Sample records for cd40l dna combined

  1. CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus SIV239 vaccine enhances SIV-specific humoral and cellular immunity and improves protection against a heterologous SIVE660 mucosal challenge.

    PubMed

    Kwa, Suefen; Lai, Lilin; Gangadhara, Sailaja; Siddiqui, Mariam; Pillai, Vinod B; Labranche, Celia; Yu, Tianwei; Moss, Bernard; Montefiori, David C; Robinson, Harriet L; Kozlowski, Pamela A; Amara, Rama Rao

    2014-09-01

    It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1. Despite many advances in the field of AIDS research, an effective AIDS vaccine that can prevent infection remains elusive. CD40L is a key stimulator of dendritic cells and B cells and can therefore enhance T cell and antibody responses, but its overly potent nature can lead to adverse effects unless used in small doses. In order to modulate local expression of CD40L at relatively lower levels, we expressed

  2. Local irradiation does not enhance the effect of immunostimulatory AdCD40L gene therapy combined with low dose cyclophosphamide in melanoma patients

    PubMed Central

    Irenaeus, Sandra; Schiza, Aglaia; Mangsbo, Sara M.; Wenthe, Jessica; Eriksson, Emma; Krause, Johan; Sundin, Anders; Ahlström, Håkan; Tötterman, Thomas H.; Loskog, Angelica; Ullenhag, Gustav J.

    2017-01-01

    Background AdCD40L is an immunostimulatory gene therapy under evaluation for advanced melanoma, including ocular melanoma. Herein, we present the final data of a Phase I/IIa trial using AdCD40L alone or in combination with low dose cyclophosphamide +/- radiation therapy. Methods AdCD40L is a replication-deficient adenovirus carrying the gene for CD40 ligand (CD40L). Twenty-four patients with advanced melanoma were enrolled and treated with AdCD40L monotherapy, or combined with cyclophosphamide +/- single fraction radiotherapy. The patients were monitored for 10 weeks using immunological and radiological evaluations and thereafter for survival. Results AdCD40L treatment was safe and well tolerated both alone and in combination with cyclophosphamide as well as local radiotherapy. Four out of twenty-four patients had >1 year survival. Addition of cyclophosphamide was beneficial but adding radiotherapy did not further extend survival. High initial plasma levels of IL12 and MIP3b correlated to overall survival, whereas IL8 responses post-treatment correlated negatively with survival. Interestingly, antibody reactions to the virus correlated negatively with post IL6 and pre IL1b levels in blood. Conclusions AdCD40L was safely administered to patients and effect was improved by cyclophosphamide but not by radiotherapy. Immune activation profile at baseline may predict responders better than shortly after treatment. PMID:29108250

  3. Immunostimulatory AdCD40L gene therapy combined with low-dose cyclophosphamide in metastatic melanoma patients

    PubMed Central

    Loskog, Angelica; Maleka, Aglaia; Mangsbo, Sara; Svensson, Emma; Lundberg, Christina; Nilsson, Anders; Krause, Johan; Agnarsdóttir, Margrét; Sundin, Anders; Ahlström, Håkan; Tötterman, Thomas H; Ullenhag, Gustav

    2016-01-01

    Background: Current approaches for treating metastatic malignant melanoma (MM) are not effective enough and are associated with serious adverse events. Due to its immunogenicity, melanoma is an attractive target for immunostimulating therapy. In this phase I/IIa study, local AdCD40L immunostimulatory gene therapy was evaluated in patients with MM. Methods: AdCD40L is an adenovirus carrying the gene for CD40 ligand. Patients that failed standard treatments were enrolled. Six patients received four weekly intratumoral AdCD40L injections. Next, nine patients received low-dose cyclophosphamide conditioning before the first and fourth AdCD40L injection. The blood samples were collected at multiple time points for chemistry, haematology and immunology evaluations. Radiology was performed at enrolment and repeated twice after the treatment. Results: AdCD40L was safe with mild transient reactions. No objective responses were recorded by MRI, however, local and distant responses were seen on FDG-PET. The overall survival at 6 months was significantly better when cyclophosphamide was added to AdCD40L. The patients with the best survival developed the highest levels of activated T cells and experienced a pronounced decrease of intratumoral IL8. Conclusions: AdCD40L therapy for MM was well tolerated. Local and distant responses along with better survival in the low-dose cyclophosphamide group are encouraging. PMID:27031851

  4. The Role of Soluble CD40L Ligand in Human Carcinogenesis.

    PubMed

    Angelou, Anastasios; Antoniou, Efstathios; Garmpis, Nikolaos; Damaskos, Christos; Theocharis, Stamatios; Margonis, Georgios-Antonios

    2018-05-01

    The role of CD40/CD40L in carcinogenesis is widely examined. The mechanisms linking the CD40/CD40L system and the soluble form of CD40 ligand (sCD40L) with neoplasia are nowadays a topic of intensive research. CD40L and sCD40L belong to the TNF superfamily and are molecules with a proinflammatory role. A variety of cells express CD40L such as the immune system cells, the endothelial cells and activated platelets. Although many medications such as statins have been shown to reduce sCD40L, it is still debated whether specific treatments targeting the CD40/CD40L system will prove to be effective against carcinogenesis in the near future. A comprehensive search of the Pubmed Database was conducted for English-language studies using a list of key words. At diagnosis, serum samples of patients with neoplasia contained higher levels of sCD40L than healthy controls, suggesting that sCD40L may play a predictive role in human carcinogenesis. Patients with neoplasia had higher circulating sCD40L levels and it is likely that sCD40L may have a predictive role. It is still unclear whether sCD40L can be used as a therapeutic target. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Immune regulation by CD40-CD40-l interactions - 2; Y2K update.

    PubMed

    van Kooten, C

    2000-11-01

    CD40 is a cell surface receptor, which belongs to the TNF-R family, and which was first identified and functionally characterized on B lymphocytes. However, in recent years it has become clear that CD40 is expressed much broader, including expression on monocytes, dendritic cells, endothelial cells and epithelial cells. Therefore it is now thought that CD40 plays a more general role in immune regulation. The present paper reviews recent developments in this field of research, with main emphasis on CD40 signal transduction and on in vivo functions of CD40/CD40-L interactions.

  6. Soluble CD40-ligand (sCD40L, sCD154) plays an immunosuppressive role via regulatory T cell expansion in HIV infection

    PubMed Central

    Jenabian, M-A; Patel, M; Kema, I; Vyboh, K; Kanagaratham, C; Radzioch, D; Thébault, P; Lapointe, R; Gilmore, N; Ancuta, P; Tremblay, C; Routy, J-P

    2014-01-01

    CD40/CD40-ligand (CD40L) signalling is a key stimulatory pathway which triggers the tryptophan (Trp) catabolizing enzyme IDO in dendritic cells and is immunosuppressive in cancer. We reported IDO-induced Trp catabolism results in a T helper type 17 (Th17)/regulatory T cell (Treg) imbalance, and favours microbial translocation in HIV chronic infection. Here we assessed the link between sCD40L, Tregs and IDO activity in HIV-infected patients with different clinical outcomes. Plasmatic sCD40L and inflammatory cytokines were assessed in anti-retroviral therapy (ART)-naive, ART-successfully treated (ST), elite controllers (EC) and healthy subjects (HS). Plasma levels of Trp and its metabolite Kynurenine (Kyn) were measured by isotope dilution tandem mass spectrometry and sCD14 was assessed by enzyme-linked immunosorbent assay (ELISA). IDO-mRNA expression was quantified by reverse transcription–polymerase chain reaction (RT–PCR). The in-vitro functional assay of sCD40L on Treg induction and T cell activation were assessed on peripheral blood mononuclear cells (PBMCs) from HS. sCD40L levels in ART-naive subjects were significantly higher compared to ST and HS, whereas EC showed only a minor increase. In ART-naive alone, sCD40L was correlated with T cell activation, IDO-mRNA expression and CD4 T cell depletion but not with viral load. sCD40L was correlated positively with IDO enzymatic activity (Kyn/Trp ratio), Treg frequency, plasma sCD14 and inflammatory soluble factors in all HIV-infected patients. In-vitro functional sCD40L stimulation induced Treg expansion and favoured Treg differentiation by reducing central memory and increasing terminal effector Treg proportion. sCD40L also increased T cell activation measured by co-expression of CD38/human leucocyte antigen D-related (HLA-DR). These results indicate that elevated sCD40L induces immunosuppression in HIV infection by mediating IDO-induced Trp catabolism and Treg expansion. PMID:24924152

  7. Soluble CD40-ligand (sCD40L, sCD154) plays an immunosuppressive role via regulatory T cell expansion in HIV infection.

    PubMed

    Jenabian, M-A; Patel, M; Kema, I; Vyboh, K; Kanagaratham, C; Radzioch, D; Thébault, P; Lapointe, R; Gilmore, N; Ancuta, P; Tremblay, C; Routy, J-P

    2014-10-01

    CD40/CD40-ligand (CD40L) signalling is a key stimulatory pathway which triggers the tryptophan (Trp) catabolizing enzyme IDO in dendritic cells and is immunosuppressive in cancer. We reported IDO-induced Trp catabolism results in a T helper type 17 (Th17)/regulatory T cell (Treg ) imbalance, and favours microbial translocation in HIV chronic infection. Here we assessed the link between sCD40L, Tregs and IDO activity in HIV-infected patients with different clinical outcomes. Plasmatic sCD40L and inflammatory cytokines were assessed in anti-retroviral therapy (ART)-naive, ART-successfully treated (ST), elite controllers (EC) and healthy subjects (HS). Plasma levels of Trp and its metabolite Kynurenine (Kyn) were measured by isotope dilution tandem mass spectrometry and sCD14 was assessed by enzyme-linked immunosorbent assay (ELISA). IDO-mRNA expression was quantified by reverse transcription-polymerase chain reaction (RT-PCR). The in-vitro functional assay of sCD40L on Treg induction and T cell activation were assessed on peripheral blood mononuclear cells (PBMCs) from HS. sCD40L levels in ART-naive subjects were significantly higher compared to ST and HS, whereas EC showed only a minor increase. In ART-naive alone, sCD40L was correlated with T cell activation, IDO-mRNA expression and CD4 T cell depletion but not with viral load. sCD40L was correlated positively with IDO enzymatic activity (Kyn/Trp ratio), Treg frequency, plasma sCD14 and inflammatory soluble factors in all HIV-infected patients. In-vitro functional sCD40L stimulation induced Treg expansion and favoured Treg differentiation by reducing central memory and increasing terminal effector Treg proportion. sCD40L also increased T cell activation measured by co-expression of CD38/human leucocyte antigen D-related (HLA-DR). These results indicate that elevated sCD40L induces immunosuppression in HIV infection by mediating IDO-induced Trp catabolism and Treg expansion. © 2014 British Society for Immunology.

  8. Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection

    PubMed Central

    Bizzell, Erica; Madan-Lala, Ranjna

    2017-01-01

    Mycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses. We now demonstrate that CD40-dependent costimulation is required to generate IL-17 responses to Mtb. CD40-deficient DCs were unable to induce antigen-specific IL-17 responses after Mtb infection despite the production of Th17-polarizing innate cytokines. Disrupting the interaction between CD40 on DCs and its ligand CD40L on antigen-specific CD4 T cells, genetically or via antibody blockade, significantly reduced antigen-specific IL-17 responses. Importantly, engaging CD40 on DCs with a multimeric CD40 agonist (CD40LT) enhanced antigen-specific IL-17 generation in ex vivo DC-T cell co-culture assays. Further, intratracheal instillation of Mtb-infected DCs treated with CD40LT significantly augmented antigen-specific Th17 responses in vivo in the lungs and lung-draining lymph nodes of mice. Finally, we show that boosting CD40-CD40L interactions promoted balanced Th1/Th17 responses in a setting of mucosal DC transfer, and conferred enhanced control of lung bacterial burdens following aerosol challenge with Mtb. Our results demonstrate that CD40 costimulation by DCs plays an important role in generating antigen-specific Th17 cells and targeting the CD40-CD40L pathway represents a novel strategy to improve adaptive immunity to TB. PMID:28767735

  9. Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2

    PubMed Central

    Aloui, Chaker; Prigent, Antoine; Tariket, Sofiane; Sut, Caroline; Fagan, Jocelyne; Cognasse, Fabrice; Chakroun, Tahar; Garraud, Olivier; Laradi, Sandrine

    2016-01-01

    Increased circulating soluble CD40 ligand (sCD40L) is commonly associated with inflammatory disorders. We aimed to investigate whether gene polymorphisms in CD40LG, CD40 and ITGA2 are associated with a propensity to secrete sCD40L; thus, we examined this issue at the level of human platelets, the principal source of sCD40L. We performed single polymorphism and haplotype analyses to test for the effect of twelve polymorphisms across the CD40LG, CD40 and ITGA2 genes in blood donors. ITGA2 presented a positive association with rs1126643, with a significant modification in sCD40L secretion (carriers of C allele, P = 0.02), unlike the investigated CD40LG and CD40 polymorphisms. One CD40LG haplotype (TGGC) showing rs975379 (C/T), rs3092952 (A/G), rs3092933 (A/G) and rs3092929 (A/C) was associated with increased sCD40L levels (1.906 μg/L (95% CI: 1.060 to 2.751); P = 0.000009). The sCD40L level was associated with the inter-chromosomal CD40LG/CD40/ITGA2 haplotype (ATC), displaying rs3092952 (A/G), rs1883832 (C/T) and rs1126643 (C/T), with increased sCD40L levels (P = 0.0135). Our results help to decipher the genetic role of CD40LG, CD40 and ITGA2 with regard to sCD40L levels found in platelet components. Given the crucial role of sCD40L, this haplotype study in a transfusion model may be helpful to further determine the role of haplotypes in inflammatory clinical settings. PMID:27094978

  10. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    PubMed Central

    Tay, Neil Q.; Lee, Debbie C. P.; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R. J.; Kemeny, David M.

    2017-01-01

    CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses. PMID:29163545

  11. The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study.

    PubMed

    Panach, Layla; Pineda, Begoña; Mifsut, Damián; Tarín, Juan J; Cano, Antonio; García-Pérez, Miguel Ángel

    2016-02-01

    Compelling data are revealing that the CD40/CD40L system is involved in bone metabolism. Furthermore, we have previously demonstrated that polymorphisms in both genes are associated with bone phenotypes. The aim of this study is to further characterize this association and to identify the causal functional mechanism. We conducted an association study of BMD with 15 SNPs in CD40/CD40L genes in a population of 779 women. In addition, we assessed the functionality of this association through the study of the allele-dependent expression of CD40 and CD40L in peripheral blood leukocytes (PBLs) and in human osteoblasts (OBs) obtained from bone explants by qPCR and by sequencing. When an allelic imbalance (AI) was detected, studies on allele-dependent in vitro transcription rate and on CpG methylation in the gene promoter were also performed. Our results confirm the genetic association between SNP rs116535 (T>C) of CD40L gene with LS-BMD. Regarding CD40 gene, two SNPs showed nominal P-values<0.05 for FN- and LS-BMD (Z-scores), although the association was not significant after correcting for multiple testing. Homozygous TT women for SNP rs1883832 (C>T) of CD40 gene showed a trend to have lower levels of OPG (Q-value=0.059), especially when women of BMD-quartile ends were selected (P<0.05). Regarding functionality, we detected an AI for rs1883832 with the C allele the most expressed in OBs and in PBLs. Since the rs116535 of CD40L gene did not show AI, it was not further analyzed. Finally, we described a differential methylation of CpGs in the CD40 promoter among women of high in comparison to low BMD. Our results suggest that the CD40/CD40L system plays a role in regulating BMD. Effectively, our data suggest that a decreased production of OPG could be the cause of the lower BMD observed in TT women for rs1883832 of the CD40 gene and that the degree of methylation of CpGs in the CD40 promoter could contribute to the acquisition of BMD. One possibility that deserves further

  12. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  13. Non-survivor septic patients have persistently higher serum sCD40L levels than survivors.

    PubMed

    Lorente, Leonardo; Martín, María M; Pérez-Cejas, Antonia; Ferreres, José; Solé-Violán, Jordi; Labarta, Lorenzo; Díaz, César; Jiménez, Alejandro

    2017-10-01

    Soluble CD40 ligand (sCD40L) is a protein with proinflammatory and prothrombotic effects. Previously we found higher circulating sCD40L levels in non-survivor than in survivor patients at sepsis diagnosis. Now some questions arise such as how are serum sCD40L levels during the first week of severe sepsis?, is there an association between serum sCD40L levels during the first week and mortality?, and serum sCD40L levels during the first week could be used as sepsis mortality biomarker?. This study was developed to answer these asks. Study from 6 Spanish Intensive Care Units with 291 severe septic patients. There were determined serum levels of sCD40L and tumor necrosis factor (TNF)-alpha during the first week. The end-point study was 30-day mortality. We found that serum sCD40L at days 1, 4, and 8 could predict mortality at 30days, and are associated with mortality. The novel findings of our study were that there were higher serum sCD40L levels persistently during the first week in non-survivor than in survivor patients, that there is an association between serum sCD40L levels during the first week and sepsis mortality, and that serum sCD40L levels during the first week could be used as sepsis mortality biomarker. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  15. Expression and purification of soluble murine CD40L monomers and polymers in yeast Pichia pastoris

    PubMed Central

    Hermanrud, Christina E.; Lucas, Carrie L.; Sykes, Megan; Huang, Christene A.; Wang, Zhirui

    2010-01-01

    The anti-murine CD40L monoclonal antibody MR1 has been widely used in immunology research to block the CD40-CD40L interaction for induction of transplantation tolerance and to abrogate autoimmune diseases. The availability of recombinant CD40L with high binding capacity for MR1 would provide a valuable immunological research tool. In this study, we constructed the single chain murine soluble CD40L monomer, dimer, trimer and successfully expressed them in yeast Pichia pastoris under the control of the alcohol oxidase promoter. The secreted single chain murine soluble CD40L monomers, dimers, and trimers were initially enriched through histidine tag capture by Ni-Sepharose 6 fast flow resin and further purified on a cation exchange resin. Purity reached more than 95% for the monomer and dimer forms and more than 90% for the trimer. Protein yield following purification was 16 mg/L for the monomer and dimer, and 8 mg/L for the trimer. ELISA analysis demonstrated that the CD40L dimers and trimers correctly folded in conformations exposing the MR1 antigenic determinant. PMID:21074618

  16. Construction and immunological characterization of CD40L or GM-CSF incorporated Hantaan virus like particle

    PubMed Central

    Zhang, Xiaoxiao; Truax, Agnieszka D.; Ma, Ruixue; Liu, Ziyu; Lei, Yingfeng; Zhang, Liang; Ye, Wei; Zhang, Fanglin; Xu, Zhikai; Shang, Lei; Liu, Rongrong; Wang, Fang; Wu, Xingan

    2016-01-01

    Infection of Hantaan virus (HTNV) usually causes hemorrhagic fever with renal syndrome (HFRS). China has the worst epidemic incidence of HFRS as well as high fatality. Inactivated whole virus has been used for HFRS vaccination, however there are still problems such as safety concerns. CD40 ligand (CD40L) and granulocyte macrophage colony-stimulating factor (GM-CSF) are well-known immune stimulating molecules that can enhance antigen presenting, lymphocytes activation and maturation, incorporation of CD40L and GM-CSF to the surface of virus like particles (VLPs) can greatly improve the vaccination effect. We constructed eukaryotic vectors expressing HTNV M segment and S segment, as well as vectors expressing HTNV M segment with CD40L or GM-CSF, our results showed successful production of CD40L or GM-CSF incorporated HTNV VLPs. In vitro stimulation with CD40L or GM-CSF anchored HTNV VLP showed enhanced activation of macrophages and DCs. CD40L/GM-CSF incorporated VLP can induce higher level of HTNV specific antibody and neutralizing antibody in mice. Immunized mice splenocytes showed higher ability of secreting IFN-γ and IL-2, as well as enhancing CTL activity. These results suggest CD40L/GM-CSF incorporated VLP can serve as prospective vaccine candidate. PMID:27542281

  17. Dendritic cells rapidly undergo apoptosis in vitro following culture with activated CD4+ Vα24 natural killer T cells expressing CD40L

    PubMed Central

    Nieda, M; Kikuchi, A; Nicol, A; Koezuka, Y; Ando, Y; Ishihara, S; Lapteva, N; Yabe, T; Tokunaga, K; Tadokoro, K; Juji, T

    2001-01-01

    Human Vα24 natural killer T (Vα24NKT) cells are activated by α-glycosylceramide-pulsed dendritic cells (DCs) in a CD1d-dependent and T-cell receptor-mediated manner. There are two major subpopulations of Vα24NKT cells, CD4– CD8– Vα24NKT and CD4+ Vα24NKT cells. We have recently shown that activated CD4– CD8– Vα24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of Vα24NKT cells is currently limited. We aimed to investigate whether CD4+ Vα24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4+ Vα24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4+ Vα24NKT cells, but not with resting CD4+ Vα24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb. Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Vα24NKT cells. The apoptosis of DCs from normal donors, triggered by the CD40CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4+ Vα24NKT cells by virtue of apoptosis of DCs. PMID:11260318

  18. DNA damage and genetic methylation changes caused by Cd in Arabidopsis thaliana seedlings.

    PubMed

    Li, Zhaoling; Liu, Zhihong; Chen, Ruijuan; Li, Xiaojun; Tai, Peidong; Gong, Zongqiang; Jia, Chunyun; Liu, Wan

    2015-09-01

    Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MASP) techniques are sensitive to deoxyribonucleic acid (DNA) damage and genetic methylation, respectively. Using these 2 techniques, Arabidopsis thaliana cultured with 0 mg/L (control), 0.5 mg/L, 1.5 mg/L, and 5.0 mg/L Cd(2+) for 16 d was used to analyze the DNA damage and methylation changes as a result of cadmium (Cd). The DNA was amplified by 14 AFLP primer pairs and 13 MSAP primer combinations. In the AFLP experiment, 62 polymorphic sites were found in the patterns of 11 primer combinations and a total of 1116 fragments were obtained in these patterns. There were no polymorphic bands in the remaining 3 pairs. The proportions of polymorphic sites in the 0.5-mg/L Cd(2+) and 5.0-mg/L Cd(2+) treatments were significantly different. Seven polymorphic fragments were then separated and successfully sequenced, yielding 6 nucleobase substitutions and 1 nucleobase deletion. Similarly, in the MSAP experiment, the MSAP% and number of demethylated-type bands were unchanged after Cd treatment, but the number of methylated-type bands was increased significantly in the 5.0-mg/L Cd(2+) treatment group, a finding that may be associated with the AFLP results. The polymorphic bands were also sequenced and the functions of their homologous genes were determined. The DNA damage and methylation changes may be the primary cause of certain pathology changes as a result of Cd uptake in plants. © 2015 SETAC.

  19. Enhancement of CD4(+) T cell response and survival via coexpressed OX40/OX40L in Graves' disease.

    PubMed

    Wang, Qin; Shi, Bi-Min; Xie, Fang; Fu, Zhao-Yang; Chen, Yong-Jing; An, Jing-Nan; Ma, Yu; Liu, Cui-Ping; Zhang, Xue-Kun; Zhang, Xue-Guang

    2016-07-15

    OX40/OX40L pathway plays a very important role in the antigen priming T cells and effector T cells. In the present study, we aimed to examine the involvement of OX40/OX40L pathway in the activation of autoreactive T cells in patients with Grave's disease (GD). We found that OX40 and OX40L were constitutively coexpressed on peripheral CD4(+) T cells from GD patients using flow cytometry analysis. The levels of OX40 and OX40L coexpression on CD4(+) T cells were shown to be correlated with TRAbs. Cell proliferation assay showed that blocking OX40/OX40L signal inhibited T cell proliferation and survival, which suggested that OX40/OX40L could enhance CD4(+) T cell proliferation and maintain their long-term survival in GD by self-enhancing loop of T cell activation independent of APCs. Confocal microscopy and coimmunoprecipitation analysis further revealed that OX40 and OX40L formed a functional complex, which may facilitate signal transduction from OX40L to OX40 and contribute to the pathogenesis of GD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. HIV DNA in CD14+ reservoirs is associated with regional brain atrophy in patients naive to combination antiretroviral therapy.

    PubMed

    Kallianpur, Kalpana J; Valcour, Victor G; Lerdlum, Sukalaya; Busovaca, Edgar; Agsalda, Melissa; Sithinamsuwan, Pasiri; Chalermchai, Thep; Fletcher, James L K; Tipsuk, Somporn; Shikuma, Cecilia M; Shiramizu, Bruce T; Ananworanich, Jintanat

    2014-07-17

    To examine associations between regional brain volumes and HIV DNA in peripheral CD14 cells (monocytes) among HIV-infected individuals naive to combination antiretroviral therapy (cART). A prospective study of HIV-infected Thai individuals who met Thai national criteria for cART initiation. Enrolment was stratified by HIV DNA in a blinded fashion. CD14 cells were isolated from peripheral mononuclear cells to high purity (median 91.4% monocytes by flow cytometry), and HIV DNA was quantified by multiplex real-time PCR. Baseline regional brain volumes obtained by T1-weighted 1.5-Tesla MRI were compared between HIV DNA groups using analysis of covariance (ANCOVA). We studied 60 individuals with mean (SD) age of 34.7 (7.0) years, CD4 T-lymphocyte count of 232 (137) cells/μl and log10 plasma HIV RNA of 4.8 (0.73). Median (interquartile range, IQR) HIV DNA copy number per 10 CD14 cells was 54 (102). Using our previously determined optimal cut-point of 45 copies/10 cells for this cohort, a threshold value above which CD14 HIV DNA identified HIV-associated neurocognitive disorders (HANDs), we found that CD14 HIV DNA  ≥ 45 copies/10 cells was associated with reduced volumes of the nucleus accumbens (P=0.021), brainstem (P=0.033) and total gray matter (P=0.045) independently of age, CD4 cell count and intracranial volume. HIV DNA burden in CD14 monocytes is directly linked to brain volumetric loss. Our findings implicate peripheral viral reservoirs in HIV-associated brain atrophy and support their involvement in the neuropathogenesis of HAND, underscoring the need for therapies that target these cells.

  1. Combination therapy with an OX40L fusion protein and a vaccine targeting the transcription factor twist inhibits metastasis in a murine model of breast cancer.

    PubMed

    Malamas, Anthony S; Hammond, Scott A; Schlom, Jeffrey; Hodge, James W

    2017-10-31

    OX40 is a costimulatory receptor that potentiates proliferation, survival, memory formation, and effector function of CD4 + and CD8 + T-cells, while overcoming the suppressive activity of regulatory T-cells (Tregs). Here, we explored the combination of an OX40L fusion protein (OX40L-FP) with a poxvirus-based cancer vaccine (MVA-Twist-TRICOM) to inhibit tumor metastasis in the 4T1 murine breast cancer model. Contrary to the single agent treatments, the combination therapy significantly decreased the number of metastatic colonies per lung and prolonged survival. Depletion studies demonstrated that these effects were mediated by both CD4 + and CD8 + T-cells. The combination therapy a) increased the total number of T-cells in the CD4 + Foxp3 - population and the CD4 + central and effector memory subsets within the lung, spleen, and draining lymph node, b) enhanced infiltration of CD4 + T-cells into metastatic areas of the lung, and (c) increased the number of functional CD8 + T-cells that produced IFNγ and TNFα. The combination therapy also promoted the development of KLRG1 - CD127 + memory precursor CD8 + T-cells, while reducing those with a KLRG1 + terminally differentiated phenotype. Moreover, the combination of OX40L-FP and vaccine induced greater CD4 + and CD8 + Twist-specific responses. In addition, Tregs isolated from mice receiving the combination were also less immunosuppressive in ex-vivo proliferation assays than those from the OX40L-FP and MVA-Twist-TRICOM monotherapy groups. Such results provide the rationale to combine co-stimulatory agonists with cancer vaccines for the treatment of tumor metastasis.

  2. Combination therapy with an OX40L fusion protein and a vaccine targeting the transcription factor twist inhibits metastasis in a murine model of breast cancer

    PubMed Central

    Malamas, Anthony S.; Hammond, Scott A.; Schlom, Jeffrey; Hodge, James W.

    2017-01-01

    OX40 is a costimulatory receptor that potentiates proliferation, survival, memory formation, and effector function of CD4+ and CD8+ T-cells, while overcoming the suppressive activity of regulatory T-cells (Tregs). Here, we explored the combination of an OX40L fusion protein (OX40L-FP) with a poxvirus-based cancer vaccine (MVA-Twist-TRICOM) to inhibit tumor metastasis in the 4T1 murine breast cancer model. Contrary to the single agent treatments, the combination therapy significantly decreased the number of metastatic colonies per lung and prolonged survival. Depletion studies demonstrated that these effects were mediated by both CD4+ and CD8+ T-cells. The combination therapy a) increased the total number of T-cells in the CD4+Foxp3- population and the CD4+ central and effector memory subsets within the lung, spleen, and draining lymph node, b) enhanced infiltration of CD4+ T-cells into metastatic areas of the lung, and (c) increased the number of functional CD8+ T-cells that produced IFNγ and TNFα. The combination therapy also promoted the development of KLRG1-CD127+ memory precursor CD8+ T-cells, while reducing those with a KLRG1+ terminally differentiated phenotype. Moreover, the combination of OX40L-FP and vaccine induced greater CD4+ and CD8+ Twist-specific responses. In addition, Tregs isolated from mice receiving the combination were also less immunosuppressive in ex-vivo proliferation assays than those from the OX40L-FP and MVA-Twist-TRICOM monotherapy groups. Such results provide the rationale to combine co-stimulatory agonists with cancer vaccines for the treatment of tumor metastasis. PMID:29207606

  3. Cyclosporine-resistant, Rab27a-independent Mobilization of Intracellular Preformed CD40L Mediates Antigen-specific T Cell Help In Vitro

    PubMed Central

    Koguchi, Yoshinobu; Gardell, Jennifer L.; Thauland, Timothy J.; Parker, David C.

    2011-01-01

    CD40L is critically important for the initiation and maintenance of adaptive immune responses. It is generally thought that CD40L expression in CD4+ T cells is regulated transcriptionally and made from new mRNA following antigen recognition. However, recent studies with two-photon microscopy revealed that the majority of cognate interactions between effector CD4+ T cells and APCs are too short for de novo synthesis of CD40L. Given that effector and memory CD4+ T cells store preformed CD40L (pCD40L) in lysosomal compartments and that pCD40L comes to the cell surface within minutes of antigenic stimulation, we and others have proposed that pCD40L might mediate T cell-dependent activation of cognate APCs during brief encounters in vivo. However, it has not been shown that this relatively small amount of pCD40L is sufficient to activate APCs, owing to the difficulty of separating the effects of pCD40L from those of de novo CD40L and other cytokines in vitro. Here we show that pCD40L surface mobilization is resistant to cyclosporine or FK506 treatment, while de novo CD40L and cytokine expression are completely inhibited. These drugs thus provide a tool to dissect the role of pCD40L in APC activation. We find that pCD40L mediates selective activation of cognate but not bystander APCs in vitro and that mobilization of pCD40L does not depend on Rab27a, which is required for mobilization of lytic granules. Therefore, effector CD4+ T cells deliver pCD40L specifically to APCs on the same time scale as the lethal hit of CTLs but with distinct molecular machinery. PMID:21677130

  4. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngaotepprutaram, Thitirat; Center for Integrative Toxicology, Michigan State University; Kaplan, Barbara L.F.

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{supmore » 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.« less

  5. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity

    PubMed Central

    Lauterbach, Henning; Pätzold, Juliane; Kassub, Ronny; Bathke, Barbara; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus

    2013-01-01

    Modified vaccinia Ankara (MVA) is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70) early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression) was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated cytotoxic T-lymphocytes (CTLs) also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality, and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases. PMID:23986761

  6. [Regulatory B cells activated by CpG-ODN combined with anti-CD40 monoclonal antibody inhibit CD4(+)T cell proliferation].

    PubMed

    Wang, Keng; Tao, Lei; Su, Jianbing; Zhang, Yueyang; Zou, Binhua; Wang, Yiyuan; Li, Xiaojuan

    2016-09-01

    Objective To observe the immunosuppressive function of regulatory B cells (Bregs) in vitro after activated by CpG oligodeoxynucleotide (CpG-ODN) and anti-CD40 mAb. Methods Mice splenic CD5(+)CD1d(high)B cells and CD5(-)CD1d(low)B cells were sorted by flow cytometry. These B cells were first stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours, and then co-cultured with purified CD4(+)T cells. The interleukin 10 (IL-10) expression in the activated Bregs and other B cell subset, as well as the proliferation and interferon γ (IFN-γ) expression in the CD4(+) T cells activated by anti-CD3 mAb plus anti-CD28 mAb were determined by flow cytometry. Results CD5(+)CD1d(high) B cells activated by CpG-ODN plus anti-CD40 mAb blocked the up-regulated CD4(+)T proliferation and significantly reduced the IFN-γ level. At the same time, activated CD5(-)CD1d(low)B cells showed no inhibitory effect on CD4(+)T cells. Further study revealed that IL-10 expression in the CD5(+)CD1d(high) B cells were much higher than that in the CD5(-)CD1d(low)B cells after stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours. Conclusion CD5(+)CD1d(high) B cells activated by CpG-ODN combined with anti-CD40 mAb have immune inhibitory effects on CD4(+)T cell activation in vitro , which possibly due to IL-10 secretion.

  7. Developmental Changes in Soluble CD40 Ligand

    PubMed Central

    Cholette, Jill M.; Blumberg, Neil; Phipps, Richard P.; McDermott, Michael P.; Gettings, Kelly F.; Lerner, Norma B.

    2008-01-01

    Objectives To determine if soluble CD40 ligand (sCD40L; formally CD154) levels vary with age and to identify age-dependent ranges in healthy pediatric and adult populations. Study design sCD40L was measured in 25 neonates, 74 children (3 months –15 years) and 20 adults using an enzyme-linked immunosorbent assay. For age group comparisons, Mann-Whitney tests were performed. Correlation coefficients assessed relationships between plasma and serum sCD40L. Results Plasma sCD40L levels were higher in neonates than in all other age groups, (p<0.001). All grouped pediatric plasma levels were significantly higher than in adults (p<0.0001). There were no significant differences in plasma sCD40L between pediatric age groups. Serum levels were significantly higher in neonates than in any other age group (p <0.0001). Pediatric and adult serum sCD40L levels were not significantly different. Conclusions Plasma sCD40L levels are highest at birth and remain higher than those in adults throughout childhood. Reasons for such developmental changes remain to be investigated. Age appropriate reference ranges should be used when sCD40L is being evaluated in pediatric disorders. PMID:18154898

  8. Decreased serum levels of sCD40L and IL-31 correlate in treated patients with Relapsing-Remitting Multiple Sclerosis.

    PubMed

    de J Guerrero-García, José; Rojas-Mayorquín, Argelia E; Valle, Yeminia; Padilla-Gutiérrez, Jorge R; Castañeda-Moreno, Víctor A; Mireles-Ramírez, Mario A; Muñoz-Valle, José F; Ortuño-Sahagún, Daniel

    2018-01-01

    The CD40/CD40L system is a binding key for co-stimulation of immune cells. Soluble form of CD40L has been widely studied as marker of inflammatory and autoimmune diseases. Here we analyze serum concentrations of sCD40L, as well as 14 cytokines, in patients with Multiple Sclerosis (MS) treated with Glatiramer acetate or Interferon beta. In the healthy control group, we found in serum a highly positive correlation between sCD40L and Interleukin (IL)-31, an anti-inflammatory Th2 cytokine. Additionally, an important reduction in IL-31 and sCD40L serum levels, as well as a significant reduction in CD40 mRNA expression and complete depletion of CD40L mRNA, detected from peripheral blood cells, was found in treated patients with MS. Therefore, sCD40L and IL-31 must be taken into account as possible prognostic markers when analyzing the disease progress of MS in order to provide more personalized treatment. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression.

    PubMed

    Honey, K; Cobbold, S P; Waldmann, H

    1999-11-01

    The CD40-CD40 ligand (CD40L) interaction is a key event in the initiation of an adaptive immune response, and as such the therapeutic value of CD40L blockade has been studied in many experimental models of tissue transplantation and autoimmune disease. In rodents, transplantation of allogeneic tissues under the cover of anti-CD40L Abs has resulted in prolonged graft survival but not tolerance. In this report, we show that failure to induce tolerance probably results from the inability of anti-CD40L Abs to prevent graft rejection elicited by the CD8+ T cell subset. When the CD8+ T cell population is controlled independently, using anti-CD8 Abs, then tolerance is possible. Transplantation tolerance induced by anti-CD4 mAbs can often be associated with dominant regulation, manifested as infectious tolerance and linked suppression, both of which are mediated by CD4+ T cells. We show here that CD4+ T cells rendered tolerant using anti-CD40L therapy exhibit the same regulatory property of linked suppression, as demonstrated by their ability to accept grafts expressing third party Ags only if they are expressed in conjunction with the tolerated Ags. This observation of linked suppression reveals a hitherto undocumented consequence of CD40L blockade that suggests the tolerant state is maintained by a dominant regulatory mechanism. Our results suggest that, although anti-CD40L Abs are attractive clinical immunotherapeutic agents, additional therapies to control aggressive CD8+ T cell responses may be required.

  10. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ(9)-tetrahydrocannabinol in human CD4(+) T cells.

    PubMed

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L F; Kaminski, Norbert E

    2013-11-15

    We have previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4(+) T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ(9)-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ(9)-THC attenuated CD40L expression in human CD4(+) T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ(9)-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ(9)-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ(9)-THC suppresses human T cell function. © 2013.

  11. Intraperitoneal Administration of a Tumor-Associated Antigen SART3, CD40L, and GM-CSF Gene-Loaded Polyplex Micelle Elicits a Vaccine Effect in Mouse Tumor Models

    PubMed Central

    Furugaki, Kouichi; Cui, Lin; Kunisawa, Yumi; Osada, Kensuke; Shinkai, Kentaro; Tanaka, Masao; Kataoka, Kazunori; Nakano, Kenji

    2014-01-01

    Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype. PMID:25013909

  12. Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response.

    PubMed

    Alvarez, E; Moga, E; Barquinero, J; Sierra, J; Briones, J

    2010-04-01

    Fusion of dendritic cells and tumor cells (FCs) constitutes a promising tool for generating an antitumor response because of their capacity to present tumor antigens and provide appropriate costimulatory signals. CD40-CD40L interaction has an important role in the maturation and survival of dendritic cells and provides critical help for T-cell priming. In this study, we sought to improve the effectiveness of FC vaccines in a murine model of B-cell lymphoma by engineering FCs to express CD40L by means of an adenovirus encoding CD40L (Adv-CD40L). Before transduction with Adv-CD40L, no CD40L expression was detected in FCs, DCs or tumor cells. The surface expression of CD40L in FC transduced with Adv-CD40L (FC-CD40L) ranged between 50 and 60%. FC-CD40L showed an enhanced expression of CD80, CD86, CD54 and MHC class II molecules and elicited a strong in vitro immune response in a syngeneic mixed lymphocyte reaction. Furthermore, FC-CD40L showed enhanced migration to secondary lymphoid organs. Splenocytes from mice treated with FC-CD40L had a dramatic increase in the production of IL-17, IL-6 and IFN-gamma, compared with controls. Treatment with the FC-CD40L vaccine induced regression of established tumors and increased survival. Our data demonstrate that FC transduced with Adv-CD40L enhances the antitumor effect of FC vaccines in a murine lymphoma model and this is associated with an increased Th17-type immune response.

  13. Soluble CD40L Is a Useful Marker to Predict Future Strokes in Patients With Minor Stroke and Transient Ischemic Attack.

    PubMed

    Li, Jiejie; Wang, Yilong; Lin, Jinxi; Wang, David; Wang, Anxin; Zhao, Xingquan; Liu, Liping; Wang, Chunxue; Wang, Yongjun

    2015-07-01

    Elevated soluble CD40 ligand (sCD40L) was shown to be related to cardiovascular events, but the role of sCD40L in predicting recurrent stroke remains unclear. Baseline sCD40L levels were measured in 3044 consecutive patients with acute minor stroke and transient ischemic attack, who had previously been enrolled in the Clopidogrel in High-Risk Patients With Acute Nondisabling Cerebrovascular Events (CHANCE) trial. Cox proportional-hazards model was used to assess the association of sCD40L with recurrent stroke. Patients in the top tertile of sCD40L levels had increased risk of recurrent stroke comparing with those in the bottom tertile, after adjusted for conventional confounding factors (hazard ratio, 1.49; 95% confidence interval, 1.11-2.00; P=0.008). The patients with elevated levels of both sCD40L and high-sensitive C-reactive protein also had increased risk of recurrent stroke (hazard ratio, 1.81; 95% confidence interval, 1.23-2.68; P=0.003). Elevated sCD40L levels independently predict recurrent stroke in patients with minor stroke and transient ischemic attack. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00979589. © 2015 American Heart Association, Inc.

  14. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against

  15. Interaction of Macrophage Antigen 1 and CD40 Ligand Leads to IL-12 Production and Resistance in CD40-Deficient Mice Infected with Leishmania major.

    PubMed

    Okwor, Ifeoma; Jia, Ping; Uzonna, Jude E

    2015-10-01

    Although some studies indicate that the interaction of CD40 and CD40L is critical for IL-12 production and resistance to cutaneous leishmaniasis, others suggest that this pathway may be dispensable. In this article, we compared the outcome of Leishmania major infection in both CD40- and CD40L-deficient mice after treatment with rIL-12. We show that although CD40 and CD40L knockout (KO) mice are highly susceptible to L. major, treatment with rIL-12 during the first 2 wk of infection causes resolution of cutaneous lesions and control of parasite replication. Interestingly, although treated CD40 KO mice remained healed, developed long-term immunity, and were resistant to secondary L. major challenge, treated CD40L KO reactivated their lesion after cessation of rIL-12 treatment. Disease reactivation in CD40L KO mice was associated with impaired IL-12 and IFN-γ production and a concomitant increase in IL-4 production by cells from lymph nodes draining the infection site. We show that IL-12 production by dendritic cells and macrophages via CD40L-macrophage Ag 1 (Mac-1) interaction is responsible for the sustained resistance in CD40 KO mice after cessation of rIL-12 treatment. Blockade of CD40L-Mac-1 interaction with anti-Mac-1 mAb led to spontaneous disease reactivation in healed CD40 KO mice, which was associated with impaired IFN-γ response and loss of infection-induced immunity after secondary L. major challenge. Collectively, our data reveal a novel role of CD40L-Mac-1 interaction in IL-12 production, development, and maintenance of optimal Th1 immunity in mice infected with L. major. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. Involvement of nuclear factor κB in platelet CD40 signaling.

    PubMed

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. CD40-CD40 Ligand Pathway is a Major Component of Acute Neuroinflammation and Contributes to Long-term Cognitive Dysfunction after Sepsis.

    PubMed

    Michels, Monique; Danieslki, Lucinéia Gainski; Vieira, Andriele; Florentino, Drielly; Dall'Igna, Dhébora; Galant, Letícia; Sonai, Beatriz; Vuolo, Francieli; Mina, Franciele; Pescador, Bruna; Dominguini, Diogo; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe; Petronilho, Fabrícia

    2015-03-26

    Sepsis-associated encephalopathy (SAE) is associated with an increased rate of morbidity and mortality. It is not understood what the exact mechanism is for the brain dysfunction that occurs in septic patients, but brain inflammation and oxidative stress are a possible theory. Such events can occur through the alteration of molecules that perpetuate the inflammatory response. Thus, it is possible to postulate that CD40 may be involved in this process. The aim of this work is to evaluate the role of CD40-CD40L pathway activation in brain dysfunction associated with sepsis in an animal model. Microglia activation induces the upregulation of CD40-CD40L, both in vitro and in vivo. The inhibition of microglia activation decreases levels of CD40-CD40L in the brain and decreases brain inflammation, oxidative damage and blood brain barrier dysfunction. Despite this, anti-CD40 treatment does not improve mortality in this model. However, it is able to improve long-term cognitive impairment in sepsis survivors. In conclusion, there is a major involvement of the CD40-CD40L signaling pathway in long-term brain dysfunction in an animal model of sepsis.

  18. The Serum Levels of the Soluble Factors sCD40L and CXCL1 Are Not Indicative of Endometriosis

    PubMed Central

    Pateisky, Petra; Pils, Dietmar; Kuessel, Lorenz; Szabo, Ladislaus; Walch, Katharina; Obwegeser, Reinhard; Wenzl, René; Yotova, Iveta

    2016-01-01

    Endometriosis is a benign but troublesome gynecological condition, characterized by endometrial-like tissue outside the uterine cavity. Lately, the discovery and validation of noninvasive diagnostic biomarkers for endometriosis is one of the main priorities in the field. As the disease elicits a chronic inflammatory reaction, we focused our interest on two factors well known to be involved in inflammation and neoplastic processes, namely, soluble CD40 Ligand and CXCL1, and asked whether differences in the serum levels of sCD40L and CXCL1 in endometriosis patients versus controls can serve as noninvasive disease markers. A total of n = 60 women were included in the study, 31 endometriosis patients and 29 controls, and the serum levels of sCD40L and CXCL1 were measured by enzyme-linked immunosorbent assay. Overall, there were no statistically significant differences in the levels of expression of both sCD40L and CXCL1 between patients and controls. This study adds useful clinical data showing that the serum levels of the soluble factors sCD40L and CXCL1 are not associated with endometriosis and are not suitable as biomarkers for disease diagnosis. However, we found a trend toward lower levels of sCD40L in the deep infiltrating endometriosis subgroup making it a potentially interesting target worth further investigation. PMID:27190986

  19. CD40CD40 Ligand Pathway Is a Major Component of Acute Neuroinflammation and Contributes to Long-term Cognitive Dysfunction after Sepsis

    PubMed Central

    Michels, Monique; Danieslki, Lucinéia Gainski; Vieira, Andriele; Florentino, Drielly; Dall’Igna, Dhébora; Galant, Letícia; Sonai, Beatriz; Vuolo, Francieli; Mina, Franciele; Pescador, Bruna; Dominguini, Diogo; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe; Petronilho, Fabrícia

    2015-01-01

    Sepsis-associated encephalopathy (SAE) is associated with an increased rate of morbidity and mortality. It is not understood what the exact mechanism is for the brain dysfunction that occurs in septic patients, but brain inflammation and oxidative stress are a possible theory. Such events can occur through the alteration of molecules that perpetuate the inflammatory response. Thus, it is possible to postulate that CD40 may be involved in this process. The aim of this work is to evaluate the role of CD40CD40L pathway activation in brain dysfunction associated with sepsis in an animal model. Microglia activation induces the upregulation of CD40CD40L, both in vitro and in vivo. The inhibition of microglia activation decreases levels of CD40CD40L in the brain and decreases brain inflammation, oxidative damage and blood brain barrier dysfunction. Despite this, anti-CD40 treatment does not improve mortality in this model. However, it is able to improve long-term cognitive impairment in sepsis survivors. In conclusion, there is a major involvement of the CD40CD40L signaling pathway in long-term brain dysfunction in an animal model of sepsis. PMID:25822797

  20. Heterogeneous expression and regulation of CD40 in human hepatocellular carcinoma.

    PubMed

    Holub, Margareta; Zakeri, Schaker M; Lichtenberger, Cornelia; Pammer, Johannes; Paolini, Pierre; Leifeld, Ludger; Rockenschaub, Susanne; Wolschek, Markus F; Steger, Günther; Willheim, Martin; Gangl, Alfred; Reinisch, Walter

    2003-02-01

    CD40, a member of the tumour necrosis factor receptor family, plays a major role in adaptive immune responses and contributes to cancer surveillance. Conflicting results have been reported recently on the expression and function of CD40 in carcinomas. The aim of the present study was to investigate the role of CD40 in human hepatoma. CD40 expression was examined in hepatomas and derived cell lines by immunohistochemistry, flow cytometry and reverse transcriptase polymerase chain reaction. We investigated in hepatoma cell lines the regulation of CD40 by pro-inflammatory cytokines and the effects of its ligation with soluble CD40L on the expression of co-stimulatory and pro-apoptotic cell-surface molecules and survival. CD40 was detected with a similar frequency of about 40% in hepatoma specimens and derived cell lines but not in normal hepatocytes. Tumour necrosis factor alpha and its combination with interferon gamma upregulated CD40 only in intrinsically positive cell lines. CD40 ligation had no effect on cell viability or surface expression of CD54, CD80, CD86 or CD95. CD40 is expressed variably in human hepatoma and enhanced by distinct pro-inflammatory cytokines. The lack of detectable effects of CD40 ligation does not support a major role of this molecule in hepatocellular carcinoma biology.

  1. Metformin plus oral contraceptive may decrease plasma sCD40 ligand in women with PCOS patients.

    PubMed

    Kebapcilar, Levent; Kebapcilar, Ayse Gul; Bilgir, Oktay; Taner, Cuneyt Eftal; Bozkaya, Giray; Yildiz, Yasar; Sari, Ismail

    2011-02-01

    To evaluate sCD40L levels in women with polycystic ovary syndrome (PCOS) who use combination therapy with metformin and oral contraceptives. Total of 60 patients with PCOS was studied to evaluate and compare with a non-PCOS group consisting of 30 subjects. A low-dose oral contraceptive containing ethinyl oestradiol-cyproterone acetate (EE/CA) and metformin (M; 850 mg metformin twice a day) were given for three cycles. Plasma sCD40L was measured before and after the treatment of 3 months. At baseline, the sCD40L levels of the patients with PCOS was significantly higher than those of control subjects (3.1 ± 2.0 vs. 2.05 ± 1.0, respectively; p=0.002). An average of 3 months of EE/CA-M therapy induced a significant decrease of sCD40L levels in the PCOS group (3.1 ± 2.0 vs. 2.5 ± 1.0; p=0.026). After having treated patients with PCOS, the sCD40L level was not completely normalised when compared to the healthy controls (2.5 ± 1.0 vs. 2.05 ± 1.0; p=0.039). PCOS is associated with elevated levels of sCD40L. Adding metformin therapy to EE/CA may decrease sCD40L levels in women PCOS. However, after the treatment for PCOS subjects, the sCD40L was not completely normalised when compared patients to healthy controls.

  2. Elderly dendritic cells respond to LPS/IFN-γ and CD40L stimulation despite incomplete maturation

    PubMed Central

    Musk, Arthur W.; Alvarez, John; Mamotte, Cyril D. S.; Jackaman, Connie; Nowak, Anna K.; Nelson, Delia J.

    2018-01-01

    There is evidence that dendritic cells (DCs) undergo age-related changes that modulate their function with their key role being priming antigen-specific effector T cells. This occurs once DCs develop into antigen-presenting cells in response to stimuli/danger signals. However, the effects of aging on DC responses to bacterial lipopolysaccharide (LPS), the pro-inflammatory cytokine interferon (IFN)-γ and CD40 ligand (CD40L) have not yet been systematically evaluated. We examined responses of blood myeloid (m)DC1s, mDC2s, plasmacytoid (p)DCs, and monocyte-derived DCs (MoDCs) from young (21–40 years) and elderly (60–84 years) healthy human volunteers to LPS/IFN-γ or CD40L stimulation. All elderly DC subsets demonstrated comparable up-regulation of co-stimulatory molecules (CD40, CD80 and/or CD86), intracellular pro-inflammatory cytokine levels (IFN-γ, tumour necrosis factor (TNF)-α, IL-6 and/or IL-12), and/or secreted cytokine levels (IFN-α, IFN-γ, TNF-α, and IL-12) to their younger counterparts. Furthermore, elderly-derived LPS/IFN-γ or CD40L-activated MoDCs induced similar or increased levels of CD8+ and CD4+ T cell proliferation, and similar T cell functional phenotypes, to their younger counterparts. However, elderly LPS/IFN-γ-activated MoDCs were unreliable in their ability to up-regulate chemokine (IL-8 and monocyte chemoattractant protein (MCP)-1) and IL-6 secretion, implying an inability to dependably induce an inflammatory response. A key age-related difference was that, unlike young-derived MoDCs that completely lost their ability to process antigen, elderly-derived MoDCs maintained their antigen processing ability after LPS/IFN-γ maturation, measured using the DQ-ovalbumin assay; this response implies incomplete maturation that may enable elderly DCs to continuously present antigen. These differences may impact on the efficacy of anti-pathogen and anti-tumour immune responses in the elderly. PMID:29652910

  3. Soluble CD40 ligand in prediction of acute severe pancreatitis

    PubMed Central

    Frossard, Jean Louis; Morel, Philippe; Kwak, Brenda; Pastor, Catherine; Berney, Thierry; Buhler, Léo; Von Laufen, Alain; Demulder, Sandrine; Mach, Francois

    2006-01-01

    AIM: To assess the early predictability of the soluble CD40L (sCD40L) in pancreatitis severity. METHODS: Between February 2000 and February 2003, 279 consecutive patients with acute pancreatitis were prospectively enrolled in our study. In this report, 40 patients with mild and 40 patients with severe pancreatitis were randomly studied. sCD40L concentrations were measured 48 hours after admission. RESULTS: sCD40L levels were significantly higher 48 hours after admission in severe pancreatitis than in mild pancreatitis. Using a cutoff of 1 000 pg/L, the sensitivity and specificity of sCD40L to detect a severe course of the disease were 78% and 62% respectively compared to 72% and 81% for CRP. Logistic regression analysis found that CRP was the only statistically significant marker able to detect a severe course of the disease. CONCLUSION: These findings indicate that CRP remains a valuable marker to determine the severity and prognosis of acute pancreatitis whereas sCD40L levels should be assessed in further studies. PMID:16570356

  4. Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells

    PubMed Central

    Kosaka, Akemi; Ohkuri, Takayuki

    2014-01-01

    Malignant gliomas are heavily infiltrated by immature myeloid cells that mediate immuno-suppression. Agonistic CD40 monoclonal antibody (mAb) has been shown to activate myeloid cells and promote antitumor immunity. Our previous study has also demonstrated blockade of cyclooxygenase-2 (COX-2) reduces immunosuppressive myeloid cells, thereby suppressing glioma development in mice. We therefore hypothesized that a combinatory strategy to modulate myeloid cells via two distinct pathways, i.e., CD40/CD40L stimulation and COX-2 blockade, would enhance anti-glioma immunity. We used three different mouse glioma models to evaluate therapeutic effects and underlying mechanisms of a combination regimen with an agonist CD40 mAb and the COX-2 inhibitor celecoxib. Treatment of glioma-bearing mice with the combination therapy significantly prolonged survival compared with either anti-CD40 mAb or celecoxib alone. The combination regimen promoted maturation of CD11b+ cells in both spleen and brain, and enhanced Cxcl10 while suppressing Arg1 in CD11b+Gr-1+ cells in the brain. Anti-glioma activity of the combination regimen was T-cell dependent because depletion of CD4+ and CD8+ cells in vivo abrogated the anti-glioma effects. Furthermore, the combination therapy significantly increased the frequency of CD8+ T-cells, enhanced IFN-γ-production and reduced CD4+CD25+Foxp3+ T regulatory cells in the brain, and induced tumor-antigen-specific T-cell responses in lymph nodes. Our findings suggest that the combination therapy of anti-CD40 mAb with celecoxib enhances anti-glioma activities via promotion of type-1 immunity both in myeloid cells and T-cells. PMID:24878890

  5. Clinical disease upregulates expression of CD40 and CD40 ligand on peripheral blood mononuclear cells from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis

    USDA-ARS?s Scientific Manuscript database

    CD40 and CD40L interactions have costimulatory effects that are part of a complex series of events in host cellular and humoral immune responses and inflammation. The purpose of this study was to examine the changes in expression of CD40 and CD40L on peripheral blood mononuclear cells (PBMCs) isolat...

  6. Cysteine-rich Domain 1 of CD40 Mediates Receptor Self-assembly*

    PubMed Central

    Smulski, Cristian R.; Beyrath, Julien; Decossas, Marion; Chekkat, Neila; Wolff, Philippe; Estieu-Gionnet, Karine; Guichard, Gilles; Speiser, Daniel; Schneider, Pascal; Fournel, Sylvie

    2013-01-01

    The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell surface-expressed and soluble CD40 self-assemble, most probably as noncovalent dimers. The cysteine-rich domain 1 (CRD1) of CD40 participated to dimerization and was also required for efficient receptor expression. Modelization of a CD40 dimer allowed the identification of lysine 29 in CRD1, whose mutation decreased CD40 self-interaction without affecting expression or response to ligand. When expressed alone, recombinant CD40-CRD1 bound CD40 with a KD of 0.6 μm. This molecule triggered expression of maturation markers on human dendritic cells and potentiated CD40L activity. These results suggest that CD40 self-assembly modulates signaling, possibly by maintaining the receptor in a quiescent state. PMID:23463508

  7. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity

    PubMed Central

    Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.

    2016-01-01

    Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278

  8. Preparation of water soluble L-arginine capped CdSe/ZnS QDs and their interaction with synthetic DNA: Picosecond-resolved FRET study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, Anupam; Goswami, Nirmal; Lemmens, Peter

    2012-08-15

    Graphical abstract: Förster resonance energy transfer (FRET) studies on the interaction of water soluble arginine-capped CdSe/ZnS QDs with ethidium bromide (EB) labeled synthetic dodecamer DNA. Highlights: ► We have solubilized CdSe/ZnS QD in water replacing their TOPO ligand by L-arginine. ► We have studied arginine@QD–DNA interaction using FRET technique. ► Arginine@QDs act as energy donor and ethidium bromide-DNA acts as energy acceptor. ► We have applied a kinetic model to understand the kinetics of energy transfer. ► Circular dichroism studies revealed negligible perturbation in the DNA B-form in the arg@QD-DNA complex. -- Abstract: We have exchanged TOPO (trioctylphosphine oxide) ligandmore » of CdSe/ZnS core/shell quantum dots (QDs) with an amino acid L-arginine (Arg) at the toluene/water interface and eventually rendered the QDs from toluene to aqueous phase. We have studied the interaction of the water soluble Arg-capped QDs (energy donor) with ethidium (EB) labeled synthetic dodecamer DNA (energy acceptor) using picoseconds resolved Förster resonance energy transfer (FRET) technique. Furthermore, we have applied a model developed by M. Tachiya to understand the kinetics of energy transfer and the distribution of acceptor (EB-DNA) molecules around the donor QDs. Circular dichroism (CD) studies revealed a negligible perturbation in the native B-form structure of the DNA upon interaction with Arg-capped QDs. The melting and the rehybridization pathways of the DNA attached to the QDs have been monitored by the CD which reveals hydrogen bonding is the associative mechanism for interaction between Arg-capped QDs and DNA.« less

  9. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway.

    PubMed

    Yacoub, Daniel; Hachem, Ahmed; Théorêt, Jean-François; Gillis, Marc-Antoine; Mourad, Walid; Merhi, Yahye

    2010-12-01

    CD40 ligand is a thromboinflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40 ligand (sCD40L), which has been shown to influence platelet activation, although its exact functional impact on platelets and the underlying mechanisms remain undefined. We aimed to determine the impact and the signaling mechanisms of sCD40L on platelets. sCD40L strongly enhances platelet activation and aggregation. Human platelets treated with a mutated form of sCD40L that does not bind CD40, and CD40(-/-) mouse platelets failed to elicit such responses. Furthermore, sCD40L stimulation induces the association of the tumor necrosis factor receptor-associated factor-2 with platelet CD40. Notably, sCD40L primes platelets through activation of the small GTPase Rac1 and its downstream target p38 mitogen-activated protein kinase, which leads to platelet shape change and actin polymerization. Moreover, sCD40L exacerbates thrombus formation and leukocyte infiltration in wild-type mice but not in CD40(-/-) mice. sCD40L enhances agonist-induced platelet activation and aggregation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Thus, sCD40L is an important platelet primer predisposing platelets to enhanced thrombus formation in response to vascular injury. This may explain the link between circulating levels of sCD40L and cardiovascular diseases.

  10. HIV-DNA content in different CD4+ T-cell subsets correlates with CD4+ cell :  CD8+ cell ratio or length of efficient treatment.

    PubMed

    Gibellini, Lara; Pecorini, Simone; De Biasi, Sara; Bianchini, Elena; Digaetano, Margherita; Pinti, Marcello; Carnevale, Gianluca; Borghi, Vanni; Guaraldi, Giovanni; Mussini, Cristina; Cossarizza, Andrea; Nasi, Milena

    2017-06-19

    HIV establishes a latent infection at different degrees within naïve (TN) or central (TCM) and effector memory (TEM) CD4 T cell. Studying patients in whom HIV production was suppressed by combined antiretroviral therapy, our main aim was to find which factors are related or can influence intracellular viral reservoir in different CD4 T-cell subsets. We enrolled 32 HIV patients successfully treated for more than 2 years, with a CD4 T-cell count more than 500 cells/μl and plasma viremia undetectable from at least 1 year. Proviral HIV-DNA, the amount of cells expressing signal-joint T-cell receptor rearrangement excision circles and telomere length were quantified by droplet digital PCR in highly purified, sorted CD4 T-cell subsets; plasma IL-7 and IL-15 were measured by ELISA. HIV-DNA was significantly lower in TN cells compared with TCM or to TEM. Conversely, TN cells contained more signal-joint T-cell receptor rearrangement excision circles compared with TCM or to TEM; no appreciable changes were observed in telomere length. HIV-DNA content was significantly higher in TN and TCM cells, but not in TEM, from patients with shorter time of treatment, or in those with lower CD4 : CD8 ratio. Length of treatment or recovery of CD4 : CD8 ratio significantly influences viral reservoir in both TN and TCM. Measuring HIV-DNA in purified lymphocyte populations allows a better monitoring of HIV reservoir and could be useful for designing future eradication strategies.

  11. Constitutive CD40L Expression on B Cells Prematurely Terminates Germinal Center Response and Leads to Augmented Plasma Cell Production in T Cell Areas

    PubMed Central

    Bolduc, Anna; Long, Eugene; Stapler, Dale; Cascalho, Marilia; Tsubata, Takeshi; Koni, Pandelakis A.; Shimoda, Michiko

    2013-01-01

    CD40/CD40L engagement is essential to T cell-dependent B cell proliferation and differentiation. However, the precise role of CD40 signaling through cognate T–B interaction in the generation of germinal center and memory B cells is still incompletely understood. To address this issue, a B cell-specific CD40L transgene (CD40LBTg) was introduced into mice with B cell-restricted MHC class II deficiency. Using this mouse model, we show that constitutive CD40L expression on B cells alone could not induce germinal center differentiation of MHC class II-deficient B cells after immunization with T cell-dependent Ag. Thus, some other MHC class II-dependent T cell-derived signals are essential for the generation of germinal center B cells in response to T cell-dependent Ag. In fact, CD40LBTg mice generated a complex Ag-specific IgG1 response, which was greatly enhanced in early, but reduced in late, primary response compared with control mice. We also found that the frequency of Ag-specific germinal center B cells in CD40LBTg mice was abruptly reduced 1 wk after immunization. As a result, the numbers of Ag-specific IgG1 long-lived plasma cells and memory B cells were reduced. By histology, large numbers of Ag-specific plasma cells were found in T cell areas adjacent to Ag-specific germinal centers of CD40LBTg mice, temporarily during the second week of primary response. These results indicate that CD40L expression on B cells prematurely terminated their ongoing germinal center response and produced plasma cells. Our results support the notion that CD40 signaling is an active termination signal for germinal center reaction. PMID:20505142

  12. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody

    PubMed Central

    Fallon, Jonathan K.; Vandeveer, Amanda J.

    2017-01-01

    The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies. PMID:28423552

  13. Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis

    PubMed Central

    2011-01-01

    Introduction CD40 Ligand (CD40L) and its soluble counterpart (sCD40L) are proteins that exhibit prothrombotic and proinflammatory properties on binding to their cell surface receptor CD40. The results of small clinical studies suggest that sCD40L levels could play a role in sepsis; however, there are no data on the association between sCD40L levels and mortality of septic patients. Thus, the aim of this study was to determine whether circulating sCD40L levels could be a marker of adverse outcome in a large cohort of patients with severe sepsis. Methods This was a multicenter, observational and prospective study carried out in six Spanish intensive care units. Serum levels of sCD40L, tumour necrosis factor-alpha and interleukin-10, and plasma levels of tissue factor were measured in 186 patients with severe sepsis at the time of diagnosis. Serum sCD40L was also measured in 50 age- and sex-matched controls. Survival at 30 days was used as the endpoint. Results Circulating sCD40L levels were significantly higher in septic patients than in controls (P = 0.01), and in non-survivors (n = 62) compared to survivors (n = 124) (P = 0.04). However, the levels of CD40L were not different regarding sepsis severity. Logistic regression analysis showed that sCD40L levels >3.5 ng/mL were associated with higher mortality at 30 days (odds ratio = 2.89; 95% confidence interval = 1.37 to 6.07; P = 0.005). The area under the curve of sCD40L levels >3.5 ng/mL as predictor of mortality at 30 days was 0.58 (95% CI = 0.51 to 0.65; P = 0.03). Conclusions In conclusion, circulating sCD40L levels are increased in septic patients and are independently associated with mortality in these patients; thus, its modulation could represent an attractive therapeutic target. PMID:21406105

  14. Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis.

    PubMed

    Lorente, Leonardo; Martín, María M; Varo, Nerea; Borreguero-León, Juan María; Solé-Violán, Jordi; Blanquer, José; Labarta, Lorenzo; Díaz, César; Jiménez, Alejandro; Pastor, Eduardo; Belmonte, Felipe; Orbe, Josune; Rodríguez, José A; Gómez-Melini, Eduardo; Ferrer-Agüero, José M; Ferreres, José; Llimiñana, María C; Páramo, José A

    2011-03-15

    CD40 Ligand (CD40L) and its soluble counterpart (sCD40L) are proteins that exhibit prothrombotic and proinflammatory properties on binding to their cell surface receptor CD40. The results of small clinical studies suggest that sCD40L levels could play a role in sepsis; however, there are no data on the association between sCD40L levels and mortality of septic patients. Thus, the aim of this study was to determine whether circulating sCD40L levels could be a marker of adverse outcome in a large cohort of patients with severe sepsis. This was a multicenter, observational and prospective study carried out in six Spanish intensive care units. Serum levels of sCD40L, tumour necrosis factor-alpha and interleukin-10, and plasma levels of tissue factor were measured in 186 patients with severe sepsis at the time of diagnosis. Serum sCD40L was also measured in 50 age- and sex-matched controls. Survival at 30 days was used as the endpoint. Circulating sCD40L levels were significantly higher in septic patients than in controls (P = 0.01), and in non-survivors (n = 62) compared to survivors (n = 124) (P = 0.04). However, the levels of CD40L were not different regarding sepsis severity. Logistic regression analysis showed that sCD40L levels >3.5 ng/mL were associated with higher mortality at 30 days (odds ratio = 2.89; 95% confidence interval = 1.37 to 6.07; P = 0.005). The area under the curve of sCD40L levels >3.5 ng/mL as predictor of mortality at 30 days was 0.58 (95% CI = 0.51 to 0.65; P = 0.03). In conclusion, circulating sCD40L levels are increased in septic patients and are independently associated with mortality in these patients; thus, its modulation could represent an attractive therapeutic target.

  15. Binding of CD40L to Mac-1’s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis – but does not affect immunity and thrombosis in mice

    PubMed Central

    Wolf, Dennis; Hohmann, Jan-David; Wiedemann, Ansgar; Bledzka, Kamila; Blankenbach, Hermann; Marchini, Timoteo; Gutte, Katharina; Zeschky, Katharina; Bassler, Nicole; Hoppe, Natalie; Rodriguez, Alexandra Ortiz; Herr, Nadine; Hilgendorf, Ingo; Stachon, Peter; Willecke, Florian; Dürschmied, Daniel; von zur Mühlen, Constantin; Soloviev, Dmitry A.; Zhang, Li; Bode, Christoph; Plow, Edward F.; Libby, Peter; Peter, Karlheinz; Zirlik, Andreas

    2012-01-01

    Rationale CD40L figures prominently in chronic inflammatory diseases such as atherosclerosis. However, since CD40L potently regulates immune function and haemostasis by interaction with CD40 receptor and the platelet integrin GPIIb/IIIa, its global inhibition compromises host defense and generated thromboembolic complications in clinical trials. We recently reported that CD40L mediates atherogenesis independently of CD40 and proposed Mac-1 as an alternate receptor. Objective Here, we molecularly characterized the CD40L-Mac-1 interaction and tested whether its selective inhibition by a small peptide modulates inflammation and atherogenesis in vivo. Methods and Results CD40L concentration-dependently bound to Mac-1 I-domain in solid phase binding assays, and a high affinity interaction was revealed by surface-plasmon-resonance analysis. We identified the motif EQLKKSKTL, an exposed loop between the α1 helix and the β-sheet B, on Mac-1 as binding site for CD40L. A linear peptide mimicking this sequence, M7, specifically inhibited the interaction of CD40L and Mac-1. cM7, a cyclisized version optimized for in vivo use, decreased peritoneal inflammation and inflammatory cell recruitment in vivo. Finally, LDLr-/- mice treated with intraperitoneal injections of cM7 developed smaller, less inflamed atherosclerotic lesions featuring characteristics of stability. However, cM7 did not interfere with CD40L-CD40 binding in vitro and CD40L-GPIIb/IIIa-mediated thrombus formation in vivo. Conclusions We present the novel finding that CD40L binds to the EQLKKSKTL motif on Mac-1 mediating leukocyte recruitment and atherogenesis. Specific inhibition of CD40L-Mac-1 binding may represent an attractive anti-inflammatory treatment strategy for atherosclerosis and other inflammatory conditions, potentially avoiding the unwanted immunologic and thrombotic effects of global inhibition of CD40L. PMID:21998326

  16. Anti-tumour therapeutic efficacy of OX40L in murine tumour model.

    PubMed

    Ali, Selman A; Ahmad, Murrium; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Choolun, Esther; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2004-09-09

    OX40 ligand (OX40L), a member of TNF superfamily, is a co-stimulatory molecule involved in T cell activation. Systemic administration of mOX40L fusion protein significantly inhibited the growth of experimental lung metastasis and subcutaneous (s.c.) established colon (CT26) and breast (4T1) carcinomas. Vaccination with OX40L was significantly enhanced by combination treatment with intra-tumour injection of a disabled infectious single cycle-herpes simplex virus (DISC-HSV) vector encoding murine granulocyte macrophage-colony stimulating factor (mGM-CSF). Tumour rejection in response to OX40L therapy required functional CD4+ and CD8+ T cells and correlated with splenocyte cytotoxic T lymphocytes (CTLs) activity against the AH-1 gp70 peptide of the tumour associated antigen expressed by CT26 cells. These results demonstrate the potential role of the OX40L in cancer immunotherapy.

  17. Transient B-Cell Depletion with Anti-CD20 in Combination with Proinsulin DNA Vaccine or Oral Insulin: Immunologic Effects and Efficacy in NOD Mice

    PubMed Central

    Sarikonda, Ghanashyam; Sachithanantham, Sowbarnika; Manenkova, Yulia; Kupfer, Tinalyn; Posgai, Amanda; Wasserfall, Clive; Bernstein, Philip; Straub, Laura; Pagni, Philippe P.; Schneider, Darius; Calvo, Teresa Rodriguez; Coulombe, Marilyne; Herold, Kevan; Gill, Ronald G.; Atkinson, Mark; Nepom, Gerald; Ehlers, Mario; Staeva, Teodora; Garren, Hideki; Steinman, Lawrence; Chan, Andrew C.; von Herrath, Matthias

    2013-01-01

    A recent type 1 diabetes (T1D) clinical trial of rituximab (a B cell-depleting anti-CD20 antibody) achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin) with anti-CD3 antibody (a T cell-directed immunomodulator) offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine. Anti-CD20 alone, given once or on 4 consecutive days, produced transient B cell depletion but did not prevent or reverse T1D in the NOD mouse. Oral insulin alone (twice weekly for 6 weeks) was also ineffective, while proinsulin DNA (weekly for up to 12 weeks) showed a trend toward modest efficacy. Combination of anti-CD20 with oral insulin was ineffective in reversing diabetes in NOD mice whose glycemia was controlled with SC insulin pellets; these experiments were performed in three independent labs. Combination of anti-CD20 with proinsulin DNA was also ineffective in diabetes reversal, but did show modest efficacy in diabetes prevention (p = 0.04). In the prevention studies, anti-CD20 plus proinsulin resulted in modest increases in Tregs in pancreatic lymph nodes and elevated levels of proinsulin-specific CD4+ T-cells that produced IL-4. Thus, combination therapy with anti-CD20 and either oral insulin or proinsulin does not protect hyperglycemic NOD mice, but the combination with proinsulin offers limited efficacy in T1D prevention, potentially by augmentation of proinsulin-specific IL-4 production. PMID:23405091

  18. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody.

    PubMed

    Fallon, Jonathan K; Vandeveer, Amanda J; Schlom, Jeffrey; Greiner, John W

    2017-03-28

    The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies.

  19. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction

    PubMed Central

    Gri, Giorgia; Piconese, Silvia; Frossi, Barbara; Manfroi, Vanessa; Merluzzi, Sonia; Tripodo, Claudio; Viola, Antonella; Odom, Sandra; Rivera, Juan; Colombo, Mario P.; Pucillo, Carlo E.

    2008-01-01

    Summary CD4+CD25+ T regulatory cells (Tregs) play a central role in the suppression of immune responses thus serving to induce tolerance and to control persistent immune responses that can lead to autoimmunity. Here we explore if Tregs also play a role in controlling the immediate hypersensitivity response of mast cells (MCs). Tregs directly inhibit the FcεRI-dependent degranulation of MCs through cell-cell contact involving OX40-OX40L interactions between Tregs and MCs, respectively. MCs show increased cAMP levels and reduced Ca2+ influx, independent of PLC-γ2 or Ca2+ release from intracellular stores. Antagonism of cAMP in MCs reverses the inhibitory effects of Tregs restoring normal Ca2+ responses and degranulation. Importantly, the in vivo depletion or inactivation of Tregs causes enhancement of the anaphylactic response. The demonstrated cross-talk between Tregs and MCs defines a previously unrecognized mechanism controlling MCs degranulation. Loss of this interaction may contribute to the severity of allergic responses. PMID:18993084

  20. A critical role for both CD40 and VLA5 in angiotensin II-mediated thrombosis and inflammation.

    PubMed

    Senchenkova, Elena Y; Russell, Janice; Vital, Shantel A; Yildirim, Alper; Orr, A Wayne; Granger, D Neil; Gavins, Felicity N E

    2018-06-01

    Angiotensin II (Ang-II)-induced hypertension is associated with accelerated thrombus formation in arterioles and leukocyte recruitment in venules. The mechanisms that underlie the prothrombotic and proinflammatory responses to chronic Ang-II administration remain poorly understood. We evaluated the role of CD40/CD40 ligand (CD40L) signaling in Ang-II-mediated microvascular responses and assessed whether and how soluble CD40L (sCD40L) contributes to this response. Intravital video microscopy was performed to analyze leukocyte recruitment and dihydrorhodamine-123 oxidation in postcapillary venules. Thrombus formation in cremaster muscle arterioles was induced by using the light/dye endothelial cell injury model. Wild-type (WT), CD40 -/- , and CD40L -/- mice received Ang-II for 14 d via osmotic minipumps. Some mice were treated with either recombinant sCD40L or the VLA5 (very late antigen 5; α5β1) antagonist, ATN-161. Our results demonstrate that CD40 -/- , CD40L -/- , and WT mice that were treated with ATN-161 were protected against the thrombotic and inflammatory effects of Ang-II infusion. Infusion of sCD40L into CD40 -/- or CD40L -/- mice restored the prothrombotic effect of Ang-II infusion. Mice that were treated with ATN-161 and infused with sCD40L were protected against accelerated thrombosis. Collectively, these novel findings suggest that the mechanisms that underlie Ang-II-dependent thrombotic and inflammatory responses link to the signaling of CD40L via both CD40 and VLA5.-Senchenkova, E. Y., Russell, J., Vital, S. A., Yildirim, A., Orr, A. W., Granger, D. N., Gavins, F. N. E. A critical role for both CD40 and VLA5 in angiotensin II-mediated thrombosis and inflammation.

  1. Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L.

    PubMed

    Pietrini, F; Bianconi, D; Massacci, A; Iannelli, M A

    2016-05-15

    The objective of this study was to investigate the combined effects of elevated CO2 and cadmium (Cd) treatments on growth, photosynthetic efficiency and phytoremediation ability in Lemna minor L. Plants of L. minor were exposed to different Cd concentrations (0, 1.5, 2.5 and 5 mg L(-1) Cd) for periods of 24, 48 and 72 h at ambient (AC) and at elevated (EC) CO2 (350 and 700 ppm, respectively). Cadmium concentration, bioconcentration factor, enzyme activities and thiols content enhanced in plants with the increase of Cd treatments, time of exposure and at both CO2 levels. Glutathione levels increased only at AC. Growth, photosynthetic and chlorophyll fluorescence parameters, and the reduced glutathione to oxidized glutathione ratio declined in plants with increasing exposure time, Cd treatments and at both CO2 levels. Our results suggested that the alleviation of toxicity, at low Cd doses, observed in L. minor grown at EC is dependent on both increased photosynthesis and an enhanced antioxidant capacity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Increased concentrations of soluble CD40 ligand platelet in patients with primary antiphospholipidic syndrome.

    PubMed

    Galicia López, Aida; Olguín Ortega, Lourdes; Saavedra, Miguel A; Méndez Cruz, René; Jimenez Flores, Rafael; García de la Peña, Maximiliano

    2013-01-01

    To determine the concentrations of sCD40L in patients with PAPS, and establish its association with the number of thrombosis. We included patients with PAPS and healthy controls of the same age and sex. For analysis, patients with PAPS were divided into 2 groups: 1) patients with 1 thrombosis, and 2) patients with >1 thrombosis. Soluble CD40L concentrations were determined by ELISA method. sCD40L concentrations were significantly higher in patients with PAPS compared with the controls (9.72 ng ± 11.23 ng/ml vs. 4.69 ± 4.04 ng/ml) (P=.04) There was no association between serum levels of sCD40L and the number of thrombosis (1 thrombosis: 9.81 ± 9.87 ng/ml vs 9.63 ± 12.75 ng/ml in ≥ 1thrombosis (P=.13). In women with pregnancy and abortions, (13 patients) concentrations of sCD40L were higher than in those patients without a history of abortion (26 patients) but without statically significant difference (12.11 ± 16.46 ng/ml vs. 8.80 ± 8.61 ng/ml) (P=.33). There was no correlation between levels of sCD40L and the total number of thrombosis. Patients with PAPS have higher concentrations of sCD40L compared with healthy subjects, although this is not associated with a greater number of thrombosis. Among patients with PAPS, there is a tendency to higher concentrations of sCD40L in women with pregnancy and history of abortion. Since the platelet is the main cellular source of sCD40L, is possible that this pathway plays a pathogenic role in patients with PAPS. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  3. Incorporation of CD40 ligand enhances the immunogenicity of tumor‑associated calcium signal transducer 2 virus‑like particles against lung cancer.

    PubMed

    Xi, Wang; Ke, Dong; Min, Long; Lin, Wang; Jiahui, Zuo; Fang, Lin; Zhaowei, Gao; Zhe, Zhang; Xi, Chen; Huizhong, Zhang

    2018-06-01

    The cell surface glycoprotein Trop‑2 is overexpressed in various types of cancer, including in lung cancer, and has recently been used as an effective immunotherapeutic target. CD40 ligand (CD40L), a tumor necrosis factor superfamily member, is a promising immune adjuvant. Human immunodeficiency virus (HIV) gag‑based virus‑like particles (VLPs) are highly immunogenic, and foreign antigens can be incorporated onto their membrane envelope for cancer vaccine development. In the present study, a HIV gag‑based VLP strategy and Bac‑to‑Bac system were utilized to construct Trop‑2, CD40L and gag recombinant baculoviruses, which were then used to infect TN5 cells in order to form Trop‑2 VLPs or Trop‑2‑CD40L VLPs. These VLPs were characterized using transmission electron microscopy and western blot analysis methods. VLPs incorporating murine Trop‑2 only or incorporating Trop‑2 and CD40L were used to immunize C57BL/6 mice. Immunized mice demonstrated high humoral and cellular immunity responses, whereas the Trop‑2‑CD40L VLPs led to higher immune responses in comparison with Trop‑2 only VLPs. Immunization with Trop‑2‑CD40L VLPs also reduced tumor growth more effectively compared with Trop‑2 VLPs. Furthermore, Trop‑2‑CD40L VLP immunization increased the survival rate of Lewis tumor‑bearing mice more significantly when compared with Trop‑2 only VLPs. In conclusion, the present study provided a novel vaccine design by combination of a tumor antigen and an immune adjuvant based on a VLP strategy, which may be potentially applied as an alternative immunotherapeutic option in the treatment of lung cancer.

  4. CD40 Ligand Promotes Mac-1 Expression, Leukocyte Recruitment, and Neointima Formation after Vascular Injury

    PubMed Central

    Li, Guohong; Sanders, John M.; Bevard, Melissa H.; Sun, ZhiQi; Chumley, James W.; Galkina, Elena V.; Ley, Klaus; Sarembock, Ian J.

    2008-01-01

    High levels of circulating soluble CD40 ligand (sCD40L) are frequently found in patients with hypercholesterolemia, diabetes, ischemic stroke, or acute coronary syndromes, predicting an increased rate of atherosclerotic plaque rupture and restenosis after coronary/carotid interventions. Clinical restenosis is characterized in part by exaggerated neointima formation, but the underlying mechanism remains incompletely understood. This study investigated the role of elevated sCD40L in neointima formation in response to vascular injury in an atherogenic animal model and explored the molecular mechanisms involved. apoE−/− mice fed a Western diet developed severe hypercholesterolemia, significant hyperglycemia, and high levels of plasma sCD40L. Neointima formation after carotid denudation injury was exaggerated in the apoE−/− mice. In vivo, blocking CD40L with anti-CD40L monoclonal antibody attenuated the early accumulation of Ly-6G+ neutrophils and Gr-1+ monocytes (at 3 days) and the late accumulation of Mac-2+ macrophages (at 28 days) in the denudated arteries; it also reduced the exaggerated neointima formation at 28 days. In vitro, recombinant CD40L stimulated platelet P-selectin and neutrophil Mac-1 expression and platelet-neutrophil co-aggregation and adhesive interaction. These effects were abrogated by anti-CD40L or anti-Mac-1 monoclonal antibody. Moreover, recombinant CD40L stimulated neutrophil oxidative burst and release of matrix metalloproteinase-9 in vitro. We conclude that elevated sCD40L promotes platelet-leukocyte activation and recruitment and neointima formation after arterial injury, potentially through enhancement of platelet P-selectin and leukocyte Mac-1 expression and oxidative activity. PMID:18349125

  5. Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-γ.

    PubMed

    Cabral-Marques, Otavio; Ramos, Rodrigo Nalio; Schimke, Lena F; Khan, Taj Ali; Amaral, Eduardo Pinheiro; Barbosa Bomfim, Caio César; Junior, Osvaldo Reis; França, Tabata Takahashi; Arslanian, Christina; Carola Correia Lima, Joanna Darck; Weber, Cristina Worm; Ferreira, Janaíra Fernandes; Tavares, Fabiola Scancetti; Sun, Jing; D'Imperio Lima, Maria Regina; Seelaender, Marília; Garcia Calich, Vera Lucia; Marzagão Barbuto, José Alexandre; Costa-Carvalho, Beatriz Tavares; Riemekasten, Gabriela; Seminario, Gisela; Bezrodnik, Liliana; Notarangelo, Luigi; Torgerson, Troy R; Ochs, Hans D; Condino-Neto, Antonio

    2017-03-01

    CD40 ligand (CD40L) deficiency predisposes to opportunistic infections, including those caused by fungi and intracellular bacteria. Studies of CD40L-deficient patients reveal the critical role of CD40L-CD40 interaction for the function of T, B, and dendritic cells. However, the consequences of CD40L deficiency on macrophage function remain to be investigated. We sought to determine the effect of CD40L absence on monocyte-derived macrophage responses. After observing the improvement of refractory disseminated mycobacterial infection in a CD40L-deficient patient by recombinant human IFN-γ (rhIFN-γ) adjuvant therapy, we investigated macrophage functions from CD40L-deficient patients. We analyzed the killing activity, oxidative burst, cytokine production, and in vitro effects of rhIFN-γ and soluble CD40 ligand (sCD40L) treatment on macrophages. In addition, the effect of CD40L absence on the macrophage transcriptome before and after rhIFN-γ treatment was studied. Macrophages from CD40L-deficient patients exhibited defective fungicidal activity and reduced oxidative burst, both of which improved in the presence of rhIFN-γ but not sCD40L. In contrast, rhIFN-γ and sCD40L ameliorate impaired production of inflammatory cytokines. Furthermore, rhIFN-γ reversed defective control of Mycobacterium tuberculosis proliferation by patients' macrophages. The absence of CD40L dysregulated the macrophage transcriptome, which was improved by rhIFN-γ. Additionally, rhIFN-γ increased expression levels of pattern recognition receptors, such as Toll-like receptors 1 and 2, dectin 1, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin in macrophages from both control subjects and patients. Absence of CD40L impairs macrophage development and function. In addition, the improvement of macrophage immune responses by IFN-γ suggests this cytokine as a potential therapeutic option for patients with CD40L deficiency. Copyright © 2016 American Academy of

  6. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS

    PubMed Central

    Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni

    2017-01-01

    CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability. PMID:29155846

  7. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS.

    PubMed

    Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni; Lupia, Enrico

    2017-01-01

    CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.

  8. Combined immunization using DNA-Sm14 and DNA-Hsp65 increases CD8+ memory T cells, reduces chronic pathology and decreases egg viability during Schistosoma mansoni infection

    PubMed Central

    2014-01-01

    Background Schistosomiasis is one of the most important neglected diseases found in developing countries and affects 249 million people worldwide. The development of an efficient vaccination strategy is essential for the control of this disease. Previous work showed partial protection induced by DNA-Sm14 against Schistosoma mansoni infection, whereas DNA-Hsp65 showed immunostimulatory properties against infectious diseases, autoimmune diseases, cancer and antifibrotic properties in an egg-induced granuloma model. Methods C57BL/6 mice received 4 doses of DNA-Sm14 (100 μg/dose) and DNA-Hsp65 (100 μg/dose), simultaneously administrated, or DNA-Sm14 alone, once a week, during four weeks. Three groups were included: 1- Control (no immunization); 2- DNA-Sm14; 3- DNA-Sm14/DNA-Hsp65. Two weeks following last immunization, animals were challenged subcutaneously with 30 cercariae. Fifteen, 48 and 69 days after infection splenocytes were collected to evaluate the number of CD8+ memory T cells (CD44highCD62low) using flow cytometry. Forty-eight days after challenge adult worms were collected by portal veins perfusion and intestines were collected to analyze the intestinal egg viability. Histological, immunohistochemical and soluble quantification of collagen and α-SMA accumulation were performed on the liver. Results In the current work, we tested a new vaccination strategy using DNA-Sm14 with DNA-Hsp65 to potentiate the protection against schistosomiasis. Combined vaccination increased the number of CD8+ memory T cells and decreased egg viability on the intestinal wall of infected mice. In addition, simultaneous vaccination with DNA-Sm14/DNA-Hsp65 reduced collagen and α-SMA accumulation during the chronic phase of granuloma formation. Conclusion Simultaneous vaccination with DNA-Sm14/DNA-Hsp65 showed an immunostimulatory potential and antifibrotic property that is associated with the reduction of tissue damage on Schistosoma mansoni experimental infection. PMID

  9. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response.

    PubMed

    Gri, Giorgia; Gallo, Elena; Di Carlo, Emma; Musiani, Piero; Colombo, Mario P

    2003-01-01

    Efficient T cell priming by GM-CSF and CD40 ligand double-transduced C26 murine colon carcinoma is not sufficient to cure metastases in a therapeutic setting. To determine whether a cellular vaccine that interacts directly with both APC and T cells in vivo might be superior, we generated C26 carcinoma cells transduced with the T cell costimulatory molecule OX40 ligand (OX40L) either alone (C26/OX40L) or together with GM-CSF (C26/GM/OX40L), which is known to activate APC. Mice injected with C26/OX40L cells displayed only a delay in tumor growth, while the C26/GM/OX40L tumor regressed in 85% of mice. Tumor rejection required granulocytes, CD4+, CD8+ T cells, and APC-mediated CD40-CD40 ligand cosignaling, but not IFN-gamma or IL-12 as shown using subset-depleted and knockout (KO) mice. CD40KO mice primed with C26/GM/OX40L cells failed to mount a CTL response, and T cells infiltrating the C26/GM/OX40L tumor were OX40 negative, suggesting an impairment in APC-T cell cross-talk in CD40KO mice. Indeed, CD4+ T cell-depleted mice failed to mount any CTL activity against the C26 tumor, while treatment with agonistic mAb to CD40, which acts on APC, bypassed the requirement for CD4+ T cells and restored CTL activation. C26/GM/OX40L cells cured 83% of mice bearing lung metastases, whereas C26/OX40L or C26/GM vaccination cured only 28 and 16% of mice, respectively. These results indicate the synergistic activity of OX40L and GM-CSF in a therapeutic setting.

  10. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients.

    PubMed

    Danese, S; Katz, J A; Saibeni, S; Papa, A; Gasbarrini, A; Vecchi, M; Fiocchi, C

    2003-10-01

    The CD40/CD40L system, a key regulator and amplifier of immune reactivity, is activated in inflammatory bowel disease (IBD) mucosa. To determine whether plasma levels of sCD40L are elevated in Crohn's disease (CD) and ulcerative colitis (UC) patients compared with normal controls, to investigate the cellular source of sCD40L, and to explore CD40L induction mechanisms. CD, UC, and normal control subjects were studied. The concentration of sCD40L in plasma and supernatants of freshly isolated platelets and autologous peripheral blood T cells (PBT) was measured by ELISA. Surface CD40L expression level was measured by flow cytometry in resting and thrombin activated platelets, and unstimulated and CD3/CD28 stimulated PBT before and after coculture with human intestinal microvascular endothelial cells (HIMEC). Compared with normal controls, plasma sCD40L levels were significantly higher in both CD and UC patients and proportional to the extent of mucosal inflammation. Platelets from IBD patients displayed a significantly higher surface CD40L expression than those from control subjects, and released greater amounts of sCD40L than autologous PBT. Contact with IL-1beta activated HIMEC induced significant upregulation of CD40L surface expression and release by platelets. Elevated levels of sCD40L in the circulation of IBD patients reflect enhanced surface expression and release of CD40L by platelets. This phenomenon translates to an increased platelet activation state apparently induced by passage through an inflamed mucosal microvascular bed, a conclusion supported by the positive correlation of plasma sCD40L levels with the extent of anatomical involvement by IBD. These results suggest that platelet-endothelial interactions critically contribute to activation of the CD40 pathway in IBD.

  11. Blood Mixing Upregulates Platelet Membrane-Bound CD40 Ligand Expression in vitro Independent of Abo Compatibility.

    PubMed

    Huang, Go-Shine; Hu, Mei-Hua; Lin, Tso-Chou; Lin, Yi-Chang; Tsai, Yi-Ting; Lin, Chih-Yuan; Ke, Hung-Yen; Zheng, Xu-Zhi; Tsai, Chien-Sung

    2017-11-30

    Platelets play a central role in the inflammation response via CD40 ligand (CD40L) expression, which may lead to transfusion reactions. The precise role of platelet CD40L-mediated inflammation in transfusion reactions is unclear. Therefore, we assessed the effects of in vitro blood mixing on platelet CD40L expression. In addition, we examined the effect of ABO compatibility on CD40L expression. Donor packed red blood cells were acquired from a blood bank, and recipient blood was obtained from patients undergoing cardiac surgery and prepared as washed platelets. Donor blood was mixed with suspended, washed recipient platelets to obtain a final mixing ratio of 1%, 5%, or 10% (vol/vol). The blood mixtures were divided into three groups: Group M, cross-matched blood-type mixing (n = 20); Group S, ABO type-specific uncross-matched blood (n = 20); and Group I, ABO incompatibility (not ABO type-specific blood and not process cross-matched) mixing (n = 20). The blood mixtures were used to detect platelet membrane-bound CD40L expression by flow cytometry. Blood mixing resulted in an increase in CD40L expression in Group M (P < 0.001), Group S (P < 0.001), and Group I (P < 0.001). CD40L expression following blood mixing potentially led to a transfusion reaction in each of the groups. There were no differences in CD40L expression among the three groups (P = 0.988) correlated with ABO compatibility or incompatibility. This indicates that the reactions between red blood cell surface antigens and plasma antibodies do not play a role in the induction of CD40L expression.

  12. CD40-Mediated NF-κB Activation in B Cells Is Increased in Multiple Sclerosis and Modulated by Therapeutics.

    PubMed

    Chen, Ding; Ireland, Sara J; Remington, Gina; Alvarez, Enrique; Racke, Michael K; Greenberg, Benjamin; Frohman, Elliot M; Monson, Nancy L

    2016-12-01

    CD40 interacts with CD40L and plays an essential role in immune regulation and homeostasis. Recent research findings, however, support a pathogenic role of CD40 in a number of autoimmune diseases. We previously showed that memory B cells from relapsing-remitting multiple sclerosis (RRMS) patients exhibited enhanced proliferation with CD40 stimulation compared with healthy donors. In this study, we used a multiparameter phosflow approach to analyze the phosphorylation status of NF-κB and three major MAPKs (P38, ERK, and JNK), the essential components of signaling pathways downstream of CD40 engagement in B cells from MS patients. We found that memory and naive B cells from RRMS and secondary progressive MS patients exhibited a significantly elevated level of phosphorylated NF-κB (p-P65) following CD40 stimulation compared with healthy donor controls. Combination therapy with IFN-β-1a (Avonex) and mycophenolate mofetil (Cellcept) modulated the hyperphosphorylation of P65 in B cells of RRMS patients at levels similar to healthy donor controls. Lower disease activity after the combination therapy correlated with the reduced phosphorylation of P65 following CD40 stimulation in treated patients. Additionally, glatiramer acetate treatment also significantly reduced CD40-mediated P65 phosphorylation in RRMS patients, suggesting that reducing CD40-mediated p-P65 induction may be a general mechanism by which some current therapies modulate MS disease. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis.

    PubMed

    Teruel, María; Simeon, Carmen P; Broen, Jasper; Vonk, Madelon C; Carreira, Patricia; Camps, Maria Teresa; García-Portales, Rosa; Delgado-Frías, Esmeralda; Gallego, Maria; Espinosa, Gerard; Beretta, Lorenzo; Airó, Paolo; Lunardi, Claudio; Riemekasten, Gabriela; Witte, Torsten; Krieg, Thomas; Kreuter, Alexander; Distler, Jörg H W; Hunzelmann, Nicolas; Koeleman, Bobby P; Voskuyl, Alexandre E; Schuerwegh, Annemie J; González-Gay, Miguel Angel; Radstake, Timothy R D J; Martin, Javier

    2012-06-25

    The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes. No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis. Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc.

  14. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages

    PubMed Central

    Shi, Yongyu; Felder, Mildred A.R.; Sondel, Paul M.; Rakhmilevich, Alexander L.

    2015-01-01

    Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-γ and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy. PMID:25829245

  15. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages.

    PubMed

    Shi, Yongyu; Felder, Mildred A R; Sondel, Paul M; Rakhmilevich, Alexander L

    2015-08-01

    Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-γ and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Soluble CD40 Ligand and Oxidative Response Are Reciprocally Stimulated during Shiga Toxin-Associated Hemolytic Uremic Syndrome

    PubMed Central

    Abrey Recalde, Maria J.; Alvarez, Romina S.; Alberto, Fabiana; Mejias, Maria P.; Ramos, Maria V.; Fernandez Brando, Romina J.; Bruballa, Andrea C.; Exeni, Ramon A.; Alconcher, Laura; Ibarra, Cristina A.; Amaral, María M.; Palermo, Marina S.

    2017-01-01

    Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L), which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions. PMID:29068360

  17. Host CD40 Is Essential for DCG Treatment Against Metastatic Lung Cancer.

    PubMed

    Yamashita, Kimihiro; Hasegawa, Hiroshi; Fujita, Mitsugu; Nishi, Masayasu; Tanaka, Tomoko; Arimoto, Akira; Suzuki, Satoshi; Kamigaki, Takashi; Kakeji, Yoshihiro

    2016-07-01

    For the application of invariant natural killer T (iNKT) cells in cancer therapy, the CD40-CD40L interaction is indispensable in administering alpha-galactosylceramide (αGalCer). We hypothesized that CD40 plays an important role in dendritic cells (DC) pulsed with αGalCer (DCGs) in the treatment of lung metastases. Wild-type (WT) and CD40(-/-) mice were treated with DCGs isolated from WT or CD40(-/-) mice in a B16F10 lung metastases model and NK and NKT cell activity in lungs and the spleen were examined. DCG treatment improved WT mice survival but CD40(-/-) hosts received no survival benefit. Conversely, attenuation of a therapeutic effect in mice treated with CD40(-/-) DCGs was not observed. The functional activities of NK and NKT cells in DCG-treated CD40(-/-) mice were partially suppressed. Host CD40 is essential for DCG treatment to have a therapeutic effect on B16F10 lung metastases. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization.

    PubMed

    Rekoske, Brian T; Smith, Heath A; Olson, Brian M; Maricque, Brett B; McNeel, Douglas G

    2015-08-01

    DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8(+) T cells in non-tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8(+) T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8(+) T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date. ©2015 American Association for Cancer Research.

  19. CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming

    PubMed Central

    Martín-Fontecha, Alfonso; Baumjohann, Dirk; Guarda, Greta; Reboldi, Andrea; Hons, Miroslav; Lanzavecchia, Antonio; Sallusto, Federica

    2008-01-01

    There is growing evidence that the maturation state of dendritic cells (DCs) is a critical parameter determining the balance between tolerance and immunity. We report that mouse CD4+ effector memory T (TEM) cells, but not naive or central memory T cells, constitutively expressed CD40L at levels sufficient to induce DC maturation in vitro and in vivo in the absence of antigenic stimulation. CD4+ TEM cells were excluded from resting lymph nodes but migrated in a CD62P-dependent fashion into reactive lymph nodes that were induced to express CD62P, in a transient or sustained fashion, on high endothelial venules. Trafficking of CD4+ TEM cells into chronic reactive lymph nodes maintained resident DCs in a mature state and promoted naive T cell responses and experimental autoimmune encephalomyelitis (EAE) to antigens administered in the absence of adjuvants. Antibodies to CD62P, which blocked CD4+ TEM cell migration into reactive lymph nodes, inhibited DC maturation, T cell priming, and induction of EAE. These results show that TEM cells can behave as endogenous adjuvants and suggest a mechanistic link between lymphocyte traffic in lymph nodes and induction of autoimmunity. PMID:18838544

  20. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists

    PubMed Central

    Beatty, Gregory L.; Li, Yan; Long, Kristen B.

    2017-01-01

    INTRODUCTION CD40 is a promising therapeutic target for cancer immunotherapy. In patients with advanced solid malignancies, CD40 agonists have demonstrated some anti-tumor activity and a manageable toxicity profile. A 2nd generation of CD40 agonists has now been designed with optimized Fc receptor (FcR) binding based on preclinical evidence suggesting a critical role for FcR engagement in defining the potency of CD40 agonists in vivo. AREAS COVERED We provide a comprehensive review using PubMed and Google Patent databases on the current clinical status of CD40 agonists, strategies for applying CD40 agonists in cancer therapy, and the preclinical data that supports and is guiding the future development of CD40 agonists. EXPERT COMMENTARY There is a wealth of preclinical data that provide rationale on several distinct approaches for using CD40 agonists in cancer immunotherapy. This data illustrates the need to strategically combine CD40 agonists with other clinically active treatment regimens in order to realize the full potential of activating CD40 in vivo. Thus, critical to the success of this class of immune-oncology drugs, which have the potential to restore both innate and adaptive immunosurveillance, will be the identification of biomarkers for monitoring and predicting responses as well as informing mechanisms of treatment resistance. PMID:27927088

  1. Evaluation of Human FcγRIIA (CD32) and FcγRIIIB (CD16) Polymorphisms in Caucasians and African-Americans Using Salivary DNA

    PubMed Central

    van Schie, Rob C. A. A.; Wilson, Mark E.

    2000-01-01

    Two classes of low-affinity receptors for the Fc region of immunoglobulin G (IgG) (FcγR) are constitutively expressed on resting human neutrophils. These receptors, termed FcγRIIa (CD32) and FcγRIIIb (CD16), display biallelic polymorphisms which have functional consequences with respect to binding and/or ingestion of targets opsonized by human IgG subclass antibodies. The H131-R131 polymorphism of CD32 influences binding of human IgG2 and, to a lesser extent, human IgG3 to neutrophils. The neutrophil antigen (NA1-NA2) polymorphism of CD16 influences the efficiency of phagocytosis of bacteria opsonized by human IgG1 and IgG3. These polymorphisms may influence host susceptibility to certain infectious and/or autoimmune diseases, prompting interest in the development of facile methods for determination of CD32 and CD16 genotype in various clinical settings. We previously reported that genomic DNA from saliva is a suitable alternative to DNA from blood in PCR-based analyses of CD32 and CD16 polymorphisms. In the present study, we utilized for the first time this salivary DNA-based methodology to define CD32 and CD16 genotypes in 271 Caucasian and 118 African-American subjects and to investigate possible linkage disequilibrium between certain CD32 and CD16 genotypes in these two ethnic groups. H131 and R131 gene frequencies were 0.45 and 0.55, respectively, among Caucasians and 0.59 among African-Americans. NA1 and NA2 gene frequencies were 0.38 and 0.62 among Caucasians and 0.39 and 0.61 among African-Americans. Since FcγRIIa and FcγRIIIb synergize in triggering neutrophils, we also assessed the frequency of different CD32 and CD16 genotype combinations in these two groups. In both groups, the R/R131-NA2/NA2 genotype combination was more common than the H/H131-NA1/NA1 combination (threefold for Caucasians versus sevenfold for African-Americans). Whether individuals with the combined R/R131-NA2/NA2 genotype are at greater risk for development of infectious and

  2. Abnormal soluble CD40 ligand and C-reactive protein concentrations in hypertension: relationship to indices of angiogenesis.

    PubMed

    Patel, Jeetesh V; Lim, Hoong Sern; Nadar, Sunil; Tayebjee, Muzahir; Hughes, Elizabeth A; Lip, Gregory Yh

    2006-01-01

    Abnormal inflammation, platelets and angiogenesis are involved in the pathophysiology of cardiovascular disease (CVD). To test the hypothesis that concentrations of high sensitive C-reactive protein (CRP, an index of inflammation) and soluble CD40 ligand (sCD40L, an index of platelet activation) would be abnormal in hypertension, and in turn, be related to plasma indices of angiogenesis, the angiopoietins-1 and -2, and vascular endothelial growth factor (VEGF), in addition to the presence or absence of CVD. Using a cross-sectional approach, we measured plasma concentrations of CRP, sCD40L, VEGF, and angiopoietins-1 and -2 in 147 patients with hypertension (85 with a history of CVD event/s, 62 CVD event-free) and 68 age- and sex-matched healthy controls. Concentrations of sCD40L (P = 0.039), CRP (P < 0.001), angiopoietin-1 (P < 0.001), angiopoietin-2 (P = 0.003) and VEGF (P < 0.001) were all greater amongst hypertensive patients than in controls. There were no significant differences in sCD40L and VEGF concentrations between hypertensive individuals with and without CVD events, but CRP and angiopoietin-1 concentrations were significantly greater amongst those with CVD events. On multiple regression analysis, sCD40L was associated with angiopoietin-2 (P = 0.01) and VEGF (P = 0.007) in hypertensive individuals, but no such associations were found within the healthy control group. In patients with hypertension, sCD40L was associated with increased circulating markers of abnormal angiogenesis (angiopoietin-2, VEGF). The interaction between sCD40L and angiogenesis may contribute to the pathophysiology of CVD in hypertension.

  3. PPARα agonist fenofibrate attenuates TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weirong; Lin, Qinqin; Lin, Rong, E-mail: linrong63@yahoo.com.cn

    2013-06-10

    The ligand-activated transcription factor peroxisome proliferator-activated receptor-α (PPARα) participates in the regulation of cellular inflammation. More recent studies indicated that sirtuin1 (SIRT1), a NAD{sup +}-dependent deacetylase, regulates the inflammatory response in adipocytes. However, whether the role of PPARα in inflammation is mediated by SIRT1 remains unclear. In this study, we aimed to determine the effect of PPARα agonist fenofibrate on the expressions of SIRT1 and pro-inflammatory cytokine CD40 and underlying mechanisms in 3T3-L1 adipocytes. We found that fenofibrate inhibited CD40 expression and up-regulated SIRT1 expression in tumor necrosis factor-α (TNF-α)-stimulated adipocytes, and these effects of fenofibrate were reversed by PPARαmore » antagonist GW6471. Moreover, SIRT1 inhibitors sirtinol/nicotinamide (NAM) or knockdown of SIRT1 could attenuate the effect of fenofibrate on TNF-α-induced CD40 expression in adipocytes. Importantly, NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) augmented the effect of fenofibrate on CD40 expression in adipocytes. Further study found that fenofibrate decreased the expression of acetylated-NF-κB p65 (Ac-NF-κB p65) in TNF-α-stimulated adipocytes, and the effect of fenofibrate was abolished by SIRT1 inhibition. In addition, fenofibrate up-regulated SIRT1 expression through AMPK in TNF-α-stimulated adipocytes. Taken together, these findings indicate that PPARα agonist fenofibrate inhibits TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway. -- Highlights: • Fenofibrate up-regulates SIRT1 expression in TNF-α-stimulated adipocytes. • Fenofibrate inhibits CD40 expression through SIRT1 in adipocytes. • The effects of fenofibrate on CD40 and SIRT1 expressions are dependent on PPARα. • Fenofibrate inhibits CD40 expression via SIRT1-dependent deacetylation of NF-κB. • Fenofibrate increases SIRT1 expression through PPARα and AMPK in

  4. Intratumoral delivery of low doses of anti-CD40 mAb combined with monophosphoryl lipid A induces local and systemic antitumor effects in immunocompetent and T cell-deficient mice

    PubMed Central

    Van De Voort, Tyler J.; Felder, Mildred A. R.; Yang, Richard K.; Sondel, Paul M.; Rakhmilevich, Alexander L.

    2012-01-01

    In this study, an agonistic anti-CD40 monoclonal antibody was combined with monophosphoryl lipid A (MPL), a nontoxic derivative of LPS and agonist of toll-like receptor 4, to assess the immunomodulatory and antitumor synergy between the two agents in mice. Anti-CD40 was capable of priming macrophages to subsequent ex vivo activation by MPL in immunocompetent and T cell-depleted mice. Intraperitoneal injections of anti-CD40+MPL induced additive to synergistic suppression of poorly immunogenic B16-F10 melanoma growing subcutaneously in syngeneic mice. When anti-CD40+MPL were injected directly into the subcutaneous tumor, the combination treatment was more effective, even with a 25-fold reduction in dose. Low-dose intratumoral treatment also slowed the growth of a secondary tumor growing simultaneously at a distant, untreated site. Antitumor effects were also induced in immunodeficient SCID mice and in T cell-depleted C57BL/6 mice. Taken together, our results show that the antitumor effects of anti-CD40 are enhanced by subsequent treatment with MPL, even in T cell-deficient hosts. These preclinical data suggest that an anti-CD40+MPL combined regimen is appropriate for clinical testing in human patients, including cancer patients that may be immunosuppressed from prior chemotherapy. PMID:23211623

  5. Soluble CD40 Ligand Stimulates the Pro-Angiogenic Function of Peripheral Blood Angiogenic Outgrowth Cells via Increased Release of Matrix Metalloproteinase-9

    PubMed Central

    Bou Khzam, Lara; Boulahya, Rahma; Abou-Saleh, Haissam; Hachem, Ahmed; Zaid, Younes; Merhi, Yahye

    2013-01-01

    The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway. PMID:24358353

  6. Soluble CD40 ligand stimulates the pro-angiogenic function of peripheral blood angiogenic outgrowth cells via increased release of matrix metalloproteinase-9.

    PubMed

    Bou Khzam, Lara; Boulahya, Rahma; Abou-Saleh, Haissam; Hachem, Ahmed; Zaid, Younes; Merhi, Yahye

    2013-01-01

    The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway.

  7. c-Abl kinase inhibitors overcome CD40-mediated drug resistance in CLL: implications for therapeutic targeting of chemoresistant niches.

    PubMed

    Hallaert, Delfine Y H; Jaspers, Annelieke; van Noesel, Carel J; van Oers, Marinus H J; Kater, Arnon P; Eldering, Eric

    2008-12-15

    In lymph node (LN) proliferation centers in chronic lymphocytic leukemia (CLL), the environment protects from apoptotic and cytotoxic triggers. Here, we aimed to define the molecular basis for the increased drug resistance and searched for novel strategies to circumvent it. The situation in CLL LN could be mimicked by prolonged in vitro CD40 stimulation, which resulted in up-regulation of antiapoptotic Bcl-xL, A1/Bfl-1, and Mcl-1 proteins, and afforded resistance to various classes of drugs (fludarabine, bortezomib, roscovitine). CD40 stimulation also caused ERK-dependent reduction of Bim-EL protein, but ERK inhibition did not prevent drug resistance. Drugs combined with sublethal doses of the BH3-mimetic ABT-737 displayed partial and variable effects per individual CD40-stimulated CLL. The antiapoptotic profile of CD40-triggered CLL resembled BCR-Abl-dependent changes seen in chronic myeloid leukemia (CML), which prompted application of c-Abl inhibitors imatinib or dasatinib. Both compounds, but especially dasatinib, prevented the entire antiapoptotic CD40 program in CLL cells, and restored drug sensitivity. These effects also occurred in CLL samples with dysfunctional p53. Importantly, ex vivo CLL LN samples also displayed strong ERK activation together with high Bcl-xL and Mcl-1 but low Bim levels. These data indicate that CLL cells in chemoresistant niches may be sensitive to therapeutic strategies that include c-Abl inhibitors.

  8. CD27-CD70 interactions in the pathogenesis of Waldenstrom macroglobulinemia.

    PubMed

    Ho, Allen W; Hatjiharissi, Evdoxia; Ciccarelli, Bryan T; Branagan, Andrew R; Hunter, Zachary R; Leleu, Xavier; Tournilhac, Olivier; Xu, Lian; O'Connor, Kelly; Manning, Robert J; Santos, Daniel Ditzel; Chemaly, Mariana; Patterson, Christopher J; Soumerai, Jacob D; Munshi, Nikhil C; McEarchern, Julie A; Law, Che-Leung; Grewal, Iqbal S; Treon, Steven P

    2008-12-01

    Waldenström macroglobulinemia (WM) is a B-cell malignancy characterized by an IgM monoclonal gammopathy and bone marrow (BM) infiltration with lymphoplasmacytic cells (LPCs). Excess mast cells (MCs) are commonly present in WM, and provide growth and survival signals to LPCs through several TNF family ligands (CD40L, a proliferation-inducing ligand [APRIL], and B-lymphocyte stimulator factor [BLYS]). As part of these studies, we demonstrated that WM LPCs secrete soluble CD27 (sCD27), which is elevated in patients with WM (P < .001 vs healthy donors), and serves as a faithful marker of disease. Importantly, sCD27 stimulated expression of CD40L on 10 of 10 BM MC samples and APRIL on 4 of 10 BM MC samples obtained from patients with WM as well as on LAD2 MCs. Moreover, the SGN-70 humanized monoclonal antibody, which binds to CD70 (the receptor-ligand partner of CD27), abrogated sCD27 mediated up-regulation of CD40L and APRIL on WM MCs. Last, treatment of severe combined immunodeficiency-human (SCID-hu) mice with established WM using the SGN-70 antibody blocked disease progression in 12 of 12 mice, whereas disease progressed in all 5 untreated mice. The results of these studies demonstrate a functional role for sCD27 in WM pathogenesis, along with its utility as a surrogate marker of disease and a target in the treatment of WM.

  9. CD40 ligation and phagocytosis differently affect the differentiation of monocytes into dendritic cells.

    PubMed

    Rosenzwajg, Michelle; Jourquin, Frédéric; Tailleux, Ludovic; Gluckman, Jean Claude

    2002-12-01

    That monocytes can differentiate into macrophages or dendritic cells (DCs) makes them an essential link between innate and adaptive immunity. However, little is known about how interactions with pathogens or T cells influence monocyte engagement toward DCs. We approached this point in cultures where granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-4 induced monocytes to differentiate into immature DCs. Activating monocytes with soluble CD40 ligand (CD40L) led to accelerated differentiation toward mature CD83(+) DCs with up-regulated human leukocyte antigen-DR, costimulatory molecules and CD116 (GM-CSF receptor), and down-regulation of molecules involved in antigen capture. Monocytes primed by phagocytosis of antibody-opsonized, killed Escherichia coli differentiated into DCs with an immature phenotype, whereas Zymosan priming yielded active DCs with an intermediate phenotype. Accordingly, DCs obtained from cultures with CD40L or after Zymosan priming had a decreased capacity to endocytose dextran, but only DCs cultured with CD40L had increased capacity to stimulate allogeneic T cells. DCs obtained after E. coli or Zymosan priming of monocytes produced high levels of proinflammatory tumor necrosis factor alpha and IL-6 as well as of regulatory IL-10, but they produced IL-12p70 only after secondary CD40 ligation. Thus, CD40 ligation on monocytes accelerates the maturation of DCs in the presence of GM-CSF/IL-4, whereas phagocytosis of different microorganisms does not alter and even facilitates their potential to differentiate into immature or active DCs, the maturation of which can be completed upon CD40 ligation. In vivo, such differences may correspond to DCs with different trafficking and T helper cell-stimulating capacities that could differently affect induction of adaptive immune responses to infections.

  10. Predictive relevance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy.

    PubMed

    Tokito, Takaaki; Azuma, Koichi; Kawahara, Akihiko; Ishii, Hidenobu; Yamada, Kazuhiko; Matsuo, Norikazu; Kinoshita, Takashi; Mizukami, Naohisa; Ono, Hirofumi; Kage, Masayoshi; Hoshino, Tomoaki

    2016-03-01

    Expression of programmed cell death-ligand 1 (PD-L1) is known to be a mechanism whereby cancer can escape immune surveillance, but little is known about factors predictive of efficacy in patients with locally advanced non-small cell lung cancer (NSCLC). We investigated the predictive relevance of PD-L1 expression and CD8+ tumour-infiltrating lymphocytes (TILs) density in patients with locally advanced NSCLC receiving concurrent chemoradiotherapy (CCRT). We retrospectively reviewed 74 consecutive patients with stage III NSCLC who had received CCRT. PD-L1 expression and CD8+ TIL density were evaluated by immunohistochemical analysis. Univariate and multivariate analyses demonstrated that CD8+ TIL density was an independent and significant predictive factor for progression-free survival (PFS) and OS, whereas PD-L1 expression was not correlated with PFS and OS. Sub-analysis revealed that the PD-L1+/CD8 low group had the shortest PFS (8.6 months, p = 0.02) and OS (13.9 months, p = 0.11), and that the PD-L1-/CD8 high group had the longest prognosis (median PFS and OS were not reached) by Kaplan-Meier curves of the four sub-groups. Among stage III NSCLC patients who received CCRT, there was a trend for poor survival in those who expressed PD-L1. Our analysis indicated that a combination of lack of PD-L1 expression and CD8+ TIL density was significantly associated with favourable survival in these patients. It is proposed that PD-L1 expression in combination with CD8+ TIL density could be a useful predictive biomarker in patients with stage III NSCLC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Graphene and CdS nanocomposite: a facile interface for construction of DNA-based electrochemical biosensor and its application to the determination of phenformin.

    PubMed

    Zeng, Lijiao; Wang, Rui; Zhu, Lihua; Zhang, Jingdong

    2013-10-01

    Graphene/cadmium sulphide (GR-CdS) nanocomposite was synthesized via a low temperature process in aqueous solution. The as-prepared nanocomposite was characterized by scanning electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The impedance analysis indicated that GR-CdS nanocomposite possessed outstanding electrochemical performance for facile electron transfer. When DNA was immobilized on GR-CdS (DNA/GR-CdS) modified electrode, the electrochemical oxidation of guanine and adenine in DNA residue bases was significantly promoted. Due to the interaction of DNA with phenformin, the voltammetric current of guanine or adenine on the DNA/GR-CdS electrode was decreased when phenformin was present in the electrolytic solution. Under optimized conditions, the signal of guanine on DNA/GR-CdS electrode decreased linearly with increasing the concentration of phenformin in the range of 1.0×10(-6)molL(-1) to 1.0×10(-3)molL(-1). The proposed DNA-based electrochemical biosensor was successfully applied to the determination of phenformin in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. CD40 inhibits replication of hepatitis C virus in primary human hepatocytes by c-Jun N terminal kinase activation independent from the interferon pathway.

    PubMed

    Rau, Sibylle J; Hildt, Eberhard; Himmelsbach, Kiyoshi; Thimme, Robert; Wakita, Takaji; Blum, Hubert E; Fischer, Richard

    2013-01-01

    CD40, a member of the tumor necrosis factor receptor family, and its ligand, CD40L (CD154), are important regulators of the antiviral immune response. CD40L is up-regulated on lymphocytes and CD40 on hepatocytes during infection with hepatitis C virus (HCV); we investigated the role of CD40 signaling during HCV replication in hepatocytes. Viral replication was studied in primary human hepatocytes (PHH) and Huh7.5 cells using the infectious HCV Japanese fulminate hepatitis 1 isolate (JFH1) culture system, and in coculture with HCV antigen-specific CD8+ T cells. CD40L rapidly and transiently inhibits expression of the HCV nonstructural proteins NS3 and NS5A as well as HCV structural proteins core and E2 in Huh7.5 cells. Similarly, CD40L prevented replication of HCV in PHH, in synergy with interferon (IFN)-alpha. In Huh7.5 cells with replicating HCV, CD40L prevented production of infectious viral particles. When HCV antigen-specific CD8+ T cells were cocultured with HLA-A2-expressing Huh7 cells that had replicating virus, the T cells became activated, up-regulated CD40L, and inhibited HCV replication. Inhibition of CD40L partially prevented the antiviral activity of the CD8+ T cells. The antiviral effect of CD40L required activation of c-Jun N terminal kinases (JNK)1/2, but not induction of apoptosis or the JAK/STAT pathway that is necessary for the antiviral effects of IFNs. CD40 inhibits HCV replication by a novel, innate immune mechanism. This pathway might mediate viral clearance, and disruptions might be involved in the pathogenesis of HCV infection. Copyright © 2012 American Association for the Study of Liver Diseases.

  13. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    PubMed

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-07-09

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.

  14. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents

    PubMed Central

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-01-01

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513

  15. CD40 Ligand Is Increased in Mast Cells in Psoriasis and Actinic Keratosis but Less So in Epithelial Skin Carcinomas.

    PubMed

    Haimakainen, Salla; Kaukinen, Antti P; Suttle, Mireille-Maria; Pelkonen, Jukka; Harvima, Ilkka T

    2017-03-16

    The expression of CD40 ligand (CD40L) in mast cells was investigated in biopsies from lesional and non-lesional skin samples of patients with psoriasis, actinic keratosis (AK), basal cell carcinoma, and squamous cell carcinoma using a sequential double-staining technique. The percentage of CD40L + mast cells was higher in the lesional than in the non-lesional skin (p < .003). Interestingly, this percentage was lower in both carcinomas than in psoriasis and actinic keratosis (p < .025). Cells immunopositive for CD40 receptor were increased in all lesion types but especially so in carcinomas. The results suggest a dysregulated anti-tumoral immune response by mast cell CD40L in skin carcinomas.

  16. CD4 cell responses to combination antiretroviral therapy in patients starting therapy at high CD4 cell counts.

    PubMed

    Wright, Stephen T; Carr, Andrew; Woolley, Ian; Giles, Michelle; Hoy, Jennifer; Cooper, David A; Law, Matthew G

    2011-09-01

    To examine CD4 cell responses to combination antiretroviral therapy (cART) in patients enrolled in the Australian HIV Observational Database who commenced cART at CD4 cell counts >350 cells per microliter. CD4 cell counts were modelled using random effects, repeated measurement models in 432 HIV-infected adults from Australian HIV Observational Database who commenced their first cART regimen and had a baseline CD4 count >350 cells per microliter. Using published AIDS and/or death incidence rates combined with the data summarized by time and predicted CD4 cell count, we calculated the expected reduction in risk of an event for different starting baseline CD4 strata. Mean CD4 counts increased above 500 cells per microliter in all baseline CD4 strata by 12 months (means of 596, 717, and 881 cells/μL in baseline CD4 strata 351-500, 501-650, and >650 cells/μL, respectively) and after 72 months since initiating cART, mean CD4 cell counts (by increasing baseline CD4 strata) were 689, 746, 742 cells per microliter. The expected reduction in risk of mortality for baseline CD4 counts >650 cells per microliter relative to 351-500 cells per microliter was approximately 8%, an absolute risk reduction 0.33 per 1000 treated patient-years. Patients starting cART at high CD4 cell counts (>650 cells/μL) tend to maintain this immunological level over 6 years of follow-up. Patients starting from 351 to 500 CD4 cells per microliter achieve levels of >650 cells per microliter after approximately 3 years of cART. Initiating cART with a baseline CD4 count 501-650 or >650 cells per microliter relative to 351-500 cells per microliter indicated a minimal reduction in risk of AIDS incidence and/or death.

  17. CD4+ T Cells Coexpressing CD134 (OX40) Harbor Significantly Increased Levels of Human Herpesvirus 6B DNA Following Umbilical Cord Blood Transplantation.

    PubMed

    Pritchett, Joshua C; Green, Jaime S; Thomm, Angela M; Knox, Konstance K; Verneris, Michael R; Lund, Troy C

    2016-12-15

    Human herpesvirus 6B (HHV-6B) commonly reactivates after umbilical cord blood transplantation (UCBT) and is associated with delayed engraftment, fever, rash, and central nervous system dysfunction. Recently, CD134 (OX40) has been implicated as a potential viral entry receptor. We evaluated CD4 + CD134 + / neg-lo and CD8 + CD134 + / neg-lo cells at day 28 after UCBT in 20 subjects with previously documented HHV-6 reactivation and persistent viremia. Analysis of CD4 + CD134 + cells as compared to CD4 + CD134 neg-lo cells showed 0.308 versus 0.129 copies of HHV-6B/cell (P = .0002). CD8 + CD134 +/neg-lo cells contained little to no HHV-6B copies. Following UCBT, CD4 + CD134 + cells harbor significantly increased levels of HHV-6B, suggesting that CD134 (OX40) may facilitate viral entry. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Potential use of CD40 ligand for immunotherapy of childhood B-cell precursor acute lymphoblastic leukaemia.

    PubMed

    D'Amico, Giovanna; Marin, Virna; Biondi, Andrea; Bonamino, Martin Hernán

    2004-09-01

    Around 20% of children affected by B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) still experience a recurrence of the disease after diagnosis, despite a significant improvement in the cure rate (80%). Moreover, standard therapies have high and often unacceptable acute and chronic organ toxicity, with an increased risk for secondary malignancies. Therefore, new strategies are needed to improve overall survival and decrease treatment-associated morbidity. Recent in-vitro and in-vivo studies have demonstrated that CD40 engagement improves tumour immunogenicity and, consequently, generates a strong antitumour immune response. The CD40-CD40 ligand (CD40L) system is of pivotal importance in the immune response via interactions between T cells and antigen-presenting cells. The general aim of this chapter is to review the feasibility of developing cellular strategies to increase childhood BCP-ALL immunogenicity, and the potential use of CD40L as a new strategy to induce an antileukaemia immune response in BCP-ALL.

  19. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.

    PubMed

    Afford, S C; Randhawa, S; Eliopoulos, A G; Hubscher, S G; Young, L S; Adams, D H

    1999-01-18

    We propose that a novel mechanism of hepatocyte apoptosis, involving a cooperative interaction between CD40 and Fas, is involved in the hepatocyte loss of chronic liver allograft rejection. We detected increased hepatocyte expression of Fas, Fas ligand (FasL), and CD40 associated with dropout of centrilobular (acinar zone 3) hepatocytes in chronic allograft rejection. Expression of CD40 ligand (CD40L) was also increased but was largely restricted to CD68(+) macrophages. A functional role for CD40 and Fas in hepatocyte apoptosis was demonstrated in vitro using primary human hepatocytes and the HepG2 cell line in both of which apoptosis was induced, not only by cross-linking Fas directly but also via CD40 activation. Our data suggest that CD40 activation induces apoptosis via Fas because (a) ligation of CD40 upregulated hepatocyte FasL expression, and (b) apoptosis induced via activation of CD40 was prevented by a neutralizing monoclonal antibody to FasL. Thus, CD40 engagement triggers apoptosis of human hepatocytes and might amplify Fas-dependent hepatocyte apoptosis in chronic rejection and other inflammatory liver diseases in which Fas-mediated apoptosis is involved.

  20. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.

    PubMed

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2008-08-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.

  1. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation

    PubMed Central

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2009-01-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267

  2. Trace Hg2+ analysis via quenching of the fluorescence of a CdS-encapsulated DNA nanocomposite.

    PubMed

    Long, Yunfei; Jiang, Dianlu; Zhu, Xu; Wang, Jianxiu; Zhou, Feimeng

    2009-04-01

    A novel fluorescent CdS-encapsulated DNA nanocomposite was synthesized via alternate adsorption of Cd(2+) and S(2-) onto the DNA template affixed inside an agarose gel. Confining DNA molecules in the gel matrix reduces the flexibility of the DNA strand, which facilitates the formation of a uniform coating of CdS onto the DNA template. The resultant rod-shaped nanocomposite (40-90 nm in width and 200-300 nm in length) is well dispersed in solution and fluoresces at 330 nm upon excitation at either 228 or 280 nm. The fluorescence is attributed to tiny particles present in the CdS coating. It was found that the fluorescence can be significantly quenched by trace amount of Hg(2+). The high selectivity toward Hg(2+) and the apparent change in the CdS coating upon exposure to Hg(2+) indicate that Hg(2+) has reacted with the CdS coating through formation of the much more insoluble HgS and the bridging S-Hg-S bonds at the surface. The extent of quenching is dependent on the concentration of Hg(2+) in the range of 0.04-13 microM, and a remarkable detection limit (8.6 nM at 30 degrees C and 4.3 nM at 50 degrees C) can be achieved. The feasibility of the method for the analysis of Hg(2+) in a wastewater sample was demonstrated with an excellent relative standard deviation (RSD, 3.4%). The method described herein is simple, selective, and sensitive and obviates the need of extensive sample pretreatment or special instrumentation.

  3. OX40 signaling is involved in the autoactivation of CD4+CD28- T cells and contributes to the pathogenesis of autoimmune arthritis.

    PubMed

    Jiang, Juean; Liu, Cuiping; Liu, Mi; Shen, Yu; Hu, Xiaohan; Wang, Qin; Wu, Jian; Wu, Min; Fang, Qi; Zhang, Xueguang

    2017-03-21

    CD4 + CD28 - T cells exhibit autoreactive potential in autoimmune disorders, including rheumatoid arthritis (RA). It is not well known which costimulator functions as an alternative second signal in the activation of this subset after CD28 expression is downregulated. Tumor necrosis factor receptor superfamily member OX40 is a key costimulator in the activation of T cells. The aim of this study was to investigate the costimulatory effects of OX40 on CD4 + CD28 - T cells in autoimmune arthritis. Clinical samples were collected from patients with RA and control subjects. Collagen-induced arthritis (CIA) was induced with collagen type II (CII) in DBA/1 mice. The CD4 + CD28 - OX40 + T-cell subset and its cytokine production were detected by flow cytometry. After T-cell purification, adoptive transfer was performed in CIA mice. The regulatory role of OX40 was determined by blocking experiments in vitro and in vivo. OX40 and OX40L were abnormally expressed in patients with RA and CIA mice. Further analysis showed that CD4 + CD28 - OX40 + T cells accumulated in patients with RA and in animal models. These cells produced higher levels of proinflammatory cytokines and were closely correlated with the clinicopathological features of the affected individuals. Adoptive transfer of CII-specific CD4 + CD28 - OX40 + T cells remarkably aggravated arthritic development and joint pathology in CIA mice. Moreover, OX40 blockade significantly reduced the proinflammatory responses and ameliorated arthritis development. OX40 acts as an alternative costimulator of CD4 + CD28 - T cells and plays a pathogenic role in autoimmune arthritic development, suggesting that it is a potential target for immunomodulatory therapy of RA.

  4. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation.

    PubMed

    Kawabe, T; Naka, T; Yoshida, K; Tanaka, T; Fujiwara, H; Suematsu, S; Yoshida, N; Kishimoto, T; Kikutani, H

    1994-06-01

    An engagement of CD40 with CD40 ligand (CD40L) expressed on activated T cells is known to provide an essential costimulatory signal to B cells in vitro. To investigate the role of CD40 in in vivo immune responses, CD40-deficient mice were generated by gene targeting. The significant reduction of CD23 expression on mature B cells and relatively decreased number of IgM bright and IgD dull B cells were observed in the mutant mice. The mutant mice mounted IgM responses but no IgG, IgA, and IgE responses to thymus-dependent (TD) antigens. However, IgG as well as IgM responses to thymus-independent (TI) antigens were normal. Furthermore, the germinal center formation was defective in the mutant mice. These results suggest that CD40 is essential for T cell-dependent immunoglobulin class switching and germinal center formation, but not for in vivo T cell-dependent IgM responses and T cell-independent antibody responses.

  5. L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells.

    PubMed

    Zhang, Hongyan; Sun, Pan; Liu, Chang; Gao, Huanyu; Xu, Linru; Fang, Jin; Wang, Meng; Liu, Jinling; Xu, Shukun

    2011-01-01

    Functionalized CdTe-CdS core-shell quantum dots (QDs) were synthesized in aqueous solution via water-bathing combined hydrothermal method using L-cysteine (L-Cys) as a stabilizer. This method possesses both the advantages of water-bathing and hydrothermal methods for preparing high-quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The CdTe-CdS QDs with core-shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti-CEACAM8 (CD67), the as-prepared l-Cys capped CdTe-CdS QDs were successfully used as fluorescent probes for the direct immuno-labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio-labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.

  6. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Fuchs, S; Souroujon, M C

    2001-06-01

    Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent Ab-mediated autoimmune disorders, in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1-type cells and costimulatory factors such as CD40 ligand (CD40L) contribute to disease pathogenesis by producing proinflammatory cytokines and by activating autoreactive B cells. In this study we demonstrate the capacity of CD40L blockade to modulate EAMG, and analyze the mechanism underlying this disease suppression. Anti-CD40L Abs given to rats at the chronic stage of EAMG suppress the clinical progression of the autoimmune process and lead to a decrease in the AChR-specific humoral response and delayed-type hypersensitivity. The cytokine profile of treated rats suggests that the underlying mechanism involves down-regulation of AChR-specific Th1-regulated responses with no significant effect on Th2- and Th3-regulated AChR-specific responses. EAMG suppression is also accompanied by a significant up-regulation of CTLA-4, whereas a series of costimulatory factors remain unchanged. Adoptive transfer of splenocytes from anti-CD40L-treated rats does not protect recipient rats against subsequently induced EAMG. Thus it seems that the suppressed progression of chronic EAMG by anti-CD40L treatment does not induce a switch from Th1 to Th2/Th3 regulation of the AChR-specific immune response and does not induce generation of regulatory cells. The ability of anti-CD40L treatment to suppress ongoing chronic EAMG suggests that blockade of CD40L may serve as a potential approach for the immunotherapy of MG and other Ab-mediated autoimmune diseases.

  7. B-cell activation with CD40L or CpG measures the function of B-cell subsets and identifies specific defects in immunodeficient patients.

    PubMed

    Marasco, Emiliano; Farroni, Chiara; Cascioli, Simona; Marcellini, Valentina; Scarsella, Marco; Giorda, Ezio; Piano Mortari, Eva; Leonardi, Lucia; Scarselli, Alessia; Valentini, Diletta; Cancrini, Caterina; Duse, Marzia; Grimsholm, Ola; Carsetti, Rita

    2017-01-01

    Around 65% of primary immunodeficiencies are antibody deficiencies. Functional tests are useful tools to study B-cell functions in vitro. However, no accepted guidelines for performing and evaluating functional tests have been issued yet. Here, we report our experience on the study of B-cell functions in infancy and throughout childhood. We show that T-independent stimulation with CpG measures proliferation and differentiation potential of memory B cells. Switched memory B cells respond better than IgM memory B cells. On the other hand, CD40L, a T-dependent stimulus, does not induce plasma cell differentiation, but causes proliferation of naïve and memory B cells. During childhood, the production of plasmablasts in response to CpG increases with age mirroring the development of memory B cells. The response to CD40L does not change with age. In patients with selective IgA deficiency (SIgAD), we observed that switched memory B cells are reduced due to the absence of IgA memory B cells. In agreement, IgA plasma cells are not generated in response to CpG. Unexpectedly, B cells from SIgAD patients show a reduced proliferative response to CD40L. Our results demonstrate that functional tests are an important tool to assess the functions of the humoral immune system. © 2016 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CD40 expression in Wehi-164 cell line

    PubMed Central

    Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system. PMID:20496113

  9. CD40 expression in Wehi-164 cell line.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  10. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells

    PubMed Central

    Vaitaitis, Gisela M.; Yussman, Martin G.; Waid, Dan M.; Wagner, David H.

    2017-01-01

    CD40-CD154 interaction is critically involved in autoimmune diseases, and CD4 T cells play a dominant role in the Experimental Autoimmune Encephalomyelitis (EAE) model of Multiple Sclerosis (MS). CD4 T cells expressing CD40 (Th40) are pathogenic in type I diabetes but have not been evaluated in EAE. We demonstrate here that Th40 cells drive a rapid, more severe EAE disease course than conventional CD4 T cells. Adoptively transferred Th40 cells are present in lesions in the CNS and are associated with wide spread demyelination. Primary Th40 cells from EAE-induced donors adoptively transfer EAE without further in-vitro expansion and without requiring the administration of the EAE induction regimen to the recipient animals. This has not been accomplished with primary, non-TCR-transgenic donor cells previously. If co-injection of Th40 donor cells with Freund’s adjuvant (CFA) in the recipient animals is done, the disease course is more severe. The CFA component of the EAE induction regimen causes generalized inflammation, promoting expansion of Th40 cells and infiltration of the CNS, while MOG-antigen shapes the antigen-specific TCR repertoire. Those events are both necessary to precipitate disease. In MS, viral infections or trauma may induce generalized inflammation in susceptible individuals with subsequent disease onset. It will be important to further understand the events leading up to disease onset and to elucidate the contributions of the Th40 T cell subset. Also, evaluating Th40 levels as predictors of disease onset would be highly useful because if either the generalized inflammation event or the TCR-honing can be interrupted, disease onset may be prevented. PMID:28192476

  11. Characterisation of an epigenetically altered CD4+ CD28+ Kir+ T cell subset in autoimmune rheumatic diseases by multiparameter flow cytometry

    PubMed Central

    Strickland, Faith M; Patel, Dipak; Somers, Emily; Robida, Aaron M; Pihalja, Michael; Swartz, Richard; Marder, Wendy; Richardson, Bruce

    2016-01-01

    Objectives Antigen-specific CD4+ T cells epigenetically modified with DNA methylation inhibitors overexpress genes normally suppressed by this mechanism, including CD11a, CD70, CD40L and the KIR gene family. The altered cells become autoreactive, losing restriction for nominal antigen and responding to self-class II major histocompatibility complex (MHC) molecules without added antigen, and are sufficient to cause a lupus-like disease in syngeneic mice. T cells overexpressing the same genes are found in patients with active lupus. Whether these genes are co-overexpressed on the same or different cells is unknown. The goal of this study was to determine whether these genes are overexpressed on the same or different T cells and whether this subset of CD4+ T cells is also present in patients with lupus and other rheumatic diseases. Methods Multicolour flow cytometry was used to compare CD11a, CD70, CD40L and KIR expression on CD3+CD4+CD28+ T cells to their expression on experimentally demethylated CD3+CD4+CD28+ T cells and CD3+CD4+CD28+ T cells from patients with active lupus and other autoimmune diseases. Results Experimentally demethylated CD4+ T cells and T cells from patients with active lupus have a CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ subset, and the subset size is proportional to lupus flare severity. A similar subset is found in patients with other rheumatic diseases including rheumatoid arthritis, systemic sclerosis and Sjögren's syndrome but not retroperitoneal fibrosis. Conclusions Patients with active autoimmune rheumatic diseases have a previously undescribed CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ T cell subset. This subset may play an important role in flares of lupus and related autoimmune rheumatic diseases, provide a biomarker for disease activity and serve as a novel therapeutic target for the treatment of lupus flares. PMID:27099767

  12. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    PubMed

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions. Copyright © 2015. Published by Elsevier Ltd.

  13. CD40 AND THE IMUNE RESPONSE TO PARASITIC INFECTIONS

    PubMed Central

    Subauste, Carlos S.

    2009-01-01

    The interaction between CD40 and CD154 regulates many aspects of cellular and humoral immunity. The CD40CD154 pathway is important for resistance against a variety of parasites. Studies done with these pathogens have provided important insight into the various mechanisms by which this pathway enhances host protection, mechanisms by which pathogens subvert CD40 signaling, conditions in which the CD40CD154 pathway promotes disease and on modulation of this pathway for immunotherapy. PMID:19616968

  14. A recombinant fusion protein consisting of West Nile virus envelope domain III fused in-frame with equine CD40 ligand induces antiviral immune responses in horses.

    PubMed

    Liu, Shiliang A; Haque, Muzammel; Stanfield, Brent; Andrews, Frank M; Roy, Alma A; Kousoulas, Konstantin G

    2017-01-01

    West Nile Virus (WNV) is endemic in the US and causes severe neurologic disease in horses since its introduction in 1999. There is no effective pharmaceutical treatment for WNV infection rendering vaccination as the only approach to prevention and control of disease. The purpose of this study was to evaluate a recombinant vaccine containing domain III (DIII) of the WNV envelope glycoprotein with and without a natural adjuvant equine (CD40L) in producing virus neutralizing antibodies in horses. Serum IgG1 concentration in the groups of horses vaccinated with the DIII-CD40L+TiterMax and DIII-CD40L proteins were significantly increased (p<0.05) after the second booster vaccination compared to other groups. Serum IgG4 and IgG7, IgG3 and IgG5 concentrations were not significantly increased among all groups. Western blot results showed that animals immunized with the DIII-CD40L protein (with or without TiterMax) exhibited the highest specific anti-DIII antibody activities after vaccinations. Moreover, animals immunized with the DIII-CD40L protein (with or without TiterMax) exhibited significantly stronger neutralization activity (p<0.05) compared to other groups starting at week eight. The DIII-CD40L protein (with or without TiterMax) stimulated more CD8 + T cells, but not CD4 + T cells in equine PMBCs. The results demonstrated that vaccination with recombinant WNV E DIII-CD40L protein induced superior humoral and cellular immune response in healthy horses that may be protective against WNV-associated disease in infected animals. CD40L could be utilized as a non-toxic, alternative adjuvant to boost the immunogenicity of subunit vaccines in horses. Copyright © 2016. Published by Elsevier B.V.

  15. Self-organized, highly luminescent CdSe nanorod-DNA complexes.

    PubMed

    Artemyev, Mikhail; Kisiel, Dmitry; Abmiotko, Sergey; Antipina, Maria N; Khomutov, Gennady B; Kislov, Vladimir V; Rakhnyanskaya, Anna A

    2004-09-01

    DNA molecules are useful building blocks and nanotemplates for controllable fabrication of various bioinorganic nanostructures due to their unique physical-chemical properties and recognition capabilities and the synthetic availability of desired nucleotide sequences and length. We have synthesized novel DNA complexes with positively charged, highly luminescent CdSe nanorods that can be self-organized into filamentary, netlike, or spheroidal nanostructures. DNA-CdSe-nanorod filaments possess strongly linearly polarized photoluminescence due to the unidirectional orientation of nanorods along the filaments. Copyright 2004 American Chemical Society

  16. Rat L (long interspersed repeated DNA) elements contain guanine-rich homopurine sequences that induce unpairing of contiguous duplex DNA.

    PubMed Central

    Usdin, K; Furano, A V

    1988-01-01

    The L family (long interspersed repeated DNA) of mobile genetic elements is a persistent feature of the mammalian genome. In rats, this family contains approximately equal to 40,000 members and accounts for approximately equal to 10% of the haploid genome. We demonstrate here that the guanine-rich homopurine stretches located at the right end of L-DNA induce oligonucleotide uptake by contiguous duplex DNA. The uptake is dependent on negative supercoiling and the length of the homopurine stretch and occurs even when the L-DNA homopurine stretches are introduced into a different DNA environment. The bound oligomer primes DNA synthesis when DNA polymerase and deoxyribonucleoside triphosphates are added, resulting in a faithful copy of the template to which the oligonucleotide had bound. The implications of this property of the L-DNA guanine-rich homopurine stretches in the amplification, recombination, and dispersal of L elements is discussed. Images PMID:2837766

  17. The effect of extracorporeal photopheresis alone or in combination therapy on circulating CD4+Foxp3+CD25- T-cells in patients with leukemic cutaneous T-cell lymphoma

    PubMed Central

    Shiue, Lisa H.; Couturier, Jacob; Lewis, Dorothy E.; Wei, Caimiao; Ni, Xiao; Duvic, Madeleine

    2015-01-01

    Purpose Extracorporeal photopheresis (ECP) alone or in combination therapy is effective for treatment of leukemic cutaneous T-cell lymphoma (L-CTCL), but its mechanism(s) of action remain unclear. This study was designed to investigate the effect of ECP on regulatory T-cell and CD8+ T-cells in L-CTCL patients. Experimental Design Peripheral blood from 18 L-CTCL patients at baseline, Day 2, 1-month, 3-month, and 6-month post-ECP therapy were analyzed by flow cytometry for CD4+CD25+/high, CD4+Foxp3+CD25+/-, CD3+CD8+, CD3+CD8+CD69+, and CD3+CD8+IFN-γ+ T-cells. Clinical responses were assessed and correlated with changes in these T-cell subsets. Results Twelve of 18 patients achieved clinical responses. The average baseline number of CD4+CD25+/high T-cells of PBMCs in L-CTCL patients was normal (2.2%), but increased at 6-month post-therapy (4.3%, p<0.01). The average baseline number of CD4+Foxp3+ T-cells out of CD4+ T-cells in 9 evaluable patients was high (66.8±13.7%), mostly CD25 negative. The levels of CD4+Foxp3+ T cells in responders were higher (n=6, 93.1±5.7%) than non-responders (n=3, 14.2±16.0%, p<0.01), and they declined in parallel with malignant T-cells. The numbers of CD3+CD8+CD69+ and CD3+CD8+ IFN-γ+ T-cells increased at 3-month post-therapy in 5 of 6 patients studied. Conclusions ECP alone or in combination therapy might be effective in L-CTCL patients whose malignant T-cells have a CD4+Foxp3+CD25- phenotype. PMID:25772268

  18. Gene Therapy for Liver Transplantation Using Adenoviral Vectors: CD40CD154 Blockade by Gene Transfer of CD40Ig Protects Rat Livers from Cold Ischemia and Reperfusion Injury

    PubMed Central

    Ke, Bibo; Shen, Xiu-Da; Gao, Feng; Busuttil, Ronald W.; Löwenstein, Pedro R.; Castro, Maria G.; Kupiec-Weglinski, Jerzy W.

    2010-01-01

    Liver injury induced by ischemia/reperfusion (I/R) is the prime factor in delayed or loss graft function following transplantation. CD4+ T lymphocytes are key cellular mediators of antigen-independent inflammatory response triggered by I/R. We attempted to modulate rat liver I/R injury by targeted gene therapy with CD40Ig, which blocks the CD40CD154 costimulation pathway. One hundred percent of Ad-CD40Ig-pretreated orthotopic liver transplants (OLTs) subjected to 24 h of cold (4°C) ischemia survived >14 days (vs 50% in untreated/Ad-β-gal groups). Ad-CD40Ig treatment decreased sGOT levels and depressed neutrophil infiltration, compared with controls. These functional data correlated with histological Suzuki’s grading of hepatic injury, which in untreated/Ad-β-gal groups showed severe necrosis (>60%) and moderate to severe sinusoidal congestion; the Ad-CD40Ig-pretreated group revealed minimal sinusoidal congestion/necrosis. Unlike in controls, OLT expression of mRNA coding for IL-2/IFN-γ remained depressed, whereas that of IL-4/IL-13 reciprocally increased in the Ad-CD40Ig group. Ad-CD40Ig reduced frequency of TUNEL+ cells and proapoptotic Caspase-3, but enhanced antioxidant HO-1 and antiapoptotic Bcl-2/Bcl-xl expression. Thus, prolonged blockade of CD40CD154 by CD40Ig exerts potent cytoprotection against hepatic I/R injury. These results provide the rationale for a novel gene therapy approach to maximize the organ donor pool through the safer use of liver transplants exposed to prolonged cold ischemia. PMID:14741776

  19. Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization.

    PubMed

    Zhu, Ningning; Zhang, Aiping; He, Pingang; Fang, Yuzhi

    2003-03-01

    A novel, sensitive electrochemical DNA hybridization detection assay, using cadmium sulfide (CdS) nanoclusters as the oligonucleotide labeling tag, is described. The assay relies on the hybridization of the target DNA with the CdS nanocluster oligonucleotide DNA probe, followed by the dissolution of the CdS nanoclusters anchored on the hybrids and the indirect determination of the dissolved cadmium ions by sensitive anodic stripping voltammetry (ASV) at a mercury-coated glassy carbon electrode (GCE). The results showed that only a complementary sequence could form a double-stranded dsDNA-CdS with the DNA probe and give an obvious electrochemical response. A three-base mismatch sequence and non-complementary sequence had negligible response. The combination of the large number of cadmium ions released from each dsDNA hybrid with the remarkable sensitivity of the electrochemical stripping analysis for cadmium at mercury-film GCE allows detection at levels as low as 0.2 pmol L(-1) of the complementary sequence of DNA.

  20. Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines.

    PubMed

    D'Souza, Sushila; Romano, Marta; Korf, Johanna; Wang, Xiao-Ming; Adnet, Pierre-Yves; Huygen, Kris

    2006-05-01

    Reactivation tuberculosis (TB) is a serious problem in immunocompromised individuals, especially those with human immunodeficiency virus (HIV) coinfection. The adaptive immune response mediated by CD4+ and CD8+ T cells is known to confer protection against TB. Hence, vaccines against TB are designed to activate these two components of the immune system. Anti-TB DNA vaccines encoding the immunodominant proteins Ag85A, Ag85B, and PstS-3 from Mycobacterium tuberculosis are ineffective in mice lacking CD4+ T cells (CD4-/- mice). In this study, we demonstrate that reconstitution of the T-cell compartment in CD4-/- mice restores vaccine-specific antibody and gamma interferon (IFN-gamma) responses to these DNA vaccines. The magnitude of the immune responses correlated with the extent of reconstitution of the CD4+-T-cell compartment. Reconstituted mice vaccinated with DNA encoding PstS-3, known to encode a dominant D(b)-restricted CD8+-T-cell epitope, displayed CD8+-T-cell responses not observed in CD4-/- mice. M. tuberculosis challenge in reconstituted mice led to the extravasation of IFN-gamma-producing CD4+ and CD8+ T cells into lungs, the primary site of bacterial replication. Importantly, a reconstitution of 12 to 15% of the CD4+-T-cell compartment resulted in Ag85B plasmid DNA-mediated protection against a challenge M. tuberculosis infection. Our findings provide evidence that anti-TB DNA vaccines could be effective in immunodeficient individuals after CD4+-T-lymphocyte reconstitution, as may occur following antiretroviral therapy in HIV+ patients.

  1. [Evaluation of immune status of kidney transplant recipients by combined HLA-G5 and sCD30].

    PubMed

    JIN, Zhan-kui; TIAN, Pu-xun; XUE, Wu-jun; DING, Xiao-ming; PAN, Xiao-ming; DING, Chen-guang; JIA, Li-ning; GE, Guan-qun; HAO, Jun-jun

    2010-09-28

    to study the relationship between the expression of serum human leucocyte antigen-G5 (HLA-G5)/soluble CD30 (sCD30) and the function of renal graft in kidney transplant recipients and investigate the immune status of recipients with combined HLA-G5 and sCD30. from January 2002 to November 2008, a total of 66 kidney transplant recipients in our centre were selected as subjects and divided into three groups: stable function of renal graft (n = 38), acute rejection (n = 15) and chronic rejection (n = 13). The expressions of serum HLA-G5 and sCD30 were detected. There were two different immune conditions with acute/chronic allograft rejection and normal renal graft in kidney transplant recipients as evaluated by combined HLA-G5 and sCD30. The sensitivity, specificity and critical value of the method were analyzed by the curve of receiver operating characteristic. the levels of HLA-G5 and sCD30 were significantly correlated with serum creatinine (r = -0.493, 0.691, both P < 0.01). Within the first year post-transplantation, the sensitivity was 78.6% and the specificity 85.7% when HLA-G5 critical value 82 microg/L and sCD30 critical value 12.2 microg/L. After one year post-transplantation: the sensitivity was 92.3% and the specificity 84.6% when HLA-G5 critical value 141 microg/L and sCD30 critical value 10.3 microg/L. the immune state of recipients are evaluated by combine HLA-G5 and sCD30 which may be a simple and valid method.

  2. CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans

    PubMed Central

    Beatty, Gregory L.; Chiorean, Elena G.; Fishman, Matthew P.; Saboury, Babak; Teitelbaum, Ursina R.; Sun, Weijing; Huhn, Richard D.; Song, Wenru; Li, Dongguang; Sharp, Leslie L.; Torigian, Drew A.; O’Dwyer, Peter J.; Vonderheide, Robert H.

    2012-01-01

    Immunosuppressive tumor microenvironments can restrain antitumor immunity, particularly in pancreatic ductal adenocarcinoma (PDA). Because CD40 activation can reverse immune suppression and drive antitumor T cell responses, we tested the combination of an agonist CD40 antibody with gemcitabine chemotherapy in a small cohort of patients with surgically incurable PDA and observed tumor regressions in some patients. We reproduced this treatment effect in a genetically engineered mouse model of PDA and found unexpectedly that tumor regression required macrophages but not T cells or gemcitabine. CD40-activated macrophages rapidly infiltrated tumors, became tumoricidal, and facilitated the depletion of tumor stroma. Thus, cancer immune surveillance does not necessarily depend on therapy-induced T cells; rather, our findings demonstrate a CD40-dependent mechanism for targeting tumor stroma in the treatment of cancer. PMID:21436454

  3. Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice

    PubMed Central

    Haddad, Christine S.; Bhattacharya, Palash; Alharshawi, Khaled; Marinelarena, Alejandra; Kumar, Prabhakaran; El-Sayed, Osama; Elshabrawy, Hatem A.; Epstein, Alan L.; Prabhakar, Bellur S.

    2016-01-01

    Earlier, we have shown that GM-CSF derived bone marrow dendritic cells (G-BMDCs) can expand Foxp3+ regulatory T-cells (Tregs) through a TCR-independent, but IL-2 dependent mechanism that required OX40L/OX40 interaction. While some reports have shown suppression of autoimmunity upon treatment with an OX40 agonist, others have shown exacerbation of autoimmune disease instead. To better understand the basis for these differing outcomes, we compared the effects of OX40L treatment in 6-week-old pre-diabetic and 12-week-old near diabetic NOD mice. Upon treatment with OX40L, 6-week-old NOD mice remained normoglycemic and showed a significant increase in Tregs in their spleen and lymph nodes, while 12-week-old NOD mice very rapidly developed hyperglycemia and failed to show Treg increase in spleen or LN. Interestingly, OX40L treatment increased Tregs in the thymus of both age groups. However, it induced Foxp3+CD103+CD38− stable-phenotype Tregs in the thymus and reduced the frequency of autoreactive Teff cells in 6-week-old mice; while it induced Foxp3+CD103−CD38+ labile-phenotype Tregs in the thymus and increased autoreactive CD4+ T cells in the periphery of 12-week-old mice. This increase in autoreactive CD4+ T cells was likely due to either a poor suppressive function or conversion of labile Tregs into Teff cells. Using ex vivo cultures, we found that the reduction in Treg numbers in 12-week-old mice was likely due to IL-2 deficit, and their numbers could be increased upon addition of exogenous IL-2. The observed divergent effects of OX40L treatment were likely due to differences in the ability of 6- and 12-week-old NOD mice to produce IL-2. PMID:27245356

  4. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells.

    PubMed

    Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella

    2017-01-16

    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24- cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.

  5. In vitro effects of simultaneous exposure to platinum and cadmium on the activity of antioxidant enzymes and DNA damage and potential protective effects of selenium and zinc.

    PubMed

    Tariba, Blanka; Živković, Tanja; Gajski, Goran; Gerić, Marko; Gluščić, Valentina; Garaj-Vrhovac, Vera; Peraica, Maja; Pizent, Alica

    2017-04-01

    Circulating platinum (Pt) is detectable in the blood of Pt-treated cancer patients for over a decade after the treatment. Prolonged exposure to Pt, in combination with adverse compounds from nutrition and lifestyle, such as cadmium (Cd), could increase the risk from second cancers. The aim of this study was to investigate the effects of simultaneous exposure to Cd- and Pt-compounds on oxidative and DNA damage and the possible protective effects of zinc (Zn) and selenium (Se). The aqueous solutions of PtCl 4 , CdCl 2  ×   H 2 O, ZnCl 2 and Na 2 SeO 3 were added, alone or in combination, to whole blood and isolated erythrocytes to produce the final concentrations of 2000 μg/L of Pt, 8 μg/L of Cd, 100 μg/L of Se, and 1000 μg/L of Zn. The activity of copper, zinc-superoxide dismutase, glutathione peroxidase and glutathione in whole blood was determined after 1 h exposure in in vitro conditions. The induction of DNA strand-breaks in human peripheral blood leukocytes was determined with the alkaline comet assay after 24 h exposure. Exposure to Pt and/or Cd decreased the activities of antioxidant enzymes and elevated DNA damage compared to control. A statistically significant change in the activity of both enzymes and in the induction of DNA strand-breaks was observed in the cells treated with Pt + Cd combination, while the addition of Se and/or Zn resulted in partial recovery of these effects. The results indicate that combined exposure to Pt and Cd could disrupt antioxidant protection of the organism and increase DNA damage, whereas Se and Zn could partially ameliorate these harmful effects.

  6. Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep.

    PubMed

    Manoj, Sharmila; Griebel, Philip J; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2003-01-15

    CD40-CD154 interactions play an important role in regulating humoral and cell-mediated immune responses. Recently, these interactions have been exploited for the development of therapeutic and preventive treatments. The objective of this study was to test the ability of bovine CD154 to target a plasmid-encoded Ag to CD40-expressing APCs. To achieve this, a plasmid coding for bovine CD154 fused to a truncated secreted form of bovine herpesvirus 1 glycoprotein D (tgD), pSLIAtgD-CD154, was constructed. The chimeric tgD-CD154 was expressed in vitro in COS-7 cells and reacted with both glycoprotein D- and CD154-specific Abs. Both tgD and tgD-CD154 were capable of binding to epithelial cells, whereas only tgD-CD154 bound to B cells. Furthermore, dual-labeling of ovine PBMCs revealed that tgD-CD154 was bound by primarily B cells. The functional integrity of the tgD-CD154 chimera was confirmed by the induction of both IL-4-dependent B cell proliferation and tgD-specific lymphoproliferative responses in vitro. Finally, sheep immunized with pSLIAtgD-CD154 developed a more rapid primary tgD-specific Ab response and a significantly stronger tgD-specific secondary response when compared with animals immunized with pSLIAtgD and control animals. Similarly, virus-neutralizing Ab titers were significantly higher after secondary immunization with pSLIAtgD-CD154. These results demonstrate that using CD154 to target plasmid-expressed Ag can significantly enhance immune responses induced by a DNA vaccine.

  7. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    NASA Astrophysics Data System (ADS)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of <220>. Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  8. Immune receptors CD40 and CD86 in oral keratinocytes and implications for oral lichen planus.

    PubMed

    Marshall, Alison; Celentano, Antonio; Cirillo, Nicola; Mirams, Michiko; McCullough, Michael; Porter, Stephen

    2017-01-01

    Lichen planus (LP) is a chronic T-cell-mediated mucocutaneous inflammatory disease that targets stratified epithelia, including those lining the oral cavity. The intraoral variant of LP (OLP) is associated with interferon (IFN)-γ production by infiltrating T lymphocytes; however, the role of epithelial cells in the etiopathogenesis OLP is not completely understood. There is however a growing body of evidence regarding the involvement of epithelial-derived cytokines, immune receptors, and costimulatory molecules in the pathobiological processes that promote and sustain OLP. In the present study, we used a reverse transcriptase-polymerase chain reaction assay to assess whether CD40-a receptor found mainly on antigen presenting cells-and the costimulatory molecule CD86 were expressed in oral keratinocytes (three strains of primary normal oral keratinocytes and the H357 cell line) in the presence or absence of IFN-γ. To further characterize the involvement of CD40 in OLP, expression and distribution of receptor and ligand (CD40/CD154) in tissues from OLP were evaluated by immunohistochemistry. The present results are the first to show that both CD40 and CD86 are constitutively expressed at low levels in oral keratinocytes and that their expression was enhanced by IFN-γ stimulation. The intensity of CD40 staining in OLP tissues was strong. Taken together, the results strongly suggest that CD40 and CD86 play a role in the pathophysiology of oral inflammatory diseases such as OLP.

  9. A Missing PD-L1/PD-1 Coinhibition Regulates Diabetes Induction by Preproinsulin-Specific CD8 T-Cells in an Epitope-Specific Manner

    PubMed Central

    Schuster, Cornelia; Brosi, Helen; Stifter, Katja; Boehm, Bernhard O.; Schirmbeck, Reinhold

    2013-01-01

    Coinhibitory PD-1/PD-L1 (B7-H1) interactions provide critical signals for the regulation of autoreactive T-cell responses. We established mouse models, expressing the costimulator molecule B7.1 (CD80) on pancreatic beta cells (RIP-B7.1 tg mice) or are deficient in coinhibitory PD-L1 or PD-1 molecules (PD-L1−/− and PD-1−/− mice), to study induction of preproinsulin (ppins)-specific CD8 T-cell responses and experimental autoimmune diabetes (EAD) by DNA-based immunization. RIP-B7.1 tg mice allowed us to identify two CD8 T-cell specificities: pCI/ppins DNA exclusively induced Kb/A12–21-specific CD8 T-cells and EAD, whereas pCI/ppinsΔA12–21 DNA (encoding ppins without the COOH-terminal A12–21 epitope) elicited Kb/B22–29-specific CD8 T-cells and EAD. Specific expression/processing of mutant ppinsΔA12–21 (but not ppins) in non-beta cells, targeted by intramuscular DNA-injection, thus facilitated induction of Kb/B22–29-specific CD8 T-cells. The A12–21 epitope binds Kb molecules with a very low avidity as compared with B22–29. Interestingly, immunization of coinhibition-deficient PD-L1−/− or PD-1−/− mice with pCI/ppins induced Kb/A12–21-monospecific CD8 T-cells and EAD but injections with pCI/ppinsΔA12–21 did neither recruit Kb/B22–29-specific CD8 T-cells into the pancreatic target tissue nor induce EAD. PpinsΔA12–21/(Kb/B22–29)-mediated EAD was efficiently restored in RIP-B7.1+/PD-L1−/− mice, differing from PD-L1−/− mice only in the tg B7.1 expression in beta cells. Alternatively, an ongoing beta cell destruction and tissue inflammation, initiated by ppins/(Kb/A12–21)-specific CD8 T-cells in pCI/ppins+pCI/ppinsΔA12–21 co-immunized PD-L1−/− mice, facilitated the expansion of ppinsΔA12–21/(Kb/B22–29)-specific CD8 T-cells. CD8 T-cells specific for the high-affinity Kb/B22–29- (but not the low-affinity Kb/A12–21)-epitope thus require stimulatory ´help from beta cells or inflamed islets to expand in PD-L1

  10. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    PubMed

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L; Siminovitch, Katherine A; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Gupta, Namrata; Clemons, Paul A; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M

    2013-05-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in

  11. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4+ T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4 + T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4 + T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4 + T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4 + T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4 + T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4 + T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4 + T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4 + T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Death Induced by CD95 or CD95 Ligand Elimination

    PubMed Central

    Hadji, Abbas; Ceppi, Paolo; Murmann, Andrea E.; Brockway, Sonia; Pattanayak, Abhinandan; Bhinder, Bhavneet; Hau, Annika; De Chant, Shirley; Parimi, Vamsi; Kolesza, Piotre; Richards, JoAnne; Chandel, Navdeep; Djaballah, Hakim; Peter, Marcus E.

    2014-01-01

    SUMMARY CD95 (Fas/APO-1), when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE) is characterized by an increase in cell size and production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising new way to kill cancer cells. PMID:24656822

  13. DNA: The Molecule of Life. A Multimedia CD-ROM. [CD-ROM].

    ERIC Educational Resources Information Center

    2001

    This CD-ROM is designed for classroom and individual use to teach and learn about DNA. Integrated animations, custom graphics, three-dimensional representations, photographs, and sound are featured for use in user-controlled activities. Interactive lessons are available to reinforce the subject material. Pre- and post-testing sections are also…

  14. CD32-Expressing CD4 T Cells Are Phenotypically Diverse and Can Contain Proviral HIV DNA.

    PubMed

    Martin, Genevieve E; Pace, Matthew; Thornhill, John P; Phetsouphanh, Chansavath; Meyerowitz, Jodi; Gossez, Morgane; Brown, Helen; Olejniczak, Natalia; Lwanga, Julianne; Ramjee, Gita; Kaleebu, Pontiano; Porter, Kholoud; Willberg, Christian B; Klenerman, Paul; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Frater, John

    2018-01-01

    Efforts to both characterize and eradicate the HIV reservoir have been limited by the rarity of latently infected cells and the absence of a specific denoting biomarker. CD32a (FcγRIIa) has been proposed to be a marker for an enriched CD4 T cell HIV reservoir, but this finding remains controversial. Here, we explore the expression of CD32 on CD3 + CD4 + cells in participants from two primary HIV infection studies and identify at least three distinct phenotypes (CD32 low , CD32 + CD14 + , and CD32 high ). Of note, CD4 negative enrichment kits remove the majority of CD4 + CD32 + T cells, potentially skewing subsequent analyses if used. CD32 high CD4 T cells had higher levels of HLA-DR and HIV co-receptor expression than other subsets, compatible with their being more susceptible to infection. Surprisingly, they also expressed high levels of CD20, TCRαβ, IgD, and IgM (but not IgG), markers for both T cells and naïve B cells. Compared with other populations, CD32 low cells had a more differentiated memory phenotype and high levels of immune checkpoint receptors, programmed death receptor-1 (PD-1), Tim-3, and TIGIT. Within all three CD3 + CD4 + CD32 + phenotypes, cells could be identified in infected participants, which contained HIV DNA. CD32 expression on CD4 T cells did not correlate with HIV DNA or cell-associated HIV RNA (both surrogate measures of overall reservoir size) or predict time to rebound viremia following treatment interruption, suggesting that it is not a dominant biomarker for HIV persistence. Our data suggest that while CD32 + T cells can be infected with HIV, CD32 is not a specific marker of the reservoir although it might identify a population of HIV enriched cells in certain situations.

  15. HIV-1 Nef and Vpu Interfere with L-Selectin (CD62L) Cell Surface Expression To Inhibit Adhesion and Signaling in Infected CD4+ T Lymphocytes

    PubMed Central

    Vassena, Lia; Giuliani, Erica; Koppensteiner, Herwig; Bolduan, Sebastian; Schindler, Michael

    2015-01-01

    ABSTRACT Leukocyte recirculation between blood and lymphoid tissues is required for the generation and maintenance of immune responses against pathogens and is crucially controlled by the L-selectin (CD62L) leukocyte homing receptor. CD62L has adhesion and signaling functions and initiates the capture and rolling on the vascular endothelium of cells entering peripheral lymph nodes. This study reveals that CD62L is strongly downregulated on primary CD4+ T lymphocytes upon infection with human immunodeficiency virus type 1 (HIV-1). Reduced cell surface CD62L expression was attributable to the Nef and Vpu viral proteins and not due to increased shedding via matrix metalloproteases. Both Nef and Vpu associated with and sequestered CD62L in perinuclear compartments, thereby impeding CD62L transport to the plasma membrane. In addition, Nef decreased total CD62L protein levels. Importantly, infection with wild-type, but not Nef- and Vpu-deficient, HIV-1 inhibited the capacity of primary CD4+ T lymphocytes to adhere to immobilized fibronectin in response to CD62L ligation. Moreover, HIV-1 infection impaired the signaling pathways and costimulatory signals triggered in primary CD4+ T cells by CD62L ligation. We propose that HIV-1 dysregulates CD62L expression to interfere with the trafficking and activation of infected T cells. Altogether, this novel HIV-1 function could contribute to virus dissemination and evasion of host immune responses. IMPORTANCE L-selectin (CD62L) is an adhesion molecule that mediates the first steps of leukocyte homing to peripheral lymph nodes, thus crucially controlling the initiation and maintenance of immune responses to pathogens. Here, we report that CD62L is downmodulated on the surfaces of HIV-1-infected T cells through the activities of two viral proteins, Nef and Vpu, that prevent newly synthesized CD62L molecules from reaching the plasma membrane. We provide evidence that CD62L downregulation on HIV-1-infected primary T cells results in

  16. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency.

    PubMed

    Umeshappa, Channakeshava S; Nanjundappa, Roopa H; Xie, Yufeng; Freywald, Andrew; Xu, Qingyong; Xiang, Jim

    2013-04-01

    Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions. © 2012 Blackwell Publishing Ltd.

  17. Inhibition of CD95/CD95L (FAS/FASLG) Signaling with APG101 Prevents Invasion and Enhances Radiation Therapy for Glioblastoma.

    PubMed

    Blaes, Jonas; Thomé, Carina M; Pfenning, Philipp-Niclas; Rübmann, Petra; Sahm, Felix; Wick, Antje; Bunse, Theresa; Schmenger, Torsten; Sykora, Jaromir; von Deimling, Andreas; Wiestler, Benedikt; Merz, Christian; Jugold, Manfred; Haberkorn, Uwe; Abdollahi, Amir; Debus, Jürgen; Gieffers, Christian; Kunz, Claudia; Bendszus, Martin; Kluge, Michael; Platten, Michael; Fricke, Harald; Wick, Wolfgang; Lemke, Dieter

    2018-05-01

    CD95 (Fas/APO-1), a death receptor family member, activity has been linked to tumorigenicity in multiple cancers, including glioblastoma multiforme (GBM). A phase II clinical trial on relapsed glioblastoma patients demonstrated that targeted inhibition of CD95 signaling via the CD95 ligand (CD95L) binding and neutralizing Fc-fusion protein APG101 (asunercept) prolonged patient survival. Although CD95 signaling may be relevant for multiple aspects of tumor growth, the mechanism of action of APG101 in glioblastoma is not clear. APG101 action was examined by in vitro proliferation, apoptosis, and invasion assays with human and murine glioma and human microglial cells, as well as in vivo therapy studies with orthotopic gliomas and clinical data. APG101 inhibits CD95L-mediated invasion of glioma cells. APG101 treatment was effective in glioma-bearing mice, independently of the presence or absence of CD4 and CD8 T lymphocytes, which should be sensitive to CD95L. Combined with radiotherapy, APG101 demonstrated a reduction of tumor growth, fewer tumor satellites, reduced activity of matrix metalloproteinases (MMP) as well as prolonged survival of tumor-bearing mice compared with radiotherapy alone. Inhibiting rather than inducing CD95 activity is a break-of-paradigm therapeutic approach for malignant gliomas. Evidence, both in vitro and in vivo , is provided that CD95L-binding fusion protein treatment enhanced the efficacy of radiotherapy and reduced unwanted proinfiltrative effects by reducing metalloproteinase activity by directly affecting the tumor cells. Implications: APG101 (asunercept) successfully used in a controlled phase II glioblastoma trial (NCT01071837) acts anti-invasively by inhibiting matrix metalloproteinase signaling, resulting in additive effects together with radiotherapy and helping to further develop a treatment for this devastating disease. Mol Cancer Res; 16(5); 767-76. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome

    USDA-ARS?s Scientific Manuscript database

    X-linked hyper-IgM syndrome (XHM) is a combined immune deficiency disorder caused by mutations in CD40 ligand. We tested CP-870,893, a human CD40 agonist monoclonal antibody, in the treatment of two XHM patients with biliary Cryptosporidiosis. CP-870,893 activated B cells and APCs in vitro, restori...

  19. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 2. Tumor-specific immunity and cure after radio-inducible suicide gene therapy and systemic CD40-ligand and Flt3-ligand gene therapy in an orthotopic tumor model.

    PubMed

    Kawashita, Yujo; Deb, Niloy J; Garg, Madhur K; Kabarriti, Rafi; Fan, Zuoheng; Alfieri, Alan A; Roy-Chowdhury, Jayanta; Guha, Chandan

    2014-08-01

    Diffuse hepatocellular carcinoma (HCC) is a lethal disease that radiation therapy (RT) currently has a limited role in treating because of the potential for developing fatal radiation-induced liver disease. However, recently diffuse HCC, "radio-inducible suicide gene therapy" has been shown to enhance local tumor control and residual microscopic disease within the liver for diffuse HCC, by using a combination of chemoactivation and molecular radiosensitization. We have demonstrated that the addition of recombinant adenovirus-expressing human Flt3 ligand (Adeno-Flt3L) after radio-inducible suicide gene therapy induced a Th1-biased, immune response and enhanced tumor control in an ectopic model of HCC. We hypothesized that sequential administration of recombinant adenovirus-expressing CD40L (Adeno-CD40L) could further potentiate the efficacy of our trimodal therapy with RT + HSV-TK + Adeno-Flt3L. We examined our hypothesis in an orthotopic model of diffuse HCC using BNL1ME A.7R.1 (BNL) cells in Balb/c mice. BNL murine hepatoma cells (5 × 10(4)) transfected with an expression vector of HSV-TK under the control of a radiation-inducible promoter were injected intraportally into BALB/cJ mice. Fourteen days after the HCC injection, mice were treated with a 25 Gy dose of radiation to the whole liver, followed by ganciclovir (GCV) treatment and systemic adenoviral cytokine gene therapy (Flt3L or CD40L or both). Untreated mice died in 27 ± 4 days. Radiation therapy alone had a marginal effect on survival (median = 35 ± 7 days) and the addition of HSV-TK/GCV gene therapy improved the median survival to 47 ± 6 days. However, the addition of Adeno-Flt3L to radiation therapy and HSV-TK/GCV therapy significantly (P = 0.0005) increased survival to a median of 63 ± 20 days with 44% (7/16) of the animals still alive 116 days after tumor implantation. The curative effect of Flt3L was completely abolished when using immunodeficient nude mice or mice depleted for CD4, CD8 and

  20. DNA Methylation and Hydroxymethylation Profile of CD34+-Enriched Cell Products Intended for Autologous CD34+ Cell Transplantation.

    PubMed

    Rozman, Jasmina-Ziva; Pohar Perme, Maja; Jez, Mojca; Malicev, Elvira; Krasna, Metka; Vrtovec, Bojan; Rozman, Primoz

    2017-09-01

    Epigenetic dysregulation has been shown to limit functional capacity of aging hematopoietic stem cells, which may contribute to impaired outcome of hematopoietic stem cell-based therapies. The aim of our study was to gain better insight into the epigenetic profile of CD34 + -enriched cell products intended for autologous CD34 + cell transplantation in patients with cardiomyopathy. We found global DNA methylation content significantly higher in immunoselected CD34 + cells compared to leukocytes in leukapheresis products (2.33 ± 1.03% vs. 1.84 ± 0.86%, p = 0.04). Global DNA hydroxymethylation content did not differ between CD34 + cells and leukocytes (p = 0.30). By measuring methylation levels of 94 stem cell transcription factors on a ready-to-use array, we identified 15 factors in which average promoter methylation was significantly different between leukocytes and CD34 + cells. The difference was highest for HOXC12 (58.18 ± 6.47% vs. 13.34 ± 24.18%, p = 0.0009) and NR2F2 (51.65 ± 25.89% vs. 7.66 ± 21.43%, p = 0.0045) genes. Our findings suggest that global DNA methylation and hydroxymethylation patterns as well as target methylation profile of selected genes in CD34 + -enriched cell products do not differ significantly compared to leukapheresis products and, thus, can tell us little about the functional capacity and regenerative properties of CD34 + cells. Future studies should examine other CD34 + cell graft characteristics, which may serve as prognostic tools for autologous CD34 + cell transplantation.

  1. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24− cancer cells

    PubMed Central

    Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella

    2017-01-01

    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24− cell surface marker profile. Here, we report that human CD44+/CD24− cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24− cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24− state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24− cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness. DOI: http://dx.doi.org/10.7554/eLife.21615.001 PMID:28092266

  2. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells.

    PubMed

    Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A

    2017-09-20

    Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia).

    PubMed

    Jayakumar, Asha; Castilho, Tiago M; Park, Esther; Goldsmith-Pestana, Karen; Blackwell, Jenefer M; McMahon-Pratt, Diane

    2011-06-01

    Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective. Using a newly developed mouse model of chronic L. (Viannia) panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA) boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP) could provide protection against infection/disease. Heterologous prime - boost (DNA/MVA) vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V.) panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses. Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia) to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that CD8 T

  4. Optical properties of DNA induced starch capped PbS, CdS and PbS/CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Das, D.; Konwar, R.; Kalita, P. K.

    2015-08-01

    Starch capped PbS, CdS and PbS-CdS nanocomposites are conjugated with Calf-Thymus DNA. All the materials are characterized by X-ray diffraction, high-resolution transmission electron microscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The x-ray diffraction patterns of PbS and CdS show that the materials possess polycrystalline having both cubic and hexagonal phases. High resolution transmission electron microscopic results (HRTEM) shows PbS nanoparticles of size 3 nm and that of CdS nanoparticles having average size 4 nm which exhibit tendency of agglomeration. In case of PbS/CdS, it exhibits different types of nanosheets. The UV absorption spectra of all the samples exhibit clear blue-shift with the respective bulk absorption edges. This is attributed to the strong quantum confinement in the materials. The absorption spectra also exhibit increase of the band gaps from 2.25 to 4.35 eV for PbS; 2.25-4.2 eV for CdS with decrease of molarities from 0.1 to 0.001 M as well as conjugated with DNA. The photoluminescence spectra of all PbS, CdS and PbS/CdS composites synthesized at 0.1 M molar concentration show a further blue shift and an enhancement of intensity after conjugation with DNA, but the effect is reversed i.e. occurrence of red shift and reduction of intensity for those having 0.01 M. This is due to the two competing processes of surface passivation as well as stabilization of nanocomposites governed by bio-molecules and that of Dexter energy transfer with the effective charge separation. The result shows the applicability of the materials in development of biological labels and biosensors.

  5. Reactive glia promote development of CD103+ CD69+ CD8+ T-cells through programmed cell death-ligand 1 (PD-L1).

    PubMed

    Prasad, Sujata; Hu, Shuxian; Sheng, Wen S; Chauhan, Priyanka; Lokensgard, James R

    2018-06-01

    Previous work from our laboratory has demonstrated in vivo persistence of CD103 + CD69 + brain resident memory CD8 + T-cells (bT RM ) following viral infection, and that the PD-1: PD-L1 pathway promotes development of these T RM cells within the brain. Although glial cells express low basal levels of PD-L1, its expression is upregulated upon IFN-γ-treatment, and they have been shown to modulate antiviral T-cell effector responses through the PD-1: PD-L1 pathway. We performed flow cytometric analysis of cells from co-cultures of mixed glia and CD8 + T-cells obtained from wild type mice to investigate the role of glial cells in the development of bT RM . In this study, we show that interactions between reactive glia and anti-CD3 Ab-stimulated CD8 + T-cells promote development of CD103 + CD69 + CD8 + T-cells through engagement of the PD-1: PD-L1 pathway. These studies used co-cultures of primary murine glial cells obtained from WT animals along with CD8 + T-cells obtained from either WT or PD-1 KO mice. We found that αCD3 Ab-stimulated CD8 + T-cells from WT animals increased expression of CD103 and CD69 when co-cultured with primary murine glial cells. In contrast, significantly reduced expression of CD103 and CD69 was observed using CD8 + T-cells from PD-1 KO mice. We also observed that reactive glia promoted high levels of CD127, a marker of memory precursor effector cells (MPEC), on CD69 + CD8 + T-cells, which promotes development of T RM cells. Interestingly, results obtained using T-cells from PD-1 KO animals showed significantly reduced expression of CD127 on CD69 + CD8 + cells. Additionally, blocking of glial PD-L1 resulted in decreased expression of CD103, along with reduced CD127 on CD69 + CD8 + T-cells. Taken together, these results demonstrate a role for activated glia in promoting development of bT RM through the PD-1: PD-L1 pathway. © 2018 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  6. Enforced OX40 Stimulation Empowers Booster Vaccines to Induce Effective CD4+ and CD8+ T Cell Responses against Mouse Cytomegalovirus Infection

    PubMed Central

    Panagioti, Eleni; Boon, Louis; Arens, Ramon; van der Burg, Sjoerd H.

    2017-01-01

    There is an imperative need for effective preventive vaccines against human cytomegalovirus as it poses a significant threat to the immunologically immature, causing congenital disease, and to the immune compromised including transplant recipients. In this study, we examined the efficacy of synthetic long peptides (SLPs) as a CD4+ and CD8+ T cell-eliciting preventive vaccine approach against mouse CMV (MCMV) infection. In addition, the use of agonistic OX40 antibodies to enhance vaccine efficacy was explored. Immunocompetent C57BL/6 mice were vaccinated in a prime-boost vaccination regiment with SLPs comprising various MHC class I- and II-restricted peptide epitopes of MCMV-encoded antigens. Enforced OX40 stimulation resulted in superior MCMV-specific CD4+ as CD8+ T cell responses when applied during booster SLP vaccination. Vaccination with a mixture of SLPs containing MHC class II epitopes and OX40 agonistic antibodies resulted in a moderate reduction of the viral titers after challenge with lytic MCMV infection. Markedly, the combination of SLP vaccines containing both MHC class I and II epitopes plus OX40 activation during booster vaccination resulted in polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD4+ and CD8+ T cell responses that were even higher in magnitude when compared to those induced by the virus, and this resulted in the best containment of virus dissemination. Our results show that the induction of strong T cell responses can be a fundamental component in the design of vaccines against persistent viral infections. PMID:28265272

  7. Syk Mediates BCR- and CD40-Signaling Intergration during B Cell Activation

    PubMed Central

    Ying, Haiyan; Li, Zhenping; Yang, Lifen; Zhang, Jian

    2010-01-01

    CD40 is essential for optimal B cell activation. It has been shown that CD40 stimulation can augment BCR-induced B cell responses, but the molecular mechanism(s) by which CD40 regulates BCR signaling is poorly understood. In this report, we attempted to characterize the signaling synergy between BCR- and CD40-mediated pathways during B cell activation. We found that spleen tyrosine kinase (Syk) is involved in CD40 signaling, and is synergistically activated in B cells in response to BCR/CD40 costimulation. CD40 stimulation alone also activates B cell linker (BLNK), Bruton tyrosine kinase (Btk), and Vav-2 downstream of Syk, and significantly enhances BCR-induced formation of complex consisting of, Vav-2, Btk, BLNK, and phospholipase C-gamma2 (PLC-γ2) leading to activation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase, Akt, and NF-κB required for optimal B cell activation. Therefore, our data suggest that CD40 can strengthen BCR-signaling pathway and quantitatively modify BCR signaling during B cell activation. PMID:21074890

  8. Exploring the induction of preproinsulin-specific Foxp3+ CD4+ Treg cells that inhibit CD8+ T cell-mediated autoimmune diabetes by DNA vaccination

    PubMed Central

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model. PMID:27406624

  9. Activation of the aryl hydrocarbon receptor sensitises human keratinocytes for CD95L- and TRAIL-induced apoptosis

    PubMed Central

    Stolpmann, K; Brinkmann, J; Salzmann, S; Genkinger, D; Fritsche, E; Hutzler, C; Wajant, H; Luch, A; Henkler, F

    2012-01-01

    In this study, we have analysed the apoptotic effects of the ubiquitous environmental toxin benzo[a]pyrene (BP) in HaCaT cells and human keratinocytes. Although prolonged exposure to BP was not cytotoxic on its own, a strong enhancement of CD95 (Fas)-mediated apoptosis was observed with BP at concentrations activating the aryl hydrocarbon receptor (AhR). Importantly, the ultimately mutagenic BP-metabolite, that is, (+)-anti-BP-7,8-diol-9,10-epoxide (BPDE), failed to enhance CD95-mediated cell death, suggesting that the observed pro-apoptotic effect of BP is neither associated with DNA adducts nor DNA-damage related signalling. CD95-induced apoptosis was also enhanced by β-naphtoflavone, a well-known agonist of the AhR that does not induce DNA damage, thus suggesting a crucial role for AhR activation. Consistently, BP failed to sensitise for CD95L-induced apoptosis in AhR knockdown HaCaT cells. Furthermore, inhibition of CYP1A1 and/or 1B1 expression did not affect the pro-apoptotic crosstalk. Exposure to BP did not increase expression of CD95, but led to augmented activation of caspase-8. Enhancement of apoptosis was also observed with the TRAIL death receptors that activate caspase-8 and apoptosis by similar mechanisms as CD95. Together, these observations indicate an interference of AhR signalling with the activity of receptor-associated signalling intermediates that are shared by CD95 and TRAIL receptors. Our data thus suggest that AhR agonists can enhance cytokine-mediated adversity upon dermal exposure. PMID:22951985

  10. Regulation of expression of the ligand for CD40 on T helper lymphocytes.

    PubMed

    Castle, B E; Kishimoto, K; Stearns, C; Brown, M L; Kehry, M R

    1993-08-15

    Activated Th cells deliver contact-dependent signals to resting B lymphocytes that initiate and drive B cell proliferation. Recently, a ligand for the B lymphocyte membrane protein, CD40, has been identified that delivers contact-dependent Th cell signals to B cells. A dimeric soluble form of CD40 was produced and used to further characterize the regulation of expression of the CD40 ligand. Expression of the CD40 ligand was rapidly induced after Th lymphocyte activation, and its stability depended upon whether Th cells were activated with soluble or plastic-bound stimuli. Th cells activated with soluble stimuli rapidly turned over cell-surface CD40 ligand whereas Th cells activated with plastic-bound stimuli exhibited more stable CD40 ligand expression for up to 48 h. Removal of activated Th cells from the plastic-bound stimulus resulted in a rapid turnover of CD40 ligand, suggesting that continuous stimulation could maintain CD40 ligand expression. Ligation by soluble CD40 could also stabilize expression of CD40 ligand on the Th cell surface. Both CD40 ligand and IL-2 were transiently synthesized from 1 to 12 h after Th cell activation and had similar kinetics of synthesis. In Con A-activated Th cells newly synthesized CD40 ligand exhibited an initial high turnover (1.5 h t1/2) and after 5 h of Th cell activation became more stable (10-h t1/2). In Th cells activated with plastic-bound anti-CD3, CD40 ligand exhibited a similar biphasic turnover except that the rapid turnover phase began significantly later. This delay could allow more time for newly synthesized CD40 ligand to assemble or associate with other molecules and thus become stabilized on the cell surface. Newly synthesized CD40 ligand in Con A-activated Th cells appeared to not be efficient in delivering Th cell-dependent contact signals to resting B cells, implying the need for assembly or accessory proteins. Regulation of CD40 ligand expression was consistent with all the characteristics of Th cell

  11. Combined Inhibition of Complement and CD14 Attenuates Bacteria-Induced Inflammation in Human Whole Blood More Efficiently Than Antagonizing the Toll-like Receptor 4–MD2 Complex

    PubMed Central

    Gustavsen, Alice; Nymo, Stig; Landsem, Anne; Christiansen, Dorte; Ryan, Liv; Husebye, Harald; Lau, Corinna; Pischke, Søren E.; Lambris, John D.; Espevik, Terje; Mollnes, Tom E.

    2016-01-01

    Background. Single inhibition of the Toll-like receptor 4 (TLR4)–MD2 complex failed in treatment of sepsis. CD14 is a coreceptor for several TLRs, including TLR4 and TLR2. The aim of this study was to investigate the effect of single TLR4-MD2 inhibition by using eritoran, compared with the effect of CD14 inhibition alone and combined with the C3 complement inhibitor compstatin (Cp40), on the bacteria-induced inflammatory response in human whole blood. Methods. Cytokines were measured by multiplex technology, and leukocyte activation markers CD11b and CD35 were measured by flow cytometry. Results. Lipopolysaccharide (LPS)–induced inflammatory markers were efficiently abolished by both anti-CD14 and eritoran. Anti-CD14 was significantly more effective than eritoran in inhibiting LPS-binding to HEK-293E cells transfected with CD14 and Escherichia coli–induced upregulation of monocyte activation markers (P < .01). Combining Cp40 with anti-CD14 was significantly more effective than combining Cp40 with eritoran in reducing E. coli–induced interleukin 6 (P < .05) and monocyte activation markers induced by both E. coli (P < .001) and Staphylococcus aureus (P < .01). Combining CP40 with anti-CD14 was more efficient than eritoran alone for 18 of 20 bacteria-induced inflammatory responses (mean P < .0001). Conclusions. Whole bacteria–induced inflammation was inhibited more efficiently by anti-CD14 than by eritoran, particularly when combined with complement inhibition. Combined CD14 and complement inhibition may prove a promising treatment strategy for bacterial sepsis. PMID:26977050

  12. Prevention and synergistic control of Ph(+) ALL by a DNA vaccine and 6-mercaptopurine.

    PubMed

    Köchling, Joachim; Rott, Yvonne; Arndt, Stefanie; Marschke, Christina; Schmidt, Manuel; Wittig, Burghardt; Kalies, Katrin; Westermann, Jürgen; Henze, Günter

    2012-09-07

    Although the outcome of patients with acute lymphoblastic leukemia (ALL) has been improved continuously by chemotherapy and tyrosine kinase inhibitors, prognosis of patients with Philadelphia chromosome positive (Ph(+)) ALL still remains poor. Since further intensification of chemotherapy is limited by toxic side effects and patients with high risk of transplant-related mortality are not eligible for allogeneic stem cell transplantation new treatment strategies are urgently needed for the prevention of Ph(+) ALL relapse. There is increasing evidence that the immune system plays an essential role for the eradication or immunologic control of remaining leukemia cells. We developed several DNA-based vaccines encoding a BCR-ABL(p185) specific peptide and GM-CSF, and CD40-L, IL-27 or IL-12 and evaluated the preventive and therapeutic efficacy against a lethal challenge of syngeneic Ph(+) ALL in Balb/c mice. In vivo cell depletion assays and cytokine expression studies were performed and the efficacy of the DNA vaccine was compared with 6-mercaptopurine (6-MP) alone and the combination of the DNA vaccine and 6-MP. Preventive immunization with the vaccine BCR-ABL/GM-CSF/IL-12 and the TLR-9 agonist dSLIM induced an innate and adaptive immune response mediated by NK-cells, CD4(+) T-cells and CD8(+) T-cells leading to a survival rate of 80%. Therapeutic vaccination resulted in a significantly longer leukemia-free survival (40.7 days vs. 20.4 days) and a higher survival rate (56% vs. 10%) compared to chemotherapy with 6-MP. Remarkably, in combination with the vaccine 6-MP acted synergistically and led to 100% survival. These results demonstrate that minimal residual disease of Ph(+) ALL can be significantly better controlled by a combined treatment approach of immunotherapy and chemotherapy. This provides a rationale for improving maintenance therapy in order to reduce the relapse rate in patients with Ph(+) ALL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Higher chylomicron remnants and LDL particle numbers associate with CD36 SNPs and DNA methylation sites that reduce CD36.

    PubMed

    Love-Gregory, Latisha; Kraja, Aldi T; Allum, Fiona; Aslibekyan, Stella; Hedman, Åsa K; Duan, Yanan; Borecki, Ingrid B; Arnett, Donna K; McCarthy, Mark I; Deloukas, Panos; Ordovas, Jose M; Hopkins, Paul N; Grundberg, Elin; Abumrad, Nada A

    2016-12-01

    Cluster of differentiation 36 (CD36) variants influence fasting lipids and risk of metabolic syndrome, but their impact on postprandial lipids, an independent risk factor for cardiovascular disease, is unclear. We determined the effects of SNPs within a ∼410 kb region encompassing CD36 and its proximal and distal promoters on chylomicron (CM) remnants and LDL particles at fasting and at 3.5 and 6 h following a high-fat meal (Genetics of Lipid Lowering Drugs and Diet Network study, n = 1,117). Five promoter variants associated with CMs, four with delayed TG clearance and five with LDL particle number. To assess mechanisms underlying the associations, we queried expression quantitative trait loci, DNA methylation, and ChIP-seq datasets for adipose and heart tissues that function in postprandial lipid clearance. Several SNPs that associated with higher serum lipids correlated with lower adipose and heart CD36 mRNA and aligned to active motifs for PPARγ, a major CD36 regulator. The SNPs also associated with DNA methylation sites that related to reduced CD36 mRNA and higher serum lipids, but mixed-model analyses indicated that the SNPs and methylation independently influence CD36 mRNA. The findings support contributions of CD36 SNPs that reduce adipose and heart CD36 RNA expression to inter-individual variability of postprandial lipid metabolism and document changes in CD36 DNA methylation that influence both CD36 expression and lipids. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. CD8 Memory Cells Develop Unique DNA Repair Mechanisms Favoring Productive Division.

    PubMed

    Galgano, Alessia; Barinov, Aleksandr; Vasseur, Florence; de Villartay, Jean-Pierre; Rocha, Benedita

    2015-01-01

    Immune responses are efficient because the rare antigen-specific naïve cells are able to proliferate extensively and accumulate upon antigen stimulation. Moreover, differentiation into memory cells actually increases T cell accumulation, indicating improved productive division in secondary immune responses. These properties raise an important paradox: how T cells may survive the DNA lesions necessarily induced during their extensive division without undergoing transformation. We here present the first data addressing the DNA damage responses (DDRs) of CD8 T cells in vivo during exponential expansion in primary and secondary responses in mice. We show that during exponential division CD8 T cells engage unique DDRs, which are not present in other exponentially dividing cells, in T lymphocytes after UV or X irradiation or in non-metastatic tumor cells. While in other cell types a single DDR pathway is affected, all DDR pathways and cell cycle checkpoints are affected in dividing CD8 T cells. All DDR pathways collapse in secondary responses in the absence of CD4 help. CD8 T cells are driven to compulsive suicidal divisions preventing the propagation of DNA lesions. In contrast, in the presence of CD4 help all the DDR pathways are up regulated, resembling those present in metastatic tumors. However, this up regulation is present only during the expansion phase; i.e., their dependence on antigen stimulation prevents CD8 transformation. These results explain how CD8 T cells maintain genome integrity in spite of their extensive division, and highlight the fundamental role of DDRs in the efficiency of CD8 immune responses.

  15. The mechanism of thioacetamide-induced apoptosis in the L37 albumin-SV40 T-antigen transgenic rat hepatocyte-derived cell line occurs without DNA fragmentation.

    PubMed

    Bulera, S J; Sattler, C A; Gast, W L; Heath, S; Festerling, T A; Pitot, H C

    1998-10-01

    The hepatotoxicant thioacetamide (TH) has classically been used as a model to study hepatic necrosis; however, recent studies have shown that TH can also induce apoptosis. In this report we demonstrate that 2.68+/-0.54% of the albumin-SV40 T-antigen transgenic rat hepatocytes undergo TH-induced apoptosis, a level comparable to other in vivo models of liver apoptosis. In addition, TH could induce apoptosis and necrosis in the L37 albumin-SV40 T-antigen transgenic rat liver-derived cell line. Examination of dying L37 cells treated with 100 mM TH by electron microscopy revealed distinct morphological characteristics that could be attributed to apoptosis. Quantitation of apoptosis by FACS analysis 24 h after treatment with 100 mM TH revealed that 81.3+/-1.6% of the cells were undergoing apoptosis. In contrast, when L37 cells were treated with 250 mM TH, cells exhibited characteristics consistent with necrotic cell death. DNA fragmentation ladders were produced by growth factor withdrawal-induced apoptosis; however, in 100 mM TH-induced apoptosis, DNA fragmentation ladders were not observed. Analysis of endonuclease activity in L37 cells revealed that the enzymes were not inactivated in the presence of 100 mM TH. The data presented in this report indicate that the L37 cell line could be used to study the mechanism of TH-induced apoptosis that was not mediated through a mechanism requiring DNA fragmentation.

  16. Development of a Novel CD4+ TCR Transgenic Line That Reveals a Dominant Role for CD8+ Dendritic Cells and CD40 Signaling in the Generation of Helper and CTL Responses to Blood-Stage Malaria.

    PubMed

    Fernandez-Ruiz, Daniel; Lau, Lei Shong; Ghazanfari, Nazanin; Jones, Claerwen M; Ng, Wei Yi; Davey, Gayle M; Berthold, Dorothee; Holz, Lauren; Kato, Yu; Enders, Matthias H; Bayarsaikhan, Ganchimeg; Hendriks, Sanne H; Lansink, Lianne I M; Engel, Jessica A; Soon, Megan S F; James, Kylie R; Cozijnsen, Anton; Mollard, Vanessa; Uboldi, Alessandro D; Tonkin, Christopher J; de Koning-Ward, Tania F; Gilson, Paul R; Kaisho, Tsuneyasu; Haque, Ashraful; Crabb, Brendan S; Carbone, Francis R; McFadden, Geoffrey I; Heath, William R

    2017-12-15

    We describe an MHC class II (I-A b )-restricted TCR transgenic mouse line that produces CD4 + T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4 + T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human ( Plasmodium falciparum ) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8 + T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4 + T cells and the previously described PbT-I CD8 + T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8 + DC (a subset of XCR1 + DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4 + T cell responses. Depletion of CD8 + DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4 + T cell immunity during malaria and provides evidence that CD4 + T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8 + DC. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation.

    PubMed

    Zang, Yang; Lei, Jianping; Hao, Qing; Ju, Huangxian

    2016-03-15

    This work developed a CdS/MoS2 heterojunction-based photoelectrochemical biosensor for sensitive detection of DNA under the enhanced chemiluminescence excitation of luminol catalyzed by hemin-DNA complex. The CdS/MoS2 photocathode was prepared by the stepwise assembly of MoS2 and CdS quantum dots (QDs) on indium tin oxide (ITO), and achieved about 280% increasing of photocurrent compared to pure CdS QDs electrode due to the formation of heterostructure. High photoconversion efficiency in the photoelectrochemical system was identified to be the rapid spatial charge separation of electron-hole pairs by the extension of electron transport time and electron lifetime. In the presence of target DNA, the catalytic hairpin assembly was triggered, and simultaneously the dual hemin-labeled DNA probe was introduced to capture DNA/CdS/MoS2 modified ITO electrode. Thus the chemiluminescence emission of luminol was enhanced via hemin-induced mimetic catalysis, leading to the physical light-free photoelectrochemical strategy. Under optimized conditions, the resulting photoelectrode was proportional to the logarithm of target DNA concentration in the range from 1 fM to 100 pM with a detection limit of 0.39 fM. Moreover, the cascade amplification biosensor demonstrated high selectivity, desirable stability and good reproducibility, showing great prospect in molecular diagnosis and bioanalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Understanding the biology of ex vivo-expanded CD8 T cells for adoptive cell therapy: role of CD62L.

    PubMed

    Díaz-Montero, C Marcela; Zidan, Abdel-Aziz; Pallin, Maria F; Anagnostopoulos, Vasileios; Salem, Mohamed L; Wieder, Eric; Komanduri, Krishna; Montero, Alberto J; Lichtenheld, Mathias G

    2013-12-01

    CD62L governs the circulation of CD8(+) T cells between lymph nodes and peripheral tissues, whereby the expression of CD62L by CD8(+) T cells promotes their recirculation through lymph nodes. As such, CD62L participates in the fate of adoptively transferred CD8(+) T cells and may control their effectiveness for cancer immunotherapy, including settings in which host preconditioning results in the acute lymphopenia-induced proliferation of the transferred cells. Indeed, previous studies correlated CD62L expression by donor CD8(+) cells with the success rate of adoptive cell therapy (ACT). Here, we analyzed the functions and fate of ex vivo-activated, tumor-specific CD62L(-/-) CD8(+) T cells in a mouse melanoma model for ACT. Unexpectedly, we observed that CD62L(-/-) CD8(+) T cells were functionally indistinguishable from CD62L(+/+) CD8(+) T cells, i.e., both greatly expanded in cyclophosphamide preconditioned animals, controlled subcutaneously and hematogenously spreading tumors, and generated anti-tumor-specific CD8(+) T cell memory. Moreover, even in hosts with rudimentary secondary lymphoid organs (LT(-/-) animals), CD8(+) T cells with and without CD62L expanded equivalently to those adoptively transferred into wild-type animals. These results put into question the utility of CD62L as a predictive biomarker for the efficacy of ex vivo-expanded T cells after ACT in lymphopenic conditions and also offer new insights into the homing, engraftment, and memory generation of adoptively transferred ex vivo-activated CD8(+) T cells.

  19. mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination

    PubMed Central

    Fan, Weiwei; Lin, Chun Shi; Potluri, Prasanth; Procaccio, Vincent; Wallace, Douglas C.

    2012-01-01

    The role of mitochondrial DNA (mtDNA) mutations and mtDNA recombination in cancer cell proliferation and developmental biology remains controversial. While analyzing the mtDNAs of several mouse L cell lines, we discovered that every cell line harbored multiple mtDNA mutants. These included four missense mutations, two frameshift mutations, and one tRNA homopolymer expansion. The LA9 cell lines lacked wild-type mtDNAs but harbored a heteroplasmic mixture of mtDNAs, each with a different combination of these variants. We isolated each of the mtDNAs in a separate cybrid cell line. This permitted determination of the linkage phase of each mtDNA and its physiological characteristics. All of the polypeptide mutations inhibited their oxidative phosphorylation (OXPHOS) complexes. However, they also increased mitochondrial reactive oxygen species (ROS) production, and the level of ROS production was proportional to the cellular proliferation rate. By comparing the mtDNA haplotypes of the different cell lines, we were able to reconstruct the mtDNA mutational history of the L–L929 cell line. This revealed that every heteroplasmic L-cell line harbored a mtDNA that had been generated by intracellular mtDNA homologous recombination. Therefore, deleterious mtDNA mutations that increase ROS production can provide a proliferative advantage to cancer or stem cells, and optimal combinations of mutant loci can be generated through recombination. PMID:22345519

  20. The Majority of HIV Type 1 DNA in Circulating CD4+ T Lymphocytes Is Present in Non-Gut-Homing Resting Memory CD4+ T Cells

    PubMed Central

    Xu, Yin; Bailey, Michelle; Seddiki, Nabila; Suzuki, Kazuo; Murray, John M.; Gao, Yuan; Yan, Celine; Cooper, David A.; Kelleher, Anthony D.; Koelsch, Kersten K.; Zaunders, John

    2013-01-01

    Abstract Memory CD4+ T lymphocytes in peripheral blood that express integrins α4ß7 preferentially recirculate through gut-associated lymphoid tissue (GALT), a proposed site of significant HIV-1 replication. Tregs and activated CD4+ T cells in GALT could also be particularly susceptible to infection. We therefore hypothesized that infection of these subsets of memory CD4+ T cells may contribute disproportionately to the HIV-1 reservoir. A cross-sectional study of CD4+ T cell subsets of memory CD45RO+ cells in peripheral blood mononuclear cells (PBMCs) was conducted using leukapheresis from eight subjects with untreated chronic HIV-1 infection. Real-time polymerase chain reaction (PCR) was used to quantify total and integrated HIV-1 DNA levels from memory CD4+ T cells sorted into integrin β7+ vs. β7−, CD25+CD127low Treg vs. CD127high, and activated CD38+ vs. CD38−. More than 80% of total HIV-1 DNA was found to reside in the integrin β7-negative non-gut-homing subset of CD45RO+ memory CD4+ T cells. Less than 10% was found in highly purified Tregs or CD38+ activated memory cells. Similarly, integrated HIV-1 DNA copies were found to be more abundant in resting non-gut-homing memory CD4+ T cells (76%) than in their activated counterparts (23%). Our investigations showed that the majority of both total and integrated HIV-1 DNA was found within non-gut-homing resting CD4+ T cells. PMID:23971972

  1. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils.

    PubMed

    Hirano, Toru; Arimitsu, Junsuke; Higa, Shinji; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    We have previously shown that flavonoids such as luteolin, apigenin and fisetin inhibit interleukin 4 and interleukin 13 production. In this study, we investigated whether luteolin can suppress CD40 ligand expression by basophils. A human basophilic cell line, KU812, was stimulated with A23187 and phorbol myristate acetate (PMA) with or without various concentrations of luteolin or other flavonoids for 12 h, and CD40 ligand expression was analyzed by FACS. The effect of luteolin on CD40 ligand mRNA expression was studied by semiquantitative reverse transcription PCR analysis. In addition, CD40 ligand expression was also measured in purified basophils that had been stimulated for 12 h with A23187 plus PMA with or without various concentrations of luteolin. CD40 ligand expression by KU812 cells was enhanced noticeably in response to A23187 and even more strikingly augmented by A23187 plus PMA. The expression was significantly suppressed by 10 or 30 microM of luteolin, whereas myricetin failed to inhibit. Reverse transcription PCR analyses demonstrated that luteolin inhibited CD40 ligand mRNA expression by stimulated KU812 cells. Of the six flavonoids examined, luteolin, apigenin, fisetin and quercetin at 30 microM showed a significant inhibitory effect on CD40 ligand expression. The incubation of purified basophils with A23187 plus PMA significantly enhanced CD40 ligand expression, and the presence of luteolin again had an inhibitory effect. Luteolin inhibits CD40 ligand expression by activated basophils.

  2. Use of rbcL and trnL-F as a Two-Locus DNA Barcode for Identification of NW-European Ferns: An Ecological Perspective

    PubMed Central

    de Groot, G. Arjen; During, Heinjo J.; Maas, Jan W.; Schneider, Harald; Vogel, Johannes C.; Erkens, Roy H. J.

    2011-01-01

    Although consensus has now been reached on a general two-locus DNA barcode for land plants, the selected combination of markers (rbcL + matK) is not applicable for ferns at the moment. Yet especially for ferns, DNA barcoding is potentially of great value since fern gametophytes—while playing an essential role in fern colonization and reproduction—generally lack the morphological complexity for morphology-based identification and have therefore been underappreciated in ecological studies. We evaluated the potential of a combination of rbcL with a noncoding plastid marker, trnL-F, to obtain DNA-identifications for fern species. A regional approach was adopted, by creating a reference database of trusted rbcL and trnL-F sequences for the wild-occurring homosporous ferns of NW-Europe. A combination of parsimony analyses and distance-based analyses was performed to evaluate the discriminatory power of the two-region barcode. DNA was successfully extracted from 86 tiny fern gametophytes and was used as a test case for the performance of DNA-based identification. Primer universality proved high for both markers. Based on the combined rbcL + trnL-F dataset, all genera as well as all species with non-equal chloroplast genomes formed their own well supported monophyletic clade, indicating a high discriminatory power. Interspecific distances were larger than intraspecific distances for all tested taxa. Identification tests on gametophytes showed a comparable result. All test samples could be identified to genus level, species identification was well possible unless they belonged to a pair of Dryopteris species with completely identical chloroplast genomes. Our results suggest a high potential of the combined use of rbcL and trnL-F as a two-locus cpDNA barcode for identification of fern species. A regional approach may be preferred for ecological tests. We here offer such a ready-to-use barcoding approach for ferns, which opens the way for answering a whole range of

  3. Primed tumor-reactive multifunctional CD62L+ human CD8+T-cells for immunotherapy

    PubMed Central

    Wölfl, Matthias; Merker, Katharina; Morbach, Henner; Van Gool, Stefaan W.; Eyrich, Matthias; Greenberg, Philip D.; Schlegel, Paul G.

    2011-01-01

    T-cell mediated immunotherapy against malignancies has been shown to be effective for certain types of cancer. However ex vivo expansion of tumor-reactive T-cells has been hindered by the low precursor frequency of such cells, often requiring multiple rounds of stimulation, resulting in full differentiation, loss of homing receptors and potential exhaustion of the expanded T-cells. Here we show that when using highly purified naïve CD8+ T-cells, a single stimulation with peptide pulsed, IFNγ/LPS-matured dendritic cells in combination with the sequential use of IL-21, IL-7 and IL-15 is sufficient for extensive expansion of antigen-specific T-cells. Short-term expanded T-cells were tumor-reactive, multifunctional and retained a central memory-like phenotype (CD62L+, CCR7+, CD28+). The procedure is highly reproducible and robust as demonstrated for different healthy donors and for cancer patients. Such short-term tumor-antigen-primed, multifunctional T-cells may therefore serve as a platform to target different malignancies accessible to immunotherapy. PMID:20972785

  4. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities.

    PubMed

    Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu

    2017-01-01

    N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.

  5. Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers

    PubMed Central

    Moore, Ellen C.; Cash, Harrison A.; Caruso, Andria M.; Uppaluri, Ravindra; Hodge, James W.; Van Waes, Carter; Allen, Clint T.

    2016-01-01

    Significant subsets of patients with oral cancer fail to respond to single-agent programmed death (PD) blockade. Syngeneic models of oral cancer were used to determine if blocking oncogenic signaling improved in vivo responses to PD-L1 monoclonal antibody (mAb). Anti-PD-L1 enhanced durable primary tumor control and survival when combined with mTOR (rapamycin), but not in combination with MEK inhibition (PD901) in immunogenic MOC1 tumors. Conversely, PD-L1 mAb did not enhance tumor control in poorly immunogenic MOC2 tumors. Rapamycin enhanced expansion of peripheral antigen-specific CD8 T cells and IFNγ production following ex vivo antigen stimulation. More CD8 T cells infiltrated and were activated after PD-L1 mAb treatment in mice with immunogenic MOC1 tumors, which was stable or increased by the addition of rapamycin, but suppressed when PD901 was added. Rapamycin increased IFNγ production capacity in peripheral and tumor-infiltrating CD8 T cells. In vivo antibody depletion revealed a CD8 T cell, and not NK cell, -dependent mechanism of tumor growth inhibition after treatment with rapamycin and PD-L1 mAb, ruling out significant effects from NK cell–mediated antibody-dependent cellular cytotoxicity. Rapamycin also enhanced IFNγ or PD-L1 mAb treatment–associated induction of MHC class I expression on MOC1 tumor cells, an effect abrogated by depleting infiltrating CD8 T cells from the tumor microenvironment. This data conflicts with traditional views of rapamycin as a universal immunosuppressant, and when combined with evidence of enhanced antitumor activity with the combination of rapamycin and PD-L1 mAb, suggests that this treatment combination deserves careful evaluation in the clinical setting. PMID:27076449

  6. Age, sex, and nutritional status modify the CD4+ T-cell recovery rate in HIV-tuberculosis co-infected patients on combination antiretroviral therapy.

    PubMed

    Ezeamama, Amara E; Mupere, Ezekiel; Oloya, James; Martinez, Leonardo; Kakaire, Robert; Yin, Xiaoping; Sekandi, Juliet N; Whalen, Christopher C

    2015-06-01

    Baseline age and combination antiretroviral therapy (cART) were examined as determinants of CD4+ T-cell recovery during 6 months of tuberculosis (TB) therapy with/without cART. It was determined whether this association was modified by patient sex and nutritional status. This longitudinal analysis included 208 immune-competent, non-pregnant, ART-naive HIV-positive patients from Uganda with a first episode of pulmonary TB. CD4+ T-cell counts were measured using flow cytometry. Age was defined as ≤24, 25-29, 30-34, and 35-39 vs. ≥40 years. Nutritional status was defined as normal (>18.5kg/m(2)) vs. underweight (≤18.5kg/m(2)) using the body mass index (BMI). Multivariate random effects linear mixed models were fitted to estimate differences in CD4+ T-cell recovery in relation to specified determinants. cART was associated with a monthly rise of 15.7 cells/μl (p<0.001). Overall, age was not associated with CD4+ T-cell recovery during TB therapy (p = 0.655). However, among patients on cART, the age-associated CD4+ T-cell recovery rate varied by sex and nutritional status, such that age <40 vs. ≥40 years predicted superior absolute CD4+ T-cell recovery among females (p=0.006) and among patients with a BMI ≥18.5kg/m(2) (p<0.001). TB-infected HIV-positive patients aged ≥40 years have a slower rate of immune restoration given cART, particularly if BMI is >18.5kg/m(2) or they are female. These patients may benefit from increased monitoring and nutritional support during cART. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Cytoplasmic Overexpression of CD95L in Esophageal Adenocarcinoma Cells Overcomes Resistance to CD95-Mediated Apoptosis1

    PubMed Central

    Watson, Gregory A; Naran, Sanjay; Zhang, Xinglu; Stang, Michael T; Queiroz de Oliveira, Pierre E; Hughes, Steven J

    2011-01-01

    Introduction The CD95/CD95L pathway plays a critical role in tissue homeostasis and immune system regulation; however, the function of this pathway in malignancy remains poorly understood. We hypothesized that CD95L expression in esophageal adenocarcinoma confers advantages to the neoplasm other than immune privilege. Methods CD95L expression was characterized in immortalized squamous esophagus (HET-1A) and Barrett esophagus (BAR-T) cells; adenocarcinoma cell lines FLO-1, SEG-1, and BIC-1, and MDA468 (- control); and KFL cells (+ control). Analyses included reverse transcription-polymerase chain reaction, immunoblots of whole cell and secretory vesicle lysates, FACScan analysis, laser scanning confocal microscopy of native proteins and fluorescent constructs, and assessment of apoptosis and ERK1/2 pathways. Results Cleaved, soluble CD95L is expressed at both the RNA and protein levels in these cell lines derived from esophageal adenocarcinoma and other human tissues. CD95L was neither trafficked to the cell membrane nor secreted into the media or within vesicles, rather the protein seems to be sequestered in the cytoplasm. CD95 and CD95L colocalize by immunofluorescence, but an interaction was not proven by immunoprecipitation. Overexpression of CD95L in the adenocarcinoma cell lines induced robust apoptosis and, under conditions of pan-caspase inhibition, resulted in activation of ERK signaling. Conclusions CD95L localization in EA cells is inconsistent with the conference of immune privilege and is more consistent with a function that promotes tumor growth through alternative CD95 signaling. Reduced cell surface expression of CD95 affects cell sensitivity to extracellular apoptotic signals more significantly than alterations in downstream modulators of apoptosis. PMID:21390183

  8. Mast cells in Waldenstrom's macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling.

    PubMed

    Tournilhac, O; Santos, D D; Xu, L; Kutok, J; Tai, Y-T; Le Gouill, S; Catley, L; Hunter, Z; Branagan, A R; Boyce, J A; Munshi, N; Anderson, K C; Treon, S P

    2006-08-01

    Bone marrow (BM) mast cells (MC) are commonly found in association with lymphoplasmacytic cells (LPC) in patients with Waldenström's macroglobulinemia (WM). We therefore sought to clarify the role of MC in WM. Co-culture of sublethally irradiated HMC-1 MC, KU812 basophilic cells, or autologous BM MC along with BM LPC from WM patients resulted in MC dose-dependent tumor colony formation and/or proliferation as assessed by 3H-thymidine uptake studies. Furthermore, by immunohistochemistry, multicolor flow cytometry and/or RT-PCR analysis, CD40 ligand (CD154), a potent inducer of B-cell expansion, was expressed on BM MC from 32 of 34 (94%), 11 of 13 (85%), and 7 of 9 (78%) patients, respectively. In contrast, MC from five healthy donors did not express CD154. By multicolor flow cytometry, CD154 was expressed on BM LPC from 35 of 38 (92%) patients and functionality was confirmed by CD154 and CD40 agonistic antibody stimulation, which induced proliferation, support survival and/or pERK phosphorylation of LPC. Moreover, MC induced expansion of LPC from 3 of 5 patients was blocked in a dose dependent manner by use of a CD154 blocking protein. These studies demonstrate that in WM, MC may support tumor cell expansion through constitutive CD154-CD40 signaling and therefore provide the framework for therapeutic targeting of MC and MC-WM cell interactions in WM.

  9. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkawa, Mayumi; Ohno, Yoshiya; Masuko, Kazue

    Highlights: {yields} We established LAT1 amino-acid transporter-disrupted DT40 cells. {yields} LAT1-disrupted cells showed slow growth and lost the oncogenicity. {yields} siRNA and mAb inhibited human tumor growth in vitro and in vivo. {yields} LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1{supmore » -/-}) cell clones, derived from a heterozygous LAT1{sup +/-} clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1{sup -/-} DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1{sup -/-} cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1{sup -/-} DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1{sup -/-} DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1{sup +/-} DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.« less

  10. Cholera toxin B-subunit gene enhances mucosal immunoglobulin A, Th1-type, and CD8+ cytotoxic responses when coadministered intradermally with a DNA vaccine.

    PubMed

    Sanchez, Alba E; Aquino, Guillermo; Ostoa-Saloma, Pedro; Laclette, Juan P; Rocha-Zavaleta, Leticia

    2004-07-01

    A plasmid vector encoding the cholera toxin B subunit (pCtB) was evaluated as an intradermal genetic adjuvant for a model DNA vaccine expressing the human papillomavirus type 16 L1 capsid gene (p16L1) in mice. p16L1 was coadministered with plasmid pCtB or commercial polypeptide CtB as a positive control. Coadministration of pCtB induced a significant increment of specific anti-L1 immunoglobulin A (IgA) antibodies in cervical secretions (P < 0.05) and fecal extracts (P < 0.005). Additionally, coadministration of pCtB enhanced the production of interleukin-2 and gamma interferon by spleen cells but did not affect the production of interleukin-4, suggesting a Th1-type helper response. Furthermore, improved CD8+ T-cell-mediated cytotoxic activity was observed in mice vaccinated with the DNA vaccine with pCtB as an adjuvant. This adjuvant effect was comparable to that induced by the CtB polypeptide. These results indicate that intradermal coadministration of pCtB is an adequate means to enhance the mucosa-, Th1-, and CD8(+)-mediated cytotoxic responses induced by a DNA vaccine.

  11. Circular dichroism and DNA secondary structure.

    PubMed Central

    Baase, W A; Johnson, W C

    1979-01-01

    The change in average rotation of the DNA helix has been determined for the transfer from 0.05 M NaCl to 3.0 M CsCl, 6.2 M LiCl and 5.4 M NH4Cl. This work, combined with data at lower salt from other laboratories, allows us to relate the intensity of the CD of DNA at 275 nm directly to the change in the number of base pairs per turn. The change in secondary structure for the transfer of DNA from 0.05 M NaCl (where it is presumably in the B-form) to high salt (where the characteristic CD has been interpreted as corresponding to C-form geometry) is found to be -0.22 (+/- 0.02) base pairs per turn. In the case of mononucleosomes, where the CD indicates the "C-form", the change in secondary structure (including temperature effects) would add -0.31 (+/- 0.03) turns about the histone core to the -1.25 turns estimated from work on SV40 chromatin. Accurate winding angles and molar extinction coefficients were determined for ethidium. PMID:424316

  12. PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma.

    PubMed

    Sideras, Kostandinos; Biermann, Katharina; Verheij, Joanne; Takkenberg, Bart R; Mancham, Shanta; Hansen, Bettina E; Schutz, Hannah M; de Man, Robert A; Sprengers, Dave; Buschow, Sonja I; Verseput, Maddy C M; Boor, Patrick P C; Pan, Qiuwei; van Gulik, Thomas M; Terkivatan, Turkan; Ijzermans, Jan N M; Beuers, Ulrich H W; Sleijfer, Stefan; Bruno, Marco J; Kwekkeboom, Jaap

    2017-01-01

    Novel systemic treatments for hepatocellular carcinoma (HCC) are strongly needed. Immunotherapy is a promising strategy that can induce specific antitumor immune responses. Understanding the mechanisms of immune resistance by HCC is crucial for development of suitable immunotherapeutics. We used immunohistochemistry on tissue-microarrays to examine the co-expression of the immune inhibiting molecules PD-L1, Galectin-9, HVEM and IDO, as well as tumor CD8 + lymphocyte infiltration in HCC, in two independent cohorts of patients. We found that at least some expression in tumor cells was seen in 97% of cases for HVEM, 83% for PD-L1, 79% for Gal-9 and 66% for IDO. In the discovery cohort (n = 94), we found that lack of, or low, tumor expression of PD-L1 ( p < 0.001), Galectin-9 ( p < 0.001) and HVEM ( p < 0.001), and low CD8 + TIL count ( p = 0.016), were associated with poor HCC-specific survival. PD-L1, Galectin-9 and CD8 + TIL count were predictive of HCC-specific survival independent of baseline clinicopathologic characteristics and the combination of these markers was a powerful predictor of HCC-specific survival (HR 0.29; p <0.001). These results were confirmed in the validation cohort (n = 60). We show that low expression levels of PD-L1 and Gal-9 in combination with low CD8 + TIL count predict extremely poor HCC-specific survival and it requires a change in two of these parameters to significantly improve prognosis. In conclusion, intra-tumoral expression of these immune inhibiting molecules was observed in the majority of HCC patients. Low expression of PD-L1 and Galectin-9 and low CD8 + TIL count are associated with poor HCC-specific survival. Combining immune biomarkers leads to superior predictors of HCC mortality.

  13. HIV-1 DNA burden dynamics in CD4 T cells and monocytes in patients undergoing a transient therapy interruption.

    PubMed

    Garbuglia, Anna Rosa; Calcaterra, Silvia; D'Offizi, Gianpiero; Topino, Simone; Narciso, Pasquale; Lillo, Flavia; Girardi, Enrico; Capobianchi, Maria Rosaria

    2004-11-01

    Replication-competent HIV, as well as HIV-1 DNA, has been detected in CD4 T cells and in monocytes during antiretroviral therapy (ART), indicating that these cells could represent an important viral reservoir. We measured HIV-1 DNA in monocytes and CD4 T cells in patients undergoing transient therapy interruption (TTI), to establish the dynamic of HIV-1 DNA burden and to find possible correlations with immune restoration and re-establishment of virological control after ART resumption. In most patients CD4 depletion and viral load rebound followed TTI. Rapid resumption of virological and immunological control was achieved after ART reintroduction. After TTI, in most cases a transient increase of both monocyte and CD4 HIV-1 DNA burden was observed. After ART reintroduction, both CD4 T cell and monocyte HIV-1 DNA copy number decreased, reaching baseline levels at the end of observation. At this time monocyte HIV-1 DNA burden was always undetectable, while CD4 T cell HIV-1 DNA burden was lower than at baseline. As CD4 T cell HIV-1 DNA values are independently associated with CD4 depletion, the increase of HIV-1 DNA burden in these cells after TTI is presumably due to acute infection, causing cell death. This is also supported by the pattern of 2-LTR appearance in these cells after TTI. HIV-1 DNA burden in monocytes and CD4 T cells show high correlation, suggesting reciprocal re-feeding of two cell populations. Repopulation by HIV these cells after TTI is temporary, and no significant changes of HIV-1 DNA burden were observed after ART resumption respect to pre-TTI period.

  14. Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma.

    PubMed

    Xie, Jeffrey X; Zhang, Shungang; Cui, Xiaoyu; Zhang, Jue; Yu, Hui; Khalaf, Fatimah K; Malhotra, Deepak; Kennedy, David J; Shapiro, Joseph I; Tian, Jiang; Haller, Steven T

    2017-12-22

    Recent studies have highlighted a critical role for CD40 in the pathogenesis of renal injury and fibrosis. However, little is currently understood about the regulation of CD40 in this setting. We use novel Na/K-ATPase cell lines and inhibitors in order to demonstrate the regulatory function of Na/K-ATPase with regards to CD40 expression and function. We utilize 5/6 partial nephrectomy as well as direct infusion of a Na/K-ATPase ligand to demonstrate this mechanism exists in vivo. We demonstrate that knockdown of the α1 isoform of Na/K-ATPase causes a reduction in CD40 while rescue of the α1 but not the α2 isoform restores CD40 expression in renal epithelial cells. Second, because the major functional difference between α1 and α2 is the ability of α1 to form a functional signaling complex with Src, we examined whether the Na/K-ATPase/Src complex is important for CD40 expression. We show that a gain-of-Src binding α2 mutant restores CD40 expression while loss-of-Src binding α1 reduces CD40 expression. Furthermore, loss of a functional Na/K-ATPase/Src complex also disrupts CD40 signaling. Importantly, we show that use of a specific Na/K-ATPase/Src complex antagonist, pNaKtide, can attenuate cardiotonic steroid (CTS)-induced induction of CD40 expression in vitro. Because the Na/K-ATPase/Src complex is also a key player in the pathogenesis of renal injury and fibrosis, our new findings suggest that Na/K-ATPase and CD40 may comprise a pro-fibrotic feed-forward loop in the kidney and that pharmacological inhibition of this loop may be useful in the treatment of renal fibrosis. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. A novel blocking monoclonal antibody recognizing a distinct epitope of human CD40 molecule.

    PubMed

    Zhuang, Y; Huang, J; Zhou, Z; Ge, Y; Fan, Y; Qi, C; Zhen, L; Monchatre, E; Edelman, L; Zhang, X

    2005-01-01

    CD40, a member of the tumor necrosis factor receptor superfamily, is an important costimulatory molecule during the immune response. Here, we report a blocking mouse antihuman CD40 monoclonal antibody, mAb 3G3, of which the specificity was verified by flow cytometry and Western blot. It was shown by competition test that 3G3 bound to a different site (epitope) of CD40 from the reported CD40 mAbs, including clone mAb89, 3B2, and 5C11. It was also found that mAb 3G3 could inhibit homotypic aggregation of Daudi cells induced by the agonistic anti-CD40 mAb 5C11. Furthermore, mAb 3G3 effectively inhibited the proliferation of peripheral blood mononuclear cells in mixed lymphocyte reaction assay. Finally, a sensitive and specific soluble CD40 (sCD40) ELISA kit was established by matching mAb 3G3 with 5C11, and it was found that the levels of sCD40 in sera from patients with immune disorders such as hyperthyroidism, chronic nephritis, and rheumatoid arthritis were obviously higher than those from normal individuals. Thus, this blocking anti-CD40 mAb provides a novel tool for the study of CD40.

  16. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities

    PubMed Central

    Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu

    2017-01-01

    N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures’ refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times. PMID:28045442

  17. Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses.

    PubMed

    Bråve, Andreas; Nyström, Sanna; Roos, Anna-Karin; Applequist, Steven E

    2011-03-01

    Plasmid DNA vaccination using skin electroporation (EP) is a promising method able to elicit robust humoral and CD8(+) T-cell immune responses while limiting invasiveness of delivery. However, there is still only limited data available on the induction of CD4(+) T-cell immunity using this method. Here, we compare the ability of homologous prime/boost DNA vaccinations by skin EP and intramuscular (i.m.) injection to elicit immune responses by cytokine enzyme-linked immunosorbent spot (ELISPOT) assay, as well as study the complexity of CD4(+) T-cell responses to the human immunodeficiency virus antigen Gag, using multiparamater flow cytometry. We find that DNA vaccinations by skin EP and i.m. injection are capable of eliciting both single- and poly-functional vaccine-specific CD4(+) T cells. However, although DNA delivered by skin EP was administered at a five-fold lower dose it elicited significant increases in the magnitude of multiple-cytokine producers compared with i.m. immunization suggesting that the skin EP could provide greater poly-functional T-cell help, a feature associated with successful immune defense against infectious agents.

  18. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less

  19. Autocrine stimulation of IL-10 is critical to the enrichment of IL-10-producing CD40(hi)CD5(+) regulatory B cells in vitro and in vivo.

    PubMed

    Kim, Hyuk Soon; Lee, Jun Ho; Han, Hee Dong; Kim, A-Ram; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Lee, Dajeong; Lee, Min Bum; Park, Yeong Min; Kim, Hyung Sik; Kim, Young Mi; You, Ji Chang; Choi, Wahn Soo

    2015-01-01

    IL-10-producing B (Breg) cells regulate various immune responses. However, their phenotype remains unclear. CD40 expression was significantly increased in B cells by LPS, and the Breg cells were also enriched in CD40(hi)CD5(+) B cells. Furthermore, CD40 expression on Breg cells was increased by IL-10, CD40 ligand, and B cell-activating factor, suggesting that CD40(hi) is a common phenotype of Breg cells. LPS-induced CD40 expression was largely suppressed by an anti-IL-10 receptor antibody and in IL-10(-/-)CD5(+)CD19(+) B cells. The autocrine effect of IL-10 on the CD40 expression was largely suppressed by an inhibitor of JAK/STAT3. In vivo, the LPS treatment increased the population of CD40(hi)CD5(+) Breg cells in mice. However, the population of CD40(hi)CD5(+) B cells was minimal in IL-10(-/-) mice by LPS. Altogether, our findings show that Breg cells are largely enriched in CD40(hi)CD5(+) B cells and the autocrine effect of IL-10 is critical to the formation of CD40(hi)CD5(+) Breg cells.

  20. [Evaluation of percentage of lymphocytes B with expression of co-receptors CD 40, CD22 and CD72 in hypertrophied adenoid at children with otitis media with effusion].

    PubMed

    Wysocka, Jolanta; Zelazowska-Rutkowska, Beata; Ratomski, Karol; Skotnicka, Bozena; Hassmann-Poznańska, Elzbieta

    2009-01-01

    In hypertrophied adenoid lymphocytes B make up about 60% all lymphocytes. When the lymphocytes B come in interaction with antigens this membranes signal be passed through their receptor (BCR) to interior of cell. This signal affect modulation on gene expression, activation from which depends activation, anergy or apoptosis of lymphocyte B. Accompany BCR co-receptors regulate his functions influence stimulate or inhibitive. To the most important co-receptors stepping out on lymphocyte B belong: CD40, CD22, CD72. The aim of study was evaluation of lymphocytes B (CD19) with co-expression with CD72 and CD40 receptors in hypertrophied adenoid with at children with otitis media with effusion. An investigation was executed in hypertrophied adenoids with or without otitis media with effusion. By flow cytometry percentage of lymphocytes B with co-receptors CD 40, CD22 and CD72 in was analyzed. The percentages of CD19+CD72+ lymphocytes in the group of children with adenoid hypertrophy and exudative otitis media were lower as compared to the reference group. However, the percentages of CD19+CD22+, CD19+CD40+ in the study group was approximate to the reference group. The lower percentage of lymphocytes B CD72 + near approximate percentages of lymphocytes B CD40+ and BCD22+ at children with otitis media with effusion can be the cause of incorrect humoral response in hypertrophied adenoid at children. Maybe it is cause reduced spontaneous production IgA and IgG through lymphocyte at children with otitis media with effusion.

  1. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells.

    PubMed

    Tang, Song; Cai, Qingsong; Chibli, Hicham; Allagadda, Vinay; Nadeau, Jay L; Mayer, Gregory D

    2013-10-15

    Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO4 but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Evaluation of the impact of chitosan/DNA nanoparticles on the differentiation of human naive CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Liu, Lanxia; Bai, Yuanyuan; Zhu, Dunwan; Song, Liping; Wang, Hai; Dong, Xia; Zhang, Hailing; Leng, Xigang

    2011-06-01

    Chitosan (CS) is one of the most widely studied polymers in non-viral gene delivery since it is a cationic polysaccharide that forms nanoparticles with DNA and hence protects the DNA against digestion by DNase. However, the impact of CS/DNA nanoparticle on the immune system still remains poorly understood. Previous investigations did not found CS/DNA nanoparticles had any significant impact on the function of human and murine macrophages. To date, little is known about the interaction between CS/DNA nanoparticles and naive CD4+ T cells. This study was designed to investigate whether CS/DNA nanoparticles affect the initial differentiation direction of human naive CD4+ T cells. The indirect impact of CS/DNA nanoparticles on naive CD4+ T cell differentiation was investigated by incubating the nanoparticles with human macrophage THP-1 cells in one chamber of a transwell co-incubation system, with the enriched human naive CD4+ T cells being placed in the other chamber of the transwell. The nanoparticles were also co-incubated with the naive CD4+ T cells to explore their direct impact on naive CD4+ T cell differentiation by measuring the release of IL-4 and IFN-γ from the cells. It was demonstrated that CS/DNA nanoparticles induced slightly elevated production of IL-12 by THP-1 cells, possibly owing to the presence of CpG motifs in the plasmid. However, this macrophage stimulating activity was much less significant as compared with lipopolysaccharide and did not impact on the differentiation of the naive CD4+ T cells. It was also demonstrated that, when directly exposed to the naive CD4+ T cells, the nanoparticles induced neither the activation of the naive CD4+ T cells in the absence of recombinant cytokines (recombinant human IL-4 or IFN-γ) that induce naive CD4+ T cell polarization, nor any changes in the differentiation direction of naive CD4+ T cells in the presence of the corresponding cytokines.

  3. Cutting edge: the relative distribution of T cells responding to chemically dominant or minor epitopes of lysozyme is not affected by CD40-CD40 ligand and B7-CD28-CTLA-4 costimulatory pathways.

    PubMed

    DiPaolo, Richard J; Unanue, Emil R

    2002-09-15

    We examined the frequencies and specificities of the CD4+ T cell responses to the protein hen egg white lysozyme in mice deficient in the CD40-CD40 ligand or B7-CD28 costimulatory pathways. The frequency of T cells was decreased by between 3- and 4-fold in CD40-/- mice, and 12-fold in B7-1/B7-2-/- mice, but surprisingly, the relative distribution of T cells responding to peptides that were presented at levels that differed by >250-fold was similar. We also examined the CD4 response after blocking the regulatory molecule CTLA-4 during immunization. We observed no difference in either the frequency or specificity of the CD4+ T cell response if CTLA-4 was blocking during priming. Thus, the T cell response was generated toward the constellation of chemically dominant and subdominant epitopes as a whole, and did not discriminate among them based on their relative abundance.

  4. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L.

    PubMed

    Modlitbová, Pavlína; Novotný, Karel; Pořízka, Pavel; Klus, Jakub; Lubal, Přemysl; Zlámalová-Gargošová, Helena; Kaiser, Jozef

    2018-01-01

    The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl 2 and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50 168h values were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl 2 . However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd 2+ ions dissolved from Cd-based QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models

    PubMed Central

    Shoji, Takuhiro; Saito, Ryuta; Chonan, Masashi; Shibahara, Ichiyo; Sato, Aya; Kanamori, Masayuki; Sonoda, Yukihiko; Kondo, Toru; Ishii, Naoto; Tominaga, Teiji

    2016-01-01

    Background Glioblastoma is one of the most malignant brain tumors in adults and has a dismal prognosis. In a previous report, we reported that CD40, a TNF-R-related cell surface receptor, and its ligand CD40L were associated with glioma outcomes. Here we attempted to activate CD40 signaling in the tumor and determine if it exerted therapeutic efficacy. Methods CD40 expression was examined in 3 mouse glioma cell lines (GL261, NSCL61, and bRiTs-G3) and 5 human glioma cell lines (U87, U251, U373, T98, and A172). NSCL61 and bRiTs-G3, as glioma stem cells, also expressed the glioma stem cell markers MELK and CD44. In vitro, we demonstrated direct antitumor effects of an anti-CD40 agonistic monoclonal antibody (FGK45) against the cell lines. The efficacy of FGK45 was examined by local convection-enhanced delivery of the monoclonal antibody against each glioma model. Results CD40 was expressed in all mouse and human cell lines tested and was found at the cell membrane of each of the 3 mouse cell lines. FGK45 administration induced significant, direct antitumor effects in vitro. The local delivery of FGK45 significantly prolonged survival compared with controls in the NSCL61 and bRiTs-G3 models, but the effect was not significant in the GL261 model. Increases in apoptosis and CD4+ and CD8+ T cell infiltration were observed in the bRiTs-G3 model after FGK45 treatment. Conclusions Local delivery of FGK45 significantly prolonged survival in glioma stem cell models. Thus, local delivery of this monoclonal antibody is promising for immunotherapy against gliomas. PMID:26917236

  6. DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals.

    PubMed

    Li, Jinyao; Geng, Shuang; Liu, Xiuping; Liu, Hu; Jin, Huali; Liu, Chang-Gong; Wang, Bin

    2013-10-01

    We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c(+)CD40(low)IL-10(+) regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway.

  7. DNA and protein co-administration induces tolerogenic dendritic cells through DC-SIGN mediated negative signals

    PubMed Central

    Li, Jinyao; Geng, Shuang; Liu, Xiuping; Liu, Hu; Jin, Huali; Liu, Chang-Gong; Wang, Bin

    2013-01-01

    We previously demonstrated that DNA and protein co-administration induced differentiation of immature dendritic cells (iDCs) into CD11c+CD40lowIL-10+ regulatory DCs (DCregs) via the caveolin-1 (Cav-1) -mediated signal pathway. Here, we demonstrate that production of IL-10 and the low expression of CD40 play a critical role in the subsequent induction of regulatory T cells (Tregs) by the DCregs. We observed that DNA and protein were co-localized with DC-SIGN in caveolae and early lysosomes in the treated DCs, as indicated by co-localization with Cav-1 and EEA-1 compartment markers. DNA and protein also co-localized with LAMP-2. Gene-array analysis of gene expression showed that more than a thousand genes were significantly changed by the DC co-treatment with DNA + protein compared with controls. Notably, the level of DC-SIGN expression was dramatically upregulated in pOVA + OVA co-treated DCs. The expression levels of Rho and Rho GNEF, the down-stream molecules of DC-SIGN mediated signal pathway, were also greatly upregulated. Further, the level of TLR9, the traditional DNA receptor, was significantly downregulated. These results suggest that DC-SIGN as the potential receptor for DNA and protein might trigger the negative pathway to contribute the induction of DCreg combining with Cav-1 mediated negative signal pathway. PMID:24051433

  8. Reference System of DNA and Protein Sequences on CD-ROM

    NASA Astrophysics Data System (ADS)

    Nasu, Hisanori; Ito, Toshiaki

    DNASIS-DBREF31 is a database for DNA and Protein sequences in the form of optical Compact Disk (CD) ROM, developed and commercialized by Hitachi Software Engineering Co., Ltd. Both nucleic acid base sequences and protein amino acid sequences can be retrieved from a single CD-ROM. Existing database is offered in the form of on-line service, floppy disks, or magnetic tape, all of which have some problems or other, such as usability or storage capacity. DNASIS-DBREF31 newly adopt a CD-ROM as a database device to realize a mass storage and personal use of the database.

  9. Immunosuppression With CD40 Costimulatory Blockade Plus Rapamycin for Simultaneous Islet-Kidney Transplantation in Nonhuman Primates.

    PubMed

    Oura, T; Hotta, K; Lei, J; Markmann, J; Rosales, I; Dehnadi, A; Kawai, K; Ndishabandi, D; Smith, R-N; Cosimi, A B; Kawai, T

    2017-03-01

    The lack of a reliable immunosuppressive regimen that effectively suppresses both renal and islet allograft rejection without islet toxicity hampers a wider clinical application of simultaneous islet-kidney transplantation (SIK). Seven MHC-mismatched SIKs were performed in diabetic cynomolgus monkeys. Two recipients received rabbit antithymocyte globulin (ATG) induction followed by daily tacrolimus and rapamycin (ATG/Tac/Rapa), and five recipients were treated with anti-CD40 monoclonal antibody (mAb) and rapamycin (aCD40/Rapa). Anti-inflammatory therapy, including anti-interleukin-6 receptor mAb and anti-tumor necrosis factor-α mAb, was given in both groups. The ATG/Tac/Rapa recipients failed to achieve long-term islet allograft survival (19 and 26 days) due to poor islet engraftment and cytomegalovirus pneumonia. In contrast, the aCD40/Rapa regimen provided long-term islet and kidney allograft survival (90, 94, >120, >120, and >120 days), with only one recipient developing evidence of allograft rejection. The aCD40/Rapa regimen was also tested in four kidney-alone transplant recipients. All four recipients achieved long-term renal allograft survival (100% at day 120), which was superior to renal allograft survival (62.9% at day 120) with triple immunosuppressive regimen (tacrolimus, mycophenolate mofetil, and steroids). The combination of anti-CD40 mAb and rapamycin is an effective and nontoxic immunosuppressive regimen that uses only clinically available agents for kidney and islet recipients. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  10. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection.

    PubMed

    Palmer, Clovis S; Duette, Gabriel A; Wagner, Marc C E; Henstridge, Darren C; Saleh, Suah; Pereira, Candida; Zhou, Jingling; Simar, David; Lewin, Sharon R; Ostrowski, Matias; McCune, Joseph M; Crowe, Suzanne M

    2017-10-01

    High glucose transporter 1 (Glut1) surface expression is associated with increased glycolytic activity in activated CD4+ T cells. Phosphatidylinositide 3-kinases (PI3K) activation measured by p-Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrates hyperresponsive PI3K-mammalian target of rapamycin signaling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)-treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in 'virologically suppressed' cART-treated HIV+ persons. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  11. Virological failure and development of new resistance mutations according to CD4 count at combination antiretroviral therapy initiation.

    PubMed

    Jose, S; Quinn, K; Dunn, D; Cox, A; Sabin, C; Fidler, S

    2016-05-01

    No randomized controlled trials have yet reported an individual patient benefit of initiating combination antiretroviral therapy (cART) at CD4 counts > 350 cells/μL. It is hypothesized that earlier initiation of cART in asymptomatic and otherwise healthy individuals may lead to poorer adherence and subsequently higher rates of resistance development. In a large cohort of HIV-positive individuals, we investigated the emergence of new resistance mutations upon virological treatment failure according to the CD4 count at the initiation of cART. Of 7918 included individuals, 6514 (82.3%), 996 (12.6%) and 408 (5.2%) started cART with a CD4 count ≤ 350, 351-499 and ≥ 500 cells/μL, respectively. Virological rebound occurred while on cART in 488 (7.5%), 46 (4.6%) and 30 (7.4%) with a baseline CD4 count ≤ 350, 351-499 and ≥ 500 cells/μL, respectively. Only four (13.0%) individuals with a baseline CD4 count > 350 cells/μL in receipt of a resistance test at viral load rebound were found to have developed new resistance mutations. This compared to 107 (41.2%) of those with virological failure who had initiated cART with a CD4 count < 350 cells/μL. We found no evidence of increased rates of resistance development when cART was initiated at CD4 counts above 350 cells/μL. © 2015 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.

  12. Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy.

    PubMed

    Martino, David; Joo, Jihoon E; Sexton-Oates, Alexandra; Dang, Thanh; Allen, Katrina; Saffery, Richard; Prescott, Susan

    2014-07-01

    Food allergy is mediated by a combination of genetic and environmental risk factors, potentially mediated by epigenetic mechanisms. CD4+ T-cells are key drivers of the allergic response, and may therefore harbor epigenetic variation in association with the disease phenotype. Here we retrospectively examined genome-wide DNA methylation profiles (~450,000 CpGs) from CD4+ T-cells on a birth cohort of 12 children with IgE-mediated food allergy diagnosed at 12-months, and 12 non-allergic controls. DNA samples were available at two time points, birth and 12-months. control comparisons of CD4+ methylation profiles identified 179 differentially methylated probes (DMP) at 12-months and 136 DMP at birth (FDR-adjusted P value<0.05, delta β>0.1). Approximately 30% of DMPs were coincident with previously annotated SNPs. A total of 92 [corrected] allergy-associated non-SNP DMPs were present at birth when individuals were initially disease-free, potentially implicating these loci in the causal pathway. Pathway analysis of differentially methylated genes identified several MAP kinase signaling molecules. Mass spectrometry was used to validate 15 CpG sites at 3 candidate genes. Combined analysis of differential methylation with gene expression profiles revealed gene expression differences at some but not all allergy associated differentially methylated genes. Thus, dysregulation of DNA methylation at MAPK signaling-associated genes during early CD4+ T-cell development may contribute to suboptimal T-lymphocyte responses in early childhood associated with the development of food allergy.

  13. Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins.

    PubMed

    Gangadhara, Sailaja; Kwon, Young-Man; Jeeva, Subbiah; Quan, Fu-Shi; Wang, Baozhong; Moss, Bernard; Compans, Richard W; Amara, Rama Rao; Jabbar, M Abdul; Kang, Sang-Moo

    2017-12-19

    Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.

  14. Relationships among DNA hypomethylation, Cd, and Pb exposure and risk of cigarette smoking-related urothelial carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chi-Jung

    Cigarette smoking and environmental exposure to heavy metals are important global health issues, especially for urothelial carcinoma (UC). However, the effects of cadmium and lead exposure, as well as the levels of DNA hypomethylation, on UC risk are limited. We evaluated the possible exposure sources of Cd and Pb and the relationship among DNA hypomethylation, urinary Cd and Pb levels, and UC risk. We recruited 209 patients with UC and 417 control patients for a hospital-based case–control study between June 2011 and August 2014. We collected environmental exposure-related information with questionnaires. Blood and urine samples were analyzed to measure themore » Cd and Pb exposure and 5-methyl-2′-deoxycytidine levels as a proxy for DNA methylation. Multivariate logistic regression and 95% confidence intervals were applied to estimate the risk for UC. Study participants with high Cd and Pb exposure in blood or urine had significantly increased risk of UC, especially among the smokers. After adjusting for age and gender, the possible connections of individual cumulative cigarette smoking or herb medicine exposure with the increased levels of Cd and Pb were observed in the controls. Participants with 8.66%–12.39% of DNA hypomethylation had significantly increased risk of UC compared with those with ≥ 12.39% of DNA hypomethylation. Environmental factors including cigarette smoking and herb medicine may contribute to the internal dose of heavy metals levels. Repeat measurements of heavy metals with different study design, detailed dietary information, and types of herb medicine should be recommended for exploring UC carcinogenesis in future studies. - Highlights: • Smoking and herb medicine ingestion is associated with increased urinary Cd and Pb levels. • Urinary levels of Cd and Pb are associated with increased risk of UC. • UC carcinogenesis might have partially resulted from DNA hypomethylation.« less

  15. Study on the binding of procaine hydrochloride to DNA/DNA bases and the effect of CdS nanoparticles on the binding behavior.

    PubMed

    Ping, Gang; Lv, Gang; Gutmann, Sebastian; Chen, Chen; Zhang, Renyun; Wang, Xuemei

    2006-01-01

    The interaction between procaine hydrochloride and DNA/DNA bases in the absence and presence of cadmium sulfide (CdS) nanoparticles has been explored in this study by using differential pulse voltammetry, atomic force microscopy (AFM) and so on, which illustrates the different binding behaviors of procaine hydrochloride with different DNA bases. The results clearly indicate that the binding of purines to procaine hydrochloride is stronger than that of pyrimidines and the binding affinity is in the order of G > A > T > C. In addition, it was observed that the presence of CdS nanoparticles could remarkably enhance the probing sensitivity for the interaction between procaine hydrochloride and DNA/DNA bases. Furthermore, AFM study illustrates that procaine hydrochloride can bind to some specific sites of DNA chains, which indicates that procaine hydrochloride may interact with some special sequences of DNA.

  16. Functional Analysis of CD28/B7 and CD40/CD40L Costimulation During the in vivo Type 2 Immune Response

    DTIC Science & Technology

    1995-10-06

    these activation markers on B cells and changes in B cell size (forward light scatter) were analyzed by flow cytometry (Figure 7). B cell surface B7...activation ofnaive CD4+ Th cells requires two signals delivered from antigen presenting cells (APes). The engagement ofthe T cell surface receptor...shown that T cell surface ii molecule CD28, and its homologue CTLA-4, can provide costimulatory signals to 10 cells when they interact with their ligands

  17. Flow cytometric sex sorting affects CD4 membrane distribution and binding of exogenous DNA on bovine sperm cells.

    PubMed

    Domingues, William Borges; da Silveira, Tony Leandro Rezende; Komninou, Eliza Rossi; Monte, Leonardo Garcia; Remião, Mariana Härter; Dellagostin, Odir Antônio; Corcini, Carine Dahl; Varela Junior, Antônio Sergio; Seixas, Fabiana Kömmling; Collares, Tiago; Campos, Vinicius Farias

    2017-08-01

    Bovine sex-sorted sperm have been commercialized and successfully used for the production of transgenic embryos of the desired sex through the sperm-mediated gene transfer (SMGT) technique. However, sex-sorted sperm show a reduced ability to internalize exogenous DNA. The interaction between sperm cells and the exogenous DNA has been reported in other species to be a CD4-like molecule-dependent process. The flow cytometry-based sex-sorting process subjects the spermatozoa to different stresses causing changes in the cell membrane. The aim of this study was to elucidate the relationship between the redistribution of CD4-like molecules and binding of exogenous DNA to sex-sorted bovine sperm. In the first set of experiments, the membrane phospholipid disorder and the redistribution of the CD4 were evaluated. The second set of experiments was conducted to investigate the effect of CD4 redistribution on the mechanism of binding of exogenous DNA to sperm cells and the efficiency of lipofection in sex-sorted bovine sperm. Sex-sorting procedure increased the membrane phospholipid disorder and induced the redistribution of CD4-like molecules. Both X-sorted and Y-sorted sperm had decreased DNA bound to membrane in comparison with the unsorted sperm; however, the binding of the exogenous DNA was significantly increased with the addition of liposomes. Moreover, we demonstrated that the number of sperm-bound exogenous DNA was decreased when these cells were preincubated with anti-bovine CD4 monoclonal antibody, supporting our hypothesis that CD4-like molecules indeed play a crucial role in the process of exogenous DNA/bovine sperm cells interaction.

  18. Activation of cathepsins B and L in mouse lymphosarcoma tissue under the effect of cyclophosphamide is associated with apoptosis induction and infiltration by mononuclear phagocytes.

    PubMed

    Zhanaeva, S Ya; Mel'nikova, E V; Trufakin, V A; Korolenko, T A

    2013-11-01

    We analyzed activities of lysosomal cystein cathepsins B and L in mouse LS lymphosarcoma and its drug-resistant RLS 40 strain and their correlations with the dynamics of the percentage of cells with fragmented DNA and CD14 (+) phagocytes over 3 days after cyclophosphamide injection. LS regression and inhibition of RLS 40 growth after cyclophosphamide injection were paralleled by an increase in cathepsins B and L activities in tumor tissues. The antitumor effect of cyclophosphamide associated with apoptosis intensity and protease activities were significantly higher in LS. Positive correlations between activities of cathepsins B and L and the LS tissue content of cells with fragmented DNA and CD14 (+) phagocytes and negative correlations thereof with tumor weight were detected. It seems that the increase in cathepsins B and L activities in LS tissues was caused by cyclophosphamide induction of apoptosis and depended on the level of tumor cell infiltration with mononuclear phagocytes.

  19. HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing

    PubMed Central

    Preußner, Marco; Schreiner, Silke; Hung, Lee-Hsueh; Porstner, Martina; Jäck, Hans-Martin; Benes, Vladimir; Rätsch, Gunnar; Bindereif, Albrecht

    2012-01-01

    CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4–6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4–6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons. PMID:22402488

  20. Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for adoptive transfer into recipients of allogeneic stem cell transplants.

    PubMed

    Rauser, Georg; Einsele, Hermann; Sinzger, Christian; Wernet, Dorothee; Kuntz, Gabriele; Assenmacher, Mario; Campbell, John D M; Topp, Max S

    2004-05-01

    Adoptive transfer of cytomegalovirus (CMV)-specific T cells can restore long-lasting, virus-specific immunity and clear CMV viremia in recipients of allogeneic stem cell transplants if CD4(+) and CD8(+) CMV-specific T cells are detected in the recipient after transfer. Current protocols for generating virus-specific T cells use live virus, require leukapheresis of the donor, and are time consuming. To circumvent these limitations, a clinical-scale protocol was developed to generate CMV-specific T cells by using autologous cellular and serum components derived from a single 500-mL blood draw. CMV-specific T cells were stimulated simultaneously with CMV-specific major histocompatibility complex class I (MHC I)- restricted peptides and CMV antigen. Activated T cells were isolated with the interferon-gamma (IFN-gamma) secretion assay and expanded for 10 days. In 8 randomly selected, CMV-seropositive donors, 1.34 x 10(8) combined CD4(+) and CD8(+) CMV-specific T cells, on average, were generated, as determined by antigen-triggered IFN-gamma production. CMV-infected fibroblasts were efficiently lysed by the generated T cells, and CMV-specific CD4(+) and CD8(+) T cells expanded if they were stimulated with natural processed antigen. On the other hand, CD4(+) and CD8(+) T cell-mediated alloreactivity of generated CMV-specific T-cell lines was reduced compared with that of the starting population. In conclusion, the culture system developed allowed the rapid generation of allodepleted, highly enriched, combined CD4(+) and CD8(+) CMV-specific T cells under conditions mimicking good manufacturing practice.

  1. Persistence of Protective Immunity to Malaria Induced by DNA Priming and Poxvirus Boosting: Characterization of Effector and Memory CD8+-T-Cell Populations

    PubMed Central

    Sedegah, Martha; Brice, Gary T.; Rogers, William O.; Doolan, Denise L.; Charoenvit, Yupin; Jones, Trevor R.; Majam, Victoria F.; Belmonte, Arnel; Lu, Minh; Belmonte, Maria; Carucci, Daniel J.; Hoffman, Stephen L.

    2002-01-01

    The persistence of immunity to malaria induced in mice by a heterologous DNA priming and poxvirus boosting regimen was characterized. Mice were immunized by priming with DNA vaccine plasmids encoding the Plasmodium yoelii circumsporozoite protein (PyCSP) and murine granulocyte-macrophage colony-stimulating factor and boosting with recombinant vaccinia encoding PyCSP. BALB/c mice immunized with either high-dose (100 μg of p PyCSP plus 30 μg of pGM-CSF) or low-dose (1 μg of p PyCSP plus 1 μg of pGM-CSF DNA) priming were protected against challenge with 50 P. yoelii sporozoites. Protection 2 weeks after immunization was 70 to 100%, persisted at this level for at least 20 weeks, and declined to 30 to 40% by 28 weeks. Eight of eight mice protected at 20 weeks were still protected when rechallenged at 40 weeks. The antigen (Ag)-specific effector CD8+-T-cell population present 2 weeks after boosting had ex vivo Ag-specific cytolytic activity, expressed both gamma interferon (IFN-γ) and tumor necrosis factor alpha, and constituted 12 to 20% of splenic CD8+ T cells. In contrast, the memory CD8+-Ag-specific-cell population at 28 weeks lacked cytolytic activity and constituted only 6% of splenic CD8+ T cells, but at the single-cell level it produced significantly higher levels of IFN-γ than the effectors. High levels of Ag- or parasite-specific antibodies present 2 weeks after boosting had declined three- to sevenfold by 28 weeks. Low-dose priming was similarly immunogenic and as protective as high-dose priming against a 50-, but not a 250-, sporozoite challenge. These results demonstrate that a heterologous priming and boosting vaccination can provide lasting protection against malaria in this model system. PMID:12065488

  2. Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models.

    PubMed

    Shoji, Takuhiro; Saito, Ryuta; Chonan, Masashi; Shibahara, Ichiyo; Sato, Aya; Kanamori, Masayuki; Sonoda, Yukihiko; Kondo, Toru; Ishii, Naoto; Tominaga, Teiji

    2016-08-01

    Glioblastoma is one of the most malignant brain tumors in adults and has a dismal prognosis. In a previous report, we reported that CD40, a TNF-R-related cell surface receptor, and its ligand CD40L were associated with glioma outcomes. Here we attempted to activate CD40 signaling in the tumor and determine if it exerted therapeutic efficacy. CD40 expression was examined in 3 mouse glioma cell lines (GL261, NSCL61, and bRiTs-G3) and 5 human glioma cell lines (U87, U251, U373, T98, and A172). NSCL61 and bRiTs-G3, as glioma stem cells, also expressed the glioma stem cell markers MELK and CD44. In vitro, we demonstrated direct antitumor effects of an anti-CD40 agonistic monoclonal antibody (FGK45) against the cell lines. The efficacy of FGK45 was examined by local convection-enhanced delivery of the monoclonal antibody against each glioma model. CD40 was expressed in all mouse and human cell lines tested and was found at the cell membrane of each of the 3 mouse cell lines. FGK45 administration induced significant, direct antitumor effects in vitro. The local delivery of FGK45 significantly prolonged survival compared with controls in the NSCL61 and bRiTs-G3 models, but the effect was not significant in the GL261 model. Increases in apoptosis and CD4(+) and CD8(+) T cell infiltration were observed in the bRiTs-G3 model after FGK45 treatment. Local delivery of FGK45 significantly prolonged survival in glioma stem cell models. Thus, local delivery of this monoclonal antibody is promising for immunotherapy against gliomas. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. B-DNA to Z-DNA structural transitions in the SV40 enhancer: stabilization of Z-DNA in negatively supercoiled DNA minicircles

    NASA Technical Reports Server (NTRS)

    Gruskin, E. A.; Rich, A.

    1993-01-01

    During replication and transcription, the SV40 control region is subjected to significant levels of DNA unwinding. There are three, alternating purine-pyrimidine tracts within this region that can adopt the Z-DNA conformation in response to negative superhelix density: a single copy of ACACACAT and two copies of ATGCATGC. Since the control region is essential for both efficient transcription and replication, B-DNA to Z-DNA transitions in these vital sequence tracts may have significant biological consequences. We have synthesized DNA minicircles to detect B-DNA to Z-DNA transitions in the SV40 enhancer, and to determine the negative superhelix density required to stabilize the Z-DNA. A variety of DNA sequences, including the entire SV40 enhancer and the two segments of the enhancer with alternating purine-pyrimidine tracts, were incorporated into topologically relaxed minicircles. Negative supercoils were generated, and the resulting topoisomers were resolved by electrophoresis. Using an anti-Z-DNA Fab and an electrophoretic mobility shift assay, Z-DNA was detected in the enhancer-containing minicircles at a superhelix density of -0.05. Fab saturation binding experiments demonstrated that three, independent Z-DNA tracts were stabilized in the supercoiled minicircles. Two other minicircles, each with one of the two alternating purine-pyrimidine tracts, also contained single Z-DNA sites. These results confirm the identities of the Z-DNA-forming sequences within the control region. Moreover, the B-DNA to Z-DNA transitions were detected at superhelix densities observed during normal replication and transcription processes in the SV40 life cycle.

  4. CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells

    PubMed Central

    Zhang, Xiaolong; Chang Li, Xian; Xiao, Xiang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2013-01-01

    The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. PMID:24155942

  5. B cell TLR1/2, TLR4, TLR7 and TLR9 interact in induction of class switch DNA recombination: modulation by BCR and CD40, and relevance to T-independent antibody responses.

    PubMed

    Pone, Egest J; Lou, Zheng; Lam, Tonika; Greenberg, Milton L; Wang, Rui; Xu, Zhenming; Casali, Paolo

    2015-02-01

    Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS-mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing

  6. B cell TLR1/2, TLR4, TLR7 and TLR9 interact in induction of class switch DNA recombination: modulation by BCR and CD40, and relevance to T-independent antibody responses

    PubMed Central

    Pone, Egest J.; Lou, Zheng; Lam, Tonika; Greenberg, Milton L.; Wang, Rui; Xu, Zhenming; Casali, Paolo

    2015-01-01

    Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing

  7. p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibold, Kristina; Ehrenschwender, Martin, E-mail: martin.ehrenschwender@ukr.de

    CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified themore » multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.« less

  8. Protease activity of Per a 10 potentiates Th2 polarization by increasing IL-23 and OX40L.

    PubMed

    Agrawal, Komal; Kale, Sagar L; Arora, Naveen

    2015-12-01

    Proteases are implicated in exacerbation of allergic diseases. In this study, the role of proteolytic activity of Per a 10 was evaluated on Th2 polarization. Intranasal administration of Per a 10 in mice led to allergic airway inflammation as seen by higher IgE levels, cellular infiltration, IL-17A, and Th2 cytokines, whereas, inactive (Δ)Per a 10 showed attenuated response. There was an increased OX40L expression on lung and lymph node dendritic cells in Per a 10 immunized group and on Per a 10 stimulated BMDCs. Reduction in CD40 expression without any change at transcript level in lungs of Per a 10 immunized mice suggested CD40 cleavage. BMDCs pulsed with Per a 10 showed reduced CD40 expression with lower IL-12p70 secretion as compared to heat inactivated Per a 10. IL-23, TNF-α, and IL-6 levels were significantly higher in Per a 10 stimulated BMDCs supernatant. In DC-T cell coculture studies, Per a 10 pulsed BMDCs showed higher levels of IL-4 and IL-13 that were reduced on blocking of either IL-23 or OX40L. In conclusion, the data suggests a critical role of protease activity of Per a 10 in promoting Th2 polarization by increasing IL-23 secretion and OX40L expression on dendritic cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Glutathione modified CdTe quantum dots as a label for studying DNA interactions with platinum based cytostatics.

    PubMed

    Ryvolova, Marketa; Smerkova, Kristyna; Chomoucka, Jana; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene

    2013-03-01

    Cisplatin, carboplatin, and oxaliplatin represent three generations of platinum based drugs applied successfully for cancer treatment. As a consequence of the employment of platinum based cytostatics in the cancer treatment, it became necessary to study the mechanism of their action. Current accepted opinion is the formation of Pt-DNA adducts, but the mechanism of their formation is still unclear. Nanomaterials, as a progressively developing branch, can offer a tool for studying the interactions of these drugs with DNA. In this study, fluorescent CdTe quantum dots (QDs, λem = 525 nm) were employed to investigate the interactions of platinum cytostatics (cisplatin, carboplatin, and oxaliplatin) with DNA fragment (500 bp, c = 25 μg/mL). Primarily, the fluorescent behavior of QDs in the presence of platinum cytostatics was monitored and major differences in the interaction of QDs with tested drugs were observed. It was found that the presence of carboplatin (c = 0.25 mg/mL) had no significant influence on QDs fluorescence; however cisplatin and oxaliplatin quenched the fluorescence significantly (average decrease of 20%) at the same concentration. Subsequently, the amount of platinum incorporated in DNA was determined by QDs fluorescence quenching. Best results were reached using oxaliplatin (9.4% quenching). Linear trend (R(2) = 0.9811) was observed for DNA platinated by three different concentrations of oxaliplatin (0.250, 0.125, and 0.063 mg/mL). Correlation with differential pulse voltammetric measurements provided linear trend (R(2) = 0.9511). As a conclusion, especially in the case of oxaliplatin-DNA adducts, the quenching was the most significant compared to cisplatin and nonquenching carboplatin. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Yu-Feng; Liu, Hong-Sheng

    2018-02-01

    In the present work, the binding interaction between lenalidomide (LEN) and calf thymus DNA (ct-DNA) was systematically studied by using fluorescence, ultraviolet-visible (UV-vis) absorption, circular dichroism (CD) spectroscopies under imitated physiological conditions (pH = 7.4) coupled with molecular docking. It was found that LEN was bound to ct-DNA with high binding affinity (Ka = 2.308 × 105 M-1 at 283 K) through groove binding as evidenced by a slight decrease in the absorption intensity in combination with CD spectra. Thermodynamic parameters (ΔG < 0, ΔH > 0 and ΔS < 0) of the LEN-DNA system obtained at three different temperatures suggested that the binding process was spontaneous and was primarily driven by hydrogen bonds and hydrophobic interaction. Furthermore, competitive binding experiments with ethidium bromide and 4‧, 6-dia-midino-2-phenylindoleas probes showed that LEN could preferentially bind in the minor groove of double-stranded DNA. The average lifetime of LEN was calculated to be 7.645 ns. The φ of LEN was measured as 0.09 and non-radiation energy transfer between LEN and DNA had occurred. The results of the molecular docking were consistent with the experimental results. This study explored the potential applicability of the spectroscopic properties of LEN and also investigated its interactions with relevant biological targets. In addition, it will provide some theoretical references for the deep research of simultaneous administration of LEN with other drugs.

  11. CD40 agonist converting CTL exhaustion via the activation of the mTORC1 pathway enhances PD-1 antagonist action in rescuing exhausted CTLs in chronic infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Aizhang; Wang, Rong; Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan

    Expansion of PD-1-expressing CD8{sup +} cytotoxic T lymphocytes (CTLs) and associated CTL exhaustion are chief issues for ineffective virus-elimination in chronic infectious diseases. PD-1 blockade using antagonistic anti-PD-L1 antibodies results in a moderate conversion of CTL exhaustion. We previously demonstrated that CD40L signaling of ovalbumin (OVA)-specific vaccine, OVA-Texo, converts CTL exhaustion via the activation of the mTORC1 pathway in OVA-expressing adenovirus (AdVova)-infected B6 mice showing CTL inflation and exhaustion. Here, we developed AdVova-infected B6 and transgenic CD11c-DTR (termed AdVova-B6 and AdVova-CD11c-DTR) mice with chronic infection, and assessed a potential effect of CD40 agonist on the conversion of CTL exhaustion andmore » on a potential enhancement of PD-1 antagonist action in rescuing exhausted CTLs in our chronic infection models. We demonstrate that a single dose of anti-CD40 alone can effectively convert CTL exhaustion by activating the mTORC1 pathway, leading to CTL proliferation, up-regulation of an effector-cytokine IFN-γ and the cytolytic effect in AdVova-B6 mice. Using anti-CD4 antibody and diphtheria toxin (DT) to deplete CD4{sup +} T-cells and dendritic cells (DCs), we discovered that the CD40 agonist-induced conversion in AdVova-B6 and AdVova-CD11c-DTR mice is dependent upon host CD4{sup +} T-cell and DC involvements. Moreover, CD40 agonist significantly enhances PD-1 antagonist effectiveness in rescuing exhausted CTLs in chronic infection. Taken together, our data demonstrate the importance of CD40 signaling in the conversion of CTL exhaustion and its ability to enhance PD-1 antagonist action in rescuing exhausted CTLs in chronic infection. Therefore, our findings may positively impact the design of new therapeutic strategies for chronic infectious diseases. - Highlights: • Anti-CD40 agonistic Ab can convert CTL exhaustion in chronically infected mice. • The conversion relies on the activation of the mTORC1

  12. L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation.

    PubMed

    Heilingloh, Christiane S; Kummer, Mirko; Mühl-Zürbes, Petra; Drassner, Christina; Daniel, Christoph; Klewer, Monika; Steinkasserer, Alexander

    2015-11-01

    Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such as human

  13. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    PubMed

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  14. Inhibition of murine DNA methyltransferase Dnmt3a by DNA duplexes containing pyrimidine-2(1H)-one.

    PubMed

    Cherepanova, N A; Zhuze, A L; Gromova, E S

    2010-09-01

    Here we studied the inhibition of the catalytic domain of Dnmt3a methyltransferase (Dnmt3a-CD) by DNA duplexes containing the mechanism-based inhibitor pyrimidine-2(1H)-one (P) instead of the target cytosine. It has been shown that conjugates of Dnmt3a-CD with P-DNA (DNA containing pyrimidine-2(1H)-one) are not stable to heating at 65°C in 0.1% SDS. The yield of covalent intermediate increases in the presence of the regulatory factor Dnmt3L. The importance of the DNA minor groove for covalent intermediate formation during the methylation reaction catalyzed by Dnmt3a-CD has been revealed. P-DNA was shown to inhibit Dnmt3a-CD; the IC(50) is 830 nM. The competitive mechanism of inhibition of Dnmt3a-CD by P-DNA has been elucidated. It is suggested that therapeutic effect of zebularine could be achieved by inhibition of not only Dnmt1 but also Dnmt3a.

  15. Dual Targeting Biomimetic Liposomes for Paclitaxel/DNA Combination Cancer Treatment

    PubMed Central

    Liu, Guo-Xia; Fang, Gui-Qing; Xu, Wei

    2014-01-01

    Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.4 ± 4.2 nm) with appropriate negative charge of −25.40 ± 2.7 mV. HA/FA/PD (PTX free HA/FA/PPD) showed almost no toxicity on murine malignant melanoma cell line (B16) and human hepatocellular carcinoma cell line (HepG2) (higher than 80% cell viability), demonstrating the safety of the blank nanovector. In comparison with the FA-modified PTX/DNA co-loaded liposomes (FA/PPD), HA/FA/PPD showed significant superiority in protecting the nanoparticles from aggregation in the presence of plasma and degradation by DNase I. Moreover, HA/FA/PPD could also significantly improve the transfection efficiency and cellular internalization rates on B16 cells comparing to that of FA/PPD (p < 0.05) and PPD (p < 0.01), demonstrating the great advantages of dual targeting properties. Furthermore, fluorescence microscope and flow cytometry results showed that PTX and DNA could be effectively co-delivered into the same tumor cell via HA/FA/PPD, contributing to PTX/DNA combination cancer treatment. In conclusion, the obtained HA/FA/PPD in the study could effectively target tumor cells, enhance transfection efficiency and subsequently achieve the co-delivery of PTX and DNA, displaying great potential for optimal combination therapy. PMID:25177862

  16. The use of kDNA minicircle subclass relative abundance to differentiate between Leishmania (L.) infantum and Leishmania (L.) amazonensis.

    PubMed

    Ceccarelli, Marcello; Galluzzi, Luca; Diotallevi, Aurora; Andreoni, Francesca; Fowler, Hailie; Petersen, Christine; Vitale, Fabrizio; Magnani, Mauro

    2017-05-16

    Leishmaniasis is a neglected disease caused by many Leishmania species, belonging to subgenera Leishmania (Leishmania) and Leishmania (Viannia). Several qPCR-based molecular diagnostic approaches have been reported for detection and quantification of Leishmania species. Many of these approaches use the kinetoplast DNA (kDNA) minicircles as the target sequence. These assays had potential cross-species amplification, due to sequence similarity between Leishmania species. Previous works demonstrated discrimination between L. (Leishmania) and L. (Viannia) by SYBR green-based qPCR assays designed on kDNA, followed by melting or high-resolution melt (HRM) analysis. Importantly, these approaches cannot fully distinguish L. (L.) infantum from L. (L.) amazonensis, which can coexist in the same geographical area. DNA from 18 strains/isolates of L. (L.) infantum, L. (L.) amazonensis, L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, and 62 clinical samples from L. (L.) infantum-infected dogs were amplified by a previously developed qPCR (qPCR-ML) and subjected to HRM analysis; selected PCR products were sequenced using an ABI PRISM 310 Genetic Analyzer. Based on the obtained sequences, a new SYBR-green qPCR assay (qPCR-ama) intended to amplify a minicircle subclass more abundant in L. (L.) amazonensis was designed. The qPCR-ML followed by HRM analysis did not allow discrimination between L. (L.) amazonensis and L. (L.) infantum in 53.4% of cases. Hence, the novel SYBR green-based qPCR (qPCR-ama) has been tested. This assay achieved a detection limit of 0.1 pg of parasite DNA in samples spiked with host DNA and did not show cross amplification with Trypanosoma cruzi or host DNA. Although the qPCR-ama also amplified L. (L.) infantum strains, the C q values were dramatically increased compared to qPCR-ML. Therefore, the combined analysis of C q values from qPCR-ML and qPCR-ama allowed to distinguish L. (L.) infantum and L. (L.) amazonensis in 100% of tested samples

  17. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thusmore » releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.« less

  18. CNS Macrophages Control Neurovascular Development via CD95L.

    PubMed

    Chen, Si; Tisch, Nathalie; Kegel, Marcel; Yerbes, Rosario; Hermann, Robert; Hudalla, Hannes; Zuliani, Cecilia; Gülcüler, Gülce Sila; Zwadlo, Klara; von Engelhardt, Jakob; Ruiz de Almodóvar, Carmen; Martin-Villalba, Ana

    2017-05-16

    The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Optimization of individualized graft composition: CD3/CD19 depletion combined with CD34 selection for haploidentical transplantation.

    PubMed

    Huenecke, Sabine; Bremm, Melanie; Cappel, Claudia; Esser, Ruth; Quaiser, Andrea; Bonig, Halvard; Jarisch, Andrea; Soerensen, Jan; Klingebiel, Thomas; Bader, Peter; Koehl, Ulrike

    2016-09-01

    Excessive T-cell depletion (TCD) is a prerequisite for graft manufacturing in haploidentical stem cell (SC) transplantation by using either CD34 selection or direct TCD such as CD3/CD19 depletion. To optimize graft composition we compared 1) direct or indirect TCD only, 2) a combination of CD3/CD19-depleted with CD34-selected grafts, or 3) TCD twice for depletion improvement based on our 10-year experience with 320 separations in graft manufacturing and quality control. SC recovery was significantly higher (85%, n = 187 vs. 73%, n = 115; p < 0.0001), but TCD was inferior (median log depletion, -3.6 vs. -5.2) for CD3/CD19 depletion compared to CD34 selection, respectively. For end products with less than -2.5 log TCD, a second depletion step led to a successful improvement in TCD. Thawing of grafts showed a high viability and recovery of SCs, but low NK-cell yield. To optimize individualized graft engineering, a calculator was developed to estimate the results of the final graft based on the content of CD34+ and CD3+ cells in the leukapheresis product. Finally, calculated splitting of the starting product followed by CD3/19 depletion together with CD34+ graft manipulation may enable the composition of optimized grafts with high CD34+-cell and minimal T-cell content. © 2016 AABB.

  20. Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination.

    PubMed

    Bagheri, Rita; Ahmad, Javed; Bashir, Humayra; Iqbal, Muhammad; Qureshi, M Irfan

    2017-03-01

    Sulphur (S) deficiency, cadmium (Cd) toxicity and their combinations are of wide occurrence throughout agricultural lands. We assessed the impact of short-term (2 days) and long-term (4 days) applications of cadmium (40 μg/g soil) on spinach plants grown on sulphur-sufficient (300 μM SO 4 2- ) and sulphur-deficient (30 μM SO 4 2- ) soils. Compared with the control (+S and -Cd), oxidative stress was increased by S deficiency (-S and -Cd), cadmium (+S and +Cd) and their combination stress (-S and +Cd) in the order of (S deficiency) < (Cd stress) < (S deficiency and +Cd stress). SDS-PAGE profile of leaf proteins showed a high vulnerability of rubisco large subunit (RbcL) to S deficiency. Rubisco small subunit (RbcS) was particularly sensitive to Cd as well as dual stress (+Cd and -S) but increased with Cd in the presence of S. Cysteine content in low molecular weight proteins/peptide was also affected, showing a significant increase under cadmium treatment. Components of ascorbate-glutathione antioxidant system altered their levels, showing the maximum decline in ascorbate (ASA), dehydroascorbate (DHA), total ascorbate (ASA + DHA, hereafter TA), glutathione (GSH) and total glutathione (GSH + GSSG, hereafter TG) under S deficiency. However, total ascorbate and total glutathione increased, besides a marginal increase in their reduced and oxidized forms, when Cd was applied in the presence of sufficient S. Sulphur supply also helped in increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) under Cd stress. However, their activity suffered by S deficiency and by Cd stress during S deficiency. Each stress declined the contents of soluble protein and photosynthetic pigments; the highest decline in contents of protein and pigments occurred under S deficiency and dual stress respectively. The fresh and dry weights, although affected adversely by every stress, declined most under dual stress. It

  1. Low-level viremia and proviral DNA impede immune reconstitution in HIV-1-infected patients receiving highly active antiretroviral therapy.

    PubMed

    Ostrowski, Sisse R; Katzenstein, Terese L; Thim, Per T; Pedersen, Bente K; Gerstoft, Jan; Ullum, Henrik

    2005-02-01

    Immunological and virological consequences of low-level viremia in human immunodeficiency virus (HIV) type 1-infected patients receiving highly active antiretroviral therapy (HAART) remain to be determined. For 24 months, 101 HAART-treated, HIV-1-infected patients with HIV RNA levels L were followed prospectively: HIV RNA level and CD4 and CD8 cell counts were investigated every 3 months, and proviral DNA and T cell subsets were investigated every 6 months. During follow-up, 33 patients had HIV RNA levels L at all visits (uVL patients), whereas 68 patients had HIV RNA levels >20 copies/mL at >/=1 visit (dVL patients) (median increase, 81 copies/mL [interquartile range, 37-480 copies/mL]). dVL patients had higher concentrations of CD8 cells, activated and memory T cells, and proviral DNA, compared with uVL patients (P<.05). A higher HIV RNA level was independently associated with reduced CD4 gain (P<.001). A higher HIV RNA level also was associated with increases in activated CD8(+)CD38(+) and CD8(+)HLA-DR(+) cells (P<.05), and a higher level of activated CD8(+)CD38(+) cells was independently associated with reduced CD4 gain (P<.05). A higher proviral DNA level was associated with increases in CD4(+)CD45RA(-)CD28(-) effector cells and reductions in naive CD4(+)CD45RA(+)CD62L(+) and CD8(+)CD45RA(+)CD62L(+) cells (P<.05). Higher levels of activated CD4(+)HLA-DR(+) and early differentiated CD4(+)CD45RA(-)CD28(+) cells predicted increased risk of subsequent detectable viremia in patients with undetectable HIV RNA (P<.05). These findings indicate that low-level viremia and proviral DNA are intimately associated with the immunological and virological equilibrium in patients receiving HAART.

  2. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways.

    PubMed

    Umeshappa, Channakeshava Sokke; Xie, Yufeng; Xu, Shulin; Nanjundappa, Roopa Hebbandi; Freywald, Andrew; Deng, Yulin; Ma, Hong; Xiang, Jim

    2013-01-01

    Involvement of CD4(+) helper T (Th) cells is crucial for CD8(+) cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4(+) Th's signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4(+) Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4(+) T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2K(b)/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4(+) Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4(+) Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4(+) Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.

  3. Th Cells Promote CTL Survival and Memory via Acquired pMHC-I and Endogenous IL-2 and CD40L Signaling and by Modulating Apoptosis-Controlling Pathways

    PubMed Central

    Umeshappa, Channakeshava Sokke; Xie, Yufeng; Xu, Shulin; Nanjundappa, Roopa Hebbandi; Freywald, Andrew; Deng, Yulin; Ma, Hong; Xiang, Jim

    2013-01-01

    Involvement of CD4+ helper T (Th) cells is crucial for CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4+ Th’s signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2Kb/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy. PMID:23785406

  4. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.

    PubMed

    Mace, Thomas A; Shakya, Reena; Pitarresi, Jason R; Swanson, Benjamin; McQuinn, Christopher W; Loftus, Shannon; Nordquist, Emily; Cruz-Monserrate, Zobeida; Yu, Lianbo; Young, Gregory; Zhong, Xiaoling; Zimmers, Teresa A; Ostrowski, Michael C; Ludwig, Thomas; Bloomston, Mark; Bekaii-Saab, Tanios; Lesinski, Gregory B

    2018-02-01

    Limited efficacy of immune checkpoint inhibitors in pancreatic ductal adenocarcinoma (PDAC) has prompted investigation into combination therapy. We hypothesised that interleukin 6 (IL-6) blockade would modulate immunological features of PDAC and enhance the efficacy of anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor therapy. Transcription profiles and IL-6 secretion from primary patient-derived pancreatic stellate cells (PSCs) were analyzed via Nanostring and immunohistochemistry, respectively. In vivo efficacy and mechanistic studies were conducted with antibodies (Abs) targeting IL-6, PD-L1, CD4 or CD8 in subcutaneous or orthotopic models using Panc02, MT5 or KPC-luc cell lines; and the aggressive, genetically engineered PDAC model (Kras LSL-G12D , Trp53 LSL-R270H , Pdx1-cre, Brca2 F/F (KPC-Brca2 mice)). Systemic and local changes in immunophenotype were measured by flow cytometry or immunohistochemical analysis. PSCs (n=12) demonstrated prominent IL-6 expression, which was localised to stroma of tumours. Combined IL-6 and PD-L1 blockade elicited efficacy in mice bearing subcutaneous MT5 (p<0.02) and Panc02 tumours (p=0.046), which was accompanied by increased intratumoural effector T lymphocytes (CD62L - CD44 - ). CD8-depleting but not CD4-depleting Abs abrogated the efficacy of combined IL-6 and PD-L1 blockade in mice bearing Panc02 tumours (p=0.0016). This treatment combination also elicited significant antitumour activity in mice bearing orthotopic KPC-luc tumours and limited tumour progression in KPC-Brca2 mice (p<0.001). Histological analysis revealed increased T-cell infiltration and reduced α-smooth muscle actin cells in tumours from multiple models. Finally, IL-6 and PD-L1 blockade increased overall survival in KPC-Brca2 mice compared with isotype controls (p=0.0012). These preclinical results indicate that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in PDAC. Published by the BMJ Publishing Group Limited. For

  5. In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody.

    PubMed

    Klohs, Jan; Gräfe, Michael; Graf, Kristof; Steinbrink, Jens; Dietrich, Thore; Stibenz, Dietger; Bahmani, Peyman; Kronenberg, Golo; Harms, Christoph; Endres, Matthias; Lindauer, Ute; Greger, Klaus; Stelzer, Ernst H K; Dirnagl, Ulrich; Wunder, Andreas

    2008-10-01

    Brain inflammation is a hallmark of stroke, where it has been implicated in tissue damage as well as in repair. Imaging technologies that specifically visualize these processes are highly desirable. In this study, we explored whether the inflammatory receptor CD40 can be noninvasively and specifically visualized in mice after cerebral ischemia using a fluorescent monoclonal antibody, which we labeled with the near-infrared fluorescence dye Cy5.5 (Cy5.5-CD40MAb). Wild-type and CD40-deficient mice were subjected to transient middle cerebral artery occlusion. Mice were either intravenously injected with Cy5.5-CD40MAb or control Cy5.5-IgGMAb. Noninvasive and ex vivo near-infrared fluorescence imaging was performed after injection of the compounds. Probe distribution and specificity was further assessed with single-plane illumination microscopy, immunohistochemistry, and confocal microscopy. Significantly higher fluorescence intensities over the stroke-affected hemisphere, compared to the contralateral side, were only detected noninvasively in wild-type mice that received Cy5.5-CD40MAb, but not in CD40-deficient mice injected with Cy5.5-CD40MAb or in wild-type mice that were injected with Cy5.5-IgGMAb. Ex vivo near-infrared fluorescence showed an intense fluorescence within the ischemic territory only in wild-type mice injected with Cy5.5-CD40MAb. In the brains of these mice, single-plane illumination microscopy demonstrated vascular and parenchymal distribution, and confocal microscopy revealed a partial colocalization of parenchymal fluorescence from the injected Cy5.5-CD40MAb with activated microglia and blood-derived cells in the ischemic region. The study demonstrates that a CD40-targeted fluorescent antibody enables specific noninvasive detection of the inflammatory receptor CD40 after cerebral ischemia using optical techniques.

  6. Incomplete Recovery of CD4 count, CD4 Percentage, and CD4/CD8 ratio in HIV-Infected Patients on Long-Term Antiretroviral Therapy with Suppressed Viremia.

    PubMed

    Mutoh, Yoshikazu; Nishijima, Takeshi; Inaba, Yosuke; Tanaka, Noriko; Kikuchi, Yoshimi; Gatanaga, Hiroyuki; Oka, Shinichi

    2018-03-02

    The extent and duration of long-term recovery of CD4 count, CD4%, and CD4/CD8 ratio after initiation of combination antiretroviral therapy (cART) in patients with suppressed viral load are largely unknown. HIV-1 infected patients who started cART between January 2004 and January 2012 and showed persistent viral suppression (<200 copies/mL) for at least 4 years were followed up at AIDS Clinical Center, Tokyo. Change point analysis was used to determine the time point where CD4 count recovery shows a plateau, and linear mixed model was applied to estimate CD4 count at the change point. Data of 752 patients were analyzed [93% males, median age 38, median baseline CD4 count 172/µL (IQR, 62-253), CD4% 13.8% (IQR, 7.7-18.5), and CD4/8 ratio 0.23 (IQR, 0.12-0.35)]. The median follow-up period was 81.2 months and 91 (12.1%) patients were followed for >10 years. Change point analysis showed that CD4 count, CD4%, and CD4/CD8 ratio, continued to increase until 78.6, 62.2, and 64.3 months, respectively, with adjusted mean of 590 /µL (95%CI 572-608), 29.5% (29-30.1), and 0.89 (0.86-0.93), respectively, at the change point. Although 73.8% of the study patients achieved CD4 count ≥500 /μL, 48.2% of the patients with baseline CD4 count <100 /μL did not achieve CD4 count ≥500 /μL. Neither CD4% nor CD4/CD8 ratio normalized in a majority of patients. The results showed lack of normalization of CD4 count, CD4%, and CD4/CD8 ratio to the levels seen in healthy individuals even after long-term successful cART in patients with suppressed viral load.

  7. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma.

    PubMed

    Chiron, David; Dousset, Christelle; Brosseau, Carole; Touzeau, Cyrille; Maïga, Sophie; Moreau, Philippe; Pellat-Deceunynck, Catherine; Le Gouill, Steven; Amiot, Martine

    2015-04-20

    The aggressive biological behavior of mantle cell lymphoma (MCL) and its short response to current treatment highlight a great need for better rational therapy. Herein, we investigate the ability of ABT-199, the Bcl-2-selective BH3 mimetic, to kill MCL cells. Among MCL cell lines tested (n = 8), only three were sensitive (LD50 < 200 nM). In contrast, all primary MCL samples tested (n = 11) were highly sensitive to ABT-199 (LD50 < 10 nM). Mcl-1 and Bcl-xL both confer resistance to ABT-199-specific killing and BCL2/(BCLXL+MCL1) mRNA ratio is a strong predictor of sensitivity. By mimicking the microenvironment through CD40 stimulation, we show that ABT-199 sensitivity is impaired through activation of NF-kB pathway and Bcl-x(L) up-regulation. We further demonstrate that resistance is rapidly lost when MCL cells detach from CD40L-expressing fibroblasts. It has been reported that ibrutinib induces lymphocytosis in vivo holding off malignant cells from their protective microenvironment. We show here for two patients undergoing ibrutinib therapy that mobilized MCL cells are highly sensitive to ABT-199. These results provide evidence that in situ ABT-199 resistance can be overcome when MCL cells escape from the lymph nodes. Altogether, our data support the clinical application of ABT-199 therapy both as a single agent and in sequential combination with BTK inhibitors.

  8. Immunogenicity of an HPV-16 L2 DNA vaccine

    PubMed Central

    Hitzeroth, Inga I.; Passmore, Jo-Ann S.; Shephard, Enid; Stewart, Debbie; Müller, Martin; Williamson, Anna-Lise; Rybicki, Edward P.; Kast, W. Martin

    2009-01-01

    The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunised with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralising antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. PMID:19559114

  9. Macrophage IL-12p70 Signaling Prevents HSV-1–Induced CNS Autoimmunity Triggered by Autoaggressive CD4+ Tregs

    PubMed Central

    Mott, Kevin R.; Gate, David; Zandian, Mandana; Allen, Sariah J.; Rajasagi, Naveen Kumar; van Rooijen, Nico; Chen, Shuang; Arditi, Moshe; Rouse, Barry T.; Flavell, Richard A.; Town, Terrence; Ghiasi, Homayon

    2011-01-01

    Purpose. CD4+CD25+FoxP3+ naturally occurring regulatory T cells (Tregs) maintain self-tolerance and function to suppress overly exuberant immune responses. However, it is unclear whether innate immune cells modulate Treg function. Here the authors examined the role of innate immunity in lymphomyeloid homeostasis. Methods. The involvement of B cells, dendritic cells (DCs), macrophages, natural killer (NK) cells, and T cells in central nervous system (CNS) demyelination in different strains of mice infected ocularly with herpes simplex virus type 1 (HSV-1) was investigated. Results. The authors found that depletion of macrophages, but not DCs, B cells, NK cells, CD4+ T cells, or CD8+ T cells, induced CNS demyelination irrespective of virus or mouse strain. As with macrophage depletion, mice deficient in interleukin (IL)-12p35 or IL-12p40 showed CNS demyelination after HSV-1 infection, whereas demyelination was undetectable in HSV-1–infected, IL-23p19–deficient, or Epstein-Barr virus–induced gene 3-deficient mice. Demyelination could be rescued in macrophage-depleted mice after the injection of IL-12p70 DNA and in IL-12p35−/− or IL-12p40−/− mice after injection with IL-12p35 or IL-12p40 DNA or with recombinant viruses expressing IL-12p35 or IL-12p40. Using FoxP3-, CD4-, CD8-, or CD25-depletion and gene-deficient mouse approaches, the authors demonstrated that HSV-1–induced demyelination was blocked in the absence of CD4, CD25, or FoxP3 in macrophage-depleted mice. Flow cytometry showed an elevation of CD4+CD25+FoxP3+ T cells in the spleens of infected macrophage-depleted mice, and adoptive transfer of CD4+CD25+ T cells to infected macrophage-depleted severe combined immunodeficient mice induced CNS demyelination. Conclusions. The authors demonstrated that macrophage IL-12p70 signaling plays an important role in maintaining immune homeostasis in the CNS by preventing the development of autoaggressive CD4+ Tregs. PMID:21220560

  10. Genotoxic effects of heavy metal cadmium on growth, biochemical, cyto-physiological parameters and detection of DNA polymorphism by RAPD in Capsicum annuum L. – An important spice crop of India

    PubMed Central

    Aslam, Rumana; Ansari, M.Y.K.; Choudhary, Sana; Bhat, Towseef Mohsin; Jahan, Nusrat

    2014-01-01

    The present study was designed to investigate the effects of cadmium (Cd) on biochemical, physiological and cytological parameters of Capsicum annuum L. treated with five different concentrations (20, 40, 60, 80 and 100 ppm) of the metal. Shoot–root length, pigment and protein content showed a continuous decrease with increasing Cd concentrations and the maximal decline was observed at the higher concentration. Proline content was found to be increased upto 60 ppm while at higher concentrations it gradually decreased. MDA content and chromosomal aberrations increased as the concentration increased. Additionally Random amplified polymorphic DNA (RAPD) technique was used for the detection of genotoxicity induced by Cd. A total of 184 bands (62 polymorphic and 122 monomorphic) were generated in 5 different concentrations with 10 primers where primer OPA-02 generated the highest percentage of polymorphism (52.63%). Dendrogram showed that control, R1 and R2 showed similar cluster and R4 and R5 grouped with R3 into one cluster, which showed that plants from higher doses showed much difference than the plants selected at mild doses which resemble control at the DNA level. This investigation showed that RAPD marker is a useful tool for evaluation of genetic diversity and relationship among different metal concentrations. PMID:25313282

  11. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction.

    PubMed

    Gri, Giorgia; Piconese, Silvia; Frossi, Barbara; Manfroi, Vanessa; Merluzzi, Sonia; Tripodo, Claudio; Viola, Antonella; Odom, Sandra; Rivera, Juan; Colombo, Mario P; Pucillo, Carlo E

    2008-11-14

    T regulatory (Treg) cells play a role in the suppression of immune responses, thus serving to induce tolerance and control autoimmunity. Here, we explored whether Treg cells influence the immediate hypersensitivity response of mast cells (MCs). Treg cells directly inhibited the FcvarepsilonRI-dependent MC degranulation through cell-cell contact involving OX40-OX40L interactions between Treg cells and MCs, respectively. When activated in the presence of Treg cells, MCs showed increased cyclic adenosine monophosphate (cAMP) concentrations and reduced Ca(2+) influx, independently of phospholipase C (PLC)-gamma2 or Ca(2+) release from intracellular stores. Antagonism of cAMP in MCs reversed the inhibitory effects of Treg cells, restoring normal Ca(2+) responses and degranulation. Importantly, the in vivo depletion or inactivation of Treg cells caused enhancement of the anaphylactic response. The demonstrated crosstalk between Treg cells and MCs defines a previously unrecognized mechanism controlling MC degranulation. Loss of this interaction may contribute to the severity of allergic responses.

  12. Cd hyperfine interactions in DNA bases and DNA of mouse strains infected with Trypanosoma cruzi investigated by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M

    2014-06-03

    In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.

  13. CD72 ligation regulates defective naive newborn B cell responses.

    PubMed

    Howard, L M; Reen, D J

    1997-02-01

    The biological basis for reduced Ig production by naive newborn B cells compared to adult peripheral blood B cells is not fully understood. In a Con A + IL-2 T cell-dependent system using "competent" adult T cells, adult B cells produced large amounts of IgM, IgG, and IgA, while cord B cells were restricted to low levels of only IgM production. Cord B cell activation was also diminished. The contribution of specific B-T cell contact-mediated events to the diminished cord B cell response in this system, using mAbs to CD40, CD28, CD80, and CD72, were investigated, as well as regulation of B cell Ig production by cytokines. alphaCD72 ligation increased cord B cell activation and IgM production, but did not affect adult B cells. Blocking alphaCD40 mAb inhibited cord B cell Ig production completely, but only partly inhibited adult B cell Ig production even at high concentration, suggesting a greater sensitivity of cord B cells to disruption of the CD40-CD40L interaction. Addition of IL-10 did not increase cord B cell Ig production, while adult B cell Ig production was increased. However, combined addition of IL-10 and alphaCD72 significantly increased cord B cell Ig production over that in the presence of either alphaCD72 or IL-10 alone, but had no effect on adult B cells over that of IL-10 alone. These data suggest that the diminished T cell-dependent response of cord B cells is due to reduced or absent CD72 ligation. CD72 ligation plays an important role in the induction of primary responses by naive B cells. CD72 modulation of naive B cell sensitivity to IL-10 stimulation may have implications in the induction of class switch, which is deficient in newborn B cells. Since all T cells express CD5 constitutively, these data also suggest the existence of another ligand for CD72.

  14. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    PubMed Central

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  15. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Qayyum, Muhammad Farooq; Ok, Yong Sik; Zia-Ur-Rehman, Muhammad; Abbas, Zaheer; Hannan, Fakhir

    2017-04-01

    Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.

  16. Facile synthesis of N-acetyl-L-cysteine capped CdHgSe quantum dots and selective determination of hemoglobin.

    PubMed

    Wang, Qingqing; Zhan, Guoqing; Li, Chunya

    2014-01-03

    Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of Hb in the range of 4.0×10(-9)-4.4×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The developed method has been successfully employed to determine Hb in human urine samples. Copyright © 2013. Published by Elsevier B.V.

  17. Value of soluble CD30 in liver transplantation.

    PubMed

    Fábrega, E; Unzueta, M G; Cobo, M; Casafont, F; Amado, J A; Romero, F P

    2007-09-01

    CD30 is a membrane glycoprotein that belongs to the tumor necrosis factor superfamily. It is expressed on activated T cells. After activation of CD30(+) T cells, a soluble form of CD30 (sCD30) released into the bloodstream, can be measured in the serum. The aim of our study was to investigate the time course of serum levels of sCD30 during hepatic allograft rejection. Serum levels of sCD30 were determined in 30 healthy subjects and 50 hepatic transplant recipients. These patients were divided into two groups: group I, 35 patients without rejection; and group II, 15 patients with acute rejection. Samples were collected on day 1 and 7 after transplantation and on the day of liver biopsy. The concentrations of sCD30 were similar in the rejection (40.4 +/- 16.5 U/mL) and nonrejection groups (43.0 +/- 18.2 U/mL) on postoperative day 1. We observed a significant increase in sCD30 levels in the rejection group on postoperative day 7 (76.3 +/- 61.8 U/mL vs 46.8 +/- 20.5 U/mL; P = .01). The difference increased when a diagnosis of acute rejection had been established: namely 133.0 +/- 113.5 U/mL versus 40.1 +/- 22.0 U/mL; (P = .001). These levels were also significantly higher during the entire postoperative period in all the patients, with or without rejection, than those observed in healthy controls (26.6 +/- 5.3 U/mL; P = .005). The release of circulating sCD30 is a prominent feature coinciding with the first episode of hepatic allograft rejection. So, monitoring of sCD30 levels may be useful for the early diagnosis of an acute rejection episode.

  18. A phylogenetic study of Laeliinae (Orchidaceae) based on combined nuclear and plastid DNA sequences

    PubMed Central

    van den Berg, Cássio; Higgins, Wesley E.; Dressler, Robert L.; Whitten, W. Mark; Soto-Arenas, Miguel A.; Chase, Mark W.

    2009-01-01

    Background and Aims Laeliinae are a neotropical orchid subtribe with approx. 1500 species in 50 genera. In this study, an attempt is made to assess generic alliances based on molecular phylogenetic analysis of DNA sequence data. Methods Six DNA datasets were gathered: plastid trnL intron, trnL-F spacer, matK gene and trnK introns upstream and dowstream from matK and nuclear ITS rDNA. Data were analysed with maximum parsimony (MP) and Bayesian analysis with mixed models (BA). Key Results Although relationships between Laeliinae and outgroups are well supported, within the subtribe sequence variation is low considering the broad taxonomic range covered. Localized incongruence between the ITS and plastid trees was found. A combined tree followed the ITS trees more closely, but the levels of support obtained with MP were low. The Bayesian analysis recovered more well-supported nodes. The trees from combined MP and BA allowed eight generic alliances to be recognized within Laeliinae, all of which show trends in morphological characters but lack unambiguous synapomorphies. Conclusions By using combined plastid and nuclear DNA data in conjunction with mixed-models Bayesian inference, it is possible to delimit smaller groups within Laeliinae and discuss general patterns of pollination and hybridization compatibility. Furthermore, these small groups can now be used for further detailed studies to explain morphological evolution and diversification patterns within the subtribe. PMID:19423551

  19. A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma.

    PubMed

    Nowak, A K; Cook, A M; McDonnell, A M; Millward, M J; Creaney, J; Francis, R J; Hasani, A; Segal, A; Musk, A W; Turlach, B A; McCoy, M J; Robinson, B W S; Lake, R A

    2015-12-01

    Data from murine models suggest that CD40 activation may synergize with cytotoxic chemotherapy. We aimed to determine the maximum tolerated dose (MTD) and toxicity profile and to explore immunological biomarkers of the CD40-activating antibody CP-870,893 with cisplatin and pemetrexed in patients with malignant pleural mesothelioma (MPM). Eligible patients had confirmed MPM, ECOG performance status 0-1, and measurable disease. Patients received cisplatin 75 mg/m(2) and pemetrexed 500 mg/m(2) on day 1 and CP-870,893 on day 8 of a 21-day cycle for maximum 6 cycles with up to 6 subsequent cycles single-agent CP-870,893. Immune cell subset changes were examined weekly by flow cytometry. Fifteen patients were treated at three dose levels. The MTD of CP-870,893 was 0.15 mg/kg, and was exceeded at 0.2 mg/kg with one grade 4 splenic infarction and one grade 3 confusion and hyponatraemia. Cytokine release syndrome (CRS) occurred in most patients (80%) following CP-870,893. Haematological toxicities were consistent with cisplatin and pemetrexed chemotherapy. Six partial responses (40%) and 9 stable disease (53%) as best response were observed. The median overall survival was 16.5 months; the median progression-free survival was 6.3 months. Three patients survived beyond 30 months. CD19+ B cells decreased over 6 cycles of chemoimmunotherapy (P < 0.001) with a concomitant increase in the proportion of CD27+ memory B cells (P < 0.001) and activated CD86+CD27+ memory B cells (P < 0.001), as an immunopharmacodynamic marker of CD40 activation. CP-870,893 with cisplatin and pemetrexed is safe and tolerable at 0.15 mg/kg, although most patients experience CRS. While objective response rates are similar to chemotherapy alone, three patients achieved long-term survival. ACTRN12609000294257. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. [Protective Effect of S-isopentenyl-L-cysteine against DNA Damage in Irradiated Mice].

    PubMed

    Zheng, Qi-sheng; Yu, Guang-yun; He, Xin; Jiang, Ming; Chu, Xiao-fei; Zhao, Shu-yi; Fan, Sai-jun; Liu, Pei-xun

    2015-10-01

    To evaluate the protective effect of S-isopentenyl-L-cysteine,a new cysteine derivative,on DNA damage induced by radiation by using acute radiation injury animal models. Forty ICR mice were randomly divided into five groups:the control group,1.0Gy gamma irradiation group,1.0Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,7.2Gy gamma irradiation group,and 7.2Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,with 8 mice in each group.The comet assay and bone marrow polychromatic micronucleus experiments were performed to evaluate the double-strand DNA breaks in ICR mice exposed to 1.0 and 7.2Gy gamma-ray, respectively. The tail DNA percentage,tail length,tail moment,and olive tail moment of peripheral blood lymphocytes in 7.2Gy gamma irradiation group were significantly higher than that of the control group (P<0.01).And it was also observed that above experimental indexes of 7.2Gy gamma irradiation combined with S-isopentenyl-L-cysteine group was significantly less than that of 7.2Gy gamma irradiation group (P<0.05). In addition,the micronucleus rate of 1.0Gy gamma irradiation group and 7.2Gy gamma irradiation group were both significantly higher than in the control group (P<0.01). In addition,in mice given S-isopentenyl-L-cysteine before irradiation,the micronucleus rate of ICR mice exposed to 1.0 and 7.2Gy gamma-ray decreased from (39.5000 ± 3.3141)‰ to (28.1667±4.1345)‰ (P=0.033) and from (76.5000 ± 4.6242)‰ to (22.8333 ± 3.6553)‰(P=0.000),respectively. The bone marrow polychromatic micronucleus experiment indicated that the value of polychromatic erythrocyte (PCE)/normochromatic erythrocyte(NCE) of ICR mice exposed to 1.0 and 7.2Gy gamma-ray was less than the control group(P<0.05). Meanwhile,after irradiating by certain dose,the value of PCE/NCE in mice given S-isopentenyl-L-cysteine before irradiation was significantly higher than the corresponding groups (P<0.05). S-isopentenyl-L-cysteine has a good protective

  1. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  2. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy.

    PubMed

    Masson, Jesse J R; Murphy, Andrew J; Lee, Man K S; Ostrowski, Matias; Crowe, Suzanne M; Palmer, Clovis S

    2017-01-01

    Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/μl) and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1) and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.

  3. DNA cloning: A personal view after 40 years

    PubMed Central

    Cohen, Stanley N.

    2013-01-01

    In November 1973, my colleagues A. C. Y. Chang, H. W. Boyer, R. B. Helling, and I reported in PNAS that individual genes can be cloned and isolated by enzymatically cleaving DNA molecules into fragments, linking the fragments to an autonomously replicating plasmid, and introducing the resulting recombinant DNA molecules into bacteria. A few months later, Chang and I reported that genes from unrelated bacterial species can be combined and propagated using the same approach and that interspecies recombinant DNA molecules can produce a biologically functional protein in a foreign host. Soon afterward, Boyer’s laboratory and mine published our collaborative discovery that even genes from animal cells can be cloned in bacteria. These three PNAS papers quickly led to the use of DNA cloning methods in multiple areas of the biological and chemical sciences. They also resulted in a highly public controversy about the potential hazards of laboratory manipulation of genetic material, a decision by Stanford University and the University of California to seek patents on the technology that Boyer and I had invented, and the application of DNA cloning methods for commercial purposes. In the 40 years that have passed since publication of our findings, use of DNA cloning has produced insights about the workings of genes and cells in health and disease and has altered the nature of the biotechnology and biopharmaceutical industries. Here, I provide a personal perspective of the events that led to, and followed, our report of DNA cloning. PMID:24043817

  4. Effect of Cytomegalovirus Co-Infection on Normalization of Selected T-Cell Subsets in Children with Perinatally Acquired HIV Infection Treated with Combination Antiretroviral Therapy

    PubMed Central

    Kapetanovic, Suad; Aaron, Lisa; Montepiedra, Grace; Anthony, Patricia; Thuvamontolrat, Kasalyn; Pahwa, Savita; Burchett, Sandra; Weinberg, Adriana; Kovacs, Andrea

    2015-01-01

    Background We examined the effect of cytomegalovirus (CMV) co-infection and viremia on reconstitution of selected CD4+ and CD8+ T-cell subsets in perinatally HIV-infected (PHIV+) children ≥ 1-year old who participated in a partially randomized, open-label, 96-week combination antiretroviral therapy (cART)-algorithm study. Methods Participants were categorized as CMV-naïve, CMV-positive (CMV+) viremic, and CMV+ aviremic, based on blood, urine, or throat culture, CMV IgG and DNA polymerase chain reaction measured at baseline. At weeks 0, 12, 20 and 40, T-cell subsets including naïve (CD62L+CD45RA+; CD95-CD28+), activated (CD38+HLA-DR+) and terminally differentiated (CD62L-CD45RA+; CD95+CD28-) CD4+ and CD8+ T-cells were measured by flow cytometry. Results Of the 107 participants included in the analysis, 14% were CMV+ viremic; 49% CMV+ aviremic; 37% CMV-naïve. In longitudinal adjusted models, compared with CMV+ status, baseline CMV-naïve status was significantly associated with faster recovery of CD8+CD62L+CD45RA+% and CD8+CD95-CD28+% and faster decrease of CD8+CD95+CD28-%, independent of HIV VL response to treatment, cART regimen and baseline CD4%. Surprisingly, CMV status did not have a significant impact on longitudinal trends in CD8+CD38+HLA-DR+%. CMV status did not have a significant impact on any CD4+ T-cell subsets. Conclusions In this cohort of PHIV+ children, the normalization of naïve and terminally differentiated CD8+ T-cell subsets in response to cART was detrimentally affected by the presence of CMV co-infection. These findings may have implications for adjunctive treatment strategies targeting CMV co-infection in PHIV+ children, especially those that are now adults or reaching young adulthood and may have accelerated immunologic aging, increased opportunistic infections and aging diseases of the immune system. PMID:25794163

  5. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d{sub 3}) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d{sub 3}. In addition, bothmore » sCD4-gp120 and sCD4-gp120-mC3d{sub 3} bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d{sub 3} or sCD4-gp120-mC3d{sub 3} elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d{sub 3}-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d{sub 3} had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.« less

  6. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1.

    PubMed

    Bower, Joseph F; Green, Thomas D; Ross, Ted M

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.

  7. Impact of CD40 expression by flowcytometry on outcome of patients with non-Hodgkin's lymphoma.

    PubMed

    Soliman, Mohamed A; Fathy, Amr Ahmed; Alkilani, Amira; Abd El-Bary, Naser; El-Bassal, Fathai

    2009-01-01

    Lymphoid malignancies represent a wide variety of disease entities characterized by malignant proliferation of lymphoid cells which have distinct clinical features, cellular morphology, immunophenotype, cytogenetic changes and histologic features. CD40 is a member of the tumor necrosis factor receptor super-family. It was first identified and characterized in B cell, signaling through the CD40 receptor was found to play an important role in multiple events in T-cell dependent antibody response including B-cell survival and proliferation, memory B-cell formation and immunoglobulin isotype switching. The aim of this study is to detect the expression of CD40 on B lymphocytes in patients suffering from Non-Hodgkin's Lymphoma and correlate the results with the patients' response to treatment protocols. This study was carried out on 114 patients, of them only 100 patients completed 4 cycles of chemotherapy and were valuable. Their age was ranged from 17 to 63 years old. Fifteen age and gender matched individuals were, also, selected as a control group. CD40 expression was measured on peripheral blood samples by flowcytometry at patient's presentation as well as after 4 cycles of chemotherapy. This study showed that there's significant decrease in the mean values of % of CD40 on B-cell in patients with NHL in all stages when compared with normal control group. Also the study showed that there's statistical significant correlation between percent of CD40 on B-lymphocytes and stage of lymphoma, i.e., the more advanced stage, the lower the % of CD40 on B-cell. After receiving a corresponding treatment, the CD40 expression is increased in significant correlation with the response to treatment. (This is a preliminary result after 4 cycles of CHOP treatment). We concluded that CD40 Lymphocyte development occurs in discrete functional steps that are defined by the onset of expression is highly expressed in healthy subjects and its expression on B-lymphocyte is decreased with

  8. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner.

    PubMed

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M; Wiltrout, Robert H; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A; Manns, Michael P; Wang, Ena; Marincola, Francesco M; Korangy, Firouzeh; Greten, Tim F

    2015-04-01

    Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. "Reagent-free" L-asparaginase activity assay based on CD spectroscopy and conductometry.

    PubMed

    Kudryashova, Elena V; Sukhoverkov, Kirill V

    2016-02-01

    A new method to determine the catalytic parameters of L-asparaginase using circular dichroism spectroscopy (CD spectroscopy) has been developed. The assay is based on the difference in CD signal between the substrate (L-asparagine) and the product (L-aspartic acid) of enzymatic reaction. CD spectroscopy, being a direct method, enables continuous measurement, and thus differentiates from multistage and laborious approach based on Nessler's method, and overcomes limitations of conjugated enzymatic reaction methods. In this work, we show robust measurements of L-asparaginase activity in conjugates with PEG-chitosan copolymers, which otherwise would not have been possible. The main limitation associated with the CD method is that the analysis should be performed at substrate saturation conditions (V max regime). For K M measurement, the conductometry method is suggested, which can serve as a complimentary method to CD spectroscopy. The activity assay based on CD spectroscopy and conductometry was successfully implicated to examine the catalytic parameters of L-asparaginase conjugates with chitosan and its derivatives, and for optimization of the molecular architecture and composition of such conjugates for improving biocatalytic properties of the enzyme in the physiological conditions. The approach developed is potentially applicable to other enzymatic reactions where the spectroscopic properties of substrate and product do not enable direct measurement with absorption or fluorescence spectroscopy. This may include a number of amino acid or glycoside-transforming enzymes.

  10. Activation of CD40 with platelet derived CD154 promotes reactive oxygen species dependent death of human hepatocytes during hypoxia and reoxygenation.

    PubMed

    Bhogal, Ricky H; Weston, Christopher J; Curbishley, Stuart M; Adams, David H; Afford, Simon C

    2012-01-01

    Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis. Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2',7'-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay. Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis. CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury.

  11. CD3+/CD8+ T-cell density and tumoral PD-L1 predict survival irrespective of rituximab treatment in Chinese diffuse large B-cell lymphoma patients.

    PubMed

    Shi, Yunfei; Deng, Lijuan; Song, Yuqin; Lin, Dongmei; Lai, Yumei; Zhou, LiXin; Yang, Lei; Li, Xianghong

    2018-05-10

    To investigate the prognostic value of tumor-infiltrating T-cell density and programmed cell death ligand-1 (PD-L1) expression in diffuse large B cell lymphoma (DLBCL). One-hundred-twenty-five Chinese DLBCL patients were enrolled in our study and provided samples; 76 of all cases were treated with rituximab (R). Tumor tissues were immunostained and analyzed for CD3+ and CD8+ tumor-infiltrating T-cell density, tumoral PD-L1, and microenvironmental PD-L1 (mPD-L1). The density of CD3 was rated as high in 33.6% cases, while 64.0% of DLBCLs were classified as high CD8 density. Of all cases, 16.8% were PD-L1+. Of the remaining PD-L1-DLBCLs, 29.8% positively expressed mPD-L1. Both CD3 high density and CD8 high density were associated with mPD-L1 positivity (P = 0.001 and P = 0.0001). In multivariate analysis, independently, high CD3 density predicted better OS (P = 0.023), while CD8 high density and PD-L1 positivity were both associated with prolonged PFS (P = 0.013 and P = 0.036, respectively). Even in the subgroup treated with R, univariate analyses indicated that high CD3 density and PD-L1 positivity were associated with better OS (P = 0.041) and PFS (P = 0.033), respectively. The infiltrating densities of CD3+ T-cells, CD8+ T-cells, and PD-L1 expression are predictive of survival in DLBCLs, irrespective of R usage.

  12. Analysis of trichloroethylene-induced global DNA hypomethylation in hepatic L-02 cells by liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Zhang, Hang; Hong, Wen-Xu; Ye, Jinbo; Yang, Xifei; Ren, Xiaohu; Huang, Aibo; Yang, Linqing; Zhou, Li; Huang, Haiyan; Wu, Desheng; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun

    2014-04-04

    Trichloroethylene (TCE), a major occupational and environmental pollutant, has been recently associated with aberrant epigenetic changes in experimental animals and cultured cells. TCE is known to cause severe hepatotoxicity; however, the association between epigenetic alterations and TCE-induced hepatotoxicity are not yet well explored. DNA methylation, catalyzed by enzymes known as DNA methyltransferases (DNMT), is a major epigenetic modification that plays a critical role in regulating many cellular processes. In this study, we analyzed the TCE-induced effect on global DNA methylation and DNMT enzymatic activity in human hepatic L-02 cells. A sensitive and quantitative method combined with liquid chromatography and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was validated and utilized for assessing the altered DNA methylation in TCE-induced L-02 cells. Quantification was accomplished in multiple reaction monitoring (MRM) mode by monitoring a transition pair of m/z 242.1 (molecular ion)/126.3 (fragment ion) for 5-mdC and m/z 268.1/152.3 for dG. The correlation coefficient of calibration curves between 5-mdC and dG was higher than 0.9990. The intra-day and inter-day relative standard derivation values (RSD) were on the range of 0.53-7.09% and 0.40-2.83%, respectively. We found that TCE exposure was able to significantly decrease the DNA methylation and inhibit DNMT activity in L-02 cells. Our results not only reveal the association between TCE exposure and epigenetic alterations, but also provide an alternative mass spectrometry-based method for rapid and accurate assessment of chemical-induced altered DNA methylation in mammal cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Functional Interaction of CD154 Protein with α5β1 Integrin Is Totally Independent from Its Binding to αIIbβ3 Integrin and CD40 Molecules*

    PubMed Central

    El Fakhry, Youssef; Alturaihi, Haydar; Yacoub, Daniel; Liu, Lihui; Guo, Wenyan; Leveillé, Claire; Jung, Daniel; Khzam, Lara Bou; Merhi, Yahye; Wilkins, John A.; Li, Hongmin; Mourad, Walid

    2012-01-01

    In addition to its classical CD40 receptor, CD154 also binds to αIIbβ3, α5β1, and αMβ2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbβ3, and α5β1 receptors. We found that the binding affinity of CD154 for αIIbβ3 is ∼4-fold higher than for α5β1. We also describe the generation of sCD154 mutants that lost their ability to bind CD40 or αIIbβ3 and show that CD154 residues involved in its binding to CD40 or αIIbβ3 are distinct from those implicated in its interaction to α5β1, suggesting that sCD154 may bind simultaneously to different receptors. Indeed, sCD154 can bind simultaneously to CD40 and α5β1 and biologically activate human monocytic U937 cells expressing both receptors. The simultaneous engagement of CD40 and α5β1 activates the mitogen-activated protein kinases, p38, and extracellular signal-related kinases 1/2 and synergizes in the release of inflammatory mediators MMP-2 and -9, suggesting a cross-talk between these receptors. PMID:22461623

  14. An OX40/OX40L interaction directs successful immunity to hepatitis B virus

    PubMed Central

    Publicover, Jean; Gaggar, Anuj; Jespersen, Jillian M.; Halac, Ugur; Johnson, Audra J.; Goodsell, Amanda; Avanesyan, Lia; Nishimura, Stephen L.; Holdorf, Meghan; Mansfield, Keith G.; Judge, Joyce Bousquet; Koshti, Arya; Croft, Michael; Wakil, Adil E.; Rosenthal, Philip; Pai, Eric; Cooper, Stewart; Baron, Jody L.

    2018-01-01

    Depending on age of acquisition, hepatitis B virus (HBV) can induce a cell-mediated immune response that results in either cure or progressive liver injury. In adult-acquired infection, HBV antigens are usually cleared, whereas in infancy-acquired infection, they persist. Individuals infected during infancy therefore represent the majority of patients chronically infected with HBV (CHB). A therapy that can promote viral antigen clearance in most CHB patients has not been developed and would represent a major health care advance and cost mitigator. Using an age-dependent mouse model of HBV clearance and persistence in conjunction with human blood and liver tissue, we studied mechanisms of viral clearance to identify new therapeutic targets. We demonstrate that age-dependent expression of the costimulatory molecule OX40 ligand (OX40L) by hepatic innate immune cells is pivotal in determining HBV immunity, and that treatment with OX40 agonists leads to improved HBV antigen clearance in young mice, as well as increased strength of T cell responses in young mice and adult mice that were exposed to HBV when they were young and developed a CHB serological profile. Similarly, in humans, we show that hepatic OX40L transcript expression is age-dependent and that increased OX40 expression on peripheral CD4+ T cells in adults is associated with HBV clearance. These findings provide new mechanistic understanding of the immune pathways and cells necessary for HBV immunity and identify potential therapeutic targets for resolving CHB. PMID:29563320

  15. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barends, Thomas R. M., E-mail: thomas.barends@mpimf-heidelberg.mpg.de; Brosi, Richard W. W.; Steinmetz, Andrea

    2013-08-01

    The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed. Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein,more » but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.« less

  16. CD73 expression identifies a subset of IgM+ antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent.

    PubMed

    D'Souza, Lucas; Gupta, Sneh Lata; Bal, Vineeta; Rath, Satyajit; George, Anna

    2017-12-01

    B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM + cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73 + IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory. © 2017 John Wiley & Sons Ltd.

  17. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe.

    PubMed

    Ingianni, A; Floris, M; Palomba, P; Madeddu, M A; Quartuccio, M; Pompei, R

    2001-10-01

    Listeria monocytogenes is a frequent contaminant of water and foods. Its rapid detection is needed before some foods can be prepared for marketing. In this work L. monocytogenes has been searched for in foods, by a combination of polymerase chain reaction (PCR) and a DNA probe. Both PCR and the probe were prepared for recognizing a specific region of the internalin gene, which is responsible for the production of one of the most important pathogenic factors of Listeria. The combined use of PCR and the DNA probe was used for the detection of L. monocytogenes in over 180 environmental and food samples. Several detection methods were compared in this study, namely conventional culture methods; direct PCR; PCR after an enrichment step; a DNA probe alone; a DNA probe after enrichment and another commercially available gene-probe. Finally PCR and the DNA probe were used in series on all the samples collected. When the DNA probe was associated with the PCR, specific and accurate detection of listeria in the samples could be obtained in about a working-day. The present molecular method showed some advantages in terms of rapidity and specificity in comparison to the other aforementioned tests. In addition, it resulted as being easy to handle, even for non-specialized personnel in small diagnostic microbiology laboratories. Copyright 2001 Academic Press.

  18. Ageing & long-term CD4 cell count trends in HIV-positive patients with 5 years or more combination antiretroviral therapy experience

    PubMed Central

    WRIGHT, ST; PETOUMENOS, K; BOYD, M; CARR, A; DOWNING, S; O’CONNOR, CC; GROTOWSKI, M; LAW, MG

    2012-01-01

    Background The aim of this analysis is to describe the long-term changes in CD4 cell counts beyond 5 years of combination antiretroviral therapy (cART). If natural ageing leads to a long-term decline in the immune system via low-grade chronic immune activation/inflammation, then one might expect to see a greater or earlier decline in CD4 counts in older HIV-positive patients with increasing duration of cART. Methods Retrospective and prospective data were examined from long-term virologically stable HIV-positive adults from the Australian HIV Observational Database. We estimated mean CD4 cell counts changes following the completion of 5 years of cART using linear mixed models. Results A total of 37,916 CD4 measurements were observed for 892 patients over a combined total of 9,753 patient years. Older patients (>50 years) at cART initiation had estimated mean(95% confidence interval) change in CD4 counts by Year-5 CD4 count strata (<500, 501–750 and >750 cells/μL) of 14(7 to 21), 3(−5 to 11) and −6(−17 to 4) cells/μL/year. Of the CD4 cell count rates of change estimated, none were indicative of long-term declines in CD4 cell counts. Conclusions Our results suggest that duration of cART and increasing age does not result in decreasing mean changes in CD4 cell counts for long-term virologically suppressed patients. Indicating that level of immune recovery achieved during the first 5 years of treatment are sustained through long-term cART. PMID:23036045

  19. Activation of CD40 with Platelet Derived CD154 Promotes Reactive Oxygen Species Dependent Death of Human Hepatocytes during Hypoxia and Reoxygenation

    PubMed Central

    Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Adams, David H.; Afford, Simon C.

    2012-01-01

    Background Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis. Methods Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2′,7′-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay. Results Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis. Conclusions CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury. PMID:22295117

  20. Physiologically relevant plasma d,l-homocysteine concentrations mobilize Cd from human serum albumin.

    PubMed

    Sagmeister, Peter; Gibson, Matthew A; McDade, Kyle H; Gailer, Jürgen

    2016-08-01

    Although low-level chronic exposure of humans to cadmium (Cd(2+)) can result in a variety of adverse health effects, little is known about the role that its interactions with plasma proteins and small molecular weight (SMW) ligands in the bloodstream may play in delivering this metal to its target organs. To gain insight, a Cd-human serum albumin (HSA) 1:1 (molar ratio) complex was analyzed by size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using a phosphate buffered saline (PBS)-buffer mobile phase, the stability of the Cd-HSA complex was investigated in the presence of 2.0mM of SMW ligands, including taurine, acetaminophen, l-methionine, l-cysteine (Cys), d,l-homocysteine (hCys) or l-cysteine methyl-ester (Cys-Me). While taurine, acetaminophen and l-methionine did not affect its integrity, Cys, hCys and Cys-Me completely abstracted Cd from HSA. Subsequent investigations into the effect of 1.5, 1.0 and 0.5mM Cys and hCys on the integrity of the Cd-HSA complex revealed clear differences with regard to the nature of the eluting SMW-Cd species between these structurally related endogenous thiols. Interestingly, the Cd-specific chromatograms that were obtained for 0.5mM hCys revealed the elution of an apparent mixture of the parent Cd-HSA complex with a significant contribution of a structurally uncharacterized CdxhCysy species. Since this hCys concentration is encountered in blood plasma of hyperhomocysteinemia patients and since previous studies by others have revealed that a SH-containing carrier mediates the uptake of Cd into hepatocytes, our results suggest that plasma hCys may play a role in the toxicologically relevant translocation of Cd from the bloodstream to mammalian target organs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism.

    PubMed

    Zou, Zhen; Qing, Zhihe; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Shi, Hui; Yang, Xue; Qing, Taiping; Yang, Xiaoxiao

    2014-07-01

    A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475 nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40 fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response.

    PubMed

    Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P; Schlosser, Anders; Sorensen, Grith L; Nielsen, Ole; Tornøe, Ida; Grønlund, Jørn; Nielsen, Maria E; Jørgensen, Jan S; Jensen, Ole N; Mollenhauer, Jan; Moestrup, Søren K; Holmskov, Uffe

    2012-03-01

    CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.

  3. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  4. [Combined assay of soluble CD30 and hepatocyte growth factor for diagnosis of acute renal allograft rejection].

    PubMed

    Li, Chuan-jiang; Yu, Li-xin; Xu, Jian; Fu, Shao-jie; Deng, Wen-feng; Du, Chuan-fu; Wang, Yi-bin

    2008-02-01

    To study the value of detection of both preoperative soluble CD30 (sCD30) and hepatocyte growth factor (HGF) level 5 days after transplantation in the diagnosis of acute rejection of renal allograft. Preoperative serum sCD30 levels and HGF level 5 days after transplantation were determined in 65 renal-transplant recipients using enzyme-linked immunosorbent assay. The recipients were divided according to the sCD30 levels positivity. Receiver operating characteristic (ROC) curves were used to assess the value of HGF level on day 5 posttransplantation for diagnosis of acute renal allograft rejection, and the value of combined assay of the sCD30 and HGF levels was also estimated. After transplantation, 26 recipients developed graft rejection and 39 had uneventful recovery without rejection. With the cut-off value of sCD30 of 120 U/ml, the positivity rate of sCD30 was significantly higher in recipients with graft rejection than in those without (61.5% vs 17.9%, P<0.05). Recipients with acute rejection showed also significantly higher HGF levels on day 5 posttransplantation than those without rejection (P<0.05). ROC curve analysis indicated that HGF levels on day 5 posttransplantation was a good marker for diagnosis of acute renal allograft rejection, and at the cut-off value of 90 ug/L, the diagnostic sensitivity was 84.6% and specificity 76.9%. Evaluation of both the sCD30 and HGF levels significantly enhanced the diagnostic accuracy of acute graft rejection. Combined assay of serum sCD30 and HGF levels offers a useful means for diagnosis of acute renal allograft rejection.

  5. Evidence of Subclinical mtDNA Alterations in HIV-Infected Pregnant Women Receiving Combination Antiretroviral Therapy Compared to HIV-Negative Pregnant Women

    PubMed Central

    Money, Deborah M.; Wagner, Emily C.; Maan, Evelyn J.; Chaworth-Musters, Tessa; Gadawski, Izabelle; van Schalkwyk, Julie E.; Forbes, John C.; Burdge, David R.; Albert, Arianne Y. K.; Lohn, Zoe; Côté, Hélène C. F.

    2015-01-01

    Introduction Combination antiretroviral therapy (cART) can effectively prevent vertical transmission of HIV but there is potential risk of adverse maternal, foetal or infant effects. Specifically, the effect of cART use during pregnancy on mitochondrial DNA (mtDNA) content in HIV-positive (HIV+) women is unclear. We sought to characterize subclinical alterations in peripheral blood mtDNA levels in cART-treated HIV+ women during pregnancy and the postpartum period. Methods This prospective longitudinal observational cohort study enrolled both HIV+ and HIV-negative (HIV-) pregnant women. Clinical data and blood samples were collected at three time points in pregnancy (13-<23 weeks, 23-<30 weeks, 30–40 weeks), and at delivery and six weeks post-partum in HIV+ women. Peripheral blood mtDNA to nuclear DNA (nDNA) ratio was measured by qPCR. Results Over a four year period, 63 HIV+ and 42 HIV- women were enrolled. HIV+ women showed significantly lower mtDNA/nDNA ratios compared to HIV- women during pregnancy (p = 0.003), after controlling for platelet count and repeated measurements using a multivariable mixed-effects model. Ethnicity, gestational age (GA) and substance use were also significantly associated with mtDNA/nDNA ratio (p≤0.02). Among HIV+ women, higher CD4 nadir was associated with higher mtDNA/nDNA ratios (p<0.0001), and these ratio were significantly lower during pregnancy compared to the postpartum period (p<0.0001). Conclusions In the context of this study, it was not possible to distinguish between mtDNA effects related to HIV infection versus cART therapy. Nevertheless, while mtDNA levels were relatively stable over time in both groups during pregnancy, they were significantly lower in HIV+ women compared to HIV- women. Although no immediate clinical impact was observed on maternal or infant health, lower maternal mtDNA levels may exert long-term effects on women and children and remain a concern. Improved knowledge of such subclinical alterations is

  6. Evidence of Subclinical mtDNA Alterations in HIV-Infected Pregnant Women Receiving Combination Antiretroviral Therapy Compared to HIV-Negative Pregnant Women.

    PubMed

    Money, Deborah M; Wagner, Emily C; Maan, Evelyn J; Chaworth-Musters, Tessa; Gadawski, Izabelle; van Schalkwyk, Julie E; Forbes, John C; Burdge, David R; Albert, Arianne Y K; Lohn, Zoe; Côté, Hélène C F

    2015-01-01

    Combination antiretroviral therapy (cART) can effectively prevent vertical transmission of HIV but there is potential risk of adverse maternal, foetal or infant effects. Specifically, the effect of cART use during pregnancy on mitochondrial DNA (mtDNA) content in HIV-positive (HIV+) women is unclear. We sought to characterize subclinical alterations in peripheral blood mtDNA levels in cART-treated HIV+ women during pregnancy and the postpartum period. This prospective longitudinal observational cohort study enrolled both HIV+ and HIV-negative (HIV-) pregnant women. Clinical data and blood samples were collected at three time points in pregnancy (13-<23 weeks, 23-<30 weeks, 30-40 weeks), and at delivery and six weeks post-partum in HIV+ women. Peripheral blood mtDNA to nuclear DNA (nDNA) ratio was measured by qPCR. Over a four year period, 63 HIV+ and 42 HIV- women were enrolled. HIV+ women showed significantly lower mtDNA/nDNA ratios compared to HIV- women during pregnancy (p = 0.003), after controlling for platelet count and repeated measurements using a multivariable mixed-effects model. Ethnicity, gestational age (GA) and substance use were also significantly associated with mtDNA/nDNA ratio (p≤0.02). Among HIV+ women, higher CD4 nadir was associated with higher mtDNA/nDNA ratios (p<0.0001), and these ratio were significantly lower during pregnancy compared to the postpartum period (p<0.0001). In the context of this study, it was not possible to distinguish between mtDNA effects related to HIV infection versus cART therapy. Nevertheless, while mtDNA levels were relatively stable over time in both groups during pregnancy, they were significantly lower in HIV+ women compared to HIV- women. Although no immediate clinical impact was observed on maternal or infant health, lower maternal mtDNA levels may exert long-term effects on women and children and remain a concern. Improved knowledge of such subclinical alterations is another step toward optimizing the safety

  7. Cluster Intradermal DNA Vaccination Rapidly Induces E7-specific CD8+ T Cell Immune Responses Leading to Therapeutic Antitumor Effects

    PubMed Central

    Peng, Shiwen; Trimble, Cornelia; Alvarez, Ronald D.; Huh, Warner K.; Lin, Zhenhua; Monie, Archana; Hung, Chien-Fu; Wu, T.-C.

    2010-01-01

    Intradermal administration of DNA vaccines via a gene gun represents a feasible strategy to deliver DNA directly into the professional antigen-presenting cells (APCs) in the skin. This helps to facilitate the enhancement of DNA vaccine potency via strategies that modify the properties of APCs. We have previously demonstrated that DNA vaccines encoding human papillomavirus type 16 (HPV-16) E7 antigen linked to calreticulin (CRT) are capable of enhancing the E7-specific CD8+ T cell immune responses and antitumor effects against E7-expressing tumors. It has also been shown that cluster (short-interval) DNA vaccination regimen generates potent immune responses in a minimal timeframe. Thus, in the current study we hypothesize that the cluster intradermal CRT/E7 DNA vaccination will generate significant antigen-specific CD8+ T cell infiltrates in E7-expressing tumors in tumor-bearing mice, leading to an increase in apoptotic tumor cell death. We found that cluster intradermal CRT/E7 DNA vaccination is capable of rapidly generating a significant number of E7-specific CD8+ T cells, resulting in significant therapeutic antitumor effects in vaccinated mice. We also observed that cluster intradermal CRT/E7 DNA vaccination in the presence of tumor generates significantly higher E7-specific CD8+ T cell immune responses in the systemic circulation as well as in the tumors. In addition, this vaccination regimen also led to significantly lower levels of CD4+Foxp3+ T regulatory cells and myeloid suppressor cells compared to vaccination with CRT DNA in peripheral blood and in tumor infiltrating lymphocytes, resulting in an increase in apoptotic tumor cell death. Thus, our study has significant potential for future clinical translation. PMID:18401437

  8. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-05-01

    Autoimmune disease and CD4(+) T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4(+) T cells as a possible mechanism of immunotoxicity. Naive and effector/memory CD4(+) T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4(+) T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. TCE increased epigenetic drift of specific CpG sites in CD4(+) T cells.

  9. Reconstitution of wild type viral DNA in simian cells transfected with early and late SV40 defective genomes.

    PubMed

    O'Neill, F J; Gao, Y; Xu, X

    1993-11-01

    The DNAs of polyomaviruses ordinarily exist as a single circular molecule of approximately 5000 base pairs. Variants of SV40, BKV and JCV have been described which contain two complementing defective DNA molecules. These defectives, which form a bipartite genome structure, contain either the viral early region or the late region. The defectives have the unique property of being able to tolerate variable sized reiterations of regulatory and terminus region sequences, and portions of the coding region. They can also exchange coding region sequences with other polyomaviruses. It has been suggested that the bipartite genome structure might be a stage in the evolution of polyomaviruses which can uniquely sustain genome and sequence diversity. However, it is not known if the regulatory and terminus region sequences are highly mutable. Also, it is not known if the bipartite genome structure is reversible and what the conditions might be which would favor restoration of the monomolecular genome structure. We addressed the first question by sequencing the reiterated regulatory and terminus regions of E- and L-SV40 DNAs. This revealed a large number of mutations in the regulatory regions of the defective genomes, including deletions, insertions, rearrangements and base substitutions. We also detected insertions and base substitutions in the T-antigen gene. We addressed the second question by introducing into permissive simian cells, E- and L-SV40 genomes which had been engineered to contain only a single regulatory region. Analysis of viral DNA from transfected cells demonstrated recombined genomes containing a wild type monomolecular DNA structure. However, the complete defectives, containing reiterated regulatory regions, could often compete away the wild type genomes. The recombinant monomolecular genomes were isolated, cloned and found to be infectious. All of the DNA alterations identified in one of the regulatory regions of E-SV40 DNA were present in the recombinant

  10. Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells

    PubMed Central

    Tsuda, Hidetoshi; Su, Charles A.; Tanaka, Toshiaki; Ayasoufi, Katayoun; Min, Booki; Valujskikh, Anna; Fairchild, Robert L.

    2018-01-01

    Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade–induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig–resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig–resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell–graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS. PMID:29467328

  11. The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness.

    PubMed

    Giesbrecht, T; Rycroft, J A; Rowson, M J; De Bruin, E A

    2010-12-01

    The non-proteinic amino acid L-theanine and caffeine, a methylxanthine derivative, are naturally occurring ingredients in tea. The present study investigated the effect of a combination of 97 mg L-theanine and 40 mg caffeine as compared to placebo treatment on cognitive performance, alertness, blood pressure, and heart rate in a sample of young adults (n = 44). Cognitive performance, self-reported mood, blood pressure, and heart rate were measured before L-theanine and caffeine administration (i.e. at baseline) and 20 min and 70 min thereafter. The combination of moderate levels of L-theanine and caffeine significantly improved accuracy during task switching and self-reported alertness (both P < 0.01) and reduced self-reported tiredness (P < 0.05). There were no significant effects on other cognitive tasks, such as visual search, choice reaction times, or mental rotation. The present results suggest that 97 mg of L-theanine in combination with 40 mg of caffeine helps to focus attention during a demanding cognitive task.

  12. Ageing and long-term CD4 cell count trends in HIV-positive patients with 5 years or more combination antiretroviral therapy experience.

    PubMed

    Wright, S T; Petoumenos, K; Boyd, M; Carr, A; Downing, S; O'Connor, C C; Grotowski, M; Law, M G

    2013-04-01

    The aim of this study was to describe the long-term changes in CD4 cell counts beyond 5 years of combination antiretroviral therapy (cART). If natural ageing leads to a long-term decline in the immune system via low-grade chronic immune activation/inflammation, then one might expect to see a greater or earlier decline in CD4 counts in older HIV-positive patients with increasing duration of cART. Retrospective and prospective data were examined from long-term virologically stable HIV-positive adults from the Australian HIV Observational Database. We estimated mean CD4 cell count changes following the completion of 5 years of cART using linear mixed models. A total of 37 916 CD4 measurements were observed for 892 patients over a combined total of 9753 patient-years. Older patients (> 50 years old) at cART initiation had estimated mean (95% confidence interval) changes in CD4 counts by year-5 CD4 count strata (< 500, 500-750 and > 750 cells/μL) of 14 (7 to 21), 3 (-5 to 11) and -6 (-17 to 4) cells/μL/year. Of the CD4 cell count rates of change estimated, none were indicative of long-term declines in CD4 cell counts. Our results suggest that duration of cART and increasing age do not result in decreasing mean changes in CD4 cell counts for long-term virologically suppressed patients, indicating that the level of immune recovery achieved during the first 5 years of treatment is sustained through long-term cART. © 2012 British HIV Association.

  13. Phytochemical and Bioactive Potential of in vivo and in vitro Grown Plants of Centaurea ragusina L. - Detection of DNA/RNA Active Compounds in Plant Extracts via Thermal Denaturation and Circular Dichroism.

    PubMed

    Vujčić, Valerija; Radić Brkanac, Sandra; Radojčić Redovniković, Ivana; Ivanković, Siniša; Stojković, Ranko; Žilić, Irena; Radić Stojković, Marijana

    2017-11-01

    The phytochemical composition and biological activity of non-volatile components of Centaurea ragusina L. has not been studied previously. Our aim was to evaluate the phytochemical and bioactive potential (including interactions with polynucleotides) of C. ragusina L. depending on the origin of plant material (in vivo - leaves from natural habitats, ex vitro - leaves from plants acclimated from culture media, in vitro - leaves and calli from plants grown in culture media) and polarity of solvents used in extract preparation (80 and 96% ethanol and water combinations or single solvents). The polyphenol composition was determined by spectrophotometric and HPLC analysis. Biological activity of extracts was evaluated by following methods: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods for antioxidative activity, 2,3,5-triphenyl tetrazolium chloride (TTC) microdilution method for antibacterial activity, crystal-violet test for cytotoxic activity and thermal denaturation (TD) and circular dichroism (CD) for DNA/RNA interactions. Conditions for the most efficient polyphenol extraction were determined: the 80% ethanol/water solvent system was the most suitable for callus and leaf ex vitro samples and 80 or 96% ethanol for leaf in vivo samples. Significantly higher levels of chlorogenic acid and naringenin were detected in callus tissue than in vivo plant. Ethanolic extracts exhibited the significant antibacterial activity against Staphylococcus aureus ATCC 25923. DNA/RNA active compounds in plant extracts were detected by TD and CD methods. Callus tissue and ex vitro leaves represent a valuable source of polyphenols as in vivo leaves. TD and CD can be applied for detection of DNA/RNA active compounds in extracts from natural resources. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Activation of human CD141+ and CD1c+ dendritic cells in vivo with combined TLR3 and TLR7/8 ligation.

    PubMed

    Pearson, Frances E; Chang, Karshing; Minoda, Yoshihito; Rojas, Ingrid M Leal; Haigh, Oscar L; Daraj, Ghazal; Tullett, Kirsteen M; Radford, Kristen J

    2018-04-01

    Mice reconstituted with human hematopoietic stem cells are valuable models to study aspects of the human immune system in vivo. We describe a humanized mouse model (hu mice) in which fully functional human CD141 + and CD1c + myeloid and CD123 + plasmacytoid dendritic cells (DC) develop from human cord blood CD34 + cells in immunodeficient mice. CD141 + DC are the human equivalents of murine CD8 + /CD103 + DC which are essential for the induction of tumor-inhibitory cytotoxic T lymphocyte responses, making them attractive targets to exploit for the development of new cancer immunotherapies. We used CD34 + -engrafted NSG-A2 mice to investigate activation of DC subsets by synthetic dsRNA or ssRNA analogs polyinosinic-polycytidylic acid/poly I:C and Resiquimod/R848, agonists for TLR3 and TLR8, respectively, both of which are expressed by CD141 + DC. Injection of hu mice with these agonists resulted in upregulation of costimulatory molecules CD80, CD83 and CD86 by CD141 + and CD1c + DC alike, and their combination further enhanced expression of these molecules by both subsets. When combined, poly I:C and R848 enhanced serum levels of key cytokines associated with cross-presentation and the induction of cytotoxic T lymphocyte responses including IFN-α, IFN-β, IL-12 and CXCL10. These data advocate a combination of poly I:C and R848 TLR agonists as means of activating human DC for immunotherapy. © 2018 Australasian Society for Immunology Inc.

  15. Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform

    NASA Astrophysics Data System (ADS)

    Jia, Guangyao

    Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of

  16. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-01-01

    Aim: Autoimmune disease and CD4+ T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4+ T cells as a possible mechanism of immunotoxicity. Materials & methods: Naive and effector/memory CD4+ T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. Results: A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4+ T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. Conclusion: TCE increased epigenetic drift of specific CpG sites in CD4+ T cells. PMID:27092578

  17. The influence of house dust mite sublingual immunotherapy on the TSLP-OX40L signaling pathway in patients with allergic rhinitis.

    PubMed

    Meng, Qingxiang; Liu, Xiaolong; Li, Peng; He, Long; Xie, Jinghua; Gao, Xionghui; Wu, Xiaozhong; Su, Fang; Liang, Yong

    2016-08-01

    This study aimed to investigate the clinical efficacy of sublingual immunotherapy (SLIT) with house dust mite (HDM) extract and to examine T helper 2 (Th2)-type immune responses mediated by the thymic stromal lymphopoietin (TSLP-OX40L) signaling pathway in patients with moderate to severe allergic rhinitis (AR) after 12-month HDM SLIT. Forty-six cases of HDM-sensitized patients with persistent AR in southern China were enrolled in this study. Clinical efficacy of SLIT was assessed by determining the individual nasal symptom score (INSS) and total nasal symptom score (TNSS) after 12-month HDM SLIT. Moreover, the TSLP-OX40L signaling pathway was investigated through measurements of TSLP by enzyme-labeled immunosorbent assay (ELISA) and OX40L by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and flow cytometry. After 12 months of HDM SLIT, TNSS and INSS were significantly decreased overall compared with baseline values (p < 0.001). By the end of the 12-month HDM SLIT, TNSS had declined by ∼50% compared with baseline, and the corresponding level of TSLP in nasal lavage decreased significantly (p < 0.05). The level of OX40L messenger RNA (mRNA) in blood was markedly decreased significantly after 12-month HDM SLIT compared with baseline (t = 12.300, p < 0.05). Furthermore, significant decreases in OX40L expression on the surface of peripheral blood mononuclear cells (PBMCs) (t = 13.100, p < 0.05) and OX40L expression on the surface of CD11c+CD86+ cells in PBMCs (t = 9.946, p < 0.05) after 12-month HDM SLIT were observed. HDM SLIT downregulated Th2-type immune responses mediated by the TSLP-OX40L signaling pathway in patients with persistent moderate to severe AR. © 2016 ARS-AAOA, LLC.

  18. The expression of hematopoietic progenitor cell antigen CD34 is regulated by DNA methylation in a site-dependent manner in gastrointestinal stromal tumours.

    PubMed

    Bure, Irina; Braun, Alexander; Kayser, Claudia; Geddert, Helene; Schaefer, Inga-Marie; Cameron, Silke; Ghadimi, Michael B; Ströbel, Philipp; Werner, Martin; Hartmann, Arndt; Wiemann, Stefan; Agaimy, Abbas; Haller, Florian; Moskalev, Evgeny A

    2017-12-01

    The anatomic site-dependent expression of hematopoietic progenitor cell antigen CD34 is a feature of gastrointestinal stromal tumours (GISTs). The basis for the differential CD34 expression is only incompletely understood. This study aimed at understanding the regulation of CD34 in GISTs and clarification of its site-dependent expression. Two sample sets of primary GISTs were interrogated including 52 fresh-frozen and 134 paraffin-embedded and formalin-fixed specimens. DNA methylation analysis was performed by HumanMethylation450 BeadChip array in three cell lines derived from gastric and intestinal GISTs, and differentially methylated CpG sites were established upstream of CD34. The methylation degree was further quantified by pyrosequencing, and inverse correlation with CD34 mRNA and protein abundance was revealed. The gene's expression could be activated upon induction of DNA hypomethylation with 5-aza-2'-deoxycytidine in GIST-T1 cells. In patient samples, a strong inverse correlation of DNA methylation degree with immunohistochemically evaluated CD34 expression was documented. Both CD34 expression and DNA methylation levels were specific to the tumours' anatomic location and mutation status. A constant decrease in methylation levels was observed ranging from almost 100% hypermethylation in intestinal GISTs from duodenum to hypomethylation in rectum. CD34 was heavily methylated in gastric PDGFRA-mutant GISTs in comparison to hypomethylated KIT-mutant counterparts. Next to CD34 hypermethylation, miR-665 was predicted and experimentally confirmed to target CD34 mRNA in GIST-T1 cells. Our results suggest that CD34 expression in GISTs may undergo a complex control by DNA methylation and miR-665. Differential methylation and expression of CD34 in GISTs along the gastrointestinal tract axis and in tumours that harbour different gain-of-function mutations suggest the origin from different cell populations in the gastrointestinal tract. © 2017 UICC.

  19. Apoptosis of haematopoietic cells upon thymidylate synthase inhibition is independent of p53 accumulation and CD95-CD95 ligand interaction.

    PubMed Central

    Muñoz-Pinedo, C; Oliver, F J; López-Rivas, A

    2001-01-01

    Treatment of haematopoietic BA/F3 cells with the thymidylate synthase inhibitor 5-fluoro-2'-deoxyuridine (FUdR) activated apoptosis through a mechanism that required continuous protein synthesis and was inhibited by Bcl-2 over-expression. Analysis of p53 levels in cells treated with FUdR indicated a marked accumulation of this protein. Accumulation of p53 was also observed in cells over-expressing Bcl-2. In BA/F3 cells transfected with a cDNA coding for the human papilloma virus protein E6, p53 accumulation after FUdR treatment was inhibited markedly. However, apoptosis was induced in both control and E6 cells to a similar extent. The role of the CD95/CD95 ligand (CD95L) system in FUdR-induced apoptosis was also assessed. As determined by reverse transcriptase PCR, BA/F3 expressed a low constitutive level of CD95L mRNA, which decreased following FUdR treatment. Moreover, blocking CD95-CD95L interactions with antagonistic CD95 monoclonal antibody did not prevent drug-induced apoptosis. Furthermore, analysis of caspase involvement showed important differences in apoptosis induced by CD95-triggering or FUdR treatment. In summary, these results suggest that apoptosis induced by thymineless stress in haematopoietic BA/F3 cells occurs by a mechanism that does not require accumulation of p53 and which is independent of CD95-CD95L interactions. PMID:11115403

  20. Interaction Mode between Inclusion Complex of Vitamin K3 with γ- Cyclodextrin and Herring-Sperm DNA.

    PubMed

    Tang, Yan; Cai, Li; Xue, Kang; Wang, Chunling; Xiong, Xiaoli

    2016-05-03

    Methods including spectroscopy, electronic chemistry and thermodynamics were used to study the inclusion effect between γ-cyclodextrin (CD) and vitamin K3(K3), as well as the interaction mode between herring-sperm DNA (hsDNA) and γ-CD-K3 inclusion complex. The results from ultraviolet spectroscopic method indicated that VK3 and γ-CD formed 1:1 inclusion complex, with the inclusion constant Kf = 1.02 × 10(4) L/mol, which is based on Benesi-Hildebrand's viewpoint. The outcomes from the probe method and Scatchard methods suggested that the interaction mode between γ-CD-K3 and DNA was a mixture mode, which included intercalation and electrostatic binding effects. The binding constants were K (θ)25°C = 2.16 × 10(4) L/mol, and K(θ)37°C = 1.06 × 10(4) L/mol. The thermodynamic functions of the interaction between γ-CD-K3 and DNA were ΔrHm(θ) = -2.74 × 10(4) J/mol, ΔrSm(θ) = 174.74 J·mol(-1)K(-1), therefore, both ΔrHm(θ) (enthalpy) and ΔrSm(θ) (entropy) worked as driven forces in this action.

  1. Platelet-Associated CD40/CD154 Mediates Remote Tissue Damage After Mesenteric Ischemia/Reperfusion Injury

    DTIC Science & Technology

    2012-02-27

    aggregates form in the mesenteric vasculature in patients with ulcerative colitis . Eur J Gastroenterol Hepatol 20: 283 289. 37. Franks ZG, Campbell RA...in these mice [8,33]. Moreover, increased levels of activated platelets and platelet derived factors have also been found in patients with...inflammatory bowel disease [12,34 36] and with ischemic stroke [37 40]. CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily, and is

  2. DNA Profiling of Convicted Offender Samples for the Combined DNA Index System

    ERIC Educational Resources Information Center

    Millard, Julie T

    2011-01-01

    The cornerstone of forensic chemistry is that a perpetrator inevitably leaves trace evidence at a crime scene. One important type of evidence is DNA, which has been instrumental in both the implication and exoneration of thousands of suspects in a wide range of crimes. The Combined DNA Index System (CODIS), a network of DNA databases, provides…

  3. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway.

    PubMed

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-05-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.

  4. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  5. CD27/CD70, CD134/CD134 ligand, and CD30/CD153 pathways are independently essential for generation of regulatory cells after intratracheal delivery of alloantigen.

    PubMed

    Aramaki, Osamu; Shirasugi, Nozomu; Akiyama, Yoshinobu; Shibutani, Shintaro; Takayama, Tadatoshi; Shimazu, Motohide; Kitajima, Masaki; Ikeda, Yoshifumi; Okumura, Ko; Yagita, Hideo; Niimi, Masanori

    2003-09-15

    We investigated whether blockade of tumor necrosis factor receptor-ligand pathways could generate regulatory cells induced by intratracheal delivery of alloantigen. CBA (H-2k) mice were pretreated with intratracheal delivery of splenocytes (1x10(7)) from C57BL/10 (H-2b) mice and intraperitoneal administration of monoclonal antibody (mAb) specific for CD70, CD134 ligand (CD134L), CD153, or CD137L. Seven days later, C57BL/10 hearts were transplanted into pretreated CBA mice. Some naive CBA mice underwent adoptive transfer of splenocytes (5x10(7)) from pretreated CBA mice and transplantation of a C57BL/10 heart on the same day. Untreated CBA mice rejected C57BL/10 cardiac grafts acutely (median survival time [MST] 12 days). Pretreatment with intratracheal delivery of C57BL/10 donor splenocytes prolonged graft survival significantly (MST 84 days). Mice given intratracheal delivery of alloantigen plus anti-CD70, anti-CD134L, or anti-CD153 mAb, but not those given intratracheal delivery of alloantigen plus anti-CD137L mAb, rejected their graft acutely (MST 16, 14, 10, and 65 days, respectively). Adoptive transfer of splenocytes from mice pretreated with intratracheal delivery of alloantigen plus anti-CD70, CD134L, or CD153 mAb did not prolong survival of C57BL/10 cardiac grafts in naive secondary CBA recipients (MST 14, 11, and 11 days, respectively), whereas adoptive transfer of splenocytes from mice given intratracheal delivery of alloantigen plus anti-CD137L mAb did (MST 75 days). The CD27/CD70, CD134/CD134L, and CD30/CD153 pathways are independently required for generation of regulatory cells in our model.

  6. CdSe/ZnS Quantum Dots trigger DNA repair and antioxidant enzyme systems in Medicago sativa cells in suspension culture

    PubMed Central

    2013-01-01

    Background Nanoparticles appear to be promising devices for application in the agriculture and food industries, but information regarding the response of plants to contact with nano-devices is scarce. Toxic effects may be imposed depending on the type and concentration of nanoparticle as well as time of exposure. A number of mechanisms may underlie the ability of nanoparticles to cause genotoxicity, besides the activation of ROS scavenging mechanisms. In a previous study, we showed that plant cells accumulate 3-Mercaptopropanoic acid-CdSe/ZnS quantum dots (MPA-CdSe/ZnS QD) in their cytosol and nucleus and increased production of ROS in a dose dependent manner when exposed to QD and that a concentration of 10 nM should be cyto-compatible. Results When Medicago sativa cells were exposed to 10, 50 and 100 nM MPA-CdSe/ZnS QD a correspondent increase in the activity of Superoxide dismutase, Catalase and Glutathione reductase was registered. Different versions of the COMET assay were used to assess the genotoxicity of MPA-CdSe/ZnS QD. The number of DNA single and double strand breaks increased with increasing concentrations of MPA-CdSe/ZnS QD. At the highest concentrations, tested purine bases were more oxidized than the pyrimidine ones. The transcription of the DNA repair enzymes Formamidopyrimidine DNA glycosylase, Tyrosyl-DNA phosphodiesterase I and DNA Topoisomerase I was up-regulated in the presence of increasing concentrations of MPA-CdSe/ZnS QD. Conclusions Concentrations as low as 10 nM MPA-CdSe/ZnS Quantum Dots are cytotoxic and genotoxic to plant cells, although not lethal. This sets a limit for the concentrations to be used when practical applications using nanodevices of this type on plants are being considered. This work describes for the first time the genotoxic effect of Quantum Dots in plant cells and demonstrates that both the DNA repair genes (Tdp1β, Top1β and Fpg) and the ROS scavenging mechanisms are activated when MPA-CdSe/ZnS QD contact M. sativa

  7. Long terms trends in CD4+ cell counts, CD8+ cell counts, and the CD4+ : CD8+ ratio

    PubMed Central

    Hughes, Rachael A.; May, Margaret T.; Tilling, Kate; Taylor, Ninon; Wittkop, Linda; Reiss, Peter; Gill, John; Schommers, Philipp; Costagliola, Dominique; Guest, Jodie L.; Lima, Viviane D.; d’Arminio Monforte, Antonella; Smith, Colette; Cavassini, Matthias; Saag, Michael; Castilho, Jessica L.; Sterne, Jonathan A.C.

    2018-01-01

    Objective: Model trajectories of CD4+ and CD8+ cell counts after starting combination antiretroviral therapy (ART) and use the model to predict trends in these counts and the CD4+ : CD8+ ratio. Design: Cohort study of antiretroviral-naïve HIV-positive adults who started ART after 1997 (ART Cohort Collaboration) with more than 6 months of follow-up data. Methods: We jointly estimated CD4+ and CD8+ cell count trends and their correlation using a bivariate random effects model, with linear splines describing their population trends, and predicted the CD4+ : CD8+ ratio trend from this model. We assessed whether CD4+ and CD8+ cell count trends and the CD4+ : CD8+ ratio trend varied according to CD4+ cell count at start of ART (baseline), and, whether these trends differed in patients with and without virological failure more than 6 months after starting ART. Results: A total of 39 979 patients were included (median follow-up was 53 months). Among patients with baseline CD4+ cell count at least 50 cells/μl, predicted mean CD8+ cell counts continued to decrease between 3 and 15 years post-ART, partly driving increases in the predicted mean CD4+ : CD8+ ratio. During 15 years of follow-up, normalization of the predicted mean CD4+ : CD8+ ratio (to >1) was only observed among patients with baseline CD4+ cell count at least 200 cells/μl. A higher baseline CD4+ cell count predicted a shorter time to normalization. Conclusion: Declines in CD8+ cell count and increases in CD4+ : CD8+ ratio occurred up to 15 years after starting ART. The likelihood of normalization of the CD4+ : CD8+ ratio is strongly related to baseline CD4+ cell count. PMID:29851663

  8. Introduction of OX40 ligand into lymphoma cells elicits anti-lymphoma immunity in vivo.

    PubMed

    Kaneko, Hitomi; Hori, Toshiyuki; Yanagita, Soshi; Kadowaki, Norimitsu; Uchiyama, Takashi

    2005-03-01

    OX40, a member of the TNF receptor superfamily, and its ligand (OX40L) play crucial roles in induction and maintenance of integrated T cell immune response. Engagement of OX40L delivers a costimulatory signal to T cells. In this study, we investigated whether inoculation of OX40L-transfected EL4, a murine T cell lymphoma cell line, could induce anti-lymphoma immunity in mice. Female C57BL/6 mice were inoculated with 1 x 10(5) cells of parental EL4, OX40L-transfected EL4 (EL4-OX40L), or mock control vector-transfected EL4 (EL4-mock), and then the tumor size, overall survival, CTL activity of spleen cells, and the immunohistochemistry were compared. While both parental EL4 and EL4-mock grew rapidly, EL4-OX40L was rejected or grew slower than parental EL4 or EL4-mock. Pretreatment of mice with either anti-CD4 or anti-CD8 mAb accelerated the growth of EL4-OX40L, suggesting that both CD4+ and CD8+ T cells were involved in anti-lymphoma immunity. The immunohistochemical study revealed the infiltration of CD8+ T cells into the tumor of EL4-OX40L. In vitro CTL assay demonstrated that spleen cells of mice that had rejected EL4-OX40L had significant cytotoxic activity against parental EL4. The gene transfer of OX40L into lymphoma cells is an eligible and efficient modality to induce anti-lymphoma immunity.

  9. Crystallographic analysis of CD40 recognition and signaling by human TRAF2

    PubMed Central

    McWhirter, Sarah M.; Pullen, Steven S.; Holton, James M.; Crute, James J.; Kehry, Marilyn R.; Alber, Tom

    1999-01-01

    Tumor necrosis factor receptor superfamily members convey signals that promote diverse cellular responses. Receptor trimerization by extracellular ligands initiates signaling by recruiting members of the tumor necrosis factor receptor-associated factor (TRAF) family of adapter proteins to the receptor cytoplasmic domains. We report the 2.4-Å crystal structure of a 22-kDa, receptor-binding fragment of TRAF2 complexed with a functionally defined peptide from the cytoplasmic domain of the CD40 receptor. TRAF2 forms a mushroom-shaped trimer consisting of a coiled coil and a unique β-sandwich domain. Both domains mediate trimerization. The CD40 peptide binds in an extended conformation with every side chain in contact with a complementary groove on the rim of each TRAF monomer. The spacing between the CD40 binding sites on TRAF2 supports an elegant signaling mechanism in which trimeric, extracellular ligands preorganize the receptors to simultaneously recognize three sites on the TRAF trimer. PMID:10411888

  10. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells.

    PubMed

    Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian; Gadeberg, Ole V; Frank, David A; Petersen, Jørgen; Jurlander, Jesper; Pedersen, Mikkel W

    2013-10-01

    The treatment of chronic lymphocytic leukaemia (CLL) has been improved by introduction of monoclonal antibodies (mAbs) that exert their effect through secondary effector mechanisms. CLL cells are characterized by expression of CD5 and CD23 along with CD19 and CD20, hence anti-CD5 Abs that engage secondary effector functions represent an attractive opportunity for CLL treatment. Here, a repertoire of mAbs against human CD5 was generated and tested for ability to induce complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) both as single mAbs and combinations of two mAbs against non-overlapping epitopes on human CD5. The results demonstrated that combinations of two mAbs significantly increased the level of CDC compared to the single mAbs, while no enhancement of ADCC was seen with anti-CD5 mAb combinations. High levels of CDC and ADCC correlated with low levels of Ab-induced CD5 internalization and degradation. Importantly, an anti-CD5 mAb combination enhanced CDC of CLL cells when combined with the anti-CD20 mAbs rituximab and ofatumumab as well as with the anti-CD52 mAb alemtuzumab. These results suggest that an anti-CD5 mAb combination inducing CDC and ADCC may be effective alone, in combination with mAbs against other targets or combined with chemotherapy for CLL and other CD5-expressing haematological or lymphoid malignancies. © 2013 John Wiley & Sons Ltd.

  11. Nucleoprotein Complexes Containing Replicating Simian Virus 40 DNA: Comparison with Polyoma Nucleoprotein Complexes

    PubMed Central

    Hall, Mark R.; Meinke, William; Goldstein, David A.

    1973-01-01

    Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. PMID:4359958

  12. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.

    PubMed

    Harizi, Hedi; Limem, Ilef; Gualde, Norbert

    2011-02-01

    We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).

  13. “Direct cloning in Lactobacillus plantarum: Electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete”

    PubMed Central

    2012-01-01

    Background Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Results Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 109 colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Conclusions Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or

  14. Heritable DNA methylation in CD4+ cells among complex families displays genetic and non-genetic effects

    USDA-ARS?s Scientific Manuscript database

    DNA methylation at CpG sites is both heritable and influenced by environment, but the relative contributions of each to DNA methylation levels are unclear. We conducted a heritability analysis of CpG methylation in human CD4+ cells across 975 individuals from 163 families in the Genetics of Lipid-lo...

  15. Usefulness of AFP, AFP-L3, and PIVKA-II, and their combinations in diagnosing hepatocellular carcinoma

    PubMed Central

    Park, Sang Joon; Jang, Jae Young; Jeong, Soung Won; Cho, Young Kyu; Lee, Sae Hwan; Kim, Sang Gyune; Cha, Sang-Woo; Kim, Young Seok; Cho, Young Deok; Kim, Hong Soo; Kim, Boo Sung; Park, Suyeon; Bang, Hae In

    2017-01-01

    Abstract Alpha-fetoprotein (AFP), Lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), and protein induced by vitamin K absence or antagonist-II (PIVKA-II) are widely used as tumor markers for the diagnosis of hepatocellular carcinoma (HCC). This study compared the diagnostic values of AFP, AFP-L3, and PIVKA-II individually and in combination to find the best biomarker or biomarker panel. Seventy-nine patients with newly diagnosed HCC and 77 non-HCC control patients with liver cirrhosis were enrolled. AFP, AFP-L3, and PIVKA-II were measured in the same serum samples using microchip capillary electrophoresis and a liquid-phase binding assay on an automatic analyzer. Receiver-operating characteristic curve analyses were also applied to all combinations of the markers. When the 3 biomarkers were analyzed individually, AFP showed the largest area under the receiver-operating characteristic curve (AUC) (0.751). For combinations of the biomarkers, the AUC was highest (0.765) for “PIVKA-II > 40 mAU/mL and AFP > 10 ng/mL.” The combination of “PIVKA-II > 40 mAU/mL and AFP > 10 ng/mL and AFP-L3 > 10%” had worse sensitivity and lower AUC (P = 0.001). The highest AUC of a single biomarker was highest for AFP and of a combination was “PIVKA-II > 40 mAU/mL and AFP > 10 ng/mL,” with this also being the case when the cut-off value of AFP and AFP-L3 was changed. Alpha-fetoprotein showed the best diagnostic performance as a single biomarker for HCC. The diagnostic value of AFP was improved by combining it with PIVKA-II, but adding AFP-L3 did not contribute to the ability to distinguish between HCC and non-HCC liver cirrhosis. These findings were not altered when the cut-off value of AFP and AFP-L3 was changed. PMID:28296720

  16. PD-L1 expression in extrahepatic cholangiocarcinoma.

    PubMed

    Walter, Dirk; Herrmann, Eva; Schnitzbauer, Andreas A; Zeuzem, Stefan; Hansmann, Martin Leo; Peveling-Oberhag, Jan; Hartmann, Sylvia

    2017-09-01

    To investigate the expression of the programmed cell death 1 (PD-1) receptor-programmed cell death ligand 1 (PD-L1) pathway and the clinicopathological characteristics in extrahepatic cholangiocarcinoma (eCCA). Tissue samples from patients with eCCA [n = 69; perihilar cholangiocarcinoma (CCA), 40; and distal CCA, 29] who underwent surgical resection in the period from 2007 to 2015 were evaluated for PD-1, PD-L1, CD3 and CD163 expression, and correlations with clinicopathological characteristics, including survival data, were determined. PD-L1 was found on both tumour cells of eCCA (8/69, 11.6%) and tumour-associated macrophages (21/69, 30.4%). Significant correlations of PD-L1 expression on cancer cells with venous invasion (P = 0.031) and poor differentiation of the tumour (P = 0.048) were observed. In 19 of 69 (27.5%) samples, tumour-infiltrating lymphocytes (TILs) expressed PD-1, whereas infiltration with CD3-positive and CD163-positive cells was found in 63 of 69 (91.3%) and 68 of 69 (98.6%) cases, respectively. The presence of fewer than five CD3-positive cells per high-power field was significantly correlated with poorer differentiation (P = 0.015) and venous invasion (P < 0.001) of CCA. PD-L1 expression was not correlated with patient survival, but PD-L1 expression on tumour cells combined with low infiltration of CD3-positive TILs was associated with an unfavourable outcome (P = 0.027). Only a small number of eCCA patients are PD-L1-positive, which might be important for future application of PD-1/PD-L1-targeted immune-modulating therapy in these patients. A small subgroup of eCCAs with PD-L1 expression and low lymphocytic infiltration showed more invasive growth and worse overall survival. © 2017 John Wiley & Sons Ltd.

  17. Modulation of E2F activity in primary mouse B cells following stimulation via surface IgM and CD40 receptors.

    PubMed

    Lam, E W; Glassford, J; van der Sman, J; Banerji, L; Pizzey, A R; Shaun, N; Thomas, B; Klaus, G G

    1999-10-01

    Since signals via CD40 and the B cell receptor are known to synergize to induce B cell activation, we have analyzed the pocket protein/E2F complexes in mouse B lymphocytes following stimulation by anti-IgM, anti-CD40, alone or together. We find that E2F4 and DP1 form the predominant E2F heterodimers in the G0 and G1 phases of the cell cycle, complexed with hypophosphorylated p130. During late G1 and S phase this complex is replaced by at least three different E2F complexes, one of which is an E2F complex containing p107 or pRB as well as two "free" E2F complexes consisting of E2F4/DP1 and E2F1-3/DP1. These effects were mirrored by the levels and phosphorylation status of the three pocket proteins. We also observed an increase in electrophoretic mobility of DP1 and E2F4 as B cells progressed from G0 into early G1, resulting from their dephosphorylation. This is known to correlate with a decrease in DNA binding capacity of these proteins and could also be important for derepression of genes negatively regulated through E2F sites in their promoters. These results therefore indicate that the pRB/E2F pathway integrates proliferative signals emanating from the sIgM and CD40 receptors.

  18. Global vascular expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin.

    PubMed

    Baumhueter, S; Dybdal, N; Kyle, C; Lasky, L A

    1994-10-15

    Extravasation of leukocytes into organized lymphoid tissues and into sites of inflammation is critical to immune surveillance. Leukocyte migration to peripheral lymph nodes (PLN), mesenteric lymph nodes (MLN) and Peyer's patches (PP) depends on L-selectin, which recognizes carbohydrate-bearing, sialomucin-like endothelial cell surface glycoproteins. Two of these ligands have been identified at the molecular level. One is the potentially soluble mucin, GlyCAM 1, which is almost exclusively produced by high endothelial venules (HEV) of PLN and MLN. The second HEV ligand for L-selectin is the membrane-bound sialomucin CD34. Historically, this molecule has been successfully used to purify human pluripotent bone marrow stem cells, and limited data suggest that human CD34 is present on the vascular endothelium of several organs. Here we describe a comprehensive analysis of the vascular expression of CD34 in murine tissues using a highly specific antimurine CD34 polyclonal antibody. CD34 was detected on vessels in all organs examined and was expressed during pancreatic and skin inflammatory episodes. A subset of HEV-like vessels in the inflamed pancreas of nonobese diabetic (NOD) mice are positive for both CD34 and GlyCAM 1, and bind to an L-selectin/immunoglobulin G (IgG) chimeric probe. Finally, we found that CD34 is present on vessels of deafferentiated PLN, despite the fact that these vessels are no longer able to interact with L-selectin or support lymphocyte binding in vitro or trafficking in vivo. Our data suggest that the regulation of posttranslational carbohydrate modifications of CD34 is critical in determining its capability to act as an L-selectin ligand. Based on its ubiquitous expression, we propose that an appropriately glycosylated form of vascular CD34 may act as a ligand for L-selectin-mediated leukocyte trafficking to both lymphoid and nonlymphoid sites.

  19. Treatment with proteasome inhibitor bortezomib enhances antigen-specific CD8+ T cell-mediated antitumor immunity induced by DNA vaccination

    PubMed Central

    Tseng, Chih Wen; Monie, Archana; Wu, Chao-Yi; Huang, Bruce; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T.-C.

    2008-01-01

    There is an urgent need to develop new innovative therapies for the control of cancer. Antigen-specific immunotherapy and the employment of proteasome inhibitors have emerged as two potentially plausible approaches for the control of cancer. In the current study, we explored the combination of the DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7) with the proteasome inhibitor; bortezomib for their ability to generate E7-specific immune responses and antitumor effects in vaccinated mice. We found that the combination of treatment with bortezomib and CRT/E7(detox) DNA generated more potent E7-specific CD8+ T cell immune responses and better therapeutic effects against TC-1 tumors in tumor bearing mice compared to monotherapy. Furthermore, we found that treatment with bortezomib led to increased apoptosis of TC-1 tumor cells and could render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. Our data has significant implications for future clinical translation. PMID:18542898

  20. The heritage of pathogen pressures and ancient demography in the human innate-immunity CD209/CD209L region.

    PubMed

    Barreiro, Luis B; Patin, Etienne; Neyrolles, Olivier; Cann, Howard M; Gicquel, Brigitte; Quintana-Murci, Lluís

    2005-11-01

    The innate immunity system constitutes the first line of host defense against pathogens. Two closely related innate immunity genes, CD209 and CD209L, are particularly interesting because they directly recognize a plethora of pathogens, including bacteria, viruses, and parasites. Both genes, which result from an ancient duplication, possess a neck region, made up of seven repeats of 23 amino acids each, known to play a major role in the pathogen-binding properties of these proteins. To explore the extent to which pathogens have exerted selective pressures on these innate immunity genes, we resequenced them in a group of samples from sub-Saharan Africa, Europe, and East Asia. Moreover, variation in the number of repeats of the neck region was defined in the entire Human Genome Diversity Panel for both genes. Our results, which are based on diversity levels, neutrality tests, population genetic distances, and neck-region length variation, provide genetic evidence that CD209 has been under a strong selective constraint that prevents accumulation of any amino acid changes, whereas CD209L variability has most likely been shaped by the action of balancing selection in non-African populations. In addition, our data point to the neck region as the functional target of such selective pressures: CD209 presents a constant size in the neck region populationwide, whereas CD209L presents an excess of length variation, particularly in non-African populations. An additional interesting observation came from the coalescent-based CD209 gene tree, whose binary topology and time depth (approximately 2.8 million years ago) are compatible with an ancestral population structure in Africa. Altogether, our study has revealed that even a short segment of the human genome can uncover an extraordinarily complex evolutionary history, including different pathogen pressures on host genes as well as traces of admixture among archaic hominid populations.

  1. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers

    PubMed Central

    2013-01-01

    Background Accumulating evidence supports cancer to initiate and develop from a small population of stem-like cells termed as cancer stem cells (CSC). The exact phenotype of CSC and their counterparts in normal mammary gland is not well characterized. In this study our aim was to evaluate the phenotype and function of stem/progenitor cells in normal mammary epithelial cell populations and their malignant counterparts. Methods Freshly isolated cells from both normal and malignant human breasts were sorted using 13 widely used stem/progenitor cell markers individually or in combination by multi-parametric (up to 9 colors) cell sorting. The sorted populations were functionally evaluated by their ability to form colonies and mammospheres, in vitro. Results We have compared, for the first time, the stem/progenitor markers of normal and malignant breasts side-by-side. Amongst all markers tested, we found CD44high/CD24low cell surface marker combination to be the most efficient at selecting normal epithelial progenitors. Further fractionation of CD44high/CD24low positive cells showed that this phenotype selects for luminal progenitors within Ep-CAMhigh/CD49f + cells, and enriches for basal progenitors within Ep-CAM-/low/CD49f + cells. On the other hand, primary breast cancer samples, which were mainly luminal Ep-CAMhigh, had CD44high/CD24low cells among both CD49fneg and CD49f + cancer cell fractions. However, functionally, CSC were predominantly CD49f + proposing the use of CD44high/CD24low in combination with Ep-CAM/CD49f cell surface markers to further enrich for CSC. Conclusion Our study clearly demonstrates that both normal and malignant breast cells with the CD44high/CD24low phenotype have the highest stem/progenitor cell ability when used in combination with Ep-CAM/CD49f reference markers. We believe that this extensive characterization study will help in understanding breast cancer carcinogenesis, heterogeneity and drug resistance. PMID:23768049

  2. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake.

    PubMed

    Ji, Ye; Zhou, Yun; Ma, Chuanxin; Feng, Yan; Hao, Yi; Rui, Yukui; Wu, Wenhao; Gui, Xin; Le, Van Nhan; Han, Yaning; Wang, Yingcai; Xing, Baoshan; Liu, Liming; Cao, Weidong

    2017-01-01

    Previous studies have reported that nanoparticles (NPs) and heavy metals are toxic to the environment. However, the jointed toxicity is not yet well understood. This study was aimed to investigate the combined toxicity of TiO 2 NPs and the heavy metal cadmium (Cd) to plants. Rice (Oryzasativa L.) was selected as the target plant. The rice seedlings were randomly separated into 12 groups and treated with CdCl 2 (0, 10 and 20 mg/L) and TiO 2 NPs (0, 10, 100 and 1000 mg/L). The plant height, biomass and root length indicated significant toxicity of Cd to the growth, but TiO 2 NPs exhibited the potential ability to alleviate the Cd toxicity. Transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) confirmed the existence of TiO 2 NPs in plants. Elemental analysis of Ti and Cd suggested that the presences of Cd significantly decreased the Ti accumulation in the rice roots in the co-exposure treatments. Interestingly, TiO 2 NPs could lower the Cd uptake and distribution in rice roots and leaves. The results of antioxidant enzyme activity, lipid peroxide as well as phytohormones varied in the different treatments. Comparing with the Cd alone treatment, the net photosynthetic rate and chlorophyll content were significantly increased in the co-exposure treatments, suggesting that TiO 2 NPs could tremendously reduce the Cd toxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L).

    PubMed

    Liao, Bo-han; Liu, Hong-yu; Zeng, Qing-ru; Yu, Ping-zhong; Probst, Anne; Probst, Jean-Luc

    2005-08-01

    Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L) were studied in a pot experiment by measurement of fresh weights of the plants, determination of surperoxide dismutase (SOD), peroxidase (POD), and lipid peroxidation (MDA) in the plant organs, and observation of injury symptoms. The experimental results demonstrated that all treatments of Cd2+, Zn2+, and/or acid rain significantly decreased fresh weights of kidney bean and caused toxic effects on growth of the plants, especially higher amounts of Cd2+ and Zn2+ and higher acidity of acid rain. Combination of these three pollutant factors resulted in more serious toxic effects than any single pollutant and than combinations of any two pollutants. SOD, POD, and MDA in the plant organs changed with different pollution levels, but MDA content in the leaves showed the best relationship between the pollution levels and toxic effects.

  4. Anti-CD22/CD20 Bispecific antibody with enhanced trogocytosis for treatment of Lupus.

    PubMed

    Rossi, Edmund A; Chang, Chien-Hsing; Goldenberg, David M

    2014-01-01

    The humanized anti-CD22 antibody, epratuzumab, has demonstrated therapeutic activity in clinical trials of lymphoma, leukemia and autoimmune diseases, treating currently over 1500 cases of non-Hodgkin lymphoma, acute lymphoblastic leukemias, Waldenström's macroglobulinemia, Sjögren's syndrome, and systemic lupus erythematosus. Because epratuzumab reduces on average only 35% of circulating B cells in patients, and has minimal antibody-dependent cellular cytotoxicity and negligible complement-dependent cytotoxicity when evaluated in vitro, its therapeutic activity may not result completely from B-cell depletion. We reported recently that epratuzumab mediates Fc/FcR-dependent membrane transfer from B cells to effector cells via trogocytosis, resulting in a substantial reduction of multiple BCR modulators, including CD22, CD19, CD21, and CD79b, as well as key cell adhesion molecules, including CD44, CD62L, and β7 integrin, on the surface of B cells in peripheral blood mononuclear cells obtained from normal donors or SLE patients. Rituximab has clinical activity in lupus, but failed to achieve primary endpoints in a Phase III trial. This is the first study of trogocytosis mediated by bispecific antibodies targeting neighboring cell-surface proteins, CD22, CD20, and CD19, as demonstrated by flow cytometry and immunofluorescence microscopy. We show that, compared to epratuzumab, a bispecific hexavalent antibody comprising epratuzumab and veltuzumab (humanized anti-CD20 mAb) exhibits enhanced trogocytosis resulting in major reductions in B-cell surface levels of CD19, CD20, CD21, CD22, CD79b, CD44, CD62L and β7-integrin, and with considerably less immunocompromising B-cell depletion that would result with anti-CD20 mAbs such as veltuzumab or rituximab, given either alone or in combination with epratuzumab. A CD22/CD19 bispecific hexavalent antibody, which exhibited enhanced trogocytosis of some antigens and minimal B-cell depletion, may also be therapeutically useful

  5. Dynamics of cellular HIV-1 DNA levels over 144 weeks of darunavir/ritonavir monotherapy versus triple therapy in the MONET trial.

    PubMed

    Geretti, Anna Maria; Arribas, Jose R; Lathouwers, Erkki; Foster, Geraldine M; Yakoob, Rabia; Kinloch, Sabine; Hill, Andrew; van Delft, Yvon; Moecklinghoff, Christiane

    2013-01-01

    In patients receiving combination antiretroviral therapy (ART), switching to monotherapy with ritonavir-boosted darunavir (DRV/r) can maintain plasma HIV-1 RNA suppression with no treatment-emergent drug resistance; effects on cellular HIV-1 DNA burden are less well characterized. In MONET, patients on stable combination ART for at least 6 months with plasma HIV-1 RNA <50 copies/mL and no history of virologic failure switched to DRV/r 800/100 mg once daily, either alone (n = 127) or with 2 nucleos(t)ide reverse transcriptase inhibitors (NRTIs) (n = 129). In a representative subset of 146 patients, total HIV-1 DNA load in peripheral blood mononuclear cells (PBMC) was tested retrospectively at baseline, week 48, week 96, and week 144. Mean HIV-1 DNA levels at baseline vs week 144 were 2.50 vs 2.49 log10 copies/106 PBMC in the monotherapy arm and 2.59 vs 2.61 log10 copies/106 PBMC in the triple therapy arm, with mean (median) changes of -0.05 (-0.03) and +0.03 (+0.01) log10 copies/106 PBMC in the 2 arms, respectively. Overall baseline HIV-1 DNA levels were higher in patients with nadir CD4 counts <200 cell/µL (P<.05) and in patients who over 144 weeks experienced at least 1 HIV-1 RNA measurement >50 copies/mL (P < .05). In this substudy of the MONET trial, HIV-1 DNA levels remained stable during 144 weeks of either DRV/r monotherapy or triple therapy with DRV/r + 2 NRTIs. In both treatment arms, baseline HIV-1 DNA levels were predicted by the nadir CD4 cell count and predictive of plasma HIV-1 RNA detection during follow-up.

  6. Lack of Zn inhibition of Cd accumulation by rice (Oryza sativa L.) supports non-Zn transporter uptake of Cd

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) grown on Cd contaminated soils has been linked to health problems in subsistence rice farmers in Japan and China. For other crops, normal geogenic Zn inhibits the increased uptake of Cd on contaminated soils. A study was conducted using a multi-chelator buffered nutrient sol...

  7. PD-L1 (CD274) copy number gain, expression, and immune cell infiltration as candidate predictors for response to immune checkpoint inhibitors in soft-tissue sarcoma

    PubMed Central

    Budczies, Jan; Mechtersheimer, Gunhild; Denkert, Carsten; Klauschen, Frederick; Jöhrens, Korinna; Endris, Volker; Lier, Amelie; Lasitschka, Felix; Penzel, Roland; Dietel, Manfred; Brors, Benedikt; Gröschel, Stefan; Glimm, Hanno; Schirmacher, Peter; Renner, Marcus; Fröhling, Stefan; Stenzinger, Albrecht

    2017-01-01

    ABSTRACT Soft-tissue sarcomas (STS) are rare malignancies that account for 1% of adult cancers and comprise more than 50 entities. Current therapeutic options for advanced-stage STS are limited. Immune checkpoint inhibitors targeting the PD-1/PD-L1 signaling axis are being explored as new treatment modality in STS; however, the determinants of response to these agents are largely unknown. Using the sarcoma data set of The Cancer Genome Altas (TCGA) and an independent cohort of untreated high-grade STS, we analyzed DNA copy number status and mRNA expression of PD-L1 in a total of 335 STS cases. Copy number gains (CNG) were detected in 54 TCGA cases (21.1%), of which 21 (8.2%) harbored focal PD-L1 CNG and that were most prevalent in myxofibrosarcoma (35%) and undifferentiated pleomorphic sarcoma (34%). In the untreated high-grade STS cohort, we detected CNG in six cases (7.6%). Analysis of co-amplified genes identified a 5.6-Mb core region comprising 27 genes, including JAK2. Patients with PD-L1 CNG had higher PD-L1 expression compared with STS without CNG (fold change, 1.8; p = 0.02), an effect that was most pronounced in the setting of focal PD-L1 CNG (fold change, 3.0; p = 0.0027). STS with PD-L1 CNG showed a significantly higher mutational load compared with tumors with a diploid PD-L1 locus (median number of mutated genes; 58 vs. 40; p = 3.6E-06), and PD-L1 CNG were associated with inferior survival (HR = 1.82; p = 0.025). In contrast, T-cell infiltrates quantified by mRNA expression of CD3Z were associated with improved survival (HR = 0.88; p = 0.024) and consequently influenced the prognostic power of PD-L1 CNG, with low CD3Z levels conferring poor survival in cases with PD-L1 CNG (HR = 1.8; p = 0.049). These data demonstrate that PD-L1 GNG and elevated expression of PD-L1 occur in a substantial proportion of STS, have prognostic impact that is modulated by T-cell infiltrates, and thus warrant investigation as response predictors for immune checkpoint

  8. PD-L1 (CD274) copy number gain, expression, and immune cell infiltration as candidate predictors for response to immune checkpoint inhibitors in soft-tissue sarcoma.

    PubMed

    Budczies, Jan; Mechtersheimer, Gunhild; Denkert, Carsten; Klauschen, Frederick; Mughal, Sadaf S; Chudasama, Priya; Bockmayr, Michael; Jöhrens, Korinna; Endris, Volker; Lier, Amelie; Lasitschka, Felix; Penzel, Roland; Dietel, Manfred; Brors, Benedikt; Gröschel, Stefan; Glimm, Hanno; Schirmacher, Peter; Renner, Marcus; Fröhling, Stefan; Stenzinger, Albrecht

    2017-01-01

    Soft-tissue sarcomas (STS) are rare malignancies that account for 1% of adult cancers and comprise more than 50 entities. Current therapeutic options for advanced-stage STS are limited. Immune checkpoint inhibitors targeting the PD-1/PD-L1 signaling axis are being explored as new treatment modality in STS; however, the determinants of response to these agents are largely unknown. Using the sarcoma data set of The Cancer Genome Altas (TCGA) and an independent cohort of untreated high-grade STS, we analyzed DNA copy number status and mRNA expression of PD-L1 in a total of 335 STS cases. Copy number gains (CNG) were detected in 54 TCGA cases (21.1%), of which 21 (8.2%) harbored focal PD-L1 CNG and that were most prevalent in myxofibrosarcoma (35%) and undifferentiated pleomorphic sarcoma (34%). In the untreated high-grade STS cohort, we detected CNG in six cases (7.6%). Analysis of co-amplified genes identified a 5.6-Mb core region comprising 27 genes, including JAK2 . Patients with PD-L1 CNG had higher PD-L1 expression compared with STS without CNG (fold change, 1.8; p = 0.02), an effect that was most pronounced in the setting of focal PD-L1 CNG (fold change, 3.0; p = 0.0027). STS with PD-L1 CNG showed a significantly higher mutational load compared with tumors with a diploid PD-L1 locus (median number of mutated genes; 58 vs. 40; p = 3.6E-06), and PD-L1 CNG were associated with inferior survival (HR = 1.82; p = 0.025). In contrast, T-cell infiltrates quantified by mRNA expression of CD3Z were associated with improved survival (HR = 0.88; p = 0.024) and consequently influenced the prognostic power of PD-L1 CNG, with low CD3Z levels conferring poor survival in cases with PD-L1 CNG (HR = 1.8; p = 0.049). These data demonstrate that PD-L1 GNG and elevated expression of PD-L1 occur in a substantial proportion of STS, have prognostic impact that is modulated by T-cell infiltrates, and thus warrant investigation as response predictors for immune checkpoint inhibition.

  9. Vitamin D regulation of OX40 ligand in immune responses to Aspergillus fumigatus.

    PubMed

    Nguyen, Nikki Lynn Hue; Chen, Kong; McAleer, Jeremy; Kolls, Jay K

    2013-05-01

    OX40 ligand (OX40L) is a costimulatory molecule involved in Th2 allergic responses. It has been shown that vitamin D deficiency is associated with increased OX40L expression in peripheral CD11c(+) cells and controls Th2 responses to Aspergillus fumigatus in vitro in cystic fibrosis (CF) patients with allergic bronchopulmonary aspergillosis (ABPA). To investigate if vitamin D deficiency regulated OX40L and Th2 responses in vivo, we examined the effect of nutritional vitamin D deficiency on costimulatory molecules in CD11c(+) cells and A. fumigatus-induced Th2 responses. Vitamin D-deficient mice showed increased expression of OX40L on lung CD11c(+) cells, and OX40L was critical for enhanced Th2 responses to A. fumigatus in vivo. In in vitro assays, vitamin D treatment led to vitamin D receptor (VDR) binding in the promoter region of OX40L and significantly decreased the promoter activity of the OX40L promoter. In addition, vitamin D altered NF-κB p50 binding in the OX40L promoter that may be responsible for repression of OX40L expression. These data show that vitamin D can act directly on OX40L, which impacts Th2 responses and supports the therapeutic use of vitamin D in diseases regulated by OX40L.

  10. Deciphering CD30 ligand biology and its role in humoral immunity

    PubMed Central

    Kennedy, Mary K; Willis, Cynthia R; Armitage, Richard J

    2006-01-01

    Ligands and receptors in the tumour necrosis factor (TNF) and tumour necrosis factor receptor (TNFR) superfamilies have been the subject of extensive investigation over the past 10–15 years. For certain TNFR family members, such as Fas and CD40, some of the consequences of receptor ligation were predicted before the identification and cloning of their corresponding ligands through in vitro functional studies using agonistic receptor-specific antibodies. For other members of the TNFR family, including CD30, cross-linking the receptor with specific antibodies failed to yield many clues about the functional significance of the relevant ligand–receptor interactions. In many instances, the subsequent availability of TNF family ligands in the form of recombinant protein facilitated the determination of biological consequences of interactions with their relevant receptor in both in vitro and in vivo settings. In the case of CD30 ligand (CD30L; CD153), definition of its biological role remained frustratingly elusive. Early functional studies using CD30L+ cells or agonistic CD30-specific antibodies logically focused attention on cell types that had been shown to express CD30, namely certain lymphoid malignancies and subsets of activated T cells. However, it was not immediately clear how the reported activities from these in vitro studies relate to the biological activity of CD30L in the more complex whole animal setting. Recently, results from in vivo models involving CD30 or CD30L gene disruption, CD30L overexpression, or pharmacological blockade of CD30/CD30L interactions have begun to provide clues about the role played by CD30L in immunological processes. In this review we consider the reported biology of CD30L and focus on results from several recent studies that point to an important role for CD30/CD30L interactions in humoral immune responses. PMID:16771849

  11. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL.

    PubMed

    Jayappa, Kallesh D; Portell, Craig A; Gordon, Vicki L; Capaldo, Brian J; Bekiranov, Stefan; Axelrod, Mark J; Brett, L Kyle; Wulfkuhle, Julia D; Gallagher, Rosa I; Petricoin, Emanuel F; Bender, Timothy P; Williams, Michael E; Weber, Michael J

    2017-06-13

    De novo resistance and rapid recurrence often characterize responses of B-cell malignancies to ibrutinib (IBR), indicating a need to develop drug combinations that block compensatory survival signaling and give deeper, more durable responses. To identify such combinations, we previously performed a combinatorial drug screen and identified the Bcl-2 inhibitor venetoclax (VEN) as a promising partner for combination with IBR in Mantle Cell Lymphoma (MCL). We have opened a multi-institutional clinical trial to test this combination. However, analysis of primary samples from patients with MCL as well as chronic lymphocytic leukemia (CLL) revealed unexpected heterogeneous de novo resistance even to the IBR+VEN combination. In the current study, we demonstrate that resistance to the combination can be generated by microenvironmental agonists: IL-10, CD40L and, most potently, CpG-oligodeoxynucleotides (CpG-ODN), which is a surrogate for unmethylated DNA and a specific agonist for TLR9 signaling. Incubation with these agonists caused robust activation of NF-κB signaling, especially alternative NF-κB, which led to enhanced expression of the anti-apoptotic proteins Mcl-1, Bcl-xL, and survivin, thus decreasing dependence on Bcl-2. Inhibitors of NF-κB signaling blocked overexpression of these anti-apoptotic proteins and overcame resistance. Inhibitors of Mcl-1, Bcl-xL, or survivin also overcame this resistance, and showed synergistic benefit with the IBR+VEN combination. We conclude that microenvironmental factors, particularly the TLR9 agonist, can generate de novo resistance to the IBR+VEN combination in CLL and MCL cells. This signaling pathway presents targets for overcoming drug resistance induced by extrinsic microenvironmental factors in diverse B-cell malignancies.

  12. New Insight on a Combination of Policosanol and 10-Dehydrogingerdione Phytochemicals as Inhibitors for Platelet Activation Biomarkers and Atherogenicity Risk in Dyslipidemic Rabbits: Role of CETP and PCSK9 Inhibition.

    PubMed

    Elseweidy, Mohamed Mahmoud; Amin, Rawia Sarhan; Atteia, Hebatallah Husseini; El-Zeiky, Reham Raafat; Al-Gabri, Naif A

    2018-05-09

    Platelet markers [soluble p selectin (sP-selectin) and soluble CD40 ligand (sCD40L)] are associated with platelet activation and cardiovascular risk. Both policosanol and 10-dehydrogingerdione are natural products with proven CETP inhibitory and antiatherogenic effects. Present work aimed mainly to investigate the levels of platelet activation biomarkers in the serum of dyslipidemic rabbits and the potential of these phytochemicals either alone or in a combination form to protect against atherogenicity. Additionally, this work clarified their effect on PCSK9, a key player in atherosclerosis progression. Daily administration of policosanol and/or 10-dehydrogingerdione at a dose level 10 mg/kg bw resulted in a CETP inhibitory activity, increasing HDL-C level. This protective effect was associated with improvement in lipid profile components and a reduction in PCSK9 level. Interestingly, this combination strengthened the CETP inhibitory activity of these phytochemicals, leading to a greater increase in serum HDL-C level than monotherapy. However, this combination did not enhance the reduction in PCSK9 level. Both drugs also decreased platelet activation and inflammation markers such as sCD40L, sP-selectin, and interferon-gamma (IFN-γ), and their combination showed a synergistic effect. Therefore, such phytochemicals may be regarded as promising agents in the protection against atherothrombosis risk.

  13. PD-L1 limits the mucosal CD8+ T cell response to Chlamydia trachomatis

    PubMed Central

    Fankhauser, Sarah C.; Starnbach, Michael N.

    2014-01-01

    Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease in the United States. Repeated infections with C. trachomatis lead to serious sequelae such as infertility. It is unclear why the adaptive immune system, specifically the CD8+ T cell response, is unable to protect against subsequent C. trachomatis infections. In this article we characterize the mucosal CD8+ T cell response to C. trachomatis in the murine genital tract. We demonstrate that the immunoinhibitory ligand, PD-L1, contributes to the defective CD8+ T cell response. Deletion or inhibition of PD-L1 restores the CD8+ T cell response and enhances C. trachomatis clearance. PMID:24353266

  14. Prereplicative events involving simian virus 40 DNA in permissive cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldy, A.; Feunteun, J.; Rosenberg, B.H.

    1982-01-01

    Simian virus 40 DNA molecules were found to be unable to replicate for 9 h after infection, even in cells that were already replicating the DNA of preinfecting simian virus 40; after 9 h, the ability of the DNA to replicate began to rise sharply. The kinetics of activation indicated that each DNA molecule undergoes a series of slow consecutive reactions, not involving T-antigen, before it can replicate. These pre-replicative molecular transformations probably involve configurational changes; their nature and their relation to the initiation of viral DNA synthesis is discussed. Observation of the replicative behavior of one viral DNA inmore » the presence of another was made possible by the use of two different mutants with distinguishable DNAs: a viable deletion mutant containing DNA insensitive to TaqI restriction enzyme was used to provide viral functions required for replication, and is a tsA mutant with TaqI-sensitive DNA was introduced at various times as a probe to determine the ability of the DNA to replicate under different conditions.« less

  15. CD40: Novel Association with Crohn's Disease and Replication in Multiple Sclerosis Susceptibility

    PubMed Central

    Alcina, Antonio; Teruel, María; Díaz-Gallo, Lina M.; Gómez-García, María; López-Nevot, Miguel A.; Rodrigo, Luis; Nieto, Antonio; Cardeña, Carlos; Alcain, Guillermo; Díaz-Rubio, Manuel; de la Concha, Emilio G.; Fernandez, Oscar; Arroyo, Rafael

    2010-01-01

    Background A functional polymorphism located at −1 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves' disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS) susceptibility. However, the protective allele associated with Graves' disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn's disease (CD) lesions. Methodology Genotyping of rs1883832C>T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC) Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. Principal Findings The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p = 0.025; OR (95% CI) = 1.12 (1.01–1.23)]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p = 0.002; OR (95% CI) = 1.19 (1.06–1.33)]. This increased predisposition was not detected in UC patients [p = 0.5; OR (95% CI) = 1.04 (0.93–1.17)]. Conclusion The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions. PMID:20634952

  16. Interaction study of some macrocyclic inorganic schiff base complexes with calf thymus DNA using spectroscopic and voltammetric methods

    NASA Astrophysics Data System (ADS)

    Bordbar, Maryam; Tavoosi, Fariba; Yeganeh-Faal, Ali; Zebarjadian, Mohammad Hasan

    2018-01-01

    The interaction of Cd(II), Zn(II) and Mn(II)-L (4,8-bis(2-pyridylmethyl)-4,8-diazaundecane-1,11-diamine) transition metal complexes with calf thymus DNA (CT-DNA) has been investigated using electronic, fluorescence and circular dichroism (CD) spectroscopy, thermal denaturation and cyclic voltammetry (CV). Based on the UV-Vis study, binding constants of the complexes with CT-DNA were calculated. Changes in the band of the CD spectrum, DNA melting temperature and in the ipa and ipc of the complexes in the presenceCT-DNA, overall, showed that the studied complex exhibited good DNA interaction ability with partial intercalation mode.

  17. YKL-40 expression in CD14+ liver cells in acute and chronic injury

    PubMed Central

    Pizano-Martínez, Oscar; Yañez-Sánchez, Irinea; Alatorre-Carranza, Pilar; Miranda-Díaz, Alejandra; Ortiz-Lazareno, Pablo C; García-Iglesias, Trinidad; Daneri-Navarro, Adrian; Mercado, Mónica Vázquez-Del; Fafutis-Morris, Mary; Delgado-Rizo, Vidal

    2011-01-01

    AIM: To demonstrate that CD14+ cells are an important source of the growth factor YKL-40 in acute and chronic liver damage. METHODS: Rats were inoculated with one dose of CCl4 to induce acute damage. Liver biopsies were obtained at 0, 6, 12, 24, 48 and 72 h. For chronic damage, CCl4 was administered three days per week for 6 or 8 wk. Tissue samples were collected, and cellular populations were isolated by liver digestion and purified by cell sorting. YKL-40 mRNA and protein expression were evaluated by real-time polymerase chain reaction and western blot. RESULTS: Acute liver damage induced a rapid increase of YKL-40 mRNA beginning at 12 h. Expression peaked at 24 h, with a 26-fold increase over basal levels. By 72 h however, YKL-40 expression levels had nearly returned to control levels. On the other hand, chronic damage induced a sustained increase in YKL-40 expression, with 7- and 9-fold higher levels at 6 and 8 wk, respectively. The pattern of YKL-40 expression in different subpopulations showed that CD14+ cells, which include Kupffer cells, are a source of YKL-40 after acute damage at 72 h [0.09 relative expression units (REU)] as well as after chronic injury at 6 wk (0.11 REU). Hepatocytes, in turn, accounted for 0.06 and 0.01 REU after 72 h (acute) or 6 wk (chronic), respectively. The rest of the CD14- cells (including T lymphocytes, B lymphocytes, natural killer and natural killer T cells) yielded 0.07 and 0.15 REU at 72 h and 6 wk, respectively. YKL-40 protein expression in liver was detected at 72 h as well as 6 and 8 wk, with the highest expression relative to controls (11-fold; P ≤ 0.05) seen at 6 wk. Macrophages were stimulated by lipopolysaccharide. We demonstrate that under these conditions, these cells showed maximum expression of YKL-40 at 12 h, with P < 0.05 compared with controls. CONCLUSION: Hepatic CD14+ cells are an YKL-40 mRNA and protein source in acute and chronic liver injury, with expression patterns similar to growth factors implicated

  18. A composite MyD88/CD40 switch synergistically activates mouse and human dendritic cells for enhanced antitumor efficacy

    PubMed Central

    Narayanan, Priyadharshini; Lapteva, Natalia; Seethammagari, Mamatha; Levitt, Jonathan M.; Slawin, Kevin M.; Spencer, David M.

    2011-01-01

    The in vivo therapeutic efficacy of DC-based cancer vaccines is limited by suboptimal DC maturation protocols. Although delivery of TLR adjuvants systemically boosts DC-based cancer vaccine efficacy, it could also increase toxicity. Here, we have engineered a drug-inducible, composite activation receptor for DCs (referred to herein as DC-CAR) comprising the TLR adaptor MyD88, the CD40 cytoplasmic region, and 2 ligand-binding FKBP12 domains. Administration of a lipid-permeant dimerizing ligand (AP1903) induced oligomerization and activation of this fusion protein, which we termed iMyD88/CD40. AP1903 administration to vaccinated mice enabled prolonged and targeted activation of iMyD88/CD40-modified DCs. Compared with conventionally matured DCs, AP1903-activated iMyD88/CD40-DCs had increased activation of proinflammatory MAPKs. AP1903-activated iMyD88/CD40-transduced human or mouse DCs also produced higher levels of Th1 cytokines, showed improved migration in vivo, and enhanced both antigen-specific CD8+ T cell responses and innate NK cell responses. Furthermore, treatment with AP1903 in vaccinated mice led to robust antitumor immunity against preestablished E.G7-OVA lymphomas and aggressive B16.F10 tumors. Thus, the iMyD88/CD40 unified “switch” effectively and safely replaced exogenous adjuvant cocktails, allowing remote and sustained DC activation in vivo. DC “licensing” through iMyD88/CD40 may represent a mechanism by which to exploit the natural synergy between the TLR and CD40 signaling pathways in DCs using a single small molecule drug and could augment the efficacy of antitumor DC-based vaccines. PMID:21383499

  19. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA

    PubMed Central

    Moulick, Amitava; Milosavljevic, Vedran; Vlachova, Jana; Podgajny, Robert; Hynek, David; Kopel, Pavel; Adam, Vojtech

    2017-01-01

    CdTe/ZnSe core/shell quantum dot (QD), one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine) in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation) of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3) and normal (PNT1A) cells (detection limit of 500 pM of DNA), which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments. PMID:28243089

  20. Immune modulation through RNA interference-mediated silencing of CD40 in dendritic cells.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Samiee, Shahram; Ataee, Zahra; Tabei, Seyyed Ziyaoddin; Moazzeni, Seyed Mohammad

    2009-01-01

    RNA interference (RNAi) is an exciting mechanism for knocking down any target gene in transcriptional level. It is now clear that small interfering RNA (siRNA), a 19-21nt long dsRNA, can trigger a degradation process (RNAi) that specifically silences the expression of a cognate mRNA. Our findings in this study showed that down regulation of CD40 gene expression in dendritic cells (DCs) by RNAi culminated to immune modulation. Effective delivery of siRNA into DCs would be a reasonable method for the blocking of CD40 gene expression at the cell surface without any effect on other genes and cell cytotoxicity. The effects of siRNA against CD40 mRNA on the function and phenotype of DCs were investigated. The DCs were separated from the mice spleen and then cultured in vitro. By the means of Lipofectamine2000, siRNA was delivered to the cells and the efficacy of transfection was estimated by flow cytometry. By Annexine V and Propidium Iodide staining, we could evaluate the transfected cells viability. Also, the mRNA expression and protein synthesis were assessed by real-time PCR and flow cytometry, respectively. Knocking down the CD40 gene in the DCs caused an increase in IL-4 production, decrease in IL-12 production and allostimulation activity. All together, these effects would stimulate Th2 cytokines production from allogenic T-cells in vitro.

  1. Effects of baicalin in CD4 + CD29 + T cell subsets of ulcerative colitis patients

    PubMed Central

    Yu, Feng-Yan; Huang, Shao-Gang; Zhang, Hai-Yan; Ye, Hua; Chi, Hong-Gang; Zou, Ying; Lv, Ru-Xi; Zheng, Xue-Bao

    2014-01-01

    AIM: To evaluate the role of baicalin in ulcerative colitis (UC) with regard to the CD4+CD29+ T helper cell, its surface markers and serum inflammatory cytokines. METHODS: Flow cytometry was used to detect the percentage of CD4+CD29+ cells in patients with UC. Real time polymerase chain reaction was used to detect expression of GATA-3, forkhead box P3, T-box expressed in T cells (T-bet), and retinoic acid-related orphan nuclear hormone receptor C (RORC). Western blotting was used to analyze expression of nuclear factor-κB (NF-κB) p65, phosphorylation of NF-κB (p-NF-κB) p65, STAT4, p-STAT4, STAT6 and p-STAT6. The concentrations of interferon-γ (IFN-γ), interleukin (IL)-4, IL-5, IL-6, IL-10 and TGF-β in serum were determined by ELISA assay. RESULTS: The percentages of CD4+CD29+ T cells were lower in treatment with 40 and 20 μmol/L baicalin than in the treatment of no baicalin. Treatment with 40 or 20 μmol/L baicalin significantly upregulated expression of IL-4, TGF-β1 and IL-10, increased p-STAT6/STAT6 ratio, but downregulated expression of IFN-γ, IL-5, IL-6, RORC, Foxp3 and T-bet, and decreased ratios of T-bet/GATA-3, p-STAT4/STAT4 and p-NF-κB/NF-κB compared to the treatment of no baicalin. CONCLUSION: The results indicate that baicalin regulates immune balance and relieves the ulcerative colitis-induced inflammation reaction by promoting proliferation of CD4+CD29+ cells and modulating immunosuppressive pathways. PMID:25386078

  2. Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas).

    PubMed

    Marques, Marise Conceição; do Nascimento, Clístenes Williams Araújo

    2013-10-05

    The vegetation of metal-contaminated soils using non-edible crops can be a safe and economical technique for Cd immobilization and the remediation of contaminated sites. Jatropha (Jatropha curcas L.) exhibits a relative tolerance to heavy metals and potential for biofuel production. The study was performed to monitor the Cd-induced alterations in jatropha plants by X-ray chlorophyll fluorescence. The Cd effects on photosynthetic pigments, the mineral composition of plants, defense enzyme activity and soluble proteins were also studied. Plants were grown for 20days in a nutrient solution with five Cd contents: 5, 10, 20, 30 and 40μmolL(-1); a control with no Cd addition was also monitored. The analysis of the chlorophyll fluorescence spectra allowed detecting alterations caused by Cd toxicity in the jatropha plants. The mineral composition of the plants was affected by the Cd doses; however, the Fe and Mg contents were not significantly reduced, which most likely improved the effects on the contents of the photosynthetic pigments. Because of its relative tolerance to Cd, Jatropha curcas may be a promising species to revegetate Cd-contaminated sites. Considering the long period needed to phytoremediate soils, the combination of remediation with bioenergy production could be an attractive option. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    NASA Astrophysics Data System (ADS)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  4. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40

    PubMed Central

    McNees, Adrienne L.; Harrigal, Lindsay J.; Kelly, Aoife; Minard, Charles G.; Wong, Connie

    2018-01-01

    Background Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40–human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. Results SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. Conclusion These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. Significance Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human

  5. Reduced CD5(+) CD24(hi) CD38(hi) and interleukin-10(+) regulatory B cells in active anti-neutrophil cytoplasmic autoantibody-associated vasculitis permit increased circulating autoantibodies.

    PubMed

    Aybar, L T; McGregor, J G; Hogan, S L; Hu, Y; Mendoza, C E; Brant, E J; Poulton, C J; Henderson, C D; Falk, R J; Bunch, D O

    2015-05-01

    Pathogenesis of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis is B cell-dependent, although how particular B cell subsets modulate immunopathogenesis remains unknown. Although their phenotype remains controversial, regulatory B cells (Bregs ), play a role in immunological tolerance via interleukin (IL)-10. Putative CD19(+) CD24(hi) CD38(hi) and CD19(+) CD24(hi) CD27(+) Bregs were evaluated in addition to their CD5(+) subsets in 69 patients with ANCA-associated vasculitis (AAV). B cell IL-10 was verified by flow cytometry following culture with CD40 ligand and cytosine-phosphate-guanosine (CpG) DNA. Patients with active disease had decreased levels of CD5(+) CD24(hi) CD38(hi) B cells and IL-10(+) B cells compared to patients in remission and healthy controls (HCs). As IL-10(+) and CD5(+) CD24(hi) CD38(hi) B cells normalized in remission within an individual, ANCA titres decreased. The CD5(+) subset of CD24(hi) CD38(hi) B cells decreases in active disease and rebounds during remission similarly to IL-10-producing B cells. Moreover, CD5(+) B cells are enriched in the ability to produce IL-10 compared to CD5(neg) B cells. Together these results suggest that CD5 may identify functional IL-10-producing Bregs . The malfunction of Bregs during active disease due to reduced IL-10 expression may thus permit ANCA production. © 2014 British Society for Immunology.

  6. Genetic variation in parthenogenetic Caucasian rock lizards of the genus Lacerta (L. dahli, L. armeniaca, L. unisexualis) analyzed by DNA fingerprinting.

    PubMed

    Tokarskaya, O N; Kan, N G; Petrosyan, V G; Martirosyan, I A; Grechko, V V; Danielyan, F D; Darevsky, I S; Ryskov, A P

    2001-07-01

    Multilocus DNA fingerprinting has been used to study the variability of some mini- and microsatellite sequences in parthenogenetic species of Caucasian rock lizards of the genus Lacerta (L. dahli, L. armeniaca and L. unisexualis). We demonstrate that these clonally reproducing lizards possess species-specific DNA fingerprints with a low degree of intra- and interpopulation variation. Mean indices of similarity obtained using M13 DNA, (GACA)4 and (TCC)50 as probes were 0.962 and 0.966 in L. dahli and L. armeniaca, respectively. The mean index of similarity obtained using M 13 and GATA probes in L. unisexualis was estimated to be 0.95. However, despite the high degree of band-sharing, variable DNA fragments were revealed in all populations with the microsatellite probes. An particularly high level of variability was observed for (TCC)n microsatellites in populations of L. unisexualis. In fact TCC-derived DNA fingerprints were close to being individual-specific, with a mean index of similarity of 0.824. Fingerprint analysis of parthenogenetic families of L. armeniaca showed that all maternal fragments were inherited together by the progeny, and no differences in fingerprint patterns were observed. On the other hand, while identical DNA fingerprints were obtained from L. unisexualis families with M13 and (GATA)4 probes, use of the (TCC)50 probe revealed remarkable intrafamily variation in this species. It is assumed that the genetic heterogeneity observed in parthenogenetic populations may be explained, at least in part, by the existence of genetically unstable microsatellite loci. Our data serve to illustrate processes of spontaneous mutagenesis and the initial stages of clonal differentiation in natural populations of the lizard species studied.

  7. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.

    PubMed

    Sheng, Zhen; Chen, Ligang

    2017-10-01

    The concentration of L-cysteine (Cys) and glutathione (GSH) is closely related to the critical risk of various diseases. In our study, a new rapid method for the determination of Cys and GSH in water and urine samples has been developed using a fluorescent probe technique, which was based on crystal violet (CV)-functionalized CdTe quantum dots (QDs). The original QDs emitted fluorescence light, which was turned off upon adding CV. This conjugation of CV and QDs could be attributed to electrostatic interaction between COO - of mercaptopropionic acid (MPA) on the surface of QDs and N + of CV in aqueous solution. In addition, Förster resonance energy transfer (FRET) also occurred between CdTe QDs and CV. After adding Cys or GSH to the solution, Cys or GSH exhibited a stronger binding preference toward Cd 2+ than Cd 2+ -MPA, which disturbed the interaction between MPA and QDs. Thus, most MPA was able to be separated from the surface of QDs because of the participation of Cys or GSH. Then, the fluorescence intensity of the CdTe QDs was enhanced. Good linear relationships were obtained in the range of 0.02-40 μg mL -1 and 0.02-50 μg mL -1 , and the detection limits were calculated as 10.5 ng mL -1 and 8.2 ng mL -1 , for Cys and GSH, respectively. In addition, the concentrations of biological thiols in water and urine samples were determined by the standard addition method using Cys as the standard; the quantitative recoveries were in the range of 97.3-105.8%, and relative standard deviations (RSDs) ranged from 2.5 to 3.7%. The method had several unique properties, such as simplicity, lower cost, high sensitivity, and environmental acceptability. Graphical abstract Crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione with switch-on fluorescent strategy.

  8. AgI -Induced Switching of DNA Binding Modes via Formation of a Supramolecular Metallacycle.

    PubMed

    Basak, Shibaji; Léon, J Christian; Ferranco, Annaleizle; Sharma, Renu; Hebenbrock, Marian; Lough, Alan; Müller, Jens; Kraatz, Heinz-Bernhard

    2018-03-12

    The histidine derivative L1 of the DNA intercalator naphthalenediimide (NDI) forms a triangular Ag I complex (C2). The interactions of L1 and of C2 with DNA were studied by circular dichroism (CD) and UV/Vis spectroscopy and by viscosity studies. Different binding modes were observed for L1 and for C2, as the Ag I complex C2 is too large in size to act as an intercalator. If Ag I is added to the NDI molecule that is already intercalated into a duplex, higher order complexes are formed within the DNA duplex and cause disruptions in the helical duplex structure, which leads to a significant decrease in the characteristic CD features of B-DNA. Thus, via addition of a metal we show how a classic and well-known organic intercalator unit can be turned into a partial metallo insertor. We also show how electrochemical impedance spectroscopy (EIS) can be used to probe DNA binding modes on DNA films that are immobilized on gold surfaces. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Human papilloma virus load and PD-1/PD-L1, CD8+ and FOXP3 in anal cancer patients treated with chemoradiotherapy: Rationale for immunotherapy

    PubMed Central

    Balermpas, Panagiotis; Martin, Daniel; Wieland, Ulrike; Rave-Fränk, Margret; Strebhardt, Klaus; Rödel, Claus; Fokas, Emmanouil; Rödel, Franz

    2017-01-01

    ABSTRACT We examined the prognostic role of immune markers programmed cell death protein-1 (PD-1) and its ligand (PD-L1), CD8+ tumor-infiltrating lymphocytes (TILs), FOXP3+ Tregs and phosphorylated Caspase-8 (T273) in patients with anal squamous cell cancer (ASCC) treated with standard chemoradiotherapy (CRT). The baseline immunohistochemical expression of immune markers was correlated with clinicopathologic characteristics, and cumulative incidence of local failure, disease-free survival (DFS) and overall survival (OS) in 150 patients, also in the context of human papilloma virus 16 (HPV16) DNA load and p16INK4a expression. After a median follow-up of 40 mo (1–205 mo), the 5-y cumulative incidence of local failure and DFS was 19.4% and 67.2%, respectively. Strong immune marker expression was significantly more common in tumors with high HPV16 viral load. In multivariant analysis, high CD8+ and PD-1+ TILs expression predicted for improved local control (p = 0.023 and p = 0.007, respectively) and DFS (p = 0.020 and p = 0.014, respectively). Also, high p16INK4a (p = 0.011) and PD-L1 (p = 0.033) expression predicted for better local control, whereas high FOXP3+ Tregs (p = 0.050) and phosphorylated Caspase-8 (p = 0.031) expression correlated with superior DFS. Female sex and high HPV16 viral load correlated with favorable outcome for all three clinical endpoints. The present data provide, for the first time, robust explanation for the favorable clinical outcome of HPV16-positive ASCC patients harboring strong immune cell infiltration. Our findings are relevant for treatment stratification with immune PD-1/PD-L1 checkpoint inhibitors to complement CRT and should be explored in a clinical trial. PMID:28405521

  10. Rapid and efficient nonviral gene delivery of CD154 to primary chronic lymphocytic leukemia cells.

    PubMed

    Li, L H; Biagi, E; Allen, C; Shivakumar, R; Weiss, J M; Feller, S; Yvon, E; Fratantoni, J C; Liu, L N

    2006-02-01

    Interactions between CD40 and CD40 ligand (CD154) are essential in the regulation of both humoral and cellular immune responses. Forced expression of human CD154 in B chronic lymphocytic leukemia (B-CLL) cells can upregulate costimulatory and adhesion molecules and restore antigen-presenting capacity. Unfortunately, B-CLL cells are resistant to direct gene manipulation with most currently available gene transfer systems. In this report, we describe the use of a nonviral, clinical-grade, electroporation-based gene delivery system and a standard plasmid carrying CD154 cDNA, which achieved efficient (64+/-15%) and rapid (within 3 h) transfection of primary B-CLL cells. Consistent results were obtained from multiple human donors. Transfection of CD154 was functional in that it led to upregulated expression of CD80, CD86, ICAM-I and MHC class II (HLA-DR) on the B-CLL cells and induction of allogeneic immune responses in MLR assays. Furthermore, sustained transgene expression was demonstrated in long-term cryopreserved transfected cells. This simple and rapid gene delivery technology has been validated under the current Good Manufacturing Practice conditions, and multiple doses of CD154-expressing cells were prepared for CLL patients from one DNA transfection. Vaccination strategies using autologous tumor cells manipulated ex vivo for patients with B-CLL and perhaps with other hematopoietic malignancies could be practically implemented using this rapid and efficient nonviral gene delivery system.

  11. Silencing of CD40 in vivo reduces progression of experimental atherogenesis through an NF-κB/miR-125b axis and reveals new potential mediators in the pathogenesis of atherosclerosis.

    PubMed

    Hueso, Miguel; De Ramon, Laura; Navarro, Estanislao; Ripoll, Elia; Cruzado, Josep M; Grinyo, Josep M; Torras, Joan

    2016-12-01

    CD40/CD40L signaling exerts a critical role in the development of atherosclerosis, and microRNAs (miRNAs) are key regulators in vascular inflammation and plaque formation. In this work, we investigated mRNA/miRNA expression during progression of atherosclerotic lesions through CD40 silencing. We silenced CD40 with a specific siRNA in ApoE -/- mice and compared expression of mRNA/miRNA in ascending aorta with scrambled treated mice. siRNA-CD40 treated mice significantly reduced the extension and severity of atherosclerotic lesions, as well as the number of F4/80 + , galectin-3 + macrophages and NF-κB + cells in the intima. Genome-wide mRNA/miRNA profiling allowed the identification of transcripts, which were significantly upregulated during atherosclerosis; among them, miR-125b and miR-30a, Xpr1, a regulator of macrophage differentiation, Taf3, a core transcription factor and the NF-κB activator Ikkβ, whereas, the NF-κB inhibitor Ikbα was downregulated during disease progression. All those changes were reversed upon CD40 silencing. Interestingly, TAF3, XPR1 and miR-125b were also overexpressed in human atherosclerotic plaques. Murine Taf3 and Xpr1 were detected in the perivascular adipose tissue (PVAT), and Taf3 also in intimal foam cells. Finally, expression of miR-125b was regulated by the CD40-NF-κB signaling axis in RAW264.7 macrophages. CD40 silencing with a specific siRNA ameliorates progression of experimental atherosclerosis in ApoE -/- mice, and evidences a role for NF-κB, Taf3, Xpr1, and miR-125b in the pathogenesis of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress*

    PubMed Central

    Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino

    2011-01-01

    This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2. Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation. PMID:21462388

  13. Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L.

    NASA Astrophysics Data System (ADS)

    Schneider, Thorsten; Haag-Kerwer, Angela; Maetz, Mischa; Niecke, Manfred; Povh, Bogdan; Rausch, Thomas; Schüßler, Arthur

    1999-10-01

    Brassica juncea L. is a high biomass producing crop plant, being able to accumulate Cd and other heavy metals in their roots and shoots. It is a good candidate for efficient phytoextraction of heavy metals - such as Cd - from polluted soils. PIXE and STIM analyses were applied to investigate Cd-uptake in roots and the resulting effects on the elemental distribution of Cd stressed plants. The axial distribution of trace elements as a function of distance from the root tip as well as the radial distribution within cross-sections were analysed. The results are compared with the elemental distribution in control plants.

  14. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    PubMed Central

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092

  15. Physical mapping of 18S-25S rDNA and 5S rDNA in Lupinus via fluorescent in situ hybridization.

    PubMed

    Naganowska, Barbara; Zielińska, Anna

    2002-01-01

    Double-target fluorescent in situ hybridization (FISH) was used to determine the genomic distribution of ribosomal RNA genes in five Lupinus species: L. cosentinii (2n=32), L. pilosus (2n=42), L. angustifolius (2n=40), L. luteus (2n=52) and L. mutabilis (2n=48). 18S-25S rDNA and 5S rDNA were used as probes. Some interspecific variation was observed in the number and size of the 18S-25S rDNA loci. All the studied species had one chromosome pair carrying 5S rDNA.

  16. Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication.

    PubMed

    Wang, Weiping; Manna, David; Simmons, Daniel T

    2007-05-01

    The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.

  17. Expression of CD30 mRNA, CD30L mRNA and a variant form of CD30 mRNA in restimulated peripheral blood mononuclear cells (PBMC) of patients with helminthic infections resembling a Th2 disease

    PubMed Central

    Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P

    1999-01-01

    It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429

  18. L-selectin Is Essential for Delivery of Activated CD8+ T Cells to Virus-Infected Organs for Protective Immunity

    PubMed Central

    Mohammed, Rebar N.; Watson, H. Angharad; Vigar, Miriam; Ohme, Julia; Thomson, Amanda; Humphreys, Ian R.; Ager, Ann

    2016-01-01

    Summary Cytotoxic CD8+ T lymphocytes play a critical role in the host response to infection by viruses. The ability to secrete cytotoxic chemicals and cytokines is considered pivotal for eliminating virus. Of equal importance is how effector CD8+ T cells home to virus-infected tissues. L-selectin has not been considered important for effector T cell homing, because levels are low on activated T cells. We report here that, although L-selectin expression is downregulated following T cell priming in lymph nodes, L-selectin is re-expressed on activated CD8+ T cells entering the bloodstream, and recruitment of activated CD8+ T cells from the bloodstream into virus-infected tissues is L-selectin dependent. Furthermore, L-selectin on effector CD8+ T cells confers protective immunity to two evolutionally distinct viruses, vaccinia and influenza, which infect mucosal and visceral organs, respectively. These results connect homing and a function of virus-specific CD8+ T cells to a single molecule, L-selectin. PMID:26804910

  19. Construction and enzymatic degradation of multilayered poly-l-lysine/DNA films.

    PubMed

    Ren, Kefeng; Ji, Jian; Shen, Jiacong

    2006-03-01

    The layer-by-layer (LbL) self-assembly of poly-l-lysine (PLL) and deoxyribonucleic acid (DNA) was used to construct the enzymatic biodegradable multilayered films. The LbL build up of DNA multilayers was monitored by UV-vis spectrometry, and atomic force microscopy (AFM). AFM, UV-vis spectrometry and fluorescence spectrometry measurements indicated that 90% of DNA within the films was released almost linearly under 5 U mL(-1)alpha-chymotrypsin in PBS at 37 degrees C in 35 h. TEM and zeta potential experiments revealed that the released DNA molecules were condensed into the slight positive complexes with size from 20 to several hundred nanometers. The well-structured, easy processed enzymatic biodegradable multilayered film may have great potential for gene applications in tissue engineering, medical implants, etc.

  20. A Comparative Phase I Study of Combination, Homologous Subtype-C DNA, MVA, and Env gp140 Protein/Adjuvant HIV Vaccines in Two Immunization Regimes

    PubMed Central

    Joseph, Sarah; Quinn, Killian; Greenwood, Aldona; Cope, Alethea V.; McKay, Paul F.; Hayes, Peter J.; Kopycinski, Jakub T.; Gilmour, Jill; Miller, Aleisha N.; Geldmacher, Christof; Nadai, Yuka; Ahmed, Mohamed I. M.; Montefiori, David C.; Dally, Len; Bouliotis, George; Lewis, David J. M.; Tatoud, Roger; Wagner, Ralf; Esteban, Mariano; Shattock, Robin J.; McCormack, Sheena; Weber, Jonathan

    2017-01-01

    There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals

  1. Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L.

    PubMed

    Liu, Jianv; Zhou, Qixing; Wang, Song

    2010-07-01

    The popular ornamental plant Calendula officinalis L was studied for its potential application in the phytoremediation of cadmium (Cd)-contaminated soils. Enhancements to the Cd accumulation by the application of sodium dodecyl sulfate (SDS), ethylenediaminetriacetic acid (EDTA) and ethylenegluatarotriacetic acid (EGTA) to the soil were investigated. Under these chemically enhanced treatments, EDTA was observed to be toxic to the plants leading to retarded growth. However, the application of SDS and/or EGTA was shown to result in significantly increased plant biomass (p < 0.05). Most of the chemical treatments resulted in increases to the shoot and root Cd concentrations, with the root Cd concentration being consistently higher than that shoot Cd concentration. Almost all of the investigated chemical treatments containing SDS or and EGTA were shown to lead to an increase in the total Cd content in the plants (p < 0.05). The application of EGTA alone led to an observed total Cd increase of up to 217%. This investigation revealed considerable efficiency of chemical enhancement and correspondingly increased potential of Calendula officinalis L. for applications of phytoremediation of Cd-contaminated sites.

  2. Subnuclear systems for synthesis of simian virus 40 DNA in vitro.

    PubMed Central

    Edenberg, H J; Waqar, M A; Huberman, J A

    1976-01-01

    We have developed two subnuclear systems for synthesis of DNA of simian virus 40 in vitro. We prepare chromatin from infected cells by the method of Hancock [(1974) J. Mol. Biol. 86, 649-663]; these "chromatin bodies" can be disrupted and large debris can be pelleted, leaving a supernatant ("soluble system"). Both chromatin bodies and the soluble system incorporate deoxyribonucleoside triphosphates into nucleoprotein complexes that contain simian virus 40 DNA. The DNA labeled in short pulses sediments in neutral sucrose gradients slightly faster than mature simian virus 40 DNA, as expected for replicating intermediate. When rebanded in alkaline sucrose gradients, about half of the radioactivity is found in short strands (200-300 nucleotides) and half in longer strands (up to full viral size). When these systems are supplemented with a cytoplasmic preparation from HeLa cells, synthesis is stimulated about 5-fold, and the short strands are converted into strands of up to full viral length as well as into covalently closed circles. These subnuclear DNA-replicating systems should be useful for biochemical fractionation and characterization of some of the proteins required for DNA replication. PMID:188037

  3. CD3+ CD8+ NKG2D+ T Lymphocytes Induce Apoptosis and Necroptosis in HLA-Negative Cells via FasL-Fas Interaction.

    PubMed

    Ivanova, Olga K; Sharapova, Tatiana N; Romanova, Elena A; Soshnikova, Natalia V; Sashchenko, Lidia P; Yashin, Denis V

    2017-10-01

    An important problem in cellular immunology is to identify new populations of cytotoxic lymphocytes capable of killing tumor cells that have lost classical components of MHC-machinery and to understand mechanisms of the death of these cells. We have previously found that CD4 + CD25 + lymphocytes appear in the lymphokine-activated killer (LAK) cell culture, which carry Tag7 (PGRP-S) and FasL proteins on their surface and can kill Hsp70- and Fas-expressing HLA-negative cells. In this work, we have continued to study the mechanisms of killing of the HLA-negative tumor cells, focusing this time on the CD8 + lymphocytes. We show that after a tumor antigen contact the IL-2 activated CD8 + lymphocytes acquire ability to lyse tumor cells bearing this antigen. However, activation of the CD8 + lymphocytes in the absence of antigen causes appearance of a cytotoxic population of CD8 + NKG2D + lymphocytes, which are able to lyse HLA-negative cancer cells that have lost the classic mechanism of antigen presentation. These cells recognize the noncanonical MicA antigen on the surface of HLA-negative K562 cells but kill them via the FasL-Fas interaction, as do cytotoxic T lymphocytes. FasL presented on the lymphocyte surface can trigger both apoptosis and necroptosis. Unlike in the case of TNFR1, another cell death receptor, no switching to alternative processes has been observed upon induction of Fas-dependent cell death. It may well be that the apoptotic and necroptotic signals are transduced separately in the latter case, with the ability of FasL + lymphocytes to induce necroptosis allowing them to kill tumor cells that escape apoptosis. J. Cell. Biochem. 118: 3359-3366, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. HIV-DNA priming alters T-cell responses to HIV-adenovirus vaccine even when responses to DNA are undetectable1

    PubMed Central

    De Rosa, Stephen C.; Thomas, Evan P.; Bui, John; Huang, Yunda; deCamp, Allan; Morgan, Cecilia; Kalams, Spyros; Tomaras, Georgia D.; Akondy, Rama; Ahmed, Rafi; Lau, Chuen-Yen; Graham, Barney S.; Nabel, Gary J.; McElrath, M. Juliana

    2011-01-01

    Many candidate HIV vaccines are designed to primarily elicit T-cell responses. Although repeated immunization with the same vaccine boosts antibody responses, the benefit for T-cell responses is ill-defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T-cell responses, but increases gp140 antibody responses ten-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8+ T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4+ and CD8+ T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts, and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination. PMID:21844392

  5. Effective modulation of CD4(+)CD25 (+high) regulatory T and NK cells in malignant patients by combination of interferon-α and interleukin-2.

    PubMed

    Liu, Guangxian; Yang, Wuwei; Guo, Mei; Liu, Xiaoqing; Huang, Naixiang; Li, Dingfeng; Jiang, Zefei; Yang, Wenfeng; Zhang, Weijing; Su, Hang; Liu, Zhiqing; Liu, Tieqiang; Wang, Dongmei; Huang, Shan; Yao, Bo; Man, Qiuhong; Qiu, Lijuan; Sun, Xuedong; Sun, Yuying; Liu, Bing

    2012-12-01

    Overinduced CD4(+)CD25(+high) regulatory T cells (Treg) and downregulated NK cells contribute to tumor-relevant immune tolerance and interfere with tumor immunity. In this study, we aimed to design a novel strategy with cytokine combination to correct the dysregulated Treg and NK cells in malignant patients. Initially, a total of 58 healthy individuals and 561 malignant patients were analyzed for their cellular immunity by flow cytometry. The average percentages of CD4(+)CD25(+high)/lymphocyte were 1.30 ± 1.19 % ([Formula: see text] ± SD) in normal adults and 3.274 ± 4.835 % in malignant patients (p < 0.001). The ratio of CD4(+)CD25(+high) to CD4(+) was 3.58 ± 3.19 % in normal adults and 6.01 ± 5.89 % to 13.50 ± 23.60 % in different kinds of malignancies (p < 0.001). Of normal adults, 15.52 % had >3 % Treg and 12.07 % had <10 % NK cells. In contrast, the Treg (>3 %) and NK (<10 %) percentages were 40.82 and 34.94 % in malignant patients, respectively. One hundred and ten patients received the immunomodulation therapy with IFN-α and/or IL-2. The overinduced Treg in 86.3 % and the reduced NK cells in 71.17 % of the patients were successfully modulated. In comparison, other lymphocyte subpopulations in most patients were much less affected by this treatment. No other treatment-relevant complications except slight pyrexia, fatigue, headache, and myalgia were observed. In conclusion, dysregulated Treg and/or NK cells were common in malignant patients. Different from any regimens ever reported, this strategy was simple and effective without severe complications and will become a basic regimen for other cancer therapies.

  6. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL

    PubMed Central

    Portell, Craig A.; Gordon, Vicki L.; Capaldo, Brian J.; Bekiranov, Stefan; Axelrod, Mark J.; Brett, L. Kyle; Wulfkuhle, Julia D.; Gallagher, Rosa I.; Petricoin, Emanuel F.; Bender, Timothy P.; Williams, Michael E.

    2017-01-01

    De novo resistance and rapid recurrence often characterize responses of B-cell malignancies to ibrutinib (IBR), indicating a need to develop drug combinations that block compensatory survival signaling and give deeper, more durable responses. To identify such combinations, we previously performed a combinatorial drug screen and identified the Bcl-2 inhibitor venetoclax (VEN) as a promising partner for combination with IBR in mantle cell lymphoma (MCL). We have opened a multi-institutional clinical trial to test this combination. However, analysis of primary samples from patients with MCL as well as chronic lymphocytic leukemia (CLL) revealed unexpected heterogeneous de novo resistance even to the IBR+VEN combination. In the current study, we demonstrate that resistance to the combination can be generated by microenvironmental agonists: interleukin-10 (IL-10), CD40L and, most potently, cytosine guanine dinucleotide–oligodeoxynucleotides (CpG-ODNs), which is a surrogate for unmethylated DNA and a specific agonist for Toll-like receptor 9 (TLR9) signaling. Incubation with these agonists caused robust activation of NF-κB signaling, especially alternative NF-κB, which led to enhanced expression of the antiapoptotic proteins Mcl-1, Bcl-xL, and survivin, thus decreasing dependence on Bcl-2. Inhibitors of NF-κB signaling blocked overexpression of these antiapoptotic proteins and overcame resistance. Inhibitors of Mcl-1, Bcl-xL, or survivin also overcame this resistance, and showed synergistic benefit with the IBR+VEN combination. We conclude that microenvironmental factors, particularly the TLR9 agonist, can generate de novo resistance to the IBR+VEN combination in CLL and MCL cells. This signaling pathway presents targets for overcoming drug resistance induced by extrinsic microenvironmental factors in diverse B-cell malignancies. PMID:29034364

  7. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA.

    PubMed Central

    Kawa-Ha, K; Ishihara, S; Ninomiya, T; Yumura-Yagi, K; Hara, J; Murayama, F; Tawa, A; Hirai, K

    1989-01-01

    Lymphoproliferative disease of granular lymphocytes (LDGL) is a heterogeneous disorder and the pathogenesis is likely to be complex. Some patients with chronic active EBV (CAEBV) infection also have LDGL. To investigate the relationship between EBV infection and the pathogenesis of LDGL, we conducted a survey for EBV DNA sequences by Southern blot analysis of DNA obtained from the peripheral blood of seven patients with LDGL, including one with CAEBV infection. Interestingly, EBV DNA was detected in the sample from the patient with CAEBV infection, and in the samples from four other patients with CD3-LDGL. Moreover, a single band for the joined termini of the EBV genome was demonstrated in two samples, suggesting a clonal disorder of those LDGL. These findings strongly suggest that EBV may play a pathogenic role in some cases of LDGL. Images PMID:2544630

  8. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA.

    PubMed

    Kawa-Ha, K; Ishihara, S; Ninomiya, T; Yumura-Yagi, K; Hara, J; Murayama, F; Tawa, A; Hirai, K

    1989-07-01

    Lymphoproliferative disease of granular lymphocytes (LDGL) is a heterogeneous disorder and the pathogenesis is likely to be complex. Some patients with chronic active EBV (CAEBV) infection also have LDGL. To investigate the relationship between EBV infection and the pathogenesis of LDGL, we conducted a survey for EBV DNA sequences by Southern blot analysis of DNA obtained from the peripheral blood of seven patients with LDGL, including one with CAEBV infection. Interestingly, EBV DNA was detected in the sample from the patient with CAEBV infection, and in the samples from four other patients with CD3-LDGL. Moreover, a single band for the joined termini of the EBV genome was demonstrated in two samples, suggesting a clonal disorder of those LDGL. These findings strongly suggest that EBV may play a pathogenic role in some cases of LDGL.

  9. Enantioselective binding of L, D-phenylalanine to ct DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Lijin; Xu, Jianhua; Huang, Yan; Min, Shungeng

    2009-10-01

    The enantioselective binding of L, D-phenylalanine to calf thymus DNA was studied by absorption, circular dichroism, fluorescence quenching, viscosity, salt effect and emission experiments. The results obtained from absorption, circular dichroism, fluorescence quenching and viscosity experiments excluded the intercalative binding and salt effect experiments did not support electrostatic binding. So the binding of L, D-phenylalanine to ct DNA should be groove binding. Furthermore, the emission spectra revealed that the binding is enantioselective.

  10. Enantioselective binding of L,D-phenylalanine to ct DNA.

    PubMed

    Zhang, Lijin; Xu, Jianhua; Huang, Yan; Min, Shungeng

    2009-10-15

    The enantioselective binding of L,D-phenylalanine to calf thymus DNA was studied by absorption, circular dichroism, fluorescence quenching, viscosity, salt effect and emission experiments. The results obtained from absorption, circular dichroism, fluorescence quenching and viscosity experiments excluded the intercalative binding and salt effect experiments did not support electrostatic binding. So the binding of l,d-phenylalanine to ct DNA should be groove binding. Furthermore, the emission spectra revealed that the binding is enantioselective.

  11. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes.

    PubMed

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-02-09

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO₂ coated CdTe (CdTe/SiO₂) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446-2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.

  12. Cadmium dynamics in the rhizosphere and Cd uptake of different plant species evaluated by a mechanistic model.

    PubMed

    Stritsis, Christos; Steingrobe, Bernd; Claassen, Norbert

    2014-01-01

    Maize, sunflower,flax, and spinach differed in the accumulation of Cd when grown on a Cd contaminated soil. This was mainly due to the different Cd net influx, In, that varied among species by a factor of up to 30. The objective of this study was to find possible reasons for the different Cd In by using a mechanistic model. After 14 days of Cd uptake the model calculated only a small Cd depletion at the root surface, e.g. from 0.22 mumol L(-1) down to 0.19 mumol L(-1) for maize and from 0.48 mumol L(-1) down to 0.35 mumol L(-1)for spinach. Even so the model always overestimated the Cd I(n), for spinach by a factor of 1.5 and for maize by a factor of 10. Only simulating a decrease of C(Li) or the root absorbing power, alpha, by 40% to 90% gave an agreement of calculated and measured I(n),. This may be interpreted as that about 40% in the case of spinach and 90% in the case of maize of the Cd in soil solution were not accessible for plant uptake. The high sensitivity to alpha also shows that not the Cd transport to the root but alpha was limiting the step for Cd uptake.

  13. INVOLVEMENT OF TOLL-LIKE RECEPTOR 4 AND MAPK PATHWAYS IN LPS-INDUCED CD40 EXPRESSION IN MONOCYTIC CELLS

    EPA Science Inventory

    CD40 is a co-stimulatory surface molecule actively expressed on mature dendritic cells (DC). Recent studies suggest that endotoxin (LPS) inhalation induces DC maturation in the airways of healthy volunteers. To characterize the effect of LPS on CD40 expression and underlying mech...

  14. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase

    PubMed Central

    Stepper, Peter; Kungulovski, Goran; Jurkowska, Renata Z.; Chandra, Tamir; Krueger, Felix; Reinhardt, Richard

    2017-01-01

    Abstract DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a–Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20–30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling. PMID:27899645

  15. Evaluation of optimal DNA staining for triggering by scanning fluorescence microscopy (SFM)

    NASA Astrophysics Data System (ADS)

    Mittag, Anja; Marecka, Monika; Pierzchalski, Arkadiusz; Malkusch, Wolf; Bocsi, József; Tárnok, Attila

    2009-02-01

    In imaging and flow cytometry, DNA staining is a common trigger signal for cell identification. Selection of the proper DNA dye is restricted by the hardware configuration of the instrument. The Zeiss Imaging Solutions GmbH (München, Germany) introduced a new automated scanning fluorescence microscope - SFM (Axio Imager.Z1) which combines fluorescence imaging with cytometric parameters measurement. The aim of the study was to select optimal DNA dyes as trigger signal in leukocyte detection and subsequent cytometric analysis of double-labeled leukocytes by SFM. Seven DNA dyes (DAPI, Hoechst 33258, Hoechst 33342, POPO-3, PI, 7-AAD, and TOPRO-3) were tested and found to be suitable for the implemented filtersets (fs) of the SFM (fs: 49, fs: 44, fs: 20). EDTA blood was stained after erythrocyte lysis with DNA dye. Cells were transferred on microscopic slides and embedded in fluorescent mounting medium. Quality of DNA fluorescence signal as well as spillover signals were analyzed by SFM. CD45-APC and CD3-PE as well as CD4-FITC and CD8-APC were selected for immunophenotyping and used in combination with Hoechst. Within the tested DNA dyes DAPI showed relatively low spillover and the best CV value. Due to the low spillover of UV DNA dyes a triple staining of Hoechst and APC and PE (or APC and FITC, respectively) could be analyzed without difficulty. These results were confirmed by FCM measurements. DNA fluorescence is applicable for identifying and triggering leukocytes in SFM analyses. Although some DNA dyes exhibit strong spillover in other fluorescence channels, it was possible to immunophenotype leukocytes. DAPI seems to be best suitable for use in the SFM system and will be used in protocol setups as primary parameter.

  16. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase.

    PubMed

    Stepper, Peter; Kungulovski, Goran; Jurkowska, Renata Z; Chandra, Tamir; Krueger, Felix; Reinhardt, Richard; Reik, Wolf; Jeltsch, Albert; Jurkowski, Tomasz P

    2017-02-28

    DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a-Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20-30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    PubMed Central

    Yamada, Akiko; Ishimaru, Naozumi; Arakaki, Rieko; Katunuma, Nobuhiko; Hayashi, Yoshio

    2010-01-01

    Background Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes. PMID:20877570

  19. In and out of the minor groove: interaction of an AT-rich DNA with the drug CD27

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta-Reyes, Francisco J.; Dardonville, Christophe; Koning, Harry P. de

    New features of an antiprotozoal DNA minor-groove binding drug, which acts as a cross-linking agent, are presented. It also fills the minor groove of DNA completely and prevents the access of proteins. These features are also expected for other minor-groove binding drugs when associated with suitable DNA targets. The DNA of several pathogens is very rich in AT base pairs. Typical examples include the malaria parasite Plasmodium falciparum and the causative agents of trichomoniasis and trypanosomiases. This fact has prompted studies of drugs which interact with the minor groove of DNA, some of which are used in medical practice. Previousmore » studies have been performed almost exclusively with the AATT sequence. New features should be uncovered through the study of different DNA sequences. In this paper, the crystal structure of the complex of the DNA duplex d(AAAATTTT){sub 2} with the dicationic drug 4, 4′-bis(imidazolinylamino)diphenylamine (CD27) is presented. The drug binds to the minor groove of DNA as expected, but it shows two new features that have not previously been described: (i) the drugs protrude from the DNA and interact with neighbouring molecules, so that they may act as cross-linking agents, and (ii) the drugs completely cover the whole minor groove of DNA and displace bound water. Thus, they may prevent the access to DNA of proteins such as AT-hook proteins. These features are also expected for other minor-groove binding drugs when associated with all-AT DNA. These findings allow a better understanding of this family of compounds and will help in the development of new, more effective drugs. New data on the biological interaction of CD27 with the causative agent of trichomoniasis, Trichomonas vaginalis, are also reported.« less

  20. Surface functionalized Cu2Zn1- x Cd x SnS4 quinternary alloyed nanostructure for DNA sensing

    NASA Astrophysics Data System (ADS)

    Ibraheam, A. S.; Al-Douri, Y.; Voon, C. H.; Foo, K. L.; Azizah, N.; Gopinath, S. C. B.; Ameri, M.; Ibrahim, Sattar S.

    2017-03-01

    A sensing plate of extended Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures, fabricated on an oxidized silicon substrate by the sol-gel method, is reported in this paper. The fabricated device was characterized and analyzed via field emission-scanning electron microscopy, X-ray diffraction (XRD), and photoluminescence (PL). The XRD peaks shifted towards the lower angle side alongside increasing concentration of cadmium. The average diameter of the Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures falls between 21.55 and 43.12 nm, while the shift of the PL bandgap was from 1.81 eV ( x = 0) to 1.72 eV ( x = 1). The resulting Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures components were functionalized with oligonucleotides probe DNA molecules and interacted with the target, exhibiting good sensing capabilities due to its large surface-to-volume ratio. The fabrication, immobilization, and hybridization processes were analyzed via representative current-voltage ( I- V) plots. Its electrical profile shows that the device is capable to distinguish biomolecules. Its high performance was evident from the linear relationship between the probe DNA from cervical cancer and the target DNA, showing its applicability for medical applications.

  1. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. CD40 expression in human thyroid tissue: evidence for involvement of multiple cell types in autoimmune and neoplastic diseases.

    PubMed

    Smith, T J; Sciaky, D; Phipps, R P; Jennings, T A

    1999-08-01

    CD40, a member of the tumor necrosis factor-alpha (TNF-alpha) receptor family of surface molecules, is expressed by a variety of cell types. It is a crucial activational molecule displayed by lymphocytes and other bone marrow-derived cells and recently has also been found on nonlymphoid cells such as fibroblasts, endothelia, and epithelial cells in culture. While its role in lymphocyte signaling and activation has been examined in great detail, the function of CD40 expression on nonlymphoid cells, especially in vivo, is not yet understood. Most of the studies thus far have been conducted in cell culture. In this article, we report that several cell types resident in thyroid tissue in vivo can display CD40 under pathological conditions. Sections from a total of 46 different cases were examined immunohistochemically and included nodular hyperplasia, chronic lymphocytic thyroiditis, diffuse hyperplasia, follicular neoplasia, papillary carcinoma, and medullary carcinoma. Thyroid epithelial cells, lymphocytes, macrophages, endothelial cells, and spindle-shape fibroblast-like cells were found to stain positively in the context of inflammation. The staining pattern observed in all cell types was entirely membranous. In general, epithelial staining was limited to that adjacent to lymphocytic infiltration except in 5 of 17 cases of neoplasia and in diffuse hyperplasia. Moreover, we were able to detect CD40 mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) in human thyroid tissue. These results constitute convincing evidence for expression of CD40 in nonlymphocytic elements of the human thyroid gland. Our findings suggest a potentially important pathway that might be of relevance to the pathogenesis of thyroid diseases. They imply the potential participation of the CD40/CD40 ligand bridge in the cross-talk between resident thyroid cells and bone marrow-derived cells recruited to the thyroid.

  3. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  4. Predictors of CD4:CD8 ratio normalization and its effect on health outcomes in the era of combination antiretroviral therapy.

    PubMed

    Leung, Victor; Gillis, Jennifer; Raboud, Janet; Cooper, Curtis; Hogg, Robert S; Loutfy, Mona R; Machouf, Nima; Montaner, Julio S G; Rourke, Sean B; Tsoukas, Chris; Klein, Marina B

    2013-01-01

    HIV leads to CD4:CD8 ratio inversion as immune dysregulation progresses. We examined the predictors of CD4:CD8 normalization after combination antiretroviral therapy (cART) and determined whether normalization is associated with reduced progression to AIDS-defining illnesses (ADI) and death. A Canadian cohort of HIV-positive adults with CD4:CD8<1.2 prior to starting cART from 2000-2010 were analyzed. Predictors of (1) reaching a CD4:CD8 ≥ 1.2 on two separate follow-up visits >30 days apart, and (2) ADI and death from all causes were assessed using adjusted proportional hazards models. 4206 patients were studied for a median of 2.77 years and 306 (7.2%) normalized their CD4:CD8 ratio. Factors associated with achieving a normal CD4:CD8 ratio were: baseline CD4+ T-cells >350 cells/mm(3), baseline CD8+ T-cells <500 cells/mm(3), time-updated HIV RNA suppression, and not reporting sex with other men as a risk factor. There were 213 ADIs and 214 deaths in 13476 person-years of follow-up. Achieving a normal CD4:CD8 ratio was not associated with time to ADI/death. In our study, few individuals normalized their CD4:CD8 ratios within the first few years of initiating modern cART. This large study showed no additional short-term predictive value of the CD4:CD8 ratio for clinical outcomes after accounting for other risk factors including age and HIV RNA.

  5. Short-term, serum-free, static culture of cord blood-derived CD34+ cells: effects of FLT3-L and MIP-1alpha on in vitro expansion of hematopoietic progenitor cells.

    PubMed

    Capmany, G; Querol, S; Cancelas, J A; García, J

    1999-08-01

    The use of ex vivo expanded cells has been suggested as a possible means to accelerate the speed of engraftment in cord blood (CB) transplantation. The aim of this study was to fix the optimal condition for the generation of committed progenitors without affecting the stem cell compartment. Analysis of the effects of FLT3-L and MIP-1alpha when combined with SCF, IL-3 and IL-6, in short-term (6 days), serum-free expansion cultures of CB-selected CD34+ cells. An important expansion was obtained that ranged between 8-15 times for CFU-GM, 21-51 times for the BFU-E/CFU-Mix population and 11 to 30 times for CD34+ cells assessed by flow cytometry. From the combinations tested, those in which FLT3-L was present had a significant increase in the expansion of committed progenitors, while the presence of MIP-1alpha had a detrimental effect on the generation of more differentiated cells. However, stem cell candidates assessed by week 5 CAFC assay could be maintained in culture when both MIP-1a and FLT3-L were present (up to 91% recovery). This culture system was also able to expand megakaryocytic precursors as determined by the co-expression of CD34 and CD61 antigens (45-70 times), in spite of the use of cytokines non-specific for the megakaryocytic lineage. The results obtained point to the combination of SCF, IL-3, IL-6, FLT3-L and MIP-1alpha as the best suited for a pre-clinical short-term serum-free static ex vivo expansion protocol of CB CD34+ cells, since it can generate large numbers of committed progenitor cells as well as maintaining week 5 CAFC.

  6. Automated four color CD4/CD8 analysis of leukocytes by scanning fluorescence microscopy using Quantum dots

    NASA Astrophysics Data System (ADS)

    Bocsi, Jozsef; Mittag, Anja; Varga, Viktor S.; Molnar, Bela; Tulassay, Zsolt; Sack, Ulrich; Lenz, Dominik; Tarnok, Attila

    2006-02-01

    Scanning Fluorescence Microscope (SFM) is a new technique for automated motorized microscopes to measure multiple fluorochrome labeled cells (Bocsi et al. Cytometry 2004, 61A:1). The ratio of CD4+/CD8+ cells is an important in immune diagnostics in immunodeficiency and HIV. Therefor a four-color staining protocol (DNA, CD3, CD4 and CD8) for automated SFM analysis of lymphocytes was developed. EDTA uncoagulated blood was stained with organic and inorganic (Quantum dots) fluorochromes in different combinations. Aliquots of samples were measured by Flow Cytometry (FCM) and SFM. By SFM specimens were scanned and digitized using four fluorescence filter sets. Automated cell detection (based on Hoechst 33342 fluorescence), CD3, CD4 and CD8 detection were performed, CD4/CD8 ratio was calculated. Fluorescence signals were well separable on SFM and FCM. Passing and Bablok regression of all CD4/CD8 ratios obtained by FCM and SFM (F(X)=0.0577+0.9378x) are in the 95% confidence interval. Cusum test did not show significant deviation from linearity (P>0.10). This comparison indicates that there is no systemic bias between the two different methods. In SFM analyses the inorganic Quantum dot staining was very stable in PBS in contrast to the organic fluorescent dyes, but bleached shortly after mounting with antioxidant and free radical scavenger mounting media. This shows the difficulty of combinations of organic dyes and Quantum dots. Slide based multi-fluorescence labeling system and automated SFM are applicable tools for the CD4/CD8 ratio determination in peripheral blood samples. Quantum Dots are stable inorganic fluorescence labels that may be used as reliable high resolution dyes for cell labeling.

  7. Influence of Rapeseed Cake on Iron Plaque Formation and Cd Uptake by Rice (Oryza sativa L.) Seedlings Exposed to Excess Cd.

    PubMed

    Yang, Wen-Tao; Zhou, Hang; Gu, Jiao-Feng; Zeng, Qing-Ru; Liao, Bo-Han

    2017-11-01

    A soil spiking experiment at two Cd levels (0.72 and 5.20 mg kg -1 ) was conducted to investigate the effects of rapeseed cake (RSC) at application rates of 0%, 0.75%, 1.5%, and 3.0% (w/w) on iron plaque formation and Cd uptake by rice (Oryza sativa L.) seedlings. The use of RSC did result in a sharp decrease in soil bioavailability of Cd and a significant increase in rice growth, soil pH and organic matter. Application of RSC increased the amount of iron plaque formation and this effectively inhibited the uptake and translocation of Cd into the rice seedlings. RSC was an effective organic additive for increasing rice growth and reducing Cd uptake by rice plant, simultaneously. These results could be used as a reference for the safety use of Cd polluted paddy soil.

  8. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4).

    PubMed

    Drgona, L; Gudiol, C; Lanini, S; Salzberger, B; Ippolito, G; Mikulska, M

    2018-03-20

    The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. To review, from an Infectious Diseases perspective, the safety profile of agents targeting CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4 and to suggest preventive recommendations. Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. The risk and spectrum of infections in patients receiving CD22-targeted agents (i.e. inotuzumab ozogamicin) are similar to those observed with anti-CD20 antibodies. Anti-Pneumocystis prophylaxis and monitoring for cytomegalovirus (CMV) infection is recommended for patients receiving CD30-targeted agents (brentuximab vedotin). Due to the scarcity of data, the risk posed by CD33-targeted agents (gemtuzumab ozogamicin) cannot be assessed. Patients receiving CD38-targeted agents (i.e. daratumumab) face an increased risk of varicella-zoster virus (VZV) infection. Therapy with CD40-targeted agents (lucatumumab or dacetuzumab) is associated with opportunistic infections similar to those observed in hyper-IgM syndrome, and prevention strategies (including anti-Pneumocystis prophylaxis and pre-emptive therapy for CMV infection) are warranted. SLAMF-7 (CD319)-targeted agents (elotuzumab) induce lymphopenia and increase the risk of infection (particularly due to VZV). The impact of CCR4-targeted agents (mogamulizumab) on infection susceptibility is difficult to distinguish from the effect of underlying diseases and concomitant therapies. However, anti-Pneumocystis and anti-herpesvirus prophylaxis and screening for chronic hepatitis B virus (HBV) infection are recommended. Specific management strategies should be put in place to reduce the risk and/or the severity of infectious complications associated to the reviewed agents. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

  9. Development and physico-chemical characterization of cyclodextrin DNA complexes loaded liposomes

    NASA Astrophysics Data System (ADS)

    Tavares, Guilherme D.; Viana, Cristiane M.; Araújo, José G. V. C.; Ramaldes, Gilson A.; Carvalho, Wânia S.; Pesquero, Jorge L.; Vilela, José M. C.; Andrade, Margareth S.; de Oliveira, Mônica C.

    2006-10-01

    In the present study, anionic and pH-sensitive liposomes containing DNA were developed and characterized. These liposomes were obtained by binding the DNA with 6-monodeoxy-6-monoamine-β-cyclodextrin (Am-β-CD). This complex was encapsulated into the liposomes, which were characterized by encapsulation rate, diameter, zeta potential, and atomic force microscopy. The binding between Am-β-CD and the DNA was higher as of the +/- charge ratio. The amount of DNA encapsulated was approximately 10-14 μg/mL. The mean diameter and zeta potential were 186.0 nm and -56 mV, respectively. Liposomes which did not contain the complex were more prone to collapse over the mica surface. The vesicles containing the complex presented a narrower size distribution.

  10. Organization of the murine Cd22 locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Che-Leung; Torres, R.M.; Sundeberg, H.A.

    1993-07-01

    Murine CD22 (mCD22) is a B cell-associated adhesion protein with seven extracellular Ig-like domains that has 62% amino acid identify to its human homologue. Southern analysis on genomic DNA isolated from tissues and cell lines from several mouse strains using mCD22 cDNA demonstrated that the Cd22 locus encoding mCD22 is a single copy gene of [le]30 kb. Digestion of genomic DNA preparations with four restriction endonucleases revealed the presence of restriction fragment length polymorphisms (RFLP) in BALB/c, C57BL/6, and C3H strains vs DBA/2j, NZB, and NZC strains, suggesting the presence of two or more Cd22 alleles. Using a mCD22 cDNAmore » clone derived from the BALB/c strain, the authors isolated genomic clones from a DBA/2 genomic library that contained all the exons necessary to encode the full length mCD22 cDNA. Fifteen exons, including exon 3 that encodes the translation start codon, were identified. Each extracellular Ig-like domain of mCD22 is encoded by a single exon. A comparison between the nucleotide sequences of the BALB/c CD22 cDNA and the exons of the DBA/2j CD22 genomic clones revealed an 18-nucleotide deletion in exon 4 (encoding the most distal Ig-like domain 1 of mCD22) of the DBA/2j genomic sequence in addition to a number of substitutions, insertions, and deletions in other exons. These nucleotide differences were also present in a cDNA clone isolated from total RNA of LPS-activated DBA/2j splenocytes mosome 7, a region sytenic to human chromosome 19q, close to the previously reported loci, Lyb-8 and Mag (a homologue of Cd22). An antibody (CY34) against the Lyb-8.2 B cell marker reacted with a BHK transfectant expressing the full length mCd22 cDNA, thus demonstrating that Lyb-8 and Cd22 loci are identical. Furthermore, a rat anti-mCD22 mAb, NIM-R6, bound to slgM[sup +] DBA/2j B cells, confirming the expression of a CD22 protein by the Cd22[sup a]/lyb-8[sup a] allele. 63 refs., 7 figs., 1 tab.« less

  11. Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences

    Treesearch

    Admir J. Giachini; Kentaro Hosaka; Eduardo Nouhra; Joseph Spatafora; James M. Trappe

    2010-01-01

    Phylogenetic relationships among Geastrales, Gomphales, Hysterangiales, and Phallales were estimated via combined sequences: nuclear large subunit ribosomal DNA (nuc-25S-rDNA), mitochondrial small subunit ribosomal DNA (mit-12S-rDNA), and mitochondrial atp6 DNA (mit-atp6-DNA). Eighty-one taxa comprising 19 genera and 58 species...

  12. Curcumin stably interacts with DNA hairpin through minor groove binding and demonstrates enhanced cytotoxicity in combination with FdU nucleotides.

    PubMed

    Ghosh, Supratim; Mallick, Sumana; Das, Upasana; Verma, Ajay; Pal, Uttam; Chatterjee, Sabyasachi; Nandy, Abhishek; Saha, Krishna D; Maiti, Nakul Chandra; Baishya, Bikash; Suresh Kumar, G; Gmeiner, William H

    2018-03-01

    We report, based on biophysical studies and molecular mechanical calculations that curcumin binds DNA hairpin in the minor groove adjacent to the loop region forming a stable complex. UV-Vis and fluorescence spectroscopy indicated interaction of curcumin with DNA hairpin. In this novel binding motif, two ɣ H of curcumin heptadiene chain are closely positioned to the A 16 -H8 and A 17 -H8, while G 12 -H8 is located in the close proximity of curcumin α H. Molecular dynamics (MD) simulations suggest, the complex is stabilized by noncovalent forces including; π-π stacking, H-bonding and hydrophobic interactions. Nuclear magnetic resonance (NMR) spectroscopy in combination with molecular dynamics simulations indicated curcumin is bound in the minor groove, while circular dichroism (CD) spectra suggested minute enhancement in base stacking and a little change in DNA helicity, without significant conformational change of DNA hairpin structure. The DNA:curcumin complex formed with FdU nucleotides rather than Thymidine, demonstrated enhanced cytotoxicity towards oral cancer cells relative to the only FdU substituted hairpin. Fluorescence co-localization demonstrated stability of the complex in biologically relevant conditions, including its cellular uptake. Acridine orange/EtBr staining further confirmed the enhanced cytotoxic effects of the complex, suggesting apoptosis as mode of cell death. Thus, curcumin can be noncovalently complexed to small DNA hairpin for cellular delivery and the complex showed increased cytotoxicity in combination with FdU nucleotides, demonstrating its potential for advanced cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences

    NASA Technical Reports Server (NTRS)

    Nordheim, A.; Rich, A.

    1983-01-01

    Three 8-base pair (bp) segments of alternating purine-pyrimidine from the simian virus 40 enhancer region form Z-DNA on negative supercoiling; minichromosome DNase I-hypersensitive sites determined by others bracket these three segments. A survey of transcriptional enhancer sequences reveals a pattern of potential Z-DNA-forming regions which occur in pairs 50-80 bp apart. This may influence local chromatin structure and may be related to transcriptional activation.

  14. Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity*

    PubMed Central

    Ali, Essa; Hussain, Nazim; Shamsi, Imran Haider; Jabeen, Zahra; Siddiqui, Muzammil Hussain; Jiang, Li-xi

    2018-01-01

    The well-known detrimental effects of cadmium (Cd) on plants are chloroplast destruction, photosynthetic pigment inhibition, imbalance of essential plant nutrients, and membrane damage. Jasmonic acid (JA) is an alleviator against different stresses such as salinity and drought. However, the functional attributes of JA in plants such as the interactive effects of JA application and Cd on rapeseed in response to heavy metal stress remain unclear. JA at 50 μmol/L was observed in literature to have senescence effects in plants. In the present study, 25 μmol/L JA is observed to be a “stress ameliorating molecule” by improving the tolerance of rapeseed plants to Cd toxicity. JA reduces the Cd uptake in the leaves, thereby reducing membrane damage and malondialdehyde content and increasing the essential nutrient uptake. Furthermore, JA shields the chloroplast against the damaging effects of Cd, thereby increasing gas exchange and photosynthetic pigments. Moreover, JA modulates the antioxidant enzyme activity to strengthen the internal defense system. Our results demonstrate the function of JA in alleviating Cd toxicity and its underlying mechanism. Moreover, JA attenuates the damage of Cd to plants. This study enriches our knowledge regarding the use of and protection provided by JA in Cd stress. PMID:29405041

  15. Telbivudine plus tenofovir in combination therapy in patients with chronic hepatitis B infection--an Indian experience.

    PubMed

    Panda, Chittaranjan

    2013-11-01

    To investigate the efficacy and safety ofTelbivudine +Tenofovir combination therapy in chronic hepatitis B patients, over a period of 52 weeks, in real life clinical settings. HBeAg-positive and HBeAg-negative adult CHB patients, with hepatitis B virus (HBV) DNA > 4 log10 copies/ml and ALT 1.2 times above upper limit of normal (> 30 IU/L) were started on a combination of Telbivudine 600 mg + Tenofovir 300 mg in a real life clinical setting. The reduction in serum HBV DNA levels from baseline was evaluated at Week 24 and 52. The HBV DNA was measured using the PCR test with a lower limit of detection of 100 IU/ml 21 (2 female/19 male) patients, with mean (SD) age of 46.2 (13.2), were prescribed this regimen. 70% of them were HBeAg negative at baseline. Data of 11 out of 21 patients was available at week 52. The mean HBA-DNA reduction from baseline to week 24 (n = 15) was 2.6 log10 copies/mL (p = .000) and 4.0 log10 copies/mL (p = .001) at week 52 (n = 11). By the end of study visit at week 52, 10 out of 11 patients had achieved the HBV-DNA levels of < 100 lu/ml. The mean ALT levels came down by 101.4 IU/L (p = .005) at week 24 (n = 15) and by 104.6 IU/L at week 52 (n = 11). 7 patients achieved ALT normalisation (ALT < 40 IU/L) at week 24, with additional 4 achieving the goals at week 52. Combination therapy was well tolerated, with no safety related concerns. No cases of virological breakthrough or primary treatment failure were observed. Being a real life setting, there were certain limitations: Out of 10 patients whose data was not available at 52 weeks, 5 patients were lost to follow-up; another 2 coming from far off remote areas were unable to report for follow-up every 3 months. 1 patient who was on chemotherapy expired due to progression of the malignancy, another patient with decompensated liver disease expired due to disease progression. Yet another patient was a pregnant lady on therapy who stopped treatment post partum to breast feed the baby. Chronic

  16. Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@β-CD nanocomposites.

    PubMed

    Jiang, Jingjing; Lin, Xinyi; Ding, Dong; Diao, Guowang

    2018-04-17

    Taking advantages of the toehold-triggered strand displacement reaction (TSDR) and host-guest interaction of β-cyclodextrin (β-CD), a facile enzyme-free and homogeneous electrochemical sensing strategy was designed for the sensitive assay of target DNA using Fe 3 O 4 @SiO 2 @β-CD nanocomposites and ferrocene-labeled hairpin DNA (H-1) as the capture and electrochemical probes, respectively. Upon addition of target molecule, the initiated TSDR process induced the conformational change of H-1, and subsequently stimulated the dynamic assembly of assist probes (A-1 and A-2) to generate H-1:A-1:A-2 duplex along with the release of target sequence. The released target could drive the next TSDR recycling and finally result in the formation of numerous DNA duplex. After the molecular recognition of Fe 3 O 4 @SiO 2 @β-CD nanocomposites, a large number of duplex were easily separated from the supernatant solution under an external magnetic field, which led to a decreased H-1 concentration in residual solution, concomitant with a remarkable reduction of peak current. Under the optimized conditions, wide linear range (1-5000 pM), low detection limit (0.3 pM), desirable reproducibility, good selectivity, and satisfactory practical analysis were obtained by the combination of the superior recognition capability of β-CD, TSDR-induced signal amplification, and homogeneous electroanalytical method. The proposed detection strategy could offer a universal approach for the monitoring of various biological analytes via the rational design of probe sequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. HCMV triggers frequent and persistent UL40-specific unconventional HLA-E-restricted CD8 T-cell responses with potential autologous and allogeneic peptide recognition.

    PubMed

    Jouand, Nicolas; Bressollette-Bodin, Céline; Gérard, Nathalie; Giral, Magali; Guérif, Pierrick; Rodallec, Audrey; Oger, Romain; Parrot, Tiphaine; Allard, Mathilde; Cesbron-Gautier, Anne; Gervois, Nadine; Charreau, Béatrice

    2018-04-01

    Immune response against human cytomegalovirus (HCMV) includes a set of persistent cytotoxic NK and CD8 T cells devoted to eliminate infected cells and to prevent reactivation. CD8 T cells against HCMV antigens (pp65, IE1) presented by HLA class-I molecules are well characterized and they associate with efficient virus control. HLA-E-restricted CD8 T cells targeting HCMV UL40 signal peptides (HLA-EUL40) have recently emerged as a non-conventional T-cell response also observed in some hosts. The occurrence, specificity and features of HLA-EUL40 CD8 T-cell responses remain mostly unknown. Here, we detected and quantified these responses in blood samples from healthy blood donors (n = 25) and kidney transplant recipients (n = 121) and we investigated the biological determinants involved in their occurrence. Longitudinal and phenotype ex vivo analyses were performed in comparison to HLA-A*02/pp65-specific CD8 T cells. Using a set of 11 HLA-E/UL40 peptide tetramers we demonstrated the presence of HLA-EUL40 CD8 αβT cells in up to 32% of seropositive HCMV+ hosts that may represent up to 38% of total circulating CD8 T-cells at a time point suggesting a strong expansion post-infection. Host's HLA-A*02 allele, HLA-E *01:01/*01:03 genotype and sequence of the UL40 peptide from the infecting strain are major factors affecting the incidence of HLA-EUL40 CD8 T cells. These cells are effector memory CD8 (CD45RAhighROlow, CCR7-, CD27-, CD28-) characterized by a low level of PD-1 expression. HLA-EUL40 responses appear early post-infection and display a broad, unbiased, Vβ repertoire. Although induced in HCMV strain-dependent, UL4015-23-specific manner, HLA-EUL40 CD8 T cells are reactive toward a broader set of nonapeptides varying in 1-3 residues including most HLA-I signal peptides. Thus, HCMV induces strong and life-long lasting HLA-EUL40 CD8 T cells with potential allogeneic or/and autologous reactivity that take place selectively in at least a third of infections according to

  18. Density of CD8+ lymphocytes in biopsy samples combined with the circulating lymphocyte ratio predicts pathologic complete response to chemoradiotherapy for rectal cancer.

    PubMed

    Xiao, Binyi; Peng, Jianhong; Zhang, Rongxin; Xu, Jing; Wang, Yongchun; Fang, Yujing; Lin, Junzhong; Pan, Zhizhong; Wu, Xiaojun

    2017-01-01

    The systemic status and local immune status, as determined by the neutrophil-lymphocyte ratio (NLR) or the lymphocyte ratio (LYMR) and tumor-infiltrating lymphocyte (TIL) count, respectively, have been suggested as predictors of the tumor response to neoadjuvant chemoradiotherapy (nCRT) in rectal cancer, although the utility of these measures remains controversial. We aimed to investigate the values of the LYMR, NLR and TIL count and their combinations (TIL-LYMR/TIL-NLR) in predicting pathologic complete response (pCR) after nCRT. Pretreatment biopsy samples and data from the blood tests of 92 patients with rectal cancer who underwent curative resection after nCRT were retrospectively obtained. CD8+ TILs were immunostained using an antibody against CD8. The density of CD8+ TILs was recorded as the number of CD8+ T cells per square millimeter, and the results were classified as either "high" or "low". The LYMR and NLR were calculated using pretreatment blood test data and categorized into either "high" or "low" groups. TIL-LYMR was graded as "low," "mid" or "high" when neither, one or both the CD8+ TIL count and LYMR were "high," respectively. TIL-NLR was graded similarly. The associations between TILs and LYMR, NLR and their combinations (TIL-LYMR/TIL-NLR) were evaluated. pCR was significantly associated with a high LYMR, a low NLR and increased chemotherapy cycles ( P =0.039, P =0.043 and P =0.015, respectively), but not with the CD8+ TIL count or carcinoembryonic antigen (CEA) level ( P =0.100 and P =0.590, respectively). Additionally, 40% of patients with high LYMR and 40.7% with low NLR achieved pCR, whereas only 19.7% with low LYMR and 20.3% with high NLR did so. When the combinations were assessed, TIL-LYMR showed a positive correlation with pCR ( P =0.038), while no association between TIL-NLR and pCR was found ( P =0.916). In multivariate analysis, TIL-LYMR remained an independent predictor of pCR (odds ratio [OR]=1.833, 95% confidence interval [CI]=1

  19. Validation of a single-platform, volumetric, flow cytometry for CD4 T cell count monitoring in therapeutic mobile unit

    PubMed Central

    2012-01-01

    Background A mobile health unit may be useful to follow up adult and pediatric patients on antiretroviral treatment and living in remote areas devoid of laboratory facilities. The study evaluated the use of the simplified, robust, single-plateform, volumetric, pan-leucogating Auto40 flow cytometer (Apogee Flow Systems Ltd, Hemel Hempstead, UK) for CD4 T cell numeration in a mobile unit, compared against a reference flow cytometry method. Methods The therapeutic mobile unit of the Laboratoire National de Santé Hygiène Mobile, Yaoundé, Cameroon, was equipped with the Auto40. A FACSCalibur flow cytometer (Becton Dickinson Immuno-cytometry System, San Jose, CA, USA) was used as reference method. EDTA-blood samples from volunteers were first subjected to CD4 T cell count in the mobile unit, and an aliquot was sent within 4 hours to Centre International de Référence Chantal Biya, Yaoundé, for FACSCalibur assay. Results Two HIV screening campaigns with the mobile unit were organised in December 2009 and January 2010. The campaign in the suburb of Yaoundé which was 20 km from the reference laboratory included 188 volunteers comprising 93 children less than 5 years old. The campaign in Ambang Bikok (53 km far from Yaoundé) included 69 adult volunteers. In Yaoundé suburb, mean ± standard deviation (SD) CD4 T cell count was 996 ± 874 cells/μl by Auto40, and 989 ± 883 cells/μl by FACSCalibur; in Ambang Bikok, mean ± SD CD4 T cell count was 1041 ± 317 cells/μl by Auto40, and 1032 ± 294 cells/μl by FACSCalibur. Results by Auto40 and FACSCalibur were highly correlated in Yaoundé (r2 = 0.982) as in Ambang Bikok (r2 = 0.921). Bland-Altman analysis showed a close agreement between Auto40 and FACSCalibur results expressed in absolute count as in percentage in Yaoundé and Ambang Bikok. When pooling the 257 CD4 T cell count measurements, the Auto40 yielded a mean difference of +7.6 CD4 T cells/μl higher than by reference flow cytometry; and the sensitivity and

  20. Mechanistic Differences in DNA Nanoparticle Formation in the Presence of Oligolysines and Poly-L-lysine†

    PubMed Central

    Nayvelt, Irina; Thomas, Thresia; Thomas, T. J.

    2008-01-01

    We studied the effectiveness of trilysine (Lys3)-, tetralysine (Lys4)-, pentalysine (Lys5)-, and poly-L-lysine (PLL) (MW: 50,000) on λ-DNA nanoparticle formation, and characterized the size, shape and stability of nanoparticles. Light scattering experiments showed EC50 (lysine concentration at 50% DNA compaction) values of ~0.0036, 2, and 20 μmoles/liter, respectively, for PLL, Lys5, and Lys4 at 10 mM [Na+]. Plots of log[EC50] versus log[Na+] showed positive slopes of 1.09 and 1.7, respectively, for Lys4 and Lys5 and a negative slope of −0.1 for PLL. Hydrodynamic radii of oligolysine-condensed particles increased (48–173 nm) with increasing [Na+], whereas no significant change occurred to nanoparticles formed with PLL. There was an increase in the size of nanoparticles formed with Lys5 at >40 °C, whereas no such change occurred with PLL. DNA melting temperature increased with oligolysine concentration. These results indicate distinct differences in the mechanism(s) by which oligolysines and PLL provoke DNA condensation to nanoparticles. PMID:17291071

  1. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar.

    PubMed

    Yan-Bing, He; Dao-You, Huang; Qi-Hong, Zhu; Shuai, Wang; Shou-Long, Liu; Hai-Bo, He; Han-Hua, Zhu; Chao, Xu

    2017-02-01

    To mitigate the serious problem of Cd-contaminated paddy soil, we investigated the remediation potential of combining in-situ immobilization with a low-Cd-accumulation rice cultivar. A three-season field experiment compared the soil pH, available Cd and absorption of Cd by three rice cultivars with different Cd accumulation abilities grown in Cd-contaminated paddy soil amended with lime (L), slag (S), and bagasse (B) alone or in combination. The three amendments applied alone and in combination significantly increased soil pH, reduced available Cd and absorption of Cd by rice with no effect on grain yield. Among these, the LS and LSB treatments reduced the brown rice Cd content by 38.3-69.1% and 58.3-70.9%, respectively, during the three seasons. Combined with planting of a low-Cd-accumulation rice cultivar (Xiang Zaoxian 32) resulted in a Cd content in brown rice that met the contaminant limit (≤0.2mgkg -1 ). However, the grain yield of the low-Cd-accumulation rice cultivar was approximately 30% lower than the other two rice cultivars. Applying LS or LSB as amendments combined with planting a low-Cd-accumulation rice cultivar is recommended for the remediation of Cd-contaminated paddy soil. The selection and breeding of low-Cd-accumulation rice cultivars with high grain production requires further research. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Human CD134 (OX40) expressed on T cells plays a key role for human herpesvirus 6B replication after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Nagamata, Satoshi; Nagasaka, Miwako; Kawabata, Akiko; Kishimoto, Kenji; Hasegawa, Daiichiro; Kosaka, Yoshiyuki; Mori, Takeshi; Morioka, Ichiro; Nishimura, Noriyuki; Iijima, Kazumoto; Yamada, Hideto; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Matsuoka, Hiroshi; Mori, Yasuko

    2018-05-01

    CD134 (OX40), which is a cellular receptor for human herpesvirus-6B (HHV-6B) and expresses on activated T cells, may play a key role for HHV-6B replication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Therefore, we examined the CD134 expression on T cells and HHV-6B replication after allo-HSCT, and analyzed the correlation between them. Twenty-three patients after allo-HSCT were enrolled. The percentages of CD134-positive cells within the CD4 + and CD8 + cell populations were measured by flow cytometry, and the viral copy number of HHV-6B was simultaneously quantified by real-time PCR. The correlation between CD134 and HHV-6B viral load was then statistically analyzed. HHV-6B reactivation occurred in 11 of 23 patients (47.8%). CD134 expression was seen on T cells and was coincident with the time of peak viral load. The percentage of CD134-positive cells decreased significantly when HHV-6B DNA disappeared (p = .005 in CD4 + T cells, p = .02 in CD8 + T cells). In the 4 patients who underwent umbilical cord blood transplantation (UCBT), the viral load varied with the percentage of CD134-positive cells. In the comparison between the HHV-6B reactivation group and non-reactivation group, maximum percentages of CD134-positive cells among CD4 + T cells in reactivation group were significantly higher than those in non-reactivation group (p = .04). This is the first study to show that a correlation of CD134 expression on T cells with HHV-6B replication after allo-HSCT, especially in UCBT. The results possibly indicate that CD134 on T cells plays a key role for HHV-6B replication after allo-HSCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. [Effects of Naomaitong combined with mobilization of bone marrow mesenchymal stem cells on neuron apoptosis and expressions of Fas, FasL and caspase-3 proteins in rats with cerebral ischemia].

    PubMed

    Li, Jian-sheng; Liu, Jing-xia; Tian, Yu-shou; Ren, Wei-hong; Zhang, Xin-feng; Wang, Ding-chao

    2009-09-01

    To observe the effects of Naomaitong, a compound traditional Chinese herbal medicine, combined with mobilization of bone marrow mesenchymal stem cells (BMSCs) on neuron apoptosis in rats with cerebral ischemia, and to explore the possible mechanism by detecting the expressions of Fas, FasL and caspase-3 proteins. Two hundred and two SD rats were divided into sham-operated group, untreated group, recombinant granulocyte colony-stimulating factor (rG-CSF) group, Naomaitong group and Naomaitong plus rG-CSF group (combination group). Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion using a nylon thread with some modification. Rats in the rG-CSF group and the untreated group were administered with rG-CSF 10 microg/(kg x d) by subcutaneous injection 3 d before and 2 d after the operation respectively, once a day, and rats in the Naomaitong group and the combination group were intragastrically administered Naomaitong before and after the operation until sacrificed. Two, three, seven and fourteen days after operation, count of CD34-positive cells in peripheral blood and CD34 expression in brain tissue were determined. General neural function score (GNFS) was evaluated. Neuron apoptosis, expressions of Fas, FasL and caspase-3 in rat's brain were all measured. Count of CD34-positive cells in peripheral blood and CD34 expression in brain tissue were high in the untreated group, and reached the peak at 3 d and 7 d respectively. CD34 expression in brain tissue was increased in each treated group, especially in the combination group. GNFS was increased at 3 d and 7 d in the untreated group, 7 d and 14 d in the rG-CSF group and the combination group. Expressions of Fas, FasL and caspase-3 were increased 2, 3 and 7 d after operation, while expression of FasL at 2 d in the rG-CSF group, expressions of Fas, FasL and caspase-3 in the combination group were decreased. Expressions of Fas, FasL and caspase-3 at 7 d and 14 d in the combination group

  4. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    PubMed

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  5. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines

    PubMed Central

    Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.

    2012-01-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559

  6. CD40-TNF activation in mice induces extended sickness behavior syndrome co-incident with but not dependent on activation of the kynurenine pathway.

    PubMed

    Cathomas, Flurin; Fuertig, Rene; Sigrist, Hannes; Newman, Gregory N; Hoop, Vanessa; Bizzozzero, Manuela; Mueller, Andreas; Luippold, Andreas; Ceci, Angelo; Hengerer, Bastian; Seifritz, Erich; Fontana, Adriano; Pryce, Christopher R

    2015-11-01

    The similarity between sickness behavior syndrome (SBS) in infection and autoimmune disorders and certain symptoms in major depressive disorder (MDD), and the high co-morbidity of autoimmune disorders and MDD, constitutes some of the major evidence for the immune-inflammation hypothesis of MDD. CD40 ligand-CD40 immune-activation is important in host response to infection and in development of autoimmunity. Mice given a single intra-peritoneal injection of CD40 agonist antibody (CD40AB) develop SBS for 2-3days characterized by weight loss and increased sleep, effects that are dependent on the cytokine, tumor necrosis factor (TNF). Here we report that CD40AB also induces behavioral effects that extend beyond acute SBS and co-occur with but are not mediated by kynurenine pathway activation and recovery. CD40AB led to decreased saccharin drinking (days 1-7) and decreased Pavlovian fear conditioning (days 5-6), and was without effect on physical fatigue (day 5). These behavioral effects co-occurred with increased plasma and brain levels of kynurenine and its metabolites (days 1-7/8). Co-injection of TNF blocker etanercept with CD40AB prevented each of SBS, reduced saccharin drinking, and kynurenine pathway activation in plasma and brain. Repeated oral administration of a selective indoleamine 2,3-dioxygenase (IDO) inhibitor blocked activation of the kynurenine pathway but was without effect on SBS and saccharin drinking. This study provides novel evidence that CD40-TNF activation induces deficits in saccharin drinking and Pavlovian fear learning and activates the kynurenine pathway, and that CD40-TNF activation of the kynurenine pathway is not necessary for induction of the acute or extended SBS effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluation of growth hormone release in children using arginine and L-dopa in combination.

    PubMed

    Weldon, V V; Gupta, S K; Klingensmith, G; Clarke, W L; Duck, S C; Haymond, M W; Pagliara, A S

    1975-10-01

    L-Dopa in a dose ranging from 125-500 mg and arginine monochloride in a dose of 0.5 gm/kg were given simultaneously to 56 children with short stature (height less than third percentile). Sixteen of these children were subsequently diagnosed as having growth hormone deficiency. The diagnosis of hyposomatotropism was based on clinical findings and on responses to the combination test and to arginine and L-dopa administered as separate tests. All of the remaining 40 children had a normal GH response of greater than 6 ng/ml to the combination test. However, in this group, nine children were identified who responded to the combination test but who failed to respond to arginine and L-dopa in individual tests. The data suggest that a positive response to arginine and L-dopa in combination in children, who do not respond to the usual provocative tests when administered individually, may fail to identify children with partial GH deficiency who would benefit from treatment. The integrated stimulated GH response in the 31 children in whom a normal GH response to all three tests occurred suggests that the effects of L-dopa and arginine are additive.

  8. Utility of immunohistochemical staining with FLI1, D2-40, CD31, and CD34 in the diagnosis of acquired immunodeficiency syndrome-related and non-acquired immunodeficiency syndrome-related Kaposi sarcoma.

    PubMed

    Rosado, Flavia G Nunes; Itani, Doha M; Coffin, Cheryl M; Cates, Justin M

    2012-03-01

    Kaposi sarcoma (KS) is a vascular tumor frequently associated with advanced human immunodeficiency virus infection, advanced age, or iatrogenic immunosuppression. Immunohistochemistry for CD31 and CD34, and more recently for FLI1 and D2-40, has been used as ancillary diagnostic tests for KS, despite little information regarding the sensitivities and differential staining patterns of the latter 2 markers in the major clinical subtypes and histologic stages of KS. This retrospective study aims to assess the prevalence of the vascular markers D2-40 and FLI1 in the main clinical subgroups and tumor stages of KS. Twenty-four cases of KS (12 acquired immunodeficiency syndrome [AIDS]-related cases and 12 non-AIDS-related cases; 11 nodular-stage and 13 patch/plaque-stage KS) were stained for CD34, CD31, D2-40, and FLI1 by immunohistochemistry. The distribution of immunoreactivity was compared between the clinical subtypes and tumor stages of KS using the Mann-Whitney test. CD31, CD34, D2-40, and FLI1 strongly and diffusely stained tumor cells in 75%, 92%, 67%, and 92% of AIDS-related cases and 58%, 92%, 67%, and 75% of non-AIDS-related cases, respectively. Differences in the proportions of positive cases between AIDS-related and non-AIDS-related cases did not reach statistical significance. No significant staining differences were observed between nodular- and patch/plaque-stage KS either. There are no differences in the distribution of immunohistochemical reactivity for CD31, CD34, D2-40, or FLI1 between AIDS-related and non-AIDS-related KS or between nodular- and patch/plaque-stage KS. All of the markers studied demonstrated high sensitivity in both clinical settings and both stages of tumor progression.

  9. γ-H2AX responds to DNA damage induced by long-term exposure to combined low-dose-rate neutron and γ-ray radiation.

    PubMed

    Zhang, Junlin; He, Ying; Shen, Xianrong; Jiang, Dingwen; Wang, Qingrong; Liu, Qiong; Fang, Wen

    2016-01-01

    Risk estimates for low-dose radiation (LDR) remain controversial. The possible involvement of DNA repair-related genes in long-term low-dose-rate neutron-gamma radiation exposure is poorly understood. In this study, 60 rats were divided into control groups and irradiated groups, which were exposed to low-dose-rate n-γ combined radiation (LDCR) for 15, 30, or 60 days. The effects of different cumulative radiation doses on peripheral blood cell (PBC), subsets of T cells of peripheral blood lymphocytes (PBL) and DNA damage repair were investigated. Real-time PCR and immunoblot analyses were used to detect expression of DNA DSB-repair-related genes involved in the NHEJ pathway, such as Ku70 and Ku80, in PBL. The mRNA level of H2AX and the expression level of γ-H2AX were detected by real-time PCR, immunoblot, and flow cytometry. White blood cells (WBC) and platelets (PLT) of all ionizing radiation (IR) groups decreased significantly, while no difference was seen between the 30 day and 60 day exposure groups. The numbers of CD3(+), CD4(+) T cells and CD4(+)/CD8(+) in the PBL of IR groups were lower than in the control group. In the 30 day and 60 day exposure groups, CD8(+) T cells decreased significantly. Real-time PCR and immunoblot results showed no significant difference in the mRNA and protein expression of Ku70 and Ku80 between the control groups and IR groups. However, the mRNA of H2AX increased significantly, and there was a positive correlation with dose. There was no difference in the protein expression of γ-H2AX between 30 day and 60 day groups, which may help to explain the damage to PBL. In conclusion, PBL damage increased with cumulative dose, suggesting that γ-H2AX, but neither Ku70 nor Ku80, plays an important role in PBL impairment induced by LDCR. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Development of an Improved Mammalian Overexpression Method for Human CD62L

    PubMed Central

    Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.

    2014-01-01

    We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402

  11. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    PubMed

    Akhmetzyanova, Ilseyar; Drabczyk, Malgorzata; Neff, C Preston; Gibbert, Kathrin; Dietze, Kirsten K; Werner, Tanja; Liu, Jia; Chen, Lieping; Lang, Karl S; Palmer, Brent E; Dittmer, Ulf; Zelinskyy, Gennadiy

    2015-10-01

    Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  12. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes

    PubMed Central

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-01-01

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L. PMID:29425163

  13. Posttransplant sCD30 as a predictor of kidney graft outcome.

    PubMed

    Süsal, Caner; Döhler, Bernd; Sadeghi, Mahmoud; Salmela, Kaija T; Weimer, Rolf; Zeier, Martin; Opelz, Gerhard

    2011-06-27

    Reliable markers for assessing the biological effect of immunosuppressive drugs and identification of transplant recipients at risk of developing rejection are not available. In a prospective multicenter study, we investigated whether posttransplant measurement of the T-cell activation marker soluble CD30 (sCD30) can be used for estimating the risk of graft loss in kidney transplant recipients. Pre- and posttransplant sera of 2322 adult deceased-donor kidney recipients were tested for serum sCD30 content using a commercial enzyme-linked immunosorbent assay. sCD30 decreased posttransplant and reached a nadir on day 30. Patients with a high sCD30 of more than or equal to 40 U/mL on day 30 showed a subsequent graft survival rate after 3 years of 78.3±4.1%, significantly lower than the 90.3±1.0% rate in recipients with a low sCD30 on day 30 of less than 40 U/mL (log-rank P<0.001; Cox hazard ratio 2.02, P<0.001). Although an association was found between pre- and posttransplant sCD30 levels, patients with high sCD30 on posttransplant day 30 demonstrated significantly lower 3-year graft survival irrespective of the pretransplant level. Our data suggest that posttransplant measurement of sCD30 on day 30 is a predictor of subsequent graft loss in kidney transplant recipients and that sCD30 may potentially serve as an indicator for adjustment of immunosuppressive medication.

  14. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial.

    PubMed

    Nilsson, Charlotta; Hejdeman, Bo; Godoy-Ramirez, Karina; Tecleab, Teghesti; Scarlatti, Gabriella; Bråve, Andreas; Earl, Patricia L; Stout, Richard R; Robb, Merlin L; Shattock, Robin J; Biberfeld, Gunnel; Sandström, Eric; Wahren, Britta

    2015-01-01

    We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. International Standard Randomised Controlled Trial Number (ISRCTN) 60284968.

  15. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial

    PubMed Central

    Nilsson, Charlotta; Hejdeman, Bo; Godoy-Ramirez, Karina; Tecleab, Teghesti; Scarlatti, Gabriella; Bråve, Andreas; Earl, Patricia L.; Stout, Richard R.; Robb, Merlin L.; Shattock, Robin J.; Biberfeld, Gunnel; Sandström, Eric; Wahren, Britta

    2015-01-01

    Background We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. Methods HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. Results The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. Conclusion Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. Trial Registration International Standard

  16. Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique

    PubMed Central

    Schwab, Rebekka A.V.; Niedzwiedz, Wojciech

    2011-01-01

    Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells1. DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique2-4. In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence

  17. Antihypertensive Effects of Roselle-Olive Combination in L-NAME-Induced Hypertensive Rats

    PubMed Central

    Hessin, Alyaa F.; Abdelbaset, Marwan; Ogaly, Hanan A.; Abd-Elsalam, Reham M.; Hassan, Salah M.

    2017-01-01

    This study aimed to evaluate the antihypertensive efficacy of a new combination therapy of Hibiscus sabdariffa and Olea europaea extracts (2 : 1; Roselle-Olive), using N(G)-nitro-L-arginine-methyl ester- (L-NAME-) induced hypertensive model. Rats received L-NAME (50 mg/kg/day, orally) for 4 weeks. Concurrent treatment with Roselle-Olive (500, 250, and 125 mg/kg/day for 4 weeks) resulted in a dose-dependent decrease in both systolic and diastolic blood pressure, reversed the L-NAME-induced suppression in serum nitric oxide (NO), and improved liver and kidney markers, lipid profile, and oxidative status. Furthermore, Roselle-Olive significantly lowered the elevated angiotensin-converting enzyme activity (ACE) and showed a marked genoprotective effect against oxidative DNA damage in hypertensive rats. Roselle-Olive ameliorated kidney and heart lesions and reduced aortic media thickness. Real-time PCR and immunohistochemistry showed an enhanced endothelial nitric oxide synthase (eNOS) gene and protein expression in both heart and kidney of Roselle-Olive-treated rats. To conclude, our data revealed that Roselle-Olive is an effective combination in which H. sabdariffa and O. europaea synergistically act to control hypertension. These effects are likely to be mediated by antioxidant and genoprotective actions, ACE inhibition, and eNOS upregulation by Roselle-Olive constituents. These findings provide evidences that Roselle-Olive combination affords efficient antihypertensive effect with a broad end-organ protective influence. PMID:29201276

  18. Antihypertensive Effects of Roselle-Olive Combination in L-NAME-Induced Hypertensive Rats.

    PubMed

    Abdel-Rahman, Rehab F; Hessin, Alyaa F; Abdelbaset, Marwan; Ogaly, Hanan A; Abd-Elsalam, Reham M; Hassan, Salah M

    2017-01-01

    This study aimed to evaluate the antihypertensive efficacy of a new combination therapy of Hibiscus sabdariffa and Olea europaea extracts (2 : 1; Roselle-Olive), using N(G)-nitro-L-arginine-methyl ester- (L-NAME-) induced hypertensive model. Rats received L-NAME (50 mg/kg/day, orally) for 4 weeks. Concurrent treatment with Roselle-Olive (500, 250, and 125 mg/kg/day for 4 weeks) resulted in a dose-dependent decrease in both systolic and diastolic blood pressure, reversed the L-NAME-induced suppression in serum nitric oxide (NO), and improved liver and kidney markers, lipid profile, and oxidative status. Furthermore, Roselle-Olive significantly lowered the elevated angiotensin-converting enzyme activity (ACE) and showed a marked genoprotective effect against oxidative DNA damage in hypertensive rats. Roselle-Olive ameliorated kidney and heart lesions and reduced aortic media thickness. Real-time PCR and immunohistochemistry showed an enhanced endothelial nitric oxide synthase (eNOS) gene and protein expression in both heart and kidney of Roselle-Olive-treated rats. To conclude, our data revealed that Roselle-Olive is an effective combination in which H. sabdariffa and O. europaea synergistically act to control hypertension. These effects are likely to be mediated by antioxidant and genoprotective actions, ACE inhibition, and eNOS upregulation by Roselle-Olive constituents. These findings provide evidences that Roselle-Olive combination affords efficient antihypertensive effect with a broad end-organ protective influence.

  19. Freeze and Thaw of CD4+CD25+Foxp3+ Regulatory T Cells Results in Loss of CD62L Expression and a Reduced Capacity to Protect against Graft-versus-Host Disease

    PubMed Central

    Pierini, Antonio; Baker, Jeanette; Armstrong, Randall; Pan, Yuqiong; Leveson-Gower, Dennis; Negrin, Robert; Meyer, Everett

    2015-01-01

    The adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in murine models of allogeneic hematopoietic cell transplantation (HCT) has been shown to protect recipient mice from lethal acute graft-versus-host disease (GVHD) and this approach is being actively investigated in human clinical trials. Here, we examined the effects of cryopreservation on Tregs. We found that freeze and thaw of murine and human Tregs is associated with reduced expression of L-selectin (CD62L), which was previously established to be an important factor that contributes to the in vivo protective effects of Tregs. Frozen and thawed murine Tregs showed a reduced capacity to bind to the CD62L binding partner MADCAM1 in vitro as well as an impaired homing to secondary lymphoid organs in vivo. Upon adoptive transfer frozen and thawed Tregs failed to protect against lethal GVHD compared with fresh Tregs in a murine model of allogeneic HCT across major histocompatibility barriers. In summary, the direct administration of adoptively transferred frozen and thawed Tregs adversely affects their immunosuppressive potential which is an important factor to consider in the clinical implementation of Treg immunotherapies. PMID:26693907

  20. Combination of CD157 and FLAER to Detect Peripheral Blood Eosinophils by Multiparameter Flow Cytometry.

    PubMed

    Carulli, Giovanni; Marini, Alessandra; Sammuri, Paola; Domenichini, Cristiana; Ottaviano, Virginia; Pacini, Simone; Petrini, Mario

    2015-01-01

    The identification of eosinophils by flow cytometry is difficult because most of the surface antigens expressed by eosinophils are shared with neutrophils. Some methods have been proposed, generally based on differential light scatter properties, enhanced autofluorescence, lack of CD16 or selective positivity of CD52. Such methods, however, show several limitations. In the present study we report a novel method based on the analysis of glycosylphosphatidylinositol (GPI)-linked molecules. The combination of CD157 and FLAER was used, since FLAER recognizes all GPI-linked molecules, while CD157 is absent on the membrane of eosinophils and expressed by neutrophils. Peripheral blood samples from normal subjects and patients with variable percentages of eosinophils (n = 31), and without any evidence for circulating immature myeloid cells, were stained with the combination of FLAER-Alexa Fluor and CD157-PE. A FascCanto II cytometer was used. Granulocytes were gated after CD33 staining and eosinophils were identified as CD157(-)/FLAER(+) events. Neutrophils were identified as CD157(+)/FLAER(+) events. The percentages of eosinophils detected by this method showed a very significant correlation both with automated counting and with manual counting (r = 0.981 and 0.989, respectively). Sorting assays were carried out by a S3 Cell Sorter: cytospins obtained from CD157(-)/FLAER(+) events consisted of 100% eosinophils, while samples from CD157(+)/FLAER(+) events were represented only by neutrophils. In conclusion, this method shows high sensitivity and specificity in order to distinguish eosinophils from neutrophils by flow cytometry. However, since CD157 is gradually up-regulated throughout bone marrow myeloid maturation, our method cannot be applied to cases characterized by immature myeloid cells.

  1. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and microparticles.

    PubMed

    Hølvold, Linn Benjaminsen; Fredriksen, Børge N; Bøgwald, Jarl; Dalmo, Roy A

    2013-09-01

    The use of poly-(D,L-lactic-co-glycolic) acid (PLGA) particles as carriers for DNA delivery has received considerable attention in mammalian studies. DNA vaccination of fish has been shown to elicit durable transgene expression, but no reports exist on intramuscular administration of PLGA-encapsulated plasmid DNA (pDNA). We injected Atlantic salmon (Salmo salar L.) intramuscularly with a plasmid vector containing a luciferase (Photinus pyralis) reporter gene as a) naked pDNA, b) encapsulated into PLGA nano- (~320 nm) (NP) or microparticles (~4 μm) (MP), c) in an oil-based formulation, or with empty particles of both sizes. The ability of the different pDNA-treatments to induce transgene expression was analyzed through a 70-day experimental period. Anatomical distribution patterns and depot effects were determined by tracking isotope labeled pDNA. Muscle, head kidney and spleen from all treatment groups were analyzed for proinflammatory cytokines (TNF-α, IL-1β), antiviral genes (IFN-α, Mx) and cytotoxic T-cell markers (CD8, Eomes) at mRNA transcription levels at days 1, 2, 4 and 7. Histopathological examinations were performed on injection site samples from days 2, 7 and 30. Injection of either naked pDNA or the oil-formulation was superior to particle treatments for inducing transgene expression at early time-points. Empty particles of both sizes were able to induce proinflammatory immune responses as well as degenerative and inflammatory pathology at the injection site. Microparticles demonstrated injection site depots and an inflammatory pathology comparable to the oil-based formulation. In comparison, the distribution of NP-encapsulated pDNA resembled that of naked pDNA, although encapsulation into NPs significantly elevated the expression of antiviral genes in all tissues. Together the results indicate that while naked pDNA is most efficient for inducing transgene expression, the encapsulation of pDNA into NPs up-regulates antiviral responses that could be

  2. Applying plant DNA barcodes to identify species of Parnassia (Parnassiaceae).

    PubMed

    Yang, Jun-Bo; Wang, Yi-Ping; Möller, Michael; Gao, Lian-Ming; Wu, Ding

    2012-03-01

    DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia. © 2011 Blackwell Publishing Ltd.

  3. Regulatory function of cytomegalovirus-specific CD4{sup +}CD27{sup -}CD28{sup -} T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovar-Salazar, Adriana; Patterson-Bartlett, Julie; Jesser, Renee

    2010-03-15

    CMV infection is characterized by high of frequencies of CD27{sup -}CD28{sup -} T cells. Here we demonstrate that CMV-specific CD4{sup +}CD27{sup -}CD28{sup -} cells are regulatory T cells (T{sub R}). CD4{sup +}CD27{sup -}CD28{sup -} cells sorted from CMV-stimulated PBMC of CMV-seropositive donors inhibited de novo CMV-specific proliferation of autologous PBMC in a dose-dependent fashion. Compared with the entire CMV-stimulated CD4{sup +} T-cell population, higher proportions of CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} expressed FoxP3, TGFbeta, granzyme B, perforin, GITR and PD-1, lower proportions expressed CD127 and PD1-L and similar proportions expressed CD25, CTLA4, Fas-L and GITR-L. CMV-CD4{sup +}CD27{sup -}CD28{sup -}more » T{sub R} expanded in response to IL-2, but not to CMV antigenic restimulation. The anti-proliferative effect of CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} significantly decreased after granzyme B or TGFbeta inhibition. The CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} of HIV-infected and uninfected donors had similar phenotypes and anti-proliferative potency, but HIV-infected individuals had higher proportions of CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R}. The CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} may contribute to the downregulation of CMV-specific and nonspecific immune responses of CMV-infected individuals.« less

  4. Effect of Tributyltin, Cadmium, and Their Combination on Physiological Responses in Juvenile Grass Carp.

    PubMed

    Mu, Wei-Na; Li, Zhi-Hua; Zhong, Li-Qiao; Wu, Yan-Hua

    2016-09-01

    Tributyltin (TBT) and cadmium (Cd) are two common pollutants in aquatic environments. This study was designed to examine the physiological responses of juvenile Grass Carp Ctenopharyngodon idella to TBT, Cd, and their combination. Fish were apportioned into a control group, a TBT group (7.5 μg/L), a Cd group (2.97 mg/L), and a TBT-Cd group (7.5 μg/L TBT, 2.97 mg/L Cd(2+)) for 7 d. The following activities were measured: Na(+),K(+)-ATPase in gill tissues; nitric oxide synthase (NOS), acetylcholinesterase (AChE), and monoamine oxidase (MAO) in brain tissues; and lipid peroxidation (LPO), malondialdehyde (MDA), total antioxidative capacity (T-AOC), and glutathione (GSH) in liver tissues. Cadmium-induced stress was suggested by alterations in antioxidant responses (MDA, LPO, and T-AOC) and neurological parameters (AChE, MAO, and NOS). Cadmium also induced Na(+),K(+)-ATPase and GSH activity. Compared with the responses among the Cd group, the combination of TBT and Cd not only decreased the level of GSH and Na(+),K(+)-ATPase but also increased the levels of MDA, LPO, AChE, MAO, and NOS. These results suggest that a combination of TBT and Cd could reduce the adverse effects of Cd on Grass Carp. However, the exact mechanisms for the combined effects TBT and Cd on these biomarkers require further investigation. Received September 28, 2015; accepted April 17, 2016.

  5. Prototyping of MWIR MEMS-based optical filter combined with HgCdTe detector

    NASA Astrophysics Data System (ADS)

    Kozak, Dmitry A.; Fernandez, Bautista; Velicu, Silviu; Kubby, Joel

    2010-02-01

    In the past decades, there have been several attempts to create a tunable optical detector with operation in the infrared. The drive for creating such a filter is its wide range of applications, from passive night vision to biological and chemical sensors. Such a device would combine a tunable optical filter with a wide-range detector. In this work, we propose using a Fabry-Perot interferometer centered in the mid-wave infrared (MWIR) spectrum with an HgCdTe detector. Using a MEMS-based interferometer with an integrated Bragg stack will allow in-plane operation over a wide range. Because such devices have a tendency to warp, creating less-than-perfect optical surfaces, the Fabry-Perot interferometer is prototyped using the SOI-MUMPS process to ensure desirable operation. The mechanical design is aimed at optimal optical flatness of the moving membranes and a low operating voltage. The prototype is tested for these requirements. An HgCdTe detector provides greater performance than a pyroelectic detector used in some previous work, allowing for lower noise, greater detection speed and higher sensitivity. Both a custom HgCdTe detector and commercially available pyroelectric detector are tested with commercial optical filter. In previous work, monolithic integration of HgCdTe detectors with optical filters proved to be problematic. Part of this work investigates the best approach to combining these two components, either monolithically in HgCdTe or using a hybrid packaging approach where a silicon MEMS Fabry-Perot filter is bonded at low temperature to a HgCdTe detector.

  6. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status

    PubMed Central

    Virani, Shama; Rentschler, Katie M.; Nishijo, Muneko; Ruangyuttikarn, Werawan; Swaddiwudhipong, Witaya; Basu, Niladri; Rozek, Laura S.

    2016-01-01

    The adverse health effects of cadmium (Cd) are well known in human populations; however, much of what is known about biological mechanisms of Cd comes from in vitro and animal studies. The adverse health outcomes due to high levels of Cd exposure in the population of Mae Sot, Thailand have been extensively characterized. Here, for the first time, this population is being studied in an epigenetic context. The objective of this study was to characterize the association between DNA methylation markers and Cd exposure, taking into account sex and smoking differences, in an adult population at an increased risk of experiencing adverse health outcomes from high body burden of Cd. One hundred and sixty-nine residents from known exposure areas of Mae Sot, Thailand and one hundred residents from non-exposed areas nearby were surveyed in 2012. Urine and blood samples were collected for measurement of urinary Cd (UCd) and DNA methylation of Cd-related markers (DNMT3B, MGMT, LINE-1, MT2A). UCd levels were 7 times higher in the exposed compared to the unexposed populations (exposed median: 7.4 μg/L, unexposed median: 1.0 μg/L, p <0.001). MGMT hypomethylation was associated with increasing levels of UCd in the total population. Sex-specific associations included MT2A and DNMT3B hypomethylation in women and LINE-1 hypermethylation in men with increasing UCd. Upon subanalysis, these associations separated by smoking status. In summary, environmental Cd exposure is associated with gene-specific DNA methylation in a sex and smoking dependent manner. PMID:26688266

  7. Specific DNA binding activity of T antigen subclasses varies among different SV40-transformed cell lines.

    PubMed

    Burger, C; Fanning, E

    1983-04-15

    Large tumor antigen (T antigen) occurs in at least three different oligomeric subclasses in cells infected or transformed by simian virus 40 (SV40): 5-7 S, 14-16 S, and 23-25 S. The 23-25 S form is complexed with a host phosphoprotein (p53). The DNA binding properties of these three subclasses of T antigen from nine different cell lines and free p53 protein were compared using an immunoprecipitation assay. All three subclasses of T antigen bound specifically to SV40 DNA sequences near the origin of replication. However, the DNA binding activity varied between different cell lines over a 40- to 50-fold range. The 23-25 S and 14-16 S forms from most of the cell lines tested bound much less SV40 origin DNA than 5-7 S T antigen. The free p53 phosphoprotein did not bind specifically to any SV40 DNA sequences.

  8. cfDNA as an Earlier Predictor of Exercise-Induced Performance Decrement Related to Muscle Damage.

    PubMed

    Andreatta, Michely V; Curty, Victor M; Coutinho, João Victor S; Santos, Miguel Ângelo A; Vassallo, Paula F; de Sousa, Nuno F; Barauna, Valério G

    2017-11-28

    The aims of this study were: a) to evaluate whether cell-free DNA (cfDNA) levels increase immediately after an acute light and heavy resistance exercise (RE) bout, and b) to whether cfDNA levels are associated with functional muscle capacity until 48hrs after exercise session. Twenty healthy volunteers performed 3 sets of the leg press resistance exercise with 80% of 1RM (RE80) or 40% of 1RM (RE40) with similar exercise volume. Blood lactate was measured after completion of the 3 sets. Creatine kinase (CK), cfDNA and jump performance were evaluated before (pre) exercise, immediately post-exercise (Post-0) and every 24hrs until 48hrs. Lactate concentration increased similarly in both groups (RE40, 4.0±1.3mmol/L; RE80, 4.8±1.3mmol/L). No changes were observed in squat jump and countermovement jump performance after RE40, however both jumps remained reduced until 48h in RE80 group. CK concentration increased post-24h only in the RE80 group (Pre: 128.8±73.7U/L to Post-24h: 313.8±116.4U/L). cfDNA concentration increased post-0h only in the RE80 group (Pre, 249.8±82.3ng/mL; Post-0h, 406.3±67.2ng/mL). There was a negative correlation between post-0h cfDNA concentration and post-24h squat jump (r=-0.521; p=0.01) and post-0h cfDNA concentration and post-24h countermovement jump (r=-0.539; p=0.01). cfDNA increases in responsive to RE intensity even when not performed until exhaustion. cfDNA measured immediately after RE is a promising biomarker for muscle performance decrement until 48hrs of a RE bout.

  9. Permanent acceptance of mouse cardiac allografts with CD40 siRNA to induce regulatory myeloid cells by use of a novel polysaccharide siRNA delivery system.

    PubMed

    Zhang, Q; Ichimaru, N; Higuchi, S; Cai, S; Hou, J; Fujino, M; Nonomura, N; Kobayashi, M; Ando, H; Uno, A; Sakurai, K; Mochizuki, S; Adachi, Y; Ohno, N; Zou, H; Xu, J; Li, X-K; Takahara, S

    2015-03-01

    The CD40/CD154 co-stimulatory pathway is crucial in alloimmune response. We developed a novel small interfering RNA (siRNA) delivery system with a poly-dA extension at the 5'-end of the siRNA sense strand that was stably incorporated into 1,3-β-glucan (schizophyllan, SPG). This was captured and incorporated into dendritic cells (DCs) through its receptor, Dectin-1, specifically silencing CD40 genes (siCD40) to exert immunoregulatory activity. siCD40/SPG-treated CBA mice permanently accepted B10 fully mismatched cardiac allografts. Consistent with graft survival, the infiltration of CD4(+), CD8(+) T cells into the graft was lower, and that the numbers of CD40(low)CD11c(+) DCs cells and CD4(+)Foxp3(+)cells were increased in both the graft and in the recipient spleen. In addition, naive CBA recipients given an adoptive transfer of splenocytes from the primary recipients with siCD40/SPG accepted a heart graft from donor-type B10, but not third-party Balb/c mice. In conclusion, the treatment with siCD40/SPG targeting DCs could generate antigen-specific Tregs, resulting in the permanent acceptance of mouse cardiac allografts. These findings have important implications for clarifying the mechanism underlying the induction of tolerance in DCs, and also highlight the potential of immunomodulation and the feasibility of siRNA-based clinical therapy in the transplantation field.

  10. Co-stimulatory function in primary germinal center responses: CD40 and B7 are required on distinct antigen-presenting cells.

    PubMed

    Watanabe, Masashi; Fujihara, Chiharu; Radtke, Andrea J; Chiang, Y Jeffrey; Bhatia, Sumeena; Germain, Ronald N; Hodes, Richard J

    2017-09-04

    T cell-dependent germinal center (GC) responses require coordinated interactions of T cells with two antigen-presenting cell (APC) populations, B cells and dendritic cells (DCs), in the presence of B7- and CD40-dependent co-stimulatory pathways. Contrary to the prevailing paradigm, we found unique cellular requirements for B7 and CD40 expression in primary GC responses to vaccine immunization with protein antigen and adjuvant: B7 was required on DCs but was not required on B cells, whereas CD40 was required on B cells but not on DCs in the generation of antigen-specific follicular helper T cells, antigen-specific GC B cells, and high-affinity class-switched antibody production. There was, in fact, no requirement for coexpression of B7 and CD40 on the same cell in these responses. Our findings support a substantially revised model for co-stimulatory function in the primary GC response, with crucial and distinct contributions of B7- and CD40-dependent pathways expressed by different APC populations and with important implications for understanding how to optimize vaccine responses or limit autoimmunity. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  11. Most Do, but Some Do Not: CD4+CD25− T Cells, but Not CD4+CD25+ Treg Cells, Are Cytolytic When Redirected by a Chimeric Antigen Receptor (CAR)

    PubMed Central

    Hombach, Andreas A.; Abken, Hinrich

    2017-01-01

    Evidences are accumulating that CD4+ T cells can physiologically mediate antigen specific target cell lysis. By circumventing major histocompatibility complex (MHC)-restrictions through an engineered chimeric antigen receptor (CAR), CD4+ T cells lyse defined target cells as efficiently as do CD8+ T cells. However, the cytolytic capacity of redirected CD4+CD25− T cells, in comparison with CD4+CD25+ regulatory T (Treg) cells was so far not thoroughly defined. Treg cells require a strong CD28 signal together with CD3ζ for activation. We consequently used a CAR with combined CD28­CD3ζ signalling for redirecting CD4+CD25− T cells and CD4+CD25+ Treg cells from the same donor. CAR redirected activation of these T cell subsets and induced a distinct cytokine pattern with high IL-10 and a lack of IL-2 release by Treg cells. Despite strong antigen-specific activation, CAR Treg cells produced only weak target cell lysis, whereas CD4+CD25− CAR T cells were potent killers. Cytolysis did not correlate with the target cell sensitivity to Fas/FasL mediated killing; CD4+CD25− T cells upregulated perforin and granzyme B upon CAR activation, whereas Treg cells did less. The different cytolytic capacities of CAR redirected conventional CD4+ cells and Treg cells imply their use for different purposes in cell therapy. PMID:28850063

  12. Tapak liman (Elephantopus scaber L) extract-induced CD4+ and CD8+ differentiation from hematopoietic stem cells and progenitor cell proliferation in mice (Mus musculus L)

    NASA Astrophysics Data System (ADS)

    Djati, Muhammad Sasmito; Habibu, Hindun; Jatiatmaja, Nabilah A.; Rifa'i, Muhaimin

    2017-11-01

    Tapak Liman (Elephantopus scaber L) is a traditional medicinal plant containing several active compounds that potentially affecting hematopoietic stem cells, such as epifrieelinol, lupeol, stigmasterol, triacontane-1-ol, dotriacontane-1-ol, lupeol acetate, deoxyelephan-topin, isodeoxyelephantopin, polyphenol luteolin-7, as well as various flavonoids and glucosides. The aim of this study was to elucidate the effect of leaf extract of Tapak Liman on hematopoietic stem cells in mice BALB/c, by observation of the relative number of cells expressing CD4/CD8, CD4/CD62L, and TER119/B220 in the spleen, and TER119/B220, TER119/VLA-4 and TER119/CD34 in bone marrow, after being administered leaf extract for 2 weeks. This experiment used 12 female mice, which were divided into three treatment groups, P1= 0.5 g.g bw-1.day-1, P2= 1.0 g.g bw-1.day-1 and P3=2.0 g.g bw-1.day-1 Tapak Liman leaf extract as well as a control. The relative numbers of cells expressing surface molecules were analyzed by flowcytometry and quantitative data were tested using one-way ANOVA. The results showed that the leaf extract of Tapak Liman has no significant effect on erythrocyte proliferation; on the other hand, it had a significant effect on both proliferation and differentiation of B lymphocytes (B220+) in bone marrow (p=0.044) and increased the expression of CD4+, CD8+ molecule in B cells (p=0.026) and erythroid cells in spleen and bone marrow, based on the estimation of cells that expressed TER119+VLA-4+, identified as important in the development pathway of erythrocytes. An increased cell percentage of TER11+VLA-4+ occurred for treatment P2, 12% higher than the control. The increased expression of TER119+VLA-4+ was assumed to be due to the iron content in Tapak Liman, which functioned to stimulate the progenitor hematopoietic cells to proliferate and differentiate into a precursor of erythroid cells (TER119+VLA-4+). There was an increasing number of cells expressing the surface molecules TER119

  13. Age, Sex & Nutritional Status Modify CD4+T-Cell Recovery Rate in HIV/Tuberculosis Co-infected Patients on cART

    PubMed Central

    Ezeamama, Amara E; Mupere, Ezekiel; Oloya, James; Martinez, Leonardo; Kakaire, Robert; Yin, Xiaoping; Sekandi, Juliet N; Whalen, Christopher C

    2015-01-01

    Background We examined baseline age and combination antiretroviral therapy (cART) as determinants of CD4+T-cell recovery during six months of tuberculosis (TB) therapy with/without cART. We determined whether this association was modified by patient sex and nutritional status. Methods This longitudinal analysis included 208 immune-competent, non-pregnant, ART-naive HIV-positive patients from Uganda with a first episode of pulmonary TB. CD4+T-cell count was measured using flow cytometry. Age was defined as ≤24, 25–29, 30–34, 35–39 vs. ≥ 40 years. Nutritional status was defined as normal (>18.5kg/m2) vs. underweight (≤18.5kg/m2) using body mass index (BMI). Multivariate random-effects linear mixed models were fitted to estimate differences in CD4+T-cell recovery in relation to specified determinants. Results cART was associated with a monthly rise of 15.7 cells/μL (p<0.001). Overall, age was not associated with CD4+T-cell recovery during TB therapy (p=0.655). However, among patients on cART, age-associated CD4+T-cell recovery rate varied by sex and nutritional status such that age <40 vs. ≥ 40 years predicted superior absolute CD4+T-cell recovery among females (p=0.006) and among patients with BMI≥18.5kg/m2 (p<0.001). Conclusions TB infected HIV-positive patients ≥ 40 years have a slower rate of immune restoration given cART-particularly if BMI>18.5kg/m2 or female. They may benefit from increased monitoring and nutritional support during cART. PMID:25910854

  14. Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain

    PubMed Central

    Parrilla-Doblas, Jara Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa

    2017-01-01

    ABSTRACT DNA methylation is a crucial epigenetic mark associated to gene silencing, and its targeted removal is a major goal of epigenetic editing. In animal cells, DNA demethylation involves iterative 5mC oxidation by TET enzymes followed by replication-dependent dilution and/or replication-independent DNA repair of its oxidized derivatives. In contrast, plants use specific DNA glycosylases that directly excise 5mC and initiate its substitution for unmethylated C in a base excision repair process. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5mC DNA glycosylase (ROS1_CD) to the DNA binding domain of yeast GAL4 (GBD). We show that the resultant GBD-ROS1_CD fusion protein binds specifically a GBD-targeted DNA sequence in vitro. We also found that transient in vivo expression of GBD-ROS1_CD in human cells specifically reactivates transcription of a methylation-silenced reporter gene, and that such reactivation requires both ROS1_CD catalytic activity and GBD binding capacity. Finally, we show that reactivation induced by GBD-ROS1_CD is accompanied by decreased methylation levels at several CpG sites of the targeted promoter. All together, these results show that plant 5mC DNA glycosylases can be used for targeted active DNA demethylation in human cells. PMID:28277978

  15. Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1-PD-L1 axis.

    PubMed

    Ding, Zhi-Chun; Lu, Xiaoyun; Yu, Miao; Lemos, Henrique; Huang, Lei; Chandler, Phillip; Liu, Kebin; Walters, Matthew; Krasinski, Antoni; Mack, Matthias; Blazar, Bruce R; Mellor, Andrew L; Munn, David H; Zhou, Gang

    2014-07-01

    In recent years, immune-based therapies have become an increasingly attractive treatment option for patients with cancer. Cancer immunotherapy is often used in combination with conventional chemotherapy for synergistic effects. The alkylating agent cyclophosphamide (CTX) has been included in various chemoimmunotherapy regimens because of its well-known immunostimulatory effects. Paradoxically, cyclophosphamide can also induce suppressor cells that inhibit immune responses. However, the identity and biologic relevance of these suppressor cells are poorly defined. Here we report that cyclophosphamide treatment drives the expansion of inflammatory monocytic myeloid cells (CD11b(+)Ly6C(hi)CCR2(hi)) that possess immunosuppressive activities. In mice with advanced lymphoma, adoptive transfer (AT) of tumor-specific CD4(+) T cells following cyclophosphamide treatment (CTX+CD4 AT) provoked a robust initial antitumor immune response, but also resulted in enhanced expansion of monocytic myeloid cells. These therapy-induced monocytes inhibited long-term tumor control and allowed subsequent relapse by mediating functional tolerization of antitumor CD4(+) effector cells through the PD-1-PD-L1 axis. PD-1/PD-L1 blockade after CTX+CD4 AT therapy led to persistence of CD4(+) effector cells and durable antitumor effects. Depleting proliferative monocytes by administering low-dose gemcitabine effectively prevented tumor recurrence after CTX+CD4 AT therapy. Similarly, targeting inflammatory monocytes by disrupting the CCR2 signaling pathway markedly potentiated the efficacy of cyclophosphamide-based therapy. Besides cyclophosphamide, we found that melphalan and doxorubicin can also induce monocytic myeloid suppressor cells. These findings reveal a counter-regulation mechanism elicited by certain chemotherapeutic agents and highlight the importance of overcoming this barrier to prevent late tumor relapse after chemoimmunotherapy. ©2014 American Association for Cancer Research.

  16. TH-CD-201-11: Optimizing the Response and Cost of a DNA Double-Strand Break Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeidat, M; Cline, K; Stathakis, S

    Purpose: A DNA double-strand break (DSB) dosimeter was developed to measure the biological effect of radiation. The goal here is to refine the fabrication method of this dosimeter to reproducibly create a low coefficient of variation (CoV) and reduce the cost for the dosimeter. Methods: Our dosimeter consists of 4 kilo-base pair DNA strands (labeled on one end with biotin and on the other with fluorescein) attached to streptavidin magnetic beads. The final step of the DNA dosimeter fabrication is to suspend these attached beads in phosphate-buffered saline (PBS). The amount of PBS used to suspend the attached beads andmore » the relative volume of the DNA strands to the beads both affect the CoV and dosimeter cost. We diluted the beads attached with DNA in different volumes of PBS (100, 200, and 400 µL) to create different concentrations of the DNA dosimeter. Then we irradiated these dosimeters (50 µL samples) in a water-equivalent plastic phantom at 25 and 50 Gy (three samples per dose) and calculated the CoV for each dosimeter concentration. Also, we used different masses of DNA strands (1, 2, 8, 16, 24, and 32 µg) to attach to the same volume of magnetic beads (100 µL) to explore how this affects the cost of the dosimeter. Results: The lowest CoV was produced for the highest concentration of dosimeter (100 µL of PBS), which created CoV of 2.0 and 1.0% for 25 and 50 Gy, respectively. We found that the lowest production cost for the dosimeter occurs by attaching 16 µg of DNA strands with 100 µL of beads. Conclusion: : We optimized the fabrication of the DNA dosimeter to produce low CoV and cost, but we still need to explore ways to further improve the dosimeter for use at lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)« less

  17. Multi-locus DNA barcoding identifies matK as a suitable marker for species identification in Hibiscus L.

    PubMed

    Poovitha, Sundar; Stalin, Nithaniyal; Balaji, Raju; Parani, Madasamy

    2016-12-01

    The genus Hibiscus L. includes several taxa of medicinal value and species used for the extraction of natural dyes. These applications require the use of authentic plant materials. DNA barcoding is a molecular method for species identification, which helps in reliable authentication by using one or more DNA barcode marker. In this study, we have collected 44 accessions, representing 16 species of Hibiscus, distributed in the southern peninsular India, to evaluate the discriminatory power of the two core barcodes rbcLa and matK together with the suggested additional regions trnH-psbA and ITS2. No intraspecies divergence was observed among the accessions studied. Interspecies divergence was 0%-9.6% with individual markers, which increased to 0%-12.5% and 0.8%-20.3% when using two- and three-marker combinations, respectively. Differentiation of all the species of Hibiscus was possible with the matK DNA barcode marker. Also, in two-marker combinations, only those combinations with matK differentiated all the species. Though all the three-marker combinations showed 100% species differentiation, species resolution was consistently better when the matK marker formed part of the combination. These results clearly showed that matK is more suitable when compared to rbcLa, trnH-psbA, and ITS2 for species identification in Hibiscus.

  18. Nasopharyngeal carcinoma heterogeneity of DNA content identified on cytologic preparations.

    PubMed

    Maohuai, C; Chang, A R; Lo, D

    2001-06-01

    To evaluate tumor heterogeneity of DNA content in nasopharyngeal carcinoma (NPC) performed on cytologic specimens. Image cytometric analysis of DNA ploidy status of 40 NPCs was performed on nasopharyngeal brushing smears stained with the Feulgen method after hematoxylin eosin staining. If the DNA distribution pattern from the same tumor exhibited diploid, aneuploid or/and tetraploid peaks or some combination of these patterns, the presence of tumor heterogeneity of DNA content was identified. Thirty-four cases (85%) had a nondiploid DNA pattern among the 40 NPCs. Twenty-eight cases exhibited tumor heterogeneity of DNA content (70%). Of the 28 tumors, 13 (46%) had a combination of diploid and tetraploid patterns, 10 (37%) had a combination of diploid and aneuploid patterns, 3 cases (11%) had a combination of tetraploid and aneuploid patterns, and 2 cases had two aneuploid stem lines. The relationship between DNA ploidy pattern and tumor histologic and cytologic morphology was also examined. There is a high incidence of DNA content heterogeneity in NPC. The relevance of tumor heterogeneity to the biologic behavior of NPC awaits further study. DNA quantification with image cytometry on destained cytologic preparations is feasible and reliable.

  19. Expression and function of AtMBD4L, the single gene encoding the nuclear DNA glycosylase MBD4L in Arabidopsis.

    PubMed

    Nota, Florencia; Cambiagno, Damián A; Ribone, Pamela; Alvarez, María E

    2015-06-01

    DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. AFM 4.0: a toolbox for DNA microarray analysis

    PubMed Central

    Breitkreutz, Bobby-Joe; Jorgensen, Paul; Breitkreutz, Ashton; Tyers, Mike

    2001-01-01

    We have developed a series of programs, collectively packaged as Array File Maker 4.0 (AFM), that manipulate and manage DNA microarray data. AFM 4.0 is simple to use, applicable to any organism or microarray, and operates within the familiar confines of Microsoft Excel. Given a database of expression ratios, AFM 4.0 generates input files for clustering, helps prepare colored figures and Venn diagrams, and can uncover aneuploidy in yeast microarray data. AFM 4.0 should be especially useful to laboratories that do not have access to specialized commercial or in-house software. PMID:11532221

  1. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  2. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    PubMed

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  3. Genome-Wide Associations of CD46 and IFI44L Genetic Variants with Neutralizing Antibody Response to Measles Vaccine

    PubMed Central

    Haralambieva, Iana H.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Larrabee, Beth R.; Zimmermann, Michael T.; Grill, Diane E.; Schaid, Daniel J.; Poland, Gregory A.

    2017-01-01

    Background Population-based studies have revealed 2 to 10% measles vaccine failure rate even after two vaccine doses. While the mechanisms behind this remain unknown, we hypothesized that host genetic factors are likely to be involved. Methods We performed a genome-wide association study of measles specific neutralizing antibody and IFNγ ELISPOT response in a combined sample of 2,872 subjects. Results We identified two distinct chromosome 1 regions (previously associated with MMR-related febrile seizures), associated with vaccine-induced measles neutralizing antibody titers. The 1q32 region contained 20 significant SNPs in/around the measles virus receptor-encoding CD46 gene, including the intronic rs2724384 (p-value = 2.64x10−09) and rs2724374 (p-value = 3.16x10−09) SNPs. The 1q31.1 region contained nine significant SNPs in/around IFI44L, including the intronic rs1333973 (p-value = 1.41x10−10) and the missense rs273259 (His73Arg, p-value = 2.87x10−10) SNPs. Analysis of differential exon usage with mRNA-Seq data and RT-PCR suggests the involvement of rs2724374 minor G allele in the CD46 STP region exon B skipping, resulting in shorter CD46 isoforms. Conclusions Our study reveals common CD46 and IFI44L SNPs associated with measles-specific humoral immunity, and highlights the importance of alternative splicing/virus cellular receptor isoform usage as a mechanism explaining inter-individual variation in immune response after live measles vaccine. PMID:28289848

  4. Evaluation of DNA barcode candidates for the discrimination of Artemisia L.

    PubMed

    Liu, Geyu; Ning, Huixia; Ayidaerhan, Nurbolati; Aisa, Haji Akber

    2017-11-01

    Because of the very similar morphologies and wide diversity of Artemisia L. varieties, they are difficult to identify, and there have been many arguments about the systematic classification Artemisia L., especially concerning the division of species. DNA barcode technology is used to rapidly identify species based on standard short DNA sequences. To evaluate seven candidate DNA barcodes (ITS, ITS2, psbA-trnH, rbcL, matK, rpoB, and rpoC1) regarding their ability to identify closely related species of the Artemisia genus in Xinjiang. The corresponding PCR amplification efficiency, detectable genetic divergence, identification efficiency and phylogenetic tree were assessed. We found that the internal transcribed spacer (ITS) region exhibited the highest interspecific divergence, which was significantly higher than the observed intraspecific variation and showed the highest identification efficiency, followed by ITS2, psbA-trnH and, finally, rpoB. matK, rbcL, and rpoC1 performed poorly in this evaluation. ITS, ITS2, and psbA-trnH were able to perfectly identify the tested species Artemisia annua, A. absinthium, A. rupestris, A. tonurnefortiana, A. austriaca, A. dracunculus, A. vulgaris, and A. macrocephala. Therefore, we propose the ITS, ITS2, and psbA-trnH regions as promising DNA barcodes for the closely related species of Artemisia L. in Xinjiang.

  5. Association Between Chloroplast DNA and Mitochondrial DNA Haplotypes in Prunus spinosa L. (Rosaceae) Populations across Europe

    PubMed Central

    MOHANTY, APARAJITA; MARTÍN, JUAN PEDRO; GONZÁLEZ, LUIS MIGUEL; AGUINAGALDE, ITZIAR

    2003-01-01

    Chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) were studied in 24 populations of Prunus spinosa sampled across Europe. The cpDNA and mtDNA fragments were amplified using universal primers and subsequently digested with restriction enzymes to obtain the polymorphisms. Combinations of all the polymorphisms resulted in 33 cpDNA haplotypes and two mtDNA haplotypes. Strict association between the cpDNA haplotypes and the mtDNA haplotypes was detected in most cases, indicating conjoint inheritance of the two genomes. The most frequent and abundant cpDNA haplotype (C20; frequency, 51 %) is always associated with the more frequent and abundant mtDNA haplotype (M1; frequency, 84 %). All but two of the cpDNA haplotypes associated with the less frequent mtDNA haplotype (M2) are private haplotypes. These private haplotypes are phylogenetically related but geographically unrelated. They form a separate cluster on the minimum‐length spanning tree. PMID:14534199

  6. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.

    PubMed

    Chayapan, P; Kruatrachue, M; Meetam, M; Pokethitiyook, P

    2015-09-01

    Cadmium and zinc phytoremediation potential of wetland plants, Colocasia esculenta, Cyperus malaccensis, and Typha angustifolia, was investigated. Plants were grown for 15 days in nutrient solutions containing various concentrations of Cd (0, 5, 10, 20, 50 mg l(-1)) and Zn (0, 10, 20, 50, 100 mg l(-1)). T angustifolia was tolerant to both metals as indicated by high RGR when grown in 50 mg I(-1) Cd and 100 mg I(-1) Zn solutions. All these plants accumulated more metals in their underground parts and > 100 mg kg(-1) in their aboveground with TF values < 1. Only C. esculenta could be considered a Zn hyperaccumulator because it could concentrate > 10,000 mg kg(-1) in its aboveground parts with TF > 1. T angustifolia exhibited highest biomass production and highest Cd and Zn uptake, confirming that this plant is a suitable candidate for treating of Cd contaminated soil/sediments.

  7. ZNT7 binds to CD40 and influences CD154-triggered p38 MAPK activity in B lymphocytes-a possible regulatory mechanism for zinc in immune function

    USDA-ARS?s Scientific Manuscript database

    Zinc deficiency impairs immune system leading to frequent infections. Although it is known that zinc plays critical roles in maintaining healthy immune function, the underlying molecular targets are largely unknown. In this study, we showed that zinc is important for the CD154-CD40-mediated activati...

  8. Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils.

    PubMed

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei

    2016-11-01

    Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO 2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO 2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO 2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO 2 (700 μmol mol -1 ) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO 2  + heavy metals than under ambient CO 2 . The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO 2 ; and elevated CO 2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO 2 compared to ambient CO 2 . The combination of both metals and elevated CO 2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO 2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. c-Abl-Mediated Tyrosine Phosphorylation of the T-bet DNA-Binding Domain Regulates CD4+ T-Cell Differentiation and Allergic Lung Inflammation ▿

    PubMed Central

    Chen, An; Lee, Sang-Myeong; Gao, Beixue; Shannon, Stephen; Zhu, Zhou; Fang, Deyu

    2011-01-01

    The tyrosine kinase c-Abl is required for full activation of T cells, while its role in T-cell differentiation has not been characterized. We report that c-Abl deficiency skews CD4+ T cells to type 2 helper T cell (Th2) differentiation, and c-Abl−/− mice are more susceptible to allergic lung inflammation. c-Abl interacts with and phosphorylates T-bet, a Th1 lineage transcription factor. c-Abl-mediated phosphorylation enhances the transcriptional activation of T-bet. Interestingly, three tyrosine residues within the T-bet DNA-binding domain are the predominant sites of phosphorylation by c-Abl. Mutation of these tyrosine residues inhibits the promoter DNA-binding activity of T-bet. c-Abl regulates Th cell differentiation in a T-bet-dependent manner because genetic deletion of T-bet in CD4+ T cells abolishes c-Abl-deficiency-mediated enhancement of Th2 differentiation. Reintroduction of T-bet-null CD4+ T cells with wild-type T-bet, but not its tyrosine mutant, rescues gamma interferon (IFN-γ) production and inhibits Th2 cytokine production. Therefore, c-Abl catalyzes tyrosine phosphorylation of the DNA-binding domain of T-bet to regulate CD4+ T cell differentiation. PMID:21690296

  10. Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, L.H.; Calabi, F.; Lefebvre, F.A.

    1987-12-01

    The CD1 human antigens are a family of at least three components, CD1a, CD1b, and CD1c, that are characteristic of the cortical stage of thymocyte maturation. CD1a was originally named HTA1 or T6 and thought to be the human equivalent of mouse Tla. The genes coding for all three have not been identified by transfection into mouse cells. The transfectants express the surface antigens that can then be recognized by the corresponding cluster of monoclonal antibodies used to define the three members of CD1. The full sequence of the genomic DNA is described for all three. The intron-exon structure ofmore » CD1a is deduced by comparison with a near-full-length cDNA clone. Similar structures are proposed for the other two, largely based on sequence homology. An unusually long 5'-untranslated exon (280 bases long) is highly conserved between the three genes, suggesting an important but unknown function. CD1c has a duplicated form of this exon that is thought to be spliced out. The major homology between the three antigens is in the ..beta../sub 2/-microglobulin-binding-domain. The general relatedness to major histocompatibility complex class I and class II molecules is significant but low, with no section of higher homology to mouse Tla.« less

  11. DNA vaccine encoding Haemonchus contortus actin induces partial protection in goats.

    PubMed

    Yan, Ruofeng; Wang, Jingjing; Xu, Lixin; Song, Xiaokai; Li, Xiangrui

    2014-10-01

    Actin is a globular multi-functional protein that forms microfilaments, and participates in many important cellular processes. Previous study found that Haemonchus contortus actin could be recognized by the serum of goats infected with the homology parasite. This indicated that H. contortus actin could be a potential candidate for vaccine. In this study, DNA vaccine encoding H. contortus actin was tested for protection against experimental H. contortus infections in goats. Fifteen goats were allocated into three trial groups. The animals of Actin group were vaccinated with the DNA vaccine on day 0 and 14, and challenged with 5000 infective H. contortus third stage larval (L3) on day 28. An unvaccinated positive control group was challenged with L3 at the same time. An unvaccinated negative control group was not challenged with L3. The results showed that DNA vaccine were transcribed at local injection sites and expressed in vivo post immunizations respectively. For goats in Actin vaccinated group, higher levels of serum IgG, serum IgA and mucosal IgA were produced, the percentages of CD4(+) T lymphocytes, CD8(+) T lymphocytes and B lymphocytes and the concentrations of TGF-β were increased significantly (P<0.05). Following L3 challenge, the mean eggs per gram feces (EPG) and worm burdens of Actin group were reduced by 34.4% and 33.1%, respectively. This study suggest that recombinant H. contortus Actin DNA vaccine induced partial immune response and has protective potential against goat haemonchosis.

  12. Association of SNPs of CD40 Gene with Multiple Sclerosis in Russians

    PubMed Central

    Sokolova, Ekaterina Alekseevna; Malkova, Nadezhda Alekseevna; Korobko, Denis Sergeevich; Rozhdestvenskii, Aleksey Sergeevich; Kakulya, Anastasia Vladimirovna; Khanokh, Elena Vladimirovna; Delov, Roman Andreevich; Platonov, Fedor Alekseevich; Popova, Tatyana Yegorovna; Aref′eva, Elena Gennadievna; Zagorskaya, Natalia Nikolaevna; Alifirova, Valentina Mikhailovna; Titova, Marina Andreevna; Smagina, Inna Vadimovna; El′chaninova, Svetlana Alksandrovna; Popovtseva, Anna Valentinovna; Puzyrev, Valery Pavlovich; Kulakova, Olga Georgievna; Tsareva, Ekaterina Yur'evna; Favorova, Olga Olegovna; Shchur, Sergei Gennadievich; Lashch, Natalia Yurievna; Popova, Natalia Fyodorovna; Popova, Ekaterina Valerievna; Gusev, Evgenii Ivanovich; Boyko, Aleksey Nikolaevich; Aulchenko, Yurii Sergeevich; Filipenko, Maxim Leonidovich

    2013-01-01

    Multiple sclerosis (MS) is a serious, incurable neurological disease. In 2009, the ANZgene studies detected the suggestive association of located upstream of CD40 gene in chromosome 20q13 (p = 1.3×10−7). Identification of the causal variant(s) in the CD40 locus leads to a better understanding of the mechanism underlying the development of autoimmune pathologies. We determined the genotypes of rs6074022, rs1883832, rs1535045, and rs11086996 in patients with MS (n = 1684) and in the control group (n = 879). Two SNPs were significantly associated with MS: rs6074022 (additive model C allele OR = 1.27, 95% CI = [1.12–1.45], p = 3×10−4) and rs1883832 (additive model T allele OR = 1.20, 95% CI = [1.05–1.38], p = 7×10−3). In the meta-analysis of our results and the results of four previous studies, we obtain the association p-value of 2.34×10−12, which confirmed the association between MS and rs6074022 at a genome-wide significant level. Next, we demonstrated that the model including rs6074022 only sufficiently described the association. From our analysis, we can speculate that the association between rs1883832 and MS was induced by LD, whereas rs6074022 was a marker in stronger LD with the functional variant or was the functional variant itself. Our results indicated that the functional variants were located in the upstream region of the gene CD40 and were in higher LD with rs6074022 than LD with rs1883832. PMID:23613777

  13. OX40L blockade protects against inflammation-driven fibrosis

    PubMed Central

    Elhai, Muriel; Avouac, Jérôme; Hoffmann-Vold, Anna Maria; Ruzehaji, Nadira; Amiar, Olivia; Ruiz, Barbara; Brahiti, Hassina; Ponsoye, Matthieu; Fréchet, Maxime; Burgevin, Anne; Pezet, Sonia; Sadoine, Jérémy; Guilbert, Thomas; Nicco, Carole; Akiba, Hisaya; Heissmeyer, Vigo; Subramaniam, Arun; Resnick, Robert; Molberg, Øyvind; Kahan, André; Chiocchia, Gilles; Allanore, Yannick

    2016-01-01

    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40–OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation. PMID:27298374

  14. Biophysical and transfection studies of the diC(14)-amidine/DNA complex.

    PubMed Central

    Cherezov, Vadim; Qiu, Hong; Pector, Veronique; Vandenbranden, Michel; Ruysschaert, Jean-Marie; Caffrey, Martin

    2002-01-01

    Liposomes of the synthetic cationic lipid, N-t-butyl-N'-tetradecylamino-propionamidine (diC(14)-amidine), efficiently ports DNA into mammalian cells in the absence of other (neutral) lipids. The compositional simplicity of this transfection mix makes it attractive from a formulation perspective. We have used low- and wide-angle x-ray diffraction and polarized light microscopy to characterize the thermotropic phase behavior and microstructure of diC(14)-amidine and of the lipid/DNA (circular plasmid, 5.4 kb) complex with a view to understanding the structure of the complex and its role in transfection. Upon heating, the lipid in buffer undergoes a lamellar crystalline (L(c), d(001) = 41.7 A)-to-lamellar liquid crystal (L(c)(alpha), d(001) depends on hydration and T) transition at approximately 40 degrees C. Sonicated lipid vesicles with a reported transition temperature of approximately 23 degrees C complex with DNA. Complex formation is complete at a DNA/lipid mole ratio (rho) of 0.8. Adding DNA to the lipid causes d(001) of the multilayered complex to drop from 52 to 49 A as rho rises from 0.03 to 1.64. The minimal DNA-DNA duplex separation observed is 26 A, consistent with the close packing of B-DNA. Lipid bilayers in the complex undergo a lamellar gel (L(c)(beta))-to-L(c)(alpha) (superscript c refers to complex) transition at approximately 23 degrees C. Transfection efficiency was maximized at rho = 0.4. The structure and transfection data combined suggest that densely packaged DNA in a net positively charged complex is essential for transfection. PMID:12023234

  15. [Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique].

    PubMed

    Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li

    2007-06-01

    The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.

  16. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  17. Antibody-based delivery of tumor necrosis factor (L19-TNFα) and interleukin-2 (L19-IL2) to tumor-associated blood vessels has potent immunological and anticancer activity in the syngeneic J558L BALB/c myeloma model.

    PubMed

    Menssen, Hans D; Harnack, Ulf; Erben, Ulrike; Neri, Dario; Hirsch, Burkhard; Dürkop, Horst

    2018-03-01

    To analyze the impact of TNFα or IL2 on human lymphocytes in vitro and the anti-tumor and immune-modifying effects of L19-IL2 and L19-TNFα on subcutaneously growing J558L myeloma in immunocompetent mice. PBMCs from three healthy volunteers were incubated with IL2, TNFα, or with IL2 plus addition of TNFα (final 20 h). BALB/c J558L mice with subcutaneous tumors were treated with intravenous L19-TNFα plus L19-IL2, or controls. Tumor growth and intra- and peri-tumoral tissues were analyzed for micro-vessel density, necrosis, immune cell composition, and PD1 or PD-L1 expressing cells. Exposure of PBMC in vitro to IL2, TNFα, or to IL2 over 3 and 5 days plus TNFα for the final 20 h resulted in an approximately 50 and 75% reduction of the CD25low effector cell/CD25high Treg cell ratio, respectively, compared to medium control. IL2 or TNFα increased the proportion of CD4- CD25low effector lymphocytes while reducing the proportion of CD4+ CD25low Teff cells. In the J558L myeloma model, tumor eradication was observed in 58, 42, 25, and 0% of mice treated with L19-TNFα plus L19-IL2, L19-TNFα, L19-IL2, and PBS, respectively. L19-TNFα/L19-IL2 combination caused tumor necrosis, capillary density doubling, peri-tumoral T cell and PD1+ T cell reduction (- 50%), and an increase in PD-L1+ myeloma cells. IL2, TNFα, or IL2 plus TNFα (final 20 h) increased the proportion of CD4- CD25low effector lymphocytes possibly indicating immune activation. L19-TNFα/L19-IL2 combination therapy eradicated tumors in J558L myeloma BALB/c mice likely via TNFα-induced tumor necrosis and L19-TNFα/L19-IL2-mediated local cellular immune reactions.

  18. Combined Amendments of Nano-hydroxyapatite Immobilized Cadmium in Contaminated Soil-Potato (Solanum tuberosum L.) System.

    PubMed

    Liu, Chang; Wang, Lei; Yin, Jiang; Qi, Lipan; Feng, Yan

    2018-04-01

    The toxicity of cadmium (Cd) has posed major public health concern in crops grown in the Cd-contaminated soils. The effects of five amendments, nano-hydroxyapatite (n-HA) and it combined with lime, zeolite, bone mill and fly ash on Cd immobilization in soils and uptake in potatoes, were investigated in a contaminated soil by pot experiments. The result showed that the applications of combined amendments significantly decreased the bioavailable Cd concentrations extracted by TCLP, DTPA-TEA and MgCl 2 in the contaminated soils, and changed the soluble and exchangeable and specifically sorbed fractions to oxide-bound and organic-bound fractions. Compared to the control group, the concentrations of Cd in the potato tubers grown in n-HA, n-HA + Fly ash, n-HA + Lime, n-HA + Bone mill and n-HA + Zeolite soil were reduced 17.4%, 20.7%, 15.2%, 32.6% and 39.1%, respectively. Nano-hydroxyapatite combined amendments was more effective in reducing bioavailable Cd concentrations and Cd accumulations in potatoes, especially for n-HA + Z.

  19. An ameliorative protocol for the quantification of purine 5',8-cyclo-2'-deoxynucleosides in oxidized DNA

    NASA Astrophysics Data System (ADS)

    Terzidis, Michael; Chatgilialoglu, Chryssostomos

    2015-07-01

    5',8-Cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) are lesions resulting from hydroxyl radical (HO•) attack on the 5'H of the nucleoside sugar moiety and exist in both 5'R and 5'S diastereomeric forms. Increased levels of cdA and cdG are linked to Nucleotide Excision Repair mechanism deficiency and mutagenesis. Discrepancies in the damage measurements reported over recent years indicated the weakness of the actual protocols, in particular for ensuring the quantitative release of these lesions from the DNA sample and the appropriate method for their analysis. Herein we report the detailed revision leading to a cost-effective and efficient protocol for the DNA damage measurement, consisting of the nuclease benzonase and nuclease P1 enzymatic combination for DNA digestion followed by liquid chromatography isotope dilution tandem mass spectrometry analysis.

  20. Combinations of three or four HIV virostatics applied in short sequences which differ from each other by drug rotation. Preliminary results of the viral loads and CD4 numbers.

    PubMed

    Mathé, G; Morette, C; Hallard, M; Blanquet, D

    1997-01-01

    the detectable level (< 200 RNA copies/mL then 20 copies/mL); b) as the toxicities of virostatics and as HIV1 resistances may happen as soon as 12 weeks of treatment, the combinations have been, in our study, applied in shorter (3 week) sequences, differing from each other due to drug rotation; c) neither toxicity nor resistance occurred; d) curiously, the CD4 numbers, even when they increased rapidly, has never attained their normal count, and their curve may be a Gombertzian one. This CD4 restoration limitation can be due to persisting virus, as indicated in some patients by small peaks which may appear on some VL plateaus, though they disappear without treatment change.

  1. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    PubMed

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  2. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    PubMed Central

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  3. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway.

    PubMed

    Llanos, Susana; Serrano, Manuel

    2010-10-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.

  4. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway

    PubMed Central

    Llanos, Susana; Serrano, Manuel

    2013-01-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage. PMID:20935493

  5. Chromatin Collapse during Caspase-dependent Apoptotic Cell Death Requires DNA Fragmentation Factor, 40-kDa Subunit-/Caspase-activated Deoxyribonuclease-mediated 3′-OH Single-strand DNA Breaks*

    PubMed Central

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X.; Yuste, Victor J.

    2013-01-01

    Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks. PMID:23430749

  6. Decrease of peritoneal inflammatory CD4(+), CD8(+), CD19(+) lymphocytes and apoptosis of eosinophils in a murine Taenia crassiceps infection.

    PubMed

    Zepeda, Nadia; Solano, Sandra; Copitin, Natalia; Fernández, Ana María; Hernández, Lilián; Tato, Patricia; Molinari, José L

    2010-10-01

    After an intraperitoneal infection of mice with Taenia crassiceps metacestodes, peritoneal inflammatory cells labeled with fluoresceinated MoAb anti-mouse were analyzed by flow cytometry. Apoptosis was studied by annexin A/PI, TUNEL assays, DNA laddering, caspase-3 activity, and electron microscopy. An important continuous decrease of CD4+, CD8+ and CD19+ lymphocytes, and an increase of eosinophils and macrophages throughout the observation time were found. Apoptosis of eosinophils was quantified during the observation period with a peak at 6 days post-infection (67.27%). In an additional experiment at 12 days post-infection using TUNEL staining, a high level of apoptosis of eosinophil (92.3%) and a significant decrease of CD4+, CD8+, and CD19+ lymphocytes were confirmed. Caspase-3 activity in peritoneal fluid, peritoneal cells' DNA fragmentation, and apoptosis of eosinophils and monocytes were found. The dramatic decrease of peritoneal inflammatory T and B cells and the high level of apoptosis of inflammatory eosinophils induced in mice by infection with T. crassiceps cysticerci may be important factors of the immunosuppression observed in cysticercosis.

  7. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity.

    PubMed

    Straub, Melanie; Drecoll, Enken; Pfarr, Nicole; Weichert, Wilko; Langer, Rupert; Hapfelmeier, Alexander; Götz, Carolin; Wolff, Klaus-Dietrich; Kolk, Andreas; Specht, Katja

    2016-03-15

    Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis.

  8. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity

    PubMed Central

    Straub, Melanie; Drecoll, Enken; Pfarr, Nicole; Weichert, Wilko; Langer, Rupert; Hapfelmeier, Alexander; Götz, Carolin; Wolff, Klaus-Dietrich; Kolk, Andreas; Specht, Katja

    2016-01-01

    Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis. PMID:26918453

  9. Simian virus 40 (SV40)-like DNA sequences not detectable in finnish mesothelioma patients not exposed to SV40-contaminated polio vaccines.

    PubMed

    Hirvonen, A; Mattson, K; Karjalainen, A; Ollikainen, T; Tammilehto, L; Hovi, T; Vainio, H; Pass, H I; Di Resta, I; Carbone, M; Linnainmaa, K

    1999-10-01

    Occupational asbestos exposure can be demonstrated in 80% of mesothelioma cases. A possible role of simian virus 40 (SV40) in the etiology of mesothelioma was raised because several studies reported the presence and expression of SV40-like DNA sequences in human mesotheliomas. It is also known that expression of SV40 large T antigen inhibits cellular Rb and p53. This suggests that SV40 might render infected cells more susceptible to asbestos carcinogenicity. The SV40-like sequences are suggested to have arisen from contaminated polio vaccines. Millions of people in the United States and most European countries were inoculated with SV40-contaminated polio vaccine in 1955-1963. However, in Finland, where polio vaccination started in 1957, no SV40-contaminated vaccine was used. We used a polymerase chain reaction-based method to test for the presence of SV40-like sequences in DNA extracted from the frozen tumor tissues of 49 Finnish mesothelioma patients, most of whom had been occupationally exposed to asbestos. All of the Finnish tumor tissues tested negative for SV40-like sequences. The results suggest that the SV40-like sequences detected in mesothelioma tissue in some previous studies may indeed originate from SV40-contaminated polio vaccines. It is a matter of speculation whether the absence of SV40 infection has contributed to the relatively low incidence of mesothelioma in Finland (1/10(5) in 1990-1995). Copyright 1999 Wiley-Liss, Inc.

  10. Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film.

    PubMed

    Sun, Dong; Xie, Xiafeng; Cai, Yuepiao; Zhang, Huajie; Wu, Kangbing

    2007-01-02

    In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd(2+). Based on this, an electrochemical method was developed for the determination of trace levels of Cd(2+) by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd(2+) was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at -1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at -0.84 V, which can be used as analytical signal for Cd(2+). The linear range is found to be from 4.0 x 10(-8) to 4.0 x 10(-6) mol L(-1), and the lowest detectable concentration is estimated to be 4.0 x 10(-9) mol L(-1). Finally, this method was successfully employed to detect Cd(2+) in water samples.

  11. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes

    PubMed Central

    Yu, Hong-Ren; Tsai, Ching-Chang; Chang, Ling-Sai; Huang, Hsin-Chun; Cheng, Hsin-Hsin; Wang, Jiu-Yao; Sheen, Jiunn-Ming; Kuo, Ho-Chang; Hsieh, Kai-Sheng; Huang, Ying-Hsien; Yang, Kuender D.; Hsu, Te-Yao

    2017-01-01

    A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL)-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs) function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs) produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs) by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency. PMID:28487700

  12. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  13. Anti-CD40 antibody-mediated costimulation blockade promotes long-term survival of deep-lamellar porcine corneal grafts in non-human primates.

    PubMed

    Kim, Jaeyoung; Kim, Dong Hyun; Choi, Hyuk Jin; Lee, Hyun Ju; Kang, Hee Jung; Park, Chung-Gyu; Hwang, Eung-Soo; Kim, Mee Kum; Wee, Won Ryang

    2017-05-01

    Corneal xenotransplantation is an effective solution for the shortage of human donor corneas, and the porcine cornea may be a suitable candidate for the donor cornea because of its optical similarity with humans. However, it is necessary to administer additional immunosuppressants to overcome antigenic differences. We aimed to investigate the feasibility of porcine corneas with anti-CD40 antibody-mediated costimulation blockade in a clinically applicable pig-to-non-human primate corneal xenotransplantation model. Five Chinese rhesus macaques underwent deep-lamellar corneal transplantation using clinically acceptable sized (7.5 mm diameter) porcine corneal grafts. The anti-CD40 antibody was intravenously administered on a programmed schedule. Graft survival, central corneal thickness, and intraocular pressure were evaluated. Changes in effector and memory T and B cell subsets and anti-αGal and donor-specific antibodies were investigated in the blood, and the changes in complement levels in the aqueous humor and blood were evaluated. Memory cell profiles in the anti-CD40 antibody-treated group were compared with those from the anti-CD154 antibody-treated group or rejected controls presented in our previous report. The changes in anti-αGal, non-αGal, and donor-specific antibodies after 6 months were compared with baseline values. Anti-CD40 antibody-mediated costimulation blockade resulted in the successful survival of xenocorneal grafts (>389, >382, >236, >201, and >61 days), with 80% reaching 6 months of survival. Injection of anti-CD40 antibody considerably reduced the infiltration of inflammatory cells into the grafts and significantly blocked the complement response in the aqueous humor (P=.0159, Mann-Whitney U test). Systemic expansion of central or effector memory T cells was abrogated in the anti-CD40 antibody-treated primates compared with those in the rejected controls (P<.05, Mann-Whitney U test) or those in the anti-CD154 antibody-treated primates (P

  14. Loop L1 governs the DNA-binding specificity and order for RecA-catalyzed reactions in homologous recombination and DNA repair

    PubMed Central

    Shinohara, Takeshi; Ikawa, Shukuko; Iwasaki, Wakana; Hiraki, Toshiki; Hikima, Takaaki; Mikawa, Tsutomu; Arai, Naoto; Kamiya, Nobuo; Shibata, Takehiko

    2015-01-01

    In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions. PMID:25561575

  15. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.

    PubMed

    Duguid, J G; Bloomfield, V A; Benevides, J M; Thomas, G J

    1995-12-01

    Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of DNA (Tm > 75.5 degrees C), whereas the transition metals Co2+, Ni2+, and Cd2+ lower Tm. Calorimetric (delta Hcal) and van't Hoff (delta HVH) enthalpies of melting range from 6.2-8.7 kcal/mol bp and 75.6-188.6 kcal/mol cooperative unit, respectively, and entropies from 17.5 to 24.7 cal/K mol bp. The average number of base pairs in a cooperative melting unit () varied from 11.3 to 28.1. No dichotomy was observed between alkaline earth and transition DNA-metal complexes for any of the thermodynamic parameters other than their effects on Tm. These results complement Raman difference spectra, which reveal decreases in backbone order, base unstacking, distortion of glycosyl torsion angles, and rupture of hydrogen bonds, which occur after thermal denaturation. Raman difference spectroscopy shows that transition metals interact with the N7 atom of guanine in duplex DNA. A broader range of interaction sites with single-stranded DNA includes ionic phosphates, the N1 and N7 atoms of purines, and the N3 atom of pyrimidines. For alkaline earth metals, very little interaction was observed with duplex DNA, whereas spectra of single-stranded complexes are very similar to those of melted DNA without metal. However, difference spectra reveal some metal-specific perturbations at 1092 cm-1 (nPO2-), 1258 cm-1 (dC, dA), and 1668 cm-1 (nC==O, dNH2 dT, dG, dC). Increased spectral intensity could also be observed near 1335 cm-1 (dA, dG) for CaDNA. Optical densitometry, employed to detect DNA

  16. Studies on interaction of norbixin with DNA: Multispectroscopic and in silico analysis

    NASA Astrophysics Data System (ADS)

    Anantharaman, Amrita; Priya, Rajendra Rao; Hemachandran, Hridya; Sivaramakrishna, Akella; Babu, Subramanian; Siva, Ramamoorthy

    2015-06-01

    The interaction of food colorant norbixin with calf thymus DNA (CTDNA) was investigated through UV-Visible spectroscopy, Fourier Transform Infrared (FTIR), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR), DNA melting studies, electrophoretic analysis, histological staining technique and molecular docking studies. The results indicated that norbixin interacted with CTDNA by partial intercalation mode. The binding constant (K) of norbixin with CTDNA was calculated to be 5.08 × 105 Mol-1 L. FTIR and CD studies were coupled with 1H NMR spectra revealed that norbixin intercalates partially and binds to the groove's, phosphate group, deoxyribose sugar of DNA and also induces conformational transition of B-form to A-form DNA. Agarose gel electrophoretic and histological staining technique results further prove that, norbixin specifically binds to the DNA in the cell. Moreover, molecular docking studies on the specific binding of norbixin with CTDNA have exhibited lowest conformation energy score of -3.2. Therefore, this food colorant has the ability to interact with DNA and it could emerge as a promising class of natural DNA targeted therapeutic.

  17. Identification of species and materia medica within Angelica L. (Umbelliferae) based on phylogeny inferred from DNA barcodes

    PubMed Central

    YUAN, QING-JUN; ZHANG, BIN; JIANG, DAN; ZHANG, WEN-JING; LIN, TSAI-YUN; WANG, NIAN-HE; CHIOU, SHU-JIAU; HUANG, LU-QI

    2015-01-01

    DNA barcodes have been increasingly used in authentication of medicinal plants, while their wide application in materia medica is limited in their accuracy due to incomplete sampling of species and absence of identification for materia medica. In this study, 95 leaf accessions of 23 species (including one variety) and materia medica of three Pharmacopoeia-recorded species of Angelica in China were collected to evaluate the effectiveness of four DNA barcodes (rbcL, matK, trnH-psbA and ITS). Our results showed that ITS provided the best discriminatory power by resolving 17 species as monophyletic lineages without shared alleles and exhibited the largest barcoding gap among the four single barcodes. The phylogenetic analysis of ITS showed that Levisticum officinale and Angelica sinensis were sister taxa, which indicates that L. officinale should be considered as a species of Angelica. The combination of ITS + rbcL + matK + trnH-psbA performed slight better discriminatory power than ITS, recovering 23 species without shared alleles and 19 species as monophyletic clades in ML tree. Authentication of materia medica using ITS revealed that the decoction pieces of A. sinensis and A. biserrata were partially adulterated with those of L. officinale, and the temperature around 80 °C processing A. dahurica decoction pieces obviously reduced the efficiency of PCR and sequencing. The examination of two cultivated varieties of A. dahurica from different localities indicated that the four DNA barcodes are inefficient for discriminating geographical authenticity of conspecific materia medica. This study provides an empirical paradigm in identification of medicinal plants and their materia medica using DNA barcodes. PMID:24961287

  18. Identification of species and materia medica within Angelica L. (Umbelliferae) based on phylogeny inferred from DNA barcodes.

    PubMed

    Yuan, Qing-Jun; Zhang, Bin; Jiang, Dan; Zhang, Wen-Jing; Lin, Tsai-Yun; Wang, Nian-He; Chiou, Shu-Jiau; Huang, Lu-Qi

    2015-03-01

    DNA barcodes have been increasingly used in authentication of medicinal plants, while their wide application in materia medica is limited in their accuracy due to incomplete sampling of species and absence of identification for materia medica. In this study, 95 leaf accessions of 23 species (including one variety) and materia medica of three Pharmacopoeia-recorded species of Angelica in China were collected to evaluate the effectiveness of four DNA barcodes (rbcL, matK, trnH-psbA and ITS). Our results showed that ITS provided the best discriminatory power by resolving 17 species as monophyletic lineages without shared alleles and exhibited the largest barcoding gap among the four single barcodes. The phylogenetic analysis of ITS showed that Levisticum officinale and Angelica sinensis were sister taxa, which indicates that L. officinale should be considered as a species of Angelica. The combination of ITS + rbcL + matK + trnH-psbA performed slight better discriminatory power than ITS, recovering 23 species without shared alleles and 19 species as monophyletic clades in ML tree. Authentication of materia medica using ITS revealed that the decoction pieces of A. sinensis and A. biserrata were partially adulterated with those of L. officinale, and the temperature around 80 °C processing A. dahurica decoction pieces obviously reduced the efficiency of PCR and sequencing. The examination of two cultivated varieties of A. dahurica from different localities indicated that the four DNA barcodes are inefficient for discriminating geographical authenticity of conspecific materia medica. This study provides an empirical paradigm in identification of medicinal plants and their materia medica using DNA barcodes. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  19. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    PubMed

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-09-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL-1 to 10 ng mL-1. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  1. Synthesis, crystal structure and interaction of L-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA.

    PubMed

    Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong

    2013-04-01

    A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val=Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1V1⋯V1AO1A torsion angle 115.22 (28)° and the V1⋯V1A distance 3.455Å. The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05×10(6)M(-1) and the binding site number n was 1.18. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis

    PubMed Central

    LaRocca, T J; Stivison, E A; Mal-Sarkar, T; Hooven, T A; Hod, E A; Spitalnik, S L; Ratner, A J

    2015-01-01

    Mature erythrocytes (red blood cells (RBCs)) undergo the programmed cell death (PCD) pathway of necroptosis in response to bacterial pore-forming toxins (PFTs) that target human CD59 (hCD59) but not hCD59-independent PFTs. Here, we investigate the biochemical mechanism of RBC necroptosis with a focus on the mechanism of induction and the minimal requirements for such RBC death. Binding or crosslinking of the hCD59 receptor led to Syk-dependent induction of vesiculated morphology (echinocytes) that was associated with phosphorylation of Band 3 and was required for Fas ligand (FasL) release. FasL-dependent phosphorylation of receptor-interacting protein kinase 1 (RIP1) in combination with plasma membrane pore formation was required for execution of RBC necroptosis. RIP1 phosphorylation led to the phosphorylation of RIP3, which was also critical for RBC necroptosis. Notably, RBC necroptosis was mediated by FasL and not by other candidate inducers, including tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL). Other types of RBC damage, such as eryptotic damage, failed to induce necroptosis when combined with hCD59 crosslinking. This work sheds light on the requirements for this recently discovered PCD in RBCs and provides a clear picture of the biochemical mechanism of induction of RBC necroptosis. PMID:26018734

  3. CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis.

    PubMed

    LaRocca, T J; Stivison, E A; Mal-Sarkar, T; Hooven, T A; Hod, E A; Spitalnik, S L; Ratner, A J

    2015-05-28

    Mature erythrocytes (red blood cells (RBCs)) undergo the programmed cell death (PCD) pathway of necroptosis in response to bacterial pore-forming toxins (PFTs) that target human CD59 (hCD59) but not hCD59-independent PFTs. Here, we investigate the biochemical mechanism of RBC necroptosis with a focus on the mechanism of induction and the minimal requirements for such RBC death. Binding or crosslinking of the hCD59 receptor led to Syk-dependent induction of vesiculated morphology (echinocytes) that was associated with phosphorylation of Band 3 and was required for Fas ligand (FasL) release. FasL-dependent phosphorylation of receptor-interacting protein kinase 1 (RIP1) in combination with plasma membrane pore formation was required for execution of RBC necroptosis. RIP1 phosphorylation led to the phosphorylation of RIP3, which was also critical for RBC necroptosis. Notably, RBC necroptosis was mediated by FasL and not by other candidate inducers, including tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL). Other types of RBC damage, such as eryptotic damage, failed to induce necroptosis when combined with hCD59 crosslinking. This work sheds light on the requirements for this recently discovered PCD in RBCs and provides a clear picture of the biochemical mechanism of induction of RBC necroptosis.

  4. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiupei, E-mail: xiupeiyang@163.com; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000; Lin, Jia

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination.more » The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.« less

  5. Down-regulation of the metastasis suppressor protein KAI1/CD82 correlates with occurrence of metastasis, prognosis and presence of HPV DNA in human penile squamous cell carcinoma.

    PubMed

    Protzel, C; Kakies, C; Kleist, B; Poetsch, M; Giebel, J

    2008-04-01

    In penile squamous cell carcinoma (PSCC), the outcome largely depends on early detection and resection of inguinal lymph node metastases. We investigated the role of metastasis suppressor protein kang ai 1 (KAI1)/cluster of differentiation 82 (CD82), which is known to be of prognostic significance for a wide variety of cancers. Moreover, we analysed the tumours for human papillomavirus (HPV) DNA and loss of heterozygosity at the 11p11.2 locus. Tissue samples of 30 primary PSCCs were investigated immunohistochemically using an anti-KAI1/CD82 polyclonal antibody. The expression was assessed according to the degree of KAI1/CD82-positive tumour cells as positive, decreased or negative. The presence of HPV6/11, HPV16 and HPV18 DNA was analysed by polymerase chain reaction. All patients with decreased or negative expression of KAI1/CD82 in primary lesions had lymph node metastases (p = 0.0002). Patients with positive KAI1/CD82 expression showed a significant better prognosis for survival compared to the other groups (p = 0.0042). Presence of HPV DNA was associated with decreased or negative KAI1/CD82 expression. Lacking or decreased expression of metastasis suppressor gene KAI1/CD82 appears to be a prognostic parameter for the occurrence of lymph node metastases in PSCC. Our study suggests an association of decreased KAI1/CD82 expression with tumour progression, development of metastases and disease-specific death.

  6. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model

    PubMed Central

    Magnone, Mirko; Zamporlini, Federica; Emionite, Laura; Sturla, Laura; Bianchi, Giovanna; Vigliarolo, Tiziana; Nahimana, Aimable; Nencioni, Alessio; Raffaelli, Nadia; Bruzzone, Santina

    2016-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5′-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors. PMID:26658104

  7. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model.

    PubMed

    Sociali, Giovanna; Raffaghello, Lizzia; Magnone, Mirko; Zamporlini, Federica; Emionite, Laura; Sturla, Laura; Bianchi, Giovanna; Vigliarolo, Tiziana; Nahimana, Aimable; Nencioni, Alessio; Raffaelli, Nadia; Bruzzone, Santina

    2016-01-19

    Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5'-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors.

  8. Selection of indigenous Lactobacillus paracasei CD4 and Lactobacillus gastricus BTM 7 as probiotic: assessment of traits combined with principal component analysis.

    PubMed

    Sharma, K; Mahajan, R; Attri, S; Goel, G

    2017-05-01

    The population of the Himalayan region is known to consume a variety of fermented and nonfermented foods and as a result they have been benefited in terms of overall health, because of the associated beneficial microbes. Therefore, the focus of the present study was to identify new strains of lactic acid bacteria (LAB) from dairy products such as milk (cow, goat, buffalo) and fermented products (curd and buttermilk) with properties suitable for use as probiotic cultures. A total of 75 isolates tentatively identified as LAB from 100 samples were initially screened for production of β-haemolysin as indicators of virulence which resulted in 38 isolates with no haemolytic activity. Further subtractive screening based on resistance to gastrointestinal tract barriers (acid and bile salts) resulted in the selection of the eight most promising strains. All these eight strains were resistant to pH 2·0, 1% bile concentration and pancreatin (1 mg l -1 ). Among the eight isolates, three isolates were identified as Brevibacillus thermoruber and the others as Brevibacillus aydinogluensis, Lactobacillus gastricus, L. paracasei, Enterococcus sp. Weisella confusa based on 16S rDNA region. Among these isolates, L. paracasei CD4 and L. gastricus BTM7 indicated maximum tolerance to simulated gastric environment. Both the isolates possessed highest score for cell surface hydrophobicity, cell autoaggregation, adherence to Caco-2 cell lines and antimicrobial activity against clinical isolates of Escherichia coli and Shigella sp. comparable to standard strain of Lactobacillus rhamnosus GG. Further principal component analysis and clustering analysis based on Euclidean Similarity index of probiotic characters revealed that L. paracasei strain CD4 and L. gastricus strain BTM7 were placed closest to reference strain L. rhamnosus GG and were therefore identified as most promising probiotic candidate cultures. These characteristics suggest that these strains could be excellent candidates

  9. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    PubMed Central

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  10. Combined therapy with cyclophosphamide and DNA preparation inhibits the tumor growth in mice

    PubMed Central

    Alyamkina, Ekaterina A; Dolgova, Evgenia V; Likhacheva, Anastasia S; Rogachev, Vladimir A; Sebeleva, Tamara E; Nikolin, Valeriy P; Popova, Nelly A; Orishchenko, Konstantin E; Strunkin, Dmitriy N; Chernykh, Elena R; Zagrebelniy, Stanislav N; Bogachev, Sergei S; Shurdov, Mikhail A

    2009-01-01

    Background When cyclophosphamide and preparations of fragmented exogenous genomic double stranded DNA were administered in sequence, the regressive effect on the tumor was synergic: this combined treatment had a more pronounced effect than cyclophosphamide alone. Our further studies demonstrated that exogenous DNA stimulated the maturation and specific activities of dendritic cells. This suggests that cyclophosphamide, combined with DNA, leads to an immune response to the tumors that were grafted into the subjects post treatment. Methods Three-month old CBA/Lac mice were used in the experiments. The mice were injected with cyclosphamide (200 mkg per 1 kg body weight) and genomic DNA (of human, mouse or salmon sperm origin). The DNA was administered intraperitoneally or subcutaneously. After 23 to 60 days, one million tumor cells were intramuscularly grafted into the mice. In the final experiment, the mice were pre-immunized by subcutaneous injections of 20 million repeatedly thawed and frozen tumor cells. Changes in tumor growth were determined by multiplying the three perpendicular diameters (measured by caliper). Students' t-tests were used to determine the difference between tumor growth and average survival rate between the mouse groups and the controls. Results An analysis of varying treatments with cyclophosphamide and exogenous DNA, followed by tumor grafting, provided evidence that this combined treatment had an immunizing effect. This inhibitory effect in mice was analyzed in an experiment with the classical immunization of a tumor homogenate. The strongest inhibitory action on a transplanted graft was created through the following steps: cyclophosphamide at 200 mg/kg of body weight administered as a pretreatment; 6 mg fragmented exogenous DNA administered over the course of 3 days; tumor homogenate grafted 10 days following the final DNA injection. Conclusion Fragmented exogenous DNA injected with cyclophosphamide inhibits the growth of tumors that are

  11. Interactions between Ibrutinib and Anti-CD20 Antibodies: Competing Effects on the Outcome of Combination Therapy.

    PubMed

    Skarzynski, Martin; Niemann, Carsten U; Lee, Yuh Shan; Martyr, Sabrina; Maric, Irina; Salem, Dalia; Stetler-Stevenson, Maryalice; Marti, Gerald E; Calvo, Katherine R; Yuan, Constance; Valdez, Janet; Soto, Susan; Farooqui, Mohammed Z H; Herman, Sarah E M; Wiestner, Adrian

    2016-01-01

    Clinical trials of ibrutinib combined with anti-CD20 monoclonal antibodies (mAb) for chronic lymphocytic leukemia (CLL) report encouraging results. Paradoxically, in preclinical studies, in vitro ibrutinib was reported to decrease CD20 expression and inhibit cellular effector mechanisms. We therefore set out to investigate effects of in vivo ibrutinib treatment that could explain this paradox. Patients received single-agent ibrutinib (420 mg daily) on an investigator-initiated phase II trial. Serial blood samples were collected pretreatment and during treatment for ex vivo functional assays to examine the effects on CLL cell susceptibility to anti-CD20 mAbs. We demonstrate that CD20 expression on ibrutinib was rapidly and persistently downregulated (median reduction 74%, day 28, P < 0.001) compared with baseline. Concomitantly, CD20 mRNA was decreased concurrent with reduced NF-κB signaling. An NF-κB binding site in the promoter of MS4A1 (encoding CD20) and downregulation of CD20 by NF-κB inhibitors support a direct transcriptional effect. Ex vivo, tumor cells from patients on ibrutinib were less susceptible to anti-CD20 mAb-mediated complement-dependent cytotoxicity than pretreatment cells (median reduction 75%, P < 0.001); however, opsonization by the complement protein C3d, which targets cells for phagocytosis, was relatively maintained. Expression of decay-accelerating factor (CD55) decreased on ibrutinib, providing a likely mechanism for the preserved C3d opsonization. In addition, ibrutinib significantly inhibited trogocytosis, a major contributor to antigen loss and tumor escape during mAb therapy. Our data indicate that ibrutinib promotes both positive and negative interactions with anti-CD20 mAbs, suggesting that successfully harnessing maximal antitumor effects of such combinations requires further investigation. ©2015 American Association for Cancer Research.

  12. Interactions between ibrutinib and anti-CD20 antibodies; competing effects on the outcome of combination therapy

    PubMed Central

    Skarzynski, Martin; Niemann, Carsten U; Lee, Yuh Shan; Martyr, Sabrina; Maric, Irina; Salem, Dalia; Stetler-Stevenson, Maryalice; Marti, Gerald E; Calvo, Katherine R; Yuan, Constance; Valdez, Janet; Soto, Susan; Farooqui, Mohammed Z.H.; Herman, Sarah E.M.; Wiestner, Adrian

    2015-01-01

    Purpose Clinical trials of ibrutinib combined with anti-CD20 monoclonal antibodies (mAbs) for chronic lymphocytic leukemia (CLL) report encouraging results. Paradoxically, in pre-clinical studies in vitro ibrutinib was reported to decrease CD20 expression and inhibits cellular effector mechanisms. We therefore set out to investigate effects of in vivo ibrutinib treatment that could explain this paradox. Experimental Design Patients received single agent ibrutinib (420mg daily) on an investigator-initiated phase 2 trial. Serial blood samples were collected pre-treatment and during treatment for ex vivo functional assays to examine the effects on CLL cell susceptibility to anti-CD20 mAbs. Results We demonstrate that CD20 expression on ibrutinib was rapidly and persistently down-regulated (median reduction 74%, day 28, P<0.001) compared to baseline. Concomitantly, CD20 mRNA was decreased concurrent with reduced NF-κB signaling. An NF-κB binding site in the promoter of MS4A1 (encoding CD20) and down-regulation of CD20 by NF-κB inhibitors support a direct transcriptional effect. Ex vivo, tumor cells from patients on ibrutinib were less susceptible to anti-CD20 mAb-mediated complement-dependent cytotoxicity than pre-treatment cells (median reduction 75%, P<0.001); however, opsonization by the complement protein C3d, which targets cells for phagocytosis, was relatively maintained. Expression of decay accelerating factor (CD55) decreased on ibrutinib, providing a likely mechanism for the preserved C3d opsonization. Additionally, ibrutinib significantly inhibited trogocytosis, a major contributor to antigen loss and tumor escape during mAb therapy. Conclusions Our data indicate that ibrutinib promotes both positive and negative interactions with anti-CD20 mAbs, suggesting that successfully harnessing maximal anti-tumor effects of such combinations requires further investigation. PMID:26283682

  13. Trophic transfer of Cd from duckweed (Lemna minor L.) to tilapia (Oreochromis mossambicus).

    PubMed

    Xue, Yan; Peijnenburg, Willie J G M; Huang, Jin; Wang, Dengjun; Jin, Yan

    2018-05-01

    The transfer of the toxic heavy metal Cd from duckweed (Lemna minor L.) to the freshwater fish tilapia (Oreochromis mossambicus) was investigated. Concentrations of Cd in different chemical forms in duckweed and in different tissues (gut, edible muscle, and remnants or residual) of tilapia (i.e., ethanol-extractable fraction [F E ], HCl-extractable fraction [F HCl ], and residual fraction [F R ]) were quantified, and the bioaccumulation factors (BAFs) of Cd in the tilapia body were calculated. Simple linear regression analysis was used to unravel the correlation and accumulation mechanisms of Cd along the short food chain. Our results showed that with increasing exposure concentrations of Cd (0-50 μM for duckweed and 0-10 μM for tilapia), the total, F E (F e,d )-, F HCl (F h,d )-, and F R (F r,d )-Cd concentrations in duckweed and different tissues of tilapia increased progressively. The Cd sources (aqueous or dietary) influenced the BAF for Cd accumulation in the whole body of tilapia. Furthermore, regression analyses yielded significant positive correlations (R 2 > 0.96) between the Cd concentration in duckweed and in both the 3 parts and the whole body of tilapia. This finding suggests that Cd transfer from duckweed to tilapia can be quantitatively evaluated when tilapia is exposed only to duckweed. In addition, the linear regression between Cd accumulation in whole tilapia and F e,d -, F h,d -, and F r,d -Cd showed that particularly the correlation with F e,d -Cd is statistically significant (p < 0.001). The accumulated Cd concentrations and chemical forms in tilapia tissues also positively correlated with Cd sources (solution or duckweed). Compared with waterborne exposure only, duckweed especially increased the accumulation of Cd in the gut of tilapia. Taken together, our findings support a strong dependence of Cd accumulation and transfer from duckweed to tilapia on its chemical forms, especially on F e,d -Cd. This knowledge may expedite more

  14. Genomic structure and chromosomal mapping of the human CD22 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.L.; Kozlow, E.; Kehrl, J.H.

    1993-06-01

    The human CD22 gene is expressed specifically in B lymphocytes and likely has an important function in cell-cell interactions. A nearly full length human CD22 cDNA clone was used to isolate genomic clones that span the CD22 gene. The CD22 gene is spread over 22 kb of DNA and is composed of 15 exons. The first exon contains the major transcriptional start sites. The translation initiation codon is located in exon 3, which also encodes a portion of the signal peptide. Exons 4 to 10 encode the seven Ig domains of CD22, exon 11 encodes the transmembrane domain, exons 12more » to 15 encode the intracytoplasmic domain of CD22, and exon 15 also contains the 3' untranslated region. A minor form of CD22 mRNA likely results from splicing of exon 5 to exon 8, skipping exons 6 and 7. A 4.6-kb Xbal fragment of the CD22 gene was used to map the chromosomal location of CD22 by fluorescence in situ hybridization. The hybridization locus was identified by combining fluorescent images of the probe with the chromosomal banding pattern generated by an Alu probe. The results demonstrate the CD22 is located within the band region q13.1 of chromosome 19. Two closely clustered major transcription start sites and several minor start sites were mapped by primer extension. Similarly to many other lymphoid-specific genes, the CD22 promoter lacks an obvious TATA box. Approximately 4 kb of DNA 5' of the transcription start sites were sequenced and found to contain multiple Alu elements. Potential binding sites for the transcriptional factors NF-kB, AP-1, and Oct-2 are located within 300 bp 5' of the major transcription start sites. A 400-bp fragment (bp -339 through +71) of the CD22 promoter region was subcloned into a pGEM-chloramphenicol acetyltransferase vector and after transfection into B and T cells was found to be active in both B and T cells. 45 refs., 7 figs., 2 tabs.« less

  15. Proteomic Profiling of the Interactions of Cd/Zn in the Roots of Dwarf Polish Wheat (Triticum polonicum L.)

    PubMed Central

    Wang, Yi; Wang, Xiaolu; Wang, Chao; Wang, Ruijiao; Peng, Fan; Xiao, Xue; Zeng, Jian; Fan, Xing; Kang, Houyang; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Cd and Zn have been shown to interact antagonistically or synergistically in various plants. In the present study of dwarf polish wheat (DPW)roots, Cd uptake was inhibited by Zn, and Zn uptake was inhibited by Cd, suggesting that Cd and Zn interact antagonistically in this plant. A study of proteomic changes showed that Cd, Zn, and Cd+Zn stresses altered the expression of 206, 303, and 190 proteins respectively. Among these, 53 proteins were altered significantly in response to all these stresses (Cd, Zn, and Cd+Zn), whereas 58, 131, and 47 proteins were altered in response to individual stresses (Cd, Zn, and Cd+Zn, respectively). Sixty-one differentially expressed proteins (DEPs) were induced in response to both Cd and Zn stresses; 33 proteins were induced in response to both Cd and Cd+Zn stresses; and 57 proteins were induced in response to both Zn and Cd+Zn stresses. These results indicate that Cd and Zn induce differential molecular responses, which result in differing interactions of Cd/Zn. A number of proteins that mainly participate in oxidation-reduction and GSH, SAM, and sucrose metabolisms were induced in response to Cd stress, but not Cd+Zn stress. This result indicates that these proteins participate in Zn inhibition of Cd uptake and ultimately cause Zn detoxification of Cd. Meanwhile, a number of proteins that mainly participate in sucrose and organic acid metabolisms and oxidation-reduction were induced in response to Zn stress but not Cd+Zn stress. This result indicates that these proteins participate in Cd inhibition of Zn uptake and ultimately cause the Cd detoxification of Zn. Other proteins induced in response to Cd, Zn, or Cd+Zn stress, participate in ribosome biogenesis, DNA metabolism, and protein folding/modification and may also participate in the differential defense mechanisms. PMID:27683584

  16. A study of DNA protective effect of orange juice supplementation.

    PubMed

    Szeto, Yim Tong; To, Tai Lun; Pak, Sok Cheon; Kalle, Wouter

    2013-05-01

    The potential acute genoprotective effect of orange juice supplementation was investigated. Six healthy subjects (aged 33 to 60 years; 3 women and 3 men) were asked to drink 400 mL of commercial orange juice, which contained 100 mg vitamin C and 40.8 g sugar. Venous blood (2 mL) was taken before and 2 h after ingestion (test trial). A week later, the subjects were asked to repeat the trial by drinking 400 mL water with 100 mg vitamin C and 40.8 g glucose (control trial). Lymphocytes isolated from blood samples underwent comet assay on the day of collection. Pre- and postingestion DNA damage scores were measured in both the test and control trials. Results showed that there was a significant decrease in DNA damage induced by hydrogen peroxide after 2 h of supplementation with orange juice, and no change in baseline DNA damage. There was no significant decrease in the DNA damage in lymphocytes in the control trial.

  17. [Combined l-thyroxine and l-triiodothyronine replacement therapy in congenital hypothyroidism].

    PubMed

    Péter, Ferenc; Muzsnai, Agota

    2013-05-12

    L-thyroxine replacement therapy is the treatment of choice for hypothyroidism. Recently, several studies suggested to complete it with l-triiodothyronine in acquired hypothyroidism. To study the role of combined l-thyroxine and l-triiodothyronine therapy in special cases with congenital hypothyroidism. Data of 16 patients (age: 11.9 ± 6.3 years; mean ± SD) are presented who had high serum free thyroxine values or even above the upper limit of reference range (21.16 ± 2.5 pmol/l) together with nonsuppressed TSH levels (15.7 ± 5.7 mIU/l), and therefore received l-triiodothyronine in completion (0.18 ± 0.09 μg/kg) once a day. The combined replacement therapy resulted in a rapid improvement of the hormone parameters (TSH: 4.2 ± 3.15 mIU/l; free thyroxine: 16.55 ± 2.4 and free triiodothyronine: 7.4 ± 1.8 pmol/l). The efficiency of this combined therapy proved to be more evident (TSH: 4.33 ± 3.2 mIU/l; free thyroxine: 16.85 ± 3.1 and free triiodothyronine: 6.4 ± 0.85 pmol/l) in 10 patients treated for a longer period of time (duration of treatment: 2.9 ± 2.0 years). The dose of thyroxine substitution decreased from 2.6 ± 0.9 to 2.18 ± 0.6 μg/kg/day), the ratio of these hormones was between 5:1 and 19:1 and the quotient of free fractions was normalized (3.8 ± 0.4→2.6 ± 0.3) during the replacement therapy. According to the observation of the authors a serious disturbance of feed-back mechanism may develop in some (>5%) children with congenital hypothyroidism (increased TSH release despite elevated free thyroxine level) after normal function of the feed-back system for years. Hormone parameters of these patients improve, then become normal on combined therapy supporting the rationale for this treatment method.

  18. HIV dynamics linked to memory CD4+ T cell homeostasis.

    PubMed

    Murray, John M; Zaunders, John; Emery, Sean; Cooper, David A; Hey-Nguyen, William J; Koelsch, Kersten K; Kelleher, Anthony D

    2017-01-01

    The dynamics of latent HIV is linked to infection and clearance of resting memory CD4+ T cells. Infection also resides within activated, non-dividing memory cells and can be impacted by antigen-driven and homeostatic proliferation despite suppressive antiretroviral therapy (ART). We investigated whether plasma viral level (pVL) and HIV DNA dynamics could be explained by HIV's impact on memory CD4+ T cell homeostasis. Median total, 2-LTR and integrated HIV DNA levels per μL of peripheral blood, for 8 primary (PHI) and 8 chronic HIV infected (CHI) individuals enrolled on a raltegravir (RAL) based regimen, exhibited greatest changes over the 1st year of ART. Dynamics slowed over the following 2 years so that total HIV DNA levels were equivalent to reported values for individuals after 10 years of ART. The mathematical model reproduced the multiphasic dynamics of pVL, and levels of total, 2-LTR and integrated HIV DNA in both PHI and CHI over 3 years of ART. Under these simulations, residual viremia originated from reactivated latently infected cells where most of these cells arose from clonal expansion within the resting phenotype. Since virion production from clonally expanded cells will not be affected by antiretroviral drugs, simulations of ART intensification had little impact on pVL. HIV DNA decay over the first year of ART followed the loss of activated memory cells (120 day half-life) while the 5.9 year half-life of total HIV DNA after this point mirrored the slower decay of resting memory cells. Simulations had difficulty reproducing the fast early HIV DNA dynamics, including 2-LTR levels peaking at week 12, and the later slow loss of total and 2-LTR HIV DNA, suggesting some ongoing infection. In summary, our modelling indicates that much of the dynamical behavior of HIV can be explained by its impact on memory CD4+ T cell homeostasis.

  19. Trends in CD4 counts in HIV-infected patients with HIV viral load monitoring while on combination antiretroviral treatment: results from The TREAT Asia HIV Observational Database

    PubMed Central

    2010-01-01

    Background The aim of this study was to examine the relationship between trends in CD4 counts (slope) and HIV viral load (VL) after initiation of combination antiretroviral treatment (cART) in Asian patients in The TREAT Asia HIV Observational Database (TAHOD). Methods Treatment-naive HIV-infected patients who started cART with three or more and had three or more CD4 count and HIV VL tests were included. CD4 count slopes were expressed as changes of cells per microliter per year. Predictors of CD4 count slopes from 6 months after initiation were assessed by random-effects linear regression models. Results A total of 1676 patients (74% male) were included. The median time on cART was 4.2 years (IQR 2.5-5.8 years). In the final model, CD4 count slope was associated with age, concurrent HIV VL and CD4 count, disease stage, hepatitis B or C co-infection, and time since cART initiation. CD4 count continues to increase with HIV VL up to 20 000 copies/mL during 6-12 months after cART initiation. However, the HIV VL has to be controlled below 5 000, 4 000 and 500 copies/mL for the CD4 count slope to remain above 20 cells/microliter per year during 12-18, 18-24, and beyond 24 months after cART initiation. Conclusions After cART initiation, CD4 counts continued to increase even when the concurrent HIV VL was detectable. However, HIV VL needed to be controlled at a lower level to maintain a positive CD4 count slope when cART continues. The effect on long-term outcomes through the possible development of HIV drug resistance remains uncertain. PMID:21182796

  20. [Applylication of new type combined fragments: nrDNA ITS+ nad 1-intron 2 for identification of Dendrobium species of Fengdous].

    PubMed

    Geng, Li-xia; Zheng, Rui; Ren, Jie; Niu, Zhi-tao; Sun, Yu-long; Xue, Qing-yun; Liu, Wei; Ding, Xiao-yu

    2015-08-01

    In this study, 17 kinds of Dendrobium species of Fengdous including 39 individuals were collected from 4 provinces. Mitochondrial gene sequences co I, nad 5, nad 1-intron 2 and chloroplast gene sequences rbcL, matK amd psbA-trnH were amplified from these materials, as well as nrDNA ITS. Furthermore, suitable sequences for identification of Dendrobium species of Fengdous were screened by K-2-P and P-distance. The results showed that during the mentioned 7 sequences, nrDNA ITS, nad 1-intron 2 and psbA-trnH which had a high degree of variability could be used to identify Dendrobium species of Fengdous. However, single fragment could not be used to distinguish D. moniliforme and D. huoshanense. Moreover, compared to other combined fragments, new type combined fragments nrDNA ITS+nad 1-intron 2 was more effective in identifying the original plants of Dendrobium species and could be used to identify D. huoshanense and D. moniliforme. Besides, according to the UPGMA tree constructed with nrDNA ITS+nad 1-intron 2, 3 inspected Dendrobium plants were identified as D. huoshanense, D. moniliforme and D. officinale, respectively. This study identified Dendrobium species of Fengdous by combined fragments nrDNA ITS+nad 1-intron 2 for the first time, which provided a more effective basis for identification of Dendrobium species. And this study will be helpful for regulating the market of Fengdous.

  1. Mobilization of Cd from human serum albumin by small molecular weight thiols.

    PubMed

    Morris, Thomas T; Keir, Jennifer L A; Boshart, Steven J; Lobanov, Victor P; Ruhland, Anthony M A; Bahl, Nishita; Gailer, Jürgen

    2014-05-01

    Although the toxic metal Cd is an established human nephrotoxin, little is known about the role that interactions with plasma constitutents play in determining its mammalian target organs. To gain insight, a Cd-human serum albumin (HSA) complex was analyzed on a system consisting of size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using phosphate buffered saline (pH 7.4) as the mobile phase, we investigated the effect of 1-10mM oxidized glutathione (GSSG), l-cysteine (Cys), l-glutathione (GSH), or N-acetyl-l-cysteine (NAC) on the elution of Cd. As expected, GSSG did not mobilize Cd from the Cd-HSA complex up to a concentration of 4mM. With 1.0mM NAC, ∼30% of the injected Cd-HSA complex eluted as such, while the mobilized Cd was lost on the column. With 1.0mM of Cys or GSH, no parent Cd-HSA complex was detected and 88% and 82% of the protein bound Cd eluted close to the elution volume, likely in form of Cd(Cys)2 and a Cd-GSH 1:1 complex. Interestingly, with GSH and NAC concentrations >4.0mM, a Cd double peak was detected, which was rationalized in terms of the elution of a polynuclear Cd complex baseline-separated from a mononuclear Cd complex. In contrast, mobile phases which contained Cys concentrations ≥2mM resulted in the detection of only a single Cd peak, probably Cd(Cys)4. Our results establish SEC-FAAS as a viable tool to probe the mobilization of Cd from binding sites on plasma proteins at near physiological conditions. The detected complexes between Cd and Cys or GSH may be involved in the translocation of Cd to mammalian target organs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of porcine circovirus type 2 (PCV2) on the function of splenic CD11c+ dendritic cells in mice.

    PubMed

    Wang, Xiaobo; Chen, Ligong; Yuan, Wanzhe; Li, Yanqin; Li, Limin; Li, Tanqing; Li, Huanrong; Song, Qinye

    2017-05-01

    Porcine circovirus-associated disease (PCVAD) caused by porcine circovirus type 2 (PCV2) is an important disease in the global pig industry. Dendritic cells (DCs) are the primary immune cells capable of initiating adaptive immune responses as well as major target cells of PCV2. To determine whether PCV2 affects the immune functions of DCs, we evaluated the expression of endocytosis and co-stimulatory molecules on DCs (CD11c + ) from PCV2-infected mouse spleen by flow cytometry (FCM). We also analyzed the main cytokines secreted by DCs (CD11c + ) and activation of CD4 + and CD8 + T cells by DCs (CD11c + ) through measurement of cytokine secretion, using ELISA. Compared with control mice, PCV2 did not affect the endocytic activity of DCs but it significantly enhanced TNF-α secretion and markedly decreased IFN-α secretion. Subsets of CD40 + , MHCII + CD40 + and CD137L + CD86 + DCs did not increase obviously, but MHCII + CD40 - and CD137L - CD80 + /CD86 + DCs increased significantly in PCV2-infected mouse spleen. Under the stimulation of DCs from PCV2-infected mouse, secretion of IFN-γ by CD4 + and CD8 + T cells and of IL-12 by CD8 + T cells was significantly lower than in control mice, while secretion of IL-4 by CD4 + T cells was remarkably higher. These results indicate that PCV2 modulates cytokine secretion and co-stimulatory molecule expression of DCs, and alters activation of CD4 + and CD8 + T cells by DCs. The immunomodulatory effects of PCV2 on DCs might be related to the host's immune dysfunction and persistent infection with this virus.

  3. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia.

    PubMed

    Friedrich, Matthias; Henn, Anja; Raum, Tobias; Bajtus, Monika; Matthes, Katja; Hendrich, Larissa; Wahl, Joachim; Hoffmann, Patrick; Kischel, Roman; Kvesic, Majk; Slootstra, Jerry W; Baeuerle, Patrick A; Kufer, Peter; Rattel, Benno

    2014-06-01

    There is high demand for novel therapeutic options for patients with acute myelogenous leukemia (AML). One possible approach is the bispecific T-cell-engaging (BiTE, a registered trademark of Amgen) antibody AMG 330 with dual specificity for CD3 and the sialic acid-binding lectin CD33 (SIGLEC-3), which is frequently expressed on the surface of AML blasts and leukemic stem cells. AMG 330 binds with low nanomolar affinity to CD33 and CD3ε of both human and cynomolgus monkey origin. Eleven human AML cell lines expressing between 14,400 and 56,700 CD33 molecules per cell were all potently lysed with EC(50) values ranging between 0.4 pmol/L and 3 pmol/L (18-149 pg/mL) by previously resting, AMG 330-redirected T cells. Complete lysis was achieved after 40 hours of incubation. In the presence of AML cells, AMG 330 specifically induced expression of CD69 and CD25 as well as release of IFN-γ, TNF, interleukin (IL)-2, IL-10, and IL-6. Ex vivo, AMG 330 mediated autologous depletion of CD33-positive cells from cynomolgous monkey bone marrow aspirates. Soluble CD33 at concentrations found in bone marrow of patients with AML did not significantly affect activities of AMG 330. Neoexpression of CD33 on newly activated T cells was negligible as it was limited to 6% of T cells in only three out of ten human donors tested. Daily intravenous administration with as low as 0.002 mg/kg AMG 330 significantly prolonged survival of immunodeficient mice adoptively transferred with human MOLM-13 AML cells and human T cells. AMG 330 warrants further development as a potential therapy for AML. ©2014 American Association for Cancer Research.

  4. c-Myb promotes the survival of CD4+CD8+ double positive thymocytes through up-regulation of Bcl-xL1

    PubMed Central

    Yuan, Joan; Crittenden, Rowena B.; Bender, Timothy P.

    2010-01-01

    Mechanisms that regulate the lifespan of CD4+CD8+ double positive (DP) thymocytes help shape the peripheral T cell repertoire. However, the molecular mechanisms that control DP thymocyte survival remain poorly understood. The Myb proto-oncogene encodes a transcription factor required during multiple stages of T cell development. We demonstrate that Myb mRNA expression is up-regulated in the small, pre-selection DP stage during T cell development. Using a conditional deletion mouse model, we demonstrate that Myb deficient DP thymocytes undergo premature apoptosis, resulting in a limited Tcrα repertoire biased towards 5’ Jα segment usage. Premature apoptosis occurs in the small pre-selection DP compartment in an αβTCR independent manner and is a consequence of decreased Bcl-xL expression. Forced Bcl-xL expression is able to rescue survival and re-introduction of c-Myb restores both Bcl-xL expression and the small pre-selection DP compartment. We further demonstrate that thymocytes become dependent on Bcl-xL for survival upon entering the quiescent, small pre-selection DP stage and c-Myb promotes transcription at the Bclx locus via a genetic pathway that is independent of the expression of TCF-1 or RORγt, two transcription factors that induce Bcl-xL expression in T cell development. Thus, Bcl-xL is a novel mediator of c-Myb activity during normal T cell development. PMID:20142358

  5. Molecular characterization of the pL40 protein in Leptospira interrogans.

    PubMed

    Zhao, Wei; Chen, Chun-Yan; Zhang, Xiang-Yan; Lai, Wei-Qiang; Hu, Bao-Yu; Zhao, Guo-Ping; Qin, Jin-Hong; Guo, Xiao-Kui

    2009-06-01

    Leptospirosis is a widespread zoonotic disease caused by pathogenic leptospires. The identification of outer membrane proteins (OMPs) conserved among pathogenic leptospires, which are exposed on the leptospiral surface and expressed during mammalian infection, has become a major focus of leptospirosis research. pL40, a 40 kDa protein coded by the LA3744 gene in Leptospira interrogans, was found to be unique to Leptospira. Triton X-114 fractionation and flow cytometry analyses indicate that pL40 is a component of the leptospiral outer membrane. The conservation of pL40 among Leptospira strains prevalent in China was confirmed by both Western blotting and PCR screening. Furthermore, the pL40 antigen could be recognized by sera from guinea pigs and mice infected with low-passage L. interrogans. These findings indicate that pL40 may serve as a useful serodiagnostic antigen and vaccine candidate for L. interrogans.

  6. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells

    PubMed Central

    Sun, Xun; Chen, Simu; Han, Jianfeng; Zhang, Zhirong

    2012-01-01

    Background To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs) more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG) and a series of its mannosylated derivatives. Methods PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs) using flow cytometry. Results PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation. Conclusion These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system. PMID:22745554

  7. Effector CD8^+ T cells migrate via chemokine-enhanced generalized L'evy walks

    NASA Astrophysics Data System (ADS)

    Banigan, Edward; Harris, Tajie; Christian, David; Liu, Andrea; Hunter, Christopher

    2012-02-01

    Chemokines play a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. In order to understand the role of the chemokine CXCL10 during chronic infection by the parasite T. gondii, we analyze tracks of migrating CD8^+ T cells in brain tissue. Surprisingly, we find that T cell motility is not described by a Brownian walk, but instead is consistent with a generalized L'evy walk consisting of L'evy-distributed runs alternating with pauses of L'evy-distributed durations. According to our model, this enables T cells to find rare targets more than an order of magnitude more efficiently than Brownian random walkers. The chemokine CXCL10 increases the migration speed without changing the character of the walk statistics. Thus, CD8^+ T cells use an efficient search strategy to facilitate an effective immune response, and CXCL10 aids them in shortening the average time to find rare targets.

  8. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  9. Expression of recombinant CD59 with an N-terminal peptide epitope facilitates analysis of residues contributing to its complement-inhibitory function.

    PubMed

    Zhou, Q; Zhao, J; Hüsler, T; Sims, P J

    1996-10-01

    CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.

  10. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein L1 from the L2/DNA complex following virus entry.

    PubMed

    Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L; Sapp, Martin

    2012-09-01

    Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles.

  11. Cyclophilins Facilitate Dissociation of the Human Papillomavirus Type 16 Capsid Protein L1 from the L2/DNA Complex following Virus Entry

    PubMed Central

    Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L.

    2012-01-01

    Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles. PMID:22761365

  12. DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor.

    PubMed

    Feng, Qiu-Mei; Zhou, Zhen; Li, Mei-Xing; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-15

    Proximal metallic nanoparticles (NPs) could quench the electrochemiluminescence (ECL) emission of semiconductor quantum dots (QDs) due to Förster energy transfer (FRET), but at a certain distance, the coupling of light-emission with surface plasmon resonance (SPR) result in enhanced ECL. Thus, the modification strategies and distances control between QDs and metallic NPs are critical for the ECL intensity of QDs. In this strategy, a SPR enhanced ECL sensor based on DNA tetrahedral scaffolds modified platform was reported for the detection of telomerase activity. Due to the rigid three-dimensional structure, DNA tetrahedral scaffolds grafting on the electrode surface could accurately modulate the distance between CdS QDs and luminol labelled gold nanoparticles (L-Au NPs), meanwhile provide an enhanced spatial dimension and accessibility for the assembly of multiple L-Au NPs. The ECL intensities of both CdS QDs (-1.25V vs. SCE) and luminol (+0.33V vs. SCE) gradually increased along with the formation of multiple L-Au NPs at the vertex of DNA tetrahedral scaffolds induced by telomerase, bringing in a dual-potential ECL analysis. The proposed method showed high sensitivity for the identification of telomerase and was successfully applied for the differentiation of cancer cells from normal cells. This work suggests that DNA tetrahedral scaffolds could serve as an excellent choice for the construction of SPR-ECL system. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models.

    PubMed

    Xu, Chunxiao; Zhang, Yanping; Rolfe, P Alexander; Hernández, Vivian M; Guzman, Wilson; Kradjian, Giorgio; Marelli, Bo; Qin, Guozhong; Qi, Jin; Wang, Hong; Yu, Huakui; Tighe, Robert; Lo, Kin-Ming; English, Jessie M; Radvanyi, Laszlo; Lan, Yan

    2017-10-01

    Purpose: To determine whether combination therapy with NHS-muIL12 and the anti-programmed death ligand 1 (PD-L1) antibody avelumab can enhance antitumor efficacy in preclinical models relative to monotherapies. Experimental Design: BALB/c mice bearing orthotopic EMT-6 mammary tumors and μMt - mice bearing subcutaneous MC38 tumors were treated with NHS-muIL12, avelumab, or combination therapy; tumor growth and survival were assessed. Tumor recurrence following remission and rechallenge was evaluated in EMT-6 tumor-bearing mice. Immune cell populations within spleen and tumors were evaluated by FACS and IHC. Immune gene expression in tumor tissue was profiled by NanoString® assay and plasma cytokine levels were determined by multiplex cytokine assay. The frequency of tumor antigen-reactive IFNγ-producing CD8 + T cells was evaluated by ELISpot assay. Results: NHS-muIL12 and avelumab combination therapy enhanced antitumor efficacy relative to either monotherapy in both tumor models. Most EMT-6 tumor-bearing mice treated with combination therapy had complete tumor regression. Combination therapy also induced the generation of tumor-specific immune memory, as demonstrated by protection against tumor rechallenge and induction of effector and memory T cells. Combination therapy enhanced cytotoxic NK and CD8 + T-cell proliferation and T-bet expression, whereas NHS-muIL12 monotherapy induced CD8 + T-cell infiltration into the tumor. Combination therapy also enhanced plasma cytokine levels and stimulated expression of a greater number of innate and adaptive immune genes compared with either monotherapy. Conclusions: These data indicate that combination therapy with NHS-muIL12 and avelumab increased antitumor efficacy in preclinical models, and suggest that combining NHS-IL12 and avelumab may be a promising approach to treating patients with solid tumors. Clin Cancer Res; 23(19); 5869-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Nuclear Magnetic Resonance Studies of an N2-Guanine Adduct Derived from the Tumorigen Dibenzo[a,l]pyrene in DNA: Impact of Adduct Stereochemistry, Size, and Local DNA Sequence on Solution Conformations

    PubMed Central

    2015-01-01

    The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID

  15. Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction.

    PubMed

    Popa, Miruna; Tahir, Sibgha; Elrod, Julia; Kim, Su Hwan; Leuschner, Florian; Kessler, Thorsten; Bugert, Peter; Pohl, Ulrich; Wagner, Andreas H; Hecker, Markus

    2018-06-12

    Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer-platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer-platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer-platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.

  16. Inferring Phylogenetic Relationships of Indian Citron (Citrus medica L.) based on rbcL and matK Sequences of Chloroplast DNA.

    PubMed

    Uchoi, Ajit; Malik, Surendra Kumar; Choudhary, Ravish; Kumar, Susheel; Rohini, M R; Pal, Digvender; Ercisli, Sezai; Chaudhury, Rekha

    2016-06-01

    Phylogenetic relationships of Indian Citron (Citrus medica L.) with other important Citrus species have been inferred through sequence analyses of rbcL and matK gene region of chloroplast DNA. The study was based on 23 accessions of Citrus genotypes representing 15 taxa of Indian Citrus, collected from wild, semi-wild, and domesticated stocks. The phylogeny was inferred using the maximum parsimony (MP) and neighbor-joining (NJ) methods. Both MP and NJ trees separated all the 23 accessions of Citrus into five distinct clusters. The chloroplast DNA (cpDNA) analysis based on rbcL and matK sequence data carried out in Indian taxa of Citrus was useful in differentiating all the true species and species/varieties of probable hybrid origin in distinct clusters or groups. Sequence analysis based on rbcL and matK gene provided unambiguous identification and disposition of true species like C. maxima, C. medica, C. reticulata, and related hybrids/cultivars. The separation of C. maxima, C. medica, and C. reticulata in distinct clusters or sub-clusters supports their distinctiveness as the basic species of edible Citrus. However, the cpDNA sequence analysis of rbcL and matK gene could not find any clear cut differentiation between subgenera Citrus and Papeda as proposed in Swingle's system of classification.

  17. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium.

    PubMed

    Pelch, Katherine E; Tokar, Erik J; Merrick, B Alex; Waalkes, Michael P

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10μM Cd for 11weeks (CTPE) or 5μM iAs for 29weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (>25-fold) and S100P (>40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (>15-fold) and NTM (>1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. Published by Elsevier Inc.

  18. PD-1 Expression in Head and Neck Squamous Cell Carcinomas Derives Primarily from Functionally Anergic CD4+ TILs in the Presence of PD-L1+ TAMs.

    PubMed

    Mattox, Austin K; Lee, Jina; Westra, William H; Pierce, Robert H; Ghossein, Ronald; Faquin, William C; Diefenbach, Thomas J; Morris, Luc G; Lin, Derrick T; Wirth, Lori J; Lefranc-Torres, Armida; Ishida, Eiichi; Chakravarty, Patrick D; Johnson, Lauren; Zeng, Yang C; Chen, Huabiao; Poznansky, Mark C; Iyengar, Neil M; Pai, Sara I

    2017-11-15

    Oral tongue squamous cell carcinoma (OTSCC) is the most common oral cavity tumor. In this study, we examined the basis for the activity of programmed cell death protein (PD-1)-based immune checkpoint therapy that is being explored widely in head and neck cancers. Using multispectral imaging, we systematically investigated the OTSCC tumor microenvironment (TME) by evaluating the frequency of PD-1 expression in CD8 + , CD4 + , and FoxP3 + tumor-infiltrating lymphocytes (TIL). We also defined the cellular sources of PD-1 ligand (PD-L1) to evaluate the utility of PD-1:PD-L1 blocking antibody therapy in this patient population. PD-L1 was expressed in 79% of the OTSCC specimens examined within the TME. Expression of PD-L1 was associated with moderate to high levels of CD4 + and CD8 + TILs. We found that CD4 + TILs were present in equal or greater frequencies than CD8 + TILs in 94% of OTSCC and that CD4 + FOXP3neg TILs were colocalized with PD-1/PD-L1/CD68 more frequently than CD8 + TILs. Both CD4 + PD1 + and CD8 + PD1 + TILs were anergic in the setting of PD-L1 expression. Overall, our results highlight the importance of CD4 + TILs as pivotal regulators of PD-L1 levels and in determining the responsiveness of OTSCC to PD1-based immune checkpoint therapy. Cancer Res; 77(22); 6365-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. Insulin and chromium picolinate induce translocation of CD36 to the plasma membrane through different signaling pathways in 3T3-L1 adipocytes, and with a differential functionality of the CD36.

    PubMed

    Wang, Yiqun; Van Oort, Masja M; Yao, Minghui; Van der Horst, Dick J; Rodenburg, Kees W

    2011-09-01

    Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-(14)C]palmitate) or [(3)H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.

  20. Ribosomal DNA sequence divergence and group I introns within the Leucostoma species L. cinctum, L. persoonii, and L. parapersoonii sp. nov., ascomycetes that cause Cytospora canker of fruit trees.

    PubMed

    Adams, Gerard C; Surve-Iyer, Rupa S; Iezzoni, Amy F

    2002-01-01

    Leucostoma species that are the causal agents of Cytospora canker of stone and pome fruit trees were studied in detail. DNA sequence of the internal transcribed spacer regions and the 5.8S of the nuclear ribosomal DNA operon (ITS rDNA) supplied sufficient characters to assess the phylogenetic relationships among species of Leucostoma, Valsa, Valsella, and related anamorphs in Cytospora. Parsimony analysis of the aligned sequence divided Cytospora isolates from fruit trees into clades that generally agreed with the morphological species concepts, and with some of the phenetic groupings (PG 1-6) identified previously by isozyme analysis and cultural characteristics. Phylogenetic analysis inferred that isolates of L. persoonii formed two well-resolved clades distinct from isolates of L. cinctum. Phylogenetic analysis of the ITS rDNA, isozyme analysis, and cultural characteristics supported the inference that L. persoonii groups PG 2 and PG 3 were populations of a new species apparently more genetically different from L. persoonii PG 1 than from isolates representative of L. massariana, L. niveum, L. translucens, and Valsella melastoma. The new species, L. parapersoonii, was described. A diverse collection of isolates of L. cinctum, L. persoonii, and L. parapersoonii were examined for genetic variation using restriction fragment length polymorphism (RFLP) analysis of the ITS rDNA and the five prime end of the large subunit of the rDNA (LSU rDNA). HinfI and HpaII endonucleases were each useful in dividing the Leucostoma isolates into RFLP profiles corresponding to the isozyme phenetic groups, PG 1-6. RFLP analysis was more effective than isozyme analysis in uncovering variation among isolates of L. persoonii PG 1, but less effective within L. cinctum populations. Isolates representative of seven of the L. persoonii formae speciales proposed by G. Défago in 1935 were found to be genetically diverse isolates of PG 1. Two large insertions, 415 and 309 nucleotides long, in