substrate. The energetics of NO/O2 binding to Fe-IPNS-ACV were evaluated and demonstrate that charge donation from the ACV thiolate ligand renders the formation of the FeIII-superoxide complex energetically favorable, driving the reaction at the Fe center. This single center reaction allows IPNS to avoid the O2 bridged binding generally invoked in other nonheme Fe enzymes that leads to oxygen insertion (i.e., oxygenase function) and determines the oxidase activity of IPNS.

  1. Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding.

    PubMed

    Cugovčan, Martina; Jablan, Jasna; Lovrić, Jasmina; Cinčić, Dominik; Galić, Nives; Jug, Mario

    2017-04-15

    Mechanochemical activation using several different co-grinding additives was applied as a green chemistry approach to improve physiochemical and biopharmaceutical properties of praziquantel (PZQ). Liquid assisted grinding with an equimolar amount of citric acid (CA), malic acid (MA), salicylic acid (SA) and tartaric acid (TA) gained in cocrystal formation, which all showed pH-dependent solubility and dissolution rate. However, the most soluble cocrystal of PZQ with MA was chemically unstable, as seen during the stability testing. Equimolar cyclodextrin complexes prepared by neat grinding with amorphous hydroxypropyl-β-cyclodextrin (HPβCD) and randomly methylated β-cyclodextrin (MEβCD) showed the highest improvement in drug solubility and the dissolution rate, but only PZQ/HPβCD product presented an acceptable chemical and photostability profile. A combined approach, by co-grinding the drug with both MA and HPβCD in equimolar ratio, also gave highly soluble amorphous product which again was chemical instable and therefore not suitable for the pharmaceutical use. Studies on Caco-2 monolayer confirmed the biocompatibility of PZQ/HPβCD complex and showed that complexation did not adversely affect the intrinsically high PZQ permeability (P app (PZQ)=(3.72±0.33)×10 -5 cms -1 and P app (PZQ/HPβCD)=(3.65±0.21)×10 -5 cms -1 ; p>0.05). All this confirmed that the co-grinding with the proper additive is as a promising strategy to improve biopharmaceutical properties of the drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Complex formation of divalent metal ions with uridine 5'-O-thiomonophosphate or methyl thiophosphate: comparison of complex stabilities with those of the parent phosphate ligands.

    PubMed

    Da Costa, Carla P; Okruszek, Andrzej; Sigel, Helmut

    2003-07-07

    The stability constants of the 1:1 complexes formed in aqueous solution between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Zn2+, or Cd2+ (M2+) and methyl thiophosphate (MeOPS(2-)) or uridine 5'-O-thiomonophosphate (UMPS(2-)) (PS(2-)=MeOPS(2-) or UMPS(2-)) have been determined (potentiometric pH titrations; 25 degrees C; I = 0.1 M, NaNO(3)). Comparison of these results for M(PS) complexes with those known for the parent M(PO) phosphate species, where PO(2-)=CH(3)OPO(2-)(3) or UMP(2-) (uridine 5'-monophosphate), shows that the alkaline earth metal ions, as well as Mn2+, Co2+, and Ni2+ have a higher affinity for phosphate groups than for their thio analogues. However, based on the linear log K(M)(M(R-PO3)) versus pK(H)(H(R-PO3)) relationships (R-PO(2-)(3) simple phosphate monoester or phosphonate ligands with a non-interacting residue R) it becomes clear that the indicated observation is only the result of the lower basicity of the thiophosphate residue. In contrast, the thio complexes of Zn2+ and Cd2+ are more stable than their parent phosphate ones, and this despite the lower basicity of the PS(2-) ligands. This stability increase is identical for M(MeOPS) and M(UMPS) species and amounts to about 0.6 and 2.4 log units for Zn(PS) and Cd(PS), respectively. Since no other binding site is available in MeOPS(2-), this enhanced stability has to be attributed to the S atom. Indeed, from the mentioned stability differences it follows that Cd2+ in Cd(PS) is coordinated by more than 99% to the thiophosphate S atom; the same value holds for Pb(PS), which was studied earlier. The formation degree of the Sbonded isomer amounts to 76+/-6 % for Zn(PS) and is close to zero for the corresponding Mg2+, Ca2+, and Mn2+ species. It is further shown that Zn(MeOPS)(aq)(2+) releases a proton from a coordinated water molecule with pK(a) approximately 6.9; i.e., this deprotonation occurs at a lower pH value than that for the same reaction in Zn(aq)(2+). Since Mg2+, Ca2+, Mn2+, and Cd2+ have a relatively low tendency for hydroxo complex formation, it was possible, for these M2+, to also quantify the stability of the binuclear complexes, M(2)(UMPS-H)+, where one M2+ is thiophosphate-coordinated and the other is coordinated at (N3)(-) of the uracil residue. The impact of the results presented herein regarding M2+/nucleic acid interactions, including those of ribozymes (rescue experiments), is briefly discussed.

  3. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    PubMed

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The role of cyclodextrins in ORAC-fluorescence assays. antioxidant capacity of tyrosol and caffeic acid with hydroxypropyl-β-cyclodextrin.

    PubMed

    García-Padial, Marcos; Martínez-Ohárriz, María Cristina; Navarro-Blasco, Iñigo; Zornoza, Arantza

    2013-12-18

    Tyrosol and caffeic acid are biophenols that contribute to the beneficial properties of virgin olive oil. The influence of hydroxypropyl-β-cyclodextrin (HPβ-CD) on their respective antioxidant capacities was analyzed. The ORAC antioxidant activity of tyrosol (expressed as μM Trolox equivalents/μM Tyrosol) was 0.83 ± 0.03 and it increased up to 1.20 ± 0.11 in the presence of 0.8 mM HPβ-CD. However, the ORAC antioxidant activity of caffeic acid experienced no change. The different effect of HPβ-CD on each compound was discussed. In addition, the effect of increasing concentrations of different cyclodextrins in the development of ORAC-fluorescence (ORAC-FL) assays was studied. The ORAC signal was higher for HPβ-CD, followed by Mβ-CD, β-CD, γ-CD and finally α-CD. These results could be explained by the formation of inclusion complexes with fluorescein.

  5. 4-1BB Costimulation Ameliorates T Cell Exhaustion Induced by Tonic Signaling of Chimeric Antigen Receptors

    PubMed Central

    Long, Adrienne H.; Haso, Waleed M.; Shern, Jack F.; Wanhainen, Kelsey M.; Murgai, Meera; Ingaramo, Maria; Smith, Jillian P.; Walker, Alec J.; Kohler, M. Eric; Venkateshwara, Vikas R.; Kaplan, Rosandra N.; Patterson, George H.; Fry, Terry J.; Orentas, Rimas J.; Mackall, Crystal L.

    2015-01-01

    Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic anti-tumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We discovered that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR scFvs, can induce early exhaustion of CAR T cells that limits anti-tumor efficacy. Such activation is present to varying degrees in all CARs studied, with the exception of the highly effective CD19 CAR. We further identify that CD28 costimulation augments, while 4-1BB costimulation ameliorates, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the dramatic anti-tumor effects of CD19 CARs and for the observations that CD19.BBz CAR T cells are more persistent than CD19.28z CAR T cells in clinical trials. PMID:25939063

  6. Molecular modeling and cytotoxicity of diffractaic acid: HP-β-CD inclusion complex encapsulated in microspheres.

    PubMed

    Silva, Camilla V N S; Barbosa, Jéssica A P; Ferraz, Milena S; Silva, Nicácio H; Honda, Neli K; Rabello, Marcelo M; Hernandes, Marcelo Z; Bezerra, Beatriz P; Cavalcanti, Isabella M F; Ayala, Alejandro P; Santos, Noemia P S; Santos-Magalhães, Nereide S

    2016-11-01

    In this pioneer study, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was used to improve the solubility of the diffractaic acid (DA) via inclusion complex (DA:HP-β-CD). Subsequently, DA:HP-β-CD was incorporated into poly-ε-caprolactone (PCL) microspheres (DA:HP-β-CD-MS). Microspheres containing DA (DA-MS) or DA:HP-β-CD (DA:HP-β-CD-MS) were prepared using the multiple W/O/W emulsion-solvent evaporation technique. The phase-solubility diagram of DA in HP-β-CD (10-50mM) showed an A L type curve with a stability constant K 1:1 =821M -1 . 1 H NMR, FTIR, X-ray diffraction and thermal analysis showed changes in the molecular environment of DA in DA:HP-β-CD. The molecular modeling approach suggests a guest-host complex formation between the carboxylic moiety of both DA and the host (HP-β-CD). The mean particle size of the microspheres were ∅ DA-MS =5.23±1.65μm and ∅ DA:HP-β-CD-MS =4.11±1.39μm, respectively. The zeta potential values of the microspheres were ζ DA-MS =-7.85±0.32mV and ζ DA:HP-β-CD-MS =-6.93±0.46mV. Moreover, the encapsulation of DA:HP-β-CD into microspheres resulted in a more slower release (k 2 =0.042±0.001; r 2 =0.996) when compared with DA-MS (k 2 =0.183±0.005; r 2 =0.996). The encapsulation of DA or DA:HP-β-CD into microspheres reduced the cytotoxicity of DA (IC 50 =43.29μM) against Vero cells (IC 50 of DA-MS=108.48μM and IC 50 of DA:HP-β-CD-MS=142.63μM). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    PubMed

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  8. CD19xCD3 DART protein mediates human B-cell depletion in vivo in humanized BLT mice

    PubMed Central

    Tsai, Perry; Thayer, William O; Liu, Liqin; Silvestri, Guido; Nordstrom, Jeffrey L; Garcia, J Victor

    2016-01-01

    Novel therapeutic strategies are needed for the treatment of hematologic malignancies; and bispecific antibody-derived molecules, such as dual-affinity re-targeting (DART) proteins, are being developed to redirect T cells to kill target cells expressing tumor or viral antigens. Here we present our findings of specific and systemic human B-cell depletion by a CD19xCD3 DART protein in humanized BLT mice. Administration of the CD19xCD3 DART protein resulted in a dramatic sustained depletion of human CD19+ B cells from the peripheral blood, as well as a dramatic systemic reduction of human CD19+ B-cell levels in all tissues (bone marrow, spleen, liver, lung) analyzed. When human CD8+ T cells were depleted from the mice, no significant B-cell depletion was observed in response to CD19xCD3 DART protein treatment, confirming that human CD8+ T cells are the primary effector cells in this in vivo model. These studies validate the use of BLT humanized mice for the in vivo evaluation and preclinical development of bispecific molecules that redirect human T cells to selectively deplete target cells. PMID:27119115

  9. In vitro and in vivo studies on the complexes of glipizide with water-soluble β-cyclodextrin-epichlorohydrin polymers.

    PubMed

    Nie, Shufang; Zhang, Shu; Pan, Weisan; Liu, Yanli

    2011-05-01

    The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble β-cyclodextrin-epichlorohydrin polymer (β-CDP), as an effective drug carrier to enhance the dissolution rate and oral bioavailability of glipizide as a poorly water-soluble model drug. Inclusion complexes of glipizide with β-CDP were prepared by the co-evaporation method and characterized by phase solubility, dissolution, and differential scanning calorimetry. The solubility curve was classified as type A(L), which indicated the formation of 1:1 complex between glipizide and β-CDP. β-CDP had better properties of increasing the aqueous solubility of glipizide compared with HP-β-CD. The dissolution rate of drug from the β-CDP complexes was significantly greater than that of the corresponding physical mixtures indicating that the formation of amorphous complex increased the solubility of glipizide. Moreover, the increment in drug dissolution rate from the glipizide/β-CDP systems was higher than that from the corresponding ones with HP-β-CD, which indicated that β-CDP could provide greater capability of solubilization for poorly soluble drugs. Furthermore, in vivo study revealed that the bioavailability of glipizide was significantly improved by glipizide /β-CDP inclusion complex after oral administration to beagle dogs.

  10. Down-regulation of CD19 expression inhibits proliferation, adhesion, migration and invasion and promotes apoptosis and the efficacy of chemotherapeutic agents and imatinib in SUP-B15 cells.

    PubMed

    Wu, Junqing; Liang, Bin; Qian, Yan; Tang, Liyuan; Xing, Chongyun; Zhuang, Qiang; Shen, Zhijian; Jiang, Songfu; Yu, Kang; Feng, Jianhua

    2018-05-29

    The survival rate of childhood acute lymphoblastic leukemia (ALL) has increased while that of Philadelphia-positive (Ph+) ALL remains low. CD19 is a B-cell specific molecule related to the survival and proliferation of normal B cells. However, there is little information available on the effects of CD19 on the biological behavior of Ph+ ALL cells. In this study, we explored a lentiviral vector-mediated short hairpin RNA (shRNA) expression vector to stably reduce CD19 expression in Ph+ ALL cell line SUP-B15 cells and investigated the effects of CD19 downregulation on cell proliferation, apoptosis, drug sensitivity, cell adhesion, cell migration and cell invasion in vitro. CD19 mRNA and protein expression levels were inhibited significantly by CD19 shRNA. Down-regulation of CD19 could inhibit cell proliferation, adhesion, migration and invasion, and increase cell apoptosis and the efficacy of chemotherapeutic agents and imatinib in SUP-B15 cells. Moreover, we found that down-regulation of CD19 expression inhibits cell proliferation and induces apoptosis in SUP-B15 cells in a p53-dependent manner. Taken together, our results suggest that lentiviral vector-mediated RNA interference of CD19 gene may be a promising strategy in the treatment of Ph+ ALL. This article is protected by copyright. All rights reserved.

  11. Nephrin Regulates Lamellipodia Formation by Assembling a Protein Complex That Includes Ship2, Filamin and Lamellipodin

    PubMed Central

    Venkatareddy, Madhusudan; Cook, Leslie; Abuarquob, Kamal; Verma, Rakesh; Garg, Puneet

    2011-01-01

    Actin dynamics has emerged at the forefront of podocyte biology. Slit diaphragm junctional adhesion protein Nephrin is necessary for development of the podocyte morphology and transduces phosphorylation-dependent signals that regulate cytoskeletal dynamics. The present study extends our understanding of Nephrin function by showing in cultured podocytes that Nephrin activation induced actin dynamics is necessary for lamellipodia formation. Upon activation Nephrin recruits and regulates a protein complex that includes Ship2 (SH2 domain containing 5′ inositol phosphatase), Filamin and Lamellipodin, proteins important in regulation of actin and focal adhesion dynamics, as well as lamellipodia formation. Using the previously described CD16-Nephrin clustering system, Nephrin ligation or activation resulted in phosphorylation of the actin crosslinking protein Filamin in a p21 activated kinase dependent manner. Nephrin activation in cell culture results in formation of lamellipodia, a process that requires specialized actin dynamics at the leading edge of the cell along with focal adhesion turnover. In the CD16-Nephrin clustering model, Nephrin ligation resulted in abnormal morphology of actin tails in human podocytes when Ship2, Filamin or Lamellipodin were individually knocked down. We also observed decreased lamellipodia formation and cell migration in these knock down cells. These data provide evidence that Nephrin not only initiates actin polymerization but also assembles a protein complex that is necessary to regulate the architecture of the generated actin filament network and focal adhesion dynamics. PMID:22194892

  12. Human SolCD39 Inhibits Injury-induced Development of Neointimal Hyperplasia

    PubMed Central

    Drosopoulos, Joan H. F.; Kraemer, Rosemary; Shen, Hao; Upmacis, Rita K.; Marcus, Aaron J.; Musi, Elgilda

    2010-01-01

    SUMMARY Blood platelets provide the initial response to vascular endothelial injury, becoming activated as they adhere to the injured site. Activated platelets recruit leukocytes, and initiate proliferation and migration of vascular smooth muscle cells (SMC) within the injured vessel wall, leading to development of neointimal hyperplasia. Endothelial CD39/NTPDase1 and recombinant solCD39 rapidly metabolize nucleotides, including stimulatory ADP released from activated platelets, thereby suppressing additional platelet reactivity. Using a murine model of vascular endothelial injury, we investigated whether circulating human solCD39 could reduce platelet activation and accumulation, thus abating leukocyte infiltration and neointimal formation following vascular damage. Intraperitoneally-administered solCD39 ADPase activity in plasma peaked 1 hr post-injection, with an elimination half-life of 43 hr. Accordingly, mice were administered solCD39 or saline 1 hr prior to vessel injury, then either sacrificed 24 hr post-injury or treated with solCD39 or saline (3X weekly) for an additional 18 days. 24 hr post-injury, solCD39-treated mice displayed a reduction in platelet activation and recruitment, P-selectin expression, and leukocyte accumulation in the arterial lumen. Furthermore, repeated administration of solCD39 modulated the late stage of vascular injury by suppressing leukocyte deposition, macrophage infiltration and SMC proliferation/migration, resulting in abrogation of neointimal thickening. In contrast, injured femoral arteries of saline-injected mice exhibited massive platelet thrombus formation, marked P-selectin expression, and leukocyte infiltration. Pronounced neointimal growth with macrophage and SMC accretion was also observed (intimal-to-medial area ratio 1.56±0.34 at 19 days). Thus, systemic administration of solCD39 profoundly affects injury-induced cellular responses, minimizing platelet deposition and leukocyte recruitment, and suppressing neointimal hyperplasia. PMID:20024507

  13. Supramolecular Control over the Interparticle Distance in Gold Nanoparticle Arrays by Cyclodextrin Polyrotaxanes

    PubMed Central

    Paulo Coelho, Joao; Osío Barcina, José; Aicart, Emilio; Tardajos, Gloria; Cruz-Gil, Pablo; Salgado, Cástor; Díaz-Núñez, Pablo

    2018-01-01

    Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays. PMID:29547539

  14. Functional electrospun polystyrene nanofibers incorporating α-, β-, and γ-cyclodextrins: comparison of molecular filter performance.

    PubMed

    Uyar, Tamer; Havelund, Rasmus; Hacaloglu, Jale; Besenbacher, Flemming; Kingshott, Peter

    2010-09-28

    Electrospinning has been used to successfully create polystyrene (PS) nanofibers containing either of three different types of cyclodextrin (CD); α-CD, β-CD, and γ-CD. These three CDs are chosen because they have different sized cavities that potentially allow for selective inclusion complex (IC) formation with molecules of different size or differences in affinity of IC formation with one type of molecule. The CD containing electrospun PS nanofibers (PS/CD) were initially characterized by scanning electron microscopy (SEM) to determine the uniformity of the fibers and their fiber diameter distributions. X-ray photoelectron spectroscopy (XPS) was used to quantitatively determine the concentration of each CD on the different fiber surfaces. Static time-of-flight secondary ion mass spectrometry (static-ToF-SIMS) showed the presence of each type of CD on the PS nanofibers by the detection of both the CD sodium adduct molecular ions (M + Na+) and lower molecular weight oxygen containing fragment ions. The comparative efficiency of the PS/CD nanofibers/nanoweb for removing phenolphthalein, a model organic compound, from solution was determined by UV-vis spectrometry, and the kinetics of phenolphthalein capture was shown to follow the trend PS/α-CD > PS/β-CD > PS/γ-CD. Direct pyrolysis mass spectrometry (DP-MS) was also performed to ascertain the relative binding strengths of the phenolphthalein for the CD cavities, and the results showed the trend in the interaction strength was β-CD > γ-CD > α-CD. Our results demonstrate that nanofibers produced by electrospinning that incorporate cyclodextrins with different sized cavities can indeed filter organic molecules and can potentially be used for filtration, purification, and/or separation processes.

  15. CD19+CD21low B cells and CD4+CD45RA+CD31+ T cells correlate with first diagnosis of chronic graft-versus-host disease.

    PubMed

    Greinix, Hildegard T; Kuzmina, Zoya; Weigl, Roman; Körmoczi, Ulrike; Rottal, Arno; Wolff, Daniel; Kralj, Mateja; Kalhs, Peter; Mitterbauer, Margit; Rabitsch, Werner; Edinger, Matthias; Holler, Ernst; Pickl, Winfried F

    2015-02-01

    Chronic graft-versus-host disease (cGVHD) is a serious and frequent complication of allogeneic hematopoietic stem cell transplantation (HCT). Currently, no biomarkers for prediction and diagnosis of cGVHD are available. We performed a large prospective study focusing on noninvasive biomarkers for National Institutes of Health-defined cGVHD patients (n = 163) in comparison to time-matched HCT recipients who never experienced cGVHD (n = 64), analyzed from day 100 after HCT. In logistic regression analysis, CD19(+)CD21(low) B cells (P = .002; hazard ratio [HR], 3.31; 95% confidence interval [CI], 1.53 to 7.17) and CD4(+)CD45RA(+)CD31(+) T cells (P < .001; HR, 3.88; 95% CI, 1.88 to 7.99) assessed on day 100 after HCT were significantly associated with subsequent development of cGVHD, independent of clinical parameters. A significant association with diagnosis of cGVHD was only observed for CD19(+)CD21(low) B cells (P = .008; HR, 3.00; 95% CI, 1.33 to 6.75) and CD4(+)CD45RA(+)CD31(+) T cells (P = .017; HR, 2.80; 95% CI, 1.19 to 6.55). CD19(+)CD21(low) B cells were found to have the highest discriminatory value with an area under the receiver operating curve of .77 (95% CI, .64 to .90). Our results demonstrate that CD19(+)CD21(low) B cells and CD4(+)CD45RA(+)CD31(+) T cells are significantly elevated in patients with newly diagnosed cGVHD. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  16. Drug-in-cyclodextrin-in-liposomes: A novel drug delivery system for flurbiprofen.

    PubMed

    Zhang, Lina; Zhang, Qi; Wang, Xin; Zhang, Wenji; Lin, Congcong; Chen, Fen; Yang, Xinggang; Pan, Weisan

    2015-08-15

    A novel delivery system based on drug-cyclodextrin (CD) complexation and liposomes has been developed to improve therapeutic effect. Three different means, i.e., co-evaporation (COE), co-ground (GR) and co-lyophilization (COL) and three different CDs (β-CD, HP-β-CD and SBE-β-CD) were contrasted to investigate the characteristics of the end products. FP/FP-CD loaded liposomes were obtained by thin layer evaporation technique. Size, zeta potential and encapsulation efficiency were investigated by light scattering analysis and minicolumn centrifugation. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) showed the amorphous form of complexes and spherical morphology of FP-HP-β-CD COE loaded liposomes. The pH 7.4 phosphate buffer solution (PBS) was selected as the medium for the in vitro release. Wistar rats were put into use to study the pharmacokinetic behavior in vivo. FP-HP-β-CD COE loaded liposomes showed the better physicochemical characters that followed the average particle size, polydispersity index, zeta potential and mean encapsulation efficiency 158±10 nm, 0.19±0.1, -12.4±0.1 mW and 56.1±0.5%, separately. The relative bioavailability of FP-HP-β-CD COE loaded liposomes was 420%, 201% and 402% compared with FP solution, FP-HP-β-CD and FP-liposomes, respectively. In conclusion, the novel delivery system improved the relative bioavailability of FP significantly and provided a perspective way for delivery of insoluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.

    PubMed

    Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana

    2016-12-01

    β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.

  18. Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study.

    PubMed

    Melchior, Andrea; Peralta, Elena; Valiente, Manuel; Tavagnacco, Claudio; Endrizzi, Francesco; Tolazzi, Marilena

    2013-05-07

    Thermodynamic parameters of complex formation between d(10) metal ions, such as Zn(2+), Cd(2+), Hg(2+) and Ag(+), and the macrocyclic thioether 1,4,7-trithiacyclononane ([9]AneS3) or the monodentate diethylsulfide (Et(2)S), in acetonitrile (AN) at 298.15 K, were studied by a systematic methodology including potentiometry, calorimetry and polarography. [9]AneS3 is able to form complexes with all the target cations, Et(2)S only reacts with Hg(2+) and Ag(+). Mononuclear ML(j) (j = 1, 2) complexes are formed with all the metal ions investigated, where the affinity order is Hg(2+) > Ag(+) > Cd(2+) ≈ Zn(2+) when L = [9]AneS3 and Hg(2+) > Ag(+) when L = Et(2)S. Enthalpy and entropy values are generally negative, as a consequence of both metal ion interactions with neutral ligands, the reagents' loss of degrees of freedom and the release of solvating molecules. DFT calculations on the complexes formed with [9]AneS3 in vacuum and in AN are also carried out, to correlate experimental and theoretical thermodynamic values and to highlight the interplay between the direct metal-thioether interaction and the solvation effects. Trends obtained for the stability constants and enthalpies of the 1 : 1 and 1 : 2 complexes in solvent well reproduce the experimental ones for all the divalent metal ion complexes with [9]AneS3 and indicate the release of 3 AN molecules in the formation of each consecutive octahedral complex. In addition, calculated and experimental values for Ag(+) complex formation in solution suggest that in AgL(2) species [9]AneS3 ligands are not both tridentate.

  19. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells

    PubMed Central

    Dudley, Mark E.; Feldman, Steven A.; Wilson, Wyndham H.; Spaner, David E.; Maric, Irina; Stetler-Stevenson, Maryalice; Phan, Giao Q.; Hughes, Marybeth S.; Sherry, Richard M.; Yang, James C.; Kammula, Udai S.; Devillier, Laura; Carpenter, Robert; Nathan, Debbie-Ann N.; Morgan, Richard A.; Laurencot, Carolyn; Rosenberg, Steven A.

    2012-01-01

    We conducted a clinical trial to assess adoptive transfer of T cells genetically modified to express an anti-CD19 chimeric Ag receptor (CAR). Our clinical protocol consisted of chemotherapy followed by an infusion of anti–CD19-CAR–transduced T cells and a course of IL-2. Six of the 8 patients treated on our protocol obtained remissions of their advanced, progressive B-cell malignancies. Four of the 8 patients treated on the protocol had long-term depletion of normal polyclonal CD19+ B-lineage cells. Cells containing the anti-CD19 CAR gene were detected in the blood of all patients. Four of the 8 treated patients had prominent elevations in serum levels of the inflammatory cytokines IFNγ and TNF. The severity of acute toxicities experienced by the patients correlated with serum IFNγ and TNF levels. The infused anti–CD19-CAR–transduced T cells were a possible source of these inflammatory cytokines because we demonstrated peripheral blood T cells that produced TNF and IFNγ ex vivo in a CD19-specific manner after anti–CD19-CAR–transduced T-cell infusions. Anti–CD19-CAR–transduced T cells have great promise to improve the treatment of B-cell malignancies because of a potent ability to eradicate CD19+ cells in vivo; however, reversible cytokine-associated toxicities occurred after CAR–transduced T-cell infusions. This trial was registered with ClinicalTrials.gov as NCT00924326. PMID:22160384

  20. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    PubMed

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  1. Interaction of chelating agents with cadmium in mice and rats.

    PubMed Central

    Eybl, V; Sýkora, J; Koutenský, J; Caisová, D; Schwartz, A; Mertl, F

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl2 and on the whole body retention and tissue distribution of cadmium after the IV application of 115mCdCl2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatment of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination of the retention and distribution of Cd in mice, it was demonstrated that the combined application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of 115mCd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes. PMID:6734561

  2. Complexation induced aggregation and deaggregation of acridine orange with sulfobutylether-β-cyclodextrin.

    PubMed

    Sayed, Mhejabeen; Jha, Shruti; Pal, Haridas

    2017-09-13

    The present study reports a contrasting interaction behaviour of a biologically important dye, acridine orange (AOH + ), with a highly water soluble anionic host, based on a β-cyclodextrin (βCD) scaffold, i.e. sulfobutylether-β-cyclodextrin (SBEβCD), in comparison to native βCD. AOH + shows striking modulation in its photophysical properties, representing sequential changes in the modes of interaction with increasing SBEβCD concentration. At lower SBEβCD concentrations, AOH + preferentially binds in dimeric forms at the negatively charged SBEβCD portals, leading to strong fluorescence quenching. At higher SBEβCD concentrations, the dimeric dyes convert to monomeric forms and subsequently undergo both inclusion and exo complex formation with 1 : 1 stoichiometry, resulting in a large fluorescence enhancement. The intriguing observation of sequential fluorescence switch off and switch on for an AOH + -SBEβCD system is clearly facilitated by the presence of butylether chains with SO 3 - end groups at the portals of SBEβCD, providing an additional ion-ion interaction and much enhanced hydrophobic interaction for cationic AOH + compared to the native βCD host. To the best of our knowledge, such fluorescence off/on switching through multistep host-guest binding has not been reported so far in the literature. The present study not only provides a detailed insight into the unique binding interactions of AOH + with the SBEβCD host, but the findings of this study are also expected to be useful in designing supramolecular based drug formulations, drug delivery systems, sensors, and so on.

  3. Formation of HDL-like complexes from apolipoprotein A-I(M) and DMPC.

    PubMed

    Suurkuusk, M; Singh, S K

    2000-01-20

    Conditions for the preparation of reconstituted high density lipoproteins (HDLs) by incubation of the synthetic lipid dimyristoylphosphatidylcholine (DMPC) and recombinant apolipoprotein A-I(M) have been investigated as a function of ratio of incubation lipid to protein, incubation temperature and the lipid form (multilamellar (MLV) or small unilamellar (SUV) vesicles). The size distributions of the resultant lipid-protein complex particles from various incubations have been evaluated by native gel electrophoresis. Structural changes of the protein after incorporation into these complex particles have been estimated by CD. Thermal characteristics of the particles has been examined by DSC and correlated with CD results. Titration calorimetry has been used to obtain interaction parameters based on a simplified binding model. It is hypothesized that the major enthalpic step in the production of rHDLs is the primary association step between protein and lipid vesicles. It has been shown that by raising the temperature and incubation ratio, the formation of rHDL particles can be directed towards smaller size and a narrower size distribution. The results have been described on the basis of a model where formation of discoidal particles requires prior saturation of vesicle surface area by adsorbed protein, thus explaining differences between particles formed from MLVs and SUVs.

  4. CD19/CD22 Chimeric Antigen Receptor T Cells and Chemotherapy in Treating Children or Young Adults With Recurrent or Refractory CD19 Positive B Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-11-20

    B Acute Lymphoblastic Leukemia; CD19 Positive; Minimal Residual Disease; Philadelphia Chromosome Positive; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Acute Lymphoblastic Leukemia

  5. Clinicopathologic features of myositis patients with CD8-MHC-1 complex pathology.

    PubMed

    Ikenaga, Chiseko; Kubota, Akatsuki; Kadoya, Masato; Taira, Kenichiro; Uchio, Naohiro; Hida, Ayumi; Maeda, Meiko Hashimoto; Nagashima, Yu; Ishiura, Hiroyuki; Kaida, Kenichi; Goto, Jun; Tsuji, Shoji; Shimizu, Jun

    2017-09-05

    To determine the clinical features of myositis patients with the histopathologic finding of CD8-positive T cells invading non-necrotic muscle fibers expressing major histocompatibility complex class 1 (CD8-MHC-1 complex), which is shared by polymyositis (PM) and inclusion body myositis (IBM), in relation to the p62 immunostaining pattern of muscle fibers. All 93 myositis patients with CD8-MHC-1 complex who were referred to our hospital from 1993 to 2015 were classified on the basis of the European Neuromuscular Center (ENMC) diagnostic criteria for IBM (Rose, 2013) or PM (Hoogendijk, 2004) and analyzed. The 93 patients included were 17 patients with PM, 70 patients with IBM, and 6 patients who neither met the criteria for PM nor IBM in terms of muscle weakness distribution (unclassifiable group). For these PM, IBM, and unclassifiable patients, their mean ages at diagnosis were 63, 70, and 64 years; autoimmune disease was present in 7 (41%), 13 (19%), and 4 (67%); hepatitis C virus infection was detected in 0%, 13 (20%), and 2 (33%); and p62 was immunopositive in 0%, 66 (94%), and 2 (33%), respectively. Of the treated patients, 11 of 16 PM patients and 4 of 6 p62-immunonegative patients in the unclassifiable group showed responses to immunotherapy, whereas all 44 patients with IBM and 2 p62-immunopositive patients in the unclassifiable group were unresponsive to immunotherapy. CD8-MHC-1 complex is present in patients with PM, IBM, or unclassifiable group. The data may serve as an argument for a trial of immunosuppressive treatment in p62-immunonegative patients with unclassifiable myositis. © 2017 American Academy of Neurology.

  6. Significant CD4, CD8, and CD19 lymphopenia in peripheral blood of sarcoidosis patients correlates with severe disease manifestations.

    PubMed

    Sweiss, Nadera J; Salloum, Rafah; Gandhi, Seema; Ghandi, Seema; Alegre, Maria-Luisa; Sawaqed, Ray; Badaracco, Maria; Pursell, Kenneth; Pitrak, David; Baughman, Robert P; Moller, David R; Garcia, Joe G N; Niewold, Timothy B

    2010-02-05

    Sarcoidosis is a poorly understood chronic inflammatory condition. Infiltration of affected organs by lymphocytes is characteristic of sarcoidosis, however previous reports suggest that circulating lymphocyte counts are low in some patients with the disease. The goal of this study was to evaluate lymphocyte subsets in peripheral blood in a cohort of sarcoidosis patients to determine the prevalence, severity, and clinical features associated with lymphopenia in major lymphocyte subsets. Lymphocyte subsets in 28 sarcoid patients were analyzed using flow cytometry to determine the percentage of CD4, CD8, and CD19 positive cells. Greater than 50% of patients had abnormally low CD4, CD8, or CD19 counts (p<4x10(-10)). Lymphopenia was profound in some cases, and five of the patients had absolute CD4 counts below 200. CD4, CD8, and CD19 lymphocyte subset counts were significantly correlated (Spearman's rho 0.57, p = 0.0017), and 10 patients had low counts in all three subsets. Patients with severe organ system involvement including neurologic, cardiac, ocular, and advanced pulmonary disease had lower lymphocyte subset counts as a group than those patients with less severe manifestations (CD4 p = 0.0043, CD8 p = 0.026, CD19 p = 0.033). No significant relationships were observed between various medical therapies and lymphocyte counts, and lymphopenia was present in patients who were not receiving any medical therapy. Significant lymphopenia involving CD4, CD8, and CD19 positive cells was common in sarcoidosis patients and correlated with disease severity. Our findings suggest that lymphopenia relates more to disease pathology than medical treatment.

  7. Significant CD4, CD8, and CD19 Lymphopenia in Peripheral Blood of Sarcoidosis Patients Correlates with Severe Disease Manifestations

    PubMed Central

    Sweiss, Nadera J.; Salloum, Rafah; Ghandi, Seema; Alegre, Maria-Luisa; Sawaqed, Ray; Badaracco, Maria; Pursell, Kenneth; Pitrak, David; Baughman, Robert P.; Moller, David R.; Garcia, Joe G. N.; Niewold, Timothy B.

    2010-01-01

    Background Sarcoidosis is a poorly understood chronic inflammatory condition. Infiltration of affected organs by lymphocytes is characteristic of sarcoidosis, however previous reports suggest that circulating lymphocyte counts are low in some patients with the disease. The goal of this study was to evaluate lymphocyte subsets in peripheral blood in a cohort of sarcoidosis patients to determine the prevalence, severity, and clinical features associated with lymphopenia in major lymphocyte subsets. Methodology/Principal Findings Lymphocyte subsets in 28 sarcoid patients were analyzed using flow cytometry to determine the percentage of CD4, CD8, and CD19 positive cells. Greater than 50% of patients had abnormally low CD4, CD8, or CD19 counts (p<4×10−10). Lymphopenia was profound in some cases, and five of the patients had absolute CD4 counts below 200. CD4, CD8, and CD19 lymphocyte subset counts were significantly correlated (Spearman's rho 0.57, p = 0.0017), and 10 patients had low counts in all three subsets. Patients with severe organ system involvement including neurologic, cardiac, ocular, and advanced pulmonary disease had lower lymphocyte subset counts as a group than those patients with less severe manifestations (CD4 p = 0.0043, CD8 p = 0.026, CD19 p = 0.033). No significant relationships were observed between various medical therapies and lymphocyte counts, and lymphopenia was present in patients who were not receiving any medical therapy. Conclusions/Significance Significant lymphopenia involving CD4, CD8, and CD19 positive cells was common in sarcoidosis patients and correlated with disease severity. Our findings suggest that lymphopenia relates more to disease pathology than medical treatment. PMID:20140091

  8. Multiple domains of fission yeast Cdc19p (MCM2) are required for its association with the core MCM complex.

    PubMed

    Sherman, D A; Pasion, S G; Forsburg, S L

    1998-07-01

    The members of the MCM protein family are essential eukaryotic DNA replication factors that form a six-member protein complex. In this study, we use antibodies to four MCM proteins to investigate the structure of and requirements for the formation of fission yeast MCM complexes in vivo, with particular regard to Cdc19p (MCM2). Gel filtration analysis shows that the MCM protein complexes are unstable and can be broken down to subcomplexes. Using coimmunoprecipitation, we find that Mis5p (MCM6) and Cdc21p (MCM4) are tightly associated with one another in a core complex with which Cdc19p loosely associates. Assembly of Cdc19p with the core depends upon Cdc21p. Interestingly, there is no obvious change in Cdc19p-containing MCM complexes through the cell cycle. Using a panel of Cdc19p mutants, we find that multiple domains of Cdc19p are required for MCM binding. These studies indicate that MCM complexes in fission yeast have distinct substructures, which may be relevant for function.

  9. Multiple Domains of Fission Yeast Cdc19p (MCM2) Are Required for Its Association with the Core MCM Complex

    PubMed Central

    Sherman, Daniel A.; Pasion, Sally G.; Forsburg, Susan L.

    1998-01-01

    The members of the MCM protein family are essential eukaryotic DNA replication factors that form a six-member protein complex. In this study, we use antibodies to four MCM proteins to investigate the structure of and requirements for the formation of fission yeast MCM complexes in vivo, with particular regard to Cdc19p (MCM2). Gel filtration analysis shows that the MCM protein complexes are unstable and can be broken down to subcomplexes. Using coimmunoprecipitation, we find that Mis5p (MCM6) and Cdc21p (MCM4) are tightly associated with one another in a core complex with which Cdc19p loosely associates. Assembly of Cdc19p with the core depends upon Cdc21p. Interestingly, there is no obvious change in Cdc19p-containing MCM complexes through the cell cycle. Using a panel of Cdc19p mutants, we find that multiple domains of Cdc19p are required for MCM binding. These studies indicate that MCM complexes in fission yeast have distinct substructures, which may be relevant for function. PMID:9658174

  10. Granzyme B mediated function of Parvovirus B19-specific CD4+ T cells

    PubMed Central

    Kumar, Arun; Perdomo, Maria F; Kantele, Anu; Hedman, Lea; Hedman, Klaus; Franssila, Rauli

    2015-01-01

    A novel conception of CD4+ T cells with cytolytic potential (CD4+ CTL) is emerging. These cells appear to have a part in controlling malignancies and chronic infections. Human parvovirus B19 can cause a persistent infection, yet no data exist on the presence of B19-specific CD4+ CTLs. Such cells could have a role in the pathogenesis of some autoimmune disorders reported to be associated with B19. We explored the cytolytic potential of human parvovirus B19-specific T cells by stimulating peripheral blood mononuclear cell (PBMC) with recombinant B19-VP2 virus-like particles. The cytolytic potential was determined by enzyme immunoassay-based quantitation of granzyme B (GrB) and perforin from the tissue culture supernatants, by intracellular cytokine staining (ICS) and by detecting direct cytotoxicity. GrB and perforin responses with the B19 antigen were readily detectable in B19-seropositive individuals. T-cell depletion, HLA blocking and ICS experiments showed GrB and perforin to be secreted by CD4+ T cells. CD4+ T cells with strong GrB responses were found to exhibit direct cytotoxicity. As anticipated, ICS of B19-specific CD4+ T cells showed expected co-expression of GrB, perforin and interferon gamma (IFN-γ). Unexpectedly, also a strong co-expression of GrB and interleukin 17 (IL-17) was detected. These cells expressed natural killer (NK) cell surface marker CD56, together with the CD4 surface marker. To our knowledge, this is the first report on virus-specific CD4+ CTLs co-expressing CD56 antigen. Our results suggest a role for CD4+ CTL in B19 immunity. Such cells could function within both immune regulation and triggering of autoimmune phenomena such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. PMID:26246896

  11. Effect of hydroxypropyl-beta-cyclodextrin on the degradation of pentachlorophenol by potassium monopersulfate catalyzed with iron(III)-porphyrin complex.

    PubMed

    Fukushima, Masami; Tatsumi, Kenji

    2005-12-01

    A novel biomimetic catalytic system containing a supramolecular complex between iron(III)-tetrakis(p-sulfonatophenyl)porphyrin [Fe(III)-TPPS] and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was examined for the potassium monopersulfate catalyzed oxidation of pentachlorophenol (PCP). In the absence of HP-beta-CD, the percentage of PCP disappearance and the numbers of chlorine atoms released from PCP increased to 50% and 1.5 for a 1-day reaction period, respectively. However, in the presence of HP-beta-CD, the PCP completely disappeared and the number of chlorine atoms from PCP was increased to 3.1. o-Tetrachloroquinone, 2- and 4-hydroxyl-nonachlorodiphenyl ethers, and octachlorodibenzo-p-dioxin were detected among the oxidation products. In the absence of HP-beta-CD, the percentage of PCP conversion to oxidation products increased and then reached plateau. In the presence of HP-beta-CD, the amount of oxidation products produced initially increased for the first 10 min and thereafter decreased gradually. These results suggest that the addition of HP-beta-CD results in the further degradation of oxidation products. In addition, the mineralization of PCP to CO2 was investigated using 14C6-labeled PCP. After a 1-day reaction period, 24% of the 14C6-labeled PCP was converted to 14CO2 in the presence of HP-beta-CD, although significant 14CO2 generation was not observed in its absence. The effect of HP-beta-CD on the facilitation of PCP degradation can be attributed to the fact that the self-oxidation of Fe(III)-TPPS is prevented by the formation of a stable supramolecular complex between HP-beta-CD and Fe(III)-TPPS.

  12. SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase.

    PubMed

    Banerjee, Moumita; Duan, Qiming; Xie, Zijian

    2015-01-01

    Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.

  13. Construction of 6-thioguanine and 6-mercaptopurine carriers based on βcyclodextrins and gold nanoparticles.

    PubMed

    Sierpe, R; Noyong, Michael; Simon, Ulrich; Aguayo, D; Huerta, J; Kogan, Marcelo J; Yutronic, N

    2017-12-01

    As a novel strategy to overcome some of the therapeutic disadvantages of 6-thioguanine (TG) and 6-mercaptopurine (MP), we propose the inclusion of these drugs in βcyclodextrin (βCD) to form the complexes βCD-TG and βCD-MP, followed by subsequent interaction with gold nanoparticles (AuNPs), generating the ternary systems: βCD-TG-AuNPs and βCD-MP-AuNPs. This modification increased their solubility and improved their stability, betting by a site-specific transport due to their nanometric dimensions, among other advantages. The formation of the complexes was confirmed using powder X-ray diffraction, thermogravimetric analysis and one and two-dimensional NMR. A theoretical study using DFT and molecular modelling was conducted to obtain the more stable tautomeric species of TG and MP in solution and confirm the proposed inclusion geometries. The deposition of AuNPs onto βCD-TG and βCD-MP via sputtering was confirmed by UV-vis spectroscopy. Subsequently, the ternary systems were characterized by TEM, FE-SEM and EDX to directly observe the deposited AuNPs and evaluate their sizes, size dispersion, and composition. Finally, the in vitro permeability of the ternary systems was studied using parallel artificial membrane permeability assay (PAMPA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An Fc-engineered CD19 antibody eradicates MRD in patient-derived MLL-rearranged acute lymphoblastic leukemia xenografts.

    PubMed

    Schewe, Denis M; Alsadeq, Ameera; Sattler, Cornelia; Lenk, Lennart; Vogiatzi, Fotini; Cario, Gunnar; Vieth, Simon; Valerius, Thomas; Rosskopf, Sophia; Meyersieck, Fabian; Alten, Julia; Schrappe, Martin; Gramatzki, Martin; Peipp, Matthias; Kellner, Christian

    2017-09-28

    Antibody therapy constitutes a major advance in the treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). To evaluate the efficacy and the mechanisms of action of CD19 monoclonal antibody therapy in pediatric BCP-ALL, we tested an Fc-engineered CD19 antibody carrying the S239D/I332E mutation for improved effector cell recruitment (CD19-DE). Patient-derived xenografts (PDX) of pediatric mixed-lineage leukemia gene ( MLL )-rearranged ALL were established in NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ (NSG) mice. Antibody CD19-DE was efficient in prolonging the survival of NSG mice in a minimal residual disease (MRD) model. The majority of surviving mice remained polymerase chain reaction (PCR)-MRD negative after treatment. When antibody therapy was initiated in overt leukemia, antibody CD19-DE was still efficient in prolonging survival of xenografted mice in comparison with nontreated control animals, but the effects were less pronounced than in the MRD setting. Importantly, the combination of antibody CD19-DE and cytoreduction by chemotherapy (dexamethasone, vincristine, PEG-asparaginase) resulted in significantly improved survival rates in xenografted mice. Antibody CD19-DE treatment was also efficient in a randomized phase 2-like PDX trial using 13 MLL -rearranged BCP-ALL samples. Macrophage depletion by liposomal clodronate resulted in a reversal of the beneficial effects of CD19-DE, suggesting an important role for macrophages as effector cells. In support of this finding, CD19-DE was found to enhance phagocytosis of patient-derived ALL blasts by human macrophages in vitro. Thus, Fc-engineered CD19 antibodies may represent a promising treatment option for infants and children with MLL -rearranged BCP-ALL who have a poor outcome when treated with chemotherapy only. © 2017 by The American Society of Hematology.

  15. Ordering human CD34+CD10−CD19+ pre/pro-B-cell and CD19− common lymphoid progenitor stages in two pro-B-cell development pathways

    PubMed Central

    Sanz, Eva; Muñoz-A., Norman; Monserrat, Jorge; Van-Den-Rym, Ana; Escoll, Pedro; Ranz, Ismael; Álvarez-Mon, Melchor; de-la-Hera, Antonio

    2010-01-01

    Studies here respond to two long-standing questions: Are human “pre/pro-B” CD34+CD10−CD19+ and “common lymphoid progenitor (CLP)/early-B” CD34+CD10+CD19− alternate precursors to “pro-B” CD34+CD19+CD10+ cells, and do the pro-B cells that arise from these progenitors belong to the same or distinct B-cell development pathways? Using flow cytometry, gene expression profiling, and Ig VH-D-JH sequencing, we monitor the initial 10 generations of development of sorted cord blood CD34highLineage− pluripotential progenitors growing in bone marrow S17 stroma cocultures. We show that (i) multipotent progenitors (CD34+CD45RA+CD10−CD19−) directly generate an initial wave of Pax5+TdT− “unilineage” pre/pro-B cells and a later wave of “multilineage” CLP/early-B cells and (ii) the cells generated in these successive stages act as precursors for distinct pro-B cells through two independent layered pathways. Studies by others have tracked the origin of B-lineage leukemias in elderly mice to the mouse B-1a pre/pro-B lineage, which lacks the TdT activity that diversifies the VH-D-JH Ig heavy chain joints found in the early-B or B-2 lineage. Here, we show a similar divergence in human B-cell development pathways between the Pax5+TdT− pre/pro-B differentiation pathway that gives rise to infant B-lineage leukemias and the early-B pathway. PMID:20231472

  16. Metal Complexation in Xylem Fluid 1

    PubMed Central

    White, Michael C.; Chaney, Rufus L.; Decker, A. Morris

    1981-01-01

    The capacity of ligands in xylem fluid to form metal complexes was tested with a series of in vitro experiments using paper electrophoresis and radiographs. The xylem fluid was collected hourly for 8 hours from soybean (Glycine max L. Merr.) and tomato (Lycopersicon esculentum Mill.) plants grown in normal and Zn-phytotoxic nutrient solutions. Metal complexation was assayed by anodic or reduced cathodic movement of radionuclides (63Ni, 65Zn, 109Cd, 54Mn) that were presumed to have formed negatively charged complexes. Electrophoretic migration of Ni, Zn, Cd, and Mn added to xylem exudate and spotted on KCl- or KNO3-wetted paper showed that stable Ni, Zn, and Cd metal complexes were formed by exudate ligands. No anodic Mn complexes were observed in this test system. Solution pH, plant species, exudate collection time, and Zn phytotoxicity all affected the amount of metal complex formed in exudate. As the pH increased, there was increased anodic metal movement. Soybean exudate generally bound more of each metal than did tomato exudate. Metal binding usually decreased with increasing exudate collection time, and less metal was bound by the high-Zn exudate. Ni, Zn, Cd, and Mn in exudate added to exudate-wetted paper demonstrated the effect of ligand concentration on stable metal complex formation. Complexes for each metal were demonstratable with this method. Cathodic metal movement increased with time of exudate collection, and it was greater in the high-Zn exudate than in the normal-Zn exudate. A model study illustrated the effect of ligand concentration on metal complex stability in the electrophoretic field. Higher ligand (citric acid) concentrations increased the stability for all metals tested. Images PMID:16661666

  17. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model.

    PubMed

    Nomura, Takushi; Yamamoto, Hiroyuki; Takahashi, Naofumi; Naruse, Taeko K; Kimura, Akinori; Matano, Tetsuro

    2014-07-25

    Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Chimeric Antigen Receptor (CAR)-Specific Monoclonal Antibody to Detect CD19-Specific T Cells in Clinical Trials

    PubMed Central

    Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.

    2013-01-01

    Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy. PMID:23469246

  19. A novel antibody-drug conjugate anti-CD19(Fab)-LDM in the treatment of B-cell non-Hodgkin lymphoma xenografts with enhanced anticancer activity.

    PubMed

    Jiang, Linlin; Yang, Ming; Zhang, Xiaoyun; Bao, Shiqi; Ma, Li; Fan, Dongmei; Zhou, Yuan; Xiong, Dongsheng; Zhen, Yongsu

    2016-01-01

    Rituximab is widely used in clinical setting for the treatment of B malignant lymphoma and has achieved remarkable success. However, in most patients, the disease ultimately relapses and become resistant to rituximab. To overcome the limitation, there is still a need to find novel strategy for improving therapeutic efficacy. To construct genetically engineered antibody anti-CD19(Fab)-LDM, and verify the anticancer activity targeted toward B-lymphoma. The anticancer activity of anti-CD19(Fab)-LDM in vitro and in vivo was examined. In vitro, the binding activity and internalization of anti-CD19(Fab)-LDP were measured. Using comet assay and apoptosis, the cytotoxicity of energized fusion proteins was observed. From in vivo experiments, targeting of therapeutic effect and anticancer efficacy bythe fusion protein was verified. Data showed that anti-CD19(Fab)-LDM does not only binding the cell surface but is also internalized into the cell. The energized fusion proteins anti-CD19(Fab)-LDM can induce DNA damage. Furthermore, significant in vivo therapeutic efficacy was observed. The present study demonstrated that the genetically engineered antibody anti-CD19(Fab)-LDM exhibited enhanced cytotoxicity compared to LDM alone. One of the most powerful advantages of anti-CD19(Fab)-LDM, however, is that it can be internalized within the cells and carry out cytotoxic effects. Therefore, anti-CD19(Fab)-LDM may be as a useful targeted therapy for B-cell lymphoma.

  20. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study.

    PubMed

    Cruz, Conrad Russell Y; Micklethwaite, Kenneth P; Savoldo, Barbara; Ramos, Carlos A; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A John; Ito, Sawa; Shpall, Elizabeth J; Krance, Robert A; Kamble, Rammurti T; Carrum, George; Hosing, Chitra M; Gee, Adrian P; Mei, Zhuyong; Grilley, Bambi J; Heslop, Helen E; Rooney, Cliona M; Brenner, Malcolm K; Bollard, Catherine M; Dotti, Gianpietro

    2013-10-24

    Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control.

  1. Complexation of adamantyl compounds by beta-cyclodextrin and monoaminoderivatives.

    PubMed

    Carrazana, Jorge; Jover, Aida; Meijide, Francisco; Soto, Victor H; Vazquez Tato, José

    2005-05-19

    Since the beta-cyclodextrin cavity is not a smooth cone but has constrictions in the neighborhoods of the H3 and H5 atoms, the hypothesis that bulky hydrophobic guests can form two isomeric inclusion complexes (one of them, c(p), is formed by the entrance of the guest by the primary side of the cavity, and the other one, c(s), results from the entrance by the secondary side) is checked. Thus, the inclusion processes of two 1-substituted adamantyl derivatives (rimantidine and adamantylmethanol) with beta-cyclodextrin and its two monoamino derivatives at positions 6 (6-NH2beta-CD) and 3 (3-NH2beta-CD) were studied. From rotating-frame Overhauser enhancement spectroscopy experiments, it was deduced that both guests form c(s) complexes with beta-CD and 6-NH2beta-CD but c(p) complexes with 3-NH2beta-CD. In all cases, the hydrophilic group attached to the adamantyl residue protrudes toward the bulk solvent outside the cyclodextrin cavity. The thermodynamic parameters (free energy, equilibrium constant, enthalpy, and entropy) associated with the inclusion phenomena were measured by isothermal titration calorimetry experiments. From these results, the difference in the free energy for the formation of the two complexes, c(s) and c(p), for the same host/guest system has been estimated as being 11.5 +/- 0.8 kJ mol(-1). This large difference explains why under normal experimental conditions only one of the two complexes (c(s)) is detected. It is also concluded that a hyperboloid of revolution can be a better schematic picture to represent the actual geometry of the cyclodextrin cavities than the usual smooth cone or trapezium.

  2. Distinct Biomarker Profiles in Ex Vivo T Cell Depletion Graft Manipulation Strategies: CD34+ Selection versus CD3+/19+ Depletion in Matched Sibling Allogeneic Peripheral Blood Stem Cell Transplantation.

    PubMed

    Cantilena, Caroline R; Ito, Sawa; Tian, Xin; Jain, Prachi; Chinian, Fariba; Anandi, Prathima; Keyvanfar, Keyvan; Draper, Debbie; Koklanaris, Eleftheria; Hauffe, Sara; Superata, Jeanine; Stroncek, David; Muranski, Pawel; Barrett, A John; Battiwalla, Minoo

    2018-03-01

    Various approaches have been developed for ex vivo T cell depletion in allogeneic stem cell transplantation to prevent graft-versus-host disease (GVHD). Direct comparisons of T cell depletion strategies have not been well studied, however. We evaluated cellular and plasma biomarkers in 2 different graft manipulation strategies, CD3 + CD19 + cell depletion (CD3/19D) versus CD34 + selection (CD34S), and their associations with clinical outcomes. Identical conditions, including the myeloablative preparative regimen, HLA-identical sibling donor, GVHD prophylaxis, and graft source, were used in the 2 cohorts. Major clinical outcomes were similar in the 2 groups in terms of overall survival, nonrelapse mortality, and cumulative incidence of relapse; however, the cumulative incidence of acute GVHD trended to be higher in the CD3/19D cohort compared with the CD34S cohort. A distinct biomarker profile was noted in the CD3/19D cohort: higher levels of ST2, impaired Helios - FoxP3 + Treg reconstitution, and rapid reconstitution of naïve, Th2, and Th17 CD4 cells in the early post-transplantation period. In vitro graft replication studies confirmed that CD3/19D disproportionately depleted Tregs and other CD4 subset repertoires in the graft. This study confirms the utility of biomarker monitoring, which can be directly correlated with biological consequences and possible future therapeutic indications. Published by Elsevier Inc.

  3. Optimization of individualized graft composition: CD3/CD19 depletion combined with CD34 selection for haploidentical transplantation.

    PubMed

    Huenecke, Sabine; Bremm, Melanie; Cappel, Claudia; Esser, Ruth; Quaiser, Andrea; Bonig, Halvard; Jarisch, Andrea; Soerensen, Jan; Klingebiel, Thomas; Bader, Peter; Koehl, Ulrike

    2016-09-01

    Excessive T-cell depletion (TCD) is a prerequisite for graft manufacturing in haploidentical stem cell (SC) transplantation by using either CD34 selection or direct TCD such as CD3/CD19 depletion. To optimize graft composition we compared 1) direct or indirect TCD only, 2) a combination of CD3/CD19-depleted with CD34-selected grafts, or 3) TCD twice for depletion improvement based on our 10-year experience with 320 separations in graft manufacturing and quality control. SC recovery was significantly higher (85%, n = 187 vs. 73%, n = 115; p < 0.0001), but TCD was inferior (median log depletion, -3.6 vs. -5.2) for CD3/CD19 depletion compared to CD34 selection, respectively. For end products with less than -2.5 log TCD, a second depletion step led to a successful improvement in TCD. Thawing of grafts showed a high viability and recovery of SCs, but low NK-cell yield. To optimize individualized graft engineering, a calculator was developed to estimate the results of the final graft based on the content of CD34+ and CD3+ cells in the leukapheresis product. Finally, calculated splitting of the starting product followed by CD3/19 depletion together with CD34+ graft manipulation may enable the composition of optimized grafts with high CD34+-cell and minimal T-cell content. © 2016 AABB.

  4. Improvement of drug loading onto ion exchange resin by cyclodextrin inclusion complex.

    PubMed

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Sila-on, Warisada; Opanasopit, Praneet

    2013-11-01

    Ion exchange resins have ability to exchange their counter ions for ionized drug in the surrounding medium, yielding "drug resin complex." Cyclodextrin can be applied for enhancement of drug solubility and stability. Cyclodextrin inclusion complex of poorly water-soluble NSAIDs, i.e. meloxicam and piroxicam, was characterized and its novel application for improving drug loading onto an anionic exchange resin, i.e. Dowex® 1×2, was investigated. β-Cyclodextrin (β-CD) and hydroxypropyl β-cyclodextrin (HP-β-CD) were used for the preparation of inclusion complex with drugs in solution state at various pH. The inclusion complex was characterized by phase solubility, continuous variation, spectroscopic and electrochemistry methods. Then, the drug with and without cyclodextrin were equilibrated with resin at 1:1 and 1:2 weight ratio of drug and resin. Solubility of the drugs was found to increase with increasing cyclodextrin concentration and pH. The increased solubility was explained predominantly due to the formation of inclusion complex at low pH and the increased ionization of drug at high pH. According to characterization studies, the inclusion complex was successfully formed with a 1:1 stoichiometry. The presence of cyclodextrin in the loading solution resulted in the improvement of drug loading onto resin. Enhancing drug loading onto ion-exchange resin via the formation of cyclodextrin inclusion complex is usable in the development of ion-exchange based drug delivery systems, which will beneficially reduce the use of harmful acidic or basic and organic chemicals.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core tomore » position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.« less

  6. Complex formation and vectorization of a phosphorothioate oligonucleotide with an amphipathic leucine- and lysine-rich peptide: study at molecular and cellular levels.

    PubMed

    Boukhalfa-Heniche, Fatima-Zohra; Hernández, Belén; Gaillard, Stéphane; Coïc, Yves-Marie; Huynh-Dinh, Tam; Lecouvey, Marc; Seksek, Olivier; Ghomi, Mahmoud

    2004-04-15

    Optical spectroscopic techniques such as CD, Raman scattering, and fluorescence imaging allowed us to analyze the complex formation and vectorization of a single-stranded 20-mer phosphorothioate oligodeoxynucleotide with a 15-mer amphipathic peptide at molecular and cellular levels. Different solvent mixtures (methanol and water) and molecular ratios of peptide/oligodeoxynucleotide complexes were tested in order to overcome the problems related to solubility. Optimal conditions for both spectroscopic and cellular experiments were obtained with the molecular ratio peptide/oligodeoxynucleotide equal to 21:4, corresponding to a 7:5 ratio for their respective +/- charge ratio. At the molecular level, CD and Raman spectra were consistent with a alpha-helix conformation of the peptide in water or in a methanol-water mixture. The presence of methanol increased considerably the solubility of the peptide without altering its alpha-helix conformation, as evidenced by CD and Raman spectroscopies. UV absorption melting profile of the oligodeoxynucleotide gave rise to a flat melting profile, corresponding to its random structure in solution. Raman spectra of oligodeoxynucleotide/peptide complexes could only be studied in methanol/water mixture solutions. Drastic changes observed in Raman spectra have undoubtedly shown: (a) the perturbation occurred in the peptide secondary structure, and (b) possible interaction between the lysine residues of the peptide and the oligodeoxynucleotide. At the cellular level, the complex was prepared in a mixture of 10% methanol and 90% cell medium. Cellular uptake in optimal conditions for the oligodeoxynucleotide delivery with low cytotoxicity was controlled by fluorescence imaging allowing to specifically locate the compacted oligonucleotide labeled with fluorescein at its 5'-terminus with the peptide into human glioma cells after 1 h of incubation at 37 degrees C. Copyright 2004 Wiley Periodicals, Inc.

  7. Synthesis, crystal structure and spectroscopy of bioactive Cd(II) polymeric complex of the non-steroidal anti-inflammatory drug diclofenac sodium: Antiproliferative and biological activity

    NASA Astrophysics Data System (ADS)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-02-01

    The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.

  8. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    PubMed

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  9. Inclusion compound of vitamin B6 in β-CD. Physico-chemical and structural investigations

    NASA Astrophysics Data System (ADS)

    Borodi, Gheorghe; Kacso, Irina; Farcaş, Sorin I.; Bratu, Ioan

    2009-08-01

    Structural and physico-chemical characterization of supramolecular assembly of vitamin B6 with β-cyclodextrin (β-CD) prepared by different methods (kneading, co-precipitation and freeze-drying) has been performed by using several spectroscopic techniques (FTIR, 1H NMR, UV-Vis), powder X-ray diffraction and DSC in order to evidence the inclusion compound formation. An analysis of the chemical shifts observed in the 1H-NMR spectra and of the vibrational frequency shifts led to the tentative conclusion that the vitamin B6 probably enters the cyclodextrin torus when forming the β-CD-vitamin B6 inclusion complex.

  10. Trogocytosis of multiple B-cell surface markers by CD22 targeting with epratuzumab.

    PubMed

    Rossi, Edmund A; Goldenberg, David M; Michel, Rosana; Rossi, Diane L; Wallace, Daniel J; Chang, Chien-Hsing

    2013-10-24

    Epratuzumab, a humanized anti-CD22 antibody, is currently in clinical trials of B-cell lymphomas and autoimmune diseases, demonstrating therapeutic activity in non-Hodgkin lymphoma (NHL) and systemic lupus erythematosus (SLE). Thus, epratuzumab offers a promising option for CD22-targeted immunotherapy, yet its mechanism of action remains poorly understood. Here we report for the first time that epratuzumab promptly induces a marked decrease of CD22 (>80%), CD19 (>50%), CD21 (>50%), and CD79b (>30%) on the surface of B cells in peripheral blood mononuclear cells (PBMCs) obtained from normal donors or SLE patients, and of NHL cells (Daudi and Raji) spiked into normal PBMCs. Although some Fc-independent loss of CD22 is expected from internalization by epratuzumab, the concurrent and prominent reduction of CD19, CD21, and CD79b is Fc dependent and results from their transfer from epratuzumab-opsonized B cells to FcγR-expressing monocytes, natural killer cells, and granulocytes via trogocytosis. The findings of reduced levels of CD19 are implicative for the efficacy of epratuzumab in autoimmune diseases because elevated CD19 has been correlated with susceptibility to SLE in animal models as well as in patients. This was confirmed herein by the finding that SLE patients receiving epratuzumab immunotherapy had significantly reduced CD19 compared with treatment-naïve patients.

  11. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study

    PubMed Central

    Cruz, Conrad Russell Y.; Micklethwaite, Kenneth P.; Savoldo, Barbara; Ramos, Carlos A.; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A. John; Ito, Sawa; Shpall, Elizabeth J.; Krance, Robert A.; Kamble, Rammurti T.; Carrum, George; Hosing, Chitra M.; Gee, Adrian P.; Mei, Zhuyong; Grilley, Bambi J.; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Bollard, Catherine M.

    2013-01-01

    Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control. This study is registered at clinicaltrials.gov as #NCT00840853. PMID:24030379

  12. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice.

    PubMed

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K; Nagilla, Pruthvi S; Raghani, Pooja; Nagarajan, Shanmugam

    2014-09-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in a hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apolipoprotein E (apoE)-CD16 double knockout (DKO; apoE-CD16 DKO) mice have reduced atherosclerotic lesions compared with apoE knockout mice. In vivo and in vitro foam cell analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A, and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA- modified BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line, as well as soluble forms of recombinant mouse CD36, SR-A, and LOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited immune complex binding to sCD16, whereas it partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the immune complex binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL-induced proinflammatory cytokine expression. Finally, CD16-deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively, our findings suggest scavenger receptor activity of CD16 may, in part, contribute to the progression of atherosclerosis. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. β-cyclodextrin-ferrocene host-guest complex multifunctional labeling triple amplification strategy for electrochemical immunoassay of subgroup J of avian leukosis viruses.

    PubMed

    Shang, Kun; Wang, Xindong; Sun, Bing; Cheng, Ziqiang; Ai, Shiyun

    2013-07-15

    A novel sandwich-type electrochemical immunosensor was fabricated for ultrasensitive detection of subgroup J of avian leukosis virus (ALVs-J) by employing β-cyclodextrin-ferrocene (CD-Fc) host-guest complex multifunctional Fe3O4 nanospheres as labels and β-cyclodextrin functional graphene sheets (CD-GS) nanocomposite as sensor platform. The sensitivity was greatly improved based on the triple amplification strategy. Firstly, the CD-GS improved the electron transfer rate as well as increasing the surface area to capture a large amount of primary antibodies (Ab1). Secondly, the CD on the Fe3O4 surface with strong recognition capability could form stable CD-Fc host-guest inclusion complex and provided larger free room for the conjugation of secondary antibodies (Ab2) and glucose oxidase (GOD). Finally, the conjugated GOD exhibited extraordinary electrochemical biocatalysis towards the reduction reaction of Fc(+) by glucose. Under the optimized conditions, the electrochemical immunosensor exhibited a wide working range from 10(2.27)-10(3.50) TCID50/mL (TCID50: 50% tissue culture infective dose) with a low detection limit of 10(2.19) TCID50/mL (S/N=3). The selectivity, reproducibility, and stability are acceptable. The assay was evaluated for real avian serum sample, receiving satisfactory results. This new type of triple amplification strategy may provide potential applications for the clinic application. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Enhanced bioavailability of process-induced fast-dissolving ibuprofen cogranulated with beta-cyclodextrin.

    PubMed

    Ghorab, Mohamed K; Adeyeye, Moji Christianah

    2003-08-01

    The objectives of this study were to evaluate the bioavailability of cogranulated and oven-dried ibuprofen (IBU) and beta-cyclodextrin (betaCD), in comparison to a physical mixture, and to examine the effect of endogenous bile on the bioavailability of the drug. In vitro dissolution studies were performed using USP type 2 apparatus. The granules and physical mixture were administered perorally in a crossover fashion, to male Wistar bile duct-nonligated rats. The granules were also perorally administered to bile duct-ligated rats. Blood samples were taken at different time intervals and the plasma analyzed for IBU. Dissolution of granules was faster than the physical mixture due to faster IBU-betaCD complex formation in solution from the former than the latter. The in vivo study showed that C(max), AUC(0-8), and the absolute bioavailability for the granules (49.0 microg/mL, 57.0 h x microg/mL and 80.6%, respectively) were almost one and half times that of the physical mixture (32.2 microg/mL, 38.4 h x microg/mL and 53.1%, respectively). However, in bile duct-ligated rats, lower C(max) and AUC(0-8) (15.9 microg/mL and 14.4 h x microg/mL, respectively) were obtained for the granules. Phase solubility study of IBU in an aqueous betaCD solution in the presence of the bile salt (sodium cholate), showed an increase in the solubility of IBU. Moreover, the stability constant value for the IBU-betaCD complex was also found to decrease as the sodium cholate concentration increased. These results indicated that the enhancement in the bioavailability of IBU was due to faster in-solution complex formation, and micelllar solubilization by the bile salt. Copyright 2003 Wiley-Liss, Inc.

  15. Free Fatty Acids Shift Insulin-induced Hepatocyte Proliferation towards CD95-dependent Apoptosis*

    PubMed Central

    Sommerfeld, Annika; Reinehr, Roland; Häussinger, Dieter

    2015-01-01

    Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH. PMID:25548285

  16. Gluten exacerbates IgA nephropathy in humanized mice through gliadin-CD89 interaction.

    PubMed

    Papista, Christina; Lechner, Sebastian; Ben Mkaddem, Sanae; LeStang, Marie-Bénédicte; Abbad, Lilia; Bex-Coudrat, Julie; Pillebout, Evangéline; Chemouny, Jonathan M; Jablonski, Mathieu; Flamant, Martin; Daugas, Eric; Vrtovsnik, François; Yiangou, Minas; Berthelot, Laureline; Monteiro, Renato C

    2015-08-01

    IgA1 complexes containing deglycosylated IgA1, IgG autoantibodies, and a soluble form of the IgA receptor (sCD89), are hallmarks of IgA nephropathy (IgAN). Food antigens, notably gluten, are associated with increased mucosal response and IgAN onset, but their implication in the pathology remains unknown. Here, an IgAN mouse model expressing human IgA1 and CD89 was used to examine the role of gluten in IgAN. Mice were given a gluten-free diet for three generations to produce gluten sensitivity, and then challenged for 30 days with a gluten diet. A gluten-free diet resulted in a decrease of mesangial IgA1 deposits, transferrin 1 receptor, and transglutaminase 2 expression, as well as hematuria. Mice on a gluten-free diet lacked IgA1-sCD89 complexes in serum and kidney eluates. Disease severity depended on gluten and CD89, as shown by reappearance of IgAN features in mice on a gluten diet and by direct binding of the gluten-subcomponent gliadin to sCD89. A gluten diet exacerbated intestinal IgA1 secretion, inflammation, and villous atrophy, and increased serum IgA1 anti-gliadin antibodies, which correlated with proteinuria in mice and patients. Moreover, early treatment of humanized mice with a gluten-free diet prevented mesangial IgA1 deposits and hematuria. Thus, gliadin-CD89 interaction may aggravate IgAN development through induction of IgA1-sCD89 complex formation and a mucosal immune response. Hence, early-stage treatment with a gluten-free diet could be beneficial to prevent disease.

  17. A Simple Qualitative Analysis Scheme for Several Environmentally Important Elements

    ERIC Educational Resources Information Center

    Lambert, Jack L.; Meloan, Clifton E.

    1977-01-01

    Describes a scheme that uses precipitation, gas evolution, complex ion formation, and flame tests to analyze for the following ions: Hg(I), Hg(II), Sb(III), Cr(III), Pb(II), Sr(II), Cu(II), Cd(II), As(III), chloride, nitrate, and sulfate. (MLH)

  18. Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42.

    PubMed

    Miyashita, Motoaki; Ohnishi, Hiroshi; Okazawa, Hideki; Tomonaga, Hiroyasu; Hayashi, Akiko; Fujimoto, Tetsuro-Takahiro; Furuya, Nobuhiko; Matozaki, Takashi

    2004-08-01

    Axon extension during development is guided by many factors, but the signaling mechanisms responsible for its regulation remain largely unknown. We have now investigated the role of the transmembrane protein CD47 in this process in N1E-115 neuroblastoma cells. Forced expression of CD47 induced the formation of neurites and filopodia. Furthermore, an Fc fusion protein containing the extracellular region of the CD47 ligand SHPS-1 induced filopodium formation, and this effect was enhanced by CD47 overexpression. SHPS-1-Fc also promoted neurite and filopodium formation triggered by serum deprivation. Inhibition of Rac or Cdc42 preferentially blocked CD47-induced formation of neurites and filopodia, respectively. Overexpression of CD47 resulted in the activation of both Rac and Cdc42. The extracellular region of CD47 was sufficient for the induction of neurite formation by forced expression, but the entire structure of CD47 was required for enhancement of filopodium formation by SHPS-1-Fc. Neurite formation induced by CD47 was also inhibited by a mAb to the integrin beta3 subunit. These results indicate that the interaction of SHPS-1 with CD47 promotes neurite and filopodium formation through the activation of Rac and Cdc42, and that integrins containing the beta3 subunit participate in the effect of CD47 on neurite formation.

  19. Total lymphocyte count and subpopulation lymphocyte counts in relation to dietary intake and nutritional status of peritoneal dialysis patients.

    PubMed

    Grzegorzewska, Alicja E; Leander, Magdalena

    2005-01-01

    Dietary deficiency causes abnormalities in circulating lymphocyte counts. For the present paper, we evaluated correlations between total and subpopulation lymphocyte counts (TLC, SLCs) and parameters of nutrition in peritoneal dialysis (PD) patients. Studies were carried out in 55 patients treated with PD for 22.2 +/- 11.4 months. Parameters of nutritional status included total body mass, lean body mass (LBM), body mass index (BMI), and laboratory indices [total protein, albumin, iron, ferritin, and total iron binding capacity (TIBC)]. The SLCs were evaluated using flow cytometry. Positive correlations were seen between TLC and dietary intake of niacin; TLC and CD8 and CD16+56 counts and energy delivered from protein; CD4 count and beta-carotene and monounsaturated fatty acids 17:1 intake; and CD19 count and potassium, copper, vitamin A, and beta-carotene intake. Anorexia negatively influenced CD19 count. Serum albumin showed correlations with CD4 and CD19 counts, and LBM with CD19 count. A higher CD19 count was connected with a higher red blood cell count, hemoglobin, and hematocrit. Correlations were observed between TIBC and TLC and CD3 and CD8 counts, and between serum Fe and TLC and CD3 and CD4 counts. Patients with a higher CD19 count showed a better clinical-laboratory score, especially less weakness. Patients with a higher CD4 count had less expressed insomnia. Quantities of ingested vitamins and minerals influence lymphocyte counts in the peripheral blood of PD patients. Evaluation of TLC and SLCs is helpful in monitoring the effectiveness of nutrition in these patients.

  20. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.

    PubMed

    Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe

    2012-03-28

    This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.

  1. Interaction of an Fe derivative of TMAP (Fe(TMAP)OAc) with DNA in comparison with free-base TMAP.

    PubMed

    Ghaderi, Masoumeh; Bathaie, S Zahra; Saboury, Ali-Akbar; Sharghi, Hashem; Tangestaninejad, Shahram

    2007-07-01

    We investigated the interaction of meso-tetrakis (N-para-methylanilium) porphyrin (TMAP) in its free base and Fe(II) form (Fe(TMAP)OAc) as a new derivative, with high molecular weight DNA at different ionic strengths, using various spectroscopic methods and microcalorimetry. The data obtained by spectrophotometery, circular dichroism (CD), fluorescence quenching and resonance light scattering (RLS) have demonstrated that TMAP association with DNA is via outside binding with self-stacking manner, which is accompanied with the "end-on" type complex formation in low ionic strength. However, in the case of Fe(TMAP)OAc, predominant mode of interaction is groove binding and after increasing in DNA concentration, unstable stacking-type aggregates are formed. In addition, isothermal titration calorimetric measurements have indicated the exothermic process of porphyrins binding to DNA, but the exothermisity in metal derivative of porphyrin is less than the free base. It confirmed the formation of a more organized aggregate of TMAP on DNA surface. Interactions of both porphyrins with DNA show high sensitivity to ionic strength. By addition of salt, the downfield CD signal of TMAP aggregates is shifted to a higher wavelength, which indicates some changes in the aggregates position. In the case of Fe(TMAP)OAc, addition of salt leads to changes in the mode of binding from groove binding to outside binding with self-stacking, which is accompanied with major changes in CD spectra, possibly indicating the formation of "face-on" type complex.

  2. Regulatory B cells (CD19(+)CD38(hi)CD24(hi)) in alloimmunized and non-alloimmunized children with β-thalassemia major.

    PubMed

    Zahran, Asmaa M; Elsayh, Khalid I; Saad, Khaled; Embaby, Mostafa; Ali, Ahmed M

    2016-03-01

    β-Thalassemia major (BTM) is considered the most common hemoglobinopathy in Egypt and is one of the major health problems in our locality. We investigated the frequency of B-regulatory cells (CD19(+)CD38(hi)CD24(hi)); (Bregs) among polytransfused alloimmunized and non-alloimmunized children with BTM. The study included 110 polytransfused pediatric patients with β-thalassemia major. Clinical and transfusion records of all studied patients were reviewed. Indirect antiglobulin test was performed to detect the presence of alloantibodies. We used flow cytometry for detection of CD19(+)CD38(hi)CD24(hi) regulatory B cells. Alloimmunization was detected in 35.5% of thalassemic patients (39/110). The analysis of our data showed a significantly higher frequency of Bregs (CD19(+)CD38(hi)CD24(hi)) in the peripheral blood of both alloimmunized and non-alloimmunized patients as compared to healthy controls. Our data showed that the frequencies of CD19(+)CD24(hi)CD38(hi) Bregs cells were significantly increased in children with BTM. Our data suggested that Bregs cells could play a role in the clinical course of BTM. The relationship of Bregs to immune disorders in BTM children remains to be determined. Further longitudinal study with a larger sample size is warranted to explore the mechanisms of Breg cells in the disease process in BTM patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Production of Cyclodextrins by CGTase from Bacillus clausii Using Different Starches as Substrates

    NASA Astrophysics Data System (ADS)

    Alves-Prado, H. F.; Carneiro, A. A. J.; Pavezzi, F. C.; Gomes, E.; Boscolo, M.; Franco, C. M. L.; da Silva, R.

    Cyclodextrins (CDs) are cyclic oligasaccharides composed by d-glucose monomers joined by α-1,4-d glicosidic linkages. The main types of CDs are α-, β- and γ-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches (commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a β-CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0:0.89:0.11 for α/β/γ. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.

  4. Structural changes at the metal ion binding site during the phosphoglucomutase reaction.

    PubMed

    Ray, W J; Post, C B; Liu, Y; Rhyu, G I

    1993-01-12

    An electron density map of the reactive, Cd2+ form of crystalline phosphoglucomutase from X-ray diffraction studies shows that the enzymic phosphate donates a nonbridging oxygen to the ligand sphere of the bound metal ion, which appears to be tetracoordinate. 31P and 113Cd NMR spectroscopy are used to assess changes in the properties of bound Cd2+ produced by substrate/product and by substrate/product analog inhibitors. The approximately 50 ppm downfield shift of the 113Cd resonance on formation of the complex of dephosphoenzyme and glucose 1,6-bisphosphate is associated with the initial sugar-phosphate binding step and likely involves a change in the geometry of the coordinating ligands. This interpretation is supported by spectral studies involving various complexes of the active Co2+ and Ni(2+)-enzyme. In addition, there is a loss of the 31P-113Cd J coupling that characterizes the monophosphate complexes of the Cd2+ enzyme either during or immediately after the PO3- transfer step that produces the bisphosphate complex, indicating a further change at the metal binding site. The implications of these observations with respect to the PO3- transfer process in the phosphoglucomutase reaction are considered. The apparent plasticity of the ligand sphere of the active site metal ion in this system may allow a single metal ion to act as a chaperone for a nonbridging oxygen during PO3- transfer or to allow a change in metal ion coordination during catalysis. A general NMR line shape/chemical-exchange analysis for evaluating binding in protein-ligand systems when exchange is intermediate to fast on the NMR time scale is described. Its application to the present system involves multiple exchange sites that depend on a single binding rate, thereby adding further constraints to the analysis.

  5. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    PubMed

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Catching TFSI: A Computational-Experimental Approach to β-Cyclodextrin-Based Host-Guest Systems as electrolytes for Li-Ion Batteries.

    PubMed

    Jeschke, Steffen; Jankowski, Piotr; Best, Adam S; Johansson, Patrik

    2018-03-12

    Cyclodextrins (CDs) are pyranoside-based macromolecules with a hydrophobic cavity to encapsulate small molecules. They are used as molecular vehicles, for instance in pharmaceutical drug delivery or as solubility enhancer of monomers for their polymerization in aqueous solution. In this context, it was discovered about 10 years ago that the bis(trifluoromethylsulonyl)imide (TFSI) anion forms host-guest complexes with βCD in aqueous media. This sparked interest in using the TFSI anion in lithium-based battery electrolytes open for its encapsulation by βCD as an attractive approach to increase the contribution of the cation to the total ion conductivity. By using semi-empirical quantum mechanical (SQM) methods and the conductor-like screening model for a real solvent (COSMO-RS), a randomly methylated βCD (RMβCD) is here identified as a suitable host for TFSI when using organic solvents often used in battery technology. By combining molecular dynamics (MD) simulations with different NMR and FTIR experiments, the formation of the corresponding RMβCD-TFSI complex was investigated. Finally, the effects of the addition RMβCD to a set of electrolytes on the ion conductivity are measured and explained using three distinct scenarios. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pseudo-enantiomeric chiral components and formation of the helical micro- and nanostructures in charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Langer, Jerzy J.; Hreczycho, Grzegorz

    2018-03-01

    Helical organic micro- and nanostructures are formed by a charge-transfer complex, cinchonidine-TCNQ. These unusual forms result from the chirality, the steric structure and specific interactions of cinchonidine molecules. These materials are semiconductors (10-4 S cm-1), with the typical absorption spectra in IR and UV-vis, but also have a characteristic of CD spectrum. Surprisingly, conductive micro and nano helices are not formed in pseudo-enantiomeric cinchonine, i.e. the complex of cinchonine and TCNQ.

  8. Unexpected formation of chiral pincer CNN nickel complexes with β-diketiminato type ligands via C-H activation: synthesis, properties, structures, and computational studies.

    PubMed

    Lu, Zhengliang; Abbina, Srinivas; Sabin, Jared R; Nemykin, Victor N; Du, Guodong

    2013-02-04

    Reaction of lithiated chiral, unsymmetric β-diketimine type ligands HL(2a-e) containing oxazoline moiety (HL(2a-e) = 2-(2'-R(1)NH)-phenyl-4-R(2)-oxazoline) with trans-NiCl(Ph)(PPh(3))(2) afforded a series of new chiral CNN pincer type nickel complexes (3a-3e) via an unexpected cyclometalation at benzylic or aryl C-H positions. Single crystal X-ray diffraction analysis established the pincer coordination mode and the strained conformation. Chirality, and in one case, racemization of the target nickel complexes were confirmed by circular dichroism (CD) spectroscopy. Electronic structure and band assignments in experimental UV-vis and CD spectra were discussed on the basis of Density Functional Theory (DFT) and time-dependent (TD) DFT calculations.

  9. pH-Dependent Assembly and Conversions of Six Cadmium(II)-Based Coordination Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Hua-Cai; Zhu, Ji-Qin; Zhou, Li-Jiang

    2010-07-07

    Six cadmium(II) complexes containing N2O2 donor tetradentate asymmetrical Schiff base ligand 2-{[2-(dimethylamino)ethylimino]methyl}-6-methoxyphenol (HL5), namely, [(Cd3L52Cl4)2]•CH3OH•H2O (1), [Cd(L5)Cl]2•CH3OH (2), [Cd2(HL5)Cl4]n (3), {[Cd3(H2L5)2Cl8]•2H2O}n (4), [(H2L5)2]2+•[CdCl4]2-•H2O (5), and [(H2L5)2]2+•[CdCl4]2- (6), have been synthesized using cadmium(II) chloride and asymmetrical Schiff base ligand HL5 under different pH conditions at room temperature. The diverse structures show the marked sensitivity of the structural chemistry of the tetradentate asymmetrical Schiff base ligand HL5. Complex 1 formed at pH = 10 exhibits a rare zero- dimensional structure of trinuclear cadmium (II). At pH = 8-9, a dinuclear cadmium (II) complex 2 is formed. The reaction at pH = 5-7more » leads to two one-dimensional structures of 3 and 4. A further decrease of the pH to 3-5 results in a zero-dimensional structure 5. Owing to the departure of lattice water molecules in the crystal, complex 5 at room temperature can gradually undergo single-crystal-to-single-crystal transformation to result complex 6. The results further show that conversions of complex 1 to 5 can also be achieved by adjusting the pH value of the reaction solution, 1→2pH=8→5pH=3 and 3→4pH=5. Comparing these experimental results, it is clear that the pH plays a crucial role in the formation of the resulting structures, which simultaneously provide very effective strategies for constructing the CdII compounds with N2O2 donor tetradentate asymmetrical Schiff base ligand. The strong fluorescent emissions of the six compounds (1-6) make them potentially useful photoactive materials. Furthermore, six Schiff base cadmium complexes (1–6), with DPPH (2,2-dipheny1-1-picrylhydrazy1) as a co-oxidant exhibited the stronger scavenging activity.« less

  10. Thermochemical investigations in the system Cd–Gd

    PubMed Central

    Reichmann, Thomas L.; Ganesan, Rajesh; Ipser, Herbert

    2014-01-01

    Vapour pressure measurements were performed in terms of a non-isothermal isopiestic method to determine vapour pressures of Cd in the system Cd–Gd between 693 and 1045 K. From these results thermodynamic activities of Cd were derived as a function of temperature for the composition range 52–86 at.% Cd. By employing an adapted Gibbs–Helmholtz equation, partial molar enthalpies of mixing of Cd were obtained for the corresponding composition range, which were used to convert the activity values of Cd to a common average sample temperature of 773 K. The relatively large variation of the activity across the homogeneity ranges of the phases Cd2Gd and Cd45Gd11 indicates that they probably belong to the most stable intermetallic compounds in this system. An activity value of Gd for the two phase field Cd6Gd+L was available from literature and served as an integration constant for a Gibbs–Duhem integration. Integral Gibbs energies are presented between 51 and 100 at.% Cd at 773 K, referred to Cd(l) and α-Gd(s) as standard states. Gibbs energies of formation for the exact stoichiometric compositions of the phases Cd58Gd13, Cd45Gd11, Cd3Gd and Cd2Gd were obtained at 773 K as about −19.9, −21.1, −24.8, and −30.0 kJ g atom−1, respectively. PMID:25328283

  11. Differential cellular internalization of anti-CD19 and -CD22 immunotoxins results in different cytotoxic activity.

    PubMed

    Du, Xing; Beers, Richard; Fitzgerald, David J; Pastan, Ira

    2008-08-01

    B-cell malignancies routinely express surface antigens CD19 and CD22. Immunotoxins against both antigens have been evaluated, and the immunotoxins targeting CD22 are more active. To understand this disparity in cytotoxicity and guide the screening of therapeutic targets, we compared two immunotoxins, FMC63(Fv)-PE38-targeting CD19 and RFB4(Fv)-PE38 (BL22)-targeting CD22. Six lymphoma cell lines have 4- to 9-fold more binding sites per cell for CD19 than for CD22, but BL22 is 4- to 140-fold more active than FMC63(Fv)-PE38, although they have a similar cell binding affinity (Kd, approximately 7 nmol/L). In 1 hour, large amounts of BL22 are internalized (2- to 3-fold more than the number of CD22 molecules on the cell surface), whereas only 5.2% to 16.6% of surface-bound FMC63(Fv)-PE38 is internalized. The intracellular reservoir of CD22 decreases greatly after immunotoxin internalization, indicating that it contributes to the uptake of BL22. Treatment of cells with cycloheximide does not reduce the internalization of BL22. Both internalized immunotoxins are located in the same vesicles. Our results show that the rapid internalization of large amounts of BL22 bound to CD22 makes CD22 a better therapeutic target than CD19 for immunotoxins and probably for other immunoconjugates that act inside cells.

  12. Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

    PubMed

    Circosta, Paola; Elia, Angela Rita; Landra, Indira; Machiorlatti, Rodolfo; Todaro, Maria; Aliberti, Sabrina; Brusa, Davide; Deaglio, Silvia; Chiaretti, Sabina; Bruna, Riccardo; Gottardi, Daniela; Massaia, Massimo; Giacomo, Filomena Di; Guarini, Anna Rita; Foà, Robin; Kyriakides, Peter W; Bareja, Rohan; Elemento, Olivier; Chichili, Gurunadh R; Monteleone, Emanuele; Moore, Paul A; Johnson, Syd; Bonvini, Ezio; Cignetti, Alessandro; Inghirami, Giorgio

    2018-01-01

    Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4 + cells into cytotoxic effectors required the presence of CD8 + cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.

  13. CD14 Protein Acts as an Adaptor Molecule for the Immune Recognition of Salmonella Curli Fibers*

    PubMed Central

    Rapsinski, Glenn J.; Newman, Tiffanny N.; Oppong, Gertrude O.; van Putten, Jos P. M.; Tükel, Çagla

    2013-01-01

    Amyloids, protein aggregates with a cross β-sheet structure, contribute to inflammation in debilitating disorders, including Alzheimer's disease. Enteric bacteria also produce amyloids, termed curli, contributing to inflammation during infection. It has been demonstrated that curli and β-amyloid are recognized by the immune system via the Toll-like receptor (TLR) 2/TLR1 complex. Here we investigated the role of CD14 in the immune recognition of bacterial amyloids. We used HeLa 57A cells, a human cervical cancer cell line containing a luciferase reporter gene under the control of an NF-κB promoter. When HeLa 57A cells were transiently transfected with combinations of human expression vectors containing genes for TLR2, TLR1, and CD14, membrane-bound CD14 enhanced NF-κB activation through the TLR2/TLR1 complex stimulated with curli fibers or recombinant CsgA, the curli major subunit. Similarly, soluble CD14 augmented the TLR2/TLR1 response to curli fibers in the absence of membrane-bound CD14. We further revealed that IL-6 and nitric oxide production were significantly higher by wild-type (C57BL/6) bone marrow-derived macrophages compared with TLR2-deficient or CD14-deficient bone marrow-derived macrophages when stimulated with curli fibers, recombinant CsgA, or synthetic CsgA peptide, CsgA-R4–5. Binding assays demonstrated that recombinant TLR2, TLR1, and CD14 bound purified curli fibers. Interestingly, CD14-curli interaction was specific to the fibrillar form of the amyloid, as demonstrated by using synthetic CsgA peptides proficient and deficient in fiber formation, respectively. Activation of the TLR2/TLR1/CD14 trimolecular complex by amyloids provides novel insights for innate immunity with implications for amyloid-associated diseases. PMID:23548899

  14. Syk Mediates BCR- and CD40-Signaling Intergration during B Cell Activation

    PubMed Central

    Ying, Haiyan; Li, Zhenping; Yang, Lifen; Zhang, Jian

    2010-01-01

    CD40 is essential for optimal B cell activation. It has been shown that CD40 stimulation can augment BCR-induced B cell responses, but the molecular mechanism(s) by which CD40 regulates BCR signaling is poorly understood. In this report, we attempted to characterize the signaling synergy between BCR- and CD40-mediated pathways during B cell activation. We found that spleen tyrosine kinase (Syk) is involved in CD40 signaling, and is synergistically activated in B cells in response to BCR/CD40 costimulation. CD40 stimulation alone also activates B cell linker (BLNK), Bruton tyrosine kinase (Btk), and Vav-2 downstream of Syk, and significantly enhances BCR-induced formation of complex consisting of, Vav-2, Btk, BLNK, and phospholipase C-gamma2 (PLC-γ2) leading to activation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase, Akt, and NF-κB required for optimal B cell activation. Therefore, our data suggest that CD40 can strengthen BCR-signaling pathway and quantitatively modify BCR signaling during B cell activation. PMID:21074890

  15. Diverse CdII coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands

    NASA Astrophysics Data System (ADS)

    Tang, Meng; Dong, Bao-Xia; Wu, Yi-Chen; Yang, Fang; Liu, Wen-Long; Teng, Yun-Lei

    2016-12-01

    The coordination characteristics of 4-bromoisophthalic acid (4-Br-H2ip) have been investigated in a series of CdII-based frameworks. Hydrothermal reactions of CdII salts and 4-Br-H2ip together with flexible or semiflexible N-donor auxiliary ligands resulted in the formation of four three-dimensional coordination complexes with diverse structures: {Cd(bix)0.5(bix)0.5(4-Br-ip)]·H2O}n (1), [Cd(bbi)0.5(bbi)0.5(4-Br-ip)]n (2), {[Cd(btx)0.5(4-Br-ip)(H2O)]·0.5CH3OH·H2O}n (3) and {[Cd(bbt)0.5(4-Br-ip)(H2O)]·3·5H2O}n (4). These compounds were characterized by elemental analyses, IR spectra, single-crystal and powder X-ray diffraction. They displayed diverse structures depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H2ip, the coordination ability and conformationally flexibility of the N-donor auxiliary. Compound 1 exhibits 3-fold interpenetrated 66 topology and compound 2 has a 412 topology. Compounds 3-4 have similar 3D pillar-layered structures based on 3,4-connected binodal net with the Schläfli symbol of (4·38). The thermal stabilities and photoluminescence properties of them were discussed in detail.

  16. Synthesis of N-acetyl-L-cysteine capped Mn:doped CdS quantum dots for quantitative detection of copper ions

    NASA Astrophysics Data System (ADS)

    Yang, Xiupei; Jia, Zhihui; Cheng, Xiumei; Luo, Na; Choi, Martin M. F.

    2018-06-01

    In this work, a new assembled copper ions sensor based on the Mn metal-enhanced fluorescence of N-acetyl-L-cysteine protected CdS quantum dots (NAC-Mn:CdS QDs) was developed. The NAC and Mn:CdS QDs nanoparticles were assembled into NAC-Mn:CdS QDs complexes through the formation of Cdsbnd S and Mnsbnd S bonds. As compared to NAC capped CdS QDs, higher fluorescence quantum yields of NAC-Mn:CdS QDs was observed, which is attributed to the surface plasmon resonance of Mn metal. In addition, the fluorescence intensity of as-formed complexes weakened in the presence of copper ions. The decrease in fluorescence intensity presented a linear relationship with copper ions concentration in the range from 0.16-3.36 μM with a detection limit of 0.041 μM . The characterization of as-formed QDs was analyzed by photoluminescence (PL), ultra violet-visible (UV-vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS) respectively. Furthermore, the recoveries and relative standard deviations of Cu2+ spiked in real water samples for the intra-day and inter-day analyses were 88.20-117.90, 95.20-109.90, 0.80-5.80 and 1.20-3.20%, respectively. Such a metal-enhanced QDs fluorescence system may have promising application in chemical and biological sensors.

  17. Low Dose Total Body Irradiation Combined With Recombinant CD19-Ligand × Soluble TRAIL Fusion Protein is Highly Effective Against Radiation-resistant B-precursor Acute Lymphoblastic Leukemia in Mice☆

    PubMed Central

    Uckun, Fatih M.; Myers, Dorothea E.; Ma, Hong; Rose, Rebecca; Qazi, Sanjive

    2015-01-01

    In high-risk remission B-precursor acute lymphoblastic leukemia (BPL) patients, relapse rates have remained high post-hematopoietic stem cell transplantation (HSCT) even after the use of very intensive total body irradiation (TBI)-based conditioning regimens, especially in patients with a high “minimal residual disease” (MRD) burden. New agents capable of killing radiation-resistant BPL cells and selectively augmenting their radiation sensitivity are therefore urgently needed. We report preclinical proof-of-principle that the potency of radiation therapy against BPL can be augmented by combining radiation with recombinant human CD19-Ligand × soluble TRAIL (“CD19L–sTRAIL”) fusion protein. CD19L–sTRAIL consistently killed radiation-resistant primary leukemia cells from BPL patients as well as BPL xenograft cells and their leukemia-initiating in vivo clonogenic fraction. Low dose total body irradiation (TBI) combined with CD19L–sTRAIL was highly effective against (1) xenografted CD19+ radiochemotherapy-resistant human BPL in NOD/SCID (NS) mice challenged with an otherwise invariably fatal dose of xenograft cells derived from relapsed BPL patients as well as (2) radiation-resistant advanced stage CD19+ murine BPL with lymphomatous features in CD22ΔE12xBCR-ABL double transgenic mice. We hypothesize that the incorporation of CD19L–sTRAIL into the pre-transplant TBI regimens of patients with very high-risk BPL will improve their survival outcome after HSCT. PMID:26097891

  18. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma.

    PubMed

    Oelsner, Sarah; Friede, Miriam E; Zhang, Congcong; Wagner, Juliane; Badura, Susanne; Bader, Peter; Ullrich, Evelyn; Ottmann, Oliver G; Klingemann, Hans; Tonn, Torsten; Wels, Winfried S

    2017-02-01

    Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γ null mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Only Follow-Up of Memory B Cells Helps Monitor Rituximab Administration to Patients with Neuromyelitis Optica Spectrum Disorders.

    PubMed

    Lebrun, Christine; Cohen, Mikael; Rosenthal-Allieri, Maria Alessandra; Bresch, Saskia; Benzaken, Sylvia; Marignier, Romain; Seitz-Polski, Barbara; Ticchioni, Michel

    2018-06-07

    Neuromyelitis optica spectrum disorders (NMOSD) are identified as a spectrum of inflammatory demyelinating disorders involving the brain, spinal cord and optic nerves. These disorders require early diagnosis and highly active immunosuppressive treatment. Rituximab (RTX) has demonstrated efficacy in limiting relapse in NMOSD when using several administration schedules. We questioned if the CD19+ CD27+ memory B cell count was a more reliable marker to monitor RTX administration than the RTX plasma level and CD19+ B cell count. We analyzed 125 blood samples from 17 NMOSD patients treated with RTX and also measured the level of anti-aquaporine-4 antibodies (anti-AQP-4 Abs), human anti-chimeric antibodies to the murine fragment of RTX (HACA-RTX Abs), and the RTX concentration. The mean follow-up time of the cohort was 7.4 (2-16) years. All patients improved with a mean EDSS going from 4 (1-8.5) to 2.7 (1-5.5). The mean interval between RTX infusions was 9.6 months with identification of prolonged responders. Total CD19+ B cell detection with the routine technique did not correlate to re-emergence of CD19+ CD27+ memory B cells. The RTX residual concentration did not correlate with the CD19+ CD27+ memory B cell count or with anti-RTX antibody production. In contrast to total CD19+ cell, detected with the routine technique, CD19+ CD27+ memory B cells are a reliable marker for biological relapse and allow a decrease in the frequency of infusions.

  20. Insights into the multi-equilibrium, superstructure system based on β-cyclodextrin and a highly water soluble guest.

    PubMed

    De Paula, Elgte Elmin B; De Sousa, Frederico B; Da Silva, Júlio César C; Fernandes, Flaviana R; Melo, Maria Norma; Frézard, Frédéric; Grazul, Richard M; Sinisterra, Rubén D; Machado, Flávia C

    2012-12-15

    Pentamidine isethionate (PNT) is an antiprotozoal active in many cases of leishmaniasis, despite the present limitations including high toxicity and parenteral administration. In the present work, a PNT encapsulation strategy into β-cyclodextrin cavity at 1:1 and 2:1 (βCD:PNT) molar ratios was used in order to improve the drug's physical and chemical properties. Combining thermodynamic and structural approaches such as isothermal titration calorimetry (ITC), electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance ((1)H NMR, and ROESY) the inclusion process and the thermodynamics parameters were identified. ITC and ESI-MS experimental data suggest the simultaneous formation of different supramolecular complexes in solution. Moreover, NMR data are in accordance with these results, suggesting a deep inclusion of PNT into the βCD cavity, through correlations observed in 2D ROESY contour maps. The systems were also characterized by FTIR, TG/DTA and SEM. These techniques indicate the formation of inclusion complex in the solid state. In vivo PNT activity was evaluated orally in mice. The inclusion complex showed a significant reduction of parasite load compared to free PNT. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. New iridium dopants forg white phosphorescent devices: enhancement of efficiency and color stability by an energy-harvesting layer.

    PubMed

    Chou, Ho-Hsiu; Li, Yi-Kai; Chen, Yu-Han; Chang, Ching-Chih; Liao, Chuang-Yi; Cheng, Chien-Hong

    2013-07-10

    A new light blue complex (fmoppy)2Ir(tfpypz) [bis(4'-fluoro-6'-methoxylphenyl pyridinato)-iridium(III)-3-(trifluoromethyl)-5-(pyridin-2-yl)-1,2,4-triazolate] and a new orange complex (dpiq)2Ir(acac) [bis(3,4-diphenylisoquinoline)-iridium(III)-acetylacetonate] were synthesized. These two complexes were used as the dopants for the fabrication of two-element white phosphorescent devices. Via the introduction of a thin energy-harvesting layer (EHL) to harvest the extra energy and exciton from the emission zone, highly efficient two-element white devices with excellent color stability were created. One of the best devices shows yellow-white color emission with an extremely high external quantum efficiency (EQE) of 21.5% and a current efficiency of 68.8 cd/A. The other device gave a pure white emission with an external quantum efficiency of 19.2% and a current efficiency of 53.2 cd/A. At a high brightness of 1000 cd/m(2), the EQE still remains as high as 18.9 and 17.2%. With a brightness of 1000-10000 cd/m(2), the CIE coordinates of these two devices shift by only (0.02, ≤0.01). The white phosphorescent devices with the EHL showed much higher efficiency and better color stability than the one without the EHL.

  2. Antibody-based delivery of tumor necrosis factor (L19-TNFα) and interleukin-2 (L19-IL2) to tumor-associated blood vessels has potent immunological and anticancer activity in the syngeneic J558L BALB/c myeloma model.

    PubMed

    Menssen, Hans D; Harnack, Ulf; Erben, Ulrike; Neri, Dario; Hirsch, Burkhard; Dürkop, Horst

    2018-03-01

    To analyze the impact of TNFα or IL2 on human lymphocytes in vitro and the anti-tumor and immune-modifying effects of L19-IL2 and L19-TNFα on subcutaneously growing J558L myeloma in immunocompetent mice. PBMCs from three healthy volunteers were incubated with IL2, TNFα, or with IL2 plus addition of TNFα (final 20 h). BALB/c J558L mice with subcutaneous tumors were treated with intravenous L19-TNFα plus L19-IL2, or controls. Tumor growth and intra- and peri-tumoral tissues were analyzed for micro-vessel density, necrosis, immune cell composition, and PD1 or PD-L1 expressing cells. Exposure of PBMC in vitro to IL2, TNFα, or to IL2 over 3 and 5 days plus TNFα for the final 20 h resulted in an approximately 50 and 75% reduction of the CD25low effector cell/CD25high Treg cell ratio, respectively, compared to medium control. IL2 or TNFα increased the proportion of CD4- CD25low effector lymphocytes while reducing the proportion of CD4+ CD25low Teff cells. In the J558L myeloma model, tumor eradication was observed in 58, 42, 25, and 0% of mice treated with L19-TNFα plus L19-IL2, L19-TNFα, L19-IL2, and PBS, respectively. L19-TNFα/L19-IL2 combination caused tumor necrosis, capillary density doubling, peri-tumoral T cell and PD1+ T cell reduction (- 50%), and an increase in PD-L1+ myeloma cells. IL2, TNFα, or IL2 plus TNFα (final 20 h) increased the proportion of CD4- CD25low effector lymphocytes possibly indicating immune activation. L19-TNFα/L19-IL2 combination therapy eradicated tumors in J558L myeloma BALB/c mice likely via TNFα-induced tumor necrosis and L19-TNFα/L19-IL2-mediated local cellular immune reactions.

  3. Increased expression of activation antigens on CD8+ T lymphocytes in Myalgic Encephalomyelitis/chronic fatigue syndrome: inverse associations with lowered CD19+ expression and CD4+/CD8+ ratio, but no associations with (auto)immune, leaky gut, oxidative and nitrosative stress biomarkers.

    PubMed

    Maes, Michael; Bosmans, Eugene; Kubera, Marta

    2015-01-01

    There is now evidence that specific subgroups of patients with Myalgic Encephalomyelitis / chronic fatigue syndrome (ME/CFS) suffer from a neuro-psychiatric-immune disorder. This study was carried out to delineate the expression of the activation markers CD38 and human leukocyte antigen (HLA) DR on CD4+ and CD8+ peripheral blood lymphocytes in ME/CFS. Proportions and absolute numbers of peripheral lymphocytes expressing CD3+, CD19+, CD4+, CD8+, CD38+ and HLA-DR+ were measured in ME/CFS (n=139), chronic fatigue (CF, n=65) and normal controls (n=40). The proportions of CD3+, CD8+, CD8+CD38+ and CD8+HLA-DR+ were significantly higher in ME/CFS patients than controls, while CD38+, CD8+CD38+, CD8+HLA-DR+ and CD38+HLA-DR+ were significantly higher in ME/CFS than CF. The percentage of CD19+ cells and the CD4+/CD8+ ratio were significantly lower in ME/CFS and CF than in controls. There were highly significant inverse correlations between the increased expression of CD38+, especially that of CD8+CD38+, and the lowered CD4+/CD8+ ratio and CD19+ expression. There were no significant associations between the flow cytometric results and severity or duration of illness and peripheral blood biomarkers of oxidative and nitrosative stress (O&NS, i.e. IgM responses to O&N modified epitopes), leaky gut (IgM or IgA responses to LPS of gut commensal bacteria), cytokines (interleukin-1, tumor necrosis factor-α), neopterin, lysozyme and autoimmune responses to serotonin. The results support that a) increased CD38 and HLA-DR expression on CD8+ T cells are biomarkers of ME/CFS; b) increased CD38 antigen expression may contribute to suppression of the CD4+/CD8+ ratio and CD19+ expression; c) there are different immune subgroups of ME/CFS patients, e.g. increased CD8+ activation marker expression versus inflammation or O&NS processes; and d) viral infections or reactivation may play a role in a some ME/CFS patients.

  4. Interaction of a dinuclear fluorescent Cd(II) complex of calix[4]arene conjugate with phosphates and its applicability in cell imaging.

    PubMed

    Sreenivasu Mummidivarapu, V V; Hinge, Vijaya Kumar; Rao, Chebrolu Pulla

    2015-01-21

    A triazole-linked hydroxyethylimino conjugate of calix[4]arene () and its cadmium complex have been synthesized and characterized, and their structures have been established. In the complex, both the Cd(2+) centers are bound by an N2O4 core, and one of it is a distorted octahedral, whereas the other is a trigonal anti-prism. The fluorescence intensity of the di-nuclear Cd(ii) complex is quenched only in the presence of phosphates and not with other anions studied owing to their binding affinities and the nature of the interaction of the phosphates with Cd(2+). These are evident even from their absorption spectra. Different phosphates exhibit changes in both their fluorescence as well as absorption spectra to varying extents, suggesting their differential interactions. Among the six phosphates, H2PO4(-) has higher fluorescence quenching even at low equivalents of this ion, whereas P2O7(4-) shows only 50% quenching even at 10 equivalents. The fluorescence quenching is considerable even at 20 ppb (0.2 μM) of H2PO4(-), whereas all other phosphates require a concentration of 50-580 ppb to exhibit the same effect on fluorescence spectra. Thus, the interaction of H2PO4(-) is more effective by ∼30 fold as compared to that of P2O7(4-). Fluorescence quenching by phosphate is due to the release of from its original cadmium complex via the formation of a ternary species followed by the capture of Cd(2+) by the phosphate, as delineated based on the combination of spectral techniques, such as absorption, emission, (1)H NMR and ESI MS. The relative interactive abilities of the six phosphates differ from each other. The removal of Cd(2+) is demonstrated to be reversible by the repeated addition of the phosphate followed by Cd(2+). The characteristics of the ternary species formed in each of these six phosphates have been computationally modeled using molecular mechanics. The computational study revealed that the coordination between cadmium and -CH2-CH2-OH breaks and new coordination is established through the phosphate oxygens, and as a result the Cd(2+) center acquires a distorted octahedral geometry. The utility of the complex was demonstrated in HeLa cells.

  5. Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH+ Transition in [FeFe] Hydrogenase.

    PubMed

    Ratzloff, Michael W; Wilker, Molly B; Mulder, David W; Lubner, Carolyn E; Hamby, Hayden; Brown, Katherine A; Dukovic, Gordana; King, Paul W

    2017-09-20

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox →H red H + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ∼2.5-fold kinetic isotope effect. Overall, these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox →H red H + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.

  6. Frequency of paroxysmal nocturnal hemoglobinuria in patients attended in Belém, Pará, Brazil

    PubMed Central

    de Brito Junior, Lacy Cardoso; Cardoso, Maria do Socorro de Oliveira; Rocha, Euzamar Gaby; Anijar, Herika; Cunha, Mariana; Saraiva, João Carlos Pina

    2011-01-01

    Background Paroxysmal nocturnal hemoglobinuria is a hematological disease with complex physiopathology. It is genetically characterized by a somatic mutation in the PIG-A gene (phosphatidylinositol glycan anchor biosynthesis, class A), in which the best known antigens are DAF (decay accelerating factor or CD55) and MIRL (membrane inhibitor of reactive lysis or CD59). Objective To determine the frequency of paroxysmal nocturnal hemoglobinuria in patients attended at the HEMOPA foundation from November 2008 to July 2009. Method Thirty patients, with ages ranging from two to 79 years old and suspected of having paroxysmal nocturnal hemoglobinuria were examined. All patients were immunophenotyped by flow cytometry for the CD5, CD59, CD16 and CD45 antigens. Results Paroxysmal nocturnal hemoglobinuria was identified in nine of the thirty patients investigated. Another 3 cases had inconclusive results with CD59-negative labeling only for neutrophils. The highest frequency of paroxysmal nocturnal hemoglobinuria patients (7/9) and inconclusive cases (2/3) were between 19 years old and 48 years old, with a median of 28 years. Conclusion These results show the importance of flow cytometry to identify cases in which patients are deficient in only one antigen (CD59). PMID:23284241

  7. The gene coding for the B cell surface protein CD19 is localized on human chromosome 16p11.

    PubMed

    Stapleton, P; Kozmik, Z; Weith, A; Busslinger, M

    1995-02-01

    The CD19 gene codes for one of the earliest markers of the human B cell lineage and is a target for the B lymphoid-specific transcription factor BSAP (Pax-5). The transmembrane protein CD19 has been implicated in controlling proliferation of mature B lymphocytes by modulating signal transduction through the antigen receptor. In this study, we have employed Southern blot and fluorescence in situ hybridization analyses to localize the CD19 gene to human chromosome 16p11.

  8. Determinants of Risk Infection During Therapy with Anti TNF-Alpha Blocking Agents in Rheumatoid Arthritis

    PubMed Central

    Benucci, M; Saviola, G; Baiardi, P; Manfredi, M; Sarzi Puttini, P; Atzeni, Fabiola

    2012-01-01

    The use of TNF-alpha antagonists (infliximab, etanercept, adalimumab) has changed the course of many rheumatic diseases including rheumatoid arthritis (RA). Since their approval, some questions regarding their safety including infections have been observed. The aim of the study was to evaluate the changes in cytokines levels and cells subsets in patients with RA during anti TNF blocking agents treatment and the possible effect on infections’ development. We evaluated in 89 RA patients [39 treated with etanercept (ETN), 29 with adalimumab (ADA) and 21 with infliximab (IFN)] at baseline and after 6 months the following parameters: procalcitonin, ESR, CRP, cytokines as TNF, IL-6, IL-10, IL-8 and the TNF/IL-10 ratio, and peripheral mononuclear cells as CD3+, CD3+/CD4+, CD3+/CD8+, CD19+, CD3- /CD16+/56+, CD14+HLADR+, CD20+, CD19+/CD38+. Peripheral mononuclear cells were detected by flow cytometric system Cytomics FC500 and cytokines circulating levels by a quantitative sandwich enzyme immunoassay technique (Human IL-8 Instant ELISAe Bioscience, Human IL-6 Instant ELISA e Bioscience, Human IL-10 Instant ELISAe Bioscience and Human TNF-a Quantikine immunoassay RD system). A lower reduction of CD14+HLADR+ in ADA group 54.6±10.4% vs ETA 48.4±15.7% vs INF 40.7±16.5%, p<0.039 was found. No differences in all three groups on peripheral mononuclear cells CD3+, CD3+/CD4+, CD3+/CD8+, CD19+, CD 20+, CD19+/CD38+, CD3-/CD16+/56+, and cytokine circulating levels were found. The number of infections at 6 months was: 10.3% in ADA group, 12.8% in ETN group and 19.04% in IFN group. A correlation was found between the reduction in CD14+HLADR+ cells and IFN treatment. Our data showed that the level of CD14+HLADR+ cells was reduced during therapy with IFN. ADA and ETN don’t reduce lymphocyte populations and their subsets such as CD14+HLADR+ cells that play an important role host defence. PMID:22655000

  9. ;Host-guest; interactions in Captisol®/Coumestrol inclusion complex: UV-vis, FTIR-ATR and Raman studies

    NASA Astrophysics Data System (ADS)

    Venuti, Valentina; Stancanelli, Rosanna; Acri, Giuseppe; Crupi, Vincenza; Paladini, Giuseppe; Testagrossa, Barbara; Tommasini, Silvana; Ventura, Cinzia Anna; Majolino, Domenico

    2017-10-01

    The ability of Captisol® (sulphobutylether-β-cyclodextrin, SBE-β-CD), to form inclusion complexes, both in solution and in the solid state, has been tested in order to improve some unfavorable chemical-physical characteristics, such as poor solubility in water, of a bioflavonoid, Coumestrol (Coum), well known for its anti-oxidant, anti-inflammatory, anti-fungal and anti-viral activity. In pure water, a phase-solubility study was carried out to evaluate the enhancement of the solubility of Coum and, therefore, the occurred complexation with the macrocycle. The stoichiometry and the stability constant of the SBE-β-CD/Coum complex were calculated with the phase solubility method and through the Job's plot. After that, the solid SBE-β-CD/Coum complex was prepared utilizing a kneading method. The spectral changes induced by complexation on characteristic vibrational band of Coum were complementary investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and Raman spectroscopy, putting into evidence the guest chemical groups involved in the "host-guest" interactions responsible of the formation and stabilization of the complex. Particular attention was paid to the Cdbnd O and Osbnd H stretching vibrations, whose temperature-evolution respectively furnished the enthalpy changes associated to the binding of host and guest in solid phase and to the reorganization of the hydrogen bond scheme upon complexation. From the whole set of results, an inclusion geometry is also proposed.

  10. Sequential Metabolism of Secondary Alkyl Amines to Metabolic-Intermediate Complexes: Opposing Roles for the Secondary Hydroxylamine and Primary Amine Metabolites of Desipramine, (S)-Fluoxetine, and N-Desmethyldiltiazem

    PubMed Central

    Hanson, Kelsey L.; VandenBrink, Brooke M.; Babu, Kantipudi N.; Allen, Kyle E.; Nelson, Wendel L.

    2010-01-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine ≫ primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d3-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation. PMID:20200233

  11. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.

    PubMed

    Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L

    2010-06-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.

  12. Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.

    2014-03-01

    Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.

  13. All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters.

    PubMed

    López Marzo, Adaris M; Pons, Josefina; Blake, Diane A; Merkoçi, Arben

    2013-04-02

    Nowadays, the development of systems, devices, or methods that integrate several process steps into one multifunctional step for clinical, environmental, or industrial purposes constitutes a challenge for many ongoing research projects. Here, we present a new integrated paper based cadmium (Cd(2+)) immunosensing system in lateral flow format, which integrates the sample treatment process with the analyte detection process. The principle of Cd(2+) detection is based on competitive reaction between the cadmium-ethylenediaminetetraacetic acid-bovine serum albumin-gold nanoparticles (Cd-EDTA-BSA-AuNP) conjugate deposited on the conjugation pad strip and the Cd-EDTA complex formed in the analysis sample for the same binding sites of the 2A81G5 monoclonal antibody (mAb), specific to Cd-EDTA but not Cd(2+) free, which is immobilized onto the test line. This platform operates without any sample pretreatment step for Cd(2+) detection thanks to an extra conjugation pad that ensures Cd(2+) complexation with EDTA and interference masking through ovalbumin (OVA). The detection and quantification limits found for the device were 0.1 and 0.4 ppb, respectively, these being the lowest limits reported up to now for metal sensors based on paper. The accuracy of the device was evaluated by addition of known quantities of Cd(2+) to different drinking water samples and subsequent Cd(2+) content analysis. Sample recoveries ranged from 95 to 105% and the coefficient of variation for the intermediate precision assay was less than 10%. In addition, the results obtained here were compared with those obtained with the well-established inductively coupled plasma emission spectroscopy (ICPES) and the analysis of certificate standard samples.

  14. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    PubMed

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  15. Role of the copper-oxygen defect in cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Corwine, Caroline R.

    Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O. Photoluminescence on the sX samples revealed a unique transition at 1.456 eV, identical to the one seen in CSS thin-film CdTe, only when both Cu and O were introduced simultaneously. Theoretical calculations indicate that this PL line is likely a transition between the valence band and a Cui-OTe donor complex 150 meV below the conduction band. Formation of a Cui-OT, donor complex was expected to limit the performance of the CdS/CdTe solar cell. However, this was difficult to observe in the prepared devices, likely because other beneficial processes occurred simultaneously, such as formation of CUCd acceptors in the CdTe layer and improvement in the quality of the back contact by including Cu. It was possible to see the theoretical effects of this defect using AMPS--1D numerical simulations. The simulated J-V curves indicated that a donor level 150 meV from the conduction band would reduce the Voc, hence reducing the overall device efficiency. Therefore, despite the lack of direct experimental evidence, it is very plausible that the CU i-OTe defect observed with photoluminescence may serve to limit the possible attainable efficiency in CdS/CdTe solar cells.

  16. A new approach to study cadmium complexes with oxalic acid in soil solution.

    PubMed

    Dytrtová, Jana Jaklová; Jakl, Michal; Sestáková, Ivana; Zins, Emilie-Laure; Schröder, Detlef; Navrátil, Tomáš

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH(2)) were observed. In order to verify the possible formation of complexes with OAH(2), aqueous solutions of OAH(2) with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd(n)(X,Y)((2n+1))](-), where n is the number of cadmium atoms, X=Cl(-), and Y=OAH(-). Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation.

    PubMed

    Wang, Aiyun; Wang, Minyan; Liao, Qi; He, Xiquan

    2016-03-01

    Maize (Zea mays) has low Cd accumulation in grains and a high biomass compared to other crops. The capacities for Cd accumulation in different maize cultivars are, however, not fully understood. To reduce human health risk from maize grown in Cd-contaminated soil and to provide promising maize cultivars for the phytoremediation of Cd-polluted soil, a field experiment was conducted to screen low-Cd- and high-Cd-accumulation maize cultivars by evaluating the yield, Cd uptake, translocation, and accumulation differences among 19 maize cultivars. There were differences in straw dry weight (DW), root DW, and yield among the 19 cultivars. The cultivars Yudan19, Zhengda999, and Xianyu508 had a higher production compared to that of the other cultivars. The Cd concentrations in the roots were much higher than those in the straws and grains in all cultivars. The Cd accumulation factors (AFS) decreased in the order of accumulation factors in root (AFrs) > accumulation factors in straw (AFss) > accumulation factors in grain (AFgs). The Cd translocation factors (TFs) from root to straw (TFrs) were significantly (p < 0.05) larger than those from straw to grain (TFsg) among all of the cultivars. The TFs for all of the cultivars was less than 1, and the lowest TFsg (0.23) was found in cultivar Xiangyongdan3. The correlation analysis indicated that Cd concentrations in straws showed a significant (p < 0.01) as well as positive correlation with TFrs while a negative correlation with TFsg (p < 0.01). Moreover, Cd accumulation in different tissues decreased in the order straw > grain > root. Among the 19 maize cultivars, Jixiang2118 and Kangnong18 accumulated the highest Cd amount in the aboveground tissues, and the corresponding values were 7,206.51 and 6,598.68 mg hm(-2), respectively. A hierarchical cluster analysis based on the Cd concentrations in grains and straws classified the 19 maize cultivars into four and two groups for a 0.4 minimum distance between clusters, respectively. Yudan19, Zhengda999, and Xianyu508 can be classified into one group in which low Cd in grains meeting the Cd tolerance limit in foods set by China National Standard, suggesting that those cultivars are safety for food and human health. However, Jixiang2118 and Kangnong18 can be classified as another group with potential application for phytoremediation in slightly or moderately Cd-polluted soil because of the high Cd accumulation in the aboveground tissues.

  18. Method and making group IIB metal - telluride films and solar cells

    DOEpatents

    Basol, Bulent M.; Kapur, Vijay K.

    1990-08-21

    A technique is disclosed forming thin films (13) of group IIB metal-telluride, such as Cd.sub.x Zn.sub.1-x Te (0.ltoreq.x.ltoreq.1), on a substrate (10) which comprises depositing Te (18) and at least one of the elements (19) of Cd, Zn, and Hg onto a substrate and then heating the elements to form the telluride. A technique is also provided for doping this material by chemically forming a thin layer of a dopant on the surface of the unreacted elements and then heating the elements along with the layer of dopant. A method is disclosed of fabricating a thin film photovoltaic cell which comprises depositing Te and at least one of the elements of Cd, Zn, and Hg onto a substrate which contains on its surface a semiconductor film (12) and then heating the elements in the presence of a halide of the Group IIB metals, causing the formation of solar cell grade Group IIB metal-telluride film and also causing the formation of a rectifying junction, in situ, between the semiconductor film on the substrate and the Group IIB metal-telluride layer which has been formed.

  19. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells.

    PubMed

    Deaglio, Silvia; Capobianco, Andrea; Bergui, Luciana; Dürig, Jan; Morabito, Fortunato; Dührsen, Ulrich; Malavasi, Fabio

    2003-09-15

    The prognosis for patients with B-cell chronic lymphocytic leukemia (B-CLL) is generally less favorable for those expressing CD38. Our working hypothesis is that CD38 is not merely a marker in B-CLL, but that it plays a receptor role with pathogenetic potential ruling the proliferation of the malignant clone. CD38 levels were generally low in the patients examined and monoclonal antibody (mAb) ligation was inefficient in signaling. Other cellular models indicated that molecular density and surface organization are critical for CD38 functionality. Interleukin 2 (IL-2) induced a marked up-modulation and surface rearrangement of CD38 in all the patients studied. On reaching a specific expression threshold, CD38 becomes an efficient receptor in purified B-CLL cells. Indeed, mAb ligation is followed by Ca2+ fluxes and by a markedly increased proliferation. The unsuitability of CD38 to perform as a receptor is obviated through close interaction with the B-cell-receptor (BCR) complex and CD19. On mAb binding, CD38 translocates to the membrane lipid microdomains, as shown by a colocalization with the GM1 ganglioside and with CD81, a raft-resident protein. Finally, CD38 signaling in IL-2-treated B-CLL cells prolonged survival and induced the appearance of plasmablasts, providing a pathogenetic hypothesis for the occurrence of Richter syndrome.

  20. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.).

    PubMed

    Xin, Juan; Zhao, Xiaohu; Tan, Qiling; Sun, Xuecheng; Hu, Chengxiao

    2017-11-01

    Cadmium (Cd) absorption and accumulation vary greatly not only among plant species but also among cultivars within the same species. In order to better understand the mechanisms of Cd absorption, transportation and distribution, we examined the differences of Cd absorption, translocation, subcellular distribution and chemical forms between L19, a Cd-tolerant genotype, and H4, a Cd-sensitive genotype, using kinetic analysis and soil culture experiment. Kinetic assays showed that the different Cd concentrations between the two cultivars might be ascribed to root absorption and translocation from root to shoot. The investigations of subcellular distribution and chemical forms verified that Cd concentrations of all subcellular fractions in H4 were all higher than in L19. Meanwhile, most of the Cd was associated with cell walls in the root of H4, but the Cd in the root of L19 and leaf of the two cultivars was mainly stored in soluble fraction, which could be one possible mechanism of tolerance to Cd toxicity. In addition, Cd fractions extracted by 1M NaCl and 2% HAC were predominant in root and leaf of both cultivars and the concentrations and proportions extracted by water and 80% ethanol in root and 1M NaCl in leaf were all higher in H4 than in L19. These results indicate that the Cd in H4 is more active than L19, which could be responsible for the sensitivity of H4 to Cd damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. In vitro effect of 4-pentylphenol and 3-methyl-4-nitrophenol on murine splenic lymphocyte populations and cytokine/granzyme production.

    PubMed

    Yang, Lubing; Ma, Sihui; Wan, Yifang; Duan, Shuqi; Ye, Siyan; Du, Shengjie; Ruan, Xinwei; Sheng, Xia; Weng, Qiang; Taya, Kazuyoshi; Xu, Meiyu

    2016-07-01

    Gasoline exhaust particles (GEP) and diesel exhaust particles (DEP) are considered to be some of the most important air pollutants. Among the many constituents in these pollutant particles, 4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC) are considered important phenolics in GEP and DEP, respectively. The aim of this study was to investigate the effect of in vitro exposure to commercially-supplied PP and PNMC on populations of, and production of interleukin (IL)-2, IL-4 and granzyme-B by, mouse splenic lymphocytes. After in vitro exposure to PP or PNMC for 48 h, splenocyte viability was measured, cell phenotypes, e.g. B-cell (CD19), T-cells (CD3), T-cell subsets (CD4 and CD8), were quantified by flow cytometry and production of IL-2, IL-4 and granzyme-B was assessed via ELISA. The oxidative toxicity of PP and PNMC toward the splenocytes was also evaluated using measures of hydroxyl radical and malondiadehyde production and changes in glutathione peroxidase and superoxide dismutase activities. Results showed that in vitro exposure to PP and PNMC inhibited splenic cell parameters in a dose-related manner. Exposure to PP and PNMC decreased splenic T-lymphocyte populations and splenocyte production of cytokines and granzyme B, as well as induced oxidative stress in the splenocytes. The results also showed that the percentages of CD3(+) T-cells overall and of CD4(+) and CD8(+) T-cells therein, among exposed splenocytes, were reduced; neither compound appeared to affect levels of CD19(+) B-cells. Overall, the suppressive effects of PP were stronger than PNMC. The data here provide support for the proposal that PP-/PNMC-induced toxicity in splenocytes may be due at least in part to oxidative damage and that PP and PNMC - as components of GEP and DEP - might significantly impact on splenic T-cell formation/release of cytokines/granzymes in situ.

  2. The mechanistic impact of CD22 engagement with epratuzumab on B cell function: Implications for the treatment of systemic lupus erythematosus.

    PubMed

    Dörner, Thomas; Shock, Anthony; Goldenberg, David M; Lipsky, Peter E

    2015-12-01

    Epratuzumab is a B-cell-directed non-depleting monoclonal antibody that targets CD22. It is currently being evaluated in two phase 3 clinical trials in patients with systemic lupus erythematosus (SLE), a disease associated with abnormalities in B-cell function and activation. The mechanism of action of epratuzumab involves perturbation of the B-cell receptor (BCR) signalling complex and intensification of the normal inhibitory role of CD22 on the BCR, leading to reduced signalling and diminished activation of B cells. Such effects may result from down-modulation of CD22 upon binding by epratuzumab, as well as decreased expression of other proteins involved in amplifying BCR signalling capability, notably CD19. The net result is blunting the capacity of antigen engagement to induce B-cell activation. The functional consequences of epratuzumab binding to CD22 include diminished B-cell proliferation, effects on adhesion molecule expression, and B-cell migration, as well as reduced production of pro-inflammatory cytokines, such as IL-6 and TNF. Studies in patients treated with epratuzumab have revealed a number of pharmacodynamic effects that are linked to the mechanism of action (i.e., a loss of the target molecule CD22 from the B-cell surface followed by a modest reduction in peripheral B-cell numbers after prolonged therapy). Together, these data indicate that epratuzumab therapy affords a unique means to modulate BCR complex expression and signalling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Induction of the Hajdu-Cheney Syndrome Mutation in CD19 B Cells in Mice Alters B-Cell Allocation but Not Skeletal Homeostasis.

    PubMed

    Yu, Jungeun; Zanotti, Stefano; Schilling, Lauren; Schoenherr, Chris; Economides, Aris N; Sanjay, Archana; Canalis, Ernesto

    2018-06-01

    Mice harboring Notch2 mutations replicating Hajdu-Cheney syndrome (Notch2 tm1.1ECan ) have osteopenia and exhibit an increase in splenic marginal zone B cells with a decrease in follicular B cells. Whether the altered B-cell allocation is responsible for the osteopenia of Notch2 tm1.1ECan mutants is unknown. To determine the effect of NOTCH2 activation in B cells on splenic B-cell allocation and skeletal phenotype, a conditional-by-inversion (COIN) Hajdu-Cheney syndrome allele of Notch2 (Notch2 [ΔPEST]COIN ) was used. Cre recombination generates a permanent Notch2 ΔPEST allele expressing a transcript for which sequences coding for the proline, glutamic acid, serine, and threonine-rich (PEST) domain are replaced by a stop codon. CD19-Cre drivers were backcrossed into Notch2 [ΔPEST]COIN/[ΔPEST]COIN to generate CD19-specific Notch2 ΔPEST/ΔPEST mutants and control Notch2 [ΔPEST]COIN/[ΔPEST]COIN littermates. There was an increase in marginal zone B cells and a decrease in follicular B cells in the spleen of CD19 Cre/WT ;Notch2 ΔPEST/ΔPEST mice, recapitulating the splenic phenotype of Notch2 tm1.1ECan mice. The effect was reproduced when the NOTCH1 intracellular domain was induced in CD19-expressing cells (CD19 Cre/WT ;Rosa Notch1/WT mice). However, neither CD19 Cre/WT ;Notch2 ΔPEST/ΔPEST nor CD19 Cre/WT ;Rosa Notch1/WT mice had a skeletal phenotype. Moreover, splenectomies in Notch2 tm1.1ECan mice did not reverse their osteopenic phenotype. In conclusion, Notch2 activation in CD19-expressing cells determines B-cell allocation in the spleen but has no skeletal consequences. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. CD19(+)CD21(low) B cells and patients at risk for NIH-defined chronic graft-versus-host disease with bronchiolitis obliterans syndrome.

    PubMed

    Kuzmina, Zoya; Krenn, Katharina; Petkov, Ventzislav; Körmöczi, Ulrike; Weigl, Roman; Rottal, Arno; Kalhs, Peter; Mitterbauer, Margit; Ponhold, Lothar; Dekan, Gerhard; Greinix, Hildegard T; Pickl, Winfried F

    2013-03-07

    Bronchiolitis obliterans syndrome (BOS), pathognomonic for chronic graft-versus-host disease (cGVHD) of the lung, is a progressive and often fatal complication after allogeneic hematopoietic cell transplantation (HCT). Biomarkers for the prediction and diagnosis of BOS are urgently needed to improve patients' prognosis. We prospectively evaluated B-cell subpopulations and B-cell activating factor (BAFF) in 136 patients (46 BOS, 41 no cGVHD, 49 cutaneous cGVHD) to define novel biomarkers for early diagnosis of National Institutes of Health-defined BOS diagnosed a median of 11 mo after HCT. Patients with newly diagnosed BOS had significantly higher percentages of CD19(+)CD21(low) B cells (25.5 versus 6.6%, P < .0001), BAFF (7.3 versus 3.5 ng/mL, P = .02), and BAFF/CD19(+) ratio (0.18 versus 0.02 ng/10(3) CD19(+) B cells, P 5 .007) compared with patients without cGVHD. The area under the receiver operating curve for CD19(+)CD21(low) B cells was 0.97 (95% confidence interval, 0.94-0.99) and a cutoff point >9% was optimal for diagnosing BOS in patients with first drop of pulmonary function tests with a sensitivity of 96% and a negative predictive value of 94%. Thus, elevated levels of CD19(+)CD21(low) B cells are a potential novel biomarker for HCT patients at risk for developing BOS at an early stage and could allow improvement of patient outcome.

  5. Changes of regulatory T and B cells in patients with papillary thyroid carcinoma after 131I radioablation: a preliminary study.

    PubMed

    Jiang, Lei; Zhan, Yanxia; Gu, Yusen; Ye, Yi; Cheng, Yunfeng; Shi, Hongcheng

    2013-01-01

    Introduction. Lymphocytic infiltration and specific lymphocytes subsets may play important roles in papillary thyroid carcinoma (PTC) progression and prognosis. In this study, we try to understand the influence of (131)I radioablation on the important lymphocytes subtypes of regulatory T and B cells (Tregs and Bregs). Methods. Peripheral blood mononuclear cells from 30 PTC patients before and after (131)I therapy, and 20 healthy donors were collected. The expression of Tregs (CD4(+)CD25(+)CD127(-/low)) and B cell (CD5(+)CD19(+)) and production and secretion of interleukin 10 (IL-10) were analyzed by FACS and ELISA assay, respectively. Results. For Tregs percentage in peripheral blood lymphocytes, there was no difference between pretreatment and control and between posttreatment and control. Compared with pretherapy, increased Tregs infiltration was noted in posttherapy (P < 0.05). Although no difference was between pretreatment and control, compared with these two groups, decreased CD19(+) and CD5(+)CD19(+) B cell percentage in posttreatment was observed (P < 0.05). Among these groups, no significant difference was displayed in intracellular IL-10 production and extracellular IL-10 secretion. Conclusions. (131)I Radioablation increased Tregs and decreased CD19(+) and CD5(+)CD19(+) B cells percentage after treatment. However, it has no effect on IL-10 and lymphocytes in peripheral blood. Therefore, longer follow-up of Tregs and Bregs should be further investigated.

  6. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain.

    PubMed

    Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria

    2018-01-01

    T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.

  7. Nanoliposome-Encapsulated Brinzolamide-hydropropyl-β-cyclodextrin Inclusion Complex: A Potential Therapeutic Ocular Drug-Delivery System

    PubMed Central

    Wang, Fazhan; Bao, Xingting; Fang, Aiping; Li, Huili; Zhou, Yang; Liu, Yongmei; Jiang, Chunling; Wu, Jinhui; Song, Xiangrong

    2018-01-01

    Novel ocular drug delivery systems (NODDSs) remain to be explored to overcome the anatomical and physiological barriers of the eyes. This study was to encapsulate brinzolamide (BRZ)-hydropropyl-β-cyclodextrin (HP-β-CD) inclusion complex (HP-β-CD/BRZ) into nanoliposomes and investigate its potential as one of NODDS to improve BRZ local glaucomatous therapeutic effect. HP-β-CD/BRZ was firstly prepared to enhance the solubility of poorly water-soluble BRZ. The HP-β-CD/BRZ loaded nanoliposomes (BCL) were subsequently constructed by thin-film dispersion method. After the optimization of the ratio of BRZ to HP-β-CD, the optimal BCL showed an average size of 82.29 ± 6.20 nm, ζ potential of -3.57 ± 0.46 mV and entrapment efficiency (EE) of 92.50 ± 2.10% with nearly spherical in shape. The X-ray diffraction (XRD) confirmed the formation of HP-β-CD/BRZ and BCL. The in vitro release study of BCL was evaluated using the dialysis technique, and BCL showed moderate sustained release. BCL (1 mg/mL BRZ) showed a 9.36-fold increase in the apparent permeability coefficient and had a sustained and enhanced intraocular pressure reduction efficacy when compared with the commercially available formulation (BRZ-Sus) (10 mg/mL BRZ). In conclusion, BCL might have a promising future as a NODDS for glaucoma treatment. PMID:29487529

  8. Homeostatic 'bystander' proliferation of human peripheral blood B cells in response to polyclonal T-cell stimulation in vitro.

    PubMed

    Jasiulewicz, Aleksandra; Lisowska, Katarzyna A; Pietruczuk, Krzysztof; Frąckowiak, Joanna; Fulop, Tamas; Witkowski, Jacek M

    2015-11-01

    The mechanisms of maintenance of adequate numbers of B lymphocytes and of protective levels of immunoglobulins in the absence of antigenic (re)stimulation remain not fully understood. Meanwhile, our results presented here show that both peripheral blood naive and memory B cells can be activated strongly and non-specifically (in a mitogen-like fashion) in 5-day in vitro cultures of anti-CD3- or concanavalin A (Con A)-stimulated peripheral blood mononuclear cells of healthy people. This polyclonal, bystander activation of the B cells includes multiple divisions of most of them (assessed here by the flow cytometric technique of dividing cell tracking) and significant antibody [immunoglobulin M (IgM) and IgG] secretion. Observed proliferation of the CD19(+) B cells depends on contact with stimulated T helper (Th) cells (via CD40-CD40L interaction) and on the response of B cells to secreted interleukins IL-5, IL-10 and IL-4, and is correlated with the levels of these Th-derived molecules, while it does not involve the ligation of the BCR/CD19 complex. We suggest that the effect might reflect the situation occurring in vivo as the homeostatic proliferation of otherwise non-stimulated, peripheral B lymphocytes, providing an always ready pool for efficient antibody production to any new (or cognate) antigen challenge. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Zinc and cadmium complexes of a plant metallothionein under radical stress: desulfurisation reactions associated with the formation of trans-lipids in model membranes.

    PubMed

    Torreggiani, Armida; Domènech, Jordi; Orihuela, Ruben; Ferreri, Carla; Atrian, Sílvia; Capdevila, Mercè; Chatgilialoglu, Chryssostomos

    2009-06-08

    Metallothioneins (MTs) are sulfur-rich proteins capable of binding metal ions to give metal clusters. The metal-MT aggregates used in this work were Zn- and Cd-QsMT, where QsMT is an MT from the plant Quercus suber. Reactions of reductive reactive species (H(*) atoms and e(aq)(-)), produced by gamma irradiation of water, with Zn- and Cd-QsMT were carried out in both aqueous solutions and vesicle suspensions, and were characterized by different approaches. By using a biomimetic model based on unsaturated lipid vesicle suspensions, the occurrence of tandem protein/lipid damage was shown. The reactions of reductive reactive species with methionine residues and/or sulfur-containing ligands afford diffusible sulfur-centred radicals, which migrate from the aqueous phase to the lipid bilayer and transform the cis double bond of the oleate moiety into the trans isomer. Tailored experiments allowed the reaction mechanism to be elucidated in some detail. The formation of sulfur-centred radicals is accompanied by the modification of the metal-QsMT complexes, which were monitored by various spectroscopic and spectrometric techniques (Raman, CD, and ESI-MS). Attack of the H(*) atom and e(aq)(-) on the metal-QsMT aggregates can induce significant structural changes such as partial deconstruction and/or rearrangement of the metal clusters and breaking of the protein backbone. Substantial differences were observed in the behaviour of the Zn- and Cd-QsMT aggregates towards the reactive species, depending on the different folding of the polypeptide in these two cases.

  10. Second-order data obtained by beta-cyclodextrin complexes: a novel approach for multicomponent analysis with three-way multivariate calibration methods.

    PubMed

    Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh

    2014-10-01

    This research reports the first application of β-cyclodextrin (β-CD) complexes as a new method for generation of three way data, combined with second-order calibration methods for quantification of a binary mixture of caffeic (CA) and vanillic (VA) acids, as model compounds in fruit juices samples. At first, the basic experimental parameters affecting the formation of inclusion complexes between target analytes and β-CD were investigated and optimized. Then under the optimum conditions, parallel factor analysis (PARAFAC) and bilinear least squares/residual bilinearization (BLLS/RBL) were applied for deconvolution of trilinear data to get spectral and concentration profiles of CA and VA as a function of β-CD concentrations. Due to severe concentration profile overlapping between CA and VA in β-CD concentration dimension, PARAFAC could not be successfully applied to the studied samples. So, BLLS/RBL performed better than PARAFAC. The resolution of the model compounds was possible due to differences in the spectral absorbance changes of the β-CD complexes signals of the investigated analytes, opening a new approach for second-order data generation. The proposed method was validated by comparison with a reference method based on high-performance liquid chromatography photodiode array detection (HPLC-PDA), and no significant differences were found between the reference values and the ones obtained with the proposed method. Such a chemometrics-based protocol may be a very promising tool for more analytical applications in real samples monitoring, due to its advantages of simplicity, rapidity, accuracy, sufficient spectral resolution and concentration prediction even in the presence of unknown interferents. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. [Evaluation of percentage of lymphocytes B with expression of co-receptors CD 40, CD22 and CD72 in hypertrophied adenoid at children with otitis media with effusion].

    PubMed

    Wysocka, Jolanta; Zelazowska-Rutkowska, Beata; Ratomski, Karol; Skotnicka, Bozena; Hassmann-Poznańska, Elzbieta

    2009-01-01

    In hypertrophied adenoid lymphocytes B make up about 60% all lymphocytes. When the lymphocytes B come in interaction with antigens this membranes signal be passed through their receptor (BCR) to interior of cell. This signal affect modulation on gene expression, activation from which depends activation, anergy or apoptosis of lymphocyte B. Accompany BCR co-receptors regulate his functions influence stimulate or inhibitive. To the most important co-receptors stepping out on lymphocyte B belong: CD40, CD22, CD72. The aim of study was evaluation of lymphocytes B (CD19) with co-expression with CD72 and CD40 receptors in hypertrophied adenoid with at children with otitis media with effusion. An investigation was executed in hypertrophied adenoids with or without otitis media with effusion. By flow cytometry percentage of lymphocytes B with co-receptors CD 40, CD22 and CD72 in was analyzed. The percentages of CD19+CD72+ lymphocytes in the group of children with adenoid hypertrophy and exudative otitis media were lower as compared to the reference group. However, the percentages of CD19+CD22+, CD19+CD40+ in the study group was approximate to the reference group. The lower percentage of lymphocytes B CD72 + near approximate percentages of lymphocytes B CD40+ and BCD22+ at children with otitis media with effusion can be the cause of incorrect humoral response in hypertrophied adenoid at children. Maybe it is cause reduced spontaneous production IgA and IgG through lymphocyte at children with otitis media with effusion.

  12. Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor

    PubMed Central

    Kochenderfer, James N.; Dudley, Mark E.; Kassim, Sadik H.; Somerville, Robert P.T.; Carpenter, Robert O.; Stetler-Stevenson, Maryalice; Yang, James C.; Phan, Giao Q.; Hughes, Marybeth S.; Sherry, Richard M.; Raffeld, Mark; Feldman, Steven; Lu, Lily; Li, Yong F.; Ngo, Lien T.; Goy, Andre; Feldman, Tatyana; Spaner, David E.; Wang, Michael L.; Chen, Clara C.; Kranick, Sarah M.; Nath, Avindra; Nathan, Debbie-Ann N.; Morton, Kathleen E.; Toomey, Mary Ann; Rosenberg, Steven A.

    2015-01-01

    Purpose T cells can be genetically modified to express an anti-CD19 chimeric antigen receptor (CAR). We assessed the safety and efficacy of administering autologous anti-CD19 CAR T cells to patients with advanced CD19+ B-cell malignancies. Patients and Methods We treated 15 patients with advanced B-cell malignancies. Nine patients had diffuse large B-cell lymphoma (DLBCL), two had indolent lymphomas, and four had chronic lymphocytic leukemia. Patients received a conditioning chemotherapy regimen of cyclophosphamide and fludarabine followed by a single infusion of anti-CD19 CAR T cells. Results Of 15 patients, eight achieved complete remissions (CRs), four achieved partial remissions, one had stable lymphoma, and two were not evaluable for response. CRs were obtained by four of seven evaluable patients with chemotherapy-refractory DLBCL; three of these four CRs are ongoing, with durations ranging from 9 to 22 months. Acute toxicities including fever, hypotension, delirium, and other neurologic toxicities occurred in some patients after infusion of anti-CD19 CAR T cells; these toxicities resolved within 3 weeks after cell infusion. One patient died suddenly as a result of an unknown cause 16 days after cell infusion. CAR T cells were detected in the blood of patients at peak levels, ranging from nine to 777 CAR-positive T cells/μL. Conclusion This is the first report to our knowledge of successful treatment of DLBCL with anti-CD19 CAR T cells. These results demonstrate the feasibility and effectiveness of treating chemotherapy-refractory B-cell malignancies with anti-CD19 CAR T cells. The numerous remissions obtained provide strong support for further development of this approach. PMID:25154820

  13. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  14. Assembly of the Herpes Simplex Virus Capsid: Preformed Triplexes Bind to the Nascent Capsid

    PubMed Central

    Spencer, Juliet V.; Newcomb, William W.; Thomsen, Darrell R.; Homa, Fred L.; Brown, Jay C.

    1998-01-01

    The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP232 heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP232 heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid. PMID:9557680

  15. Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age.

    PubMed

    Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Jantsch, Michael F; Loidl, Josef; Jantsch, Verena

    2010-03-15

    From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.

  16. Immunological alterations in individuals exposed to metal(loid)s in the Panasqueira mining area, Central Portugal.

    PubMed

    Coelho, Patrícia; García-Lestón, Julia; Costa, Solange; Costa, Carla; Silva, Susana; Fuchs, Dietmar; Geisler, Simon; Dall'Armi, Valentina; Zoffoli, Roberto; Bonassi, Stefano; Pásaro, Eduardo; Laffon, Blanca; Teixeira, João Paulo

    2014-03-15

    Environmental studies performed in Panasqueira mine area (central Portugal) identified high concentrations of several metal(loid)s in environmental media, and individuals environmentally and occupationally exposed showed higher levels of As, Cr, Mg, Mn, Mo, Pb and Zn in blood, urine, hair and nails when compared to unexposed controls. To evaluate the presence of immunological alterations attributable to environmental contamination, we quantified neopterin, kynurenine, tryptophan, and nitrite concentrations in plasma, and analysed the percentage of several lymphocytes subsets, namely CD3(+), CD4(+) and CD8(+) T-cells, CD19(+) B-cells, and CD16(+)56(+) natural killer (NK) cells in a group of individuals previously tested for metal(loid) levels in different biological matrices. The environmentally exposed group had significantly lower levels of %CD8(+) and higher CD4(+)/CD8(+) ratios, whereas the occupationally exposed individuals showed significant decreases in %CD3(+) and %CD4(+), and significant increases in %CD16(+)56(+), when compared to controls. Analysed biomarkers were found to be influenced by age, particularly neopterin, kynurenine and kynurenine to tryptophan ratio (Kyn/Trp) with significantly higher levels in older individuals, and %CD3(+), %CD8(+) and %CD19(+) with significantly lower values in older individuals. Males environmentally exposed showed significantly lower values of %CD19(+) when compared to control females. The concentration of Pb in toenails was associated to the level of neopterin, kynurenine and Kyn/Trp ratio (all direct), and the concentration of Mn in blood to the level of %CD8(+), %CD19(+) (both inverse) and CD4(+)/CD8(+) ratio (direct). Overall our results show that the metal(loid) contamination in Panasqueira mine area induced immunotoxic effects in exposed populations, possibly increasing susceptibility to diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Comparison of quantitative flow cytometric data provided by panels with lower and increased color number

    NASA Astrophysics Data System (ADS)

    Bocsi, József; Mittag, Anja; Pierzchalski, Arkadiusz; Baumgartner, Adolf; Dähnert, Ingo; Tárnok, Attila

    2012-03-01

    To date the flow cytometry (FCM) industry is booming with new generations of commercial clinical instruments. Long-term clinical studies have the dilemma that moving to new instruments being capable of more complex cell-analysis makes it difficult to compare new data with those obtained on older instruments with less complex analysis panels. Since 15 years we conduct follow-up studies on children with congenital heart diseases. In this period we moved from 2- to 3- and now to 10-color FCM immunophenotyping panels. Questions arise how to compare and transfer data from lower to higher level of complexity. Two comparable antibody panels for leukocyte immunophenotyping (12-tube 2-colors, and 9-tube 4-colors) were measured on a BD FACScalibur FCM (calibration: Spherotech beads) in 19 blood samples from children with congenital heart disease. This increase of colors was accompanied by moving antibodies that were in the 2-color panel either FITC or PE labeled to red dyes such as PerCP or APC. Algorithms were developed for bridging data for quantitative characterization of antigen expression (mean fluorescence intensity) and frequency of different cell subpopulations in combination with rainbow bead standard data. This approach worked for the most relevant antibodies (CD3, CD4, CD8 etc.) well, but rendered substantial uncertainty for activation markers (CD69 etc.). Our techniques are particularly well suited to the analysis in long-term studies and have the potential to compare older and recent results in a standardized way.

  18. Polymer/Nanocrystal Hybrid Solar Cells: Influence of Molecular Precursor Design on Film Nanomorphology, Charge Generation and Device Performance

    PubMed Central

    MacLachlan, Andrew J; Rath, Thomas; Cappel, Ute B; Dowland, Simon A; Amenitsch, Heinz; Knall, Astrid-Caroline; Buchmaier, Christine; Trimmel, Gregor; Nelson, Jenny; Haque, Saif A

    2015-01-01

    In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials. PMID:25866496

  19. Cytokeratin 19 (KRT19) has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and More Drug-Sensitive Cells.

    PubMed

    Saha, Subbroto Kumar; Kim, Kyeongseok; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2018-05-09

    Cytokeratin 19 ( KRT19 ) is a cytoplasmic intermediate filament protein, which is responsible for structural rigidity and multipurpose scaffolds. In several cancers, KRT19 is overexpressed and may play a crucial role in tumorigenic transformation. In our previous study, we revealed the role of KRT19 as signaling component which mediated Wnt/NOTCH crosstalk through NUMB transcription in breast cancer. Here, we investigated the function of KRT19 in cancer reprogramming and drug resistance in breast cancer cells. We found that expression of KRT19 was attenuated in several patients-derived breast cancer tissues and patients with a low expression of KRT19 were significantly correlated with poor prognosis in breast cancer patients. Consistently, highly aggressive and drug-resistant breast cancer patient-derived cancer stem cell-like cells (konkuk university-cancer stem cell-like cell (KU-CSLCs)) displayed higher expression of cancer stem cell (CSC) markers, including ALDH1 , CXCR4 , and CD133 , but a much lower expression of KRT19 than that is seen in highly aggressive triple negative breast cancer MDA-MB231 cells. Moreover, we revealed that the knockdown of KRT19 in MDA-MB231 cells led to an enhancement of cancer properties, such as cell proliferation, sphere formation, migration, and drug resistance, while the overexpression of KRT19 in KU-CSLCs resulted in the significant attenuation of cancer properties. KRT19 regulated cancer stem cell reprogramming by modulating the expression of cancer stem cell markers ( ALDH1 , CXCR4 , and CD133 ), as well as the phosphorylation of Src and GSK3β (Tyr216). Therefore, our data may imply that the modulation of KRT19 expression could be involved in cancer stem cell reprogramming and drug sensitivity, which might have clinical implications for cancer or cancer stem cell treatment.

  20. Cytokeratin 19 (KRT19) has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and More Drug-Sensitive Cells

    PubMed Central

    Kim, Kyeongseok; Yang, Gwang-Mo; Choi, Hye Yeon

    2018-01-01

    Cytokeratin 19 (KRT19) is a cytoplasmic intermediate filament protein, which is responsible for structural rigidity and multipurpose scaffolds. In several cancers, KRT19 is overexpressed and may play a crucial role in tumorigenic transformation. In our previous study, we revealed the role of KRT19 as signaling component which mediated Wnt/NOTCH crosstalk through NUMB transcription in breast cancer. Here, we investigated the function of KRT19 in cancer reprogramming and drug resistance in breast cancer cells. We found that expression of KRT19 was attenuated in several patients-derived breast cancer tissues and patients with a low expression of KRT19 were significantly correlated with poor prognosis in breast cancer patients. Consistently, highly aggressive and drug-resistant breast cancer patient-derived cancer stem cell-like cells (konkuk university-cancer stem cell-like cell (KU-CSLCs)) displayed higher expression of cancer stem cell (CSC) markers, including ALDH1, CXCR4, and CD133, but a much lower expression of KRT19 than that is seen in highly aggressive triple negative breast cancer MDA-MB231 cells. Moreover, we revealed that the knockdown of KRT19 in MDA-MB231 cells led to an enhancement of cancer properties, such as cell proliferation, sphere formation, migration, and drug resistance, while the overexpression of KRT19 in KU-CSLCs resulted in the significant attenuation of cancer properties. KRT19 regulated cancer stem cell reprogramming by modulating the expression of cancer stem cell markers (ALDH1, CXCR4, and CD133), as well as the phosphorylation of Src and GSK3β (Tyr216). Therefore, our data may imply that the modulation of KRT19 expression could be involved in cancer stem cell reprogramming and drug sensitivity, which might have clinical implications for cancer or cancer stem cell treatment. PMID:29747452

  1. Functional Macroautophagy Induction by Influenza A Virus without a Contribution to Major Histocompatibility Complex Class II-Restricted Presentation▿†

    PubMed Central

    Comber, Joseph D.; Robinson, Tara M.; Siciliano, Nicholas A.; Snook, Adam E.; Eisenlohr, Laurence C.

    2011-01-01

    Major histocompatibility complex (MHC) class II-presented peptides can be derived from both exogenous (extracellular) and endogenous (biosynthesized) sources of antigen. Although several endogenous antigen-processing pathways have been reported, little is known about their relative contributions to global CD4+ T cell responses against complex antigens. Using influenza virus for this purpose, we assessed the role of macroautophagy, a process in which cytosolic proteins are delivered to the lysosome by de novo vesicle formation and membrane fusion. Influenza infection triggered productive macroautophagy, and autophagy-dependent presentation was readily observed with model antigens that naturally traffic to the autophagosome. Furthermore, treatments that enhance or inhibit macroautophagy modulated the level of presentation from these model antigens. However, validated enzyme-linked immunospot (ELISpot) assays of influenza-specific CD4+ T cells from infected mice using a variety of antigen-presenting cells, including primary dendritic cells, revealed no detectable macroautophagy-dependent component. In contrast, the contribution of proteasome-dependent endogenous antigen processing to the global influenza CD4+ response was readily appreciated. The contribution of macroautophagy to the MHC class II-restricted response may vary depending upon the pathogen. PMID:21525345

  2. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  3. Adoptive immunotherapy utilizing anti-CD19 chimeric antigen receptor T-cells for B-cell malignancies.

    PubMed

    Oh, Iekuni; Oh, Yukiko; Ohmine, Ken

    2016-01-01

    Genetically modified T-cells with forced expression of anti-CD19 chimeric antigen receptor (CD19 CAR) have demonstrated promising clinical results for relapsed and refractory B cell malignancies in early clinical trial settings. The first beneficial tumor regressions were identified among approximately half of CLL patients in 2011. Similarly, CD19 CAR T-cells achieved remissions in about 80% of aggressive B-cell lymphomas in 2012. Furthermore, in 2013 this cellular therapy showed an extremely high rate of efficacy against refractory CD19 positive acute lymphoid leukemia, which had been regarded as the most difficult to treat hematologic disease. Recently, despite the absence of CD19 expression by neoplastic plasma cells, patients with refractory multiple myeloma achieved stringent complete remission after this therapy coupled with high dose chemotherapy and autologous stem cell transplantation. However, there are significant toxicities. Cytokine releasing syndrome and neurotoxicity are recognized as life-threatening adverse events. Although phase I/II clinical trials have just started in Japan, given the exciting results obtained to date, this cellular therapy is expected to be a novel breakthrough immunotherapy for treating refractory B-cell malignancies.

  4. Paving the road ahead for CD19 CAR T-cell therapy.

    PubMed

    Nellan, Anandani; Lee, Daniel W

    2015-11-01

    Modern immunotherapies, most notably in the form of anti-CD19 chimeric antigen receptor (CAR) T cells, have produced significant clinical responses in otherwise refractory pre-B-cell acute lymphoblastic leukemia patients. Several groups have simultaneously reported robust response rates in children and adults alike. These early studies indicate an impending shift in paradigm for the treatment of acute lymphoblastic leukemia. Incorporating CD19 CAR T-cell therapy into upfront or salvage regimens has its challenges and opportunities. Most CD19 CAR T-cell products in trial today are excellent at inducing minimal residual disease negative remissions, and most responding patients experience cytokine release syndrome and/or neurotoxicity. The challenges facing the CAR community involve how best to minimize the severity of cytokine release syndrome and neurotoxicity while maximizing antitumor efficacy, determining what role this therapy will play for the prophylaxis and treatment of central nervous system leukemia, and its implications on subsequent hematopoietic stem cell transplant given the emergence of CD19-negative relapses. CD19 CAR T-cell therapy is a powerful new tool in the oncologist's arsenal. How it is incorporated into standard practice and how it will shift survival curves are the exciting questions that are waiting to be answered.

  5. Crystal structures and magnetic properties of chiral heterobimetallic chains based on the dicyanoruthenate building block.

    PubMed

    Ru, Jing; Gao, Feng; Yao, Min-Xia; Wu, Tao; Zuo, Jing-Lin

    2014-12-28

    By the reaction of chiral Mn(III) Schiff-base complexes with the dicyanoruthenate building block, [Ru(salen)(CN)2](-) (salen(2-) = N,N'-ethylenebis(salicylideneimine) dianion), two couples of enantiomerically pure chiral cyano-bridged heterobimetallic one-dimensional (1D) chain complexes, [Mn((R,R)-salcy)Ru(salen)(CN)2]n (1-(RR)) and [Mn((S,S)-salcy)Ru(salen)(CN)2]n (1-(SS)) (Salcy = N,N'-(1,2-cyclohexanediylethylene)bis(salicylideneiminato) dianion), [Mn((R,R)-salphen)Ru(salen)(CN)2]n (2-(RR)) and [Mn((S,S)-salphen)Ru(salen)(CN)2]n (2-(SS)) (salphen = N,N'-(1,2-diphenylethylene)bis(salicylideneiminato) dianion), were synthesized and structurally characterized. Circular dichroism (CD) and vibrational circular dichroism (VCD) spectra confirm the enantiomeric nature of the optically active complexes. Structural analyses reveal the formation of neutral cyano-bridged zigzag single chains in 1-(RR) and 1-(SS), and double chains in 2-(RR) and 2-(SS). Magnetic studies show that antiferromagnetic coupling is operative between Ru(III) and Mn(III) centers bridged by cyanide. Compounds 1-(RR) and 1-(SS) show metamagnetic behavior with a critical field of about 7.2 kOe at 1.9 K resulting from the intermolecular π∙∙∙π interactions. Additionally, magnetostructural correlation for some typical cyano-bridged heterobimetallic Ru(III)-Mn(III) compounds is discussed.

  6. Viscosity reduction of isotonic solutions of the photosensitizer TPCS2a by cyclodextrin complexation.

    PubMed

    Tovsen, Marianne Lilletvedt; Tho, Ingunn; Tønnesen, Hanne Hjorth

    2018-02-01

    Meso-tetraphenyl chlorin disulphonate (TPCS 2a ) is a photosensitizer (PS) particularly developed and patented for use in the technology of photochemical internalization (PCI) against cancer. TPCS 2a is known to aggregate in aqueous media even at low concentrations (≥0.1 µM) and to form a high-viscosity network at clinically relevant concentrations (mM). The aim of this work was to evaluate the effect of two hydroxypropylated cyclodextrin derivatives of beta and gamma type, respectively i.e. HPβCD and HPγCD, on the aggregation and solubilization of TPCS 2a in isotonic solutions. Samples containing micromolar concentrations of TPCS 2a were studied spectrophotometrically, while samples containing a clinical relevant concentration (10 mM = 9 mg/ml) of TPCS 2a were evaluated by dynamic viscosity measurements. HPβCD was determined to be a more suitable solubilizer of TPCS 2a than HPγCD in aqueous media both in the absence and presence of salt. The complexation stoichiometry between TPCS 2a /HPβCD at micromolar to millimolar concentrations of TPCS 2a was determined to be 1:3 and 1:2 in the absence and presence of isotonic NaCl, respectively. The network of TPCS 2a (10 mM) was broken down in the presence of 3% w/v (= 20 mM) HPβCD, i.e. a 1:2 molar ratio between TPCS 2a and the cyclodextrin. Formation of the inclusion complex resulted in low viscosity samples both in water and in the presence of isotonic NaCl or phosphate buffered saline (PBS) at 25 °C and 37 °C.

  7. 4-1BB and CD28 Signaling Plays a Synergistic Role in Redirecting Umbilical Cord Blood T Cells Against B-Cell Malignancies

    PubMed Central

    Tammana, Syam; Huang, Xin; Wong, Marianna; Milone, Michael C.; Ma, Linan; Levine, Bruce L.; June, Carl H.; Wagner, John E.; Blazar, Bruce R.

    2010-01-01

    Abstract Umbilical cord blood (UCB) T cells can be redirected to kill leukemia and lymphoma cells by engineering with a single-chain chimeric antigen receptor (CAR) and thus may have general applications in adoptive cell therapy. However, the role of costimulatory molecules in UCB T-cell activation and effector functions in context with CAR remains elusive. To investigate the effect of costimulatory molecules (4-1BB and CD28) on UCB T cells, we transduced UCB T cells with lentiviral vectors expressing Green Fluorescent Protein (GFP) and CAR for CD19 containing an intracellular domain of the CD3ζ chain and either a 4-1BB (UCB-19BBζ) or a CD28 intracellular domain (UCB-1928ζ), both (UCB-1928BBζ), or neither (UCB-19ζ). We found that UCB-19BBζ and UCB-28BBζ T cells exhibited more cytotoxicity to CD19+ leukemia and lymphoma cell lines than UCB-19ζ and UCB-1928ζ, although differences in secretion of interleukin-2 and interferon-γ by these T cells were not evident. In vivo adoptive transfer of these T cells into intraperitoneal tumor-bearing mice demonstrated that UCB-19BBζ and UCB-1928BBζ T cells mounted the most potent antitumor response. The mice adoptively transferred with UCB-1928BBζ cells survived longer than the mice with UCB-19BBζ. Moreover, UCB-1928BBζ T cells mounted a more robust antitumor response than UCB-19BBζ in a systemic tumor model. Our data suggest a synergistic role of 4-1BB and CD28 costimulation in engineering antileukemia UCB effector cells and implicate a design for redirected UCB T-cell therapy for refractory leukemia. PMID:19719389

  8. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions.

    PubMed

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-19

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.

  9. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions

    NASA Astrophysics Data System (ADS)

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-01

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.

  10. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: itraconazole.

    PubMed

    Taupitz, Thomas; Dressman, Jennifer B; Buchanan, Charles M; Klein, Sandra

    2013-04-01

    The aim of the present series of experiments was to improve the solubility and dissolution/precipitation behaviour of a poorly soluble, weakly basic drug, using itraconazole as a case example. Binary inclusion complexes of itraconazole with two commonly used cyclodextrin derivatives and a recently introduced cyclodextrin derivative were prepared. Their solubility and dissolution behaviour was compared with that of the pure drug and the marketed formulation Sporanox®. Ternary complexes were prepared by addition of Soluplus®, a new highly water soluble polymer, during the formation of the itraconazole/cyclodextrin complex. A solid dispersion made of itraconazole and Soluplus® was also studied as a control. Solid state analysis was performed for all formulations and for pure itraconazole using powder X-ray diffraction (pX-RD) and differential scanning calorimetry (DSC). Solubility tests indicated that with all formulation approaches, the aqueous solubility of itraconazole formed with hydroxypropyl-β-cyclodextrin (HP-β-CD) or hydroxybutenyl-β-cyclodextrin (HBen-β-CD) and Soluplus® proved to be the most favourable formulation approaches. Whereas the marketed formulation and the pure drug showed very poor dissolution, both of these ternary inclusion complexes resulted in fast and extensive release of itraconazole in all test media. Using the results of the dissolution experiments, a newly developed physiologically based pharmacokinetic (PBPK) in silico model was applied to compare the in vivo behaviour of Sporanox® with the predicted performance of the most promising ternary complexes from the in vitro studies. The PBPK modelling predicted that the bioavailability of itraconazole is likely to be increased after oral administration of ternary complex formulations, especially when itraconazole is formulated as a ternary complex comprising HP-β-CD or HBen-β-CD and Soluplus®. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Effect of CdS Growth Time on the Optical Properties of One-Pot Preparation of CdS-Ag2S Binary Compounds

    NASA Astrophysics Data System (ADS)

    Karimipour, M.; Izadian, L.; Molaei, M.

    2018-02-01

    CdS-Ag2S binary nanoparticles were synthesized using a facile one-pot microwave irradiation method. The effect of initial nucleation of CdS quantum dots (QDs) using 3 min, 5 min, and 7 min of microwave irradiation on the optical properties of the final compound was studied. The composition and crystal structure of the compounds were verified using energy dispersive x-ray spectroscopy and x-ray diffraction. They revealed that existence of Ag and Cd elements with an atomic ratio of 0.19 crystalizes in the form of monoclinic Ag2S and hexagonal CdS. Scanning electron microscope images showed a spherical morphology of the resultant compound, and transmission electron microscope images showed the formation of fine particles of CdS-Ag2S composites with an average size of 5-7 nm and 10-14 nm for CdS and Ag2S, respectively. Photoluminescence spectroscopy revealed that the initial growth time of CdS has a crucial effect on the emission of binary compounds such that for 3 min and 5 min of irradiation of CdS solution, the binary compound obtains strong red and considerable near-IR emission (850 nm), but for longer time, it rapidly quenches. The results indicate that the strong red emission can be tuned from 600 nm up to 700 nm with prolonging nucleation time of CdS. This study also emphasized that the origin of red emission strongly depends on the size and defects created in the CdS QDs.

  12. Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex

    PubMed Central

    Elbediwy, Ahmed; Zihni, Ceniz; Terry, Stephen J.; Clark, Peter

    2012-01-01

    Epithelial cell–cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell–cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin–capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics. PMID:22891260

  13. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    PubMed

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L; Siminovitch, Katherine A; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Gupta, Namrata; Clemons, Paul A; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M

    2013-05-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA.

  14. Significant differences in B-cell subpopulations characterize patients with chronic graft-versus-host disease-associated dysgammaglobulinemia.

    PubMed

    Kuzmina, Zoya; Greinix, Hildegard T; Weigl, Roman; Körmöczi, Ulrike; Rottal, Arno; Frantal, Sophie; Eder, Sandra; Pickl, Winfried F

    2011-02-17

    Manifestations of chronic graft-versus-host disease (cGVHD) can resemble those seen in immunodeficiency states and autoimmune disorders. Reports by us and others suggest an involvement of B cells in the pathogenesis of cGVHD. We investigated B-lymphocyte subpopulations in cGVHD cohorts defined by serum immunoglobulin G (IgG) levels to characterize novel biomarkers for impairment of humoral immunity after allogeneic hematopoietic stem cell transplantation. Seventy-six patients were enrolled a median of 46 months after hematopoietic stem cell transplantation. The hypogammaglobulinemia group had significantly diminished CD19(+) B cells (165 vs 454 vs 417 × 10⁶L) with elevated CD19(+)CD21(low) immature (16.5%, 7.7%, and 9.1%) and CD19(+)CD21(int-high)CD38(high)IgM(high) transitional (10.5% vs 4.2% vs 6.3%) B-cell proportions compared with the normogammaglobulinemia and hypergammaglobulinemia groups. CD19(+)CD10(-)CD27(-)CD21(high) naive B cells were highly elevated in all patients with cGVHD. CD19(+)CD27(+)IgD(+) non-class-switched (4 vs 12 vs 11 × 10⁶/L) and class-switched (7 vs 35 vs 42 × 10⁶/L) memory B cells were significantly lower in the hypogammaglobulinemia group compared with the others. Besides significantly higher B-cell activation factor/B-cell ratios, significantly more cGVHD patients with hypergammaglobulinemia had autoantibodies compared with the hypogammaglobulinemia subgroup (68% vs 24%, P = .024). In conclusion, B-cell subpopulations can serve as novel cellular biomarkers for immunodeficiency and autoimmunity indicating different pathogenetic mechanisms of cGVHD and encouraging future prospective longitudinal studies.

  15. Reclamation with Recovery of Radionuclides and Toxic Metals from Contaminated Materials, Soils, and Wastes

    NASA Technical Reports Server (NTRS)

    Francis, A. J.; Dodge, C. J.

    1993-01-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  16. CD19-positive acute myeloblastic leukemia with trisomy 21 as a sole acquired karyotypic abnormality

    PubMed Central

    Wang, Hua-feng; Cheng, Yi-zhi; Wang, Huan-ping; Chen, Zhi-mei; Lou, Ji-yu; Jin, Jie

    2009-01-01

    We report that a 63-year-old Chinese female had acute myeloblastic leukemia (AML) in which trisomy 21 (+21) was found as the sole acquired karyotypic abnormality. The blasts were positive for myeloperoxidase, and the immunophenotype was positive for cluster of differentiation 19 (CD19), CD33, CD34, and human leukocyte antigens (HLA)-DR. The chromosomal analysis of bone marrow showed 47,XX,+21[2]/46,XX[18]. Fluorescent in situ hybridization (FISH) showed that three copies of AML1 were situated in separate chromosomes, and that t(8;21) was negative. The patient did not have any features of Down syndrome. A diagnosis of CD19-positive AML-M5 was established with trisomy 21 as a sole acquired karyotypic abnormality. The patient did not respond well to chemotherapy and died three months after the diagnosis. This is the first reported case of CD19-positive AML with trisomy 21 as the sole cytogenetic abnormality. The possible prognostic significance of the finding in AML with +21 as the sole acquired karyotypic abnormality was discussed. PMID:19882758

  17. Indirect consequences of exciplex states on the phosphorescence lifetime of phenazine-based 1,2,3-triazole luminescent probes.

    PubMed

    Costa, Bárbara B A; Jardim, Guilherme A M; Santos, Paloma L; Calado, Hállen D R; Monkman, Andrew P; Dias, Fernando B; da Silva Júnior, Eufrânio N; Cury, Luiz A

    2017-02-01

    The optical properties of phenazine derivative probe solutions involving intersystem crossing from singlet to triplet states were investigated by time resolved spectroscopy. The room temperature phosphorescence emission presented different time responses when Cd 2+ ions were bound to the probe chemical structure. The complex exciplex formation observed to occur in this case was not directly responsible for the change in the phosphorescence lifetime. This was more influenced by the new molecular conformation and modified spin-orbit coupling imposed by the binding of the Cd 2+ ions to the phenazine molecules.

  18. An efficient strategy for cell-based antibody library selection using an integrated vector system.

    PubMed

    Yoon, Hyerim; Song, Jin Myung; Ryu, Chun Jeih; Kim, Yeon-Gu; Lee, Eun Kyo; Kang, Sunghyun; Kim, Sang Jick

    2012-09-18

    Cell panning of phage-displayed antibody library is a powerful tool for the development of therapeutic and imaging agents since disease-related cell surface proteins in native complex conformation can be directly targeted. Here, we employed a strategy taking advantage of an integrated vector system which allows rapid conversion of scFv-displaying phage into scFv-Fc format for efficient cell-based scFv library selection on a tetraspanin protein, CD9. A mouse scFv library constructed by using a phagemid vector, pDR-D1 was subjected to cell panning against stable CD9 transfectant, and the scFv repertoire from the enriched phage pool was directly transferred to a mammalian cassette vector, pDR-OriP-Fc1. The resulting constructs enabled transient expression of enough amounts of scFv-Fcs in HEK293E cells, and flow cytometric screening of binders for CD9 transfectant could be performed simply by using the culture supernatants. All three clones selected from the screening showed correct CD9-specificity. They could immunoprecipitate CD9 molecules out of the transfectant cell lysate and correctly stain endogenous CD9 expression on cancer cell membrane. Furthermore, competition assay with a known anti-CD9 monoclonal antibody (mAb) suggested that the binding epitopes of some of them overlap with that of the mAb which resides within the large extracellular loop of CD9. This study demonstrates that scFv-Fc from mammalian transient expression can be chosen as a reliable format for rapid screening and validation in cell-based scFv library selection, and the strategy described here will be applicable to efficient discovery of antibodies to diverse cell-surface targets.

  19. CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer

    PubMed Central

    Wang, Weiwei; Yuan, Xiangliang; Chen, Hui; Xie, Guohua; Ma, Yanhui; Zheng, Yingxia; Zhou, Yunlan; Shen, Lisong

    2015-01-01

    Regulatory B cells (Bregs) play a critical role in inflammation and autoimmune disease. We characterized the role of Bregs in the progression of gastric cancer. We detected an increase in Bregs producing IL-10 both in peripheral blood mononuclear cells (PBMCs) and in gastric tumors. Multicolor flow cytometry analysis revealed that a subset of CD19+CD24hiCD38hi B cells produces IL-10. Functional studies indicated that increased Bregs do not inhibit the proliferation of CD3+T cells or CD4+ helper T cells (Th cells). However, Bregs do suppress the secretion of IFN-γ and TNF-α by CD4+Th cells. CD19+CD24hiCD38hiBregs were also found to correlate positively with CD4+FoxP3+ regulatory T cells (Tregs). Neutralization experiments showed that Bregs convert CD4+CD25− effector T cells to CD4+FoxP3+Tregs via TGF-β1. Collectively, these findings demonstrate that increased Bregs play a immunosuppressive role in gastric cancer by inhibiting T cells cytokines as well as conversion to Tregs. These results may provide new clues about the underlying mechanisms of immune escape in gastric cancer. PMID:26378021

  20. Activation Thermodynamics and H/D Kinetic Isotope Effect of the H ox to H red H + Transition in [FeFe] Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less

  1. Activation Thermodynamics and H/D Kinetic Isotope Effect of the H ox to H red H + Transition in [FeFe] Hydrogenase

    DOE PAGES

    Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.; ...

    2017-08-29

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less

  2. Genital and reproductive organ complications of Crohn disease: technical considerations as it relates to perianal disease, imaging features, and implications on management.

    PubMed

    Kammann, Steven; Menias, Christine; Hara, Amy; Moshiri, Mariam; Siegel, Cary; Safar, Bashar; Brandes, Steven; Shaaban, Akram; Sandrasegaran, Kumar

    2017-06-01

    A relatively large proportion of patients with Crohn disease (CD) develop complications including abscess formation, stricture, and penetrating disease. A subset of patients will have genital and reproductive organ involvement of CD, resulting in significant morbidity. These special circumstances create unique management challenges that must be tailored to the activity, location, and extent of disease. Familiarity with the epidemiology, pathogenesis, imaging features, and treatment strategies for patients with genital CD can aid imaging diagnoses and guide appropriate patient management. The purpose of this study is to illustrate the spectrum of CD in the genital tract and reproductive organs and discuss the complex management strategies in these patients as it relates to imaging. Given the impact on patient outcome and treatment planning, familiarity with the epidemiology, pathogenesis, imaging features, and treatment of patients with genital Crohn disease can aid radiologic diagnoses and guide appropriate patient management.

  3. The impact of dihydrogen phosphate anions on the excited-state proton transfer of harmane. Effect of β-cyclodextrin on these photoreactions.

    PubMed

    Reyman, Dolores; Viñas, Montserrat H; Tardajos, Gloria; Mazario, Eva

    2012-01-12

    Photoinduced proton transfer reactions of harmane (1-methyl-9H-pyrido[3,4-b]indole) (HAR) in the presence of a proton donor/acceptor such as dihydrogen phosphate anions in aqueous solution have been studied by stationary and time-resolved fluorescence spectroscopy. The presence of high amounts of dihydrogen phosphate ions modifies the acid/base properties of this alkaloid. Thus, by keeping the pH constant at pH 8.8 and by increasing the amount of NaH(2)PO(4) in the solution, it is possible to reproduce the same spectral profiles as those obtained in high alkaline solutions (pH >12) in the absence of NaH(2)PO(4). Under these conditions, a new fluorescence profile appears at around 520 nm. This result could be related to the results of a recent investigation which suggests that a high intake of phosphates may promote skin tumorigenesis. The presence of β-cyclodextrin (β-CD) avoids the proton transfer reactions in this alkaloid by means the formation of an inclusion complex between β-CD and HAR. The formation of this complex originates a remarkable enhancement of the emission intensity from the neutral form in contrast to the cationic and zwitterionic forms. A new lifetime was obtained at 360 nm (2.5 ns), which was associated with the emission of this inclusion complex. At this wavelength, the fluorescence intensity decay of HAR can be described by a linear combination of two exponentials. From the ratio between the pre-exponential factors, we have obtained a value of K = 501 M for the equilibrium of formation of this complex.

  4. Role of relative humidity and Cd/Zn stoichiometry in the photo-oxidation process of cadmium yellows (CdS/Cd1-xZnxS) in oil paintings.

    PubMed

    Monico, Letizia; Chieli, Annalisa; De Meyer, Steven; Cotte, Marine; de Nolf, Wout; Falkenberg, Gerald; Janssens, Koen; Romani, Aldo; Miliani, Costanza

    2018-06-06

    Cadmium yellows (CdYs) refer to a family of cadmium sulfide pigments which have been widely used by artists since the late 19th c. Despite being considered stable, they are suffering from discoloration in iconic paintings, such as Joy of Life by Matisse, Flowers in a blue vase by Van Gogh and the Scream by Munch, most likely due to the formation of CdSO₄·nH₂O. Questions about what the factors driving the CdYs degradation are and how they affect the overall process are still open. Here, we study a series of oil mock-up paints made of CdYs of different stoichiometry (CdS/Cd₀.₇₆Zn₀.₂₄S) and crystalline structure (hexagonal/cubic) before and after aging at variable relative humidity under exposure to light and in darkness. Synchrotron-based X-ray methods combined with UV-Visible and FTIR spectroscopies show that: (i) Cd₀.₇₆Zn₀.₂₄S is more susceptible to photo-oxidation than CdS; both compounds can act as photocatalysts for the oil oxidation. (ii) The photo-oxidation of CdS/Cd₀.₇₆Zn₀.₂₄S to CdSO₄·nH₂O is triggered by moisture. (iii) The nature of alteration products depends on the aging conditions and Cd/Zn stoichiometry. Based on our findings, we propose a scheme for the mechanism of the photocorrosion process and photocatalytic activity of CdY pigments in the oil binder. Overall, our results form a reliable basis for understanding the degradation of CdS-based paints of artworks and contribute towards developing better ways of preserving them for future generations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity.

    PubMed

    Ghosh, Arnab; Smith, Melody; James, Scott E; Davila, Marco L; Velardi, Enrico; Argyropoulos, Kimon V; Gunset, Gertrude; Perna, Fabiana; Kreines, Fabiana M; Levy, Emily R; Lieberman, Sophie; Jay, Hillary V; Tuckett, Andrea Z; Zakrzewski, Johannes L; Tan, Lisa; Young, Lauren F; Takvorian, Kate; Dudakov, Jarrod A; Jenq, Robert R; Hanash, Alan M; Motta, Ana Carolina F; Murphy, George F; Liu, Chen; Schietinger, Andrea; Sadelain, Michel; van den Brink, Marcel R M

    2017-02-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. However, graft-versus-host disease (GVHD) and relapse after allo-HSCT remain major impediments to the success of allo-HSCT. Chimeric antigen receptors (CARs) direct tumor cell recognition of adoptively transferred T cells. CD19 is an attractive CAR target, which is expressed in most B cell malignancies, as well as in healthy B cells. Clinical trials using autologous CD19-targeted T cells have shown remarkable promise in various B cell malignancies. However, the use of allogeneic CAR T cells poses a concern in that it may increase risk of the occurrence of GVHD, although this has not been reported in selected patients infused with donor-derived CD19 CAR T cells after allo-HSCT. To understand the mechanism whereby allogeneic CD19 CAR T cells may mediate anti-lymphoma activity without causing a significant increase in the incidence of GVHD, we studied donor-derived CD19 CAR T cells in allo-HSCT and lymphoma models in mice. We demonstrate that alloreactive T cells expressing CD28-costimulated CD19 CARs experience enhanced stimulation, resulting in the progressive loss of both their effector function and proliferative potential, clonal deletion, and significantly decreased occurrence of GVHD. Concurrently, the other CAR T cells that were present in bulk donor T cell populations retained their anti-lymphoma activity in accordance with the requirement that both the T cell receptor (TCR) and CAR be engaged to accelerate T cell exhaustion. In contrast, first-generation and 4-1BB-costimulated CAR T cells increased the occurrence of GVHD. These findings could explain the reduced risk of GVHD occurring with cumulative TCR and CAR signaling.

  6. Role of CD81 and CD58 in minimal residual disease detection in pediatric B lymphoblastic leukemia.

    PubMed

    Tsitsikov, E; Harris, M H; Silverman, L B; Sallan, S E; Weinberg, O K

    2018-06-01

    Minimal residual disease (MRD) in B lymphoblastic leukemia has been demonstrated to be a powerful predictor of clinical outcome in numerous studies in both children and adults. In this study, we evaluated 86 pediatric patients with both diagnostic and remission flow cytometry studies and compared expression of CD81, CD58, CD19, CD34, CD20, and CD38 in the detection of MRD. We evaluated 86 patients with B lymphoblastic leukemia who had both diagnostic studies and remission studies for the presence of MRD using multicolor flow cytometry. We established our detection limit for identifying abnormal lymphoblasts using serial dilutions. We also compared flow cytometry findings with molecular MRD detection in a subset of patients. We found that we can resolve differences between hematogones and lymphoblasts in 85 of 86 cases using a combination of CD45, CD19, CD34, CD10, CD20, CD38, CD58, and CD81. Our detection limit using flow cytometry is 0.002% for detecting a population of abnormal B lymphoblasts. Comparison with MRD assessment by molecular methods showed a high concordance rate with flow cytometry findings. Our study highlights importance of using multiple markers to detect MRD in B lymphoblastic leukemia. Our findings indicate that including both CD58 and CD81 markers in addition to CD19, CD34, CD20, CD38, and CD10 are helpful in MRD detection by flow cytometry. © 2018 John Wiley & Sons Ltd.

  7. Health Care Expenditures and Utilization for Children With Noncomplex Chronic Disease.

    PubMed

    Hoefgen, Erik R; Andrews, Annie L; Richardson, Troy; Hall, Matthew; Neff, John M; Macy, Michelle L; Bettenhausen, Jessica L; Shah, Samir S; Auger, Katherine A

    2017-09-01

    Pediatric health care expenditures and use vary by level of complexity and chronic illness. We sought to determine expenditures and use for children with noncomplex chronic diseases (NC-CDs). We performed a retrospective, cross-sectional analysis of Medicaid enrollees (ages 0-18 years) from January 1, 2012, through December 31, 2013, using administrative claims (the Truven MarketScan Medicaid Database). Patients were categorized by chronicity of illness by using 3M Health Information System's Clinical Risk Groups (CRGs) as follows: without chronic diseases (WO-CDs) (CRG 1-2), NC-CDs (CRG 3-5), and complex chronic diseases (C-CDs) (CRG 6-9). Primary outcomes were medical expenditures, including total annualized population expenditure and per-member per-year expenditure (PMPY). Secondary outcomes included the number of health care encounters over the 2-year period. There were 2 424 946 children who met inclusion criteria, 53% were WO-CD; 36% had an NC-CD; and 11% had a C-CD. Children with NC-CDs accounted for 33% ($2801 PMPY) of the annual spending compared with 20% ($1151 PMPY) accounted for by children WO-CDs and 47% ($12 569 PMPY) by children with C-CDs. The median outpatient visit count by group over the 2-year period was 15 (interquartile range [IQR] 10-25) for NC-CD, 8 (IQR 5-13) WO-CD, and 34 (IQR 19-72) for C-CD. Children with NC-CDs accounted for 33% of pediatric Medicaid expenditures and have significantly higher PMPY and aggregate annual expenditures than children WO-CDs. The annual aggregate expenditures of the NC-CD group represent a significant societal cost because of the high volume of children, extrapolated to ∼$34.9 billion annually in national Medicaid expenditures. Copyright © 2017 by the American Academy of Pediatrics.

  8. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes).

    PubMed

    Zhang, Feng; Wang, Xin; Yin, Daixia; Peng, Bo; Tan, Changyin; Liu, Yunguo; Tan, Xiaofei; Wu, Shixue

    2015-04-15

    This study investigated the efficiency and mechanisms of Cd removal by biochar pyrolyzed from water hyacinth (BC) at 250-550 °C. BC450 out-performed the other BCs at varying Cd concentrations and can remove nearly 100% Cd from aqueous solution within 1 h at initial Cd ≤ 50 mg l(-1). The process of Cd sorption by BC450 followed the pseudo-second order kinetics with the equilibrium being achieved after 24 h with initial Cd ranging from 100 to 500 mg l(-1). The maximum Cd sorption capacity of BC450 was estimated to be 70.3 mg g(-1) based on Langmuir model, which is prominent among a range of low-cost sorbents. Based on the balance analysis between cations released and Cd sorbed onto BC450 in combination with SEM-EDX and XPS data, ion-exchange followed by surface complexation is proposed as the dominant mechanism responsible for Cd immobilization by BC450. In parallel, XRD analysis also suggested the formation of insoluble Cd minerals (CdCO3, Cd3P2, Cd3(PO4)2 and K4CdCl6) from either (co)-precipitation or ion exchange. Results from this study highlighted that the conversion of water hyacinth into biochar is a promising method to achieve effective Cd immobilization and improved management of this highly problematic invasive species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Characterization of the Fine Specificity of Bovine CD8 T-Cell Responses to Defined Antigens from the Protozoan Parasite Theileria parva▿

    PubMed Central

    Graham, Simon P.; Pellé, Roger; Yamage, Mat; Mwangi, Duncan M.; Honda, Yoshikazu; Mwakubambanya, Ramadhan S.; de Villiers, Etienne P.; Abuya, Evelyne; Awino, Elias; Gachanja, James; Mbwika, Ferdinand; Muthiani, Anthony M.; Muriuki, Cecelia; Nyanjui, John K.; Onono, Fredrick O.; Osaso, Julius; Riitho, Victor; Saya, Rosemary M.; Ellis, Shirley A.; McKeever, Declan J.; MacHugh, Niall D.; Gilbert, Sarah C.; Audonnet, Jean-Christophe; Morrison, W. Ivan; van der Bruggen, Pierre; Taracha, Evans L. N.

    2008-01-01

    Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes. PMID:18070892

  10. Density functional theory (DFT) study of the gas-phase decomposition of the Cd[((i)Pr)2PSSe] 2 single-source precursor for the CVD of binary and ternary cadmium chalcogenides.

    PubMed

    Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A

    2014-11-01

    The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.

  11. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    PubMed

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-α and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7Rα(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. Copyright © 2015. Published by Elsevier GmbH.

  12. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma.

    PubMed Central

    Gamallo, C.; Palacios, J.; Suarez, A.; Pizarro, A.; Navarro, P.; Quintanilla, M.; Cano, A.

    1993-01-01

    Recently, a correlation has been suggested between a loss of E-cadherin (E-CD) and increased invasiveness of neoplastic cells. In this study, E-CD expression in breast cancer was investigated using an affinity-purified antibody (ECCD-2) in an immunoenzymatic (avidin-biotin-alkaline phosphatase) test. Intensity and extension of E-CD immunoreactivity were evaluated in 61 breast carcinomas and correlated with their histological type and grade, nodal involvement, and hormonal receptor status. Histological types were infiltrating ductal carcinoma of no special type (n = 54) and infiltrating lobular carcinoma (n = 7). All infiltrating ductal carcinomas of no special type except two grade 3 carcinomas showed positive immunoreactivity that was variable among different cases. Grade 1 breast carcinomas (n = 10) showed greater immunoreactivity than grade 2 (n = 25) and grade 3 (n = 19) carcinomas. E-CD immunoreactivity correlated positively with the degree of tubular formation and inversely with the mitoses number. None of the infiltrating lobular carcinomas expressed E-CD in their infiltrating cells, whereas they showed only weak immunostains in areas of atypical lobular hyperplasia and lobular carcinoma in situ. These results indicate that E-CD expression correlates with histological type and grade in breast carcinomas. Images Figure 1 Figure 2 Figure 3 PMID:7682767

  13. Decreased IL-10-producing regulatory B cells in patients with advanced mycosis fungoides.

    PubMed

    Akatsuka, Taro; Miyagaki, Tomomitsu; Nakajima, Rina; Kamijo, Hiroaki; Oka, Tomonori; Takahashi, Naomi; Suga, Hiraku; Yoshizaki, Ayumi; Asano, Yoshihide; Sugaya, Makoto; Sato, Shinichi

    2018-06-28

    Historically, B cells have been considered as positive regulators of humoral immune responses. Specific B-cell subsets, however, negatively regulate immune responses and are termed "regulatory B cells" (Bregs). Recently, Bregs have been linked to not only inflammatory and autoimmune diseases, but also malignancies via suppressing anti-tumour immunity. To investigate the involvement of Bregs in advanced mycosis fungoides (MF). The frequency of CD19 + CD24 hi CD27 + memory B cells and CD19 + CD24 hi CD38 hi transitional B cells (which enrich IL-10-producing Bregs) was examined in peripheral blood from patients with advanced MF (n = 11) and healthy controls (n = 9) by flow cytometry. The frequency of IL-10-producing Bregs was also measured by flow cytometry. The correlation between frequency or number of B-cell subsets and disease severity markers was also analysed. The frequency of CD19 + CD24 hi CD27 + B cells, CD19 + CD24 hi CD38 hi B cells, and IL-10-producing B cells was decreased in peripheral blood of advanced MF patients. The frequency and number of these B-cell subsets inversely correlated with serum soluble IL-2 receptor and serum lactate dehydrogenase levels. The development of IL-10-producing Bregs is impaired in patients with advanced MF and a decrease in IL-10-producing Bregs may play an important role in the progression of advanced MF.

  14. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II).

    PubMed

    Bhattacharya, Amrik; Naik, S N; Khare, S K

    2018-06-01

    In the present study, urease positive Serratia marcescens (NCIM2919) and Enterobacter cloacae EMB19 (MTCC10649) were individually evaluated for remediation of cadmium (II) using ureolysis-induced calcium carbonate precipitation. Both the cultures were observed to efficiently remove cadmium from the media through co-precipitation of Cd (II) and Ca (II). S. marcescens and E. cloacae EMB19, respectively showed 96 and 98% removal of initial 5.0 mg L -1 soluble Cd (II) from the urea and CaCl 2 laden media at 96 h of incubation period. At higher Cd (II) concentrations of 10 and 15 mg L -1 , cadmium removal efficiency was much higher in case of E. cloacae EMB19 compared to S. marcescens. In-vitro cadmium (II) remediation study using urease containing cell-free culture supernatant of S. marcescens and E. cloacae EMB19 showed respective 98 and 53% removal of initial 50 mg L -1  Cd (II) from the reaction mixtures in co-presence of Ca (II). While in sole presence of Cd (II), only 16 and 8% removal of Cd (II) were detected for S. marcescens and E. cloacae EMB19, respectively. The elemental analysis of the co-precipitated mineral products using Energy Dispersive X-ray spectroscopy (EDX) clearly showed the prevalence of Ca and Cd ions. The morphology Cd-Ca composites formed with respect to both the cultures were observed to be of different shape and size as revealed through Scanning Electron Microscopy (SEM). Entire study hence comes out with a sustainable bioremediation option which could be effectively used to tackle Cd (II) or other heavy metal pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effect of CdS nanocrystals on charge transport mechanism in poly(3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Khan, Mohd Taukeer; Almohammedi, Abdullah

    2017-08-01

    The present manuscript demonstrates the optical and electrical characteristics of poly(3-hexylthiophene) (P3HT) and cadmium sulphide (CdS) hybrid nanocomposites. Optical results suggest that there is a formation of charge transfer complex (CTC) between host P3HT and guest CdS nanocrystals (NCs). Electrical properties of P3HT and P3HT-CdS thin films have been studied in hole only device configurations at different temperatures (290 K-150 K), and results were analysed by the space charge limited conduction mechanism. Density of traps and characteristic trap energy increase on incorporation of inorganic NCs in the polymer matrix, which might be due to the additional favourable energy states created by CdS NCs in the band gap of P3HT. These additional trap states assist charge carriers to move quicker which results in enhancement of hole mobility from 7 × 10-6 to 5.5 × 10-5 cm2/V s in nanocomposites. These results suggest that the P3HT-CdS hybrid system has desirable optical and electrical properties for its applications to photovoltaics devices.

  16. SERS-Based Flavonoid Detection Using Ethylenediamine-β-Cyclodextrin as a Capturing Ligand

    PubMed Central

    Choi, Jae Min; Hahm, Eunil; Park, Kyeonghui; Jeong, Daham; Rho, Won-Yeop; Kim, Jaehi; Jeong, Dae Hong; Lee, Yoon-Sik; Jhang, Sung Ho; Chung, Hyun Jong; Cho, Eunae; Yu, Jae-Hyuk; Jun, Bong-Hyun; Jung, Seunho

    2017-01-01

    Ethylenediamine-modified β-cyclodextrin (Et-β-CD) was immobilized on aggregated silver nanoparticle (NP)-embedded silica NPs (SiO2@Ag@Et-β-CD NPs) for the effective detection of flavonoids. Silica NPs were used as the template for embedding silver NPs to create hot spots and enhance surface-enhanced Raman scattering (SERS) signals. Et-β-CD was immobilized on Ag NPs to capture flavonoids via host-guest inclusion complex formation, as indicated by enhanced ultraviolet absorption spectra. The resulting SiO2@Ag@Et-β-CD NPs were used as the SERS substrate for detecting flavonoids, such as hesperetin, naringenin, quercetin, and luteolin. In particular, luteolin was detected more strongly in the linear range 10−7 to 10−3 M than various organic molecules, namely ethylene glycol, β-estradiol, isopropyl alcohol, naphthalene, and toluene. In addition, the SERS signal for luteolin captured by the SiO2@Ag@Et-β-CD NPs remained even after repeated washing. These results indicated that the SiO2@Ag@Et-β-CD NPs can be used as a rapid, sensitive, and selective sensor for flavonoids. PMID:28336842

  17. Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III): A novel adsorbent for simultaneous removal of tetracycline and cadmium.

    PubMed

    Chen, Anwei; Shang, Cui; Shao, Jihai; Lin, Yiqing; Luo, Si; Zhang, Jiachao; Huang, Hongli; Lei, Ming; Zeng, Qingru

    2017-01-02

    A novel composite of carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III), i.e., MMIC-Fe(III) composite, was prepared as an efficient adsorbent for the simultaneous removal of tetracycline (TC) and Cd(II). This adsorbent showed excellent performance in removing TC and Cd(II) due to its rapid kinetics, high adsorption capacity, good reusability, and was well suited for use with real water samples. Kinetics studies demonstrated that the adsorption proceeded according to a pseudo-second order model. The adsorption isotherms were well described by the Langmuir model, with maximum adsorption capacity for TC and Cd(II) being 516.29 and 194.31mg/g, respectively. The synergistic effect of TC and Cd(II) adsorption might be due to the formation of TC-Cd(II) complex bridging the adsorbate and adsorbent. These properties demonstrate the potential application of MMIC-Fe(III) for the simultaneous removal of TC and Cd(II), and may provide some information for the synergistic removal of antibiotics and heavy metals from aquatic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Composition control and localization of S2- in CdSSe quantum dots grown from Li4[Cd10Se4(SPh)16].

    PubMed

    Lovingood, Derek D; Oyler, Ryan E; Strouse, Geoffrey F

    2008-12-17

    The development of ternary nanoscale materials with controlled cross-sectional doping is an important step for the use of chemically prepared quantum dots for nanoscale engineering applications. We report cross-sectional, elemental doping with the formation of an alloyed CdSSe nanocrystal from the thermal decomposition of Li(4)[Cd(10)Se(4)(SPh)(16)]. The sulfur incorporation arises from surface-mediated phenylthiolate degradation on the growing quantum dot surface. In the alloy, we identify a pure CdSe nucleus of approximately 1.5 nm, consistent with the predictions of nucleation theory. As the particle grows, S(2-) incorporation increases until the CdSSe reaches approximately 4 nm, where a marked reduction in phenylthiolate content on the nanocrystal is observed by CP-MAS NMR spectroscopy, implying that rapid decomposition of the phenylthiolate arises with subsequent enhanced S(2-) incorporation at the level of the stoichiometry of the reaction (namely approximately 60%). The use of molecular clusters to allow controlled defect ion incorporation can open new pathways to more complex nanomaterials.

  19. Enhancement of death-receptor induced caspase-8-activation in the death-inducing signalling complex by uncoupling of oxidative phosphorylation.

    PubMed

    Vier, Juliane; Gerhard, Monika; Wagner, Hermann; Häcker, Georg

    2004-01-01

    Signalling through the death receptor CD95 induces apoptosis by formation of a signalling complex at the cell membrane and subsequent caspase-8 and caspase-3-activation. Treatment of Jurkat T cells with protonophores across the mitochondrial membrane such as 2,4-dinitrophenol (DNP) enhances the death-inducing capacity of CD95. In this study, we show that this enhancement is due to the specific acceleration of caspase-8-processing and activation at the CD95-receptor. DNP-treatment did not affect NF-kappaB-induction by CD95. Immunoprecipitation experiments showed that the amounts of the adapter FADD/MORT1 and pro-caspase-8 at the CD95-receptor were not altered by DNP. Subcellular fractionation studies revealed that the amount of mature caspase-8 but not pro-caspase at the membrane was increased following CD95-stimulation in the presence of DNP. As a consequence of caspase-activation, c-FLIP-levels in the cytosol decreased. In Jurkat cells overexpressing c-FLIPS, DNP was still able to enhance caspase-activation. The enhancing capacity of DNP was seen in some cell lines (Jurkat, CEM and HeLa) but not in SKW6 cells and was also found in mitogen-stimulated human T cells. Furthermore, the enhancement extended to TRAIL-induced caspase-activation. Thus, a mechanism exists by which caspase-8-activation can be accelerated at death receptors and this mechanism can be triggered by targeting mitochondrial oxidative phosphorylation.

  20. CD44 in cancer progression: adhesion, migration and growth regulation.

    PubMed

    Marhaba, R; Zöller, M

    2004-03-01

    It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.

  1. Systematic design and research on a series of cadmium coordination polymers assembled due to tetracarboxylate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Lei; Mu, Bao; Li, Chang-Xia

    A series of metal-organic frameworks (MOFs) have been prepared by tetracarboxylate ligands and Cd(II) ions under the hydrothermal or solvothermal conditions with the formulas of {[Cd_2(L_1)(H_2O)_4]·H_2O}{sub n} (1), {[(CH_3)_2NH_2]_2[Cd(L_1)]}{sub n} (2), [Cd(L{sub 2}){sub 0.5}(H{sub 2}O)]{sub n} (3), {[(CH_3)_2NH_2]_2 [Cd(L_2)]·2DMF}{sub n} (4), [Cd(L{sub 3}){sub 0.5}(H{sub 2}O)]{sub n} (5), {[Cd(L_3)_0_._5(H_2O)]·CH_3OH}{sub n} (6), {[(CH_3)_2NH_2]_2[Cd_3(L_4)_2]}{sub n} (7) (H{sub 4}L{sub 1}=[1,1′:4′,1″-terphenyl]-2,2″,5,5″-tetracarboxylic acid; H{sub 4}L{sub 2}=[1,1′:4′,1″-terphenyl]-2′,4,4″,5′-tetracarboxylic acid; H{sub 4}L{sub 3}=[1,1′:3′,1″-terphenyl]-2′,3,3″,5′-tetracarboxylic acid; H{sub 4}L{sub 4}=[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid), which are characterized by single-crystal X-ray diffraction, elemental analyses, IR, TGA and PXRD. Complex 1 exhibits a three-dimensional (3D) supramolecular framework based on two-dimensional (2D) coordination networks. Complexes 2 and 4more » possess 3D framework based on the 1D right-handed helix channels. Complexes 3 and 7 are a 3D architecture containing two different channels. Isostructural complexes 5 and 6 display 3D framework. The different synthetic methods and coordination modes of the tetracarboxylates ligands have effect on formation of various MOFs. Moreover, the luminescent properties and N{sub 2} adsorption behaviors have been reported. - Graphical abstract: A series of cadmium(II) high-dimensional coordination polymers constructed from four different kinds of tetracarboxylate ligands have been successfully prepared under hydrothermal or solvothermal conditions. The effect of solvents, the coordination modes of the tetracarboxylates and positions of carboxylate groups on the architectures of complexes 1–7 have been investigated in detail. The luminescent properties of the part of complexes, N{sub 2} adsorption behaviors of complexes 2, 4–7 have also been studied. - Highlights: • Tetracarboxylate ligands based on terphenyl moiety have been used. • Several factors that influenced the architecture have been discussed. • Luminescent properties have been investigated.« less

  2. Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    PubMed Central

    2011-01-01

    Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming. PMID:21906282

  3. Effect of cadmium telluride quantum dots on the dielectric and electro-optical properties of ferroelectric liquid crystals.

    PubMed

    Kumar, A; Biradar, A M

    2011-04-01

    We present here the dielectric and electro-optical studies of cadmium telluride quantum dots (CdTe QDs) doped ferroelectric liquid crystals (FLCs). It has been observed that the doping of CdTe QDs not only induced a pronounced memory effect but also affected the physical parameters of FLC material (LAHS19). The modifications in the physical parameters and memory effect of LAHS19 are found to depend on the concentration ratio of CdTe QDs. The lower concentration of CdTe QDs (1-3 wt%) enhanced the values of spontaneous polarization and rotational viscosity of LAHS19 material but did not favor the memory effect, whereas a higher concentration of CdTe QDs (>5 wt%) degraded the alignment of LAHS19 material. The doping of ∼5 wt% of CdTe QDs is found to be the most suitable for achieving good memory effect without significantly affecting the material parameters. ©2011 American Physical Society

  4. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin's Lymphomas.

    PubMed

    Onea, Alexandra S; Jazirehi, Ali R

    2016-01-01

    Recovery rates for B-cell Non-Hodgkin's Lymphoma (NHL) are up to 70% with current standard-of-care treatments including rituximab (chimeric anti-CD20 monoclonal antibody) in combination with chemotherapy (R-CHOP). However, patients who do not respond to first-line treatment or develop resistance have a very poor prognosis. This signifies the need for the development of an optimal treatment approach for relapsed/refractory B-NHL. Novel CD19- chimeric antigen receptor (CAR) T-cell redirected immunotherapy is an attractive option for this subset of patients. Anti-CD19 CAR T-cell therapy has already had remarkable efficacy in various leukemias as well as encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. In going forward with additional clinical trials, complementary treatments that may circumvent potential resistance mechanisms should be used alongside anti-CD19 T-cells in order to prevent relapse with resistant strains of disease. Some such supplementary tactics include conditioning with lymphodepletion agents, sensitizing with kinase inhibitors and Bcl-2 inhibitors, enhancing function with multispecific CAR T-cells and CD40 ligand-expressing CAR T-cells, and safeguarding with lymphoma stem cell-targeted treatments. A therapy regimen involving anti-CD19 CAR T-cells and one or more auxiliary treatments could dramatically improve prognoses for patients with relapsed/refractory B-cell NHL. This approach has the potential to revolutionize B-NHL salvage therapy in much the same way rituximab did for first-line treatments.

  5. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas

    PubMed Central

    Onea, Alexandra S; Jazirehi, Ali R

    2016-01-01

    Recovery rates for B-cell Non-Hodgkin’s Lymphoma (NHL) are up to 70% with current standard-of-care treatments including rituximab (chimeric anti-CD20 monoclonal antibody) in combination with chemotherapy (R-CHOP). However, patients who do not respond to first-line treatment or develop resistance have a very poor prognosis. This signifies the need for the development of an optimal treatment approach for relapsed/refractory B-NHL. Novel CD19- chimeric antigen receptor (CAR) T-cell redirected immunotherapy is an attractive option for this subset of patients. Anti-CD19 CAR T-cell therapy has already had remarkable efficacy in various leukemias as well as encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. In going forward with additional clinical trials, complementary treatments that may circumvent potential resistance mechanisms should be used alongside anti-CD19 T-cells in order to prevent relapse with resistant strains of disease. Some such supplementary tactics include conditioning with lymphodepletion agents, sensitizing with kinase inhibitors and Bcl-2 inhibitors, enhancing function with multispecific CAR T-cells and CD40 ligand-expressing CAR T-cells, and safeguarding with lymphoma stem cell-targeted treatments. A therapy regimen involving anti-CD19 CAR T-cells and one or more auxiliary treatments could dramatically improve prognoses for patients with relapsed/refractory B-cell NHL. This approach has the potential to revolutionize B-NHL salvage therapy in much the same way rituximab did for first-line treatments. PMID:27186412

  6. Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD)

    NASA Astrophysics Data System (ADS)

    Skold, Magnus E.; Thyne, Geoffrey D.; Drexler, John W.; McCray, John E.

    2009-07-01

    Carboxymethyl-β-cyclodextrin (CMCD) has been suggested as a complexing agent for remediation of sites co-contaminated with metals and organic pollutants. As part of an attempt to construct a geochemical complexation model for metal-CMCD interactions, conditional formation constants for the complexes between CMCD and 7 metal ions (Ba, Ca, Cd, Ni, Pb, Sr, and Zn) are estimated from experimental data. Stable metal concentrations were reached after approximately 1 day and estimated logarithmic conditional formation constants range from - 3.2 to - 5.1 with confidence intervals within ± 0.08 log units. Experiments performed at 10 °C and 25 °C show that temperature affects the solubility of the metal salts but the strength of CMCD-metal complexes are not affected by this temperature variation. The conditional stability constants and complexation model presented in this work can be used to screen CMCD as a potential remediation agent for clean-up of contaminated soil and groundwater.

  7. Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chia-Yen; Chen, Gregory J.; Tai, Pei-Han

    Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecific T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yieldsmore » have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody's highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies. - Highlights: • A bispecific antibody (bsAb) can increase immunotherapeutic efficacy. • A tetravalent bsAb with binding specificity for the CD20 and CD3 antigens is proposed. • A linker-hinge domain (LHD) within the bsAb results in improved antibody properties.« less

  8. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    PubMed Central

    Matnani, Rahul G.; Stewart, Rachel L.; Pulliam, Joseph; Jennings, Chester D.; Kesler, Melissa

    2013-01-01

    A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a), which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV) or Human Herpes Virus 8 (HHV-8). At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones. PMID:24066244

  9. Temperature- and Length-Dependent Energetics of Formation for Polyalanine Helices in Water: Assignment of wAla(n,T) and Temperature-Dependent CD Ellipticity Standards

    PubMed Central

    Job, Gabriel E.; Kennedy, Robert J.; Heitmann, Björn; Miller, Justin S.; Walker, Sharon M.; Kemp*, Daniel S.

    2006-01-01

    Length-dependent helical propensities wAla(n,T) at T = 10, 25, and 60 °C are assigned from t/c values and NMR 13C chemical shifts for series 1 peptides TrpLysmInp2tLeu–AlantLeuInp2LysmNH2, n = 15, 19, and 25, m = 5, in water. Van’t Hoff analysis of wAla(n,T) show that α-helix formation is primarily enthalpy-driven. For series 2 peptides Ac–Trp Lys5Inp2tLeu–βAspHel–Alan–beta–tLeuInp2Lys5NH2, n = 12 and 22, which contain exceptionally helical Alan cores, protection factor-derived fractional helicities FH are assigned in the range 10–30 °C in water and used to calibrate temperature-dependent CD ellipticities [θ]λ,H,n,T. These are applied to CD data for series 1 peptides, 12 ≤ n ≤ 45, to confirm the wAla(n,T) assignments at T = 25 and 60 °C. The [θ]λ,H,n,T are temperature dependent within the wavelength region, 222 ± 12 nm, and yield a temperature correction for calculation of FH from experimental values of [θ]222,n,T,Exp. PMID:16787087

  10. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation.

    PubMed

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Zhou, Qixing; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa . Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies ( P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly ( P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L -1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  11. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation

    PubMed Central

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa. Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies (P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly (P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L−1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies. PMID:27777956

  12. The neurologic significance of celiac disease biomarkers

    PubMed Central

    Lennon, Vanda A.; Pittock, Sean J.; Kryzer, Thomas J.; Murray, Joseph

    2014-01-01

    Objective: To report neurologic phenotypes and their etiologies determined among 68 patients with either (1) celiac disease (CD) or (2) no CD, but gliadin antibody positivity (2002–2012). Methods: Neurologic patients included both those with the CD-prerequisite major histocompatibility complex class II human leukocyte antigen (HLA)-DQ2/DQ8 haplotype, and those without. The 3 groups were as follows: group 1 (n = 44), CD or transglutaminase (Tg)-2/deamidated gliadin immunoglobulin (Ig)A/IgG detected; group 2 (n = 15), HLA-DQ2/DQ8 noncarriers, and gliadin IgA/IgG detected; and group 3 (n = 9), HLA-DQ2/DQ8 carriers, and gliadin IgA/IgG detected. Neurologic patients and 21 nonneurologic CD patients were evaluated for neural and Tg6 antibodies. Results: In group 1, 42 of 44 patients had CD. Neurologic phenotypes (cerebellar ataxia, 13; neuropathy, 11; dementia, 8; myeloneuropathy, 5; other, 7) and causes (autoimmune, 9; deficiencies of vitamin E, folate, or copper, 6; genetic, 6; toxic or metabolic, 4; unknown, 19) were diverse. In groups 2 and 3, 21 of 24 patients had cerebellar ataxia; none had CD. Causes of neurologic disorders in groups 2 and 3 were diverse (autoimmune, 4; degenerative, 4; toxic, 3; nutritional deficiency, 1; other, 2; unknown, 10). One or more neural-reactive autoantibodies were detected in 10 of 68 patients, all with autoimmune neurologic diagnoses (glutamic acid decarboxylase 65 IgG, 4; voltage-gated potassium channel complex IgG, 3; others, 5). Tg6-IgA/IgG was detected in 7 of 68 patients (cerebellar ataxia, 3; myelopathy, 2; ataxia and parkinsonism, 1; neuropathy, 1); the 2 patients with myelopathy had neurologic disorders explained by malabsorption of copper, vitamin E, and folate rather than by neurologic autoimmunity. Conclusions: Our data support causes alternative to gluten exposure for neurologic dysfunction among most gliadin antibody–positive patients without CD. Nutritional deficiency and coexisting autoimmunity may cause neurologic dysfunction in CD. PMID:25261501

  13. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with experiment.

  14. CD8+ T cell recognition of an endogenously processed epitope is regulated primarily by residues within the epitope

    PubMed Central

    1992-01-01

    Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides associated with cell surface class I major histocompatibility complex (MHC) molecules. This association presumably occurs between newly synthesized class I MHC molecules and peptide fragments in a pre-Golgi compartment. Little is known about the factors that regulate the formation of these antigenic peptide fragments within the cell. To examine the role of residues within a core epitope and in the flanking sequences for the generation and presentation of the newly synthesized peptide fragment recognized by CD8+ CTL, we have mutagenized the coding sequence for the CTL epitope spanning residues 202-221 in the influenza A/Japan/57 hemagglutinin (HA). In this study over 60 substitution mutations in the epitope were tested for their effects on target cell sensitization using a cytoplasmic viral expression system. The HA202- 221 site contains two overlapping subsites defined by CTL clones 11-1 and 40-2. Mutations in HA residues 204-213 or residues 210-219 often abolished target cell lysis by CTL clones 11-1 and 40-2, respectively. Although residues outside the core epitope did not usually affect the ability to be lysed by CTL clones, substitution of a Gly residue for Val-214 abolished lysis by clone 11-1. These data suggest that residues within a site that affect MHC binding and T cell receptor recognition appear to play the predominant role in dictating the formation of the antigenic complex recognized by CD8+ CTL, and therefore the antigenicity of the protein antigen presented to CD8+ T cells. Most alterations in residues flanking the endogenously expressed epitope do not appreciably affect the generation and recognition of the site. PMID:1383384

  15. CD22 Promotes B-1b Cell Responses to T Cell-Independent Type 2 Antigens.

    PubMed

    Haas, Karen M; Johnson, Kristen L; Phipps, James P; Do, Cardinal

    2018-03-01

    CD22 (Siglec-2) is a critical regulator of B cell activation and survival. CD22 -/- mice generate significantly impaired Ab responses to T cell-independent type 2 (TI-2) Ags, including haptenated Ficoll and pneumococcal polysaccharides, Ags that elicit poor T cell help and activate BCR signaling via multivalent epitope crosslinking. This has been proposed to be due to impaired marginal zone (MZ) B cell development/maintenance in CD22 -/- mice. However, mice expressing a mutant form of CD22 unable to bind sialic acid ligands generated normal TI-2 Ab responses, despite significantly reduced MZ B cells. Moreover, mice treated with CD22 ligand-binding blocking mAbs, which deplete MZ B cells, had little effect on TI-2 Ab responses. We therefore investigated the effects of CD22 deficiency on B-1b cells, an innate-like B cell population that plays a key role in TI-2 Ab responses. B-1b cells from CD22 -/- mice had impaired BCR-induced proliferation and significantly increased intracellular Ca 2+ concentration responses following BCR crosslinking. Ag-specific B-1b cell expansion and plasmablast differentiation following TI-2 Ag immunization was significantly impaired in CD22 -/- mice, consistent with reduced TI-2 Ab responses. We generated CD22 -/- mice with reduced CD19 levels (CD22 -/- CD19 +/- ) to test the hypothesis that augmented B-1b cell BCR signaling in CD22 -/- mice contributes to impaired TI-2 Ab responses. BCR-induced proliferation and intracellular Ca 2+ concentration responses were normalized in CD22 -/- CD19 +/- B-1b cells. Consistent with this, TI-2 Ag-specific B-1b cell expansion, plasmablast differentiation, survival, and Ab responses were rescued in CD22 -/- CD19 +/- mice. Thus, CD22 plays a critical role in regulating TI-2 Ab responses through regulating B-1b cell signaling thresholds. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Visible Light-Cured Glycol Chitosan Hydrogel Containing a Beta-Cyclodextrin-Curcumin Inclusion Complex Improves Wound Healing In Vivo.

    PubMed

    Yoon, Sun-Jung; Hyun, Hoon; Lee, Deok-Won; Yang, Dae Hyeok

    2017-09-10

    Scarless wound healing is ideal for patients suffering from soft tissue defects. In this study, we prepared a novel wet dressing (β-CD-ic-CUR/GC) based on the visible light-cured glycol chitosan (GC) hydrogel and inclusion complex between beta-cyclodextrin (β-CD) and curcumin (CUR). We also evaluated its efficacy in the acceleration of wound healing as compared to that of CUR-loaded GC (CUR/GC). The conjugation of glycidyl methacrylate (GM) to GC for photo-curing was confirmed by ¹H-NMR measurement, and the photo-cured GC hydrogel was characterized by the analyses of rheology, swelling ratio, SEM and degradation rate. After visible light irradiation, the surface/cross-sectional morphologies and storage (G')/loss (G'') moduli revealed the formation of hydrogel with interconnected porosity. The dressing β-CD-ic-CUR/GC exhibited a controlled release of 90% CUR in a sustained manner for 30 days. On the other hand, CUR/GC showed CUR release of 16%. β-CD acted as an excipient in improving the water-solubility of CUR and affected the release behavior of CUR. The in vivo animal tests including measurement of the remaining unhealed wound area and histological analyses showed that β-CD-ic-CUR/GC may have potential as a wet dressing agent to enhance soft tissue recovery in open fractures.

  17. Attached β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane to graphene oxide and its application in copper removal.

    PubMed

    Yu, Zongxue; Chen, Qi; Lv, Liang; Pan, Yang; Zeng, Guangyong; He, Yi

    2017-05-01

    The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu 2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu 2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu 2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.

  18. Mutations in Caenorhabditis elegans him-19 Show Meiotic Defects That Worsen with Age

    PubMed Central

    Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M.; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Loidl, Josef; Jantsch, Verena

    2010-01-01

    From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans. PMID:20071466

  19. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions.

    PubMed

    Cassanta, Lorena Teodoro de Castro; Rodrigues, Virmondes; Violatti-Filho, Jose Roberto; Teixeira Neto, Benedito Alves; Tavares, Vinícius Marques; Bernal, Eduarda Castelo Branco Araujo; Souza, Danila Malheiros; Araujo, Marcelo Sivieri; de Lima Pereira, Sanivia Aparecida; Rodrigues, Denise Bertulucci Rocha

    2017-07-01

    Periapical cysts and granulomas are chronic lesions caused by an inflammatory immune response against microbial challenge in the root canal. Different cell types, cytokines, and molecules have been associated with periapical lesion formation and expansion. Therefore, because of the chronic inflammatory state of these lesions, the aim of this study was to evaluate the in situ expression of matrix metalloproteinase (MMP)-14 and -19, tissue inhibitor of metalloproteinase (TIMP)-3 and -4, CD68, and inducible nitric oxide synthase (iNOS) in periapical cysts and granulomas. Sixteen cases of periapical cysts and 15 cases of periapical granulomas were analyzed. Ten normal dental pulps were used as the negative control. Immunohistochemistry was performed with anti-MMP-19, anti-MMP-14, anti-TIMP-3, anti-TIMP-4, anti-iNOS, and anti-CD68 antibodies. The expression of TIMP-3, TIMP-4, iNOS, and CD68 was significantly higher in both the cyst and granuloma groups than in the control group. TIMP-4 was also significantly higher in cases of chronic apical abscess. There was also a significant difference in the expression of MMP-14 between the cyst and control groups. However, there were no differences in the expression of MMP-19 between the 3 groups. Our data suggest that the expression of MMP-14, TIMP-3, and TIMP-4 is associated with the development of periapical lesions. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. CD19/CD22 Chimeric Antigen Receptor T Cells and Chemotherapy in Treating Patients With Recurrent or Refractory CD19 Positive Diffuse Large B-Cell Lymphoma or B Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2018-01-25

    B Acute Lymphoblastic Leukemia; CD19 Positive; Diffuse Large B-Cell Lymphoma Associated With Chronic Inflammation; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; Epstein-Barr Virus Positive Diffuse Large B-Cell Lymphoma of the Elderly; Minimal Residual Disease; Philadelphia Chromosome Positive; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; T-Cell/Histiocyte-Rich Large B-Cell Lymphoma

  1. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    PubMed

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical Hematopoietic Progenitor-Cell Transplant

    DTIC Science & Technology

    2009-05-01

    adoptive therapy using CD19-specific chimeric antigen receptor re-directed T cells for recurrent/refrctory follicular lymphoma...Beauty (SB) transposon/transposase system to express a CD19-specific chimeric antigen receptor (CAR). T cells that have undergone transposition...accomplished using genetic engineering to express a chimeric antigen receptor (CAR) to redirect the specificity of T cells for CD19 on malignant B cells

  3. Surface decorated platinum carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  4. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  5. Anti-CD22/CD20 Bispecific antibody with enhanced trogocytosis for treatment of Lupus.

    PubMed

    Rossi, Edmund A; Chang, Chien-Hsing; Goldenberg, David M

    2014-01-01

    The humanized anti-CD22 antibody, epratuzumab, has demonstrated therapeutic activity in clinical trials of lymphoma, leukemia and autoimmune diseases, treating currently over 1500 cases of non-Hodgkin lymphoma, acute lymphoblastic leukemias, Waldenström's macroglobulinemia, Sjögren's syndrome, and systemic lupus erythematosus. Because epratuzumab reduces on average only 35% of circulating B cells in patients, and has minimal antibody-dependent cellular cytotoxicity and negligible complement-dependent cytotoxicity when evaluated in vitro, its therapeutic activity may not result completely from B-cell depletion. We reported recently that epratuzumab mediates Fc/FcR-dependent membrane transfer from B cells to effector cells via trogocytosis, resulting in a substantial reduction of multiple BCR modulators, including CD22, CD19, CD21, and CD79b, as well as key cell adhesion molecules, including CD44, CD62L, and β7 integrin, on the surface of B cells in peripheral blood mononuclear cells obtained from normal donors or SLE patients. Rituximab has clinical activity in lupus, but failed to achieve primary endpoints in a Phase III trial. This is the first study of trogocytosis mediated by bispecific antibodies targeting neighboring cell-surface proteins, CD22, CD20, and CD19, as demonstrated by flow cytometry and immunofluorescence microscopy. We show that, compared to epratuzumab, a bispecific hexavalent antibody comprising epratuzumab and veltuzumab (humanized anti-CD20 mAb) exhibits enhanced trogocytosis resulting in major reductions in B-cell surface levels of CD19, CD20, CD21, CD22, CD79b, CD44, CD62L and β7-integrin, and with considerably less immunocompromising B-cell depletion that would result with anti-CD20 mAbs such as veltuzumab or rituximab, given either alone or in combination with epratuzumab. A CD22/CD19 bispecific hexavalent antibody, which exhibited enhanced trogocytosis of some antigens and minimal B-cell depletion, may also be therapeutically useful. The bispecific antibody is a candidate for improved treatment of lupus and other autoimmune diseases, offering advantages over administration of the two parental antibodies in combination.

  6. Simplified process for the production of anti-CD19-CAR engineered T cells

    PubMed Central

    Tumaini, Barbara; Lee, Daniel W.; Lin, Tasha; Castiello, Luciano; Stroncek, David F.; Mackall, Crystal; Wayne, Alan; Sabatino, Marianna

    2014-01-01

    Background Adoptive Immunotherapy using chimeric antigen receptor (CAR) engineered T cells specific for CD19 has shown promising results for the treatment of B cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. Here, we describe a new, simplified method to produce anti-CD19-CAR T cells. Methods T cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 hours and then a second transduction was performed. No spinoculation was used. Cells were then expanded for an additional 9 days. Results The method was validated using 2 PBMC products from a patient with B-CLL and one PBMC product from a healthy subject. The 2 PBMC products from the B-CLL patient contained 11.4% and 12.9% T cells. The manufacture process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6 fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first 4 ALL patients treated at our institution. Discussion We developed a simplified semi-closed system for the initial selection, activation, transduction and expansion of T cells using anti-CD3/anti-CD28 beads and bags, to produce autologous anti-CD19 CAR transduced T cells to support an ongoing clinical trial. PMID:23992830

  7. Coagulation and fibrinolysis in inflammatory bowel disease and in giant cell arteritis.

    PubMed

    Vrij, Anton A; Rijken, Joop; van Wersch, Jan W J; Stockbrügger, Reinhold W

    2003-01-01

    In inflammatory bowel disease (IBD), gut microvascular thrombosis as well as thromboembolic complications have repeatedly been observed. We examined the long-term course of markers of coagulation and fibrinolysis in relation to clinical disease activity. In a prospective study, prothrombin fragment 1 and 2 (F1.2), thrombin-antithrombin complex (TAT), antithrombin, D-dimer, plasmin-alpha(2)-antiplasmin complex (PAP) and plasminogen activator inhibitor-1 (PAI-1) were measured in 20 patients with Crohn's disease (CD), 18 with ulcerative colitis (UC), and 19 with giant cell arteritis during active and inactive disease, as well as in 51 controls without inflammation. Levels of F1.2, TAT, D-dimer, PAP and PAI-1 were significantly higher in active versus inactive CD and UC. However, even after 12 months of follow-up, in CD and UC the mean levels of F1.2, D-dimer and PAP were significantly higher than the levels of the controls. Levels of F1.2, D-dimer and PAP were markedly raised for a long time in clinically inactive IBD, underlining a chronic state of hypercoagulation and enhanced fibrinolysis. Copyright 2003 S. Karger AG, Basel

  8. Evidence of inflammatory immune signaling in chronic fatigue syndrome: A pilot study of gene expression in peripheral blood.

    PubMed

    Aspler, Anne L; Bolshin, Carly; Vernon, Suzanne D; Broderick, Gordon

    2008-09-26

    Genomic profiling of peripheral blood reveals altered immunity in chronic fatigue syndrome (CFS) however interpretation remains challenging without immune demographic context. The object of this work is to identify modulation of specific immune functional components and restructuring of co-expression networks characteristic of CFS using the quantitative genomics of peripheral blood. Gene sets were constructed a priori for CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14+ monocytes and CD16+ neutrophils from published data. A group of 111 women were classified using empiric case definition (U.S. Centers for Disease Control and Prevention) and unsupervised latent cluster analysis (LCA). Microarray profiles of peripheral blood were analyzed for expression of leukocyte-specific gene sets and characteristic changes in co-expression identified from topological evaluation of linear correlation networks. Median expression for a set of 6 genes preferentially up-regulated in CD19+ B cells was significantly lower in CFS (p = 0.01) due mainly to PTPRK and TSPAN3 expression. Although no other gene set was differentially expressed at p < 0.05, patterns of co-expression in each group differed markedly. Significant co-expression of CD14+ monocyte with CD16+ neutrophil (p = 0.01) and CD19+ B cell sets (p = 0.00) characterized CFS and fatigue phenotype groups. Also in CFS was a significant negative correlation between CD8+ and both CD19+ up-regulated (p = 0.02) and NK gene sets (p = 0.08). These patterns were absent in controls. Dissection of blood microarray profiles points to B cell dysfunction with coordinated immune activation supporting persistent inflammation and antibody-mediated NK cell modulation of T cell activity. This has clinical implications as the CD19+ genes identified could provide robust and biologically meaningful basis for the early detection and unambiguous phenotyping of CFS.

  9. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma.

    PubMed

    Bourguignon, Lilly Y W; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-09-21

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer stem cell properties, including self-renewal, clonal formation, and chemotherapy resistance in HA-CD44v3-activated head and neck cancer.

  10. Hyaluronan-CD44v3 Interaction with Oct4-Sox2-Nanog Promotes miR-302 Expression Leading to Self-renewal, Clonal Formation, and Cisplatin Resistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma*

    PubMed Central

    Bourguignon, Lilly Y. W.; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-01-01

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer stem cell properties, including self-renewal, clonal formation, and chemotherapy resistance in HA-CD44v3-activated head and neck cancer. PMID:22847005

  11. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.

    PubMed

    Lee, Daniel W; Kochenderfer, James N; Stetler-Stevenson, Maryalice; Cui, Yongzhi K; Delbrook, Cindy; Feldman, Steven A; Fry, Terry J; Orentas, Rimas; Sabatino, Marianna; Shah, Nirali N; Steinberg, Seth M; Stroncek, Dave; Tschernia, Nick; Yuan, Constance; Zhang, Hua; Zhang, Ling; Rosenberg, Steven A; Wayne, Alan S; Mackall, Crystal L

    2015-02-07

    Chimeric antigen receptor (CAR) modified T cells targeting CD19 have shown activity in case series of patients with acute and chronic lymphocytic leukaemia and B-cell lymphomas, but feasibility, toxicity, and response rates of consecutively enrolled patients treated with a consistent regimen and assessed on an intention-to-treat basis have not been reported. We aimed to define feasibility, toxicity, maximum tolerated dose, response rate, and biological correlates of response in children and young adults with refractory B-cell malignancies treated with CD19-CAR T cells. This phase 1, dose-escalation trial consecutively enrolled children and young adults (aged 1-30 years) with relapsed or refractory acute lymphoblastic leukaemia or non-Hodgkin lymphoma. Autologous T cells were engineered via an 11-day manufacturing process to express a CD19-CAR incorporating an anti-CD19 single-chain variable fragment plus TCR zeta and CD28 signalling domains. All patients received fludarabine and cyclophosphamide before a single infusion of CD19-CAR T cells. Using a standard 3 + 3 design to establish the maximum tolerated dose, patients received either 1 × 10(6) CAR-transduced T cells per kg (dose 1), 3 × 10(6) CAR-transduced T cells per kg (dose 2), or the entire CAR T-cell product if sufficient numbers of cells to meet the assigned dose were not generated. After the dose-escalation phase, an expansion cohort was treated at the maximum tolerated dose. The trial is registered with ClinicalTrials.gov, number NCT01593696. Between July 2, 2012, and June 20, 2014, 21 patients (including eight who had previously undergone allogeneic haematopoietic stem-cell transplantation) were enrolled and infused with CD19-CAR T cells. 19 received the prescribed dose of CD19-CAR T cells, whereas the assigned dose concentration could not be generated for two patients (90% feasible). All patients enrolled were assessed for response. The maximum tolerated dose was defined as 1 × 10(6) CD19-CAR T cells per kg. All toxicities were fully reversible, with the most severe being grade 4 cytokine release syndrome that occurred in three (14%) of 21 patients (95% CI 3·0-36·3). The most common non-haematological grade 3 adverse events were fever (nine [43%] of 21 patients), hypokalaemia (nine [43%] of 21 patients), fever and neutropenia (eight [38%] of 21 patients), and cytokine release syndrome (three [14%) of 21 patients). CD19-CAR T cell therapy is feasible, safe, and mediates potent anti-leukaemic activity in children and young adults with chemotherapy-resistant B-precursor acute lymphoblastic leukaemia. All toxicities were reversible and prolonged B-cell aplasia did not occur. National Institutes of Health Intramural funds and St Baldrick's Foundation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Reference values of lymphocyte sub-populations in healthy human immunodeficiency virus-negative Iranian adults.

    PubMed

    Kamallou, Atefeh; Haji Abdolbaghi, Mahbobeh; Mohraz, Minoo; Rasolinejad, Mernaz; Karbasi, Ehsan; Ansaripour, Bita; Soltani, Samaneh; Rezaei, Arezou; Khalili, Neda; Amirzargar, Aliakbar

    2014-12-01

    Lymphocyte subsets enumeration is considered prominent in the management of primary and acquired immunodeficiency disorders. Because of local variations due to race, age, gender, and environmental conditions on lymphocyte subsets, and to improve the accuracy of interpretation of laboratory findings, reference intervals must be determined in every population. To establish a normal reference range for CD3+, CD4+, CD8+, CD19+ and CD56+ lymphocytes in a healthy Iranian adult population using flowcytometry. Blood samples were collected from 221 HIV seronegative individuals, including 112 females and 109 males, with ages ranging from 20 to 40 years old. The percentage of lymphocytes expressing either of CD3, CD4, CD8, CD19 and CD56 surface markers were determined by flowcytometry assay. Total mean percentage and absolute count of lymphocyte subsets were as follows: CD3+: 70.90 ± 7.54%, 1800.87 ± 471.09 cells/µl; CD4+: 41.04 ± 7.86%, 1039.99 ± 338.02 cells/µl; CD8+: 31.11 ± 6.60%, 783.95 ± 234.87 cells/µl; CD19+: 12.77 ± 4.56%, 328.37 ± 153.17 cells/µl; CD56+: 15.53 ± 6.34%, 388.62 ± 176.17 cells/µl, respectively. The ratio of CD4+/CD8+ lymphocytes for the studied population was 1.39 ± 0.48. Significant differences were observed between male and female subjects indicating that the average percentage of CD3+ cells (p=0.017) and CD4+ T cells (p=0.003) were higher in the female population, whereas the average percentage of CD19+ cells (p=0.02) tended to be higher among males. However, investigations on the CD56+ NK cell and CD8+ T cell sub-populations did not show any statistical differences between the two genders. In comparison with reports of other populations, we were confronted with different results. Establishing reference values of lymphocyte subsets for each population is helpful in achieving standard criteria for the prognosis of HIV infection. Therefore, normal ranges established by this survey can be used as a reference for decisions made in clinical practice.

  13. Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia.

    PubMed

    Cai, Bo; Guo, Mei; Wang, Yao; Zhang, Yajing; Yang, Jun; Guo, Yelei; Dai, Hanren; Yu, Changlin; Sun, Qiyun; Qiao, Jianhui; Hu, Kaixun; Zuo, Hongli; Dong, Zheng; Zhang, Zechuan; Feng, Mingxing; Li, Bingxia; Sun, Yujing; Liu, Tieqiang; Liu, Zhiqing; Wang, Yi; Huang, Yajing; Yao, Bo; Han, Weidong; Ai, Huisheng

    2016-11-25

    Elderly patients with relapsed and refractory acute lymphoblastic leukemia (ALL) have poor prognosis. Autologous CD19 chimeric antigen receptor-modified T (CAR-T) cells have potentials to cure patients with B cell ALL; however, safety and efficacy of allogeneic CD19 CAR-T cells are still undetermined. We treated a 71-year-old female with relapsed and refractory ALL who received co-infusion of haplo-identical donor-derived CD19-directed CAR-T cells and mobilized peripheral blood stem cells (PBSC) following induction chemotherapy. Undetectable minimal residual disease by flow cytometry was achieved, and full donor cell engraftment was established. The transient release of cytokines and mild fever were detected. Significantly elevated serum lactate dehydrogenase, alanine transaminase, bilirubin and glutamic-oxalacetic transaminase were observed from days 14 to 18, all of which were reversible after immunosuppressive therapy. Our preliminary results suggest that co-infusion of haplo-identical donor-derived CAR-T cells and mobilized PBSCs may induce full donor engraftment in relapsed and refractory ALL including elderly patients, but complications related to donor cell infusions should still be cautioned. Allogeneic CART-19 for Elderly Relapsed/Refractory CD19+ ALL. NCT02799550.

  14. Formation and self-organization kinetics of alpha-CD/PEO-based pseudo-polyrotaxanes in water. A specific behavior at 30 degrees C.

    PubMed

    Travelet, Christophe; Schlatter, Guy; Hébraud, Pascal; Brochon, Cyril; Lapp, Alain; Hadziioannou, Georges

    2009-08-04

    alpha-Cyclodextrins (alpha-CDs) have the ability to form inclusion complexes with poly(ethylene oxide) (PEO) polymer chains. These pseudo-polyrotaxanes (PPRs) can be obtained by quenching an alpha-CD/PEO mixture in water from 70 degrees C down to a lower temperature (typically in the range from 5 to 30 degrees C) thanks to favorable interactions between alpha-CD cavities and PEO chains. Moreover, starting from a liquid alpha-CD/PEO mixture at a total mass fraction of 15% w/w at 70 degrees C, the formation of PPRs with time at a lower temperature induces a white physical gel with time, and phase separation is observed. We established that PPR molecules are exclusively found in the precipitated phase although unthreaded alpha-CD molecules and unthreaded PEO chains are in the liquid phase. At 30 degrees C, the physical gel formation is much slower than at 5 degrees C. At 30 degrees C, we established that, in a first step, alpha-CDs thread onto PEO chains, forming PPR molecules which are not in good solvent conditions in water. At a higher length scale, rapid aggregation of the PPR molecules occurs, and threaded alpha-CD-based nanocylinders form (cylinder length L = 5.7 nm and cylinder radius R = 4.7 nm). At a higher length scale, alpha-CD-based nanocylinders associate in a Gaussian way, engendering the formation of precipitated domains which are responsible for the high turbidity of the studied system. At the end of this first step (i.e., after 20 min), the system still remains liquid and the PPRs are totally formed. Then, in a second step (i.e., after 150 min), the system undergoes its reorganization characterized by a compacity increase of the precipitated domains and forms a physical gel. We found that PPRs are totally formed after 20 min at 30 degrees C and that the system stays in a nongel state up to 150 min. This opens new perspectives regarding the PPR chemical modification: between these two characteristic times, we can easily envisage an efficient chemical modification of the PPR molecules in water, as for instance an end-capping reaction leading to the synthesis of polyrotaxanes.

  15. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine.

    PubMed

    Rao, Monica R P; Chaudhari, Jagruti; Trotta, Francesco; Caldera, Fabrizio

    2018-06-04

    Rilpivrine is BCS class II drug used for treatment of HIV infection. The drug has low aqueous solubility (0.0166 mg/ml) and dissolution rate leading to low bioavailability (32%). Aim of this work was to enhance solubility and dissolution of rilpivirine using beta-cyclodextrin-based nanosponges. These nanosponges are biocompatible nanoporous particles having high loading capacity to form supramolecular inclusion and non-inclusion complexes with hydrophilic and lipophilic drugs for solubility enhancement. Beta-cyclodextrin was crosslinked with carbonyl diimidazole and pyromellitic dianhydride to prepare nanosponges. The nanosponges were loaded with rilpivirine by solvent evaporation method. Binary and ternary complexes of drug with β-CD, HP-β-CD, nanosponges, and tocopherol polyethylene glycol succinate were prepared and characterized by phase solubility, saturation solubility in different media, in vitro dissolution, and in vivo pharmacokinetics. Spectral analysis by Fourier transform infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry was performed. Results obtained from spectral characterization confirmed inclusion complexation. Phase solubility studies indicated stable complex formation. Saturation solubility was found to be 10-13-folds higher with ternary complexes in distilled water and 12-14-fold higher in 0.1 N HCl. Solubility enhancement was evident in biorelevant media. Molecular modeling studies revealed possible mode of entrapment of rilpivirine within β-CD cavities. A 3-fold increase in dissolution with ternary complexes was observed. Animal studies revealed nearly 2-fold increase in oral bioavailability of rilpivirine. It was inferred that electronic interactions, hydrogen bonding, and van der Waals forces are involved in the supramolecular interactions.

  16. The kinetochore prevents centromere-proximal crossover recombination during meiosis

    PubMed Central

    Vincenten, Nadine; Kuhl, Lisa-Marie; Lam, Isabel; Oke, Ashwini; Kerr, Alastair RW; Hochwagen, Andreas; Fung, Jennifer; Keeney, Scott; Vader, Gerben; Marston, Adèle L

    2015-01-01

    During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes. DOI: http://dx.doi.org/10.7554/eLife.10850.001 PMID:26653857

  17. Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin.

    PubMed

    Andrade, Tatianny A; Freitas, Thiago S; Araújo, Francielly O; Menezes, Paula P; Dória, Grace Anne A; Rabelo, Alessandra S; Quintans-Júnior, Lucindo J; Santos, Márcio R V; Bezerra, Daniel P; Serafini, Mairim R; Menezes, Irwin Rose A; Nunes, Paula Santos; Araújo, Adriano A S; Costa, Maria S; Campina, Fábia F; Santos, Antonia T L; Silva, Ana R P; Coutinho, Henrique D M

    2017-05-01

    Cyclodextrins (CDs) have been used as important pharmaceutical excipients for improve the physicochemical properties of the drugs of low solubility as the essential oil of Hyptis martiusii. This oil is important therapeutically, but the low solubility and bioavailability compromises your use. Therein, the aim of this study was to obtain and to characterize physico-chemically the samples obtained by physical mixture (PM), paste complexation (PC) and slurry complexation (SC) of the essential oil Hyptis martiusii (EOHM) in β-CD, and to compare the antibacterial and modulatory-antibiotic activity of products obtained and oil free. The physicochemical characterization was performed by differential scanning calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Karl Fischer titration. Additionally, the antibacterial tests were performed by microdilution technique. Thus, it was observed that the PM method showed low complexing capacity, unlike PC and SC in which it was observed the formation of inclusion complexes. In addition, the second stage of the TG/DTG curves showed that SC was the best method inclusion with mass loss of 6.9% over the PC that was 6.0%. The XRD results corroborate with the results above suggesting the formation of new solid phase and the SEM photomicrographs showed the porous surface of the samples PC and SC. The essential oil alone demonstrated an antibacterial and modulatory effect against the S. aureus and the Gram negative strain, respectively. However, the β-CD and the inclusion complex did not demonstrate any biological activity in the performed antibacterial assays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis.

    PubMed

    Cho, Fu-Nan; Chang, Tsung-Hsien; Shu, Chih-Wen; Ko, Ming-Chin; Liao, Shuen-Kuei; Wu, Kang-Hsi; Yu, Ming-Sun; Lin, Shyh-Jer; Hong, Ying-Chung; Chen, Chien-Hsun; Hung, Chien-Hui; Chang, Yu-Hsiang

    2014-01-01

    Natural killer (NK) cells have the capacity to target tumors and are ideal candidates for immunotherapy. Viral vectors have been used to genetically modify in vitro expanded NK cells to express chimeric antigen receptors (CARs), which confer cytotoxicity against tumors. However, use of viral transduction methods raises the safety concern of viral integration into the NK cell genome. In this study, we used trogocytosis as a non-viral method to modify NK cells for immunotherapy. A K562 cell line expressing high levels of anti-CD19 CARs was generated as a donor cell to transfer the anti-CD19 CARs onto NK cells via trogocytosis. Anti-CD19 CAR expression was observed in expanded NK cells after these cells were co-cultured for one hour with freeze/thaw-treated donor cells expressing anti-CD19 CARs. Immunofluorescence analysis confirmed the localization of the anti-CD19 CARs on the NK cell surface. Acquisition of anti-CD19 CARs via trogocytosis enhanced NK cell-mediated cytotoxicity against the B-cell acute lymphoblastic leukemia (B-ALL) cell lines and primary B-ALL cells derived from patients. To our knowledge, this is the first report that describes the increased cytotoxicity of NK cells following the acquisition of CARs via trogocytosis. This novel strategy could be a potential valuable therapeutic approach for the treatment of B-cell tumors.

  19. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kochenderfer, James N; Dudley, Mark E; Carpenter, Robert O; Kassim, Sadik H; Rose, Jeremy J; Telford, William G; Hakim, Frances T; Halverson, David C; Fowler, Daniel H; Hardy, Nancy M; Mato, Anthony R; Hickstein, Dennis D; Gea-Banacloche, Juan C; Pavletic, Steven Z; Sportes, Claude; Maric, Irina; Feldman, Steven A; Hansen, Brenna G; Wilder, Jennifer S; Blacklock-Schuver, Bazetta; Jena, Bipulendu; Bishop, Michael R; Gress, Ronald E; Rosenberg, Steven A

    2013-12-12

    New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patient's alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD.

  20. Repression of class I transcription by cadmium is mediated by the protein phosphatase 2A

    PubMed Central

    Zhou, Lei; Le Roux, Gwenaëlle; Ducrot, Cécile; Chédin, Stéphane; Labarre, Jean; Riva, Michel; Carles, Christophe

    2013-01-01

    Toxic metals are part of our environment, and undue exposure to them leads to a variety of pathologies. In response, most organisms adapt their metabolism and have evolved systems to limit this toxicity and to acquire tolerance. Ribosome biosynthesis being central for protein synthesis, we analyzed in yeast the effects of a moderate concentration of cadmium (Cd2+) on Pol I transcription that represents >60% of the transcriptional activity of the cells. We show that Cd2+ rapidly and drastically shuts down the expression of the 35S rRNA. Repression does not result from a poisoning of any of the components of the class I transcriptional machinery by Cd2+, but rather involves a protein phosphatase 2A (PP2A)-dependent cellular signaling pathway that targets the formation/dissociation of the Pol I–Rrn3 complex. We also show that Pol I transcription is repressed by other toxic metals, such as Ag+ and Hg2+, which likewise perturb the Pol I–Rrn3 complex, but through PP2A-independent mechanisms. Taken together, our results point to a central role for the Pol I–Rrn3 complex as molecular switch for regulating Pol I transcription in response to toxic metals. PMID:23640330

  1. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response.

    PubMed

    Xue, Qiong; Bettini, Emily; Paczkowski, Patrick; Ng, Colin; Kaiser, Alaina; McConnell, Timothy; Kodrasi, Olja; Quigley, Máire F; Heath, James; Fan, Rong; Mackay, Sean; Dudley, Mark E; Kassim, Sadik H; Zhou, Jing

    2017-11-21

    It remains challenging to characterize the functional attributes of chimeric antigen receptor (CAR)-engineered T cell product targeting CD19 related to potency and immunotoxicity ex vivo, despite promising in vivo efficacy in patients with B cell malignancies. We employed a single-cell, 16-plex cytokine microfluidics device and new analysis techniques to evaluate the functional profile of CD19 CAR-T cells upon antigen-specific stimulation. CAR-T cells were manufactured from human PBMCs transfected with the lentivirus encoding the CD19-BB-z transgene and expanded with anti-CD3/anti-CD28 coated beads. The enriched CAR-T cells were stimulated with anti-CAR or control IgG beads, stained with anti-CD4 RPE and anti-CD8 Alexa Fluor 647 antibodies, and incubated for 16 h in a single-cell barcode chip (SCBC). Each SCBC contains ~12,000 microchambers, covered with a glass slide that was pre-patterned with a complete copy of a 16-plex antibody array. Protein secretions from single CAR-T cells were captured and subsequently analyzed using proprietary software and new visualization methods. We demonstrate a new method for single-cell profiling of CD19 CAR-T pre-infusion products prepared from 4 healthy donors. CAR-T single cells exhibited a marked heterogeneity of cytokine secretions and polyfunctional (2+ cytokine) subsets specific to anti-CAR bead stimulation. The breadth of responses includes anti-tumor effector (Granzyme B, IFN-γ, MIP-1α, TNF-α), stimulatory (GM-CSF, IL-2, IL-8), regulatory (IL-4, IL-13, IL-22), and inflammatory (IL-6, IL-17A) functions. Furthermore, we developed two new bioinformatics tools for more effective polyfunctional subset visualization and comparison between donors. Single-cell, multiplexed, proteomic profiling of CD19 CAR-T product reveals a diverse landscape of immune effector response of CD19 CAR-T cells to antigen-specific challenge, providing a new platform for capturing CAR-T product data for correlative analysis. Additionally, such high dimensional data requires new visualization methods to further define precise polyfunctional response differences in these products. The presented biomarker capture and analysis system provides a more sensitive and comprehensive functional assessment of CAR-T pre-infusion products and may provide insights into the safety and efficacy of CAR-T cell therapy.

  2. Mobilization of Cd from human serum albumin by small molecular weight thiols.

    PubMed

    Morris, Thomas T; Keir, Jennifer L A; Boshart, Steven J; Lobanov, Victor P; Ruhland, Anthony M A; Bahl, Nishita; Gailer, Jürgen

    2014-05-01

    Although the toxic metal Cd is an established human nephrotoxin, little is known about the role that interactions with plasma constitutents play in determining its mammalian target organs. To gain insight, a Cd-human serum albumin (HSA) complex was analyzed on a system consisting of size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using phosphate buffered saline (pH 7.4) as the mobile phase, we investigated the effect of 1-10mM oxidized glutathione (GSSG), l-cysteine (Cys), l-glutathione (GSH), or N-acetyl-l-cysteine (NAC) on the elution of Cd. As expected, GSSG did not mobilize Cd from the Cd-HSA complex up to a concentration of 4mM. With 1.0mM NAC, ∼30% of the injected Cd-HSA complex eluted as such, while the mobilized Cd was lost on the column. With 1.0mM of Cys or GSH, no parent Cd-HSA complex was detected and 88% and 82% of the protein bound Cd eluted close to the elution volume, likely in form of Cd(Cys)2 and a Cd-GSH 1:1 complex. Interestingly, with GSH and NAC concentrations >4.0mM, a Cd double peak was detected, which was rationalized in terms of the elution of a polynuclear Cd complex baseline-separated from a mononuclear Cd complex. In contrast, mobile phases which contained Cys concentrations ≥2mM resulted in the detection of only a single Cd peak, probably Cd(Cys)4. Our results establish SEC-FAAS as a viable tool to probe the mobilization of Cd from binding sites on plasma proteins at near physiological conditions. The detected complexes between Cd and Cys or GSH may be involved in the translocation of Cd to mammalian target organs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Mucosal CXCR4+ IgG plasma cells contribute to the pathogenesis of human ulcerative colitis through FcγR-mediated CD14 macrophage activation.

    PubMed

    Uo, Michihide; Hisamatsu, Tadakazu; Miyoshi, Jun; Kaito, Daiki; Yoneno, Kazuaki; Kitazume, Mina T; Mori, Maiko; Sugita, Akira; Koganei, Kazutaka; Matsuoka, Katsuyoshi; Kanai, Takanori; Hibi, Toshifumi

    2013-12-01

    Chronic inflammation characterised by IgG-producing plasma cell infiltration of colonic mucosa is a histological hallmark of ulcerative colitis (UC); however, whether its function is pathogenic or protective remains unclear. To explore the contribution of intestinal IgG plasma cells to UC pathogenesis. We isolated lamina propria mononuclear cells (LPMCs) from intestinal mucosa of UC patients and analysed the characteristics of intestinal plasma cells (expression profiles of differentiation molecules and chemokine receptors). We investigated the involvement of IgG-immune complex (IC)-Fc gamma receptor (FcγR) signalling in intestinal inflammation by examining the cytokine production by LPMCs in response to IgG-IC stimulation. IgG plasma cells that were markedly increased in number in the inflamed mucosa of UC patients showed a distinct expression profile (CD19(+)CD27(low), CCR10(low)CXCR4(high)) compared with IgA plasma cells (CD19(+/-)CD27(high), CCR10(high)CXCR4(-/low)). In vitro IgG-IC stimulation activated intestinal CD14 macrophages that were increased in number in the inflamed mucosa of UC patients via FcγRI and FcγRII, and induced the extensive production of pro-inflammatory cytokines such as tumour necrosis factor (TNF) and interleukin-1β (IL-1β), comparable to the effect of commensal bacteria stimulation. Co-stimulation with IgG-IC and commensal bacteria increased TNF and IL-1β production more than stimulation with the latter alone. Furthermore, IgG-IC notably up-regulated the expression of TL1A, whereas commensal bacteria specifically induced IL-23. Collectively, these results demonstrate a novel aspect of UC pathogenesis in which unique IgG plasma cells infiltrate the inflamed mucosa via CXCR4, and critically influence UC pathogenesis by exacerbating mucosal inflammation through the activation of 'pathogenic' intestinal CD14 macrophages via IgG-IC-FcγR signalling.

  4. 19.5%-Efficient CuIn1-xGaxSe2 Photovoltaic Cells Using A Cd-Zn-S Buffer Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya. R. N.

    2008-01-01

    CuIn1-xGaxSe2 (CIGS) solar cell junctions prepared by chemical-bath-deposited (CBD) Zn1-xCdxS (CdZnS), ZnS, and CdS buffer layers are discussed. A 19.52%-efficient, CIGS-based, thin-film photovoltaic device has been fabricated using a single-layer CBD CdZnS buffer layer. The mechanism that creates extensive hydroxide and oxide impurities in CBD-ZnS and CBD-CdZnS thin films (compared to CBD-CdS thin film) is presented.

  5. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia

    PubMed Central

    Paszkiewicz, Paulina J.; Fräßle, Simon P.; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C.; Riddell, Stanley R.; Busch, Dirk H.

    2016-01-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies. PMID:27760047

  6. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia.

    PubMed

    Paszkiewicz, Paulina J; Fräßle, Simon P; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Drexler, Ingo; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C; Riddell, Stanley R; Busch, Dirk H

    2016-11-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.

  7. Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions

    PubMed Central

    Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu

    2017-01-01

    A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer. PMID:28102286

  8. Wound Healing Is Defective in Mice Lacking Tetraspanin CD151

    PubMed Central

    Cowin, Allison J.; Adams, Damian; Geary, Sean M.; Wright, Mark D.; Jones, Jonathan C.R.; Ashman, Leonie K.

    2010-01-01

    The tetraspanin CD151 forms complexes in epithelial cell membranes with laminin-binding integrins α6 β4, α3 β1, and α6 β1, and modifies integrin-mediated cell migration in vitro. We demonstrate in this study that CD151 expression is upregulated in a distinct temporal and spatial pattern during wound healing, particularly in the migrating epidermal tongue at the wound edge, suggesting a role for CD151 in keratinocyte migration. We show that healing is significantly impaired in CD151-null mice, with wounds gaping wider at 7 days post-injury. The rate of re-epithelialization of the CD151-null wounds is adversely affected, with significantly less wound area being covered by migrating epidermal cells. Our studies reveal that although laminin levels are similar in wild-type and CD151-null wounds, the organization of the laminin in the basement membrane is impaired. Furthermore, upregulation of α6 and β4 integrin expression is adversely affected in CD151-null mice wounds. In contrast, we find no significant effect of CD151 gene knockout on α3 and β1 integrin expression in wound repair. We suggest that mice lacking the CD151 gene are defective in wound healing, primarily owing to impairment of the re-epithelialization process. This may be due to defective basement membrane formation and epithelial cell adhesion and migration. PMID:16410781

  9. Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study.

    PubMed

    Wen, Jia; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K

    2016-11-01

    The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.

  10. Metformin Suppresses Systemic Autoimmunity in Roquinsan/san Mice through Inhibiting B Cell Differentiation into Plasma Cells via Regulation of AMPK/mTOR/STAT3.

    PubMed

    Lee, Seon-Yeong; Moon, Su-Jin; Kim, Eun-Kyung; Seo, Hyeon-Beom; Yang, Eun-Ji; Son, Hye-Jin; Kim, Jae-Kyung; Min, Jun-Ki; Park, Sung-Hwan; Cho, Mi-La

    2017-04-01

    Circulating autoantibodies and immune complex deposition are pathological hallmarks of systemic lupus erythematosus (SLE). B cell differentiation into plasma cells (PCs) and some T cell subsets that function as B cell helpers can be therapeutic targets of SLE. Mechanistic target of rapamycin (mTOR) signaling is implicated in the formation of B cells and germinal centers (GCs). We assessed the effect of metformin, which inhibits mTOR, on the development of autoimmunity using Roquin san/san mice. Oral administration of metformin inhibited the formation of splenic follicles and inflammation in kidney and liver tissues. It also decreased serum levels of anti-dsDNA Abs without affecting serum glucose levels. Moreover, metformin inhibited CD21 high CD23 low marginal zone B cells, B220 + GL7 + GC B cells, B220 - CD138 + PCs, and GC formation. A significant reduction in ICOS + follicular helper T cells was found in the spleens of the metformin-treated group compared with the vehicle-treated group. In addition, metformin inhibited Th17 cells and induced regulatory T cells. These alterations in B and T cell subsets by metformin were associated with enhanced AMPK expression and inhibition of mTOR-STAT3 signaling. Furthermore, metformin induced p53 and NF erythroid-2-related factor-2 activity in splenic CD4 + T cells. Taken together, metformin-induced alterations in AMPK-mTOR-STAT3 signaling may have therapeutic value in SLE by inhibiting B cell differentiation into PCs and GCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Different binding modes of Cu and Pb vs. Cd, Ni, and Zn with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.

    2015-07-01

    The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) weremore » performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd-DFOB and tetradentate Cu-DFOB complex, respectively. Linear free-energy relations defined by the rare earth elements are able to predict stabilities of the Cd, Zn, and one of the Pb complexes, but underestimate those of the Ni and Cu complexes. The comparison with metal-specific organic ligands detected in seawater yields fair agreement for three of the five metals, implying that they could be siderophore-like. The Cd- and Ni-specific ligands are much stronger and may contain quite different functional groups. Calculations with MINEQL incorporating our new stability constants indicate that very high DFOB concentrations would be required to match the extent of metal-organic complexation observed in seawater, however DFOB may well represent a much broader class of structurally related ligands.« less

  12. p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibold, Kristina; Ehrenschwender, Martin, E-mail: martin.ehrenschwender@ukr.de

    CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified themore » multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.« less

  13. MicroRNA miR-328 Regulates Zonation Morphogenesis by Targeting CD44 Expression

    PubMed Central

    Wang, Chia-Hui; Lee, Daniel Y.; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B.

    2008-01-01

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion. PMID:18560585

  14. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    PubMed

    Wang, Chia-Hui; Lee, Daniel Y; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B

    2008-06-18

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  15. Four thiophene-pyridyl-amide-based Zn{sup II}/Cd{sup II} coordination polymers: Assembly, structures, photocatalytic properties and fluorescent recognition for Fe{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng

    By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation ofmore » methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.« less

  16. Two novel mixed-ligand complexes containing organosulfonate ligands.

    PubMed

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  17. Modification of Hematopoietic Stem/Progenitor Cells with CD19-Specific Chimeric Antigen Receptors as a Novel Approach for Cancer Immunotherapy

    PubMed Central

    Ryan, Christine; Giannoni, Francesca; Hardee, Cinnamon L.; Tremcinska, Irena; Katebian, Behrod; Wherley, Jennifer; Sahaghian, Arineh; Tu, Andy; Grogan, Tristan; Elashoff, David; Cooper, Laurence J.N.; Hollis, Roger P.; Kohn, Donald B.

    2013-01-01

    Abstract Chimeric antigen receptors (CARs) against CD19 have been shown to direct T-cells to specifically target B-lineage malignant cells in animal models and clinical trials, with efficient tumor cell lysis. However, in some cases, there has been insufficient persistence of effector cells, limiting clinical efficacy. We propose gene transfer to hematopoietic stem/progenitor cells (HSPC) as a novel approach to deliver the CD19-specific CAR, with potential for ensuring persistent production of effector cells of multiple lineages targeting B-lineage malignant cells. Assessments were performed using in vitro myeloid or natural killer (NK) cell differentiation of human HSPCs transduced with lentiviral vectors carrying first and second generations of CD19-specific CAR. Gene transfer did not impair hematopoietic differentiation and cell proliferation when transduced at 1–2 copies/cell. CAR-bearing myeloid and NK cells specifically lysed CD19-positive cells, with second-generation CAR including CD28 domains being more efficient in NK cells. Our results provide evidence for the feasibility and efficacy of the modification of HSPC with CAR as a strategy for generating multiple lineages of effector cells for immunotherapy against B-lineage malignancies to augment graft-versus-leukemia activity. PMID:23978226

  18. CD133 expression in well-differentiated pancreatic neuroendocrine tumors: a potential predictor of progressive clinical courses.

    PubMed

    Sakai, Yasuhiro; Hong, Seung-Mo; An, Soyeon; Kim, Joo Young; Corbeil, Denis; Karbanová, Jana; Otani, Kyoko; Fujikura, Kohei; Song, Ki-Byung; Kim, Song Cheol; Akita, Masayuki; Nanno, Yoshihide; Toyama, Hirochika; Fukumoto, Takumi; Ku, Yonson; Hirose, Takanori; Itoh, Tomoo; Zen, Yoh

    2017-03-01

    The present study aimed to elucidate whether the stemness molecule, CD133, is expressed in well-differentiated pancreatic neuroendocrine tumors (PanNETs; World Health Organization grades 1 and 2) and establish its clinical relevance using 2 separate cohorts. In the first series (n = 178) in which tissue microarrays were available, immunohistochemistry revealed that CD133 was expressed in 14 cases (8%). CD133+ PanNETs had higher TNM stages (P < .01), more frequent lymphovascular invasion (P = .01), and higher recurrence rates (P = .01). In the second cohort (n = 56), the expression of CD133 and CK19 was examined in whole tissue sections. CD133 and CK19 were positive in 10 (18%) and 36 (64%) cases, respectively. CD133 expression correlated with higher pT scores (P < .01), the presence of microscopic venous infiltration (P = .03), and shorter disease-free periods (P < .01). When cases were divided into grade 1 and 2 neoplasms, patients with CD133+ PanNET continued to have shorter disease-free periods than did those with CD133- tumors in both groups (P < .01 and P = .02, respectively). Although CK19+ cases had shorter disease-free periods than did CK19- cases in the whole cohort (P = .02), this difference was less apparent in subanalyses of grade 1 and 2 cases. CD133 expression also appeared to be an independent predictive factor for tumor recurrence in a multivariate analysis (P = .018). The CD133 phenotype was identical between primary and metastatic foci in 17 of 18 cases from which tissues of metastatic deposits were available. In conclusion, the combination of CD133 phenotyping and World Health Organization grading may assist in stratifying patients in terms of the risk of progressive clinical courses. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Translation and Clinical Development of Bispecific T‐cell Engaging Antibodies for Cancer Treatment

    PubMed Central

    Yuraszeck, T; Kasichayanula, S

    2017-01-01

    Bispecific T‐cell Engagers (BiTE®) antibody constructs enable a polyclonal T‐cell response to cell‐surface tumor‐associated antigens, bypassing the narrow specificities of T‐cell receptors and the need for antigen presentation through the major histocompatibility complex pathways. Blinatumomab, a CD19xCD3 BiTE® antibody construct, received accelerated approval for the treatment of relapsed/refractory Philadelphia chromosome negative acute lymphoblastic leukemia. Herein we review the pharmacology, safety, and efficacy observed in studies of blinatumomab and other BiTE® antibody constructs. Quantitative systems pharmacology is envisioned as a means to optimize dosing decisions for trials in which BiTE® antibody constructs are administered as monotherapy or in combination with other immunotherapies. PMID:28182247

  20. Characterization of HgCdTe and Related Materials For Third Generation Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Vaghayenegar, Majid

    Hg1-xCdxTe (MCT) has historically been the primary material used for infrared detectors. Recently, alternative substrates for MCT growth such as Si, as well as alternative infrared materials such as Hg1-xCdxSe, have been explored. This dissertation involves characterization of Hg-based infrared materials for third generation infrared detectors using a wide range of transmission electron microscopy (TEM) techniques. A microstructural study on HgCdTe/CdTe heterostructures grown by MBE on Si (211) substrates showed a thin ZnTe layer grown between CdTe and Si to mediate the large lattice mismatch of 19.5%. Observations showed large dislocation densities at the CdTe/ZnTe/Si (211) interfaces, which dropped off rapidly away from the interface. Growth of a thin HgTe buffer layer between HgCdTe and CdTe layers seemed to improve the HgCdTe layer quality by blocking some defects. A second study investigated the correlation of etch pits and dislocations in as-grown and thermal-cycle-annealed (TCA) HgCdTe (211) films. For as-grown samples, pits with triangular and fish-eye shapes were associated with Frank partial and perfect dislocations, respectively. Skew pits were determined to have a more complex nature. TCA reduced the etch-pit density by 72%. Although TCA processing eliminated the fish-eye pits, dislocations reappeared in shorter segments in the TCA samples. Large pits were observed in both as-grown and TCA samples, but the nature of any defects associated with these pits in the as-grown samples is unclear. Microstructural studies of HgCdSe revealed large dislocation density at ZnTe/Si(211) interfaces, which dropped off markedly with ZnTe thickness. Atomic-resolution STEM images showed that the large lattice mismatch at the ZnTe/Si interface was accommodated through {111}-type stacking faults. A detailed analysis showed that the stacking faults were inclined at angles of 19.5 and 90 degrees at both ZnTe/Si and HgCdSe/ZnTe interfaces. These stacking faults were associated with Shockley and Frank partial dislocations, respectively. Initial attempts to delineate individual dislocations by chemical etching revealed that while the etchants successfully attacked defective areas, many defects in close proximity to the pits were unaffected.

  1. Methodology for assessing thioarsenic formation potential in sulfidic landfill environments.

    PubMed

    Zhang, Jianye; Kim, Hwidong; Townsend, Timothy

    2014-07-01

    Arsenic leaching and speciation in landfills, especially those with arsenic bearing waste and drywall disposal (such as construction and demolition (C&D) debris landfills), may be affected by high levels of sulfide through the formation of thioarsenic anions. A methodology using ion chromatography (IC) with a conductivity detector was developed for the assessment of thioarsenic formation potential in sulfidic landfill environments. Monothioarsenate (H2AsSO3(-)) and dithioarsenate (H2AsS2O2(-)) were confirmed in the IC fractions of thioarsenate synthesis mixture, consistent with previous literature results. However, the observation of AsSx(-) (x=5-8) in the supposed trithioarsenate (H2AsS3O(-)) and tetrathioarsenate (H2AsS4(-)) IC fractions suggested the presence of new arsenic polysulfide complexes. All thioarsenate anions, particularly trithioarsenate and tetrathioarsenate, were unstable upon air exposure. The method developed for thioarsenate analysis was validated and successfully used to analyze several landfill leachate samples. Thioarsenate anions were detected in the leachate of all of the C&D debris landfills tested, which accounted for approximately 8.5% of the total aqueous As in the leachate. Compared to arsenite or arsenate, thioarsenates have been reported in literature to have lower adsorption on iron oxide minerals. The presence of thioarsenates in C&D debris landfill leachate poses new concerns when evaluating the impact of arsenic mobilization in such environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Imaging Technology in Libraries: Photo CD Offers New Possibilities.

    ERIC Educational Resources Information Center

    Beiser, Karl

    1993-01-01

    Describes Kodak's Photo CD technology, a format for the storage and retrieval of photographic images in electronic form. Highlights include current and future Photo CD formats; computer imaging technology; ownership issues; hardware for using Photo CD; software; library and information center applications, including image collections and…

  3. Fluorometric and theoretical studies on inclusion complexes of β-cyclodextrin and D-, L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Aree, Thammarat; Arunchai, Rungthiwa; Koonrugsa, Narongsak; Intasiri, Amarawan

    2012-10-01

    Inclusion complexes of β-cyclodextrin (β-CD) with L- and D-phenylalanine (Phe) have been characterized in solution by fluorometry and in gas phase by semiempirical PM3 calculations. The unimolar stoichiometric ratio of both β-CD-L-Phe and β-CD-D-Phe complexes and the stability constants (K) were deduced from fluorometric titrations. The β-CD-L-Phe complex is more stable than the β-CD-D-Phe complex as indicated by the larger K values, 21.1 vs. 6.86 M-1. This is consistent with the stabilization energies (ΔEstb) and inclusion geometries obtained from PM3 calculations. The β-CD-L-Phe complex with L-Phe residing in the central β-CD cavity and pointing its COOH group downwards to the O6 end has ΔEstb = -62.7 kJ mol-1, whereas the β-CD-D-Phe complex with D-Phe placing at 3 Å beneath the β-CD O4-plane and pointing its COOH group upwards to the O2/O3 end has ΔEstb = -53.3 kJ mol-1. The unison of host-guest intermolecular hydrogen bonds, hydrophobic interactions and molecular deformations plays an essential role in forming and stabilizing the inclusion complexes. Our results show that the β-CD-L-Phe and β-CD-D-Phe inclusion complexes are relatively stable and differentiable, suggesting the applications of CDs in foods and drugs.

  4. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    PubMed

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation. Copyright © 2013 American Society for Bone and Mineral Research.

  5. Metal-organic frameworks in cadmium(II) complexes with 5-methoxyindole-2-carboxylic acid: structure, vibrational spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Morzyk-Ociepa, Barbara; Szmigiel, Ksenia; Dysz, Karolina; Turowska-Tyrk, Ilona; Michalska, Danuta

    2016-11-01

    Two new complexes of Cd(II) with an O-deprotonated anion of 5-methoxyindole-2-carboxylic acid (5-MeOI2CA), of the formulas [Cd(5-MeOI2CA)2(H2O)2]n (1) and [Cd3(5-MeOI2CA)6(H2O)4(DMSO)4]ṡ2DMSO (2) were synthesized. In the polymeric complex 1, the 5-MeOI2CA anion acts as a bidentate bridging ligand and the coordination environment around the Cd(II) ion can be described as a distorted octahedron. Single crystal X-ray diffraction analysis of 2 has revealed that this complex is a trimer and it crystallizes in the monoclinic system (space group P21/c with a = 20.3403(4), b = 14.3079(2), c = 15.0603(3) Å, β = 92.4341(17)°, V = 4379.00(14) Å3 and Z = 2). In 2, the 5-MeOI2CA anions act as bidentate bridging and bidentate chelating ligands. The asymmetric unit of 2 contains two crystallographically independent Cd(II) cations. One of the cations is coordinated to six oxygen atoms and shows an octahedral geometry with a rhombic deformation. The other Cd(II) cation adopts a distorted seven-coordinate pentagonal-bipyramidal geometry involving seven oxygen atoms. In 2, the DMSO solvent molecules play a key role in the formation of metal-organic frameworks by filling voids, which are created by the bridging and chelating 5-MeOI2CA anions, the cadmium cations and the other DMSO molecules coordinated to cadmium. Comprehensive theoretical calculations (including the optimized structural parameters, harmonic frequencies and vibrational intensities) were performed for 2 using the B3LYP method with the 6-311++G(d,p)/LanL2DZ basis sets. The infrared and Ramana spectra were measured and a detailed assignment of the experimental spectra of 2 was performed. All cadmium-oxygen stretching vibrations occur in the range below 400 cm-1.

  6. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180

  7. Decrease of peritoneal inflammatory CD4(+), CD8(+), CD19(+) lymphocytes and apoptosis of eosinophils in a murine Taenia crassiceps infection.

    PubMed

    Zepeda, Nadia; Solano, Sandra; Copitin, Natalia; Fernández, Ana María; Hernández, Lilián; Tato, Patricia; Molinari, José L

    2010-10-01

    After an intraperitoneal infection of mice with Taenia crassiceps metacestodes, peritoneal inflammatory cells labeled with fluoresceinated MoAb anti-mouse were analyzed by flow cytometry. Apoptosis was studied by annexin A/PI, TUNEL assays, DNA laddering, caspase-3 activity, and electron microscopy. An important continuous decrease of CD4+, CD8+ and CD19+ lymphocytes, and an increase of eosinophils and macrophages throughout the observation time were found. Apoptosis of eosinophils was quantified during the observation period with a peak at 6 days post-infection (67.27%). In an additional experiment at 12 days post-infection using TUNEL staining, a high level of apoptosis of eosinophil (92.3%) and a significant decrease of CD4+, CD8+, and CD19+ lymphocytes were confirmed. Caspase-3 activity in peritoneal fluid, peritoneal cells' DNA fragmentation, and apoptosis of eosinophils and monocytes were found. The dramatic decrease of peritoneal inflammatory T and B cells and the high level of apoptosis of inflammatory eosinophils induced in mice by infection with T. crassiceps cysticerci may be important factors of the immunosuppression observed in cysticercosis.

  8. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells.

    PubMed

    Pène, Jérôme; Gauchat, Jean-François; Lécart, Sandrine; Drouet, Elodie; Guglielmi, Paul; Boulay, Vera; Delwail, Adriana; Foster, Don; Lecron, Jean-Claude; Yssel, Hans

    2004-05-01

    IL-21 is a cytokine that regulates the activation of T and NK cells and promotes the proliferation of B cells activated via CD40. In this study, we show that rIL-21 strongly induces the production of all IgG isotypes by purified CD19(+) human spleen or peripheral blood B cells stimulated with anti-CD40 mAb. Moreover, it was found to specifically induce the production of IgG(1) and IgG(3) by CD40-activated CD19(+)CD27(-) naive human B cells. Although stimulation of CD19(+) B cells via CD40 alone induced gamma 1 and gamma 3 germline transcripts, as well as the expression of activation-induced cytidine deaminase, only stimulation with both anti-CD40 mAb and rIL-21 resulted in the production of S gamma/S mu switch circular DNA. These results show that IL-21, in addition to promoting growth and differentiation of committed B cells, is a specific switch factor for the production of IgG(1) and IgG(3).

  9. Characterization of Functional Antibody and Memory B-Cell Responses to pH1N1 Monovalent Vaccine in HIV-Infected Children and Youth

    PubMed Central

    Curtis, Donna J.; Muresan, Petronella; Nachman, Sharon; Fenton, Terence; Richardson, Kelly M.; Dominguez, Teresa; Flynn, Patricia M.; Spector, Stephen A.; Cunningham, Coleen K.; Bloom, Anthony; Weinberg, Adriana

    2015-01-01

    Objectives We investigated immune determinants of antibody responses and B-cell memory to pH1N1 vaccine in HIV-infected children. Methods Ninety subjects 4 to <25 years of age received two double doses of pH1N1 vaccine. Serum and cells were frozen at baseline, after each vaccination, and at 28 weeks post-immunization. Hemagglutination inhibition (HAI) titers, avidity indices (AI), B-cell subsets, and pH1N1 IgG and IgA antigen secreting cells (ASC) were measured at baseline and after each vaccination. Neutralizing antibodies and pH1N1-specific Th1, Th2 and Tfh cytokines were measured at baseline and post-dose 1. Results At entry, 26 (29%) subjects had pH1N1 protective HAI titers (≥1:40). pH1N1-specific HAI, neutralizing titers, AI, IgG ASC, IL-2 and IL-4 increased in response to vaccination (p<0.05), but IgA ASC, IL-5, IL-13, IL-21, IFNγ and B-cell subsets did not change. Subjects with baseline HAI ≥1:40 had significantly greater increases in IgG ASC and AI after immunization compared with those with HAI <1:40. Neutralizing titers and AI after vaccination increased with older age. High pH1N1 HAI responses were associated with increased IgG ASC, IFNγ, IL-2, microneutralizion titers, and AI. Microneutralization titers after vaccination increased with high IgG ASC and IL-2 responses. IgG ASC also increased with high IFNγ responses. CD4% and viral load did not predict the immune responses post-vaccination, but the B-cell distribution did. Notably, vaccine immunogenicity increased with high CD19+CD21+CD27+% resting memory, high CD19+CD10+CD27+% immature activated, low CD19+CD21-CD27-CD20-% tissue-like, low CD19+CD21-CD27-CD20-% transitional and low CD19+CD38+HLADR+% activated B-cell subsets. Conclusions HIV-infected children on HAART mount a broad B-cell memory response to pH1N1 vaccine, which was higher for subjects with baseline HAI≥1:40 and increased with age, presumably due to prior exposure to pH1N1 or to other influenza vaccination/infection. The response to the vaccine was dependent on B-cell subset distribution, but not on CD4 counts or viral load. Trial Registration ClinicalTrials.gov NCT00992836 PMID:25785995

  10. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn

    PubMed Central

    Thijs, Sofie; Lobo, Mª Carmen; Weyens, Nele; Pérez-Sanz, Araceli

    2017-01-01

    Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils. PMID:28934107

  11. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn.

    PubMed

    Montalbán, Blanca; Thijs, Sofie; Lobo, Mª Carmen; Weyens, Nele; Ameloot, Marcel; Vangronsveld, Jaco; Pérez-Sanz, Araceli

    2017-09-21

    Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262 - green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.

  12. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical, Hematompoietic Progenitor-Cell Transplant

    DTIC Science & Technology

    2008-05-01

    adoptive therapy using CD19- specific chimeric antigen receptor re-directed T cells for recurrent/refractory follicular lymphoma. Mol Ther...T- cell therapies for B- cell malignancies we have developed a chimeric antigen receptor (CAR) which when expressed on the cell surface redirects T...that both CD4+ and CD8+ T cells expressing CD19-specific chimeric antigen receptor (CAR) can be generated usmg a novel non-viral gene

  13. Emodin suppresses cadmium-induced osteoporosis by inhibiting osteoclast formation.

    PubMed

    Chen, Xiao; Ren, Shuai; Zhu, Guoying; Wang, Zhongqiu; Wen, Xiaolin

    2017-09-01

    Environmental level of cadmium (Cd) exposure can induce bone loss. Emodin, a naturally compound found in Asian herbal medicines, could influence osteoblast/osteoclast differentiation. However, the effects of emodin on Cd-induced bone damage are not clarified. The aim of this study was to investigate the role of emodin on Cd-induced osteoporosis. Sprague-Dawley male rats were divided into three groups which were given 0mg/L, 50mg Cd/L and 50mg Cd/L plus emodin (50mg/kg body weight). Bone histological investigation, microCT analysis, metabolic biomarker determination and immunohistochemical staining were performed at the 12th week. The bone mass and bone microstructure index of rats treated with Cd were obviously lower than in control. Cd markedly enhanced the osteoclast formation compared with control. Emodin significantly abolished the Cd-induced bone microstructure damage (p<0.05), osteoclast formation and increase of tartrate-resistant acid phosphatase 5b level (p<0.05). Our data further showed that emodin attenuated the Cd-induced inhibition of osteoprotegerin expression and stimulation of receptor activator for nuclear factor-κ B ligand expression. Our data show that emodin suppresses the Cd-induced osteoporosis by inhibiting osteoclast formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems.

    PubMed

    Zhang, Xiaojin; Ma, Xin; Wang, Kang; Lin, Shijun; Zhu, Shitai; Dai, Yu; Xia, Fan

    2018-06-01

    Cyclodextrins (CDs), one of the host molecules in supramolecular chemistry, can host guest molecules to form inclusion complexes via non-covalent and reversible host-guest interactions. CD-based light-responsive supramolecular systems are typically constructed using CDs and guest molecules with light-responsive moieties, including azobenzene, arylazopyrazole, o-nitrobenzyl ester, pyrenylmethyl ester, coumarin, and anthracene. To date, numerous efforts have been reported on the topic of CD-based light-responsive supramolecular systems, but these have not yet been highlighted in a separated review. This review summarizes the efforts reported over the past ten years. The main text of this review is divided into five sections (vesicles, micelles, gels, capturers, and nanovalves) according to the formation of self-assemblies. This feature article aims to afford a comprehensive understanding of the light-responsive moieties used in the construction of CD-based light-responsive supramolecular systems and to provide a helpful guide for the further design of CD-based light-responsive supramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Controlled Growth of CdS Quantum Dot in an Amphiphilic Diblock Copolymer Poly(2-Vinyl Pyridine)-b-Poly(n-Hexyl Isocyanate) Reversed Micelle Nanoreactor.

    PubMed

    Samal, Monica; Mohapatra, Priya Ranjan; Yun, Kyu Sik

    2015-09-01

    A diblock copolymer poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) is used for the present study. It has two blocks; a rod-shaped PHIC block that adopts a helical conformation, and a coil shaped P2VP block. In a polar solvent such as THF both PHIC and P2VP blocks are soluble. In mixtures of two solvents, such as THF and methanol, while the solubility of P2VP component is augmented that of PHIC is decreased leading to formation of reversed micelles. The pyridine nitrogen in P2VP block is a reactive site. It forms complexes with a suitable metal ion, such as Cd2+. The micelle is employed as a nanoreactor for synthesis of CdS quantum dot (QD). In this paper, the micellization behaviour of the copolymer and the use of the micelles for synthesis and controlled growth of CdS nanocrystals are demonstrated.

  16. Mannheimia haemolytica and Its Leukotoxin Cause Neutrophil Extracellular Trap Formation by Bovine Neutrophils▿

    PubMed Central

    Aulik, Nicole A.; Hellenbrand, Katrina M.; Klos, Heather; Czuprynski, Charles J.

    2010-01-01

    Mannheimia haemolytica is an important member of the bovine respiratory disease complex, which is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. Recently several authors have reported that human neutrophils release neutrophil extracellular traps (NETs), which are protein-studded DNA matrices capable of trapping and killing pathogens. Here, we demonstrate that the leukotoxin (LKT) of M. haemolytica causes NET formation by bovine neutrophils in a CD18-dependent manner. Using an unacylated, noncytotoxic pro-LKT produced by an ΔlktC mutant of M. haemolytica, we show that binding of unacylated pro-LKT stimulates NET formation despite a lack of cytotoxicity. Inhibition of LKT binding to the CD18 chain of lymphocyte function-associated antigen 1 (LFA-1) on bovine neutrophils reduced NET formation in response to LKT or M. haemolytica cells. Further investigation revealed that NETs formed in response to M. haemolytica are capable of trapping and killing a portion of the bacterial cells. NET formation was confirmed by confocal microscopy and by scanning and transmission electron microscopy. Prior exposure of bovine neutrophils to LKT enhanced subsequent trapping and killing of M. haemolytica cells in bovine NETs. Understanding NET formation in response to M. haemolytica and its LKT provides a new perspective on how neutrophils contribute to the pathogenesis of bovine respiratory disease. PMID:20823211

  17. CAR therapy: the CD19 paradigm

    PubMed Central

    Sadelain, Michel

    2015-01-01

    Twenty-five years after its inception, the genetic engineering of T cells is now a therapeutic modality pursued at an increasing number of medical centers. This immunotherapeutic strategy is predicated on gene transfer technology to instruct T lymphocytes to recognize and reject tumor cells. Chimeric antigen receptors (CARs) are synthetic receptors that mediate antigen recognition, T cell activation, and — in the case of second-generation CARs — costimulation to augment T cell functionality and persistence. We demonstrated over a decade ago that human T cells engineered with a CD19-specific CAR eradicated B cell malignancies in mice. Several phase I clinical trials eventually yielded dramatic results in patients with leukemia or lymphoma, especially acute lymphoblastic leukemia (ALL). This review recounts the milestones of CD19 CAR therapy and summarizes lessons learned from the CD19 paradigm. PMID:26325036

  18. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Dudley, Mark E.; Carpenter, Robert O.; Kassim, Sadik H.; Rose, Jeremy J.; Telford, William G.; Hakim, Frances T.; Halverson, David C.; Fowler, Daniel H.; Hardy, Nancy M.; Mato, Anthony R.; Hickstein, Dennis D.; Gea-Banacloche, Juan C.; Pavletic, Steven Z.; Sportes, Claude; Maric, Irina; Feldman, Steven A.; Hansen, Brenna G.; Wilder, Jennifer S.; Blacklock-Schuver, Bazetta; Jena, Bipulendu; Bishop, Michael R.; Gress, Ronald E.; Rosenberg, Steven A.

    2013-01-01

    New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patient’s alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD. This trial was registered at www.clinicaltrials.gov as #NCT01087294. PMID:24055823

  19. CD40 Ligand Promotes Mac-1 Expression, Leukocyte Recruitment, and Neointima Formation after Vascular Injury

    PubMed Central

    Li, Guohong; Sanders, John M.; Bevard, Melissa H.; Sun, ZhiQi; Chumley, James W.; Galkina, Elena V.; Ley, Klaus; Sarembock, Ian J.

    2008-01-01

    High levels of circulating soluble CD40 ligand (sCD40L) are frequently found in patients with hypercholesterolemia, diabetes, ischemic stroke, or acute coronary syndromes, predicting an increased rate of atherosclerotic plaque rupture and restenosis after coronary/carotid interventions. Clinical restenosis is characterized in part by exaggerated neointima formation, but the underlying mechanism remains incompletely understood. This study investigated the role of elevated sCD40L in neointima formation in response to vascular injury in an atherogenic animal model and explored the molecular mechanisms involved. apoE−/− mice fed a Western diet developed severe hypercholesterolemia, significant hyperglycemia, and high levels of plasma sCD40L. Neointima formation after carotid denudation injury was exaggerated in the apoE−/− mice. In vivo, blocking CD40L with anti-CD40L monoclonal antibody attenuated the early accumulation of Ly-6G+ neutrophils and Gr-1+ monocytes (at 3 days) and the late accumulation of Mac-2+ macrophages (at 28 days) in the denudated arteries; it also reduced the exaggerated neointima formation at 28 days. In vitro, recombinant CD40L stimulated platelet P-selectin and neutrophil Mac-1 expression and platelet-neutrophil co-aggregation and adhesive interaction. These effects were abrogated by anti-CD40L or anti-Mac-1 monoclonal antibody. Moreover, recombinant CD40L stimulated neutrophil oxidative burst and release of matrix metalloproteinase-9 in vitro. We conclude that elevated sCD40L promotes platelet-leukocyte activation and recruitment and neointima formation after arterial injury, potentially through enhancement of platelet P-selectin and leukocyte Mac-1 expression and oxidative activity. PMID:18349125

  20. HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response

    PubMed Central

    Hsu, Li-Jin; Chiang, Ming-Fu; Sze, Chun-I; Su, Wan-Pei; Yap, Ye Vone; Lee, I-Ting; Kuo, Hsiang-Ling; Chang, Nan-Shan

    2016-01-01

    Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response. PMID:27999774

  1. CD147-CD98hc complex contributes to poor prognosis of non-small cell lung cancer patients through promoting cell proliferation via the PI3K/Akt signaling pathway.

    PubMed

    Fei, Fei; Li, Xiaofei; Xu, Li; Li, Deyang; Zhang, Zhipei; Guo, Xu; Yang, Hushan; Chen, Zhinan; Xing, Jinliang

    2014-12-01

    It has been reported that CD147 and CD98 heavy chain (CD98hc) form a complex on the cell plasma membrane of several cancers; however, whether this complex exists in non-small cell lung cancer (NSCLC) cells and affects the prognosis of patients remains to be elucidated. The expression of CD147 and CD98hc was assessed in tissue samples from 241 NSCLC patients and NSCLC cell lines. The correlation between CD147 and CD98hc expression and their association with the prognosis of NSCLC patients were analyzed. We also evaluated the impact of CD147 and CD98hc on the growth of NSCLC cells as well as Akt phosphorylation. Both CD147 and CD98hc were significantly upregulated in NSCLC cells, and their expression levels were significantly correlated (p < 0.001). Immunoflurenece staining and co-immunoprecipitation demonstrated that CD147 and CD98hc could form a complex on NSCLC cells. Compared with NSCLC patients with CD147-/CD98hc-, those with CD147+/CD98hc+ exhibited a significantly poor overall survival (OS) with a hazard ratio (HR) of 1.92 (p = 0.010), and a significantly increased risk of recurrence with a HR of 1.97 (p = 0.004). Also, we demonstrated that the proliferation of lung cancer cell lines was significantly affected by knockdown and force-expression of the CD147-CD98hc complex. Western blot analysis indicated that the phosphorylation of Akt in NSCLC cells was significantly affected by knockdown and overexpression of either or both CD147 and CD98hc. Our findings indicate that the CD147-CD98hc complex significantly contributes to poor prognosis of NSCLC patients through promoting cell proliferation via the PI3K/Akt pathway.

  2. Fluorine-19 Labeling of Stromal Vascular Fraction Cells for Clinical Imaging Applications

    PubMed Central

    Rose, Laura C.; Kadayakkara, Deepak K.; Wang, Guan; Bar-Shir, Amnon; Helfer, Brooke M.; O’Hanlon, Charles F.; Kraitchman, Dara L.; Rodriguez, Ricardo L.

    2015-01-01

    Stromal vascular fraction (SVF) cells are used clinically for various therapeutic targets. The location and persistence of engrafted SVF cells are important parameters for determining treatment failure versus success. We used the GID SVF-1 platform and a clinical protocol to harvest and label SVF cells with the fluorinated (19F) agent CS-1000 as part of a first-in-human phase I trial (clinicaltrials.gov identifier NCT02035085) to track SVF cells with magnetic resonance imaging during treatment of radiation-induced fibrosis in breast cancer patients. Flow cytometry revealed that SVF cells consisted of 25.0% ± 15.8% CD45+, 24.6% ± 12.5% CD34+, and 7.5% ± 3.3% CD31+ cells, with 2.1 ± 0.7 × 105 cells per cubic centimeter of adipose tissue obtained. Fluorescent CS-1000 (CS-ATM DM Green) labeled 87.0% ± 13.5% of CD34+ progenitor cells compared with 47.8% ± 18.5% of hematopoietic CD45+ cells, with an average of 2.8 ± 2.0 × 1012 19F atoms per cell, determined using nuclear magnetic resonance spectroscopy. The vast majority (92.7% ± 5.0%) of CD31+ cells were also labeled, although most coexpressed CD34. Only 16% ± 22.3% of CD45−/CD31−/CD34− (triple-negative) cells were labeled with CS-ATM DM Green. After induction of cell death by either apoptosis or necrosis, >95% of 19F was released from the cells, indicating that fluorine retention can be used as a surrogate marker for cell survival. Labeled-SVF cells engrafted in a silicone breast phantom could be visualized with a clinical 3-Tesla magnetic resonance imaging scanner at a sensitivity of approximately 2 × 106 cells at a depth of 5 mm. The current protocol can be used to image transplanted SVF cells at clinically relevant cell concentrations in patients. Significance Stromal vascular fraction (SVF) cells harvested from adipose tissue offer great promise in regenerative medicine, but methods to track such cell therapies are needed to ensure correct administration and monitor survival. A clinical protocol was developed to harvest and label SVF cells with the fluorinated (19F) agent CS-1000, allowing cells to be tracked with 19F magnetic resonance imaging (MRI). Flow cytometry evaluation revealed heterogeneous 19F uptake in SVF cells, confirming the need for careful characterization. The proposed protocol resulted in sufficient 19F uptake to allow imaging using a clinical MRI scanner with point-of-care processing. PMID:26511652

  3. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    PubMed Central

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  4. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    PubMed

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Lack of CD47 Impairs Bone Cell Differentiation and Results in an Osteopenic Phenotype in Vivo due to Impaired Signal Regulatory Protein α (SIRPα) Signaling*

    PubMed Central

    Koskinen, Cecilia; Persson, Emelie; Baldock, Paul; Stenberg, Åsa; Boström, Ingrid; Matozaki, Takashi; Oldenborg, Per-Arne; Lundberg, Pernilla

    2013-01-01

    Here, we investigated whether the cell surface glycoprotein CD47 was required for normal formation of osteoblasts and osteoclasts and to maintain normal bone formation activity in vitro and in vivo. In parathyroid hormone or 1α,25(OH)2-vitamin D3 (D3)-stimulated bone marrow cultures (BMC) from CD47−/− mice, we found a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)+ osteoclasts, associated with reduced expression of osteoclastogenic genes (nfatc1, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The production of M-CSF and RANKL (receptor activator of nuclear factor κβ ligand) was reduced in CD47−/− BMC, as compared with CD47+/+ BMC. The stromal cell phenotype in CD47−/− BMC involved a blunted expression of the osteoblast-associated genes osterix, Alp/Akp1, and α-1-collagen, and reduced mineral deposition, as compared with that in CD47+/+ BMC. CD47 is a ligand for SIRPα (signal regulatory protein α), which showed strongly reduced tyrosine phosphorylation in CD47−/− bone marrow stromal cells. In addition, stromal cells lacking the signaling SIRPα cytoplasmic domain also had a defect in osteogenic differentiation, and both CD47−/− and non-signaling SIRPα mutant stromal cells showed a markedly reduced ability to support osteoclastogenesis in wild-type bone marrow macrophages, demonstrating that CD47-induced SIRPα signaling is critical for stromal cell support of osteoclast formation. In vivo, femoral bones of 18- or 28-week-old CD47−/− mice showed significantly reduced osteoclast and osteoblast numbers and exhibited an osteopenic bone phenotype. In conclusion, lack of CD47 strongly impairs SIRPα-dependent osteoblast differentiation, deteriorate bone formation, and cause reduced formation of osteoclasts. PMID:23990469

  6. Apyrase Elicits Host Antimicrobial Responses and Resolves Infection in Burns.

    PubMed

    Bayliss, Jill M; Levi, Benjamin; Wu, Jianfeng; Wang, Stewart C; Su, Grace L; Xi, Chuanwu

    The authors previously reported that adenosine triphosphate (ATP) stimulates biofilm formation and removal of the ATP could reduce biofilm formation. The main objective of this study was to evaluate the effects of the ATP-hydrolyzing enzyme, apyrase, on control of Acinetabacter baumannii infection in the burn wound as well as to assess host skin antimicrobial responses. The authors found that apyrase stimulated nitric oxide formation at the wound site and reduced CD55 expression, thereby inducing the assembly of membrane attack complexes. Apyrase treatment nearly eradicated multidrug-resistant A. baumannii from burn wounds in the absence of antibiotics. Apyrase may be an effective therapy against antibiotic-resistant bacterial infections in burns.

  7. Non-viral RNA chimeric antigen receptor modified T cells in patients with Hodgkin lymphoma.

    PubMed

    Svoboda, Jakub; Rheingold, Susan R; Gill, Saar I; Grupp, Stephan A; Lacey, Simon F; Kulikovskaya, Irina; Suhoski, Megan M; Melenhorst, J Joseph; Loudon, Brandon; Mato, Anthony R; Nasta, Sunita Dwivedy; Landsburg, Daniel J; Youngman, Matthew R; Levine, Bruce L; Porter, David L; June, Carl H; Schuster, Stephen J

    2018-06-20

    Chimeric antigen receptor (CAR) modified T cells are being investigated in many settings including classical Hodgkin lymphoma (cHL). The unique biology of cHL, characterized by scant Hodgkin and Reed-Sternberg (HRS) cells within an immunosuppressive tumor microenvironment (TME), may pose challenges for cellular therapies directly targeting antigens expressed on HRS. We hypothesized that eradicating CD19 positive (+) B cells within the TME and the putative circulating CD19+ HRS clonotypic cells using anti-CD19 directed CAR modified T cells (CART19) may indirectly affect HRS cells, which do not express CD19. Here we describe our pilot trial using CART19 in patients with relapsed and refractory cHL. To limit potential toxicities, we used non-viral RNA CART19 cells which are expected to express CAR protein only a few days, as opposed to CART19 generated by viral vector transduction, which expand in vivo and retain CAR expression. All 5 enrolled patients underwent successful manufacturing of non-viral RNA CART19 and 4 were infused with protocol specified cell dose. There were no severe toxicities. Responses were seen, but these were transient. To our knowledge, this is the first CART19 clinical trial to use non-viral RNA gene delivery. This trial was registered at www.clinicaltrials.gov as NCT02277522 (adult) and NCT02624258 (pediatric). Copyright © 2018 American Society of Hematology.

  8. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    PubMed

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  9. Protein-DNA interactions define the mechanistic aspects of circle formation and insertion reactions in IS2 transposition.

    PubMed

    Lewis, Leslie A; Astatke, Mekbib; Umekubo, Peter T; Alvi, Shaheen; Saby, Robert; Afrose, Jehan; Oliveira, Pedro H; Monteiro, Gabriel A; Prazeres, Duarte Mf

    2012-01-26

    Transposition in IS3, IS30, IS21 and IS256 insertion sequence (IS) families utilizes an unconventional two-step pathway. A figure-of-eight intermediate in Step I, from asymmetric single-strand cleavage and joining reactions, is converted into a double-stranded minicircle whose junction (the abutted left and right ends) is the substrate for symmetrical transesterification attacks on target DNA in Step II, suggesting intrinsically different synaptic complexes (SC) for each step. Transposases of these ISs bind poorly to cognate DNA and comparative biophysical analyses of SC I and SC II have proven elusive. We have prepared a native, soluble, active, GFP-tagged fusion derivative of the IS2 transposase that creates fully formed complexes with single-end and minicircle junction (MCJ) substrates and used these successfully in hydroxyl radical footprinting experiments. In IS2, Step I reactions are physically and chemically asymmetric; the left imperfect, inverted repeat (IRL), the exclusive recipient end, lacks donor function. In SC I, different protection patterns of the cleavage domains (CDs) of the right imperfect inverted repeat (IRR; extensive in cis) and IRL (selective in trans) at the single active cognate IRR catalytic center (CC) are related to their donor and recipient functions. In SC II, extensive binding of the IRL CD in trans and of the abutted IRR CD in cis at this CC represents the first phase of the complex. An MCJ substrate precleaved at the 3' end of IRR revealed a temporary transition state with the IRL CD disengaged from the protein. We propose that in SC II, sequential 3' cleavages at the bound abutted CDs trigger a conformational change, allowing the IRL CD to complex to its cognate CC, producing the second phase. Corroborating data from enhanced residues and curvature propensity plots suggest that CD to CD interactions in SC I and SC II require IRL to assume a bent structure, to facilitate binding in trans. Different transpososomes are assembled in each step of the IS2 transposition pathway. Recipient versus donor end functions of the IRL CD in SC I and SC II and the conformational change in SC II that produces the phase needed for symmetrical IRL and IRR donor attacks on target DNA highlight the differences.

  10. Protein-DNA interactions define the mechanistic aspects of circle formation and insertion reactions in IS2 transposition

    PubMed Central

    2012-01-01

    Background Transposition in IS3, IS30, IS21 and IS256 insertion sequence (IS) families utilizes an unconventional two-step pathway. A figure-of-eight intermediate in Step I, from asymmetric single-strand cleavage and joining reactions, is converted into a double-stranded minicircle whose junction (the abutted left and right ends) is the substrate for symmetrical transesterification attacks on target DNA in Step II, suggesting intrinsically different synaptic complexes (SC) for each step. Transposases of these ISs bind poorly to cognate DNA and comparative biophysical analyses of SC I and SC II have proven elusive. We have prepared a native, soluble, active, GFP-tagged fusion derivative of the IS2 transposase that creates fully formed complexes with single-end and minicircle junction (MCJ) substrates and used these successfully in hydroxyl radical footprinting experiments. Results In IS2, Step I reactions are physically and chemically asymmetric; the left imperfect, inverted repeat (IRL), the exclusive recipient end, lacks donor function. In SC I, different protection patterns of the cleavage domains (CDs) of the right imperfect inverted repeat (IRR; extensive in cis) and IRL (selective in trans) at the single active cognate IRR catalytic center (CC) are related to their donor and recipient functions. In SC II, extensive binding of the IRL CD in trans and of the abutted IRR CD in cis at this CC represents the first phase of the complex. An MCJ substrate precleaved at the 3' end of IRR revealed a temporary transition state with the IRL CD disengaged from the protein. We propose that in SC II, sequential 3' cleavages at the bound abutted CDs trigger a conformational change, allowing the IRL CD to complex to its cognate CC, producing the second phase. Corroborating data from enhanced residues and curvature propensity plots suggest that CD to CD interactions in SC I and SC II require IRL to assume a bent structure, to facilitate binding in trans. Conclusions Different transpososomes are assembled in each step of the IS2 transposition pathway. Recipient versus donor end functions of the IRL CD in SC I and SC II and the conformational change in SC II that produces the phase needed for symmetrical IRL and IRR donor attacks on target DNA highlight the differences. PMID:22277150

  11. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  12. Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation.

    PubMed

    Kroy, Daniela C; Hebing, Lisa; Sander, Leif E; Gassler, Nikolaus; Erschfeld, Stephanie; Sackett, Sara; Galm, Oliver; Trautwein, Christian; Streetz, Konrad L

    2012-01-01

    Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages.

  13. ATG16L1 and IL23R are associated with inflammatory bowel diseases but not with celiac disease in the Netherlands.

    PubMed

    Weersma, Rinse K; Zhernakova, Alexandra; Nolte, Ilja M; Lefebvre, Céline; Rioux, John D; Mulder, Flip; van Dullemen, Hendrik M; Kleibeuker, Jan H; Wijmenga, Cisca; Dijkstra, Gerard

    2008-03-01

    Inflammatory bowel disease (IBD)--Crohn's disease (CD) and ulcerative colitis (UC)--and celiac disease are intestinal inflammatory disorders with a complex genetic background. Recently, two novel genes were found to be associated with IBD susceptibility. One, an uncommon coding variant (rs11209026) in the gene encoding for the interleukin-23 receptor (IL23R), conferred strong protection against CD. The other, rs2241880 in the autophagy-related 16-like 1 gene (ATG16L1), was associated with CD. We performed a case-control study for the association of IBD with IL23R and ATG16L1 in a Dutch cohort. We also looked at the association of IL23R and ATG16L1 with celiac disease. Five hundred eighteen Dutch white IBD patients (311 CD and 207 UC, including 176 trios of patients with both parents), 508 celiac disease patients, and 893 healthy controls were studied for association with the rs11209026 (IL23R) and rs2241880 (ATG16L1) single nucleotide polymorphisms (SNP). The rs11209026 SNP in IL23R had a protective effect for IBD in the case-control analysis (odds ratio [OR] 0.19, 95% confidence interval [CI] 0.10-0.37, P= 6.6E-09). Both CD (OR 0.14, CI 0.06-0.37, P= 3.9E-07) and UC (OR 0.33, CI 0.15-0.73, P= 1.4E-03) were associated with IL23R. For ATG16L1, the rs2241880 SNP was associated with CD susceptibility (OR 1.36, CI 1.12-1.66, P= 0.0017). The population-attributable risk of carrying allele G is 0.24 and is 0.19 for homozygosity for allele G in CD. No association was found between IL23R or ATG16L1 and celiac disease. We confirmed the association of IL23R and ATG16L1 with CD susceptibility and also the association of IL23R with UC. We found IL23R and ATG16L1 were not associated with celiac disease susceptibility.

  14. Phase I clinical trial will test multi-targeted immunotherapy in common childhood cancer | Center for Cancer Research

    Cancer.gov

    Chimeric antigen receptor (CAR) T-cell immunotherapy targeting the protein CD19 has shown promise in treating acute lymphoblastic leukemia (ALL). CD22-CAR T-cell therapy has yielded similarly encouraging results, but many patients relapse after either therapy. In an upcoming phase I clinical trial, Center for Cancer Research investigators will test a new strategy—treating patients with a CAR T-cell therapy that targets CD19 and CD22 simultaneously.

  15. Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm

    NASA Astrophysics Data System (ADS)

    Morozov, S. V.; Rumyantsev, V. V.; Fadeev, M. A.; Zholudev, M. S.; Kudryavtsev, K. E.; Antonov, A. V.; Kadykov, A. M.; Dubinov, A. A.; Mikhailov, N. N.; Dvoretsky, S. A.; Gavrilenko, V. I.

    2017-11-01

    We report on stimulated emission at wavelengths up to 19.5 μm from HgTe/HgCdTe quantum well heterostructures with wide-gap HgCdTe dielectric waveguide, grown by molecular beam epitaxy on GaAs(013) substrates. The mitigation of Auger processes in structures under study is exemplified, and the promising routes towards the 20-50 μm wavelength range, where HgCdTe lasers may be competitive to the prominent emitters, are discussed.

  16. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.

    PubMed

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  17. Preparation of novel layer-stack hexagonal CdO micro-rods by a pre-oxidation and subsequent evaporation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan

    2014-12-15

    Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less

  18. Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li

    2008-05-01

    CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.

  19. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid.

    PubMed

    Rogers, True L; Nelsen, Andrew C; Hu, Jiahui; Brown, Judith N; Sarkari, Marazban; Young, Timothy J; Johnston, Keith P; Williams, Robert O

    2002-11-01

    A novel cryogenic spray-freezing into liquid (SFL) process was developed to produce microparticulate powders consisting of an active pharmaceutical ingredient (API) molecularly embedded within a pharmaceutical excipient matrix. In the SFL process, a feed solution containing the API was atomized beneath the surface of a cryogenic liquid such that the liquid-liquid impingement between the feed and cryogenic liquids resulted in intense atomization into microdroplets, which were frozen instantaneously into microparticles. The SFL micronized powder was obtained following lyophilization of the frozen microparticles. The objective of this study was to develop a particle engineering technology to produce micronized powders of the hydrophobic drug, danazol, complexed with hydroxypropyl-beta-cyclodextrin (HPbetaCD) and to compare these SFL micronized powders to inclusion complex powders produced from other techniques, such as co-grinding of dry powder mixtures and lyophilization of bulk solutions. Danazol and HPbetaCD were dissolved in a water/tetrahydrofuran cosolvent mixture prior to SFL processing or slow freezing. Identical quantities of the API and HPbetaCD used in the solutions were co-ground in a mortar and pestle and blended to produce a co-ground physical mixture for comparison. The powder samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy, surface area analysis, and dissolution testing. The results provided by DSC, XRD, and FTIR suggested the formation of inclusion complexes by both slow-freezing and SFL. However, the specific surface area was significantly higher for the latter. Dissolution results suggested that equilibration of the danazol/HPbetaCD solution prior to SFL processing was required to produce the most soluble conformation of the resulting inclusion complex following SFL. SFL micronized powders exhibited better dissolution profiles than the slowly frozen aggregate powder. Results indicated that micronized SFL inclusion complex powders dissolved faster in aqueous dissolution media than inclusion complexes formed by conventional techniques due to higher surface areas and stabilized inclusion complexes obtained by ultra-rapid freezing.

  20. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    PubMed

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  1. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Zhang, Jianqiang; Jiang, Kunming; Li, Ke; Cong, Yangwei; Pu, Shaoping; Jin, Yi; Lin, Jun

    2016-01-01

    Three water-soluble oxaliplatin complexes were prepared by inclusion complexation with β-cyclodextrin (β-CD), γ-CD and HP-β-CD. The structures of oxaliplatin/CDs were confirmed by NMR, FTIR, TGA, XRD as well as SEM analysis. The results show that the water solubility of oxaliplatin was increased in the complex with CDs in 1:1 stoichiometry inclusion modes, and the cyclohexane ring of oxaliplatin molecule was deeply inserted into the cavity of CDs. Moreover, the stoichiometry was established by a Job plot and the water stability constant (Kc) of oxaliplatin/CDs was calculated by phase solubility studies, all results show that the oxaliplatin/β-CD complex is more stable than free oxaliplatin, oxaliplatin/HP-β-CD and oxaliplatin/γ-CD. Meanwhile, the inclusion complexes displayed almost twice as high cytotoxicity compared to free oxaliplatin against HCT116 and MCF-7 cells. This satisfactory water solubility and higher cytotoxic activity of the oxaliplatin/CD complexes will potentially be useful for their application in anti-tumour therapy.

  2. XAFS studies of metal-ligand interactions at organic surfaces and in solution

    NASA Astrophysics Data System (ADS)

    Boyanov, Maxim I.

    X-ray absorption fine structure spectroscopy (XAFS) was used as a structural probe to determine the mechanism of metal adsorption to organic surfaces. Two specific systems were investigated, Pb adsorption to heneicosanoic acid Langmuir monolayers (CH3(CH2)19COOH), and Cd adsorption to isolated cell walls of the Bacillus subtilis bacterium. Although the study of these systems is important for quite different reasons, the goal in both is metal binding site speciation and structural characterization of the surface complex. The adsorption of aqueous Cd to B. subtilis was studied as a function of pH by fluorescence mode bulk XAFS. Samples were prepared at six pH values in the range 3.4 to 7.8, and the bacterial functional groups responsible for the adsorption were identified under each condition. Under the experimental Cd and bacterial concentrations, the spectroscopy results indicate that Cd binds predominantly to protonated phosphoryl ligands below pH 4.4, while at higher pH adsorption to carboxyl groups becomes increasingly important. At pH 7.8 we observe the activation of an additional binding site, which we tentatively ascribe to deprotonated phosphoryl ligands. A quantitative Cd speciation diagram for the pH range is presented. Grazing-incidence Pb L3 edge XAFS was used in situ to determine the adsorption complex structure in the Pb-Langmuir monolayer study. The results indicate covalent binding of the Pb cations to the carboxyl headgroups, and the observed Pb-Pb coordination suggests that the metal is adsorbed as a hydrolysis polymer, rather than as individual Pb 2+ ions. The data suggest a bidentate binding mechanism and a one Pb atom to one carboxyl headgroup binding stoichiometry. We discuss how this adsorption model can explain the peculiarities observed with Pb in previous metal-Langmuir monolayer studies. A systematic study of the metal local environment in aqueous solutions was conducted and used in the above analyses. Perchlorate and acetate salt solutions of Cd, Pb, Mn, Cr, and Cu were characterized as standards of hydrated ions and metal-carboxyl complexes. The utility of XAFS in differentiating between the ionic, monodentate, bridging-bidentate, and bidentate metal-carboxyl complexes through C-C multiple scattering effects and XANES features is demonstrated.

  3. To reveal the nature of interactions of human hemoglobin with gold nanoparticles having two different morphologies (sphere and star-shaped) by using various spectroscopic techniques.

    PubMed

    Chakraborty, Madhurima; Paul, Somnath; Mitra, Ishani; Bardhan, Munmun; Bose, Mridul; Saha, Abhijit; Ganguly, Tapan

    2018-01-01

    The nature of interactions between heme protein human hemoglobin (HHb) and gold nanoparticles of two different morphologies that is GNP (spherical) and GNS (star-shaped) have been investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, resonance light scattering (RLS), time resolved fluorescence, FT-IR, and circular dichroism (CD) techniques under physiological condition of pH ~7 at ambient and different temperatures. Analysis of the steady state fluorescence quenching of HHb in aqueous solution in the presence of GNP and GNS suggests that the nature of the quenching is of static type. The static nature of the quenching is also confirmed from time resolved data. The static type of quenching also indicates the possibility of formation of ground state complex for both HHb-GNP and HHb-GNS systems. From the measurements of Stern-Volmer (SV) constants K SV and binding constants, K A and number of binding sites it appears that HHb forms stronger binding with GNP relative to GNS. Analysis of the thermodynamic parameters indicates that the formation of HHb-GNP and HHb-GNS complexes are spontaneous molecular interaction processes (∆G<0). In both cases hydrogen bonding and van der Waals interactions play a dominant role (∆H<0, ∆S<0). Synchronous fluorescence spectroscopy further reveals that the ground state complex formations of HHb-GNP and HHb-GNS preferably occur by binding with the amino acid tyrosine through hydrogen bonding interactions. Moreover the α-helicity contents of the proteins as obtained from the circular dichroism (CD) spectra appears to be marginally reduced by increasing concentrations of GNP and GNS and the α-helical structures of HHb retain its identity as native secondary structure in spite of complex formations with GNP or GNS. These findings demonstrate the efficiency of biomedical applications of GNP and GNS nanoparticles as well as in elucidating their mechanisms of action as drugs or drug delivery systems in human. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Analysis of Cd44-Containing Lipid Rafts

    PubMed Central

    Oliferenko, Snezhana; Paiha, Karin; Harder, Thomas; Gerke, Volker; Schwärzler, Christoph; Schwarz, Heinz; Beug, Hartmut; Günthert, Ursula; Huber, Lukas A.

    1999-01-01

    CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II–p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II–lipid raft complexes were stabilized by addition of GTPγS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton. PMID:10459018

  5. AgI -Induced Switching of DNA Binding Modes via Formation of a Supramolecular Metallacycle.

    PubMed

    Basak, Shibaji; Léon, J Christian; Ferranco, Annaleizle; Sharma, Renu; Hebenbrock, Marian; Lough, Alan; Müller, Jens; Kraatz, Heinz-Bernhard

    2018-03-12

    The histidine derivative L1 of the DNA intercalator naphthalenediimide (NDI) forms a triangular Ag I complex (C2). The interactions of L1 and of C2 with DNA were studied by circular dichroism (CD) and UV/Vis spectroscopy and by viscosity studies. Different binding modes were observed for L1 and for C2, as the Ag I complex C2 is too large in size to act as an intercalator. If Ag I is added to the NDI molecule that is already intercalated into a duplex, higher order complexes are formed within the DNA duplex and cause disruptions in the helical duplex structure, which leads to a significant decrease in the characteristic CD features of B-DNA. Thus, via addition of a metal we show how a classic and well-known organic intercalator unit can be turned into a partial metallo insertor. We also show how electrochemical impedance spectroscopy (EIS) can be used to probe DNA binding modes on DNA films that are immobilized on gold surfaces. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of Rapeseed Cake on Iron Plaque Formation and Cd Uptake by Rice (Oryza sativa L.) Seedlings Exposed to Excess Cd.

    PubMed

    Yang, Wen-Tao; Zhou, Hang; Gu, Jiao-Feng; Zeng, Qing-Ru; Liao, Bo-Han

    2017-11-01

    A soil spiking experiment at two Cd levels (0.72 and 5.20 mg kg -1 ) was conducted to investigate the effects of rapeseed cake (RSC) at application rates of 0%, 0.75%, 1.5%, and 3.0% (w/w) on iron plaque formation and Cd uptake by rice (Oryza sativa L.) seedlings. The use of RSC did result in a sharp decrease in soil bioavailability of Cd and a significant increase in rice growth, soil pH and organic matter. Application of RSC increased the amount of iron plaque formation and this effectively inhibited the uptake and translocation of Cd into the rice seedlings. RSC was an effective organic additive for increasing rice growth and reducing Cd uptake by rice plant, simultaneously. These results could be used as a reference for the safety use of Cd polluted paddy soil.

  7. Core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructure synthesized by super-close-space sublimation for broadband down-conversion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojie; Zhang, Zhenzhong; Meng, Fanzhi; Yu, Yingning; Han, Lin; Liu, Xiaojuan; Meng, Jian

    2014-04-01

    Combination with semiconductors is a promising approach to the realization of broadband excitation of light conversion materials based on rare earth compounds, to boost the energy efficiency of silicon solar cells. Cd1-xZnxS is a wide bandgap semiconductor with large exciton binding energy. By changing its composition, the bandgap of Cd1-xZnxS can be tuned to match the absorption of trivalent lanthanide (Ln) ions, which makes it a competent energy donor for the Ln3+-Yb3+ couple. In this work, we designed a clean route to a broadband down-converter based on a core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/Cd0.81Zn0.19S (CdZnS) heterostructure. By hot-pressing and subsequent annealing of a Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS mixture, highly pure CdZnS was sublimated and deposited on the Y2O3:[(Tb3+-Yb3+), Li+] grains while maintaining the original composition of the precursor. The CdZnS shell acted as a light absorber and energy donor for the Tb3+-Yb3+ quantum cutting couple. Because the use of solvents was avoided during the formation of the heterostructures, few impurities were incorporated into the samples, and the non-radiative transition was therefore markedly suppressed. The Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructures possess strong near-infrared (NIR) luminescence from Yb3+. Broadband down-conversion to the Yb3+ NIR emission was obtained in a wide range of 250-650 nm.

  8. Monoclonal antibodies to the equine CD2 T lymphocyte marker, to a pan-granulocyte/monocyte marker and to a unique pan-B lymphocyte marker.

    PubMed

    Tumas, D B; Brassfield, A L; Travenor, A S; Hines, M T; Davis, W C; McGuire, T C

    1994-12-01

    Murine monoclonal antibodies, HB88A, B29A and DH59B separately identify the CD2 T lymphocyte molecule, a unique pan-B lymphocyte surface marker and a pan-granulocyte/monocyte surface molecule, respectively, in the horse. Specificity was shown by two-color immunofluorescent flow cytometry and immunofluorescent microscopy. MAb HB88A reacted with a 52 kDa pan-T lymphocyte molecule present on 75% +/- 7 of peripheral blood lymphocytes (PBL) (n = 15 horses). It also reacted with lymphocytes restricted to T lymphocyte dependent areas of lymph node and spleen. Specificity of mAb HB88A to CD2 was demonstrated by its reactivity to COS7 cells which expressed a transfected 1.5 kb equine lymphocyte c-DNA clone having 77.5% overall sequence homology with human CD2 c-DNA. MAb B29A reacted with a pan-B lymphocyte specific cell surface complex, 143, 72, 50, 40, 27 and 14.5 kDa, present on 19% +/- 7 of PBL (n = 15 horses). This complex has not been described in the horse or other species. MAb DH59B reacted with a 96 kDa pan-granulocyte/monocyte specific surface protein and identified macrophages and Kupffer cells in equine tissue sections. Together these mAbs can be used to identify and quantitate the major constituents of equine leukocytes.

  9. Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+ T Cells

    PubMed Central

    Pearson, James A.; Thayer, Terri C.; McLaren, James E.; Ladell, Kristin; De Leenheer, Evy; Phillips, Amy; Davies, Joanne; Kakabadse, Dimitri; Miners, Kelly; Morgan, Peter; Wen, Li; Price, David A.

    2016-01-01

    NOD mice, a model strain for human type 1 diabetes, express proinsulin (PI) in the thymus. However, insulin-reactive T cells escape negative selection, and subsequent activation of the CD8+ T-cell clonotype G9C8, which recognizes insulin B15-23 via an αβ T-cell receptor (TCR) incorporating TRAV8-1/TRAJ9 and TRBV19/TRBJ2-3 gene rearrangements, contributes to the development of diabetes. In this study, we used fixed TRAV8-1/TRAJ9 TCRα-chain transgenic mice to assess the impact of PI isoform expression on the insulin-reactive CD8+ T-cell repertoire. The key findings were: 1) PI2 deficiency increases the frequency of insulin B15-23–reactive TRBV19+CD8+ T cells and causes diabetes; 2) insulin B15-23–reactive TRBV19+CD8+ T cells are more abundant in the pancreatic lymph nodes of mice lacking PI1 and/or PI2; 3) overexpression of PI2 decreases TRBV19 usage in the global CD8+ T-cell compartment; 4) a biased repertoire of insulin-reactive CD8+ T cells emerges in the periphery regardless of antigen exposure; and 5) low-avidity insulin-reactive CD8+ T cells are less affected by antigen exposure in the thymus than in the periphery. These findings inform our understanding of the diabetogenic process and reveal new avenues for therapeutic exploitation in type 1 diabetes. PMID:26953160

  10. On the interplay between chirality and exciton coupling: a DFT calculation of the circular dichroism in π-stacked ethylene.

    PubMed

    Norman, Patrick; Linares, Mathieu

    2014-09-01

    The chirality of stacked weakly interacting π-systems was interpreted in terms of Frenkel exciton states and the formation of excitonic circular dichroism (CD) bands was monitored for ethylene stacks of varying sizes. Convergence of CD bands with respect to the system size was observed for stacks involving around 10 molecules. By means of rotation around the C-C double bond in ethylene, chirality was induced in the monomeric system and which was shown to dominate the spectral responses, even for polymer aggregates. In helical assemblies of chiral entities, there will always be a mix of excitonic and monomeric contributions to the CD signal and it is demonstrated that the complex polarization propagator approach in combination with Density Functional Theory is a suitable method to address this situation. © 2014 Wiley Periodicals, Inc.

  11. Heavy metal coordination chemistry in mercaptides and enzymes studied by TDPAC

    NASA Astrophysics Data System (ADS)

    Butz, T.

    1993-03-01

    Time differential perturbed angular correlation (TDPAC) studies of the coordination chemistry of the heavy metal atoms Cd and Hg via the nuclear quadrupole interaction are presented for the following systems; (i) mercury complexes with mercaptides, polymers with thiol groups, and ferrocenethiols. Mercury has a strong tendency to form linear or almost linear bonds with sulfur ligands. Evidence for 1,3-dithia-2-mercura[3]ferrocenophane formation is presented. (ii)111mCd-derivatives of the small electron transport proteins azurin, including a his 117gly mutant, and stellacyanin. The titration of the his 117gly mutant of azurin with imidazole was monitored in situ. (iii)111mCd- and199mHg-derivatives of the multi-Cu enzymes ascorbate oxidase and laccase. Reconstitution probabilities for Hg-reconstitution will be given as well as information on selective depletion and blocking of Cu-sites.

  12. Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy - An Enhanced Method for Examining Protein Conformations and Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Wallace; R Janes

    CD (circular dichroism) spectroscopy is a well-established technique in structural biology. SRCD (synchrotron radiation circular dichroism) spectroscopy extends the utility and applications of conventional CD spectroscopy (using laboratory-based instruments) because the high flux of a synchrotron enables collection of data at lower wavelengths (resulting in higher information content), detection of spectra with higher signal-to-noise levels and measurements in the presence of absorbing components (buffers, salts, lipids and detergents). SRCD spectroscopy can provide important static and dynamic structural information on proteins in solution, including secondary structures of intact proteins and their domains, protein stability, the differences between wild-type and mutant proteins,more » the identification of natively disordered regions in proteins, and the dynamic processes of protein folding and membrane insertion and the kinetics of enzyme reactions. It has also been used to effectively study protein interactions, including protein-protein complex formation involving either induced-fit or rigid-body mechanisms, and protein-lipid complexes. A new web-based bioinformatics resource, the Protein Circular Dichroism Data Bank (PCDDB), has been created which enables archiving, access and analyses of CD and SRCD spectra and supporting metadata, now making this information publicly available. To summarize, the developing method of SRCD spectroscopy has the potential for playing an important role in new types of studies of protein conformations and their complexes.« less

  13. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  14. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  15. Weighted finite impulse response filter for chromatic dispersion equalization in coherent optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Zeng, Ziyi; Yang, Aiying; Guo, Peng; Feng, Lihui

    2018-01-01

    Time-domain CD equalization using finite impulse response (FIR) filter is now a common approach for coherent optical fiber communication systems. The complex weights of FIR taps are calculated from a truncated impulse response of the CD transfer function, and the modulus of the complex weights is constant. In our work, we take the limited bandwidth of a single channel signal into account and propose weighted FIRs to improve the performance of CD equalization. The key in weighted FIR filters is the selection and optimization of weighted functions. In order to present the performance of different types of weighted FIR filters, a square-root raised cosine FIR (SRRC-FIR) and a Gaussian FIR (GS-FIR) are investigated. The optimization of square-root raised cosine FIR and Gaussian FIR are made in term of the bit rate error (BER) of QPSK and 16QAM coherent detection signal. The results demonstrate that the optimized parameters of the weighted filters are independent of the modulation format, symbol rate and the length of transmission fiber. With the optimized weighted FIRs, the BER of CD equalization signal is decreased significantly. Although this paper has investigated two types of weighted FIR filters, i.e. SRRC-FIR filter and GS-FIR filter, the principle of weighted FIR can also be extended to other symmetric functions super Gaussian function, hyperbolic secant function and etc.

  16. Synthesis and electrophosphorescence of iridium complexes containing benzothiazole-based ligands.

    PubMed

    Liu, Di; Ren, Huicai; Deng, Lijun; Zhang, Ting

    2013-06-12

    Four heteroleptic bis-cyclometalated iridium(III) complexes containing 2-aryl-benzothiazole ligands, in which the aryl is dibenzofuran-2-yl [Ir(O-bt)2(acac)], dibenzothiophene-2-yl [Ir(S-bt)2(acac)], dibenzothiophene-S,S-dioxide-2-yl [Ir(SO2-bt)2(acac)] and 4-(diphenylphosphoryl)phenyl [Ir(PO-bt)2(acac)], have been synthesized and characterized for use in organic light-emitting diodes (OLEDs). These complexes emit bright yellow (551 nm) to orange-red (598 nm) phosphorescence at room temperature, the peak wavelengths of which can be finely tuned depending upon the electronic properties of the aryl group in the 2-position of benzothiazole. The strong electron-withdrawing aryls such as dibenzothiophene-S,S-dioxide2-yl and 4-(diphenylphosphoryl)phenyl caused bathochromatic shift of the iridium complex phosphorescence. These iridium complexes were used as doped emitters to fabricate yellow to orange-red OLEDs and good performance was obtained. In particular, a maximum luminance efficiency of 58.4 cd A(-1) (corresponding to 30.6 lm W(-1) and 19%) with CIE coordinates of (0.45, 0.52) was achieved for Ir(O-bt)2(acac)-based yellow device. Furthermore, the yellow emitting Ir(S-bt)2(acac) was used to fabricate two-element white OLED that exhibited a high efficiency of 32.4 cd A(-1) with CIE coordinates of (0.28, 0.44).

  17. Epstein-Barr virus is related with 5-aminosalicylic acid, tonsillectomy, and CD19(+) cells in Crohn's disease.

    PubMed

    Andreu-Ballester, Juan C; Gil-Borrás, Rafael; García-Ballesteros, Carlos; Catalán-Serra, Ignacio; Amigo, Victoria; Fernández-Fígares, Virgina; Cuéllar, Carmen

    2015-04-21

    To study anti-Epstein-Barr virus (EBV) IgG antibodies in Crohn's disease in relation to treatment, immune cells, and prior tonsillectomy/appendectomy. This study included 36 CD patients and 36 healthy individuals (controls), and evaluated different clinical scenarios (new patient, remission and active disease), previous mucosa-associated lymphoid tissue removal (tonsillectomy and appendectomy) and therapeutic regimens (5-aminosalicylic acid, azathioprine, anti-tumor necrosis factor, antibiotics, and corticosteroids). T and B cells subsets in peripheral blood were analyzed by flow cytometry (markers included: CD45, CD4, CD8, CD3, CD19, CD56, CD2, CD3, TCRαβ and TCRγδ) to relate with the levels of anti-EBV IgG antibodies, determined by enzyme-linked immunosorbent assay. The lowest anti-EBV IgG levels were observed in the group of patients that were not in a specific treatment (95.4 ± 53.9 U/mL vs 131.5 ± 46.2 U/mL, P = 0.038). The patients that were treated with 5-aminosalicylic acid showed the highest anti-EBV IgG values (144.3 U/mL vs 102.6 U/mL, P = 0.045). CD19(+) cells had the largest decrease in the group of CD patients that received treatment (138.6 vs 223.9, P = 0.022). The analysis of anti-EBV IgG with respect to the presence or absence of tonsillectomy showed the highest values in the tonsillectomy group of CD patients (169.2 ± 20.7 U/mL vs 106.1 ± 50.3 U/mL, P = 0.002). However, in the group of healthy controls, no differences were seen between those who had been tonsillectomized and subjects who had not been operated on (134.0 ± 52.5 U/mL vs 127.7 ± 48.1 U/mL, P = 0.523). High anti-EBV IgG levels in CD are associated with 5-aminosalicylic acid treatment, tonsillectomy, and decrease of CD19(+) cells.

  18. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  19. Whole-gene analysis of two groups of hepatitis B virus C/D inter-genotype recombinant strains isolated in Tibet, China

    PubMed Central

    Liu, Tiezhu; Wang, Fuzhen; Zhang, Shuang; Wang, Feng; Meng, Qingling; Zhang, Guomin; Cui, Fuqiang; Dunzhu, Dorji; Yin, Wenjiao; Bi, Shengli

    2017-01-01

    Tibet is a highly hepatitis B virus (HBV) endemic area. Two types of C/D recombinant HBV are commonly isolated in Tibet and have been previously described. In an effort to better understand the molecular characteristic of these C/D recombinant strains from Tibet, we undertook a multistage random sampling project to collect HBsAg positive samples. Molecular epidemiological and bio-informational technologies were used to analyze the characteristics of the sequences found in this study. There were 60 samples enrolled in the survey, and we obtained 19 whole-genome sequences. 19 samples were all C/D recombinant, and could be divided into two sub-types named C/D1 and C/D2 according to the differences in the location of the recombinant breakpoint. The recombination breakpoint of the 10 strains belonging to the C/D1 sub-type was located at nt750, while the 9 stains belonging to C/D2 had their recombination break point at nt1530. According to whole-genome sequence analysis, the 19 identified strains belong to genotype C, but the nucleotide distance was more than 5% between the 19 strains and sub-genotypes C1 to C15. The distance between C/D1with C2 was 5.8±2.1%, while the distance between C/D2 with C2 was 6.4±2.1%. The parental strain was most likely sub-genotype C2. C/D1 strains were all collected in the middle and northern areas of Tibet including Lhasa, Linzhi and Ali, while C/D2 was predominant in Shannan in southern Tibet. This indicates that the two recombinant genotypes are regionally distributed in Tibet. These results provide important information for the study of special HBV recombination events, gene features, virus evolution, and the control and prevention policy of HBV in Tibet. PMID:28654691

  20. Association of BAFF, APRIL serum levels, BAFF-R, TACI and BCMA expression on peripheral B-cell subsets with clinical manifestations in systemic lupus erythematosus.

    PubMed

    Salazar-Camarena, D C; Ortiz-Lazareno, P C; Cruz, A; Oregon-Romero, E; Machado-Contreras, J R; Muñoz-Valle, J F; Orozco-López, M; Marín-Rosales, M; Palafox-Sánchez, C A

    2016-05-01

    B-cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) signaling pathways regulate B-cell survival through interactions with their receptors BAFF-R, TACI and BCMA. We evaluated the association of these ligands/receptors on B-cell subsets according to clinical manifestations of systemic lupus erythematosus (SLE). BAFF and APRIL serum concentrations were measured in 30 SLE patients by enzyme-linked immunosorbent assay. The BAFF-R, TACI and BCMA expression was analyzed on each B cell subset (CD19 + CD27-CD38-/ + naïve; CD19 + CD27 + CD38-/ + memory; CD19 + CD27-CD38 + + immature and CD19 + CD27 + CD38 + + plasma cells) by flow cytometry, and compared among patients with different clinical manifestations as well as healthy controls (HCs). Serum BAFF and APRIL levels were high in SLE patients and correlated with the Mex-SLEDAI disease activity index (r = 0.584; p = 0.001 and r = 0.456; p = 0.011, respectively). The SLE patients showed an increased proportion of memory and plasma B cells (p < 0.05). BAFF-R, TACI and BCMA expression in SLE patients was decreased in almost all B cell subsets compared to HCs (p < 0.05). A lower BCMA expression was associated with severe disease activity, glomerulonephritis, serositis and hemolytic anemia (p < 0.01). BCMA expression showed a negative correlation with Mex-SLEDAI score (r = -0.494, p = 0.006). Decreased BCMA expression on peripheral B cells according to severe disease activity suggests that BCMA plays an important regulating role in B-cell hyperactivity and immune tolerance homeostasis in SLE patients. © The Author(s) 2015.

  1. Bacterial Pathogens Induce Abscess Formation by CD4+ T-Cell Activation via the CD28–B7-2 Costimulatory Pathway

    PubMed Central

    Tzianabos, Arthur O.; Chandraker, Anil; Kalka-Moll, Wiltrud; Stingele, Francesca; Dong, Victor M.; Finberg, Robert W.; Peach, Robert; Sayegh, Mohamed H.

    2000-01-01

    Abscesses are a classic host response to infection by many pathogenic bacteria. The immunopathogenesis of this tissue response to infection has not been fully elucidated. Previous studies have suggested that T cells are involved in the pathologic process, but the role of these cells remains unclear. To delineate the mechanism by which T cells mediate abscess formation associated with intra-abdominal sepsis, the role of T-cell activation and the contribution of antigen-presenting cells via CD28-B7 costimulation were investigated. T cells activated in vitro by zwitterionic bacterial polysaccharides (Zps) known to induce abscess formation required CD28-B7 costimulation and, when adoptively transferred to the peritoneal cavity of naïve rats, promoted abscess formation. Blockade of T-cell activation via the CD28-B7 pathway in animals with CTLA4Ig prevented abscess formation following challenge with different bacterial pathogens, including Staphylococcus aureus, Bacteroides fragilis, and a combination of Enterococcus faecium and Bacteroides distasonis. In contrast, these animals had an increased abscess rate following in vivo T-cell activation via CD28 signaling. Abscess formation in vivo and T-cell activation in vitro required costimulation by B7-2 but not B7-1. These results demonstrate that abscess formation by pathogenic bacteria is under the control of a common effector mechanism that requires T-cell activation via the CD28–B7-2 pathway. PMID:11083777

  2. ARS-Interacting Multi-Functional Protein 1 Induces Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Accumulation of β-Catenin via Fibroblast Growth Factor Receptor 2-Mediated Activation of Akt

    PubMed Central

    Kim, Seo Yoon; Son, Woo Sung; Park, Min Chul; Kim, Chul Min; Cha, Byung Hyun; Yoon, Kang Jun; Lee, Soo-Hong

    2013-01-01

    ARS-Interacting Multi-functional Protein 1 (AIMP1) is a cytokine that is involved in the regulation of angiogenesis, immune activation, and fibroblast proliferation. In this study, fibroblast growth factor receptor 2 (FGFR2) was isolated as a binding partner of AIMP peptide (amino acids 6–46) in affinity purification using human bone marrow-derived mesenchymal stem cells (BMMSCs). AIMP1 peptide induced the proliferation of adult BMMSCs by activating Akt, inhibiting glycogen synthase kinase-3β, and thereby increasing the level of β-catenin. In addition, AIMP1 peptide induced the translocation of β-catenin to the nucleus and increased the transcription of c-myc and cyclin D1 by activating the β-catenin/T-cell factor (TCF) complex. By contrast, transfection of dominant negative TCF abolished the effect of AIMP1. The inhibition of Akt, using LY294002, abolished the accumulation and nuclear translocation of β-catenin induced by AIMP1, leading to a decrease in c-myc and cyclin D1 expression, which decreased the proliferation of BMMSCs. An intraperitoneal injection of AIMP1 peptide into C57/BL6 mice increased the colony formation of fibroblast-like cells. Fluorescence activated cell sorting analysis showed that the colony-forming cells were CD29+/CD44+/CD90+/CD105+/CD34−/CD45−, which is characteristic of MSCs. In addition, the fibroblast-like cells differentiated into adipocytes, chondrocytes, and osteocytes. Taken together, these data suggest that AIMP1 peptide promotes the proliferation of BMMSCs by activating the β-catenin/TCF complex via FGFR2-mediated activation of Akt, which leads to an increase in MSCs in peripheral blood. PMID:23672191

  3. ARS-interacting multi-functional protein 1 induces proliferation of human bone marrow-derived mesenchymal stem cells by accumulation of β-catenin via fibroblast growth factor receptor 2-mediated activation of Akt.

    PubMed

    Kim, Seo Yoon; Son, Woo Sung; Park, Min Chul; Kim, Chul Min; Cha, Byung Hyun; Yoon, Kang Jun; Lee, Soo-Hong; Park, Sang Gyu

    2013-10-01

    ARS-Interacting Multi-functional Protein 1 (AIMP1) is a cytokine that is involved in the regulation of angiogenesis, immune activation, and fibroblast proliferation. In this study, fibroblast growth factor receptor 2 (FGFR2) was isolated as a binding partner of AIMP peptide (amino acids 6-46) in affinity purification using human bone marrow-derived mesenchymal stem cells (BMMSCs). AIMP1 peptide induced the proliferation of adult BMMSCs by activating Akt, inhibiting glycogen synthase kinase-3β, and thereby increasing the level of β-catenin. In addition, AIMP1 peptide induced the translocation of β-catenin to the nucleus and increased the transcription of c-myc and cyclin D1 by activating the β-catenin/T-cell factor (TCF) complex. By contrast, transfection of dominant negative TCF abolished the effect of AIMP1. The inhibition of Akt, using LY294002, abolished the accumulation and nuclear translocation of β-catenin induced by AIMP1, leading to a decrease in c-myc and cyclin D1 expression, which decreased the proliferation of BMMSCs. An intraperitoneal injection of AIMP1 peptide into C57/BL6 mice increased the colony formation of fibroblast-like cells. Fluorescence activated cell sorting analysis showed that the colony-forming cells were CD29(+)/CD44(+)/CD90(+)/CD105(+)/CD34(-)/CD45(-), which is characteristic of MSCs. In addition, the fibroblast-like cells differentiated into adipocytes, chondrocytes, and osteocytes. Taken together, these data suggest that AIMP1 peptide promotes the proliferation of BMMSCs by activating the β-catenin/TCF complex via FGFR2-mediated activation of Akt, which leads to an increase in MSCs in peripheral blood.

  4. Host-guest complexes of 2-hydroxypropyl-β-cyclodextrin/β-cyclodextrin and nifedipine: 1H NMR, molecular modeling, and dissolution studies

    NASA Astrophysics Data System (ADS)

    de Araújo, Márcia Valéria Gaspar; Vieira, João Victor Francisco; da Silva, Caroline W. P.; Barison, Andersson; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Barboza, Fernanda Malaquias; Nadal, Jessica Mendes; Novatski, Andressa; Farago, Paulo Vitor; Zawadzki, Sônia Faria

    2017-12-01

    Nifedipine (NIF) is a hydrophobic drug widely used for treating cardiovascular diseases. This calcium channel blocker can present a higher apparent solubility by its inclusion into different cyclodextrins (CDs) as host-guest complexes. This paper focused on the structural investigation and dissolution behavior of inclusion complexes prepared with 2-hydroxypropyl-β-cyclodextrin (HPβCD) or β-cyclodextrin (βCD) and NIF. Drug amorphization was observed for HPβCD/NIF and βCD/NIF inclusion complexes by X-ray diffractometry (XRD). The sharp endothermic peak of NIF was not observed for these both host-guest complexes by differential scanning calorimetry (DSC). These results of XRD and DSC provide evidences of complexation between drug and the investigated CDs. 1H and saturation transfer difference nuclear magnetic resonance studies revealed the enhancement in the signal at 2.27 ppm for HPβCD/NIF and βCD/NIF inclusion complexes that corresponded to the methyl groups of NIF from the non-aromatic ring. This result suggested that non-aromatic ring of NIF was inserted into HPβCD and βCD cavities. Considering the mathematical simulations, it was observed that the inclusion process can occur in the both NH-in or NH-out forms. However, since it was used aqueous medium, it is possible to indicate that the obtained host-guest complexes HPβCD/NIF and βCD/NIF are in NH-in form which corresponded to the previous results obtained by 1H NMR experiments. Dissolution assays demonstrated that NIF inclusion complexes improved the drug release nevertheless without changing its biexponential release behavior. These host-guest complexes can be further used as feasible NIF carriers in solid dosage forms.

  5. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explainsmore » how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.« less

  6. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering*

    PubMed Central

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei

    2015-01-01

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402

  7. Phosphatidylinositol 4,5-bisphosphate clusters the cell adhesion molecule CD44 and assembles a specific CD44-Ezrin heterocomplex, as revealed by small angle neutron scattering.

    PubMed

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K; Stanley, Christopher B; Do, Changwoo; Heller, William T; Aggarwal, Aneel K; Callaway, David J E; Bu, Zimei

    2015-03-06

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Aberrant lymphoid antigen expression in acute myeloid leukemia in Saudi Arabia.

    PubMed

    El-Sissy, Azza H; El-Mashari, May A; Bassuni, Wafaa Y; El-Swaayed, Aziza F

    2006-09-01

    Immunophenotyping improves both accuracy and reproducibility of acute leukemia classification and is considered particularly useful for identifying aberrant lineage association of acute leukemia, biphenotypic and bilineal acute leukemia, as well as monitoring minimal residual disease. Some immunophenotypes correlate with cytogenetic abnormalities and prognosis. Is to determine aberrant lymphoid antigen expression in Saudi acute myeloid leukemia (AML), correlate them with FAB subtypes, evaluate early surface markers CD7 and CD56, and to investigate the role of cytoplasmic CD79a (a B cell marker that is assigned a high score of 2.0 in the WHO classification). Thirty four newly diagnosed AML cases were included in this study, 47% showed aberrant lymphoid antigen expression. CD9 was the most frequently expressed lymphoid antigen (29.4%) followed by CD7 & CD19 (11.8%), CD4 (8.8%) and CD22 (2.9%). CD9 was expressed in 3/6 (50%) of M3 cases, CD7 was expressed in 11.8% and was mostly confined to FAB M1 and M2 and associated with immature antigens CD34, HLA-DR and TdT. CD56 was expressed in 7/34 (20.6%) cases, three of these cases (42.9%) belonged to the monocytic group. CD56 was also detected in 2 cases with 11q23 rearrangement. CD56 was expressed in 2/7 (28.6%) M2 cases, and was associated with t (8;21) (q22;q22) together with CD19. Co-expression of CD56 and CD7 was detected in 2.9% of the cases. CD79a was expressed in one case together with CD19, diagnosed as acute biphenotypic leukemia, and was associated with t(8;21) (q22;q22). Minimal residual disease in AML is very difficult to trace, detection of aberrant expression of lymphoid antigens will make it easier. The high score given to CD79a by EGIL is questionable based on cytogenetic classification.

  9. Geochemical Peculiarities of Galena and Sphalerite from Polymetallic Deposits of the Dal'negorskii Ore Region (Primorsky Krai, Russia)

    NASA Astrophysics Data System (ADS)

    Rogulina, L. I.; Moiseenko, V. G.; Ponomarchuk, V. A.

    2018-04-01

    New data on the composition of the major minerals from the skarn and vein polymetallic deposits of the Dal'negorskii ore region are reported. Analysis of galena and sphalerite was carried out by the X-ray fluorescent energy-dispersive method of synchrotron radiation for the first time. It is shown that the minor elements in major minerals of different deposits are typomorphic. Among these elements are Fe, Cu, Ni, Cd, Ag, Sn, and Sb, as well as In in sphalerite and Te in galena. The high concentrations of Ag, Cu, Te, Cd, and In in the extracted minerals indicate the complex character of mineralization. The compositional patterns of ore minerals characterize the sequence of mineral formation from the skarn to vein ores, and the sequence of deposits from the mesothermal to epithermal conditions. This provides geochemical evidence for the stage model of the formation of mineralization in the Dal'negorskii ore region.

  10. Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex.

    PubMed

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Zhu, Yalun

    2014-05-25

    Flavor plays an important role and has been widely used in foods. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the flavor. Kinetic and thermodynamic parameters are helpful in understanding the mechanism of molecular recognition between hosts and guests. This work focused on the study of production of a sweet orange flavor-β-cyclodextrin (CD) inclusion complex, and investigated the combination of flavor and β-CD by thermogravimetric analysis. Pyrolysis characteristics, kinetic and thermodynamic parameters of the flavor-β-CD inclusion complex were determined. The results showed that the flavor-β-CD inclusion complexes can form large aggregates in water. During thermal degradation of blank β-CD and flavor-β-CD inclusion complex, three main stages can be distinguished. The thermogravimetric (TG) curve of blank β-CD shows a leveling-off from room temperature to 250°C, while the TG curve of flavor-β-CD inclusion complex is downward sloping in this temperature range. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation.

    PubMed

    An, Dong; Hao, Feng; Zhang, Fuqiang; Kong, Wei; Chun, Jerold; Xu, Xuemin; Cui, Mei-Zhen

    2017-09-01

    Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. PEG and mPEG-anthracene induce DNA condensation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2011-08-18

    In this study, we investigated the binding of DNA with poly(ethylene glycol) (PEG) of different sizes and compositions such as PEG 3350, PEG 6000, and mPEG-anthracene in aqueous solution at physiological conditions. The effects of size and composition on DNA aggregation and condensation as well as conformation were determined using Fourier transform infrared (FTIR), UV-visible, CD, fluorescence spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed moderate complex formation for PEG 3350 and PEG 6000 and weaker interaction for mPE-anthracene-DNA adducts with both hydrophilic and hydrophobic contacts. The order of ± stability of the complexes formed is K(PEG 6000) = 1.5 (±0.4) × 10(4) M(-1) > K(PEG 3350) = 7.9 (±1) × 10(3) M(-1) > K(m(PEG-anthracene))= 3.6 (±0.8) × 10(3) M(-1) with nearly 1 bound PEG molecule per DNA. No B-DNA conformational changes were observed, while DNA condensation and particle formation occurred at high PEG concentration.

  13. Hydrothermal assisted growth of CdSe nanoparticles and study on its dielectric properties

    NASA Astrophysics Data System (ADS)

    Jamble, Shweta N.; Ghoderao, Karuna P.; Kale, Rohidas B.

    2017-11-01

    In this work, we have synthesized cadmium selenide (CdSe) nanoparticles by using cadmium chloride (CdCl2) as cadmium ion and sodium selenosulfate (Na2SeSO3) as selenium ion sources through a simple, convenient and cost-effective hydrothermal route at 180 °C temperature for 24 h. Aqueous ammonia was employed as a complex reagent to adjust the pH of the solution. Structural analysis of the obtained product was carried out by using x-ray diffractometer, which revealed that the final product has a cubic structure of CdSe with average crystallite size 13.15 nm. The cauliflower-like CdSe nanostructures were confirmed from the scanning electron microscopy and high-resolution transmission electron microscopy. EDS analysis indicates that the obtained product has a good elemental stoichiometric ratio. The electron diffraction pattern reveals the polycrystalline nature of CdSe. From UV-visible absorption spectral analysis, the optical energy bandgap of CdSe nanoparticles was found to be 1.90 eV. XPS spectra presented Cd 3d3/2, Cd 3d5/2 and Se 3d3/2 peaks at 411.04, 404.29 and 53.52 eV respectively. The CdSe nanoparticles exhibit photoluminescence with two distinct emission bands at 632 nm and 720 nm. FTIR study was used towards the understanding of the formation mechanism and bonding on the surface of the resulting nanoparticles. The dielectric properties of a pelletized sample of CdSe nanoparticles were carried out at room temperature.

  14. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.

    PubMed

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-05-27

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.

  15. The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*

    PubMed Central

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-01-01

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153

  16. Whole-Transcriptome Analysis of CD133+CD144+ Cancer Stem Cells Derived from Human Laryngeal Squamous Cell Carcinoma Cells.

    PubMed

    Wu, Yongyan; Zhang, Yuliang; Niu, Min; Shi, Yong; Liu, Hongliang; Yang, Dongli; Li, Fei; Lu, Yan; Bo, Yunfeng; Zhang, Ruiping; Li, Zhenyu; Luo, Hongjie; Cui, Jiajia; Sang, Jiangwei; Xiang, Caixia; Gao, Wei; Wen, Shuxin

    2018-06-27

    CD133+CD44+ cancer stem cells previously isolated from laryngeal squamous cell carcinoma (LSCC) cell lines showed strong malignancy and tumorigenicity. However, the molecular mechanism underlying the enhanced malignancy remained unclear. Cell proliferation assay, spheroid-formation experiment, RNA sequencing (RNA-seq), miRNA-seq, bioinformatic analysis, quantitative real-time PCR, migration assay, invasion assay, and luciferase reporter assay were used to identify differentially expressed mRNAs, lncRNAs, circRNAs and miRNAs, construct transcription regulatory network, and investigate functional roles and mechanism of circRNA in CD133+CD44+ laryngeal cancer stem cells. Differentially expressed genes in TDP cells were mainly enriched in the biological processes of cell differentiation, regulation of autophagy, negative regulation of cell death, regulation of cell growth, response to hypoxia, telomere maintenance, cellular response to gamma radiation, and regulation of apoptotic signaling, which are closely related to the malignant features of tumor cells. We constructed the regulatory network of differentially expressed circRNAs, miRNAs and mRNAs. qPCR findings for the expression of key genes in the network were consistent with the sequencing data. Moreover, our data revealed that circRNA hg19_circ_0005033 promotes proliferation, migration, invasion, and chemotherapy resistance of laryngeal cancer stem cells. This study provides potential biomarkers and targets for LSCC diagnosis and therapy, and provide important evidences for the heterogeneity of LSCC cells at the transcription level. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis.

    PubMed

    Baumer, Yvonne; McCurdy, Sara; Alcala, Martin; Mehta, Nehal; Lee, Bog-Hieu; Ginsberg, Mark H; Boisvert, William A

    2017-01-01

    Vascular smooth muscle cells (VSMC) migrate and proliferate to form a stabilizing fibrous cap that encapsulates atherosclerotic plaques. CD98 is a transmembrane protein made of two subunits, CD98 heavy chain (CD98hc) and one of six light chains, and is known to be involved in cell proliferation and survival. Because the influence of CD98hc on atherosclerosis development is unknown, our aim was to determine if CD98hc expressed on VSMC plays a role in shaping the morphology of atherosclerotic plaques by regulating VSMC function. In addition to determining the role of CD98hc in VSMC proliferation and apoptosis, we utilized mice with SMC-specific deletion of CD98hc (CD98hc fl/fl SM22αCre + ) to determine the effects of CD98hc deficiency on VSMC function in atherosclerotic plaque. After culturing for 5 days in vitro, CD98hc -/- VSMC displayed dramatically reduced cell counts, reduced proliferation, as well as reduced migration compared to control VSMC. Analysis of aortic VSCM after 8 weeks of HFD showed a reduction in CD98hc -/- VSMC proliferation as well as increased apoptosis compared to controls. A long-term atherosclerosis study using SMC-CD98hc -/- /ldlr -/- mice was performed. Although total plaque area was unchanged, CD98hc -/- mice showed reduced presence of VSMC within the plaque (2.1 ± 0.4% vs. 4.3 ± 0.4% SM22α-positive area per plaque area, p < 0.05), decreased collagen content, as well as increased necrotic core area (25.8 ± 1.9% vs. 10.9 ± 1.6%, p < 0.05) compared to control ldlr -/- mice. We conclude that CD98hc is required for VSMC proliferation, and that its deficiency leads to significantly reduced presence of VSMC in the neointima. Thus, CD98hc expression in VSMC contributes to the formation of plaques that are morphologically more stable, and thereby protects against atherothrombosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Quantification of trace metals in water using complexation and filter concentration.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Japarov, Julia; Elish, Eyal; Edri, Elad; Schechter, Israel

    2010-06-15

    Various metals undergo complexation with organic reagents, resulting in colored products. In practice, their molar absorptivities allow for quantification in the ppm range. However, a proper pre-concentration of the colored complex on paper filter lowers the quantification limit to the low ppb range. In this study, several pre-concentration techniques have been examined and compared: filtering the already complexed mixture, complexation on filter, and dipping of dye-covered filter in solution. The best quantification has been based on the ratio of filter reflectance at a certain wavelength to that at zero metal concentration. The studied complex formations (Ni ions with TAN and Cd ions with PAN) involve production of nanoparticle suspensions, which are associated with complicated kinetics. The kinetics of the complexation of Ni ions with TAN has been investigated and optimum timing could be found. Kinetic optimization in regard to some interferences has also been suggested.

  19. Diverse Cd{sup II} coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Meng; Dong, Bao-Xia, E-mail: bxdong@yzu.edu.cn; Wu, Yi-Chen

    The coordination characteristics of 4-bromoisophthalic acid (4-Br-H{sub 2}ip) have been investigated in a series of Cd{sup II}-based frameworks. Hydrothermal reactions of Cd{sup II} salts and 4-Br-H{sub 2}ip together with flexible or semiflexible N-donor auxiliary ligands resulted in the formation of four three-dimensional coordination complexes with diverse structures: (Cd(bix){sub 0.5}(bix){sub 0.5}(4-Br-ip)]·H{sub 2}O){sub n} (1), [Cd(bbi){sub 0.5}(bbi){sub 0.5}(4-Br-ip)]{sub n} (2), ([Cd(btx){sub 0.5}(4-Br-ip)(H{sub 2}O)]·0.5CH{sub 3}OH·H{sub 2}O){sub n} (3) and ([Cd(bbt){sub 0.5}(4-Br-ip)(H{sub 2}O)]·3·5H{sub 2}O){sub n} (4). These compounds were characterized by elemental analyses, IR spectra, single-crystal and powder X-ray diffraction. They displayed diverse structures depending on the configuration of the 4-connected metal node, themore » coordination mode of the 4-Br-H{sub 2}ip, the coordination ability and conformationally flexibility of the N-donor auxiliary. Compound 1 exhibits 3-fold interpenetrated 6{sup 6} topology and compound 2 has a 4{sup 12} topology. Compounds 3–4 have similar 3D pillar-layered structures based on 3,4-connected binodal net with the Schläfli symbol of (4·3{sup 8}). The thermal stabilities and photoluminescence properties of them were discussed in detail. - Graphical abstract: Four 3D Cd{sup II} coordination complexes on the basis of 4-bromoisophthalic acid (4-Br-H{sub 2}ip) and two types of flexible (bbi, bbt) and semiflexible (bix, btx) N-donor ligands are prepared. They displayed diverse topology structures of 6{sup 6} (1), 4{sup 12} (2) and 4·3{sup 8} (3−4), depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H{sub 2}ip, the coordination ability and conformationally flexibility of the N-donor auxiliary ligand. - Highlights: • Four 3D Cd{sup II} coordination complexes based on 4-Br-H{sub 2}ip and flexible/semiflexible N-donor ligands have been synthesized. • They displayed diverse topology structures of 6{sup 6} for 1, 4{sup 12} for 2 and 4·3{sup 8} for 3–4. • The structural diversity depends on the configuration of 4-Br-H{sub 2}ip and the coordination behaviors of the auxiliary ligand.« less

  20. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex.

    PubMed

    Aiassa, Virginia; Zoppi, Ariana; Becerra, M Cecilia; Albesa, Inés; Longhi, Marcela R

    2016-11-05

    The purpose of this study was to improve the physicochemical and biological properties of chloramphenicol (CP) by multicomponent complexation with β-cyclodextrin (β-CD) and N-acetylcysteine (NAC). The present work describes the ability of solid multicomponent complex (MC) to decrease biomass and cellular activity of Staphylococcus by crystal violet and XTT assay, and leukocyte toxicity, measuring the increase of reactive oxygen species by chemiluminescence, and using 123-dihydrorhodamine. In addition, MC was prepared by the freeze-drying or physical mixture methods, and then characterized by scanning electron microscopy and powder X-ray diffraction. Nuclear magnetic resonance and phase solubility studies provided information at the molecular level on the structure of the MC and its association binding constants, respectively. The results obtained allowed us to conclude that MC formation is an effective pharmaceutical strategy that can reduce CP toxicity against leukocytes, while enhancing its solubility and antibiofilm activity. Copyright © 2016. Published by Elsevier Ltd.

Top