Sample records for cd44 gene expression

  1. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    PubMed

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of the cell-cell adhesion molecule PCDH18 correlated with poorer overall survival in the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma data highlighting it as a potential negative prognostic factor in this cancer.

  2. Differential Gene Expression Profiling of Functionally and Developmentally Distinct Human Prostate Epithelial Populations

    PubMed Central

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-01-01

    BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. CONCLUSIONS Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. Prostate 75: 764–776, 2015. © The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25663004

  3. Differential gene expression profiling of functionally and developmentally distinct human prostate epithelial populations.

    PubMed

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-05-01

    Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44⁻ CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44⁻ CD49f(Hi) FC, adult Epcam⁺ CD44⁻ CD49f(Hi) TIC, Epcam⁺ CD44⁺ CD49f(Hi) basal cells (BC), and Epcam⁺ CD44⁻ CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.

  4. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    PubMed

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  5. R-spondin1/Wnt-enhanced Ascl2 autoregulation controls the self-renewal of colorectal cancer progenitor cells.

    PubMed

    Ye, Jun; Liu, Shanxi; Shang, Yangyang; Chen, Haoyuan; Wang, Rongquan

    2018-06-25

    The Wnt signaling pathway controls stem cell identity in the intestinal epithelium and cancer stem cells (CSCs). The transcription factor Ascl2 (Wnt target gene) is fate decider of intestinal cryptic stem cells and colon cancer stem cells. It is unclear how Wnt signaling is translated into Ascl2 expression and keeping the self-renewal of CRC progenitor cells. We showed that the exogenous Ascl2 in colorectal cancer (CRC) cells activated the endogenous Ascl2 expression via a direct autoactivatory loop, including Ascl2 binding to its own promoter and further transcriptional activation. Higher Ascl2 expression in human CRC cancerous tissues led to greater enrichment in Ascl2 immunoprecipitated DNA within the Ascl2 promoter in the CRC cancerous sample than the peri-cancerous mucosa. Ascl2 binding to its own promoter and inducing further transcriptional activation of the Ascl2 gene was predominant in the CD133 + CD44 + CRC population. R-spondin1/Wnt activated Ascl2 expression dose-dependently in the CD133 + CD44 + CRC population, but not in the CD133 - CD44 - CRC population, which was caused by differences in Ascl2 autoregulation under R-spondin1/Wnt activation. R-spondin1/Wnt treatment in the CD133 + CD44 + or CRC CD133 - CD44 - populations exerted a different pattern of stemness maintenance, which was defined by alterations of the mRNA levels of stemness-associated genes, the protein expression levels (Bmi1, C-myc, Oct-4 and Nanog) and tumorsphere formation. The results indicated that Ascl2 autoregulation formed a transcriptional switch that was enhanced by Wnt signaling in the CD133 + CD44 + CRC population, thus conferring their self-renewal.

  6. Expression and significance of CD44s, CD44v6, and nm23 mRNA in human cancer.

    PubMed

    Liu, Yong-Jun; Yan, Pei-Song; Li, Jun; Jia, Jing-Fen

    2005-11-14

    To investigate the relationship between the expression levels of nm23 mRNA, CD44s, and CD44v6, and oncogenesis, development and metastasis of human gastric adenocarcinoma, colorectal adenocarcinoma, intraductal carcinoma of breast, and lung cancer. Using tissue microarray by immuhistochemical (IHC) staining and in situ hybridization (ISH), we examined the expression levels of nm23 mRNA, CD44s, and CD44v6 in 62 specimens of human gastric adenocarcinoma and 62 specimens of colorectal adenocarcinoma; the expression of CD44s and CD44v6 in 120 specimens of intraductal carcinoma of breast and 20 specimens of normal breast tissue; the expression of nm23 mRNA in 72 specimens of human lung cancer and 23 specimens of normal tissue adjacent to cancer. The expression of nm23 mRNA in the tissues of gastric and colorectal adenocarcinoma was not significantly different from that in the normal tissues adjacent to cancer (P>0.05), and was not associated with the invasion of tumor and the pathology grade of adenocarcinoma (P>0.05). However, the expression of nm23 mRNA was correlated negatively to the lymph node metastasis of gastric and colorectal adenocarcinoma (r = -0.49, P<0.01; r = -4.93, P<0.01). The expression of CD44s in the tissues of gastric and colorectal adenocarcinoma was significantly different from that in the normal tissues adjacent to cancer (P<0.05; P<0.01). CD44v6 was expressed in the tissues of gastric and colorectal adenocarcinoma only, the expression of CD44v6 was significantly associated with the lymph node metastasis, invasion and pathological grade of the tumor (r = 0.47, P<0.01; r = 5.04, P<0.01). CD44s and CD44v6 were expressed in intraductal carcinoma of breast, the expression of CD44s and CD44v6 was significantly associated with lymph node metastases and invasion (P<0.01). However, neither of them was expressed in the normal breast tissue. In addition, the expression of CD44v6 was closely related to the degree of cell differentiation of intraductal carcinoma of breast (c2 = 5.68, P<0.05). The expressional level of nm23 mRNA was closely related to the degree of cell differentiation (P<0.05) and lymph node metastasis (P<0.01), but the expression of nm23 gene was not related to sex, age, and type of histological classification (P>0.05). Patients with overexpression of CD44s and CD44v6 and low expression of nm23 mRNA have a higher lymph node metastatic rate and invasion. In addition, overexpression of CD44v6 is closely related to the degree of cell differentiation. Detection of the three genes is able to provide a reliable index to evaluate the invasion and metastasis of tumor cells.

  7. Detection of high CD44 expression in oral cancers using the novel monoclonal antibody, C44Mab-5.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Kaneko, Mika K; Kato, Yukinari

    2018-07-01

    CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C 44 Mab-5 (IgG 1 , kappa), recognized both CD44s and CD44v3-10. C 44 Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C 44 Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C 44 Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.

  8. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression.

    PubMed

    Gee, Katrina; Lim, Wilfred; Ma, Wei; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok

    2002-11-15

    Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.

  9. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment. PMID:21124918

  10. CD44 functions in Wnt signaling by regulating LRP6 localization and activation

    PubMed Central

    Schmitt, M; Metzger, M; Gradl, D; Davidson, G; Orian-Rousseau, V

    2015-01-01

    Wnt reception at the membrane is complex and not fully understood. CD44 is a major Wnt target gene in the intestine and is essential for Wnt-induced tumor progression in colorectal cancer. Here we show that CD44 acts as a positive regulator of the Wnt receptor complex. Downregulation of CD44 expression decreases, whereas CD44 overexpression increases Wnt activity in a concentration-dependent manner. Epistasis experiments place CD44 function at the level of the Wnt receptor LRP6. Mechanistically, CD44 physically associates with LRP6 upon Wnt treatment and modulates LRP6 membrane localization. Moreover, CD44 regulates Wnt signaling in the developing brain of Xenopus laevis embryos as shown by a decreased expression of Wnt targets tcf-4 and en-2 in CD44 morphants. PMID:25301071

  11. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells

    PubMed Central

    Aguirre-Alvarado, Charmina; Segura-Cabrera, Aldo; Velázquez-Quesada, Inés; Hernández-Esquivel, Miguel A.; García-Pérez, Carlos A.; Guerrero-Rodríguez, Sandra L.; Ruiz, Angel J.; Rodríguez-Moreno, Andrea; Pérez-Tapia, Sonia M.; Velasco-Velázquez, Marco A.

    2016-01-01

    CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24− cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists. PMID:27009862

  12. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells.

    PubMed

    Aguirre-Alvarado, Charmina; Segura-Cabrera, Aldo; Velázquez-Quesada, Inés; Hernández-Esquivel, Miguel A; García-Pérez, Carlos A; Guerrero-Rodríguez, Sandra L; Ruiz-Moreno, Angel J; Rodríguez-Moreno, Andrea; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2016-04-26

    CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24- cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists.

  13. Conserved regulation of mesenchymal gene expression by Fgf-8 in face and limb development.

    PubMed

    Tucker, A S; Al Khamis, A; Ferguson, C A; Bach, I; Rosenfeld, M G; Sharpe, P T

    1999-01-01

    Clim-2 (NLI, Lbd1) is one of two related mouse proteins that interact with Lim-domain homeoproteins. In the mouse, embryonic expression of Clim-2 is particularly pronounced in facial ectomesenchyme and limb bud mesenchyme in association with Lim genes, Lhx-6 and Lmx-1 respectively. We show that in common with both these Lim genes, Clim-2 expression is regulated by signals from overlying epithelium. In both the developing face and the limb buds we identify Fgf-8 as the likely candidate signalling molecule that regulates Clim-2 expression. We show that in the mandibular arch, as in the limb, Fgf-8 functions in combination with CD44, a cell surface binding protein, and that blocking CD44 binding results in inhibition of Fgf8-induced expression of Clim-2 and Lhx-6. Regulation of gene expression by Fgf8 in association with CD44 is thus conserved between limb and mandibular arch development.

  14. CD44 Splice Variants as Potential Players in Alzheimer's Disease Pathology.

    PubMed

    Pinner, Elhanan; Gruper, Yaron; Ben Zimra, Micha; Kristt, Don; Laudon, Moshe; Naor, David; Zisapel, Nava

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits, deposition of amyloid-β (Aβ) plaques, intracellular neurofibrillary tangles, and neuronal cell death. Neuroinflammation is commonly believed to participate in AD pathogenesis. CD44 is an inflammation-related gene encoding a widely-distributed family of alternatively spliced cell surface glycoproteins that have been implicated in inflammation, metastases, and inflammation-linked neuronal injuries. Here we investigated the expression patterns of CD44S (which does not contain any alternative exon) and CD44 splice variants in postmortem hippocampal samples from AD patients and matched non-AD controls. The expression of CD44S and CD44 splice variants CD44V3, CD44V6, and CD44V10 was significantly higher in AD patients compared to non-AD controls. Immunohistochemistry of human hippocampal sections revealed that CD44S differentially localized to neuritic plaques and astrocytes, whereas CD44V3, CD44V6, and CD44V10 expression was mostly neuronal. Consistent with these findings, we found that the expression of CD44V6 and CD44V10 was induced by Aβ peptide in neuroblastoma cells and primary neurons. Furthermore, in loss of function studies we found that both CD44V10-specific siRNA and CD44V10 antibody protected neuronal cells from Aβ-induced toxicity, suggesting a causal relationship between CD44V10 and neuronal cell death. These data indicate that certain CD44 splice variants contribute to AD pathology and that CD44V10 inhibition may serve as a new neuroprotective treatment strategy for this disease.

  15. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin - Hyaluronic acid cardiac patches.

    PubMed

    Yang, Ming-Chia; Chi, Nai-Hsin; Chou, Nai-Kuan; Huang, Yi-You; Chung, Tze-Wen; Chang, Yu-Lin; Liu, Hwa-Chang; Shieh, Ming-Jium; Wang, Shoei-Shen

    2010-02-01

    Since MSCs contain an abundant of CD44 surface markers, it is of interesting to investigate whether CD44 on rat MSC (rMSCs) influenced cell growth, fibronectin expression and cardiomyogenic differentiation on new SF/HA cardiac patches. For this investigation, we examined the influences of rMSCs with or without a CD44-blockage treatment on the aforementioned issues after they were cultivated, and further induced by 5-aza on SF and SF/HA patches. The results showed that the relative growth rates of rMSCs cultured on cultural wells, SF/HA patches without or with a CD44-blockage treatment were 100%, 208.9+/-7.1 (%) or 48.4+/-6.0 (%) (n=3, for all), respectively, after five days of cultivations. Moreover, rMSCs cultivated on SF/HA patches highly promoted fibronectin expressions (e.g., 1.8x10(5)/cell, in fluorescent intensity) while cells with a CD44-blockage treatment markedly diminished the expressions (e.g., 1.1x10(4)/cell, in fluorescent intensity) on same patches. For investigating possible influences of CD44 surface markers of rMSCs on their cardiomyogenic differentiation, the expressions of specific cardiac genes of cells were examined by using real-time PCR analysis. The results indicated that 5-aza inducing rMSCs significantly promoted the expressions of Gata4, Nkx2.5, Tnnt2 and Actc1 genes (all, P<0.01 or better, n=3) on SF/HA patches compared with those expressions on SF patches and for cells with a CD44-blockage treatment on SF/HA patches. Furthermore, the intensity of the expressions of cardiotin and connexin 43 of 5-aza inducing rMSCs were markedly higher than those of cells with a CD44-blockage treatment after they were cultured on SF/HA patches. Through this study, we reported that CD44 surface markers of rMSCs highly influenced the proliferations, fibronectin expressions and cardiomyogenic differentiation of rMSCs cultivated on cardiac SF/HA patches.

  16. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness

    PubMed Central

    Denisov, Evgeny V.; Skryabin, Nikolay A.; Gerashchenko, Tatiana S.; Tashireva, Lubov A.; Wilhelm, Jochen; Buldakov, Mikhail A.; Sleptcov, Aleksei A.; Lebedev, Igor N.; Vtorushin, Sergey V.; Zavyalova, Marina V.; Cherdyntseva, Nadezhda V.; Perelmuter, Vladimir M.

    2017-01-01

    Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion. PMID:28977854

  17. Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in γ-secretase inhibitor drug responses

    PubMed Central

    Azzam, Diana J; Zhao, Dekuang; Sun, Jun; Minn, Andy J; Ranganathan, Prathibha; Drews-Elger, Katherine; Han, Xiaoqing; Picon-Ruiz, Manuel; Gilbert, Candace A; Wander, Seth A; Capobianco, Anthony J; El-Ashry, Dorraya; Slingerland, Joyce M

    2013-01-01

    Increasing evidence suggests that stem-like cells mediate cancer therapy resistance and metastasis. Breast tumour-initiating stem cells (T-ISC) are known to be enriched in CD44+CD24neg/low cells. Here, we identify two T-ISC subsets within this population in triple negative breast cancer (TNBC) lines and dissociated primary breast cancer cultures: CD44+CD24low+ subpopulation generates CD44+CD24neg progeny with reduced sphere formation and tumourigenicity. CD44+CD24low+ populations contain subsets of ALDH1+ and ESA+ cells, yield more frequent spheres and/or T-ISC in limiting dilution assays, preferentially express metastatic gene signatures and show greater motility, invasion and, in the MDA-MB-231 model, metastatic potential. CD44+CD24low+ but not CD44+CD24neg express activated Notch1 intracellular domain (N1-ICD) and Notch target genes. We show N1-ICD transactivates SOX2 to increase sphere formation, ALDH1+ and CD44+CD24low+cells. Gamma secretase inhibitors (GSI) reduced sphere formation and xenograft growth from CD44+CD24low+ cells, but CD44+CD24neg were resistant. While GSI hold promise for targeting T-ISC, stem cell heterogeneity as observed herein, could limit GSI efficacy. These data suggest a breast T-ISC hierarchy in which distinct pathways drive developmentally related subpopulations with different anti-cancer drug responsiveness. PMID:23982961

  18. The Pluripotent Stem-Cell Marker Alkaline Phosphatase is Highly Expressed in Refractory Glioblastoma with DNA Hypomethylation.

    PubMed

    Iwadate, Yasuo; Suganami, Akiko; Tamura, Yutaka; Matsutani, Tomoo; Hirono, Seiichiro; Shinozaki, Natsuki; Hiwasa, Takaki; Takiguchi, Masaki; Saeki, Naokatsu

    2017-02-01

    Hypomethylation of genomic DNA induces stem-cell properties in cancer cells and contributes to the treatment resistance of various malignancies. To examine the correlation between the methylation status of stem-cell-related genes and the treatment outcomes in patients with glioblastoma (GBM). The genome-wide DNA methylation status was determined using HumanMethylation450 BeadChips, and the methylation status was compared between a group of patients with good prognosis (survival > 4 yr) and a group with poor prognosis (survival < 1 yr). Immunohistochemistry for proteins translated from hypomethylated genes, including alkaline phosphatase (ALPL), CD133, and CD44, was performed in 70 GBMs and 60 oligodendroglial tumors. The genomic DNA in refractory GBM was more hypomethylated than in GBM from patients with relatively long survival (P = .0111). Stem-cell-related genes including ALPL, CD133, and CD44 were also significantly hypomethylated. A validation study using immunohistochemistry showed that DNA hypomethylation was strongly correlated with high protein expression of ALPL, CD133, and CD44. GBM patients with short survival showed high expression of these stem-cell markers. Multivariate analysis confirmed that co-expression of ALPL + CD133 or ALPL + CD44 was a strong predictor of short survival. Anaplastic oligodendroglial tumors without isocitrate dehydrogenase 1 mutation were significantly correlated with high ALPL expression and poor survival. Accumulation of stem-cell properties due to aberrant DNA hypomethylation is associated with the refractory nature of GBM. Copyright © 2017 by the Congress of Neurological Surgeons

  19. CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium

    PubMed Central

    Bertaux-Skeirik, Nina; Wunderlich, Mark; Teal, Emma; Chakrabarti, Jayati; Biesiada, Jacek; Mahe, Maxime; Sundaram, Nambirajan; Gabre, Joel; Hawkins, Jennifer; Jian, Gao; Engevik, Amy C.; Yang, Li; Wang, Jiang; Goldenring, James R.; Qualls, Joseph E.; Medvedovic, Mario; Helmrath, Michael A.; Diwan, Tayyab; Mulloy, James C.; Zavros, Yana

    2017-01-01

    The CD44 gene encodes several protein isoforms due to alternative splicing and post translational modifications. Given that CD44 variant isoform 9 (CD44v9) is expressed within Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) glands during repair, CD44v9 may be play a functional role during the process of regeneration of the gastric epithelium. Here we hypothesize that CD44v9 marks a regenerative cell lineage responsive to infiltrating macrophages during regeneration of the gastric epithelium. Ulcers were induced in CD44-decient (CD44KO) and C57BL/6 (BL6) mice by a localized application of acetic acid to the serosal surface of the stomach. Gastric organoids expressing CD44v9 were derived from mouse stomachs and transplanted at the ulcer site of CD44KO mice. Ulcers, CD44v9 expression, proliferation and histology were measured 1, 3, 5 and 7-days post-injury. Human-derived gastric organoids were generated from stomach tissue collected from elderly (>55 years) or young (14–20 years) patients. Organoids were transplanted into the stomachs of NOD scid gamma (NSG) mice at the site of injury. Gastric injury was induced in NRG-SGM3 (NRGS) mice harboring human-derived immune cells (hnNRGS) and the immune profile analyzed by CyTOF. CD44v9 expression emerged within regenerating glands the ulcer margin in response to injury. While ulcers in BL6 mice healed within 7-days post-injury, CD44KO mice exhibited loss of repair and epithelial regeneration. Ulcer healing was promoted in CD44KO mice by transplanted CD55v9-expressing gastric organoids. NSG mice exhibited loss of CD44v9 expression and gastric repair. Transplantation of human-derived gastric organoids from young, but not aged stomachs promoted repair in NSG mouse stomachs in response to injury. Finally, compared to NRGS mice, huNRGS animals exhibited reduced ulcer sizes, an infiltration of human CD162+ macrophages and an emergence of CD44v9 expression in SPEM. Thus, during repair of the gastric epithelium CD44v9 emerges within a regenerative cell lineage t hat coincides with macrophage infiltration within the injured mucosa. PMID:28497484

  20. [Effect of Biejiajian Pills on Wnt signal pathway molecules β-catenin and GSK-3β and the target genes CD44v6 and VEGF in hepatocellular carcinoma cells].

    PubMed

    Sun, Haitao; He, Songqi; Wen, Bin; Jia, Wenyan; Fan, Eryan; Zheng, Yan

    2014-10-01

    To investigate the effect of Biejiajian Pills on the expressions of the signal molecules and target genes of Wnt signal pathway in HepG2 cells and explore the mechanisms by which Biejiajian pills suppress the invasiveness of hepatocellular carcinoma. HepG2 cells were cultured for 48 h in the presence of serum collected from rats fed with Biejiajian Pills. The expressions of β-catenin, GSK-3β and P-GSK-3β in the cultured cells were assessed by Western blotting and the expressions of CD44v6 and VEGF were detected using immunohistochemistry. HepG2 cells cultured with the serum of rats fed with Biejiajian Pills showed lowered expressions of β-catenin protein both in the cytoplasm and the nuclei with also inhibition of phosphorylation of GSK-3β and reduced expression of CD44v6 and VEGF. Biejiajian Pills can significantly reduce the expression of β-catenin by decreasing the phosphorylation of GSK-3β and blocking the Wnt/β-catenin signaling pathway to cause down-regulation of the target genes CD44v6 and VEGF, which may be one of the molecular mechanisms by which Biejiajian Pills suppress the proliferation and invasiveness of hepatocellular carcinoma.

  1. Differential expression of CD44 and CD24 markers discriminates the epitheliod from the fibroblastoid subset in a sarcomatoid renal carcinoma cell line: evidence suggesting the existence of cancer stem cells in both subsets as studied with sorted cells.

    PubMed

    Hsieh, Chin-Hsuan; Hsiung, Shih-Chieh; Yeh, Chi-Tai; Yen, Chih-Feng; Chou, Yah-Huei Wu; Lei, Wei-Yi; Pang, See-Tong; Chuang, Cheng-Keng; Liao, Shuen-Kuei

    2017-02-28

    Epithelioid and fibroblastoid subsets coexist in the human sarcomatoid renal cell carcinoma (sRCC) cell line, RCC52, according to previous clonal studies. Herein, using monoclonal antibodies to CD44 and CD24 markers, we identified and isolated these two populations, and showed that CD44bright/CD24dim and CD44bright/CD24bright phenotypes correspond to epithelioid and fibroblastoid subsets, respectively. Both sorted subsets displayed different levels of tumorigenicity in xenotransplantation, indicating that each harbored its own cancer stem cells (CSCs). The CD44bright/CD24bright subset, associated with higher expression of MMP-7, -8 and TIMP-1 transcripts, showed greater migratory/invasive potential than the CD44bright/CD24dim subset, which was associated with higher expression of MMP-2, -9 and TIMP-2 transcripts. Both subsets differentially expressed stemness gene products c-Myc, Oct4A, Notch1, Notch2 and Notch3, and the RCC stem cell marker, CD105 in 4-5% of RCC52 cells. These results suggest the presence of CSCs in both sRCC subsets for the first time and should therefore be considered potential therapeutic targets for this aggressive malignancy.

  2. The PBX1 lupus susceptibility gene regulates CD44 expression

    PubMed Central

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence

    2017-01-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976

  3. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    PubMed

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells.

  4. Expression of Bmi-1, P16, and CD44v6 in Uterine Cervical Carcinoma and Its Clinical Significance.

    PubMed

    Weng, Mei-Ying; Li, Lin; Feng, Shu-Ying; Hong, Shun-Jia

    2012-03-01

    Bmi-1, a putative proto-oncogene, is a core member of the polycomb gene family, which is expressed in many human tumors. The p16 protein negatively regulated cell proliferation, whereas CD44v6 is associated with proliferation as an important protein. Additionally, CD44v6 is an important nuclear antigen closely correlated to tumor metastasis. The present study aims to investigate the expression and significance of Bmi-1, p16, and CD44v6 in uterine cervical carcinoma (UCC). A total of 62 UCC, 30 cervical neoplasic, and 20 normal cervical mucosal tissues were used in the current study. The expression of Bmi-1, p16, and CD44v6 in these tissues was determined using immunohistochemical assay. The relationships among the expression of these indices, the clinicopathologic features of UCC, and the survival rate of UCC patients were also discussed. The correlation between Bmi-1 protein expression and p16 or CD44v6 protein in UCC was analyzed. The expression of Bmi-1, p16, and CD44v6 was significantly high in cervical carcinoma compared with that in the cervical neoplasia and normal colorectal mucosa (P<0.05). The over-expression of Bmi-1 protein in UCC was apparently related to the distant metastasis (P<0.01) and the tumor, nodes and metastasis-classification, i.e. the TNM staging, World Health Organization (P<0.05). Nevertheless, the positive expression of p16 protein in UCC was not significantly associated with the clinicopathologic features (P>0.05). The Kaplan-Meier survival analysis showed that the over-expression of Bmi-1 significantly decreased the survival rate of UCC patients (P<0.05). A strong correlation indicated that there was statistical significance between the expression of Bmi-1 and CD44V6 proteins in UCC (r=0.419, P=0.001). The over-expression of Bmi-1 and CD44v6 protein closely correlate to the tumorigenesis, metastasis, and prognosis of UCC. Bmi-1 and CD44v6 may be used to predict the prognosis of cervical carcinoma. Bmi-1 may indirectly regulate the expression of CD44v6 in UCC patients. The positive expression of p16 protein is possibly associated with the tumorigenesis, but not with the metastasis or prognosis of UCC.

  5. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180

  6. Expression of Bmi-1, P16, and CD44v6 in Uterine Cervical Carcinoma and Its Clinical Significance

    PubMed Central

    Weng, Mei-ying; Li, Lin; Feng, Shu-ying; Hong, Shun-jia

    2012-01-01

    Objective Bmi-1, a putative proto-oncogene, is a core member of the polycomb gene family, which is expressed in many human tumors. The p16 protein negatively regulated cell proliferation, whereas CD44v6 is associated with proliferation as an important protein. Additionally, CD44v6 is an important nuclear antigen closely correlated to tumor metastasis. The present study aims to investigate the expression and significance of Bmi-1, p16, and CD44v6 in uterine cervical carcinoma (UCC). Methods A total of 62 UCC, 30 cervical neoplasic, and 20 normal cervical mucosal tissues were used in the current study. The expression of Bmi-1, p16, and CD44v6 in these tissues was determined using immunohistochemical assay. The relationships among the expression of these indices, the clinicopathologic features of UCC, and the survival rate of UCC patients were also discussed. The correlation between Bmi-1 protein expression and p16 or CD44v6 protein in UCC was analyzed. Results The expression of Bmi-1, p16, and CD44v6 was significantly high in cervical carcinoma compared with that in the cervical neoplasia and normal colorectal mucosa (P<0.05). The over-expression of Bmi-1 protein in UCC was apparently related to the distant metastasis (P<0.01) and the tumor, nodes and metastasis-classification, i.e. the TNM staging, World Health Organization (P<0.05). Nevertheless, the positive expression of p16 protein in UCC was not significantly associated with the clinicopathologic features (P>0.05). The Kaplan–Meier survival analysis showed that the over-expression of Bmi-1 significantly decreased the survival rate of UCC patients (P<0.05). A strong correlation indicated that there was statistical significance between the expression of Bmi-1 and CD44V6 proteins in UCC (r=0.419, P=0.001). Conclusions The over-expression of Bmi-1 and CD44v6 protein closely correlate to the tumorigenesis, metastasis, and prognosis of UCC. Bmi-1 and CD44v6 may be used to predict the prognosis of cervical carcinoma. Bmi-1 may indirectly regulate the expression of CD44v6 in UCC patients. The positive expression of p16 protein is possibly associated with the tumorigenesis, but not with the metastasis or prognosis of UCC. PMID:23691455

  7. Mycobacterium tuberculosis infection modulates adipose tissue biology

    PubMed Central

    Kühl, Anja A.; Kupz, Andreas; Vogelzang, Alexis; Mollenkopf, Hans-Joachim; Löwe, Delia; Bandermann, Silke; Dorhoi, Anca; Brinkmann, Volker

    2017-01-01

    Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. PMID:29040326

  8. The PBX1 lupus susceptibility gene regulates CD44 expression.

    PubMed

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence

    2017-05-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A small population of resident limb bud mesenchymal cells express few MSC-associated markers, but the expression of these markers is increased immediately after cell culture.

    PubMed

    Marín-Llera, Jessica Cristina; Chimal-Monroy, Jesús

    2018-05-01

    Skeletal progenitors are derived from resident limb bud mesenchymal cells of the vertebrate embryos. However, it remains poorly understood if they represent stem cells, progenitors, or multipotent mesenchymal stromal cells (MSC). Derived-MSC of different adult tissues under in vitro experimental conditions can differentiate into the same cellular lineages that are present in the limb. Here, comparing non-cultured versus cultured mesenchymal limb bud cells, we determined the expression of MSC-associated markers, the in vitro differentiation capacity and their gene expression profile. Results showed that in freshly isolated limb bud mesenchymal cells, the proportion of cells expressing Sca1, CD44, CD105, CD90, and CD73 is very low and a low expression of lineage-specific genes was observed. However, recently seeded limb bud mesenchymal cells acquired Sca1 and CD44 markers and the expression of the key differentiation genes Runx2 and Sox9, while Scx and Pparg genes decreased. Also, their chondrogenic differentiation capacity decreased through cellular passages while the osteogenic increased. Our findings suggest that the modification of the cell adhesion process through the in vitro method changed the limb mesenchymal cell immunophenotype leading to the expression and maintenance of common MSC-associated markers. These findings could have a significant impact on MSC study and isolation strategy because they could explain common variations observed in the MSC immunophenotype in different tissues. © 2018 International Federation for Cell Biology.

  10. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line.

    PubMed

    Nair, Rohini M; Balla, Murali Ms; Khan, Imran; Kalathur, Ravi Kiran Reddy; Kondaiah, Paturu; Vemuganti, Geeta K

    2017-11-21

    Retinoblastoma (Rb), the most common childhood intraocular malignant tumor, is reported to have cancer stem cells (CSCs) similar to other tumors. Our previous investigation in primary tumors identified the small sized cells with low CD133 (Prominin-1) and high CD44 (Hyaluronic acid receptor) expression to be putative Rb CSCs using flow cytometry (FSC lo /SSC lo /CD133 lo /CD44 hi ). With this preliminary data, we have now utilized a comprehensive approach of in vitro characterization of Y79 Rb cell line following CSC enrichment using CD133 surface marker and subsequent validation to confirm the functional properties of CSCs. The cultured Rb Y79 cells were evaluated for surface markers by flow cytometry and CD133 sorted cells (CD133 lo /CD133 hi ) were compared for CSC characteristics by size/percentage, cell cycle assay, colony formation assay, differentiation, Matrigel transwell invasion assay, cytotoxicity assay, gene expression using microarray and validation by semi-quantitative PCR. Rb Y79 cell line shared the profile (CD133, CD90, CXCR4 and ABCB1) of primary tumors except for CD44 expression. The CD133 lo cells (16.1 ± 0.2%) were FSC lo /SSC lo , predominantly within the G0/G1 phase, formed larger and higher number of colonies with ability to differentiate to CD133 hi cells, exhibited increased invasive potential in a matrigel transwell assay (p < 0.05) and were resistant to Carboplatin treatment (p < 0.001) as compared to CD133 hi cells. The CD133 lo cells showed higher expression of several embryonic stem cell genes (HOXB2, HOXA9, SALL1, NANOG, OCT4, LEFTY), stem cells/progenitor genes (MSI2, BMI1, PROX1, ABCB1, ABCB5, ABCG2), and metastasis related gene- MACC1, when compared to the CD133 hi cells. This study validates the observation from our earlier primary tumor study that CSC properties in Rb Y79 cell line are endowed within the CD133 lo population, evident by their characteristics- i.e. small sized, dormant in nature, increased colony forming ability, differentiation to CD133 hi cells, higher invasiveness potential, drug resistance and primitive gene expression pattern. These findings provide a proof of concept for methodological characterization of the retinoblastoma CSCs with future implications for improved diagnostic and treatment strategies.

  11. Conservation of CD44 exon v3 functional elements in mammals

    PubMed Central

    Vela, Elena; Hilari, Josep M; Delclaux, María; Fernández-Bellon, Hugo; Isamat, Marcos

    2008-01-01

    Background The human CD44 gene contains 10 variable exons (v1 to v10) that can be alternatively spliced to generate hundreds of different CD44 protein isoforms. Human CD44 variable exon v3 inclusion in the final mRNA depends on a multisite bipartite splicing enhancer located within the exon itself, which we have recently described, and provides the protein domain responsible for growth factor binding to CD44. Findings We have analyzed the sequence of CD44v3 in 95 mammalian species to report high conservation levels for both its splicing regulatory elements (the 3' splice site and the exonic splicing enhancer), and the functional glycosaminglycan binding site coded by v3. We also report the functional expression of CD44v3 isoforms in peripheral blood cells of different mammalian taxa with both consensus and variant v3 sequences. Conclusion CD44v3 mammalian sequences maintain all functional splicing regulatory elements as well as the GAG binding site with the same relative positions and sequence identity previously described during alternative splicing of human CD44. The sequence within the GAG attachment site, which in turn contains the Y motif of the exonic splicing enhancer, is more conserved relative to the rest of exon. Amplification of CD44v3 sequence from mammalian species but not from birds, fish or reptiles, may lead to classify CD44v3 as an exclusive mammalian gene trait. PMID:18710510

  12. Prognostic relevance of miR-137 in patients with hepatocellular carcinoma.

    PubMed

    Sakabe, Tomohiko; Azumi, Junya; Umekita, Yoshihisa; Toriguchi, Kan; Hatano, Etsuro; Hirooka, Yasuaki; Shiota, Goshi

    2017-02-01

    Cancer stem cells (CSCs) play a pivotal role in progression, metastasis and recurrence of cancer. Therefore, it is clinically useful to identify the relevant CSC marker that is associated with prognosis of hepatocellular carcinoma (HCC) and clarify its genetic and biological characteristics. Expression of four CSC markers, CD13, EpCAM, CD44 and CD44v9, was examined in 99 HCC patients. Biological and cDNA/miRNA microarray data were compared among CD44-positive/-negative HCC cells and normal hepatic cells. The significance of the representative miRNAs was examined with regard to prognosis of additional 110 HCC patients. CD44-positive HuH7 cells proliferated faster and showed a greater sphere forming ability than CD44-negative HuH7 cells. CD44-positive HuH7 cells exhibited higher expression of specific genes involved in resistance to reactive oxygen species, anticancer drugs and tumour invasion than CD44-negative HCC cells. Higher expression of six miRNAs was observed in CD44-positive HuH7 cells, CD44-negative HuH7 cells, and human normal hepatic cells in that order. Of the six miRNAs, miR-137 was closely associated with overall and cancer-specific survivals, as well as with invasion of hepatic vein, hepatic artery, portal vein and bile duct, and alpha-foetoprotein in additional 110 HCC patients. miR-137 may serve as a prognostic marker in patients with HCC and may be a potential target for the elimination of liver CSCs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells.

    PubMed

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-12-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.

  14. Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines

    PubMed Central

    Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav

    2013-01-01

    Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181

  15. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells.

    PubMed

    Johansson, Elinn; Grassi, Elisa S; Pantazopoulou, Vasiliki; Tong, Bei; Lindgren, David; Berg, Tracy J; Pietras, Elin J; Axelson, Håkan; Pietras, Alexander

    2017-08-15

    Hypoxia-inducible factors enhance glioma stemness, and glioma stem cells have an amplified hypoxic response despite residing within a perivascular niche. Still, little is known about differential HIF regulation in stem versus bulk glioma cells. We show that the intracellular domain of stem cell marker CD44 (CD44ICD) is released at hypoxia, binds HIF-2α (but not HIF-1α), enhances HIF target gene activation, and is required for hypoxia-induced stemness in glioma. In a glioma mouse model, CD44 was restricted to hypoxic and perivascular tumor regions, and in human glioma, a hypoxia signature correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo-hypoxic phenotype of stem-like glioma cells is achieved by stabilization of HIF-2α through interaction with CD44, independently of oxygen. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo.

    PubMed

    Chen, Yinting; Lian, Guoda; Liao, Chengde; Wang, Weiwei; Zeng, Linjuan; Qian, Chenchen; Huang, Kaihong; Shuai, Xintao

    2013-07-01

    Gene therapy is a promising therapeutic method but is severely hampered due to its lack of an ideal delivery system. Therefore, in this study, a nonviral and magnetic resonance imaging (MRI) visible vector, polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) was used as a nanocarrier for small interfering RNA (siRNA) delivery in gastric cancer. Biophysical characterization of PEG-g-PEI-SPION was systematically analyzed, including size, zeta potential, siRNA condensation capacity, cell viability, transfection efficiency, cellular uptake, and MRI-visible function in vivo. Besides, CD44 variant isoform 6 (CD44v6), a protein marker for metastatic behavior in gastric cancer, and was chose as the target gene to further analyze the siRNA delivery function of PEG-g-PEI-SPION. Under comprehensive analysis, the appropriate N/P ratio of PEG-g-PEI-SPION/siRNA was 10, and siRNA targeting at human CD44v6 (siCD44v6) transferred by PEG-g-PEI-SPION was effective at downregulating the CD44v6 expression of gastric carcinoma cell line SGC-7901 in vitro. Moreover, knockdown of CD44v6 impaired migrating and invasive abilities of SGC-7901 cells. Furthermore, PEG-g-PEI-SPION was a highly efficient contrast agent for MRI scan in vivo. PEG-g-PEI-SPION was a promising nonviral vector with molecular image tracing capacity for cancer gene therapy. And CD44v6 was a potential target gene for the prevention and detection of metastatic behavior in gastric cancer.

  17. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells.

    PubMed

    Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella

    2017-01-16

    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24- cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.

  18. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-08-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, "omics" methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl2-treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl2. These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  19. CD44 expression is related to poor prognosis of hypopharyngeal squamous cell carcinoma.

    PubMed

    Uwa, Nobuhiro; Kataoka, Tatsuki R; Torii, Ikuko; Sato, Ayuko; Nishigami, Takashi; Song, Misa; Daimon, Takashi; Saeki, Nobuo; Sagawa, Kousuke; Mouri, Takeshi; Terada, Tomonori; Sakagami, Masafumi; Tsujimura, Tohru

    2011-03-01

    CD44 expression in hypopharyngeal squamous cell carcinomas (SCCs) is closely associated with poor prognosis for patients. CD44 may serve as a prognostic marker for hypopharyngeal SCCs. CD44, an adhesion molecule binding to extracellular matrix, is believed to participate in the progression of malignancies. To clarify the role of CD44 in the progression of hypopharyngeal SCCs, we examined CD44 expression in relation to clinical parameters in hypopharyngeal SCCs. Biopsy specimens of hypopharyngeal SCCs were collected from 40 untreated patients, and their CD44 expression was examined immunohistochemically. Hypopharyngeal SCCs were classified into two groups: CD44-low SCCs comprising < 50% CD44-positive tumor cells and CD44-high SCCs comprising ≥ 50% CD44-positive tumor cells. The relation between CD44 expression and various parameters (clinical T and N stages, distant metastasis, and pathological T and N stages) was analyzed by Fisher's exact test. The relation between CD44 expression and the 5-year disease-free survival (DFS) rate was also analyzed by log rank test. The CD44 expression in hypopharyngeal SCCs was related to pathological N stage, but not to clinical T and N stages and pathological T stage, of the patients. Distant metastasis during the follow-up occurred more frequently in patients with CD44-high SCCs than those with CD44-low SCCs. The 5-year DFS was significantly lower in the former than in the latter.

  20. CD44s and CD44v6 Expression in Head and Neck Epithelia

    PubMed Central

    Mack, Brigitte; Gires, Olivier

    2008-01-01

    Background CD44 splice variants are long-known as being associated with cell transformation. Recently, the standard form of CD44 (CD44s) was shown to be part of the signature of cancer stem cells (CSCs) in colon, breast, and in head and neck squamous cell carcinomas (HNSCC). This is somewhat in contradiction to previous reports on the expression of CD44s in HNSCC. The aim of the present study was to clarify the actual pattern of CD44 expression in head and neck epithelia. Methods Expression of CD44s and CD44v6 was analysed by immunohistochemistry with specific antibodies in primary head and neck tissues. Scoring of all specimens followed a two-parameters system, which implemented percentages of positive cells and staining intensities from − to +++ (score = %×intensity; resulting max. score 300). In addition, cell surface expression of CD44s and CD44v6 was assessed in lymphocytes and HNSCC. Results In normal epithelia CD44s and CD44v6 were expressed in 60–95% and 50–80% of cells and yielded mean scores with a standard error of a mean (SEM) of 249.5±14.5 and 198±11.13, respectively. In oral leukoplakia and in moderately differentiated carcinomas CD44s and CD44v6 levels were slightly increased (278.9±7.16 and 242±11.7; 291.8±5.88 and 287.3±6.88). Carcinomas in situ displayed unchanged levels of both proteins whereas poorly differentiated carcinomas consistently expressed diminished CD44s and CD44v6 levels. Lymphocytes and HNSCC lines strongly expressed CD44s but not CD44v6. Conclusion CD44s and CD44v6 expression does not distinguish normal from benign or malignant epithelia of the head and neck. CD44s and CD44v6 were abundantly present in the great majority of cells in head and neck tissues, including carcinomas. Hence, the value of CD44s as a marker for the definition of a small subset of cells (i.e. less than 10%) representing head and neck cancer stem cells may need revision. PMID:18852874

  1. HAb18G/CD147 Promotes pSTAT3-Mediated Pancreatic Cancer Development via CD44s †, ‡

    PubMed Central

    Li, Ling; Tang, Wenhua; Wu, Xiaoqing; Karnak, David; Meng, Xiaojie; Thompson, Rachel; Hao, Xinbao; Li, Yongmin; Qiao, Xiaotan T.; Lin, Jiayuh; Fuchs, James; Simeone, Diane M.; Chen, Zhi-Nan; Lawrence, Theodore S.; Xu, Liang

    2013-01-01

    Purpose STAT3 plays a critical role in initiation and progression of pancreatic cancer. However, therapeutically targeting STAT3 is failure in clinic. We previously identified HAb18G/CD147 as an effective target for cancer treatment. In this study, we aimed to investigate potential role of HAb18G/CD147 in STAT3-involved pancreatic tumorigenesis in vitro and in vivo. Experimental Design The expression of HAb18G/CD147, pSTAT3 and CD44s were determined in tissue microarrays. The tumorigenic function and molecular signaling mechanism of HAb18G/CD147 was assessed by in vitro cellular and clonogenic growth, reporter assay, immunoblot, immunofluorescence staining, immunoprecipitation, and in vivo tumor formationusing loss or gain-of-function strategies. Results Highly expressed HAb18G/CD147 promoted cellular and clonogenic growth in vitro and tumorigenicity in vivo. CyPA, a ligand of CD147, stimulated STAT3 phosphorylation and its downstream genes cyclin D1/survivin through HAb18G/CD147 dependent mechanisms. HAb18G/CD147 was associated and co-localized with cancer stem cell marker CD44s in lipid rafts. The inhibitors of STAT3 and survivin, as well as CD44s neutralizing antibodies suppressed the HAb18G/CD147-induced cell growth. High HAb18G/CD147 expression in pancreatic cancer was significantly correlated with the poor tumor differentiation, and the high co-expression of HAb18G/CD147-CD44s-STAT3 associated with poor survival of patients with pancreatic cancer. Conclusions We identified HAb18G/CD147 as a novel upstream activator of STAT3 via interacts with CD44s and plays a critical role in the development of pancreatic cancer. The data suggest HAb18G/CD147 could be a promising therapeutic target for highly aggressive pancreatic cancer and a surrogate marker in the STAT3-targeted molecular therapies. PMID:24132924

  2. Prognostic value of CD44 expression in penile squamous cell carcinoma: a pilot study.

    PubMed

    Minardi, Daniele; Lucarini, Guendalina; Filosa, Alessandra; Zizzi, Antonio; Simonetti, Oriana; Offidani, Anna Maria; d'Anzeo, Gianluca; Di Primio, Roberto; Montironi, Rodolfo; Muzzonigro, Giovanni

    2012-10-01

    Several studies have reported on the prognostic value of molecular markers for metastasis risk and survival in penile squamous cell carcinoma (SCC) patients. The usefulness of CD44 expression as such a marker has been studied in different tumors, but not in penile SCC. Our aim was to determine whether CD44 expression may serve as a prognostic marker for lymph node metastasis and survival in penile SCC patients. CD44 immunoistochemical expression was investigated in tissue specimens from 39 patients with penile SCC. CD44 cell positivity, staining intensity and distribution were analyzed and correlated with tumor stage, grade, lymph node status and disease-specific survival. CD44 expression was detected in epithelial cells of both intratumoral and normal tissues with different intensities and staining distributions. In normal tissues CD44 protein was mainly detected in cell membranes, whereas in the tumor compartments it was found in both the cell membranes and the cytoplasm. The intensities and percentages of CD44 expressing cells did not correlate with tumor stage and/or grade. Seventy-three percent of the patients with lymph node metastasis showed high intensities of CD44 staining, as compared to 44% of the patients without lymph node metastasis (P = 0.03). Lymph node-positive patients showed both cytoplasmic and membranous CD44 expression. High CD44 expression was found to be significantly correlated with a decreased 5 year overall survival (P = 0.01). CD44 levels and patterns of expression can be considered as markers for penile SCC aggressiveness and, in addition, may serve as predictive markers for lymph node metastasis, also in patients with clinically negative lymph nodes. CD44 expression may provide prognostic information for penile SCC patients, next to classical clinical-pathological factors.

  3. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24− cancer cells

    PubMed Central

    Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella

    2017-01-01

    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24− cell surface marker profile. Here, we report that human CD44+/CD24− cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24− cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24− state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24− cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness. DOI: http://dx.doi.org/10.7554/eLife.21615.001 PMID:28092266

  4. Expression of CD44s and CD44v6 in transitional cell carcinomas of the urinary bladder: comparison with tumour grade, proliferative activity and p53 immunoreactivity of tumour cells.

    PubMed

    Kuncová, Jitka; Urban, Michael; Mandys, Václav

    2007-11-01

    Alterations of CD44 glycoproteins have been shown to play an important role in progression of various malignancies, including urothelial cancer. We investigated expression patterns of CD44s and CD44v6 in transitional cell carcinoma (TCC) of the urinary bladder in relation to tumour grade, proliferative activity, and immunoreactivity for p53. The selected markers were detected immunohistochemically in 122 samples of TCC. We found a close relationship between CD44s and CD44v6 expression and tumour grade. The extension of positive staining for CD44s and CD44v6 towards the luminal surface was a predominant feature of differentiated carcinomas (grades 1 and 2), suggesting deranged maturation of cancer cells related to their neoplastic transformation. Heterogeneous expression of CD44s and CD44v6 predominated in poorly differentiated tumours (G3-4). However, areas of squamous differentiation within the high-grade tumours displayed strong immunoreactivity for both CD44s and CD44v6. The proliferative activity and p53 overexpression increased with the dedifferentiation of the tumour. The results of this study are discussed in relation to the significance of CD44 expression in TCC and to the explanation for controversial results reported in previous studies on the relationship between CD44 expression and the biological behaviour of urothelial cells.

  5. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    PubMed

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    PubMed

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  7. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure.

    PubMed

    Huang, S; Guo, S; Guo, F; Yang, Q; Xiao, X; Murata, M; Ohnishi, S; Kawanishi, S; Ma, N

    2013-01-14

    Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC). To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the HaCaT cells line to an environmentally relevant level of arsenic (0.05 ppm) in vitro for 18 weeks. Following sodium arsenic arsenite administration, cell cycle, colony-forming efficiency (CFE), cell tumorigenicity, and expression of CD44v6, NF-κB and p53, were analyzed at different time points (0, 5, 10, 15, 20, 25 and 30 passages). We found that a chronic exposure of HaCaT cells to a low level of arsenic induced a cancer stem- like phenotype. Furthermore, arsenic-treated HaCaT cells also became tumorigenic in nude mice, their growth cycle was predominantly in G2/M and S phases. Relative to nontreated cells, they exhibited a higher growth rate and a significant increase in CFE. Western blot analysis found that arsenic was capable of increasing cell proliferation and sprouting of cancer stem-like phenotype. Additionally, immunohistochemical analysis demonstrated that CD44v6 expression was up-regulated in HaCaT cells exposed to a low level of arsenic during early stages of induction. The expression of CD44v6 in arsenic-treated cells was positively correlated with their cloning efficiency in soft agar (r=0.949, P=0.01). Likewise, the expressions of activating transcription factor NF-κB and p53 genes in the arsenic-treated HaCaT cells were significantly higher than that in non-treated cells. Higher expressions of CD44v6, NF-κB and p53 were also observed in tumor tissues isolated from Balb/c nude mice. The present results suggest that CD44v6 may be a biomarker of arsenic-induced neoplastic transformation in human skin cells, and that arsenic promotes malignant transformation in human skin lesions through a NF-κB signaling pathway-stimulated expression of CD44v6.

  8. Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells.

    PubMed

    Fatimah, Simat Siti; Tan, Geok Chin; Chua, Kienhui; Fariha, Mohd Manzor Nur; Tan, Ay Eeng; Hayati, Abdul Rahman

    2013-03-01

    Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs. HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the stemness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, stemness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Low molecular weight (LMW) heparin inhibits injury-induced femoral artery remodeling in mouse via upregulating CD44 expression.

    PubMed

    Zhao, Gaofeng; Shaik, Rahamthulla S; Zhao, Hang; Beagle, John; Kuo, Shuennwen; Hales, Charles A

    2011-05-01

    The mechanism of postangioplasty restenosis remains poorly understood. Low molecular weight (LMW) heparin has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), which is the principal characteristic of restenosis. Studies have shown that LMW heparin could bind to CD44. We hypothesized that LMW heparin might modulate CD44 expression thereby decreasing vascular remodeling. Vascular remodeling was induced in CD44(+/+) and CD44(-/-) mice and treated with LMW heparin. The arteries were harvested for histologic assessment and determination of CD44 expression. Bone marrow transplantation was introduced to further explore the role and functional sites of CD44. Effects of LMW heparin on growth capacity, CD44 expression were further studied using the cultured mouse VSMCs. Transluminal injury induced remarkable remodeling in mouse femoral artery (sham wall thickness percentage [WT%]: 3.4 ± 1.2% vs injury WT%: 31.8 ± 4.7%; P < .001). LMW heparin reduced the remodeling significantly (WT%: 17.8 ± 3.5%, P < .005). CD44(-/-) mice demonstrated considerably thicker arterial wall remodeling (WT%: 46.2 ± 7.6%, P = .0035), and CD44-chimeric mice exhibited equal contributions of the local and circulating CD44 signal to the neointima formation. LMW heparin markedly upregulated CD44 expression in the injured femoral arteries. In vitro, LMW heparin decreased mouse VSMC growth capacity and upregulated its CD44 expression simultaneously in a dose-dependent and time-dependent manner, which could be partially blocked by CD44 inhibitor. LMW heparin inhibits injury-induced femoral artery remodeling, at least partially, by upregulating CD44 expression. Copyright © 2011. Published by Mosby, Inc.

  10. Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival

    PubMed Central

    Balz, Ellen; Herzog, Susann; Plantera, Laura; Vogelgesang, Silke; Seifert, Carolin; Bialke, Angela; Venugopal, Chitra; Singh, Sheila K.; Hoffmann, Wolfgang; Schroeder, Henry W. S.

    2018-01-01

    Patients with glioblastoma multiforme (GBM) are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs) are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin) as well as differentiation and microglia markers (GFAP, Iba1, and Sparc) in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed. PMID:29535786

  11. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  12. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression.

    PubMed

    Rani, Bhavna; Malfettone, Andrea; Dituri, Francesco; Soukupova, Jitka; Lupo, Luigi; Mancarella, Serena; Fabregat, Isabel; Giannelli, Gianluigi

    2018-03-07

    Cancer stem cells (CSCs) niche in the tumor microenvironment is responsible for cancer recurrence and therapy failure. To better understand its molecular and biological involvement in hepatocellular carcinoma (HCC) progression, one can design more effective therapies and tailored then to individual patients. While sorafenib is currently the only approved drug for first-line treatment of advanced stage HCC, its role in modulating the CSC niche is estimated to be small. By contrast, transforming growth factor (TGF)-β pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway may offer an appealing and druggable target. In our study, we have used galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5) activation, currently under clinical investigation in HCC patients. Because the drug resistance is mainly mediated by CSCs, we tested the effects of galunisertib on stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC niche and drug resistance. Galunisertib modulated the expression of stemness-related genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related functions of invasive HCC cells decreasing the formation of colonies, liver spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked the galunisertib effects on HCC stemness-related functions. Galunisertib treatment also reduced the expression of stemness-related genes in ex vivo human HCC specimens. Our observations are the first evidence that galunisertib effectiveness overcomes stemness-derived aggressiveness via decreased expression CD44 and THY1.

  13. CD44v6 expression in patients with stage II or stage III sporadic colorectal cancer is superior to CD44 expression for predicting progression

    PubMed Central

    Zhao, LH; Lin, QL; Wei, J; Huai, YL; Wang, KJ; Yan, HY

    2015-01-01

    Background: Currently, it is difficult to predict the prognosis of patients exhibiting stage II or stage III colorectal cancer (CRC) and to identify those patients most likely to benefit from aggressive treatment. The current study was performed to examine the clinicopathological significance of CD44 and CD44v6 protein expression in these patients. Study design: We retrospectively investigated 187 consecutive patients who underwent surgery with curative intent for stage II to III CRC from 2007 to 2013 in the Beijing Civil Aviation Hospital. CD44 and CD44v6 protein expression levels were determined using immunohistochemistry and compared to the clinicopathological data. Results: Using immunohistochemical detection, CD44 expression was observed in 108 (57.75%) of the CRC patients; and its detection was significantly associated with greater invasion depth, lymph node metastasis, angiolymphatic invasion, and a more advanced pathological tumor-lymph node-metastasis (TNM) stage. CD44v6 expression was observed in 135 (72.19%) of the CRC patients; and its expression was significantly associated with a poorly differentiated histology, greater invasion depth, lymph node metastasis, angiolymphatic invasion, and a more advanced pathological TNM stage. Expression of CD44v6 was higher than that of CD44 in stage II and stage III sporadic CRC. Conclusion: CD44v6 is a more useful marker for predicting a poor prognosis in stage II and stage III sporadic CRC as compared to CD44. PMID:25755763

  14. CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway

    PubMed Central

    Jijiwa, Mayumi; Demir, Habibe; Gupta, Snehalata; Leung, Crystal; Joshi, Kaushal; Orozco, Nicholas; Huang, Tiffany; Yildiz, Vedat O.; Shibahara, Ichiyo; de Jesus, Jason A.; Yong, William H.; Mischel, Paul S.; Fernandez, Soledad; Kornblum, Harley I.; Nakano, Ichiro

    2011-01-01

    Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44high GBM but not from CD44low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44high GBM, but not in CD44low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKTpathway. PMID:21915300

  15. The Selective Centrifugation Ensures a Better In Vitro Isolation of ASCs and Restores a Soft Tissue Regeneration In Vivo.

    PubMed

    De Francesco, Francesco; Guastafierro, Antonio; Nicoletti, Gianfranco; Razzano, Sergio; Riccio, Michele; Ferraro, Giuseppe A

    2017-05-12

    Autologous fat grafting procedures in plastic surgery have been extensively used to reinforce soft tissue in congenital or acquired tissue impairments. With this background, the aim of this study is firstly to examine the impact of a selective centrifugation on existing adipose stem cells (ASCs) in terms of stemness profile maintenance and, secondly, to investigate the effect of restoring volume in reconstruction on patients affected by soft tissue damage. After centrifugation, the fat graft products were separated into two layers and subsequently examined in vitro for the expression of CD34, CD90, CD117, CD105, CD29, CD31, CD44, CD73, CD133, CD14 and CD45 markers by flow cytometry and gene expression analyses were performed for Sox2, WNT3A, END, CD44, FUT4, COLL1, CTNNB1, hbEGF, KRTLG, MMP2 and VIM genes. The results showed that in the middle-high density (MHD) layer there was a peak concentration of ASCs, compared to another layer obtained after centrifugation. Research carried out on patients under treatment for soft tissue regeneration using cells obtained from MHD layer selection will be fundamental in comparative analysis. These studies will lead to an adequate standardization of outcomes, provided that treatment is performed through cell selection. Therefore, a unique procedure in tissue reconstruction and regeneration through fat grafting is presented here.

  16. The Geonomic Organization of the CD28 Gene. Implications for the Regulation of CD28 mRNA Expression and Heterogeneity

    DTIC Science & Technology

    1990-07-01

    doanrmsialecgtonptcelsvstsrtinrnsoa Partial primary structure of the alpha and beta chains of human tdomn ctmvity nat Nrento 320 ticl levsis.ti tasoa...L. Moretta. and C. MW. Croce. tlon and RNA splicing defects in five cloned j6- thalassaemia genes. 1987. Tp44 molecules Involved In antigen-independent T cell acti- Na t ure 302:59 1.

  17. MicroRNA miR-328 Regulates Zonation Morphogenesis by Targeting CD44 Expression

    PubMed Central

    Wang, Chia-Hui; Lee, Daniel Y.; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B.

    2008-01-01

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion. PMID:18560585

  18. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    PubMed

    Wang, Chia-Hui; Lee, Daniel Y; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B

    2008-06-18

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  19. [LincRNA-ROR functions as a ceRNA to regulate Oct4, Sox2, and Nanog expression by sponging miR-145 and its effect on biologic characteristics of colonic cancer stem cells].

    PubMed

    Yan, Z Y; Sun, X C

    2018-04-08

    Objective: To investigate the impact of lincRNA-ROR, a ceRNA by binding miR-145 on the expression of the downstream genes Oct4, Sox2 and Nanog, and related biological characteristics of colon cancer stem cells, and to elucidate the clinical significance of this molecular regulatory network. Methods: Fifty-two cases of colorectal cancer tissue and adjacent tissue were collected at Nanyang City Central Hospital and Nanyang Second Hospital, Henan Province, from 2014 to 2016. Real-time quantitative polymerase chain reaction (qPCR) was used to detect the expression of lincRNA-ROR and miR-145 in colorectal cancer tissue and isolated colon cancer cells. The correlation between the expression of lincRNA-ROR, miR-145 and the clinicopathologic features of colon cancer was performed. CD44(-)CD133(-) and CD44(+) CD133(+) cells were isolated from SW1116 by using flow cytometry. The expression of CD44, CD133, Oct4, Sox2, Nanog, lincRNA-ROR and miR-145 in cells were detected by qPCR. The relationship between lincRNA-ROR, miR-145, Oct4, Sox2 and Nanog was analyzed by bioinformatics, dual luciferase reporter assay, qPCR and Western blot. The effects of silencing lincRNA-ROR on the proliferation and chemosensitivity of colon cancer stem cells were detected by MTT, colony formation. Results: LincRNA-ROR was frequently up-regulated and inversely correlated with miR-145 down-regulation in the colon cancer specimens( P <0.05). LincRNA-ROR was related to tumor size, lymph node involvement and distant metastasis( P <0.05), and miR-145 was found related to tumor size and tumor location( P <0.05). CD44(+) CD133(+) cells were successfully isolated from SW1116 by flow cytometry. The levels of CD44, CD133, Oct4, Sox2, Nanog, lincRNA-ROR in CD44(+) CD133(+) cells were significantly increased, while miR-145 was decreased compared with CD44(-)CD133(-)cells( P <0.05). The levels of CD44, CD133, lnc-ROR in CD44(+) CD133(+) cells were significantly reduced upon cell adherence, while miR-145 was significantly increased( P <0.05). Bioinformatics analysis revealed that lincRNA-ROR shared miRNA response elements with core transcription factors Oct4, Sox2 and Nanog. MiR-145 significantly inhibited the expression of lincRNA-ROR, Oct4, Sox2 and Nanog. Silencing lincRNA-ROR significantly inhibited colon cancer stem cells proliferation and increased the sensitivity to chemotherapy. Conclusions: Linc-ROR functions as a key ceRNA to prevent core TFs, e. g., Oct4, Sox2, Nanog, from miR-145-mediated suppression in colon cancer stem cells and regulates cell proliferation and chemosensitivity.The data may provide insights into the pathophysiological interactions of the components of genetic networks in the development of colon cancer and may lead to new therapies in the future.

  20. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.

    PubMed

    Ge, Haitao; Mu, Luyan; Jin, Linchun; Yang, Changlin; Chang, Yifan Emily; Long, Yu; DeLeon, Gabriel; Deleyrolle, Loic; Mitchell, Duane A; Kubilis, Paul S; Lu, Dunyue; Qi, Jiping; Gu, Yunhe; Lin, Zhiguo; Huang, Jianping

    2017-10-01

    Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM. © 2017 UICC.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells.more » That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.« less

  2. Whole-Transcriptome Analysis of CD133+CD144+ Cancer Stem Cells Derived from Human Laryngeal Squamous Cell Carcinoma Cells.

    PubMed

    Wu, Yongyan; Zhang, Yuliang; Niu, Min; Shi, Yong; Liu, Hongliang; Yang, Dongli; Li, Fei; Lu, Yan; Bo, Yunfeng; Zhang, Ruiping; Li, Zhenyu; Luo, Hongjie; Cui, Jiajia; Sang, Jiangwei; Xiang, Caixia; Gao, Wei; Wen, Shuxin

    2018-06-27

    CD133+CD44+ cancer stem cells previously isolated from laryngeal squamous cell carcinoma (LSCC) cell lines showed strong malignancy and tumorigenicity. However, the molecular mechanism underlying the enhanced malignancy remained unclear. Cell proliferation assay, spheroid-formation experiment, RNA sequencing (RNA-seq), miRNA-seq, bioinformatic analysis, quantitative real-time PCR, migration assay, invasion assay, and luciferase reporter assay were used to identify differentially expressed mRNAs, lncRNAs, circRNAs and miRNAs, construct transcription regulatory network, and investigate functional roles and mechanism of circRNA in CD133+CD44+ laryngeal cancer stem cells. Differentially expressed genes in TDP cells were mainly enriched in the biological processes of cell differentiation, regulation of autophagy, negative regulation of cell death, regulation of cell growth, response to hypoxia, telomere maintenance, cellular response to gamma radiation, and regulation of apoptotic signaling, which are closely related to the malignant features of tumor cells. We constructed the regulatory network of differentially expressed circRNAs, miRNAs and mRNAs. qPCR findings for the expression of key genes in the network were consistent with the sequencing data. Moreover, our data revealed that circRNA hg19_circ_0005033 promotes proliferation, migration, invasion, and chemotherapy resistance of laryngeal cancer stem cells. This study provides potential biomarkers and targets for LSCC diagnosis and therapy, and provide important evidences for the heterogeneity of LSCC cells at the transcription level. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    PubMed Central

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  4. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer

    PubMed Central

    Gao, Yan; Foster, Rosemary; Yang, Xiaoqian; Feng, Yong; Shen, Jacson K.; Mankin, Henry J.; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    The clinical significance of Cluster of Differentiation 44 (CD44) remains controversial in human ovarian cancer. The aim of this study is to evaluate the clinical significance of CD44 expression by using a unique tissue microarray, and then to determine the biological functions of CD44 in ovarian cancer. In this study, a unique ovarian cancer tissue microarray (TMA) was constructed with paired primary, metastatic, and recurrent tumor tissues from 26 individual patients. CD44 expression in TMA was assessed by immunohistochemistry. Both the metastatic and recurrent ovarian cancer tissues expressed higher level of CD44 than the patient-matched primary tumor. A significant association has been shown between CD44 expression and both the disease free survival and overall survival. A strong increase of CD44 was found in the tumor recurrence of mouse model. Finally, when CD44 was knocked down, proliferation, migration/invasion activity, and spheroid formation were significantly suppressed, while drug sensitivity was enhanced. Thus, up-regulation of CD44 represents a crucial event in the development of metastasis, recurrence, and drug resistance to current treatments in ovarian cancer. Developing strategies to target CD44 may prevent metastasis, recurrence, and drug resistance in ovarian cancer. PMID:25823654

  5. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer.

    PubMed

    Gao, Yan; Foster, Rosemary; Yang, Xiaoqian; Feng, Yong; Shen, Jacson K; Mankin, Henry J; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-04-20

    The clinical significance of Cluster of Differentiation 44 (CD44) remains controversial in human ovarian cancer. The aim of this study is to evaluate the clinical significance of CD44 expression by using a unique tissue microarray, and then to determine the biological functions of CD44 in ovarian cancer. In this study, a unique ovarian cancer tissue microarray (TMA) was constructed with paired primary, metastatic, and recurrent tumor tissues from 26 individual patients. CD44 expression in TMA was assessed by immunohistochemistry. Both the metastatic and recurrent ovarian cancer tissues expressed higher level of CD44 than the patient-matched primary tumor. A significant association has been shown between CD44 expression and both the disease free survival and overall survival. A strong increase of CD44 was found in the tumor recurrence of mouse model. Finally, when CD44 was knocked down, proliferation, migration/invasion activity, and spheroid formation were significantly suppressed, while drug sensitivity was enhanced. Thus, up-regulation of CD44 represents a crucial event in the development of metastasis, recurrence, and drug resistance to current treatments in ovarian cancer. Developing strategies to target CD44 may prevent metastasis, recurrence, and drug resistance in ovarian cancer.

  6. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene

    PubMed Central

    Casucci, Monica; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Porcellini, Simona; Stornaiuolo, Anna; Ciceri, Fabio; Traversari, Catia; Bordignon, Claudio; Bonini, Chiara; Bondanza, Attilio

    2018-01-01

    Chimeric antigen receptor (CAR)-T cell immunotherapy is at the forefront of innovative cancer therapeutics. However, lack of standardization of cellular products within the same clinical trial and lack of harmonization between different trials have hindered the clear identification of efficacy and safety determinants that should be unveiled in order to advance the field. With the aim of facilitating the isolation and in vivo tracking of CAR-T cells, we here propose the inclusion within the CAR molecule of a novel extracellular spacer based on the low-affinity nerve-growth-factor receptor (NGFR). We screened four different spacer designs using as target antigen the CD44 isoform variant 6 (CD44v6). We successfully generated NGFR-spaced CD44v6 CAR-T cells that could be efficiently enriched with clinical-grade immuno-magnetic beads without negative consequences on subsequent expansion, immuno-phenotype, in vitro antitumor reactivity, and conditional ablation when co-expressing a suicide gene. Most importantly, these cells could be tracked with anti-NGFR monoclonal antibodies in NSG mice, where they expanded, persisted, and exerted potent antitumor effects against both high leukemia and myeloma burdens. Similar results were obtained with NGFR-enriched CAR-T cells specific for CD19 or CEA, suggesting the universality of this strategy. In conclusion, we have demonstrated that the incorporation of the NGFR marker gene within the CAR sequence allows for a single molecule to simultaneously work as a therapeutic and selection/tracking gene. Looking ahead, NGFR spacer enrichment might allow good manufacturing procedures-manufacturing of standardized CAR-T cell products with high therapeutic potential, which could be harmonized in different clinical trials and used in combination with a suicide gene for future application in the allogeneic setting. PMID:29619024

  7. Prostate Cancer Stem Cell-Targeted Efficacy of a New-Generation Taxoid, SBT-1214 and Novel Polyenolic Zinc-Binding Curcuminoid, CMC2.24

    PubMed Central

    Botchkina, Galina I.; Zuniga, Edison S.; Rowehl, Rebecca H.; Park, Rosa; Bhalla, Rahuldev; Bialkowska, Agnieszka B.; Johnson, Francis; Golub, Lorne M.; Zhang, Yu; Ojima, Iwao; Shroyer, Kenneth R.

    2013-01-01

    Background Prostate cancer is the second leading cause of cancer death among men. Multiple evidence suggests that a population of tumor-initiating, or cancer stem cells (CSCs) is responsible for cancer development and exceptional drug resistance, representing a highly important therapeutic target. The present study evaluated CSC-specific alterations induced by new-generation taxoid SBT-1214 and a novel polyenolic zinc-binding curcuminoid, CMC2.24, in prostate CSCs. Principal Findings The CD133high/CD44high phenotype was isolated from spontaneously immortalized patient-derived PPT2 cells and highly metastatic PC3MM2 cells. Weekly treatment of the NOD/SCID mice bearing PPT2- and PC3MM3-induced tumors with the SBT-1214 led to dramatic suppression of tumor growth. Four of six PPT2 and 3 of 6 PC3MM2 tumors have shown the absence of viable cells in residual tumors. In vitro, SBT-1214 (100nM-1µM; for 72 hr) induced about 60% cell death in CD133high/CD44+/high cells cultured on collagen I in stem cell medium (in contrast, the same doses of paclitaxel increased proliferation of these cells). The cytotoxic effects were increased when SBT-1214 was combined with the CMC2.24. A stem cell-specific PCR array assay revealed that this drug combination mediated massive inhibition of multiple constitutively up-regulated stem cell-related genes, including key pluripotency transcription factors. Importantly, this drug combination induced expression of p21 and p53, which were absent in CD133high/CD44high cells. Viable cells that survived this treatment regimen were no longer able to induce secondary spheroids, exhibited significant morphological abnormalities and died in 2-5 days. Conclusions We report here that the SBT-1214 alone, or in combination with CMC2.24, possesses significant activity against prostate CD133high/CD44+/high tumor-initiating cells. This drug combination efficiently inhibits expression of the majority of stem cell-related genes and pluripotency transcription factors. In addition, it induces a previously absent expression of p21 and p53 (“gene wake-up”), which can potentially reverse drug resistance by increasing sensitivity to anti-cancer drugs. PMID:24086245

  8. The Selective Centrifugation Ensures a Better In Vitro Isolation of ASCs and Restores a Soft Tissue Regeneration In Vivo

    PubMed Central

    De Francesco, Francesco; Guastafierro, Antonio; Nicoletti, Gianfranco; Razzano, Sergio; Riccio, Michele; Ferraro, Giuseppe A.

    2017-01-01

    Autologous fat grafting procedures in plastic surgery have been extensively used to reinforce soft tissue in congenital or acquired tissue impairments. With this background, the aim of this study is firstly to examine the impact of a selective centrifugation on existing adipose stem cells (ASCs) in terms of stemness profile maintenance and, secondly, to investigate the effect of restoring volume in reconstruction on patients affected by soft tissue damage. After centrifugation, the fat graft products were separated into two layers and subsequently examined in vitro for the expression of CD34, CD90, CD117, CD105, CD29, CD31, CD44, CD73, CD133, CD14 and CD45 markers by flow cytometry and gene expression analyses were performed for Sox2, WNT3A, END, CD44, FUT4, COLL1, CTNNB1, hbEGF, KRTLG, MMP2 and VIM genes. The results showed that in the middle-high density (MHD) layer there was a peak concentration of ASCs, compared to another layer obtained after centrifugation. Research carried out on patients under treatment for soft tissue regeneration using cells obtained from MHD layer selection will be fundamental in comparative analysis. These studies will lead to an adequate standardization of outcomes, provided that treatment is performed through cell selection. Therefore, a unique procedure in tissue reconstruction and regeneration through fat grafting is presented here. PMID:28498335

  9. CD44+ Cancer Stem-Like Cells in EBV-Associated Nasopharyngeal Carcinoma

    PubMed Central

    Lun, Samantha Wei-Man; Cheung, Siu Tim; Cheung, Phyllis Fung Yi; To, Ka-Fai; Woo, John Kong-Sang; Choy, Kwong-Wai; Chow, Chit; Cheung, Chartia Ching-Mei; Chung, Grace Tin-Yun; Cheng, Alice Suk-Hang; Ko, Chun-Wai; Tsao, Sai-Wah; Busson, Pierre; Ng, Margaret Heung-Ling; Lo, Kwok-Wai

    2012-01-01

    Nasopharyngeal carcinoma (NPC) is a unique EBV-associated epithelial malignancy, showing highly invasive and metastatic phenotype. Despite increasing evidence demonstrating the critical role of cancer stem-like cells (CSCs) in the maintenance and progression of tumors in a variety of malignancies, the existence and properties of CSC in EBV-associated NPC are largely unknown. Our study aims to elucidate the presence and role of CSCs in the pathogenesis of this malignant disease. Sphere-forming cells were isolated from an EBV-positive NPC cell line C666-1 and its tumor-initiating properties were confirmed by in vitro and in vivo assays. In these spheroids, up-regulation of multiple stem cell markers were found. By flow cytometry, we demonstrated that both CD44 and SOX2 were overexpressed in a majority of sphere-forming C666-1 cells. The CD44+SOX2+ cells was detected in a minor population in EBV-positive xenografts and primary tumors and considered as potential CSC in NPC. Notably, the isolated CD44+ NPC cells were resistant to chemotherapeutic agents and with higher spheroid formation efficiency, showing CSC properties. On the other hand, microarray analysis has revealed a number of differentially expressed genes involved in transcription regulation (e.g. FOXN4, GLI1), immune response (CCR7, IL8) and transmembrane transport (e.g. ABCC3, ABCC11) in the spheroids. Among these genes, increased expression of CCR7 in CD44+ CSCs was confirmed in NPC xenografts and primary tumors. Importantly, blocking of CCR7 abolished the sphere-forming ability of C666-1 in vitro. Expression of CCR7 was associated with recurrent disease and distant metastasis. The current study defined the specific properties of a CSC subpopulation in EBV-associated NPC. Our findings provided new insights into developing effective therapies targeting on CSCs, thereby potentiating treatment efficacy for NPC patients. PMID:23285037

  10. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression

    PubMed Central

    Lowe, Donna; Raj, Kenneth

    2014-01-01

    Age is undoubtedly a major risk factor for heart disease. However, the reason for this is not entirely clear. In the course of our investigation into the mechanism of radiation-induced cardiovascular disease, we made several unexpected findings that inform us on this question. We observed that human coronary endothelial cells, while being able to initiate repair of radiation-induced DNA damage, often fail to complete the repair and become senescent. Such radiation-induced cellular aging occurs through a mutation-independent route. Endothelial cells that aged naturally through replication or as a result of radiation exhibited indistinguishable characteristics. The promoter regions of the CD44 gene in aging endothelial cells become demethylated, and the proteins are highly expressed on the cell surface, making the cells adhesive for monocytes. Adhesion is a cardinal feature that recruits monocytes to the endothelium, allowing them to infiltrate the vessel wall and initiate atherosclerosis. The epigenetic activation of CD44 expression is particularly significant as it causes persistent elevated CD44 protein expression, making senescent endothelial cells chronically adhesive. In addition to understanding why cardiovascular disease increases with age, these observations provide insights into the puzzling association between radiation and cardiovascular disease and highlight the need to consider premature aging as an additional risk of radiation to human health. PMID:25059316

  11. Analysis of human articular chondrocyte CD44 isoform expression and function in health and disease.

    PubMed

    Salter, D M; Godolphin, J L; Gourlay, M S; Lawson, M F; Hughes, D E; Dunne, E

    1996-08-01

    Interactions between articular chondrocytes and components of the extracellular matrix are of potential importance in the normal function of cartilage and in the pathophysiology of arthritis. Little is known of the basis of these interactions, but cell adhesive molecules such as CD44 are likely to be involved. Immunohistology using six well-characterized anti-CD44 monoclonal antibodies demonstrated standard CD44 isoform (CD44H) expression by all chondrocytes in normal and osteoarthrotic (OA) cartilage but absence of the CD44E variant. Polymerase chain reaction (PCR) of reverse transcribed mRNA from monolayer cultures of normal and OA chondrocytes using primer sequences which span the region containing variably spliced exons produced a predominant band representing the standard form of CD44, which lacks the variable exons 6-15 (v1-v10). No product was seen at the expected size of the epithelial variant of CD44 (CD44v8-10). Use of exon-specific primers, however, showed expression of variant exons resulting in multiple minor isoforms. Standard CD44 was also shown to be the predominantly expressed isoform identified by immunoprecipitation, but human articular chondrocytes did not adhere to hyaluronan in vitro. Chondrocyte CD44 may function as an adhesion receptor for other matrix molecules such as fibronectin or collagen.

  12. Clinical significance of CD44 expression in children with hepatoblastoma.

    PubMed

    Cai, H-Y; Yu, B; Feng, Z-C; Qi, X; Wei, X-J

    2015-10-27

    The aim of this study was to investigate the expression of CD44 and its clinical significance in children suffering from hepatoblastoma (HB). CD44 expression was detected with immunohistochemistry staining in 30 samples from hepatoblastoma children and 10 normal liver tissue samples from normal children. The data obtained was statistically analyzed using the chi-square test, using the SPSS (v.11.0) software. The rate of CD44 expression was significantly higher (66.7%) in hepatoblastoma tissues than in normal liver tissues (χ(2) = 4.848, P < 0.05). The rate of CD44 expression was significantly higher in children with stage III or IV hepatoblastoma (83.3%) than that in children with stage I and II hepatoblastoma (χ(2) = 5.625, P < 0.05) (41.7%). Therefore, CD44 expression might play an important role in the pathogenesis, progression, and prognosis of HB in children.

  13. Expression of CD44v6 as matrix-associated ectodomain in the bone development.

    PubMed

    Nakajima, Kosei; Taniguchi, Kazumi; Mutoh, Ken-ichiro

    2010-08-01

    This study describes the expression of CD44v6 in the bone development and is the first study of its kind to the authors' best knowledge. The CD44 family is a family of transmembrane glycoproteins that acts as cell adhesion molecules binding cells to other cells as well as cells to the extracellular matrix. It has been suggested that the CD44v6, a family member of CD44, is closely related to the osteosarcoma metastasis. In general, when cancer cells metastasize, they revert to their immature forms. In the present study, therefore, we have investigated CD44v6 and the standard form of CD44 (CD44st) in two types of immature forms of bone tissues: developmentally immature stages from fetuses to adults as well as experimentally immature stages using fracture models. CD44st expression was identified in osteoblasts, osteocytes, and in the peripheral portion of the bone matrix from the fetal to young ages of rats. Many more intense reactions for CD44v6 were observed in the bone matrix than CD44st in fetal stages. In experimental fracture models, positive immunoreactions to CD44st were clearly observed in the osteoblasts and osteocytes. CD44v6-positive immunoreactivity, however, was not detected in either osteoblasts or the bone matrix. In conclusion, CD44v6 is expressed in the embryonic stages and may be involved in the bone matrix formation as a matrix-associated ectodomain during normal ontogenetic development but not involved in the process of fracture healing.

  14. Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas.

    PubMed

    Kalantari, Elham; Asgari, Mojgan; Nikpanah, Seyedehmoozhan; Salarieh, Naghme; Asadi Lari, Mohammad Hossein; Madjd, Zahra

    2017-10-01

    Cancer stem cells (CSCs) are the main players of prostate tumorigenesis thus; characterization of CSCs can pave the way for understanding the early detection, drug resistance, metastasis and relapse. The current study was conducted to evaluate the expression level and clinical significance of the potential CSC markers CD44 and CD133 in a series of prostate tissues. One hundred and forty eight prostate tissues composed of prostate cancer (PCa), high-grade prostatic intraepithelial neoplasia (HGPIN), and benign prostate hyperplasia (BPH) were immunostained for the putative CSC markers CD44 and CD133. Subsequently, the correlation between the expression of these markers and the clinicopathological variables was examined. A higher level of CD44 expression was observed in 42% of PCa, 57% of HGPIN, and 42% BPH tissues. In the case of CD133 expression PCa, HGPIN, and BPH samples demonstrated high immunoreactivity in 46%, 43%, and 42% of cells, respectively. Statistical analysis showed an inverse significant correlation between CD44 expression with Gleason score of PCa (P = 0.02), while no significant correlation was observed between CD133 expression and clinicopathological parameters. A significant reciprocal correlation was observed between the expression of two putative CSC markers CD44 and CD133 in PCa specimens while not indicating clinical significance. Further clinical investigation is required to consider these markers as targets of new therapeutic strategies for PCa.

  15. CD82 suppresses CD44 alternative splicing-dependent melanoma metastasis by mediating U2AF2 ubiquitination and degradation

    PubMed Central

    Fu, Ailing; Zhu, Huifeng; Ren, Qiao; Wang, Bochu; Xu, Xingran; Bai, Huiyuan; Dong, Cheng

    2016-01-01

    Melanoma is one of the most lethal forms of skin cancer due to its early metastatic spread. The variant form of CD44 (CD44v), a cell surface glycoprotein, is highly expressed on metastatic melanoma. The mechanisms of regulation of CD44 alternative splicing in melanoma and its pathogenic contributions are so far poorly understood. Here, we investigated the expression level of CD44 in a large set of melanocytic lesions at different stages. We found that the expression of CD44v8-10 and a splicing factor, U2AF2, is significantly increased during melanoma progression, while CD82/KAI1, a tetraspanin family of tumor suppressor, is reduced in metastatic melanoma. CD44v8-10 and U2AF2 expressions which are negatively correlated with CD82 levels are dramatically elevated in primary melanoma compared with dysplastic nevi and further increased in metastatic melanoma. We also showed that patients with higher CD44v8-10 and U2AF2 expression levels tended to have shorter survival. By using both in vivo and in vitro assays, we demonstrated that CD82 inhibits the production of CD44v8-10 on melanoma. Mechanistically, U2AF2 is a downstream target of CD82 and in malignant melanoma facilitates CD44v8-10 alternative splicing. U2AF2-mediated CD44 isoform switch is required for melanoma migration in vitro and lung and liver metastasis in vivo. Notably, overexpression of CD82 suppresses U2AF2 activity by inducing U2AF2 ubiquitination. In addition, our data suggested that enhancement of melanoma migration by U2AF2-dependent CD44v8-10 splicing is mediated by Src/FAK/RhoA activation and formation of stress fibers as well as CD44-E-selectin binding reinforcement. These findings uncovered a hitherto unappreciated function of CD82 in severing the linkage between U2AF2-mediated CD44 alternative splicing and cancer aggressiveness, with potential prognostic and therapeutic implications in melanoma. PMID:27041584

  16. Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells

    PubMed Central

    Libro, Rosaliana; Scionti, Domenico; Diomede, Francesca; Marchisio, Marco; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-01-01

    Human Gingival Mesenchymal Stem Cells (hGMSCs) are multipotential cells that can expand and differentiate in culture under specific and standardized conditions. In the present study, we have investigated whether in vitro pre-treatment of hGMSCs with Cannabidiol (CBD) can influence their expression profile, improving the therapeutic potential of this cell culture. Following CBD treatment (5 μM) for 24 h, gene expression analysis through Next Generation Sequencing (NGS) has revealed several genes differentially expressed between CBD-treated hGMSCs (CBD-hGMSCs) and control cells (CTR-hGMSCs) that were linked to inflammation and apoptosis. In particular, we have demonstrated that CBD treatment in hGMSCs prevented the activation of the NALP3-inflammasome pathway by suppressing the levels of NALP3, CASP1, and IL18, and in parallel, inhibited apoptosis, as demonstrated by the suppression of Bax. CBD treatment was also able to modulate the expression of the well-known mesenchymal stem cell markers (CD13, CD29, CD73, CD44, CD90, and CD166), and other surface antigens. Specifically, CBD led to the downregulation of genes codifying for antigens involved in the activation of the immune system (CD109, CD151, CD40, CD46, CD59, CD68, CD81, CD82, CD99), while it led to the upregulation of those implicated in the inhibition of the immune responses (CD47, CD55, CD276). In conclusion, the present study will provide a new simple and reproducible method for preconditioning hGMSCs with CBD, before transplantation, as an interesting strategy for improving the hGMSCs molecular phenotype, reducing the risk of immune or inflammatory reactions in the host, and in parallel, for increasing their survival and thus, their long-term therapeutic efficacy. PMID:27932991

  17. Increased expression of CD44 is associated with more aggressive behavior in clear cell renal cell carcinoma.

    PubMed

    Zanjani, Leili Saeednejad; Madjd, Zahra; Abolhasani, Maryam; Rasti, Arezoo; Fodstad, Oystein; Andersson, Yvonne; Asgari, Mojgan

    2018-01-01

    Although CD44 has been suggested as a prognostic marker in renal cell carcinoma (RCC), the prognostic significance of this marker in three main subtypes of RCC is still unclear. Thus, the present study was conducted to evaluate the expression and prognostic significance of CD44 as a cancer stem cell marker in different histological subtypes of RCC. Methodology & results: CD44 expression was evaluated in 206 well-defined renal tumor samples using immunohistochemistry on tissue microarrays. Higher CD44 expression was associated with more aggressive behavior, tumor progression and worse prognosis in clear cell RCC (ccRCC) but not in papillary and chromophobe RCC subtypes. Cancer stem cell marker CD44 may be a promising target for cancer treatment only in ccRCC.

  18. CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment

    PubMed Central

    Lee-Sayer, Sally S. M.; Dougan, Meghan N.; Cooper, Jesse; Sanderson, Leslie; Dosanjh, Manisha; Maxwell, Christopher A.

    2018-01-01

    CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment. PMID:29684048

  19. [Dectection of G3BP and CD44v6 in the tissues of laryngeal squamous cell carcinoma and their clinical significance].

    PubMed

    Luo, Dahu; Lou, Weihua

    2017-07-01

    Objective To study the expressions of RNA-binding Ras-GAP SH3 binding protein (G3BP) and tumor stem cell marker CD44v6 in laryngeal squamous cell carcinoma and their correlations with angiogenesis. Methods We collected the cancer tissues and corresponding paracancerous tissues from 56 patients with laryngeal squamous cell carcinoma. The expressions of G3BP and CD44v6 proteins were detected by Western blotting in cancer tissues and corresponding paracancerous tissues; the expressions of G3BP, CD44v6 and vascular endothelial growth factor A (VEGF-A) were tested by immunohistochemistry. Thereafter, we compared the positive expression rates of G3BP and CD44v6 between in cancer tissues and in normal tissues, analyzed the correlations between the expressions of G3BP, CD44v6 and the laryngeal squamous cell carcinoma features as well as their correlations with microvessel density (MVD) that was determined by FVIIIAg immunohistochemistry. Results Western blotting showed that the expressions of G3BP and CD44v6 proteins in the laryngeal squamous cell carcinoma were higher than those in the paracancerous tissues. Immunohistochemistry showed that compared with the paracancerous tissues, G3BP, CD44v6 and VEGF-A expressions (the positive rates are 58.9%, 53.6%, 46.4%, respectively) were higher in cancer tissues. The positive rates of G3BP and CD44v6 in cancer tissues were related with the clinical stage, recurrence or metastasis, and lymph node metastasis of laryngeal squamous cell carcinoma, but had nothing to do with patients' age and tumor size. Pearson correlation analysis showed the expressions of both G3BP and CD44v6 were positively correlated with VEGF-A (r=0.741, r=0.756). MVD values were significantly higher in the G3BP and CD44v6 positive cases than in paracancerous tissues, but there was no difference in MVD between those without G3BP and CD44v6 positive expressions and the paracancerous tissues. Conclusion The positive expression rates of G3BP and CD44v6 in laryngeal squamous cell carcinoma tissues are very high, and they have a close relationship with the clinical prognosis. They may raise the VEGF-A expression so as to promote angiogenesis, and then accelerate the development of the laryngeal squamous cell carcinoma.

  20. СD44+/CD24- markers of cancer stem cells in patients with breast cancer of different molecular subtypes.

    PubMed

    Chekhun, S V; Zadvorny, T V; Tymovska, Yu O; Anikusko, M F; Novak, O E; Polishchuk, L Z

    2015-03-01

    To determine frequency of tumors with immunohistochemical markers of cancer stem cells (CSC) CD44+/CD24- in patients with breast cancer (BC) of different molecular subtype and to evaluate their prognostic value. Surgical material of 132 patients with BC stage I-II, age from 23 to 75 years, mean age - 50.2 ± 3.1 years was studied. Clinical, immunohistochemical (expression CD44+/CD24-), morphological, statistical. BC is characterized by heterogeneity of molecular subtypes and expression of markers (CD44+/CD24-). Immunohistochemical study of expression of CSC markers in surgical material has detected their expression in 34 (25.4%) patients with BC of different molecular subtypes. The highest frequency of cells with expression of CSC marker was observed in patients with basal molecular subtype (44.8% patients). Most of BC patients with phenotype CD44+/CD24 had stage I of tumor process (34.3%). Statistical processing of data has showen that Yule colligation coefficient equaled 0.28 (р > 0.05) that argues poor correlation between stage of tumor process and number of tumors with positive expression of CSC markers. Statistical processing of data has showen high correlation between presence of cells with expression of CSC markers and metastases of BC in regional lymph nodes (Yule colligation coefficient equals 0.943; р < 0.5). Difference in overall survival of patients with BC of basal molecular subtype depending on expression of CSC CD44+/CD24- markers was detected. Survival of patients with basal BC was reliably higher at lack in tumors of cells with CSC markers CD44+/CD24- and, correspondingly, lower at presence of such cells (р < 0.05). In patients with BC of luminal (A and B), HER-2-positive subtypes, significant change in survival of patients depending on expression of CSC markers was not determined (р > 0.05). Significance of tumor cells with markers CD44+/CD24- within the limits of molecular subtype of BC may be additional criterion for advanced biological characteristic of BC, and in patients with BC of basal molecular subtype - for predictive evaluation of individual potential of tumor to aggressive clinical course.

  1. Zoledronic acid overcomes chemoresistance by sensitizing cancer stem cells to apoptosis.

    PubMed

    Rouhrazi, H; Turgan, N; Oktem, G

    2018-01-01

    Unlike low tumorigenic bulk tumor cells (non-CSCs), cancer stem cells (CSCs) are a subset of tumor cells that can self-renew and differentiate into different cancer subtypes. CSCs are considered responsible for tumor recurrence, distant metastasis, angiogenesis, and drug or radiation resistance. CSCs also are resistant to apoptosis. Zoledronic acid (ZA) is a third generation bisphosphonate that reduces cell proliferation and exhibits anti-tumor effects by inducing cell death in some malignancies; however, the effects of ZA on CSCs are unclear. We investigated the anti-cancer effects of ZA on two epithelial cancer cell lines, prostate DU-145 and breast MCF7, focusing primarily on induction and activation of apoptosis. Cluster of differentiation (CD) 133 + /CD44 + prostate CSCs and CD 44 + /CD24 breast CSCs were isolated from the DU-145 human prostate cancer and MCF-7 human breast cancer cell lines, respectively, using FACSAria flow cytometry cell sorting. CSCs and non-CSCs were exposed to increasing concentrations of ZA for 24, 48 and 72 h to determine the IC 50 dose. Annexin-V assay for detecting cell death and cell cycle was performed using the Muse™ Cell Analyzer. Prostate CSCs and non-CSCs were assayed by quantitative reverse transcription PCR (qRT-PCR) array for detecting 84 key apoptosis related genes. Gene regulation at the protein level was investigated by immunofluorescence. ZA caused a dose- and time-dependent decrease in cell viability. Treatment with ZA resulted in a concomitant increase in apoptosis and cell cycle arrest at S-phase in CSCs. Significant over/under-expressions were detected in seven of the genes of ZA-treated DU-145 CSCs cells. Expressions of CASP9, CASP4, BAX and BAD genes increased, while the expressions of BIRC3, BIRC2 and BCL2 genes decreased. In the DU-145 non-CSCs, five genes exhibited changes in gene expression after ZA treatment, two exhibited increased expression (CASP7 and BAD) and three exhibited decreased expression (BIRC3, BIRC2 and BCL2). ZA caused cell death of drug resistant breast MCF-7 and prostate DU-145 cancer stem cells by activating apoptosis. ZA can facilitate the intrinsic pathway of apoptosis in human prostate CSCs by down-regulating anti-apoptotic genes and up-regulating pro-apoptotic genes. ZA may be an effective therapeutic agent for targeting chemoresistance in CSCs.

  2. CD44 expression in curettage and postoperative specimens of endometrial cancer.

    PubMed

    Wojciechowski, Michał; Krawczyk, Tomasz; Śmigielski, Janusz; Malinowski, Andrzej

    2015-02-01

    Adhesive molecules like CD44 are well defined key players in the metastatic cascade in many cancers, including endometrial cancer. They could play a role of markers of invasion, metastasis and prognostic factors. The aim of the study is to assess a possible role of the CD44 as a marker of invasion in endometrial cancer, both at the moment of preoperative workup and final staging. Available for analysis were archival specimens of 51 patients who had underwent curettage and surgery between 2002 and 2007. An immunohistochemical study for CD44 expression was performed in curettage and postoperative specimens. Normal endometrium of 20 randomly chosen patients was used as a control group. In endometrial cancer the expression of CD44 was significantly more intensive than in normal endometrium. In postoperative specimens, the CD44 expression was weaker in serous than in endometrioid cancer. There was no significant correlation between the adhesion molecule expression and clinicopathological features: grade,depth of invasion, cervical involvement, serosal and adnexal involvement, lymph-vascular space involvement, lymph node and distant metastases nor FIGO stage. An increased expression of CD44 in endometrial cancer suggests its possible role in pathogenesis of this disease, however, it doesn't seem to be crucial. Different expression of the CD44 in endometrioid and papillary-serous type may reflect different pathogenesis of these types of cancer. No statistically proved relation between the investigated molecule expression and clinicopathological parameters suggests scepticism about its use in diagnostic process of endometrial cancer.

  3. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.

  4. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma

    PubMed Central

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-01-01

    Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. PMID:28854563

  5. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation.

    PubMed

    Chang, Shang-Hung; Yeh, Yung-Hsin; Lee, Jia-Lin; Hsu, Yu-Juei; Kuo, Chi-Tai; Chen, Wei-Jan

    2017-09-04

    Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.

  6. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells.

    PubMed

    Veiseh, Mandana; Leith, Sean J; Tolg, Cornelia; Elhayek, Sallie S; Bahrami, S Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B; Bissell, Mina J; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.

  7. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  8. Visualization of CD44 and CD133 in Normal Pancreas and Pancreatic Ductal Adenocarcinomas

    PubMed Central

    Immervoll, Heike; Hoem, Dag; Steffensen, Ole Johnny; Miletic, Hrvoje; Molven, Anders

    2011-01-01

    Tumor-initiating cells of pancreatic ductal adenocarcinoma (PDAC) have been isolated based on expression of either CD133 or CD44. The authors aimed to visualize pancreatic cells simultaneously expressing both these cell surface markers by employing the same antibodies commonly used in cell-sorting studies. Normal and diseased pancreatic tissue, including 51 PDAC cases, were analyzed. CD44 and CD133 expression was determined by immunohistochemical double staining on formalin-fixed material and subcellular protein distribution evaluated by immunofluorescence/confocal microscopy. In the normal pancreas, CD44 and CD133 were coexpressed in the centroacinar regions but in non-overlapping subcellular compartments. As expected, CD44 was found mainly basolaterally, whereas CD133 was present on the apical/endoluminal membrane. This was also the case in chronically inflamed/atrophic pancreatic tissue and in PDAC. In some malignant ducts, CD44 was found at the apical cell membrane adjacent to but never overlapping with CD133 expression. CD44 level was significantly associated with the patient’s lymph node status. In conclusion, a CD44+/CD133+ cell population does exist in the normal and neoplastic pancreas. The preferentially centroacinar localization of the doubly positive cells in the normal parenchyma suggests that this population could be of particular interest in attempts to identify tumor-initiating cells in PDAC. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. PMID:21411814

  9. Aberrant expression of cancer stem cell markers (CD44, CD90, and CD133) contributes to disease progression and reduced survival in hepatoblastoma patients: 4-year survival data.

    PubMed

    Bahnassy, Abeer A; Fawzy, Mohamed; El-Wakil, Mohamed; Zekri, Abdel-Rahman N; Abdel-Sayed, Ahmed; Sheta, Marwa

    2015-03-01

    Hepatoblastoma (HB) is an embryonal tumor of the liver in children. Prognosis and response to treatment in HB are highly variable. Cancer stem cells (CSCs) constitute a population of cells, which contribute to the development and progression of many tumors. However, their role in HB is not well defined yet. We assessed the prognostic and predictive values of some CSC markers in HB patients. Protein and messenger RNA expressions of the CSC markers CD133, CD90, and CD44 were assessed in 43 HB patients and 20 normal hepatic tissues using immunohistochemistry and quantitative real-time polymerase chain reaction. The expression levels of these markers were correlated to standard prognostic factors, patients' response to treatment, overall survival (OS), and disease-free survival (DFS). CD44, CD90, and CD133 proteins were detected in 48.8%, 32.6%, and 48.8% compared with 46.5%, 41.7%, and 58.1% RNA, respectively (concordance, 77.8%-96%). None of the normal tissue samples was positive for any of the markers. Significant correlations were reported between α-fetoprotein and both CD44 and CD133 (P = 0.02) as well as between tumor types CD90 and CD133 (P = 0.009). Reduced OS correlated with CD44, CD90, and CD133 expressions (P < 0.001), advanced stage (P < 0.001), response to treatment (P < 0.001), and total excision of the tumor. Reduced DFS correlated with CD44 and CD133 expressions (P < 0.001) only. In conclusion, CD133, CD44, and CD90 could be used as prognostic and predictive markers in HB. High expression of these markers is significantly associated with poor response to treatment and reduced survival. Moreover, complete surgical resection and systemic chemotherapy are essential to achieve good response and prolonged survival, especially in early stage patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. [Key effect genes responding to nerve injury identified by gene ontology and computer pattern recognition].

    PubMed

    Pan, Qian; Peng, Jin; Zhou, Xue; Yang, Hao; Zhang, Wei

    2012-07-01

    In order to screen out important genes from large gene data of gene microarray after nerve injury, we combine gene ontology (GO) method and computer pattern recognition technology to find key genes responding to nerve injury, and then verify one of these screened-out genes. Data mining and gene ontology analysis of gene chip data GSE26350 was carried out through MATLAB software. Cd44 was selected from screened-out key gene molecular spectrum by comparing genes' different GO terms and positions on score map of principal component. Function interferences were employed to influence the normal binding of Cd44 and one of its ligands, chondroitin sulfate C (CSC), to observe neurite extension. Gene ontology analysis showed that the first genes on score map (marked by red *) mainly distributed in molecular transducer activity, receptor activity, protein binding et al molecular function GO terms. Cd44 is one of six effector protein genes, and attracted us with its function diversity. After adding different reagents into the medium to interfere the normal binding of CSC and Cd44, varying-degree remissions of CSC's inhibition on neurite extension were observed. CSC can inhibit neurite extension through binding Cd44 on the neuron membrane. This verifies that important genes in given physiological processes can be identified by gene ontology analysis of gene chip data.

  11. CD44v3 and VEGF-C expression and its relationship with lymph node metastasis in squamous cell carcinomas of the uterine cervix.

    PubMed

    Liu, Ye-Qing; Li, Hai-Feng; Han, Jing-Jing; Tang, Qiong-Lan; Sun, Qing; Huang, Zhi-Quan; Li, Hai-Gang

    2014-01-01

    To investigate the expression of CD44v3 and vascular endothelial growth factor-C (VEGF-C) and their relationship with lymph node metastasis in squamous cell carcinomas (SCC) of the uterine cervix. Expression of CD44v3 and VEGF-C was analyzed in 109 cases of cervical SCC by immunohistochemistry (IHC). The relationship was analyzed between expression and the patient age, histological differentiation, formation of tumor emboli in lymphoid vessels, lymph node metastasis, FIGO staging, and TNM classification. Expression rates for both CD44v3 and VEGF-C were 43.1% in cervical SCC. The cells with positive immunohistochemical staining of CD44v3 were distributed mainly around the keratin pearls in well differentiated carcinomas, but distributed diffusely in the moderately and poorly differentiated lesions. VEGF-C was found stained positively in most of the tumor cells. There were differences in expression between normal epithelium and atypical hyperplasia as well as carcinoma. Both CD44v3 and VEGF-C were found to be associated positively with lymph node metastasis and TNM classification (both p=0.000). Neither CD44v3 nor VEGF-C was found to be associated with patient age, histological differentiation, formation of tumor emboli in lymphoid vessels and FIGO staging. CD44v3 was found to be associated with VEGF-C positively (p=0.000). Abnormal expression of CD44v3 and VEGF-C is associated closely with the lymph node metastasis in cervical SCC, and these agents may cooperate in carcinogenesis and development of metastatic lesions.

  12. STAT3 as a promising chemoresistance biomarker associated with the CD44+/high/CD24-/low/ALDH+ BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line.

    PubMed

    Moreira, Milene Pereira; da Conceição Braga, Letícia; Cassali, Geovanni Dantas; Silva, Luciana Maria

    2018-02-15

    The cancer stem cell (CSC) concept is currently employed to explain the mechanism of multidrug resistance that is implicated in the reduced efficacy of many chemotherapeutic agents, consequently leading to metastatic spread and disease relapse. We searched for potential predictive markers of doxorubicin (DOX) resistance in breast cancer stem cells (BCSCs) of the BT-549 human triple-negative breast cancer (TNBC) cell line classified as a claudin-low subtype. In this study, we show that BT-549 presents a BCSCs-like subset determined by a CD44 +/high /CD24 -/low /ALDH1 + phenotype. The CD44 +/high /CD24 -/low /ALDH + BCSCs-like subset presented the downregulation of a majority of the genes analyzed (64 genes), and only 3 genes were upregulated after DOX treatment. Among the upregulated genes, MAPK3, PRKCZ and STAT3, STAT3 presented a higher level of upregulation in the DOX-treated CD44 +/high /CD24 -/low /ALDH + BCSCs-like subset. The identification of biomarkers that predict antitumor responses is at the top of cancer research priorities. STAT3 was highlighted as a molecular signature in the CD44 +/high /CD24 -/low /ALDH1 + BCSCs-like subset obtained from the TNBC BT-549 cell line related to DOX resistance. A majority of the evaluated genes in the EGF pathway appear to be not associated with DOX resistance, as observed in the CD44 +/high /CD24 -/low /ALDH1 + BCSCs-like subset. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  14. The metastasis suppressor, NDRG1, inhibits “stemness” of colorectal cancer via down-regulation of nuclear β-catenin and CD44

    PubMed Central

    Wangpu, Xiongzhi; Yang, Xiao; Zhao, Jingkun; Lu, Jiaoyang; Guan, Shaopei; Lu, Jun; Kovacevic, Zaklina; Liu, Wensheng; Mi, Lan; Jin, Runsen; Sun, Jing; Yue, Fei; Ma, Junjun; Lu, Aiguo; Richardson, Des R.; Wang, Lishun; Zheng, Minhua

    2015-01-01

    N-myc downstream-regulated gene 1 (NDRG1), has been identified as an important metastasis suppressor for colorectal cancer (CRC). In this study, we investigated: (1) the effects of NDRG1 on CRC stemness and tumorigenesis; (2) the molecular mechanisms involved; and (3) the relationship between NDRG1 expression and colorectal cancer prognosis. Our investigation demonstrated that CRC cells with silenced NDRG1 showed more tumorigenic ability and stem cell-like properties, such as: colony and sphere formation, chemoresistance, cell invasion, high expression of CD44, and tumorigenicity in vivo. Moreover, NDRG1 silencing reduced β-catenin expression on the cell membrane, while increasing its nuclear expression. The anti-tumor activity of NDRG1 was demonstrated to be mediated by preventing β-catenin nuclear translocation, as silencing of this latter molecule could reverse the effects of silencing NDRG1 expression. NDRG1 expression was also demonstrated to be negatively correlated to CRC prognosis. In addition, there was a negative correlation between NDRG1 and nuclear β-catenin and also NDRG1 and CD44 expression in clinical CRC specimens. Taken together, our investigation demonstrates that the anti-metastatic activity of NDRG1 in CRC occurs through the down-regulation of nuclear β-catenin and suggests that NDRG1 is a significant therapeutic target. PMID:26418878

  15. Lymphoid hyperplasia in transgenic mice over-expressing a secreted form of the human interleukin-1β gene product

    PubMed Central

    Björkdahl, O; Åkerblad, P; Gjörloff-wingren, A; Leanderson, T; Dohlsten, M

    1999-01-01

    To evaluate the biological effects of over-expression of interleukin-1β (IL-1β) on the immune system we have generated transgenic mice, expressing the IL-1β gene fused to a heterologous signal sequence under the control of the mouse immunoglobulin enhancer (Eμ). A prominent hyperplasia and a disturbed microarchitecture of lymphoid tissues were observed in the transgenic mice. The CD4+ T cells in the hyperplastic lymphoid organs seemed to invade the majority of the lymphoid organs including B-cell restricted areas. Analysis of lymph node cells revealed an increased frequency of CD4+ CD44high CD62L− T cells and local secretion of IL-2 and IL-4, compatible with an elevated number of activated T cells. Furthermore, significant levels of human IL-1β in sera and high concentrations of serum immunoglobulin G (IgG) were observed in the transgenic mice. The data suggest a role for IL-1β in controlling lymphoid microarchitecture and, when over-expressed, breaking the threshold in T-helper–B-cell interaction. PMID:10233687

  16. GFP Labeling and Hepatic Differentiation Potential of Human Placenta-Derived Mesenchymal Stem Cells.

    PubMed

    Yu, Jiong; Su, Xiaoru; Zhu, Chengxing; Pan, Qiaoling; Yang, Jinfeng; Ma, Jing; Shen, Leyao; Cao, Hongcui; Li, Lanjuan

    2015-01-01

    Stem cell-based therapy in liver diseases has received increasing interest over the past decade, but direct evidence of the homing and implantation of transplanted cells is conflicting. Reliable labeling and tracking techniques are essential but lacking. The purpose of this study was to establish human placenta-derived mesenchymal stem cells (hPMSCs) expressing green fluorescent protein (GFP) and to assay their hepatic functional differentiation in vitro. The GFP gene was transduced into hPMSCs using a lentivirus to establish GFP(+) hPMSCs. GFP(+) hPMSCs were analyzed for their phenotypic profile, viability and adipogenic, osteogenic and hepatic differentiation. The derived GFP(+) hepatocyte-like cells were evaluated for their metabolic, synthetic and secretory functions, respectively. GFP(+) hPMSCs expressed high levels of HLA I, CD13, CD105, CD73, CD90, CD44 and CD29, but were negative for HLA II, CD45, CD31, CD34, CD133, CD271 and CD79. They possessed adipogenic, osteogenic and hepatic differentiation potential. Hepatocyte-like cells derived from GFP(+) hPMSCs showed typical hepatic phenotypes. GFP gene transduction has no adverse influences on the cellular or biochemical properties of hPMSCs or markers. GFP gene transduction using lentiviral vectors is a reliable labeling and tracking method. GFP(+) hPMSCs can therefore serve as a tool to investigate the mechanisms of MSC-based therapy, including hepatic disease therapy. © 2015 S. Karger AG, Basel.

  17. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren's syndrome and association with disease activity and BAFF gene expression

    PubMed Central

    Brkic, Zana; Maria, Naomi I; van Helden-Meeuwsen, Cornelia G; van de Merwe, Joop P; van Daele, Paul L; Dalm, Virgil A; Wildenberg, Manon E; Beumer, Wouter; Drexhage, Hemmo A; Versnel, Marjan A

    2013-01-01

    Objective To determine the prevalence of upregulation of interferon (IFN) type I inducible genes, the so called ‘IFN type I signature’, in CD14 monocytes in 69 patients with primary Sjögren's syndrome (pSS) and 44 healthy controls (HC) and correlate it with disease manifestations and expression of B cell activating factor (BAFF). Methods Expression of IFI44L, IFI44, IFIT3, LY6E and MX1 was measured using real time quantitative PCR in monocytes. Expression values were used to calculate IFN type I scores for each subject. pSS patients positive for the IFN type I signature (IFN score≥10) and patients negative for the signature (IFN score<10) were then compared for clinical disease manifestations and BAFF expression. A bioassay using a monocytic cell line was performed to study whether BAFF mRNA expression was inducible by IFN type I activity in serum of patients with pSS. Results An IFN type I signature was present in 55% of patients with pSS compared with 4.5% of HC. Patients with the IFN type I signature showed: (a) higher EULAR Sjögren's Syndrome Disease Activity Index scores; higher anti-Ro52, anti-Ro60 and anti-La autoantibodies; higher rheumatoid factor; higher serum IgG; lower C3, lower absolute lymphocyte and neutrophil counts; (b)higher BAFF gene expression in monocytes. In addition, serum of signature-positive patients induced BAFF gene expression in monocytes. Conclusions The monocyte IFN type I signature identifies a subgroup of patients with pSS with a higher clinical disease activity together with higher BAFF mRNA expression. Such patients might benefit from treatment blocking IFN type I production or activity. PMID:22736090

  18. CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C.

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed. PMID:23437366

  19. ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α.

    PubMed

    Lee, Joon Ho; Hur, Wonhee; Hong, Sung Woo; Kim, Jung-Hee; Kim, Sung Min; Lee, Eun Byul; Yoon, Seung Kew

    2017-02-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid cancer and the third most common cause of cancer-related mortality. HCC develops via a multistep process associated with genetic aberrations that facilitate HCC invasion and migration and promote metastasis. A growing body of evidence indicates that cancer stem cells (CSCs) are responsible for tumorigenesis, cancer cell invasion and metastasis. Despite the extremely small proportion of cancer cells represented by this subpopulation of HCC cells, CSCs play a key role in cancer metastasis and poor prognosis. ELK3 (Net/SAP-2/Erp) is a transcription factor that is activated by the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. It plays several important roles in various physiological processes, including cell migration, invasion, wound healing, angiogenesis and tumorigenesis. In the present study, we investigated the role of ELK3 in cancer cell invasion and metastasis in CD133+/CD44+ liver cancer stem cells (LCSCs). We isolated LCSCs expressing CD133 and CD44 from Huh7 HCC cells and evaluated their metastatic potential using invasion and migration assays. We found that CD133+/CD44+ cells had increased metastatic potential compared with non-CD133+/CD44+ cells. We also demonstrated that ELK3 expression was upregulated in CD133+/CD44+ cells and that this aberration enhanced cell migration and invasion. In addition, we identified the molecular mechanism by which ELK3 promotes cancer cell migration and invasion. We found that silencing of ELK3 expression in CD133+/CD44+ LCSCs attenuated their metastatic potential by modulating the expression of heat shock-induced factor-1α (HIF-1α). Collectively, the results of the present study demonstrated that ELK3 overexpression promoted metastasis in CD133+/CD44+ cells by regulating HIF-1α expression and that silencing of ELK3 expression attenuated the metastatic potential of CD133+/CD44+ LCSCs. In conclusion, modulation of ELK3 expression may represent a novel therapeutic strategy for preventing HCC metastasis and invasion.

  20. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation.

    PubMed

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-06-01

    Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix components, promotes wall thickening and extracellular matrix deposition during AVF maturation. AVF were created via needle puncture in wild-type C57BL/6J and CD44 knockout mice. CD44 mRNA and protein expression was increased in wild-type AVF. CD44 knockout mice showed no increase in AVF wall thickness (8.9 versus 26.8 μm; P =0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared with control AVF. CD44 knockout mice also showed no increase in vascular cell adhesion molecule-1 expression, intercellular adhesion molecule-1 expression, and monocyte chemoattractant protein-1 expression in the AVF compared with controls; there were also no increased M2 macrophage markers (transglutaminase-2: 81.5-fold, P =0.0015; interleukin-10: 7.6-fold, P =0.0450) in CD44 knockout mice. Delivery of monocyte chemoattractant protein-1 to CD44 knockout mice rescued the phenotype with thicker AVF walls (27.2 versus 14.7 μm; P =0.0306), increased collagen density (2.4-fold; P =0.0432), and increased number of M2 macrophages (2.1-fold; P =0.0335). CD44 promotes accumulation of M2 macrophages, extracellular matrix deposition, and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. © 2017 American Heart Association, Inc.

  1. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation

    PubMed Central

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-01-01

    Objective Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix (ECM) components, promotes wall thickening and ECM deposition during AVF maturation. Approach and Results AVF were created via needle puncture in wild-type (WT) C57BL/6J and CD44 knockout (KO) mice. CD44 mRNA and protein expression was increased in WT AVF. CD44 KO mice showed no increase in AVF wall thickness (8.9 μm vs. 26.8 μm; P = 0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared to control AVF. CD44 KO mice also showed no increase in VCAM-1 expression, ICAM-1 expression and MCP-1 expression in the AVF compared to controls; there were also no increased M2 macrophage markers (TGM2: 81.5 fold, P = 0.0015; IL-10: 7.6 fold, P = 0.0450) in CD44 KO mice. Delivery of MCP-1 to CD44 KO mice rescued the phenotype with thicker AVF walls (27.2 μm vs. 14.7 μm; P = 0.0306), increased collagen density (2.4 fold; P = 0.0432), and increased number of M2 macrophages (2.1 fold; P = 0.0335). Conclusions CD44 promotes accumulation of M2 macrophages, ECM deposition and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. PMID:28450292

  2. Comparison of EpCAMhighCD44+ cancer stem cells with EpCAMhighCD44- tumor cells in colon cancer by single-cell sequencing.

    PubMed

    Liu, Mingshan; Di, Jiabo; Liu, Yang; Su, Zhe; Jiang, Beihai; Wang, Zaozao; Su, Xiangqian

    2018-03-26

    Cancer stem cells (CSCs) are considered to be responsible for tumorigenesis and cancer relapse. EpCAM high CD44 + tumor cells are putative colorectal CSCs that express high levels of stem cell genes, while the EpCAM high CD44 - population mostly contains differentiated tumor cells (DTCs). This study aims to determine whether single CSC (EpCAM high CD44 + ) and DTC (EpCAM high CD44 - ) can be distinguished in terms of somatic copy number alterations (SCNAs). We applied fluorescence-activated cell sorting to isolate the CD45 - EpCAM high CD44 + and CD45 - EpCAM high CD44 - populations from two primary colon tumors, on which low-coverage single-cell whole-genome sequencing (WGS) was then performed ∼0.1x depth. We compared the SCNAs of the CSCs and DTCs at single-cell resolution. In total, 47 qualified single cells of the two populations underwent WGS. The single-cell SCNA profiles showed that there were obvious SCNAs in both the CSCs and DTCs of each patient, and each patient had a specific copy number alteration pattern. Hierarchical clustering and correlation analysis both showed that the SCNA profiles of CSCs and DTCs from the same patient had similar SCNA pattern, while there were regional differences in the CSCs and DTCs in certain patient. SCNAs of CSCs in the same patient were highly reproducible. Our data suggest that major SCNAs occurred at an early stage and were inherited steadily. The similarity of ubiquitous SCNAs between the CSCs and DTCs might have arisen from lineage differentiation. CSCs from the same patient had reproducible SCNA profiles, indicating that gain or loss in certain chromosome is required for colon cancer development.

  3. Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion

    PubMed Central

    Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.

    2017-01-01

    The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643

  4. CD44v10, osteopontin and lymphoma growth retardation by a CD44v10-specific antibody.

    PubMed

    Megaptche, Amelie Pajip; Erb, Ulrike; Büchler, Markus Wolfgang; Zöller, Margot

    2014-09-01

    Blockade of CD44 is considered a therapeutic option for the elimination of leukemia-initiating cells. However, the application of anti-panCD44 can be burdened by severe side effects. We determined whether these side effects could be avoided by replacing anti-panCD44 with CD44 variant isoform (CD44v)-specific antibodies in CD44v-positive hematological malignancies using the EL4 thymoma and CD44v10-transfected EL4 (EL4-v10) as models. Subcutaneous growth of EL4 and EL4-v10 was equally well inhibited by the anti-panCD44 and anti-CD44v10 antibodies, respectively. Ex vivo analysis indicated that natural killer cytotoxicity and antibody-dependent cellular cytotoxicity were the main effector mechanisms. Under local inflammation, the efficacy of anti-CD44v10 prolonged the survival time twofold compared with untreated, EL4-v10 tumor-bearing mice, and this was due to inflammation-induced expression of osteopontin (OPN). A high level of OPN in EL4-v10 tumors supported leukocyte recruitment and tumor-infiltrating T-cell activation. Taken together, in hematological malignancies expressing CD44v, anti-panCD44 can be replaced by CD44v-specific antibodies without a loss in efficacy. Furthermore, CD44v10-specific antibodies appear particularly advantageous in cutaneous leukemia therapy, as CD44v10 binding of OPN drives leukocyte recruitment and activation.

  5. Gene expression analysis in rat lungs after intratracheal exposure to nanoparticles doped with cadmium

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Fabbri, Marco; Roda, Elisa; Grazia Sacco, Maria; Manzo, Luigi; Gribaldo, Laura

    2011-07-01

    Silica nanoparticles (NPs) incorporating cadmium (Cd) have been developed for a range of potential application including drug delivery devices. Occupational Cd inhalation has been associated with emphysema, pulmonary fibrosis and lung tumours. Mechanistically, Cd can induce oxidative stress and mediate cell-signalling pathways that are involved in inflammation.This in vivo study aimed at investigating pulmonary molecular effects of NPs doped with Cd (NP-Cd, 1 mg/animal) compared to soluble CdCl2 (400 μg/animal), in Sprague Dawley rats treated intra-tracheally, 7 and 30 days after administration. NPs of silica containing Cd salt were prepared starting from commercial nano-size silica powder (HiSil™ T700 Degussa) with average pore size of 20 nm and surface area of 240 m2/g. Toxicogenomic analysis was performed by the DNA microarray technology (using Agilent Whole Rat Genome Microarray 4×44K) to evaluate changes in gene expression of the entire genome. These findings indicate that the whole genome analysis may represent a valuable approach to assess the whole spectrum of biological responses to cadmium containing nanomaterials.

  6. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells.

    PubMed

    Erb, Ulrike; Megaptche, Amelie Pajip; Gu, Xiaoyu; Büchler, Markus W; Zöller, Margot

    2014-03-31

    A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/EL4-v10. Ex vivo and in vitro studies evaluated the impact of anti-panCD44 and anti-CD44v10 as well as of EL4 and EL4-v10 on hematopoietic stem cells (HSC) in cocultures with bone marrow stroma cells with a focus on adhesion, migration, cell cycle progression and apoptosis resistance. Intravenously injected EL4-v10 grow in bone marrow and spleen. Anti-panCD44 and, more pronounced anti-CD44v10 prolong the survival time. The higher efficacy of anti-CD44v10 compared to anti-panCD44 does not rely on stronger antibody-dependent cellular cytotoxicity or on promoting EL4-v10 apoptosis. Instead, EL4 compete with HSC niche embedding. This has consequences on quiescence and apoptosis-protecting signals provided by the stroma. Anti-panCD44, too, more efficiently affected embedding of HSC than of EL4 in the bone marrow stroma. EL4-v10, by catching osteopontin, migrated on bone marrow stroma and did not or weakly interfere with HSC adhesion. Anti-CD44v10, too, did not affect the HSC--bone marrow stroma crosstalk. The therapeutic effect of anti-panCD44 and anti-CD44v10 is based on stimulation of antibody-dependent cellular cytotoxicity. The superiority of anti-CD44v10 is partly due to blocking CD44v10-stimulated osteopontin expression that could drive HSC out of the niche. However, the main reason for the superiority of anti-CD44v10 relies on neither EL4-v10 nor anti-CD44v10 severely interfering with HSC--stroma cell interactions that, on the other hand, are affected by EL4 and anti-panCD44. Anti-panCD44 disturbing HSC embedding in the osteogenic niche weakens its therapeutic effect towards EL4. Thus, as far as leukemic cells express CD44v isoforms, the therapeutic use of anti-panCD44 should be avoided in favor of CD44v-specific antibodies.

  7. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells

    PubMed Central

    2014-01-01

    Background A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). Methods The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/EL4-v10. Ex vivo and in vitro studies evaluated the impact of anti-panCD44 and anti-CD44v10 as well as of EL4 and EL4-v10 on hematopoietic stem cells (HSC) in cocultures with bone marrow stroma cells with a focus on adhesion, migration, cell cycle progression and apoptosis resistance. Results Intravenously injected EL4-v10 grow in bone marrow and spleen. Anti-panCD44 and, more pronounced anti-CD44v10 prolong the survival time. The higher efficacy of anti-CD44v10 compared to anti-panCD44 does not rely on stronger antibody-dependent cellular cytotoxicity or on promoting EL4-v10 apoptosis. Instead, EL4 compete with HSC niche embedding. This has consequences on quiescence and apoptosis-protecting signals provided by the stroma. Anti-panCD44, too, more efficiently affected embedding of HSC than of EL4 in the bone marrow stroma. EL4-v10, by catching osteopontin, migrated on bone marrow stroma and did not or weakly interfere with HSC adhesion. Anti-CD44v10, too, did not affect the HSC – bone marrow stroma crosstalk. Conclusion The therapeutic effect of anti-panCD44 and anti-CD44v10 is based on stimulation of antibody-dependent cellular cytotoxicity. The superiority of anti-CD44v10 is partly due to blocking CD44v10-stimulated osteopontin expression that could drive HSC out of the niche. However, the main reason for the superiority of anti-CD44v10 relies on neither EL4-v10 nor anti-CD44v10 severely interfering with HSC – stroma cell interactions that, on the other hand, are affected by EL4 and anti-panCD44. Anti-panCD44 disturbing HSC embedding in the osteogenic niche weakens its therapeutic effect towards EL4. Thus, as far as leukemic cells express CD44v isoforms, the therapeutic use of anti-panCD44 should be avoided in favor of CD44v-specific antibodies. PMID:24684724

  8. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia.

    PubMed

    Alì, Greta; Borrelli, Nicla; Riccardo, Giannini; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Boldrini, Laura; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-11-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm associated with asbestos exposure. Currently, the molecular mechanisms that induce MPM development are still unknown. The purpose of this study was to identify new molecular biomarkers for mesothelial carcinogenesis. We analyzed a panel of 84 genes involved in extracellular matrix remodeling and cell adhesion by polymerase chain reaction (PCR) array in 15 samples of epithelioid mesothelioma and 10 samples of reactive mesothelial hyperplasia (MH; 3 of 25 samples were inadequate for mRNA analysis). To validate the differentially expressed genes identified by PCR array, we analyzed 27 more samples by immunohistochemistry, in addition to the 25 samples already studied. Twenty-five genes were differentially expressed in MPM and MH by PCR array. Of these we studied matrix metalloproteinase 7 (MMP7), MMP14, CD44, and integrin, alpha3 expression by immunohistochemistry in 26 epithelioid MPM and 26 MH samples from the entire series of 52 cases. We observed higher MMP14 and integrin, alpha3 expression in MPM samples compared with MH samples (p = 0.000002 and p = 0.000002, respectively). Conversely, CD44 expression was low in most (57.7%) mesothelioma samples but only in 11.5% of the MH samples (p = 0.0013). As regards MMP7, we did not observe differential expression between MH and MPM samples. We have extensively studied genes involved in cell adhesion and extracellular matrix remodeling in MPM and MH samples, gaining new insight into the pathophysiology of mesothelioma. Moreover, our data suggest that these factors could be potential biomarkers for MPM.

  9. CD44-mediated activation of α5β1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and Fibronectin-enriched matrices

    PubMed Central

    McFarlane, Suzanne; McFarlane, Cheryl; Montgomery, Nicola; Hill, Ashleigh; Waugh, David J.J.

    2015-01-01

    CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with hyaluronan (HA), the native ligand for CD44, increased expression and activation of β1-integrin receptors, and increased α5-integrin subunit expression. Adhesion assays confirmed that CD44-signalling potentiated BLBC cell adhesion to endothelium and Fibronectin in an α5B1-integrin-dependent mechanism. Co-immunoprecipitation experiments confirmed HA-promoted association of CD44 with talin and the β1-integrin chain in BLBC cells. Knockdown of talin inhibited CD44 complexing with β1-integrin and repressed HA-induced, CD44-mediated activation of β1-integrin receptors. Immunoblotting confirmed that HA induced rapid phosphorylation of cortactin and paxillin, through a CD44-dependent and β1-integrin-dependent mechanism. Knockdown of CD44, cortactin or paxillin independently attenuated the adhesion of BL-BCa cells to endothelial monolayers and Fibronectin. Accordingly, we conclude that CD44 induced, integrin-mediated signaling not only underpins efficient adhesion of BLBC cells to BMECs to facilitate extravasation but initiates their adhesion to Fibronectin, enabling penetrant cancer cells to adhere more efficiently to underlying Fibronectin-enriched matrix present within the metastatic niche. PMID:26447611

  10. Inflammatory gene expression in whole blood cells after EPA vs. DHA supplementation: Results from the ComparED study.

    PubMed

    Vors, Cécile; Allaire, Janie; Marin, Johanne; Lépine, Marie-Claude; Charest, Amélie; Tchernof, André; Couture, Patrick; Lamarche, Benoît

    2017-02-01

    Whether EPA and DHA exert similar anti-inflammatory effects through modulation of gene expression in immune cells remains unclear. The aim of the study was to compare the impact of EPA and DHA supplementation on inflammatory gene expression in subjects at risk for cardiometabolic diseases. In this randomized double-blind crossover trial, 154 men and women with abdominal obesity and low-grade inflammation were subjected to three 10-wk supplementation phases: 1) EPA (2.7 g/d); 2) DHA (2.7 g/d); 3) corn oil (3 g/d), separated by a 9-wk washout. Pro- and anti-inflammatory gene expression was assessed in whole blood cells by RT-qPCR after each treatment in a representative sample of 44 participants. No significant difference was observed between EPA and DHA in the expression of any of the genes investigated. Compared with control, EPA enhanced TRAF3 and PPARA expression and lowered CD14 expression (p < 0.01) whereas DHA increased expression of PPARA and TNFA and decreased CD14 expression (p < 0.05). Variations in gene expression after EPA and after DHA were strongly correlated for PPARA (r = 0.73, p < 0.0001) and TRAF3 (r = 0.66, p < 0.0001) and less for TNFA (r = 0.46, p < 0.005) and CD14 (r = 0.16, p = 0.30). High-dose supplementation with either EPA or DHA has similar effects on the expression of many inflammation-related genes in immune cells of men and women at risk for cardiometabolic diseases. The effects of EPA and of DHA on anti-inflammatory gene expression may be more consistent than their effects on expression of pro-inflammatory genes in whole blood cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. CD44 as a receptor for colonization of the pharynx by group A Streptococcus

    PubMed Central

    Cywes, Colette; Stamenkovic, Ivan; Wessels, Michael R.

    2000-01-01

    The pharynx is the primary reservoir for strains of group A Streptococcus (GAS) associated both with pharyngitis (streptococcal sore throat) and with invasive or “flesh-eating” soft tissue infections. We now report that CD44, a hyaluronic acid-binding protein that mediates human cell-cell– and cell-extracellular matrix–binding interactions, functions as a receptor for GAS colonization of the pharynx in vivo. We found that attachment of GAS to murine epithelial keratinocytes was mediated by binding of the GAS hyaluronic acid capsular polysaccharide to CD44. In studies of transgenic mice with a selective defect in epithelial expression of CD44, GAS adherence to CD44-deficient keratinocytes in vitro was reduced compared with adherence to keratinocytes expressing normal levels of CD44. After intranasal inoculation, GAS colonized the oropharynx of wild-type mice but failed to colonize transgenic mice deficient in CD44 expression. GAS colonization of wild-type mice could be blocked by coadministration of mAb to CD44 or by pretreatment of the animals with exogenous hyaluronic acid. These results provide evidence that CD44 serves as a receptor for GAS colonization of the pharynx and support the potential efficacy of disrupting the interaction between the GAS hyaluronic acid capsule and CD44 as a novel approach to preventing pharyngeal infection. PMID:11032859

  12. Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis

    PubMed Central

    Sánchez-Abarca, Luis Ignacio; Rosón-Burgo, Beatriz; Redondo, Alba; Rico, Ana; Preciado, Silvia; Ortega, Rebeca; Rodríguez, Concepción; Muntión, Sandra; Hernández-Hernández, Ángel; De Las Rivas, Javier; González, Marcos; González Porras, José Ramón; del Cañizo, Consuelo; Sánchez-Guijo, Fermín

    2017-01-01

    There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells. PMID:28796790

  13. CD44 deficiency enhanced Streptococcus equi ssp. zooepidemicus dissemination and inflammation response in a mouse model.

    PubMed

    Fu, Qiang; Xiao, Pingping; Chen, Yaosheng; Wei, Zigong; Liu, Xiaohong

    2017-12-01

    Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is responsible for peritonitis, septicemia, meningitis, arthritis and several other serious diseases in various species. Recent studies have demonstrated that CD44 is implicated in the process of host defense against pathogenic microorganisms. In the present study, the role of CD44 in the host response to S. zooepidemicus infection was investigated in a mouse model. Upon intraperitoneal infection with S. zooepidemicus, the expression of CD44 on the peritoneal exudate cells from wild-type (WT) mice was increased. CD44 deficiency accelerated mortality, which was accompanied by increased peritoneal bacterial growth and dissemination to distant body sites. CD44 knock-out (KO) mice showed enhanced early inflammatory cell recruitment into the peritoneal fluid on S. zooepidemicus infection. In line with this, the expression of proinflammatory cytokines, chemokines in peritoneal exudate cells and peritoneal macrophages of CD44 KO mice were increased compared with those of WT mice. In addition, CD44 deficiency was associated with reduced expression of A20, a negative regulator in TLR signaling. Overall, the present study suggests that CD44 plays a protective role in antibacterial defense against S. zooepidemicus in mice. Copyright © 2017. Published by Elsevier Ltd.

  14. Clinical relevance of TRKA expression on neuroblastoma: comparison with N-MYC amplification and CD44 expression.

    PubMed Central

    Combaret, V.; Gross, N.; Lasset, C.; Balmas, K.; Bouvier, R.; Frappaz, D.; Beretta-Brognara, C.; Philip, T.; Favrot, M. C.; Coll, J. L.

    1997-01-01

    TRKA expression was evaluated on 122 untreated neuroblastomas by immunohistochemistry using an antibody with predetermined specificity. This procedure is simple and reliable for protein detection at cellular level in a routine clinical setting. Fourteen tumours were classified as benign ganglioneuroma with a restricted expression of TRKA on ganglion cells; these patients were excluded from the following analysis. A total of 108 tumours were classified as neuroblastoma or ganglioneuroblastoma; 74 expressed TRKA protein, which strongly correlated with low stage, absence of N-MYC amplification, age (<1 year), CD44 expression and favourable clinical outcome. In a univariate analysis including tumour stage, age, histology, N-MYC amplification, CD44 and TRKA expression, all parameters had significant prognostic value. The absence of TRKA expression on CD44-positive or N-MYC non-amplified tumours permits the characterization of a subgroup of patients with intermediate prognosis. However, in a multivariate analysis taking into consideration the prognostic factors mentioned above, CD44 and tumour stage were the only independent prognostic factors for the prediction of patients' event-free survival. PMID:9099963

  15. Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells.

    PubMed

    Nami, Babak; Ghasemi-Dizgah, Armin; Vaseghi, Akbar

    2016-01-01

    Breast cancer stem cell with CD44(hi)/CD24(lo) phonotype is described having stem cell properties and represented as the main driving factor in breast cancer initiation, growth, metastasis and low response to anti-cancer agents. Glucoseregulated proteins (GRPs) are heat shock protein family chaperons that are charged with regulation of protein machinery and modulation of endoplasmic reticulum homeostasis whose important roles in stem cell development and invasion of various cancers have been demonstrated. Here, we investigated the expression levels of GRP78 and GRP94 in CD44(hi)/CD24(lo) phenotype breast cancer stem cells (BCSCs). MCF7, T-47D and MDA-MB-231 breast cancer cell lines were used. CD44(hi)/CD24(lo) phenotype cell population were analyzed and sorted by fluorescence-activated cell sorting (FACS). Transcriptional and translational expression of GRP78 and GRP94 were investigated by western blotting and quantitative real time PCR. RESULTS showed different proportion of CD44(hi)/CD24(lo) phenotype cell population in their original bulk cells. The ranking of the cell lines in terms of CD44(hi)/CD24(lo) phenotype cell population was as MCF7

  16. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24

    PubMed Central

    Teo, Wei Wen; Merino, Vanessa F.; Cho, Soonweng; Korangath, Preethi; Liang, Xiaohui; Wu, Ren-chin; Neumann, Neil M.; Ewald, Andrew J.; Sukumar, Saraswati

    2016-01-01

    Loss of HOXA5 expression occurs frequently in breast cancer and correlates with higher pathological grade and poorer disease outcome. However, how HOX proteins drive differentiation in mammalian cells is poorly understood. In this paper, we investigated cellular and molecular consequences of loss of HOXA5 in breast cancer, and the role played by retinoic acid in HOXA5 function. Analysis of global gene expression data from HOXA5-depleted MCF10A breast epithelial cells, followed by validation, pointed to a role for HOXA5 in maintaining several molecular traits typical of the epithelial lineage such as cell-cell adhesion, tight junctions and markers of differentiation. Depleting HOXA5 in immortalized MCF10A or transformed MCF10A-Kras cells reduced their CD24+/CD44lo population, enhanced self-renewal capacity, and reduced expression of E-cadherin (CDH1) and CD24. In the case of MCF10A-Kras, HOXA5 loss increased branching and protrusive morphology in Matrigel, all features suggestive of epithelial to basal transition. Further, orthotopically implanted xenografts of MCF10A-Kras-scr grew as well-differentiated pseudo-luminal carcinomas, while MCF10A-Kras-shHOXA5 cells formed aggressive, poorly differentiated carcinomas. Conversely, ectopic expression of HOXA5 in aggressive SUM149 or SUM159 breast cancer cells reversed the cellular and molecular alterations observed in the HOXA5-depleted cells. Retinoic acid is a known upstream regulator of HOXA5 expression. HOXA5 depletion in MCF10A cells engineered to express doxycycline-induced shHOXA5 slowed transition of cells from a less differentiated CD24−/CD44+ to the more differentiated CD24+/CD44+ state. This transition was promoted by retinal treatment which upregulated endogenous HOXA5 expression, and caused re-expression of, Occludin, and claudin-7 (CLDN7). Expression of CDH1 and CD24 was transcriptionally upregulated by direct binding of HOXA5 to their promoter sequences as demonstrated by luciferase and ChIP analyses. Thus, loss of HOXA5 in mammary cells leads to loss of epithelial traits, an increase in stemness and cell plasticity, and the acquisition of more aggressive phenotypes. PMID:27157614

  17. Effect of low dose of vinclozolin on reproductive tract development and sperm parameters in CD1 outbred mice.

    PubMed

    Elzeinova, Fatima; Novakova, Vendula; Buckiova, Daniela; Kubatova, Alena; Peknicova, Jana

    2008-01-01

    The effect of a low dose of vinclozolin within the development of the reproductive tract during gestation (VIN-GD 15-22) and puberty (VIN-PND 23-44) in CD1 mice was tested. We found a decrease in the anogenital distance, prostate weight and pathology of testes in both experimental groups. Sperm counts decreased to 46% (VIN-GD) and to 81% (VIN-PND), and also the acrosomal state (evaluated by antiacrosomal antibody) decreased in both groups to 89% in comparison to the control group (100%). Sperm head abnormalities increased by approximately 18% and 13%, respectively. In this connection, the expression of some genes was changed (arosome-related gene (Acr), apoptosis related genes (p53, p21)). In conclusion, a low dose of vinclozolin affected the reproductive tract, sperm parameters and expression of selected genes in both experimental groups.

  18. Verification of ALDH Activity as a Biomarker in Colon Cancer Stem Cells-Derived HT-29 Cell Line.

    PubMed

    Khorrami, Samaneh; Zavaran Hosseini, Ahmad; Mowla, Seyed Javad; Malekzadeh, Reza

    2015-10-01

    Recent evidence has suggested that epithelial cancers including colorectal cancer (CRC) have driven by a small population of self-renewing, multi-potent cells termed cancer stem cells (CSCs) which could be responsible for recurrence of cancer. Aldehyde dehydrogenase 1 (ALDH1) activity has used as a functional stem cell biomarker to isolate CSCs in different cancers such as colorectal cancer. The main aim of this research was to determine the utility of ALDH1 activity along with CD44 and EPCAM in identifying stem cell-like cells in human HT-29 colonic adenocarcinoma cell line. In this experimental study, colon CSCs biomarkers including CD44, EPCAM and ALDH1 in colonospheres and parent cells have analyzed by flow cytometry. The expression levels of stemness genes in spheroid and parental cells have investigated using SYBR Green real-time PCR. In addition, in vivo xenografts assay has performed to determine tumorigenic potential of tumor spheroid cells in nude mice. According to results, over 92% of spheroids were CD44+/EpCAM+, while parent cells only have expressed 38% of CD44/EpCAM biomarkers (P < 0.001). Controversially, ALDH activity was about 2-fold higher in the parent cells than spheroid cells (P < 0.05). In comparison with the parental cells, expression levels of ''stemness'' genes, like Sox2, Oct4, Nanog, C-myc, and Klf4 have significantly increased in colonosphere cells (P < 0.05). Further, administration of 2500 spheroids could be sufficient to initiate tumor growth in nude mice, while 1x106 of parental cells has needed to form tumor. For the first time, we have shown that colonospheres with low ALDH1 activity has indicated increased tumorigenic potential and stemness properties. So, it hasn't seemed that ALDH1 could become a useful biomarker to identify CSCs population in HT-29 cell line.

  19. High-resolution molecular validation of self-renewal and spontaneous differentiation in adipose-tissue derived human mesenchymal stem cells cultured in human platelet lysate

    PubMed Central

    Dudakovic, Amel Dudakovic; Camilleri, Emily; Riester, Scott M.; Lewallen, Eric A.; Kvasha, Sergiy; Chen, Xiaoyue; Radel, Darcie J.; Anderson, Jarett M.; Nair, Asha A.; Evans, Jared M.; Krych, Aaron J.; Smith, Jay; Deyle, David R.; Stein, Janet L.; Stein, Gary S.; Im, Hee-Jeong; Cool, Simon M.; Westendorf, Jennifer J.; Kakar, Sanjeev; Dietz, Allan B.; van Wijnen, Andre J.

    2014-01-01

    Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1 and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10 fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while up-regulating WNT-related genes (WISP2, SFRP2 and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility. PMID:24905804

  20. Hyaluronan injection in murine osteoarthritis prevents TGFbeta 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism

    PubMed Central

    2012-01-01

    Introduction The mechanism by which intra-articular injection of hyaluronan (HA) ameliorates joint pathology is unknown. Animal studies have shown that HA can reduce synovial activation, periarticular fibrosis and cartilage erosion; however, its specific effects on the different cell types involved remain unclear. We have used the TTR (TGFbeta1 injection and Treadmill Running) model of murine osteoarthritis (OA), which exhibits many OA-like changes, including synovial activation, to examine in vivo tissue-specific effects of intra-articular HA. Methods The kinetics of clearance of fluorotagged HA from joints was examined with whole-body imaging. Naïve and treated knee joints were examined macroscopically for cartilage erosion, meniscal damage and fibrosis. Quantitative histopathology was done with Safranin O for cartilage and with Hematoxylin & Eosin for synovium. Gene expression in joint tissues for Acan, Col1a1, Col2a1, Col3a1, Col5a1, Col10a1, Adamts5 and Mmp13 was done by quantitative PCR. The abundance and distribution of aggrecan, collagen types I, II, III, V and X, ADAMTS5 and MMP13 were examined by immunohistochemistry. Results Injected HA showed a half-life of less than 2 h in the murine knee joint. At the tissue level, HA protected against neovascularization and fibrosis of the meniscus/synovium and maintained articular cartilage integrity in wild-type but not in Cd44 knockout mice. HA injection enhanced the expression of chondrogenic genes and proteins and blocked that of fibrogenic/degradative genes and proteins in cartilage/subchondral bone, whereas it blocked activation of both groups in meniscus/synovium. In all locations it reduced the expression/protein for Mmp13 and blocked Adamts5 expression but not its protein abundance in the synovial lining. Conclusions The injection of HA, 24 h after TGFbeta1 injection, inhibited the cascade of OA-like joint changes seen after treadmill use in the TTR model of OA. In terms of mechanism, tissue protection by HA injection was abrogated by Cd44 ablation, suggesting that interaction of the injected HA with CD44 is central to its protective effects on joint tissue remodeling and degeneration in OA progression. PMID:22721434

  1. Ex vivo expansion of canine cytotoxic large granular lymphocytes exhibiting characteristics of natural killer cells.

    PubMed

    Shin, Dong-Jun; Park, Ji-Yun; Jang, Youn-Young; Lee, Je-Jung; Lee, Youn-Kyung; Shin, Myung-Geun; Jung, Ji-Youn; Carson, William E; Cho, Duck; Kim, Sang-Ki

    2013-06-15

    Canine NK cells still are not well-characterized due to the lack of information concerning specific NK cell markers and the fact that NK cells are not an abundant cell population. In this study, we selectively expanded the canine cytotoxic large granular lymphocytes (CLGLs) that exhibit morphologic, genetic, and functional characteristics of NK cells from normal donor PBMCs. The cultured CLGLs were characterized by a high proportion of CD5(dim) expressing cells, of which the majority of cells co-expressed CD3 and CD8, but did not express TCRαβ and TCRγδ. The phenotype of the majority of the CLGLs was CD5(dim)CD3(+)CD8(+) TCRαβ(-)TCRγδ(-)CD4(-)CD21(-)CD11c(+/-)CD11d(+/-)CD44(+). The expression of mRNAs for NK cell-associated receptors (NKG2D, NKp30, NKp44, Ly49, perforin, and granzyme B) were highly upregulated in cultured CLGLs. Specifically, NKp46 was remarkably upregulated in the cultured CLGLs compared to PBMCs. The mRNAs for the NKT-associated iTCRα gene in CLGLs was present at a basal level. The cytotoxic activity of the CLGLs against canine NK cell-sensitive CTAC cells was remarkably elevated in a dose-dependent manner, and the CLGLs produced large amounts of IFN-γ. The antitumor activity of CLGLs extended to different types of canine tumor cells (CF41.Mg and K9TCC-pu-AXC) without specific antigen recognition. These results are consistent with prior reports, and strongly suggest that the selectively expanded CLGLs represent a population of canine NK cells. The results of this study will contribute to future research on canine NK cells as well as NK cell-based immunotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Genomic responses in rat cerebral cortex after traumatic brain injury

    PubMed Central

    von Gertten, Christina; Morales, Amilcar Flores; Holmin, Staffan; Mathiesen, Tiit; Nordqvist, Ann-Christin Sandberg

    2005-01-01

    Background Traumatic brain injury (TBI) initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future treatment targets. Since trauma is a risk factor for development of neurodegenerative disease, this knowledge may also reduce late negative effects. PMID:16318630

  3. HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway.

    PubMed

    Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen

    2017-03-15

    Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.

  4. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD44, ABCB1 and ADAM17 in oral squamous cell carcinoma.

    PubMed

    Naik, Prajna Paramita; Mukhopadhyay, Subhadip; Panda, Prashanta Kumar; Sinha, Niharika; Das, Chandan Kanta; Mishra, Rajakishore; Patil, Shankargouda; Bhutia, Sujit Kumar

    2018-02-01

    We inspected the relevance of CD44, ABCB1 and ADAM17 in OSCC stemness and deciphered the role of autophagy/mitophagy in regulating stemness and chemoresistance. A retrospective analysis of CD44, ABCB1 and ADAM17 with respect to the various clinico-pathological factors and their correlation was analysed in sixty OSCC samples. Furthermore, the stemness and chemoresistance were studied in resistant oral cancer cells using sphere formation assay, flow cytometry and florescence microscopy. The role of autophagy/mitophagy was investigated by transient transfection of siATG14, GFP-LC3, tF-LC3, mKeima-Red-Mito7 and Western blot analysis of autophagic and mitochondrial proteins. In OSCC, high CD44, ABCB1 and ADAM17 expressions were correlated with higher tumour grades and poor differentiation and show significant correlation in their co-expression. In vitro and OSCC tissue double labelling confirmed that CD44 + cells co-expresses ABCB1 and ADAM17. Further, cisplatin (CDDP)-resistant FaDu cells displayed stem-like features and higher CD44, ABCB1 and ADAM17 expression. Higher autophagic flux and mitophagy were observed in resistant FaDu cells as compared to parental cells, and inhibition of autophagy led to the decrease in stemness, restoration of mitochondrial proteins and reduced expression of CD44, ABCB1 and ADAM17. The CD44 + /ABCB1 + /ADAM17 + expression in OSCC is associated with stemness and chemoresistance. Further, this study highlights the involvement of mitophagy in chemoresistance and autophagic regulation of stemness in OSCC. © 2017 John Wiley & Sons Ltd.

  5. Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells

    PubMed Central

    Chang, Po-Hsiang; Sekine, Keisuke; Chao, Hsiao-Mei; Hsu, Shan-hui; Chern, Edward

    2017-01-01

    Cancer stem cells (CSCs), a small population of cancer cells, have been considered to be the origin of cancer initiation, recurrence, and metastasis. Tumor microenvironment provides crucial signals for CSCs to maintain stem cell properties and promotes tumorigenesis. Therefore, establishment of an appropriate cell culture system to mimic the microenvironment for CSC studies is an important issue. In this study, we grew colon and hepatocellular carcinoma (HCC) cells on chitosan membranes and evaluated the tumor progression and the CSC properties. Experimental results showed that culturing cancer cells on chitosan increased cell motility, drug resistance, quiescent population, self-renewal capacity, and the expression levels of stemness and CSC marker genes, such as OCT4, NANOG, CD133, CD44, and EpCAM. Furthermore, we demonstrated that chitosan might activate canonical Wnt/β-catenin-CD44 axis signaling in CD44positive colon cancer cells and noncanonical Wnt-STAT3 signaling in CD44negative HCC cells. In conclusion, chitosan as culture substrates activated the essential signaling of CSCs and promoted CSC properties. The chitosan culture system provides a convenient platform for the research of CSC biology and screening of anticancer drugs. PMID:28367998

  6. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma.

    PubMed

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-08-01

    Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. © The Author 2017. Published by Oxford University Press.

  7. An enteric pathogen Salmonella enterica serovar Typhimurium suppresses tumor growth by downregulating CD44high and CD4T regulatory (Treg) cell expression in mice: the critical role of lipopolysaccharide and Braun lipoprotein in modulating tumor growth.

    PubMed

    Liu, T; Chopra, A K

    2010-02-01

    An antitumor activity associated with several bacterial pathogens, including Salmonella enterica serovar Typhimurium, has been reported; however, the underlying immunological mechanism(s) that lead to an antitumor effect are currently unclear. Furthermore, such pathogens cannot be used to suppress tumor growth because of their potential for causing sepsis. Recently, we reported the characterization of S. Typhimurium isogenic mutants from which Braun lipoprotein genes (lppA and B) and the multicopy repressor of high temperature requirement (msbB) gene were deleted. In a mouse infection model, two mutants, namely, lppB/msbB and lppAB/msbB, minimally induced proinflammatory cytokine production at high doses and were nonlethal to animals. We showed that immunization of mice with these mutants, followed by challenge with the wild-type S. Typhimurium, could significantly suppress tumor growth, as evidenced by an 88% regression in tumor size in lppB/msbB mutant-immunized animals over a 24-day period. However, the lppAB/msbB mutant alone was not effective in modulating tumor growth in mice, although the lppB/msbB mutant alone caused marginal regression in tumor size. Importantly, we showed that CD44(+) cells grew much faster than CD44(-) cells from human liver tumors in mice, leading us to examine the possibility that S. Typhimurium might downregulate CD44 in tumors and splenocytes of mice. Consequently, we found in S. Typhimurium-infected mice that tumor size regression could indeed be related to the downregulation of CD44(high) and CD4(+)CD25(+) T(reg) cells. Importantly, the role of lipopolysaccharide and Braun lipoprotein was critical in S. Typhimurium-induced antitumor immune responses. Taken together, we have defined new immune mechanisms leading to tumor suppression in mice by S. Typhimurium.

  8. In Vitro and In Vivo Prostate Cancer Metastasis and Chemoresistance Can Be Modulated by Expression of either CD44 or CD147

    PubMed Central

    Hao, Jingli; Madigan, Michele C.; Khatri, Aparajita; Power, Carl A.; Hung, Tzong-Tyng; Beretov, Julia; Chang, Lei; Xiao, Weiwei; Cozzi, Paul J.; Graham, Peter H.; Kearsley, John H.; Li, Yong

    2012-01-01

    CD44 and CD147 are associated with cancer metastasis and progression. Our purpose in the study was to investigate the effects of down-regulation of CD44 or CD147 on the metastatic ability of prostate cancer (CaP) cells, their docetaxel (DTX) responsiveness and potential mechanisms involved in vitro and in vivo. CD44 and CD147 were knocked down (KD) in PC-3M-luc CaP cells using short hairpin RNA (shRNA). Expression of CD44, CD147, MRP2 (multi-drug resistance protein-2) and MCT4 (monocarboxylate tranporter-4) was evaluated using immunofluorescence and Western blotting. The DTX dose-response and proliferation was measured by MTT and colony assays, respectively. The invasive potential was assessed using a matrigel chamber assay. Signal transduction proteins in PI3K/Akt and MAPK/Erk pathways were assessed by Western blotting. An in vivo subcutaneous (s.c.) xenograft model was established to assess CaP tumorigenecity, lymph node metastases and DTX response. Our results indicated that KD of CD44 or CD147 decreased MCT4 and MRP2 expression, reduced CaP proliferation and invasive potential and enhanced DTX sensitivity; and KD of CD44 or CD147 down-regulated p-Akt and p-Erk, the main signal modulators associated with cell growth and survival. In vivo, CD44 or CD147-KD PC-3M-luc xenografts displayed suppressed tumor growth with increased DTX responsiveness compared to control xenografts. Both CD44 and CD147 enhance metastatic capacity and chemoresistance of CaP cells, potentially mediated by activation of the PI3K and MAPK pathways. Selective targeting of CD44/CD147 alone or combined with DTX may limit CaP metastasis and increase chemosensitivity, with promise for future CaP treatment. PMID:22870202

  9. Adhesion-mediated self-renewal abilities of Ph+ blastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funayama, Keiji; Saito-Kurimoto, Yumi; Ebihara, Yasuhiro

    2010-05-28

    The Philadelphia chromosome-positive blastoma, maintained by serial subcutaneous transplantation in nude mice, is a highly proliferating biological mass consisting of homogenous CD34{sup +}CD38{sup -} myeloblastoid cells. These cells newly evolved from pluripotent leukemia stem cells of chronic myeloid leukemia in the chronic phase. Therefore, this mass may provide a unique tool for better understanding cellular and molecular mechanisms of self-renewal of leukemia stem cells. In this paper, we demonstrated that intravenously injected blastoma cells can cause Ph+ blastic leukemia with multiple invasive foci in NOD/SCID mice but not in nude mice. In addition, using an in vitro culture system, wemore » clearly showed that blastoma cell adhesion to OP9 stromal cells accelerates blastoma cell proliferation that is associated with up-regulation of BMI1 gene expression; increased levels of {beta}-catenin and the Notch1 intra-cellular domain; and changed the expression pattern of variant CD44 forms, which are constitutively expressed in these blastoma cells. These findings strongly suggest that adhesion of leukemic stem cells to stromal cells via CD44 might be indispensable for their cellular defense against attack by immune cells and for maintenance of their self-renewal ability.« less

  10. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells.

    PubMed

    Fernando, Joan; Malfettone, Andrea; Cepeda, Edgar B; Vilarrasa-Blasi, Roser; Bertran, Esther; Raimondi, Giulia; Fabra, Àngels; Alvarez-Barrientos, Alberto; Fernández-Salguero, Pedro; Fernández-Rodríguez, Conrado M; Giannelli, Gianluigi; Sancho, Patricia; Fabregat, Isabel

    2015-02-15

    The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients. © 2014 UICC.

  11. Comparative study of β-catenin and CD44 immunoexpression in oral lichen planus and squamous cell carcinoma.

    PubMed

    Zargaran, Massoumeh; Baghaei, Fahimeh; Moghimbeigi, Abbas

    2018-04-24

    Dysfunction of adhesion molecules is believed to play an early and important role in developing cancer. Accordingly, this study aims to compare beta-catenin (β-catenin) and CD44 expression in oral lichen planus (OLP) as a condition with malignant potential and oral squamous cell carcinoma (OSCC). β-Catenin and CD44 expression were evaluated in 15 patients with epithelial hyperplasia (group A), 20 OLP (group B), and 20 OSCC (group C) by immunohistochemistry. Quantitative and semi-quantitative evaluations revealed β-catenin, and CD44 membranous expression had significant differences among the three groups. Expression of these markers in the OSCC group decreased significantly compared to that of the OLP. Also, nuclear/cytoplasmic expression of β-catenin was significantly different among the three groups, considering that nuclear expression was not observed in any of the epithelial hyperplasia and OLP samples. According to the findings of this study, β-catenin and CD44 can differentiate between behavior of OLP and OSCC, while the precancerous nature of OLP and malignant transformation potential of it are not suggested. © 2018 The International Society of Dermatology.

  12. CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma

    PubMed Central

    Gao, Yan; Feng, Yong; Shen, Jacson K.; Lin, Min; Choy, Edwin; Cote, Gregory M.; Harmon, David C.; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng

    2015-01-01

    Osteosarcoma is the most common primary bone malignancy in children and adolescents. Herein, we investigated the role of cluster of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion, and migration in osteosarcoma. We constructed a human osteosarcoma tissue microarray with 114 patient tumor specimens, including tumor tissues from primary, metastatic, and recurrent stages, and determined the expression of CD44 by immunohistochemistry. Results showed that CD44 was overexpressed in metastatic and recurrent osteosarcoma as compared with primary tumors. Higher expression of CD44 was found in both patients with shorter survival and patients who exhibited unfavorable response to chemotherapy before surgical resection. Additionally, the 3′-untranslated region of CD44 mRNA was the direct target of microRNA-199a-3p (miR-199a-3p). Overexpression of miR-199a-3p significantly inhibited CD44 expression in osteosarcoma cells. miR-199a-3p is one of the most dramatically decreased miRs in osteosarcoma cells and tumor tissues as compared with normal osteoblast cells. Transfection of miR-199a-3p significantly increased the drug sensitivity through down-regulation of CD44 in osteosarcoma cells. Taken together, these results suggest that the CD44-miR-199a-3p axis plays an important role in the development of metastasis, recurrence, and drug resistance of osteosarcoma. Developing strategies to target CD44 may improve the clinical outcome of osteosarcoma. PMID:26079799

  13. Cytoskeletal regulation of CD44 membrane organization and interactions with E-selectin.

    PubMed

    Wang, Ying; Yago, Tadayuki; Zhang, Nan; Abdisalaam, Salim; Alexandrakis, George; Rodgers, William; McEver, Rodger P

    2014-12-19

    Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Cytoskeletal Regulation of CD44 Membrane Organization and Interactions with E-selectin*

    PubMed Central

    Wang, Ying; Yago, Tadayuki; Zhang, Nan; Abdisalaam, Salim; Alexandrakis, George; Rodgers, William; McEver, Rodger P.

    2014-01-01

    Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling. PMID:25359776

  15. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    PubMed

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  16. Hyaluronan receptors in the human ocular surface: a descriptive and comparative study of RHAMM and CD44 in tissues, cell lines and freshly collected samples.

    PubMed

    García-Posadas, Laura; Contreras-Ruiz, Laura; López-García, Antonio; Villarón Álvarez, Sonia; Maldonado, Miguel J; Diebold, Yolanda

    2012-02-01

    The purpose of this study was to demonstrate the presence of the receptor for hyaluronan-mediated motility (RHAMM) in human conjunctival epithelium and in two widely used cell lines from human corneal (HCE) and conjunctival (IOBA-NHC) epithelia. We compared the distribution of RHAMM proteins and mRNAs in human ocular surface tissues (corneal, limbal and conjunctival), HCE and IOBA-NHC cell lines, and corneal and conjunctival epithelia primary samples from healthy donors with the previously identified hyaluronan receptor CD44. We also aimed to determine if soluble CD44 (sCD44) was present in human tears, as it could have a role in the interaction of the tear fluid with hyaluronan. Protein expression was evaluated by Western blots and immunofluorescence microscopy. mRNA expression was evaluated by RT-PCR and Q-PCR. sCD44 was analyzed by ELISA in culture supernatants and in human tears. We describe the expression of RHAMM in human healthy conjunctiva and in HCE and IOBA-NHC cells at both protein and mRNA levels, and the presence of sCD44 in human tears. Furthermore, we detected CD44 and sCD44 expression variations in in vitro inflammatory conditions. This study also focused on the necessary caution with which the conclusions extracted from cell lines should be made, and in the great value of using primary samples as often as possible.

  17. Evaluation of CD44 and CD133 as markers of liver cancer stem cells in Egyptian patients with HCV-induced chronic liver diseases versus hepatocellular carcinoma

    PubMed Central

    Rozeik, Mohammed Saeed; Hammam, Olfat Ali; Ali, Ali Ibrahim; Magdy, Mona; Khalil, Heba; Anas, Amgad; Abo el Hassan, Ahmed Abdelaleem; Rahim, Ali Abdel; El-Shabasy, Ahmed Ibrahim

    2017-01-01

    Background Cancer stem cells (CSCs) play a critical role in tumor development, progression, metastasis and recurrence. Aim To evaluate hepatic expression of CD44 and CD133 in Egyptian patients with HCV-induced chronic liver diseases and hepatocellular carcinomas (HCCs), and to assess its correlation with inflammatory activity scores, stages of fibrosis (in chronic hepatitis with or without cirrhosis) and grades of HCC. Methods This prospective case-control study was conducted on eighty subjects who attended the Tropical Diseases Department, Al-Azhar University Hospital, and in collaboration with Theodor Bilharz Research Institute (2014–2016). They were divided as follows: A) Control healthy group: Ten individuals with serologically negative HCV-Ab and HBsAg, and histopathologically normal liver, B) Seventy patients subdivided into 3 groups; Twenty subjects each, as: HCV-Ab+ non-cirrhotic, HCV-Ab+ cirrhotic and HCC. Necroinflammatory activity and fibrosis in non-neoplastic liver biopsies were scored according to the METAVIR scoring system. CD44 and CD133 immunostaining was evaluated in all groups semi-quantitatively using H score. Statistical analysis was performed by SPSS version 22, using independent-samples t-test. Results Our study showed a significant increase of mean CD44 & CD133 expression values with disease progression among the groups (p<0.05). Their expressions increased significantly with the inflammatory activity scores and stages of fibrosis, reaching the highest values in A3F4 score compared to A1F1 (p<0.05). Moreover, there was a significant increase of their expressions across HCC grades (p<0.05), however with no significant correlation with focal lesions size. Conclusion CSCs clusters exhibiting CD133+ and/or CD44+ profiles were identified in chronic hepatitis, liver cirrhosis and HCC. CD133 and CD44 expressions significantly corresponded to the increased inflammatory activity, fibrosis stages and higher tumor grades. Therefore, evaluation of CD44 and CD133 expression profiles as CSCs markers in non-neoplastic liver and HCCs can help in development of novel therapeutic agents for HCC targeting and prevention. PMID:28894525

  18. Expression of two isoforms of CD44 in human endometrium.

    PubMed

    Behzad, F; Seif, M W; Campbell, S; Aplin, J D

    1994-10-01

    The distribution of the cell-surface adhesion glycoprotein CD44 in human endometrium was examined by immunofluorescence using six monoclonal antibodies to epitopes common to all forms of the molecule, and by reverse transcription-polymerase chain reaction (RT-PCR). Immunoreactivity was observed throughout the menstrual cycle in stroma, vessels, glandular, and luminal epithelium. Variations in staining intensity were observed, especially in the epithelial compartment. CD44 was also expressed strongly by decidualized stromal cells of first-trimester pregnancy. No systematic variation of immunoreactivity was observed with stages of the normal cycle, but a fraction (25%) of the specimens lacked reactivity in the epithelium. To determine the molecular size of the epithelial isoform, an immunoprecipitation technique was developed using surface-radioiodinated, detergent-extracted glands. This indicated the presence at the cell surface of a single dominant CD44E species with an approximate molecular mass of 130 kDa. RT-PCR was used to investigate the isoforms present in whole endometrial tissue, isolated gland fragments, and Ishikawa endometrial carcinoma cells. Complementary DNA produced from total endometrial mRNA was PCR-amplified across the splice junction between exons 5 and 15. Transcripts corresponding to the hyaluronate receptor CD44H as well as a larger isoform were identified. CD44H was absent, or very scarce, in cDNA from purified gland epithelium. In contrast, Ishikawa cells expressed this form abundantly. The glands and Ishikawa cells also expressed CD44E containing sequences encoded by exons 12, 13, and 14. These data demonstrate the presence of CD44 in human endometrium and decidua, and show that different isoforms of CD44 are associated with tissue compartments in which different functional roles can be anticipated.

  19. [Effect of Golgi α-mannosidase 2 (GM2) gene knockdown on adhesion abilities of human gastric carcinoma cell line BGC-823 and its mechanism].

    PubMed

    Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying

    2017-06-01

    Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.

  20. Universal monitoring of minimal residual disease in acute myeloid leukemia.

    PubMed

    Coustan-Smith, Elaine; Song, Guangchun; Shurtleff, Sheila; Yeoh, Allen Eng-Juh; Chng, Wee Joo; Chen, Siew Peng; Rubnitz, Jeffrey E; Pui, Ching-Hon; Downing, James R; Campana, Dario

    2018-05-03

    Optimal management of acute myeloid leukemia (AML) requires monitoring of treatment response, but minimal residual disease (MRD) may escape detection. We sought to identify distinctive features of AML cells for universal MRD monitoring. We compared genome-wide gene expression of AML cells from 157 patients with that of normal myeloblasts. Markers encoded by aberrantly expressed genes, including some previously associated with leukemia stem cells, were studied by flow cytometry in 240 patients with AML and in nonleukemic myeloblasts from 63 bone marrow samples. Twenty-two (CD9, CD18, CD25, CD32, CD44, CD47, CD52, CD54, CD59, CD64, CD68, CD86, CD93, CD96, CD97, CD99, CD123, CD200, CD300a/c, CD366, CD371, and CX3CR1) markers were aberrantly expressed in AML. Leukemia-associated profiles defined by these markers extended to immature CD34+CD38- AML cells; expression remained stable during treatment. The markers yielded MRD measurements matching those of standard methods in 208 samples from 52 patients undergoing chemotherapy and revealed otherwise undetectable MRD. They allowed MRD monitoring in 129 consecutive patients, yielding prognostically significant results. Using a machine-learning algorithm to reduce high-dimensional data sets to 2-dimensional data, the markers allowed a clear visualization of MRD and could detect 1 leukemic cell among more than 100,000 normal cells. The markers uncovered in this study allow universal and sensitive monitoring of MRD in AML. In combination with contemporary analytical tools, the markers improve the discrimination between leukemic and normal cells, thus facilitating data interpretation and, hence, the reliability of MRD results. National Cancer Institute (CA60419 and CA21765); American Lebanese Syrian Associated Charities; National Medical Research Council of Singapore (1299/2011); Viva Foundation for Children with Cancer, Children's Cancer Foundation, Tote Board & Turf Club, and Lee Foundation of Singapore.

  1. CD44 mediated hyaluronan adhesion of Toxoplasma gondii-infected leukocytes.

    PubMed

    Hayashi, Takeshi; Unno, Akihiro; Baba, Minami; Ohno, Tamio; Kitoh, Katsuya; Takashima, Yasuhiro

    2014-04-01

    Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans and animals. Ingested parasites cross the intestinal epithelium, invade leukocytes and are then disseminated to peripheral organs. However, the mechanism of extravasation of the infected leukocytes remains poorly understood. In this study, we demonstrate that T. gondii-invaded human and mouse leukocytes express higher level of CD44, a ligand of hyaluronan (HA), and its expression on myeloid and non-myeloid leukocytes causes T. gondii-invaded human and mouse leukocyte to adhere to HA more effectively than non-invaded leukocytes. The specific adherence of parasite-invaded leukocytes was inhibited by anti CD44 antibody. Leukocytes of CD44 knockout mice did not show parasite-invaded leukocyte specific adhesion. Our results indicate that parasite-invaded leukocytes, regardless of whether myeloid or not, gain higher ability to adhere to HA than non-invaded leukocytes, via upregulation of CD44 expression and/or selective invasion to CD44 highly expressing cells. The difference in ability to adhere to HA between parasite-invaded cells and non-invaded neighboring cells might facilitate effective delivery of parasite-invaded leukocytes to the HA-producing endothelial cell surface and/or HA-rich extra cellular matrix. © 2013.

  2. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium.

    PubMed

    Seeberger, Karen L; Dufour, Jannette M; Shapiro, Andrew M James; Lakey, Jonathan R T; Rajotte, Ray V; Korbutt, Gregory S

    2006-02-01

    Fibroblast-like cells emerging from cultured human pancreatic endocrine and exocrine tissue have been reported. Although a thorough phenotypic characterization of these cells has not yet been carried out, these cells have been hypothesized to be contaminating fibroblasts, mesenchyme and/or possibly beta-cell progenitors. In this study, we expanded fibroblast-like cells from adult human exocrine pancreas following islet isolation and characterized these cells as mesenchymal stem cells (MSCs) based on their cell surface antigen expression and ability to differentiate into mesoderm. Analysis by flow cytometry demonstrated that pancreatic MSCs express cell surface antigens used to define MSCs isolated from bone marrow such as CD13, CD29, CD44, CD49b, CD54, CD90 and CD105. In addition, utilizing protocols used to differentiate MSCs isolated from other somatic tissues, we successfully differentiated pancreatic MSCs into: (1) osteocytes that stained positive for alkaline phosphatase, collagen, mineralization (calcification) and expressed osteocalcin, (2) adipocytes that contained lipid inclusions and expressed fatty acid binding protein 4 and (3) chondrocytes that expressed aggrecan. We also demonstrated that pancreatic MSCs are multipotent and capable of deriving cells of endodermal origin. Pancreatic MSCs were differentiated into hepatocytes that stained positive for human serum albumin and expressed endoderm and liver-specific genes such as GATA 4 and tyrosine aminotransferase. In addition, preliminary protocols used to differentiate these cells into insulin-producing cells resulted in the expression of genes necessary for islet and beta-cell development such as Pax4 and neurogenin 3. Therefore, multipotent MSCs residing within the adult exocrine pancreas could represent a progenitor cell, which when further manipulated could result in the production of functional islet beta-cells.

  3. Challenging the roles of CD44 and lipolysis stimulated lipoprotein receptor in conveying Clostridium perfringens iota toxin cytotoxicity in breast cancer

    PubMed Central

    2014-01-01

    Background Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. Methods In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. Results Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. Conclusions Collectively, these data are the first to show that iota toxin has the potential to be an effective, targeted therapy for breast cancer. PMID:24990559

  4. Challenging the roles of CD44 and lipolysis stimulated lipoprotein receptor in conveying Clostridium perfringens iota toxin cytotoxicity in breast cancer.

    PubMed

    Fagan-Solis, Katerina D; Reaves, Denise K; Rangel, M Cristina; Popoff, Michel R; Stiles, Bradley G; Fleming, Jodie M

    2014-07-02

    Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. Collectively, these data are the first to show that iota toxin has the potential to be an effective, targeted therapy for breast cancer.

  5. CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment.

    PubMed

    Thanee, Malinee; Loilome, Watcharin; Techasen, Anchalee; Sugihara, Eiji; Okazaki, Shogo; Abe, Shinya; Ueda, Shiho; Masuko, Takashi; Namwat, Nisana; Khuntikeo, Narong; Titapun, Attapol; Pairojkul, Chawalit; Saya, Hideyuki; Yongvanit, Puangrat

    2016-07-01

    Expression of CD44, especially the variant isoforms (CD44v) of this major cancer stem cell marker, contributes to reactive oxygen species (ROS) defense through stabilizing xCT (a cystine-glutamate transporter) and promoting glutathione synthesis. This enhances cancer development and increases chemotherapy resistance. We investigate the role of CD44v in the regulation of the ROS defense system in cholangiocarcinoma (CCA). Immunohistochemical staining of CD44v and p38(MAPK) (a major ROS target) expression in Opisthorchis viverrini-induced hamster CCA tissues (at 60, 90, 120, and 180 days) reveals a decreased phospho-p38(MAPK) signal, whereas the CD44v signal was increased during bile duct transformation. Patients with CCA showed CD44v overexpression and negative-phospho-p38(MAPK) patients a significantly shorter survival rate than the low CD44v signal and positive-phospho-p38(MAPK) patients (P = 0.030). Knockdown of CD44 showed that xCT and glutathione levels were decreased, leading to a high level of ROS. We examined xCT-targeted CD44v cancer stem cell therapy using sulfasalazine. Glutathione decreased and ROS increased after the treatment, leading to inhibition of cell proliferation and induction of cell death. Thus, the accumulation of CD44v leads to the suppression of p38(MAPK) in transforming bile duct cells. The redox status regulation of CCA cells depends on the expression of CD44v to contribute the xCT function and is a link to the poor prognosis of patients. Thus, an xCT inhibitor could inhibit cell growth and activate cell death. This suggests that an xCT-targeting drug may improve CCA therapy by sensitization to the available drug (e.g. gemcitabine) by blocking the mechanism of the cell's ROS defensive system. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer

    PubMed Central

    Yoshida, Kazumichi; Tsujimoto, Hironori; Matsumura, Kouji; Kinoshita, Manabu; Takahata, Risa; Matsumoto, Yusuke; Hiraki, Shuichi; Ono, Satoshi; Seki, Shuhji; Yamamoto, Junji; Hase, Kazuo

    2015-01-01

    CD47 is an antiphagocytic molecule that acts via ligation to signal regulatory protein alpha on phagocytes; its enhanced expression and therapeutic targeting have recently been reported for several malignancies. However, CD47 expression in gastric cancer is not well documented. Immunohistochemical expression of CD47 in surgical specimens was investigated. Expression of CD47 and CD44, a known gastric cancer stem cell marker, were investigated in gastric cancer cell lines by flow cytometry. MKN45 and MKN74 gastric cancer cells were sorted by fluorescence-activated cell sorting according to CD44 and CD47 expression levels, and their in vitro proliferation, spheroid-forming capacity, and in vivo tumorigenicity were studied. In vitro phagocytosis of cancer cells by human macrophages in the presence of a CD47 blocking monoclonal antibody (B6H12) and the survival of immunodeficient mice intraperitoneally engrafted with MKN45 cells and B6H12 were compared to experiments using control antibodies. Immunohistochemistry of the clinical specimens indicated that CD47 was positive in 57 out of 115 cases, and its positivity was an independent adverse prognostic factor. Approximately 90% of the MKN45 and MKN74 cells expressed CD47 and CD44. CD47hi gastric cancer cells showed significantly higher proliferation and spheroid colony formation than CD47lo, and CD44hiCD47hi cells showed the highest proliferation in vitro and tumorigenicity in vivo. B6H12 significantly enhanced in vitro phagocytosis of cancer cells by human macrophages and prolonged the survival of intraperitoneal cancer dissemination in mice compared to control antibodies. In conclusion, CD47 is an adverse prognostic factor and promising therapeutic target in gastric cancer. PMID:26077800

  7. Targeted inhibition of osteosarcoma tumor growth by bone marrow-derived mesenchymal stem cells expressing cytosine deaminase/5-fluorocytosine in tumor-bearing mice.

    PubMed

    NguyenThai, Quynh-Anh; Sharma, Neelesh; Luong, Do Huynh; Sodhi, Simrinder Singh; Kim, Jeong-Hyun; Kim, Nameun; Oh, Sung-Jong; Jeong, Dong Kee

    2015-01-01

    Mesenchymal stem cells (MSCs) are considered as an attractive approach for gene or drug delivery in cancer therapy. In the present study, the ability of human bone marrow-derived MSCs expressing the cytosine deaminase/5-fluorocytosine prodrug (CD/5-FC MSCs) to target the human osteosarcoma cell line Cal72 was evaluated. The stable CD/5-FC MSC cell line was established by transfection of pEGFP containing the cytosine deaminase gene into MSCs with G418 selection. The anti-tumor effect was verified by a bystander effect assay in vitro and co-injection of Cal72 and CD/5-FC MSCs in cancer-bearing mice. The therapeutic CD/5-FC MSCs retained the characteristics of multipotent cells, such as differentiation into adipocytes/osteocytes and expression of mesenchymal markers (CD90 and CD44), and showed migration toward Cal72 cells to a greater extent than the native MSCs. The bystander effect assay showed that the CD/5-FC MSCs significantly augmented Cal72 cytotoxicity in direct co-culture and in the presence of 5-FC through the application of conditioned medium. In osteosarcoma-bearing mice, the CD/5-FC MSCs inhibited tumor growth compared to control mice subcutaneously injected with only Cal72 cells. Taken together, these findings suggest that CD/5-FC MSCs may be suitable for targeting human osteosarcoma. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Cells involved in extracellular matrix remodeling after acute myocardial infarction

    PubMed Central

    Garcia, Larissa Ferraz; Mataveli, Fábio D’Aguiar; Mader, Ana Maria Amaral Antônio; Theodoro, Thérèse Rachell; Justo, Giselle Zenker; Pinhal, Maria Aparecida da Silva

    2015-01-01

    Objective Evaluate the effects of VEGF165 gene transfer in the process of remodeling of the extracellular matrix after an acute myocardial infarct. Methods Wistar rats were submitted to myocardial infarction, after the ligation of the left descending artery, and the left ventricle ejection fraction was used to classify the infarcts into large and small. The animals were divided into groups of ten, according to the size of infarcted area (large or small), and received or not VEGF165 treatment. Evaluation of different markers was performed using immunohistochemistry and digital quantification. The primary antibodies used in the analysis were anti-fibronectin, anti-vimentin, anti-CD44, anti-E-cadherin, anti-CD24, anti-alpha-1-actin, and anti-PCNA. The results were expressed as mean and standard error, and analyzed by ANOVA, considering statistically significant if p≤0.05. Results There was a significant increase in the expression of undifferentiated cell markers, such as fibronectin (protein present in the extracellular matrix) and CD44 (glycoprotein present in the endothelial cells). However, there was decreased expression of vimentin and PCNA, indicating a possible decrease in the process of cell proliferation after treatment with VEGF165. Markers of differentiated cells, E-cadherin (adhesion protein between myocardial cells), CD24 (protein present in the blood vessels), and alpha-1-actin (specific myocyte marker), showed higher expression in the groups submitted to gene therapy, compared to non-treated group. The value obtained by the relation between alpha-1-actin and vimentin was approximately three times higher in the groups treated with VEGF165, suggesting greater tissue differentiation. Conclusion The results demonstrated the important role of myocytes in the process of tissue remodeling, confirming that VEGF165 seems to provide a protective effect in the treatment of acute myocardial infarct. PMID:25993074

  9. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  10. Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes.

    PubMed

    Chen, Da-Chung; Chen, Li-Yu; Ling, Qing-Dong; Wu, Meng-Hsueh; Wang, Ching-Tang; Suresh Kumar, S; Chang, Yung; Munusamy, Murugan A; Alarfajj, Abdullah A; Wang, Han-Chow; Hsu, Shih-Tien; Higuchi, Akon

    2014-05-01

    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.

    PubMed

    Liu, Can; Kelnar, Kevin; Liu, Bigang; Chen, Xin; Calhoun-Davis, Tammy; Li, Hangwen; Patrawala, Lubna; Yan, Hong; Jeter, Collene; Honorio, Sofia; Wiggins, Jason F; Bader, Andreas G; Fagin, Randy; Brown, David; Tang, Dean G

    2011-02-01

    Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.

  12. sCD44 overexpression increases intraocular pressure and aqueous outflow resistance

    PubMed Central

    Giovingo, Michael; Nolan, Michael; McCarty, Ryan; Pang, Iok-Hou; Clark, Abbot F.; Beverley, Rachel M.; Schwartz, Steven; Stamer, W. Daniel; Walker, Loyal; Grybauskas, Algis; Skuran, Kevin; Kuprys, Paulius V.; Yue, Beatrice Y.J.T.

    2013-01-01

    Purpose CD44 plays major roles in multiple physiologic processes. The ectodomain concentration of the CD44 receptor, soluble CD44 (sCD44), is significantly increased in the aqueous humor of primary open-angle glaucoma (POAG). The purpose of this study was to determine if adenoviral constructs of CD44 and isolated 32-kDa sCD44 change intraocular pressure (IOP) in vivo and aqueous outflow resistance in vitro. Methods Adenoviral constructs of human standard CD44 (Ad-CD44S), soluble CD44 (Ad-sCD44), and empty viral cDNA were injected into the vitreous of BALB/cJ mice, followed by serial IOP measurements. Overexpression of CD44S and sCD44 was verified in vitro by enzyme-linked immunosorbent assay (ELISA) and western blot analysis. Anterior segments of porcine eyes were perfused with the isolated sCD44. sCD44-treated human trabecular meshwork (TM) cells and microdissected porcine TM were examined by confocal microscopy and Optiprep density gradient with western blot analysis to determine changes in lipid raft components. Results Intravitreous injection of adenoviral constructs with either Ad-CD44S or Ad-sCD44 vectors caused prolonged ocular hypertension in mice. Eight days after vector injection, Ad-CD44S significantly elevated IOP to 28.3±1.2 mmHg (mean±SEM, n=8; p<0.001); Ad-sCD44 increased IOP to 18.5±2.6 mmHg (n=8; p<0.01), whereas the IOP of uninjected eyes was 12.7±0.2 mmHg (n=16). The IOP elevation lasted more than 50 days. Topical administration of a γ-secretase inhibitor normalized Ad-sCD44-induced elevated IOP. sCD44 levels were significantly elevated in the aqueous humor of Ad-CD44S and Ad-sCD44 eyes versus contralateral uninjected eyes (p<0.01). Anterior segment perfusion of isolated 32-kDa sCD44 significantly decreased aqueous outflow rates. Co-administration of isolated sCD44 and CD44 neutralizing antibody or of γ-secretase inhibitor significantly enhanced flow rates. sCD44-treated human TM cells displayed cross-linked actin network formation. Optiprep density gradient and western blot analysis of human TM cells treated with sCD44 showed decreased annexin 2 expression and increased phosphorylated annexin 2 and caveolin 1 expression. Conclusions Our data suggest that sCD44 increases outflow resistance in vivo and in vitro. Viral overexpression of both CD44S and sCD44 is sufficient to cause ocular hypertension. Infusion of sCD44 in porcine anterior segment eyes significantly decreased flow rates. Notably, sCD44 enhanced cross-linked actin network formation. The elevated sCD44 levels seen in POAG aqueous humor may play an important causative role in POAG pathogenesis. PMID:24194636

  13. The mouse tumor cell lines EL4 and RMA display mosaic expression of NK-related and certain other surface molecules and appear to have a common origin.

    PubMed

    Gays, F; Unnikrishnan, M; Shrestha, S; Fraser, K P; Brown, A R; Tristram, C M; Chrzanowska-Lightowlers, Z M; Brooks, C G

    2000-05-15

    As a potential means for facilitating studies of NK cell-related molecules, we examined the expression of these molecules on a range of mouse tumor cell lines. Of the lines we initially examined, only EL4 and RMA expressed such molecules, both lines expressing several members of the Ly49 and NKRP1 families. Unexpectedly, several of the NK-related molecules, together with certain other molecules including CD2, CD3, CD4, CD32, and CD44, were often expressed in a mosaic manner, even on freshly derived clones, indicating frequent switching in expression. In each case examined, switching was controlled at the mRNA level, with expression of CD3zeta determining expression of the entire CD3-TCR complex. Each of the variable molecules was expressed independently, with the exception that CD3 was restricted to cells that also expressed CD2. Treatment with drugs that affect DNA methylation and histone acetylation could augment the expression of at least some of the variable molecules. The striking phenotypic similarity between EL4 and RMA led us to examine the state of their TCRbeta genes. Both lines had identical rearrangements on both chromosomes, indicating that RMA is in fact a subline of EL4. Overall, these findings suggest that EL4 is an NK-T cell tumor that may have retained a genetic mechanism that permits the variable expression of a restricted group of molecules involved in recognition and signaling.

  14. The High and Low Molecular Weight Forms of Hyaluronan Have Distinct Effects on CD44 Clustering*

    PubMed Central

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-01-01

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA. PMID:23118219

  15. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors.

    PubMed

    Gradiz, Rui; Silva, Henriqueta C; Carvalho, Lina; Botelho, Maria Filomena; Mota-Pinto, Anabela

    2016-02-17

    Studies using cell lines should always characterize these cells to ensure that the results are not distorted by unexpected morphological or genetic changes possibly due to culture time or passage number. Thus, the aim of this study was to describe those MIA PaCa-2 and PANC-1 cell line phenotype and genotype characteristics that may play a crucial role in pancreatic cancer therapeutic assays, namely neuroendocrine chemotherapy and peptide receptor radionuclide therapy. Epithelial, mesenchymal, endocrine and stem cell marker characterization was performed by immunohistochemistry and flow cytometry, and genotyping by PCR, gene sequencing and capillary electrophoresis. MIA PaCa-2 (polymorphism) expresses CK5.6, AE1/AE3, E-cadherin, vimentin, chromogranin A, synaptophysin, SSTR2 and NTR1 but not CD56. PANC-1 (pleomorphism) expresses CK5.6, MNF-116, vimentin, chromogranin A, CD56 and SSTR2 but not E-cadherin, synaptophysin or NTR1. MIA PaCA-1 is CD24(-), CD44(+/++), CD326(-/+) and CD133/1(-), while PANC-1 is CD24(-/+), CD44(+), CD326(-/+) and CD133/1(-). Both cell lines have KRAS and TP53 mutations and homozygous deletions including the first 3 exons of CDKN2A/p16(INK4A), but no SMAD4/DPC4 mutations or microsatellite instability. Both have neuroendocrine differentiation and SSTR2 receptors, precisely the features making them suitable for the therapies we propose to assay in future studies.

  16. SHBG Is an Important Factor in Stemness Induction of Cells by DHT In Vitro and Associated with Poor Clinical Features of Prostate Carcinomas

    PubMed Central

    Ma, Yuanyuan; Liang, Dongming; Liu, Jian; Wen, Jian-Guo; Servoll, Einar; Waaler, Gudmund; Sæter, Thorstein; Axcrona, Karol; Vlatkovic, Ljiljana; Axcrona, Ulrika; Paus, Elisabeth; Yang, Yue; Zhang, Zhiqian; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe

    2013-01-01

    Androgen plays a vital role in prostate cancer development. However, it is not clear whether androgens influence stem-like properties of prostate cancer, a feature important for prostate cancer progression. In this study, we show that upon DHT treatment in vitro, prostate cancer cell lines LNCaP and PC-3 were revealed with higher clonogenic potential and higher expression levels of stemness related factors CD44, CD90, Oct3/4 and Nanog. Moreover, sex hormone binding globulin (SHBG) was also simultaneously upregulated in these cells. When the SHBG gene was blocked by SHBG siRNA knock-down, the induction of Oct3/4, Nanog, CD44 and CD90 by DHT was also correspondingly blocked in these cells. Immunohistochemical evaluation of clinical samples disclosed weakly positive, and areas negative for SHBG expression in the benign prostate tissues, while most of the prostate carcinomas were strongly positive for SHBG. In addition, higher levels of SHBG expression were significantly associated with higher Gleason score, more seminal vesicle invasions and lymph node metastases. Collectively, our results show a role of SHBG in upregulating stemness of prostate cancer cells upon DHT exposure in vitro, and SHBG expression in prostate cancer samples is significantly associated with poor clinicopathological features, indicating a role of SHBG in prostate cancer progression. PMID:23936228

  17. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com; Lu, Xiang-Yang; Sun, Zhi-Liang

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effectivemore » concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.« less

  18. Alterations in expression pattern of splicing factors in epithelial ovarian cancer and its clinical impact.

    PubMed

    Iborra, Severine; Hirschfeld, Marc; Jaeger, Markus; Zur Hausen, Axel; Braicu, Iona; Sehouli, Jalid; Gitsch, Gerald; Stickeler, Elmar

    2013-07-01

    Alternative splicing represents an important nuclear mechanism in the posttranscriptional regulation of gene expression, which is frequently altered during tumorigenesis. Previously, we described marked changes in alternative splicing of the CD44 gene in ovarian and breast cancer as well as specific induction of distinct splicing factors during tumor development. The present study was focused on the expression profiles of different splicing factors, including classical serine-arginine (SR) proteins including ASF/SF2, hTra2β1, hTra2α, and Y-box-binding protein (YB-1) in physiological and malignant epithelial ovarian tissue to evaluate their expression pattern with regard to tumor development and disease progression. Expression levels of the different splicing factors were analyzed in physiological epithelial ovarian tissue samples, primary tumors, and metastatic samples of patients with a diagnosis of epithelial ovarian cancer using quantified reverse transcription polymerase chain reaction analysis. We examined more closely the splicing factor hTra2β1 using Western blot analysis and immunohistochemistry. The analysis revealed a marked and specific induction of ASF/SF2, SRp20, hTra2β1, and YB-1 in primary tumors as well as in their metastatic sites. However, in our patient cohort, no induction was seen for the other investigated splicing factors SRp55, SRp40, and hTra2α. Our results suggest a specific induction of distinct splicing factors in ovarian cancer tumorigenesis. The involvement of hTra2β1, YB-1, SRp20, and ASF/SF2 in exon recognition and alternative splicing may be important for gene regulation of alternatively spliced genes like CD44 with potential functional consequences in this tumor type leading to progression and metastasis.

  19. Combined overexpression of cadherin 6, cadherin 11 and cluster of differentiation 44 is associated with lymph node metastasis and poor prognosis in oral squamous cell carcinoma.

    PubMed

    Ma, Chao; Zhao, Ji-Zhi; Lin, Run-Tai; Zhou, Lian; Chen, Yong-Ning; Yu, Li-Jiang; Shi, Tian-Yin; Wang, Mu; Liu, Man-Man; Liu, Yao-Ran; Zhang, Tao

    2018-06-01

    Oral squamous cell carcinoma (OSCC) is a highly invasive lesion that frequently metastasizes to the cervical lymph nodes and is associated with a poor prognosis. Several adhesion factors, including cadherin 6 (CDH6), cadherin 11 (CDH11) and cluster of differentiation 44 (CD44), have been reported to be involved in the invasion and metastasis of multiple types of cancer. Therefore, the aim of the present study was to determine the expression of CDH6, CDH11 and CD44 in tumor tissues from patients with OSCC, and whether this was associated with the metastasis and survival of OSCC. The mRNA expression of the human tumor metastasis-related cytokines was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in OSCC tumors with or without lymph node metastasis (n=10/group). The expression of CDH6, CDH11 and CD44 in 101 OSCC and 10 normal oral mucosa samples was examined by immunohistochemical staining. The association between overall and disease-specific survival times of patients with OSCC and the expression of these three proteins was evaluated using Kaplan-Meier curves and the log-rank test. RT-qPCR results indicated that the mRNA expression of CDH6, CDH11 and CD44 was increased in OSCC patients with lymph node metastasis (2.93-, 2.01- and 1.92-fold; P<0.05). Overexpression of CDH6, CDH11 and CD44 was observed in 31/35 (89%), 25/35 (71%) and 31/35 (89%) patients, respectively. The number of OSCC patients with lymph node metastasis exhibiting CDH6, CDH11 and CD44 overexpression was significantly higher than the number of patients without lymph node metastasis exhibiting overexpression of these proteins (P=0.017, P=0.038 and P=0.007, respectively). OSCC patients with high co-expression of CDH6, CDH11 and CD44 exhibited lower disease-specific survival times (P=0.047; χ 2 =3.933) when compared with OSCC patients with low co-expression of these adhesion factors. CDH6, CDH11 and CD44 serve important roles in OSCC metastasis and the combined use of these factors as biomarkers may improve the accuracy of the prediction of cancer metastases and prognosis.

  20. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells.

    PubMed

    Nakamura, Koji; Sawada, Kenjiro; Kinose, Yasuto; Yoshimura, Akihiko; Toda, Aska; Nakatsuka, Erika; Hashimoto, Kae; Mabuchi, Seiji; Morishige, Ken-Ichirou; Kurachi, Hirohisa; Lengyel, Ernst; Kimura, Tadashi

    2017-01-01

    Epithelial ovarian cancer (EOC) cells metastasize within the peritoneal cavity and directly encounter human peritoneal mesothelial cells (HPMC) as the initial step of metastasis. The contact between ovarian cancer cells and the single layer of mesothelial cells involves direct communications that modulate cancer progression but the mechanisms are unclear. One candidate mediating cell-cell communications is exosomes, 30-100 nm membrane vesicles of endocytic origin, through the cell-cell transfer of proteins, mRNAs, or microRNAs. Therefore, the goal was to mechanistically characterize how EOC-derived exosomes modulate metastasis. Exosomes from ovarian cancer cells were fluorescently labeled and cocultured with HPMCs which internalized the exosomes. Upon exosome uptake, HPMCs underwent a change in cellular morphology to a mesenchymal, spindle phenotype. CD44, a cell surface glycoprotein, was found to be enriched in the cancer cell-derived exosomes, transferred, and internalized to HPMCs, leading to high levels of CD44 in HPMCs. This increased CD44 expression in HPMCs promoted cancer invasion by inducing the HPMCs to secrete MMP9 and by cleaning the mesothelial barrier for improved cancer cell invasion. When CD44 expression was knocked down in cancer cells, exosomes had fewer effects on HPMCs. The inhibition of exosome release from cancer cells blocked CD44 internalization in HPMCs and suppressed ovarian cancer invasion. In ovarian cancer omental metastasis, positive CD44 expression was observed in those mesothelial cells that directly interacted with cancer cells, whereas CD44 expression was negative in the mesothelial cells remote from the invading edge. This study indicates that ovarian cancer-derived exosomes transfer CD44 to HPMCs, facilitating cancer invasion. Mechanistic insight from the current study suggests that therapeutic targeting of exosomes may be beneficial in treating ovarian cancer. Mol Cancer Res; 15(1); 78-92. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. CD44+CD24+ subset of PANC-1 cells exhibits radiation resistance via decreased levels of reactive oxygen species.

    PubMed

    Wang, Lei; Li, Pengping; Hu, Wei; Xia, Youyou; Hu, Chenxi; Liu, Liang; Jiang, Xiaodong

    2017-08-01

    Emerging evidence has suggested that pancreatic adenocarcinoma is sustained by pancreatic cancer stem cells. The present study aimed to investigate the expression patterns of the pancreatic cancer stem cell surface markers cluster of differentiation CD44 and CD24 in a pancreatic adenocarcinoma cell line, and to investigate the possible mechanisms for their radiation resistance. Flow cytometry was used to analyze the expression patterns of CD44 and CD24 in the pancreatic adenocarcinoma PANC-1 cell line. In addition, a multi-target click model was used to fit cell survival curves and determine the sensitizer enhancement ratio. The apoptosis and cycle distribution of the four cell subsets was determined using flow cytometry, and the level of reactive oxygen species (ROS) was determined using the 2',7'-dichlorofluorescin diacetate probe. The present results identified that the ratios of CD44 + and CD24 + in the sorted PANC-1 cell line were 92.0 and 4.7%, respectively. Prior to radiation, no statistically significant differences were observed among the four groups. Following treatment with 6 MV of X-rays, the rate of apoptosis was decreased in the CD44 + CD24 + group compared with other subsets. The percentage of G0/G1 cells was highest in the CD44 + CD24 + group compared with the three other groups, which exhibited increased radiosensitivity. In addition, the level of ROS in the CD44 + CD24 + group was reduced compared with the other groups. In summary, the results of the present study indicated that CD44 + CD24 + exhibited stem cell properties. The lower level of ROS and apoptosis in CD44 + CD24 + cells may contribute to their resistance to radiation in pancreatic adenocarcinoma.

  2. Breast Cancer Translational Research Center of Excellence FY12-14

    DTIC Science & Technology

    2014-09-01

    DNA aptamers against CD44 that inhibit breast cancer invasion and metastasis. CD44 adhesion molecules are expressed in many breast cancer cells and...Somiari RI, Somiari S, Cutler ML, Mural RJ, Shriver CD. “DNA aptamers against exon v10 of CD44 inhibit breast cancer cell migration.” PLoS One

  3. Epigenetic Silencing of TAP1 in Aldefluor+ Breast Cancer Stem Cells Contributes to Their Enhanced Immune Evasion.

    PubMed

    Sultan, Mohammad; Vidovic, Dejan; Paine, Arianne S; Huynh, Thomas T; Coyle, Krysta M; Thomas, Margaret L; Cruickshank, Brianne M; Dean, Cheryl A; Clements, Derek R; Kim, Youra; Lee, Kristen; Gujar, Shashi A; Weaver, Ian C G; Marcato, Paola

    2018-05-01

    Avoiding detection and destruction by immune cells is key for tumor initiation and progression. The important role of cancer stem cells (CSCs) in tumor initiation has been well established, yet their ability to evade immune detection and targeting is only partly understood. To investigate the ability of breast CSCs to evade immune detection, we identified a highly tumorigenic population in a spontaneous murine mammary tumor based on increased aldehyde dehydrogenase activity. We performed tumor growth studies in immunocompetent and immunocompromised mice. In immunocompetent mice, growth of the spontaneous mammary tumor was restricted; however, the Aldefluor + population was expanded, suggesting inherent resistance mechanisms. Gene expression analysis of the sorted tumor cells revealed that the Aldefluor + tumor cells has decreased expression of transporter associated with antigen processing (TAP) genes and co-stimulatory molecule CD80, which would decrease susceptibility to T cells. Similarly, the Aldefluor + population of patient tumors and 4T1 murine mammary cells had decreased expression of TAP and co-stimulatory molecule genes. In contrast, breast CSCs identified by CD44 + CD24 - do not have decreased expression of these genes, but do have increased expression of C-X-C chemokine receptor type 4. Decitabine treatment and bisulfite pyrosequencing suggests that DNA hypermethylation contributes to decreased TAP gene expression in Aldefluor + CSCs. TAP1 knockdown resulted in increased tumor growth of 4T1 cells in immunocompetent mice. Together, this suggests immune evasion mechanisms in breast CSCs are marker specific and epigenetic silencing of TAP1 in Aldefluor + breast CSCs contributes to their enhanced survival under immune pressure. Stem Cells 2018;36:641-654. © AlphaMed Press 2018.

  4. Preoperative chemoradiotherapy alters the expression and prognostic significance of adhesion molecules in Barrett's-associated adenocarcinoma.

    PubMed

    Turner, J R; Torres, C M; Wang, H H; Shahsafaei, A; Richards, W G; Sugarbaker, D; Odze, R D

    2000-03-01

    A variety of prognostic markers have been related to decreased patient survival in patients with epithelial malignancies. These include expression of the homotypic adhesion molecule E-cadherin (ECAD) and the hyaluronic acid receptor CD44. Expression of ECAD and CD44 was evaluated in Barrett's-associated adenocarcinoma (BAd) from 67 patients. Expression was determined by immunoperoxidase staining and graded semiquantitatively based on the proportion of positively stained cells. These data were then correlated with clinical and pathological parameters, including the presence or absence of chemoradiotherapy (chemrad) and patient survival. There were 56 men and 11 women (mean age, 62 years). Thirty-nine (58%) patients received preoperative chemrad. ECAD expression was detected in all (100%) tumors. The ECAD staining grade did not correlate with other pathological features of the tumors. However, ECAD staining was significantly increased in BAd of patients who received chemrad (P = .003), in comparison with those who did not, and in individual patients when prechemrad biopsies and postchemrad resection specimens were compared (P = .04). In terms of prognosis, increased ECAD expression was associated with shortened patient survival only in BAd patients who had received chemrad (univariate analysis of chemrad patients with stage I and II BAd, P = .02). ECAD expression was not significantly associated with survival in BAd patients who did not receive chemrad. CD44 expression was detected in 88% of cases. CD44 expression did not correlate with any of the pathological features of the tumors or with chemrad status. Increased expression of CD44 was significantly associated with shortened patient survival in chemrad patients only (univariate analysis P = .03, multivariate analysis P = .04), although a strong trend was observed when all patients were analyzed regardless of chemrad status (P = .07). The results of this study indicate that chemrad alters the expression of ECAD in BAd. Thus, the prognostic utility of ECAD expression must be evaluated in the context of chemrad status. CD44 also may be a valuable prognostic marker in BAd.

  5. CD44 gene vaccination for insulin-dependent diabetes mellitus in non-obese diabetic mice.

    PubMed

    Weiss, Lola; Botero-Anug, Ana Maria; Hand, Carla; Slavin, Shimon; Naor, David

    2008-01-01

    Standard CD44 and its alternatively spliced variants were found to be associated with the metastatic potential of tumor cells and with cell migration of autoimmune inflammatory cells, including cells involved in experimental insulin-dependent diabetes mellitus. To investigate whether induction of anti-CD44 immune reactivity, through cDNA vaccination, could attenuate IDDM in a transfer model of NOD mice. Our vaccination technique involved the insertion of CD44s or CD44v cDNA into a silicone tube filled with a 2.5 cm long segment of hydroxylated-polyvinyl acetate wound dressing sponge (forming a virtual lymph node) which was implanted under the skin of male NOD recipients reconstituted with diabetogenic spleen cells of female NOD donors. The VLN were implanted 20 days before and 3 days after cell transfer. In contrast to control groups of recipient mice, recipients vaccinated with VLN loaded with CD44v or CD44s cDNAs developed resistance to IDDM almost to the same extent. Our results suggest that the gene vaccination effect was mediated by anti-CD44 antibody rather than by cellular immunity. Histopathological examinations revealed a significant protection of pancreatic islets in the DNA-vaccinated recipients, whereas the islets of control recipients of diabetogenic cells were almost totally destroyed. These findings may open new opportunities for IDDM therapy in the future.

  6. Predictive markers of chemoresistance in advanced stages epithelial ovarian carcinoma.

    PubMed

    Bonneau, Claire; Rouzier, Roman; Geyl, Caroline; Cortez, Annie; Castela, Mathieu; Lis, Raphael; Daraï, Emile; Touboul, Cyril

    2015-01-01

    DNA repair mechanisms, environment-mediated drug resistance and cancer initiating cells (CIC) are three major research concepts that can explain the chemoresistance of epithelial ovarian cancer (EOC). The objective was to test if changes in the expression of potential markers associated with drug resistance before and after chemotherapy would correlate with platinum resistance, defined as a recurrence within the first year after chemotherapy cessation, and with survival, in advanced EOC. We included 32 patients with stage IIIC-IV EOC who underwent laparoscopy to evaluate the extent of carcinomatosis, neoadjuvant chemotherapy (carboplatin/taxol) and interval surgery. Biopsies taken during the initial laparoscopies and interval surgeries were evaluated using immunohistochemistry for the expression of 7 proteins: CD117, CD44 and ALDH1 to evaluate CIC; IL-6, IL-8 and BMP2 to evaluate environment-mediated drug resistance; and ERCC1 to evaluate DNA repair. Expression measurements were correlated with platin resistance and survival. The markers' relevance was confirmed in vitro using chemoresistance tests and flow cytometric measurements of the proportion of CD44+ cells. 17 patients were chemoresistant and 15 patients were chemosensitive. We observed increases in CD44, IL-6 and ERCC1 expression and stable ALDH1, CD117, IL-8, and BMP2 expression. Reduced expression of cancer initiating cell markers and increased expression of environment-mediated drug resistance markers were associated with poor prognosis. We also demonstrated that CD44+ cells had survival advantages in vitro. Changes in CD44 and IL-8 expression on tumor cells appeared to correlate with overall survival and should be further tested as predictors of chemoresistance using larger cohort. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Immunohistochemical expression of CD44s in human neuroblastic tumors: Moroccan experience and highlights on current data

    PubMed Central

    2013-01-01

    Background Peripheral neuroblastic tumors (pNTs), including neuroblastoma (NB), ganglioneuroblastoma (GNB) and ganglioneuroma (GN), are extremely heterogeneous pediatric tumors responsible for 15 % of childhood cancer death. The aim of the study was to evaluate the expression of CD44s (‘s’: standard form) cell adhesion molecule by comparison with other specific prognostic markers. Methods An immunohistochemical profile of 32 formalin-fixed paraffin-embedded pNTs tissues, diagnosed between January 2007 and December 2010, was carried out. Results Our results have demonstrated the association of CD44s negative pNTs cells to lack of differentiation and tumour progression. A significant association between absence of CD44s expression and metastasis in human pNTs has been reported. We also found that expression of CD44s defines subgroups of patients without MYCN amplification as evidenced by its association with low INSS stages, absence of metastasis and favorable Shimada histology. Discussion These findings support the thesis of the role of CD44s glycoprotein in the invasive growth potential of neoplastic cells and suggest that its expression could be taken into consideration in the therapeutic approaches targeting metastases. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1034403150888863 Résumé Introduction les tumeurs neuroblastiques périphériques (TNPs), comprenant le neuroblastome (NB), le ganglioneuroblastome (GNB) et le ganglioneurome (GN), sont des tumeurs pédiatriques extrêmement hétérogènes responsables de 15% des décès par cancer chez les enfants. Le but de cette étude était d’évaluer l’expression de la molécule d’adhésion cellulaire CD44s (‘s’: pour standard) par rapport à d’autres facteurs pronostiques spécifiques. Méthodes Un profil immunohistochimique de 32 TNPs fixées au formol et incluses en paraffine, diagnostiquées entre Janvier 2007 et Décembre 2010, a été réalisé. Résultats Nos résultats ont mis en évidence l’association des TNPs n’exprimant pas le CD44s avec une perte de différenciation et une progression tumorale et nous avons rapporté une association significative entre l’absence d’expression du CD44s et la présence de métastases. Nous avons également constaté que l’expression du CD44s définit des sous-groupes de patients dans les tumeurs n’amplifiant pas le MYCN, comme en témoigne son association avec les stades INSS bas, l’absence de métastases et l’histologie favorable de Shimada. Discussion Ces résultats appuient l’hypothèse du rôle de la glycoprotéine CD44s dans le potentiel de croissance invasive des cellules néoplasiques et suggèrent que son expression pourrait être prise en considération dans des voies thérapeutiques ciblant les métastases. PMID:23445749

  8. Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers

    PubMed Central

    Haylock, Anna-Karin; Nilvebrant, Johan; Mortensen, Anja; Velikyan, Irina; Nestor, Marika; Falk, Ronny

    2017-01-01

    Aim The aim of this study was to generate and characterize scFv antibodies directed to human CD44v6, as well as to radiolabel and evaluate top candidates in vitro and in vivo for their potential use in CD44v6-targeted molecular imaging in cancer patients. Materials and methods Phage display selections were used to isolate CD44v6-specific scFvs. A chain shuffling strategy was employed for affinity maturation based on a set of CD44v6-specific first-generation clones. Two second-generation scFv clones were then chosen for labeling with 111In or 125I and assessed for CD44v6-specific binding on cultured tumor cells. In vivo uptake and distribution was evaluated in tumor-bearing mice using a dual tumor model. Finally, a proof-of-concept small animal PET-CT study was performed on one of the candidates labeled with 124I. Results Two affinity-matured clones, CD44v6-scFv-A11 and CD44v6-scFv-H12, displayed promising binding kinetics. Seven out of eight radiolabeled conjugates demonstrated CD44v6-specific binding. In vivo studies on selected candidates demonstrated very advantageous tumor-to-organ ratios, in particular for iodinated conjugates, where 125I-labeled scFvs exhibited favorable kinetics and tumor-to-blood ratios above five already at 24 hours p.i.. The small animal PET-CT study using 124I-labeled CD44v6-scFv-H12 was in line with the biodistribution data, clearly visualizing the high CD44v6-expressing tumor. Conclusion The single chain fragments, CD44v6-scFv-A11 and CD44v6-scFv-H12 specifically bind to CD44v6, and the radiolabeled counterparts provide high tumor-to-blood ratios and fast clearance from organs and blood. We conclude that radioiodinated CD44v6-scFv-A11 and CD44v6-scFv-H12 possess features highly suitable for stringent molecular imaging. PMID:29029420

  9. Prognostic implications of adhesion molecule expression in colorectal cancer.

    PubMed

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation.

  10. Prognostic implications of adhesion molecule expression in colorectal cancer

    PubMed Central

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation. PMID:26097606

  11. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    PubMed Central

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes, such as GPC3 that are distinctly expressed in liver CD90+CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. PMID:22606345

  12. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease.

    PubMed

    Kaur, Punit; Nagaraja, Ganachari M; Zheng, Hongying; Gizachew, Dawit; Galukande, Moses; Krishnan, Sunil; Asea, Alexzander

    2012-03-27

    Triple-negative breast cancer (TNBC) exhibit characteristics quite distinct from other kinds of breast cancer, presenting as an aggressive disease--recurring and metastasizing more often than other kinds of breast cancer, without tumor-specific treatment options and accounts for 15% of all types of breast cancer with higher percentages in premenopausal African-American and Hispanic women. The reason for this aggressive phenotype is currently the focus of intensive research. However, progress is hampered by the lack of suitable TNBC cell model systems. To understand the mechanistic basis for the aggressiveness of TNBC, we produced a stable TNBC cell line by sorting for 4T1 cells that do not express the estrogen receptor (ER), progesterone receptor (PgR) or the gene for human epidermal growth factor receptor 2 (HER2). As a control, we produced a stable triple-positive breast cancer (TPBC) cell line by transfecting 4T1 cells with rat HER2, ER and PgR genes and sorted for cells with high expression of ER and PgR by flow cytometry and high expression of the HER2 gene by Western blot analysis. We isolated tumor-initiating cells (TICs) by sorting for CD24+/CD44high/ALDH1+ cells from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) stable cell lines. Limiting dilution transplantation experiments revealed that CD24+/CD44high/ALDH1+ cells derived from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) were significantly more effective at repopulating the mammary glands of naïve female BALB/c mice than CD24-/CD44-/ALDH1- cells. Implantation of the TNBC-TICs resulted in significantly larger tumors, which metastasized to the lungs to a significantly greater extent than TNBC, TPBC-TICs, TPBC or parental 4T1 cells. We further demonstrated that the increased aggressiveness of TNBC-TICs correlates with the presence of high levels of mouse twenty-five kDa heat shock protein (Hsp25/mouse HspB1) and seventy-two kDa heat shock protein (Hsp72/HspA1A). Taken together, we have developed a TNBC-TICs model system based on the 4T1 cells which is a very useful metastasis model with the advantage of being able to be transplanted into immune competent recipients. Our data demonstrates that the TNBC-TICs model system could be a useful tool for studies on the pathogenesis and therapeutic treatment for TNBC.

  13. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease

    PubMed Central

    2012-01-01

    Background Triple-negative breast cancer (TNBC) exhibit characteristics quite distinct from other kinds of breast cancer, presenting as an aggressive disease--recurring and metastasizing more often than other kinds of breast cancer, without tumor-specific treatment options and accounts for 15% of all types of breast cancer with higher percentages in premenopausal African-American and Hispanic women. The reason for this aggressive phenotype is currently the focus of intensive research. However, progress is hampered by the lack of suitable TNBC cell model systems. Methods To understand the mechanistic basis for the aggressiveness of TNBC, we produced a stable TNBC cell line by sorting for 4T1 cells that do not express the estrogen receptor (ER), progesterone receptor (PgR) or the gene for human epidermal growth factor receptor 2 (HER2). As a control, we produced a stable triple-positive breast cancer (TPBC) cell line by transfecting 4T1 cells with rat HER2, ER and PgR genes and sorted for cells with high expression of ER and PgR by flow cytometry and high expression of the HER2 gene by Western blot analysis. Results We isolated tumor-initiating cells (TICs) by sorting for CD24+/CD44high/ALDH1+ cells from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) stable cell lines. Limiting dilution transplantation experiments revealed that CD24+/CD44high/ALDH1+ cells derived from TNBC (TNBC-TICs) and TPBC (TPBC-TICs) were significantly more effective at repopulating the mammary glands of naïve female BALB/c mice than CD24-/CD44-/ALDH1- cells. Implantation of the TNBC-TICs resulted in significantly larger tumors, which metastasized to the lungs to a significantly greater extent than TNBC, TPBC-TICs, TPBC or parental 4T1 cells. We further demonstrated that the increased aggressiveness of TNBC-TICs correlates with the presence of high levels of mouse twenty-five kDa heat shock protein (Hsp25/mouse HspB1) and seventy-two kDa heat shock protein (Hsp72/HspA1A). Conclusions Taken together, we have developed a TNBC-TICs model system based on the 4T1 cells which is a very useful metastasis model with the advantage of being able to be transplanted into immune competent recipients. Our data demonstrates that the TNBC-TICs model system could be a useful tool for studies on the pathogenesis and therapeutic treatment for TNBC. PMID:22452810

  14. [Analysis of expression of cancer stem cell-related markers in orbital adenoid cystic carcinoma].

    PubMed

    Lin, Ting-ting; Zhu, Li-min; He, Yan-jin; Zhang, Hong

    2011-08-01

    To observe the expression and distribution of CD44, CD133, and ABCG2 in orbital adenoid cystic carcinoma (ACC) and investigate their correlations with pathological type and prognosis. Two steps method of immunohistochemical staining was employed in 33 cases of paraffin embedded surgical specimens of human orbital ACC, 5 cases of recurrence samples, 3 cases of an excised lacrimal gland caused by neither inflammation nor tumor diseases, and 6 cases of xenograft tumors in nude mice. A retrospective analysis was performed on the clinical material of these patients, which were collected from Jan. 1991 to Mar. 2009. The positive rate of CD44 was 54.5% (18/33), with 76.9% (10/13) in solid type and 40.0% (8/20) in adeno-tubiform type. There was no statistically significant difference between them (P = 0.072). In solid type the positive expression cells were often located at the marginal part of the cancer nest. In the adeno-tubiform type, positive cells were often located at the outer layer of the tubiform structure (myoepithelial cells). CD44 was also expressed in normal tissues. The positive rate of CD133 was 57.6% (19/33), with 76.9% (10/13) in solid type and 45.0% (9/20) in adeno-tubiform type. There was no significant difference between them (P = 0.087). CD133 antigen was expressed in either the cytoplasm or nucleus, or expressed in both the cytoplasm and nucleus. The positive rate of ABCG2 was 21.2% (7/33), with 30.77% (4/13) in solid type and 15.0% (3/20) in adeno-tubiform type. There was no significant difference between them (P = 0.393). Many positive cells surrounded the vessels in tumor tissues. There were no significant differences between different prognosis groups of these surface phenotypes. The correlative analysis results of three surface phenotypes showed that CD44(+) cells have positive correlation with CD133(+) cells (Spearman, r(s) = 0.416, P = 0.016). In six transplanted tumors of nude mice, the number of positive cases for CD44(+), CD133(+) and ABCG2(+) was 1, 1 and 4 cases, respectively. The expression of CD44, CD133 and ABCG2 in ACC may influence the progress of ACC. However, they cannot be used as the markers for the evaluation of the prognosis of this tumor.

  15. HIERARCHICAL ORGANIZATION OF OSTEOBLASTS REVEALS THE SIGNIFICANT ROLE OF CD166 IN HEMATOPOIETIC STEM CELL MAINTANANCE AND FUNCTION

    PubMed Central

    Chitteti, Brahmananda R.; Cheng, Ying-Hua; Kacena, Melissa A.; Srour, Edward F.

    2013-01-01

    The role of osteoblasts (OB) in maintaining hematopoietic stem cells (HSC) in their niche is well elucidated, but the exact definition, both phenotypically and hierarchically of OB responsible for these functions is not clearly known. We previously demonstrated that OB maturational status influences HSC function whereby immature OB with high Runx2 expression promote hematopoietic expansion. Here, we show that Activated Leukocyte Cell Adhesion Molecule (ALCAM) or CD166 expression on OB is directly correlated with Runx2 expression and high hematopoiesis enhancing activity (HEA). Fractionation of OB with lineage markers: Sca1, osteopontin (OPN), CD166, CD44, and CD90 revealed that Lin-Sca1-OPN+CD166+ cells (CD166+) and their subpopulations fractionated with CD44 and CD90 expressed high levels of Runx2 and low levels of osteocalcin (OC) demonstrating the relatively immature status of these cells. Conversely, the majority of the Lin-Sca1-OPN+CD166− cells (CD166−) expressed high OC levels suggesting that CD166− OB are more mature. In vitro hematopoietic potential of LSK cells co-cultured for 7 days with fresh OB or OB pre-cultured for 1, 2, or 3 weeks declined precipitously with increasing culture duration concomitant with loss of CD166 expression. Importantly, LSK cells co-cultured with CD166+CD44+CD90+ OB maintained their in vivo repopulating potential through primary and secondary transplantation, suggesting that robust HEA activity is best mediated by immature CD166+ OB with high Runx2 and low OC expression. These studies begin to define the hierarchical organization of osteoblastic cells and provide a more refined definition of OB that can mediate HEA. PMID:23369988

  16. Interaction between hyaluronan and CD44 in the development of dimethylnitrosamine-induced liver cirrhosis.

    PubMed

    Satoh, T; Ichida, T; Matsuda, Y; Sugiyama, M; Yonekura, K; Ishikawa, T; Asakura, H

    2000-04-01

    A significant increase in serum hyaluronan (HA) levels has been reported in patients with liver cirrhosis. This mechanism is not yet clear, and receptors for HA have not been characterized. In this study, we examined the expression of both HA and its receptors, CD44 and intercellular adhesion molecule-1 (ICAM-1), in dimethylnitrosamine-induced liver cirrhosis. Using biotinylated HA binding protein, HA was detected in the area of periportal fibrosis and around the sinusoidal wall where hepatic fibrosis was developing. Electron microscopy revealed that HA was localized on Ito cells and sinusoidal endothelial cells (SEC). Conversely, CD44, which was only expressed weakly in normal liver, was present in large amounts in cirrhotic liver. The distribution pattern of CD44 was similar to that of HA, however, CD44 was mainly localized on the infiltrating lymphocytes and Kupffer cells. Moreover, CD44 was detected on part of factor VIII-positive SEC. Intercellular adhesion molecule-1, another receptor for HA, was detected on the surface of hepatocytes and around the sinusoidal wall in cirrhotic liver, but its distribution was not accompanied by expression of HA. With respect to CD44 isoforms, the standard form m-RNA predominated in both normal and cirrhotic liver. Variant pMeta-1 mRNA was detected at low levels. An interaction between HA and CD44 may play a role in the recruitment of numerous infiltrating cells and HA accumulation in hepatic sinusoids. Together with phenotypic changes in the SEC, these results may lead to a disturbance in the elimination of HA during the progression of liver cirrhosis.

  17. Genome-Wide Identification of the PHD-Finger Family Genes and Their Responses to Environmental Stresses in Oryza sativa L.

    PubMed Central

    Sun, Mingzhe; Yang, Junkai; Cui, Na; Zhu, Yanming

    2017-01-01

    The PHD-finger family has been demonstrated to be involved in regulating plant growth and development. However, little information is given for its role in environmental stress responses. Here, we identified a total of 59 PHD family genes in the rice genome. These OsPHDs genes were located on eleven chromosomes and synteny analysis only revealed nine duplicated pairs within the rice PHD family. Phylogenetic analysis of all OsPHDs and PHDs from other species revealed that they could be grouped into two major clusters. Furthermore, OsPHDs were clustered into eight groups and members from different groups displayed a great divergence in terms of gene structure, functional domains and conserved motifs. We also found that with the exception of OsPHD6, all OsPHDs were expressed in at least one of the ten tested tissues and OsPHDs from certain groups were expressed in specific tissues. Moreover, our results also uncovered differential responses of OsPHDs expression to environmental stresses, including ABA (abscisic acid), water deficit, cold and high Cd. By using quantitative real-time PCR, we further confirmed the differential expression of OsPHDs under these stresses. OsPHD1/7/8/13/33 were differentially expressed under water deficit and Cd stresses, while OsPHD5/17 showed altered expression under water deficit and cold stresses. Moreover, OsPHD3/44/28 displayed differential expression under ABA and Cd stresses. In conclusion, our results provide valuable information on the rice PHD family in plant responses to environmental stress, which will be helpful for further characterizing their biological roles in responding to environmental stresses.

  18. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  19. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides

    PubMed Central

    Ariyoshi, Wataru; Takahashi, Nobunori; Hida, Daisuke; Knudson, Cheryl B.; Knudson, Warren

    2011-01-01

    Objective Small hyaluronan (HA) oligosaccharides serve as competitive receptor antagonists to displace HA from the cell surface and induce cell signaling events. In articular chondrocytes this cell signaling is mediated by the HA receptor CD44 and induces stimulation of genes involved in matrix degradation such as matrix metalloproteinases as well as matrix repair genes including collagen type II, aggrecan and HA synthase-2. The objective of this study was to determine changes in the expression and function of aggrecanases after disruption of chondrocyte CD44-HA interactions. Methods Bovine articular chondrocytes or bovine cartilage tissue were pre-treated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in aggrecanase were monitored by real time reverse transcriptase-polymerase chain reaction and western blot analysis of ADAMTS4, ADAMTS5 and aggrecan proteolytic fragments. To test the interactions between ADAMTS4 and MT4-MMP, protein lysates purified from stimulated chondrocytes were subjected to co-immunoprecipitation. Results Disruption of chondrocyte CD44-HA interactions with HA oligosaccharides induced the transcription of ADAMTS4 and ADAMTS5 in time- and dose-dependent manner. The association of GPI-anchored MT4-MMP with ADAMTS4 was also induced in articular chondrocytes by HA oligosaccharides. Inhibition of the NF-κB pathway blocked HA oligosaccharides-mediated stimulation of aggrecanases. Conclusions Disruptive changes in chondrocyte-matrix interactions by HA oligosaccharides induce matrix degradation and elevate aggrecanases via the activation of the NF-κB signaling pathway. PMID:21905012

  20. CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

    PubMed Central

    Shmelkov, Sergey V.; Butler, Jason M.; Hooper, Andrea T.; Hormigo, Adilia; Kushner, Jared; Milde, Till; St. Clair, Ryan; Baljevic, Muhamed; White, Ian; Jin, David K.; Chadburn, Amy; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; D’Angelica, Michael; Kemeny, Nancy; Lyden, David; Rafii, Shahin

    2008-01-01

    Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10–/–CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133– population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133– metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133– cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24–), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133– subset, which is also capable of tumor initiation in NOD/SCID mice. PMID:18497886

  1. NF-κB Participates in the Stem Cell Phenotype of Ovarian Cancer Cells.

    PubMed

    Gonzalez-Torres, Carolina; Gaytan-Cervantes, Javier; Vazquez-Santillan, Karla; Mandujano-Tinoco, Edna Ayerim; Ceballos-Cancino, Gisela; Garcia-Venzor, Alfredo; Zampedri, Cecilia; Sanchez-Maldonado, Paulina; Mojica-Espinosa, Raul; Jimenez-Hernandez, Luis Enrique; Maldonado, Vilma

    2017-05-01

    NF-κB is a transcription factor involved in cancer stem cells maintenance of many tumors. Little is known about the specific stem-associated upstream regulators of this pathway in ovarian cancer. The Aim of the study was to analyze the role of the canonical and non-canonical NF-κB pathways in stem cells of ovarian cancer cell lines. Stem cells were isolated using sorting cytometry. Western blot and RT-PCR were used to quantify protein and messenger RNA levels. Loss and gain of function assays were performed using siRNAs and dominant-negative proteins, respectively. NF-κB binding activity was measured with a reporter gene assay. The stem phenotype was estimated with clonogenic assays using soft agar, colony formation, ovospheres formation and in vivo tumorigenicity assays. The CD44+ subpopulation of SKOV3 ovarian cancer cell line presented higher mRNA levels of key stemness genes, an increased tumorigenic capacity and higher expression of the RelA, RelB and IKKα. When the canonical pathway was inhibited by means of a dominant-negative version of IkBα, the stem cell population was reduced, as shown by a reduced CD44+ subpopulation, a decrease in the expression of the stemness genes and a reduction of the stem phenotype. In addition, IKKα, the main upstream non-canonical kinase, was highly expressed in the CSC population. Accordingly, when IKKα was inhibited using shRNAs, the expression of the stemness genes was reduced. This report is the first to show the importance of several elements of both NF-κB pathway in maintaining the ovarian cancer stem cell population. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  2. Expression profiles of cancer stem cell markers: CD133, CD44, Musashi-1 and EpCAM in the cardiac mucosa-Barrett's esophagus-early esophageal adenocarcinoma-advanced esophageal adenocarcinoma sequence.

    PubMed

    Mokrowiecka, Anna; Veits, Lothar; Falkeis, Christina; Musial, Jacek; Kordek, Radzislaw; Lochowski, Mariusz; Kozak, Jozef; Wierzchniewska-Lawska, Agnieszka; Vieth, Michael; Malecka-Panas, Ewa

    2017-03-01

    Barrett's esophagus (BE), which develops as a result of gastroesophageal reflux disease, is a preneoplastic condition for esophageal adenocarcinoma (EAC). A new hypothesis suggests that cancer is a disease of stem cells, however, their expression and pathways in BE - EAC sequence are not fully elucidated yet. We used a panel of putative cancer stem cells markers to identify stem cells in consecutive steps of BE-related cancer progression. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded blocks from 58 patients with normal cardiac mucosa (n=5), BE (n=14), early EAC (pT1) from mucosal resection (n=17) and advanced EAC (pT1-T4) from postoperative specimens (n=22). Expression of the CD133, CD44, Musashi-1 and EpCAM was analyzed using respective monoclonal antibodies. All markers showed a heterogeneous expression pattern, mainly at the base of the crypts of Barrett's epithelium and EAC, with positive stromal cells in metaplastic and dysplastic lesions. Immuno-expression of EpCAM, CD44 and CD133 in cardiac mucosa was significantly lower (mean immunoreactivity score (IRS)=1.2; 0.0; 0.4; respectively) compared to their expression in Barrett's metaplasia (mean IRS=4.3; 0.14; 0.7; respectively), in early adenocarcinoma (mean IRS=4.4; 0.29; 1.3; respectively) and in advanced adenocarcinoma (mean IRS=6.6; 0.7; 2.7; respectively) (p<0.05). On the contrary, Musashi-1 expression was higher in BE and early ADC compared to GM and advanced ADC (NS). Our results suggest that the stem cells could be present in premalignant lesions. EpCAM, CD44 and CD133 expression could be candidate markers for BE progression, whereas Musashi-1 may be a marker of the small intestinal features of Barrett's mucosa. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Investigating Cell Surface Markers on Normal Hematopoietic Stem Cells in Three Different Niche Conditions

    PubMed Central

    Garg, Swati; Madkaikar, Manisha

    2013-01-01

    Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their ‘abnormal’ expression from the normal. PMID:24386557

  4. Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions.

    PubMed

    Garg, Swati; Madkaikar, Manisha; Ghosh, Kanjaksha

    2013-11-01

    Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their 'abnormal' expression from the normal.

  5. Characterization of mouse CD53: epitope mapping, cellular distribution and induction by T cell receptor engagement during repertoire selection.

    PubMed

    Tomlinson, M G; Hanke, T; Hughes, D A; Barclay, A N; Scholl, E; Hünig, T; Wright, M D

    1995-08-01

    The pan-leukocyte antigen CD53 is a member of the poorly understood transmembrane 4 superfamily (TM4SF) of cell membrane glycoproteins. CD53 is proposed to play a role in thymopoiesis, since rat CD53 is expressed on immature CD4-8-thymocytes and the functionally mature single-positive subset, but is largely absent from the intermediate CD4+8+ cells. We have characterized CD53 in the mouse through the production of two new monoclonal antibodies, MRC OX-79 and OX-80, which were raised against the RAW 264 cell line and screened on recombinant CD53 fusion proteins. The epitopes recognized by both antibodies are dependent on disulfide bonding and map to the major extracellular region of CD53, requiring the presence of a single threonine residue at position 154. Mouse CD53 has a molecular mass of 35-45 kDa and is expressed on virtually all peripheral leukocytes, but not on cells outside the lymphoid or myeloid lineages. CD53 expression distinguishes subpopulations of thymocytes in the mouse and resembles the expression pattern of rat CD53. Amongst the immature CD4-8-thymocytes, mouse CD53 is clearly detectable on the earliest CD44high25- subset, but down-regulated on the later CD44high25+, CD44low25+ and CD44low25- stages. Also, the subsequent transient TcR-/low CD4-8+ cells and most CD4+8+ thymocytes express little or no CD53. This is consistent with the idea that cells which are committed to enter the selectable CD4+8+ compartment switch off CD53. The effect of T cell receptor (TcR) engagement on the re-expression of CD53 on CD4+8+ thymocytes was studied both ex vivo and in vitro using F5 mice, transgenic for the H-2b/influenza nucleoprotein-peptide-specific TcR, back-crossed onto an H-2q or H-2b background of RAG-2-deficient mice. CD4+8+ thymocytes from non-selecting H-2q F5 mice are CD53 negative, but in vitro stimulation through the TcR dramatically induces CD53 expression. In contrast, a fraction of CD4+8+ thymocytes from positively selecting H-2b F5 transgenic mice express CD53. Therefore TcR engagement by selecting major histocompatibility complex peptide complexes, or surrogate ligands, induces CD53 expression on otherwise CD53-negative, non-selected CD4+8+ thymocytes. Whether CD53 itself participates as a signaling molecule in further stages of thymic selection is still a matter of speculation.

  6. Physiological β-catenin signaling controls self-renewal networks and generation of stem-like cells from nasopharyngeal carcinoma.

    PubMed

    Cheng, Yue; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Phoon, Yee Peng; Chiu, Pui Man; Lo, Paulisally Hau Yi; Waterman, Marian L; Lung, Maria Li

    2013-09-27

    A few reports suggested that low levels of Wnt signaling might drive cell reprogramming, but these studies could not establish a clear relationship between Wnt signaling and self-renewal networks. There are ongoing debates as to whether and how the Wnt/β-catenin signaling is involved in the control of pluripotency gene networks. Additionally, whether physiological β-catenin signaling generates stem-like cells through interactions with other pathways is as yet unclear. The nasopharyngeal carcinoma HONE1 cells have low expression of β-catenin and wild-type expression of p53, which provided a possibility to study regulatory mechanism of stemness networks induced by physiological levels of Wnt signaling in these cells. Introduction of increased β-catenin signaling, haploid expression of β-catenin under control by its natural regulators in transferred chromosome 3, resulted in activation of Wnt/β-catenin networks and dedifferentiation in HONE1 hybrid cell lines, but not in esophageal carcinoma SLMT1 hybrid cells that had high levels of endogenous β-catenin expression. HONE1 hybrid cells displayed stem cell-like properties, including enhancement of CD24(+) and CD44(+) populations and generation of spheres that were not observed in parental HONE1 cells. Signaling cascades were detected in HONE1 hybrid cells, including activation of p53- and RB1-mediated tumor suppressor pathways, up-regulation of Nanog-, Oct4-, Sox2-, and Klf4-mediated pluripotency networks, and altered E-cadherin expression in both in vitro and in vivo assays. qPCR array analyses further revealed interactions of physiological Wnt/β-catenin signaling with other pathways such as epithelial-mesenchymal transition, TGF-β, Activin, BMPR, FGFR2, and LIFR- and IL6ST-mediated cell self-renewal networks. Using β-catenin shRNA inhibitory assays, a dominant role for β-catenin in these cellular network activities was observed. The expression of cell surface markers such as CD9, CD24, CD44, CD90, and CD133 in generated spheres was progressively up-regulated compared to HONE1 hybrid cells. Thirty-four up-regulated components of the Wnt pathway were identified in these spheres. Wnt/β-catenin signaling regulates self-renewal networks and plays a central role in the control of pluripotency genes, tumor suppressive pathways and expression of cancer stem cell markers. This current study provides a novel platform to investigate the interaction of physiological Wnt/β-catenin signaling with stemness transition networks.

  7. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    PubMed

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  8. Human umbilical cord mesenchymal stromal cells suppress MHC class II expression on rat vascular endothelium and prolong survival time of cardiac allograft

    PubMed Central

    Qiu, Ying; Yun, Mark M; Han, Xia; Zhao, Ruidong; Zhou, Erxia; Yun, Sheng

    2014-01-01

    Background: Human umbilical cord mesenchymal stromal cells (UC-MSCs) have low immunogenicity and immune regulation. To investigate immunomodulatory effects of human UC-MSCs on MHC class II expression and allograft, we transplanted heart of transgenic rats with MHC class II expression on vascular endothelium. Methods: UC-MSCs were obtained from human umbilical cords and confirmed with flow cytometry analysis. Transgenic rat line was established using the construct of human MHC class II transactivator gene (CIITA) under mouse ICAM-2 promoter control. The induced MHC class II expression on transgenic rat vascular endothelial cells (VECs) was assessed with immunohistological staining. And the survival time of cardiac allograft was compared between the recipients with and without UC-MSC transfusion. Results: Flow cytometry confirmed that the human UC-MSCs were positive for CD29, CD44, CD73, CD90, CD105, CD271, and negative for CD34 and HLA-DR. Repeated infusion of human UC-MSCs reduced MHC class II expression on vascular endothelia of transplanted hearts, and increased survival time of allograft. The UC-MSCs increased regulatory cytokines IL10, transforming growth factor (TGF)-β1 and suppressed proinflammatory cytokines IL2 and IFN-γ in vivo. The UC-MSC culture supernatant had similar effects on cytokine expression, and decreased lymphocyte proliferation in vitro. Conclusions: Repeated transfusion of the human UC-MSCs reduced MHC class II expression on vascular endothelia and prolonged the survival time of rat cardiac allograft. PMID:25126177

  9. Shear Stress Regulates Adhesion and Rolling of CD44+ Leukemic and Hematopoietic Progenitor Cells on Hyaluronan

    PubMed Central

    Christophis, Christof; Taubert, Isabel; Meseck, Georg R.; Schubert, Mario; Grunze, Michael; Ho, Anthony D.; Rosenhahn, Axel

    2011-01-01

    Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm2 is exceeded. At shear stress ∼1 dyn/cm2, the cell rolling speed reaches a maximum of 15 μm/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow. PMID:21806926

  10. Novel Single-Cell Analysis Platform Based on a Solid-State Zinc-Coadsorbed Carbon Quantum Dots Electrochemiluminescence Probe for the Evaluation of CD44 Expression on Breast Cancer Cells.

    PubMed

    Qiu, Youyi; Zhou, Bin; Yang, Xiaojuan; Long, Dongping; Hao, Yan; Yang, Peihui

    2017-05-24

    A novel single-cell analysis platform was fabricated using solid-state zinc-coadsorbed carbon quantum dot (ZnCQDs) nanocomposites as an electrochemiluminescence (ECL) probe for the detection of breast cancer cells and evaluation of the CD44 expression level. Solid-state ZnCQDs nanocomposite probes were constructed through the attachment of ZnCQDs to gold nanoparticles and then the loading of magnetic beads to amplify the ECL signal, exhibiting a remarkable 120-fold enhancement of the ECL intensity. Hyaluronic acid (HA)-functionalized solid-state probes were used to label a single breast cancer cell by the specific recognition of HA with CD44 on the cell surface, revealing more stable, sensitive, and effective tagging in comparison with the water-soluble CQDs. This strategy exhibited a good analytical performance for the analysis of MDA-MB-231 and MCF-7 single cells with linear range from 1 to 18 and from 1 to 12 cells, respectively. Furthermore, this single-cell analysis platform was used for evaluation of the CD44 expression level of these two cell lines, in which the MDA-MB-231 cells revealed a 2.8-5.2-fold higher CD44 expression level. A total of 20 single cells were analyzed individually, and the distributions of the ECL intensity revealed larger variations, indicating the high cellular heterogeneity of the CD44 expression level on the same cell line. The as-proposed single-cell analysis platform might provide a novel protocol to effectively study the individual cellular function and cellular heterogeneity.

  11. Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells.

    PubMed

    Ju, Yi; Cui, Jiwei; Sun, Huanli; Müllner, Markus; Dai, Yunlu; Guo, Junling; Bertleff-Zieschang, Nadja; Suma, Tomoya; Richardson, Joseph J; Caruso, Frank

    2016-06-13

    We engineered metal-phenolic capsules with both high targeting and low nonspecific cell binding properties. The capsules were prepared by coating phenolic-functionalized hyaluronic acid (HA) and poly(ethylene glycol) (PEG) on calcium carbonate templates, followed by cross-linking the phenolic groups with metal ions and removing the templates. The incorporation of HA significantly enhanced binding and association with a CD44 overexpressing (CD44+) cancer cell line, while the incorporation of PEG reduced nonspecific interactions with a CD44 minimal-expressing (CD44-) cell line. Moreover, high specific targeting to CD44+ cells can be balanced with low nonspecific binding to CD44- cells simply by using an optimized feed-ratio of HA and PEG to vary the content of HA and PEG incorporated into the capsules. Loading an anticancer drug (i.e., doxorubicin) into the obtained capsules resulted in significantly higher cytotoxicity to CD44+ cells but lower cytotoxicity to CD44- cells.

  12. Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation

    PubMed Central

    Molloy, Ben; Dominguez Castro, Patricia; Cormican, Paul; Trimble, Valerie; Mahmud, Nasir; McManus, Ross

    2015-01-01

    Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD) loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; Padjusted = 2.40x10-11) in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (Padjusted = 0.002), and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10-16) and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; Padjusted = 3.6x10-3) as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10-16) indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis. PMID:26444573

  13. A CD133-expressing murine liver oval cell population with bilineage potential.

    PubMed

    Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M

    2007-10-01

    Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.

  14. FGFR signaling regulates resistance of head and neck cancer stem cells to cisplatin.

    PubMed

    McDermott, Sarah C; Rodriguez-Ramirez, Christie; McDermott, Sean P; Wicha, Max S; Nör, Jacques E

    2018-05-18

    Patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) have poor prognosis with less than 1-year median survival. Platinum-based chemotherapy remains the first-line treatment for HNSCC. The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self renewing cell populations that constitute the bulk of the tumor. A small population of CSC exists within HNSCC that are relatively resistant to chemotherapy and clinically predicted to contribute to tumor recurrence. These head and neck CSCs (HNCSC) are identified by high cell-surface expression of CD44 and high intracellular activity of aldehyde dehydrogenase (ALDH) and termed ALDH high CD44 high . Here, we performed microarray analysis in two HNSCC cell lines (UM-SCC-1, UM-SCC-22B) to investigate molecular pathways active in untreated and cisplatin-resistant ALDH high CD44 high cells. Gene set enrichment analysis and iPathway analysis identified signaling pathways with major implications to the pathobiology of cancer (e.g. TNFα, IFN, IL6/STAT, NF-κB) that are enriched in cisplatin-resistant ALDH high CD44 high cells, when compared to control cells. FGF2 was also enriched in cisplatin-resistant ALDH high CD44 high , which was confirmed by ELISA analysis. Inhibition of FGF signaling using BGJ398, a pan-FGF receptor (FGFR) small-molecule inhibitor, decreased ALDH high CD44 high alone in UM-SCC-1 and preferentially targeted cisplatin-resistant ALDH high CD44 high cells in UM-SCC-22B. These findings suggest that FGFR signaling might play an important role in the resistance of head and neck CSC to cisplatin. Collectively, this work suggests that some head and neck cancer patients might benefit from the combination of cisplatin and a FGFR inhibitor.

  15. CD44 deficiency leads to decreased proinflammatory cytokine production in lung induced by PCV2 in mice.

    PubMed

    Fu, Qiang; Hou, Linbing; Xiao, Pingping; Guo, Chunhe; Chen, Yaosheng; Liu, Xiaohong

    2014-12-01

    Porcine circovirus type 2 (PCV2) is the primary etiological agent of postweaning multisystemic wasting syndrome (PMWS). CD44 is a widely expressed class I transmembrane glycoprotein implicated in immunological and inflammatory responses. In previous studies, the role of CD44 in host defense against microorganism infection remains controversial. The role of CD44 in host defense against PCV2 infection has never been studied before. In this study, we investigated the role of CD44 in the development of pneumonia induced by PCV2 in mice model. Upon infection, CD44 mRNA level in lung tissue was upregulated, and we confirmed a detrimental role of CD44 in host defense against PCV2 infection. The results demonstrated that CD44 deficiency could result in decreased proinflammatory cytokine production in lung induced by PCV2 in mice, suggesting a previously unrecognized role for CD44 in the development of pneumonia response to PCV2 infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    PubMed Central

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  17. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    PubMed

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+) T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+) T-cells, whereas it is produced de novo in resting CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  18. Unique CD44 intronic SNP is associated with tumor grade in breast cancer: a case control study and in silico analysis.

    PubMed

    Esmaeili, Rezvan; Abdoli, Nasrin; Yadegari, Fatemeh; Neishaboury, Mohamadreza; Farahmand, Leila; Kaviani, Ahmad; Majidzadeh-A, Keivan

    2018-01-01

    CD44 encoded by a single gene is a cell surface transmembrane glycoprotein. Exon 2 is one of the important exons to bind CD44 protein to hyaluronan. Experimental evidences show that hyaluronan-CD44 interaction intensifies the proliferation, migration, and invasion of breast cancer cells. Therefore, the current study aimed at investigating the association between specific polymorphisms in exon 2 and its flanking region of CD44 with predisposition to breast cancer. In the current study, 175 Iranian female patients with breast cancer and 175 age-matched healthy controls were recruited in biobank, Breast Cancer Research Center, Tehran, Iran. Single nucleotide polymorphisms of CD44 exon 2 and its flanking were analyzed via polymerase chain reaction and gene sequencing techniques. Association between the observed variation with breast cancer risk and clinico-pathological characteristics were studied. Subsequently, bioinformatics analysis was conducted to predict potential exonic splicing enhancer (ESE) motifs changed as the result of a mutation. A unique polymorphism of the gene encoding CD44 was identified at position 14 nucleotide upstream of exon 2 (A37692→G) by the sequencing method. The A > G polymorphism exhibited a significant association with higher-grades of breast cancer, although no significant relation was found between this polymorphism and breast cancer risk. Finally, computational analysis revealed that the intronic mutation generated a new consensus-binding motif for the splicing factor, SC35, within intron 1. The current study results indicated that A > G polymorphism was associated with breast cancer development; in addition, in silico analysis with ESE finder prediction software showed that the change created a new SC35 binding site.

  19. Cloning of the cDNA for a hematopoietic cell-specific protein related to CD20 and the {beta} subunit of the high-affinity IgE receptor: Evidence for a family of proteins with four membrane-spanning regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adra, C.N.; Morrison, P.; Lim, B.

    1994-10-11

    The authors report the cloning of the cDNA for a human gene whose mRNA is expressed specifically in hematopoietic cells. A long open reading frame in the 1.7-kb mRNA encodes a 214-aa protein of 25 kDa with four hydrophobic regions consistent with a protein that traverses the membrane four times. To reflect the structure and expression of this gene in diverse hematopoietic lineages of lymphoid and myeloid origin, the authors named the gene HTm{sub 4}. The protein is about 20% homologous to two other {open_quotes}four-transmembrane{close_quotes} proteins; the B-cell-specific antigen CD20 and the {beta} subunit of the high-affinity receptor for IgE,more » Fc{sub {epsilon}}RI{beta}. The highest homologies among the three proteins are found in the transmembrane domains, but conserved residues are also recognized in the inter-transmembrane domains and in the N and C termini. Using fluorescence in situ hybridization, they localized HTm{sub 4} to human chromosome 11q12-13.1, where the CD20 and Fc{sub {epsilon}}RI{beta} genes are also located. Both the murine homologue for CD20, Ly-44, and the murine Fc{sub {epsilon}}RI{beta} gene map to the same region in murine chromosome 19. The authors propose that the HTm{sub 4}, CD20, and Fc{sub {epsilon}}RI{beta} genes evolved from the same ancestral gene to form a family of four-transmembrane proteins. It is possible that other related members exist. Similar to CD20 and Fc{sub {epsilon}}RI{beta}, it is likely that Htm{sub 4} has a role in signal transduction and, like Fc{sub {epsilon}}RI{beta}, might be a subunit associated with receptor complexes.« less

  20. Osteogenic differentiation of human dental papilla mesenchymal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Etsuko; Hirose, Motohiro; Kotobuki, Noriko

    We isolated dental papilla from impacted human molar and proliferated adherent fibroblastic cells after collagenase treatment of the papilla. The cells were negative for hematopoietic markers but positive for CD29, CD44, CD90, CD105, and CD166. When the cells were further cultured in the presence of {beta}-glycerophosphate, ascorbic acid, and dexamethasone for 14 days, mineralized areas together with osteogenic differentiation evidenced by high alkaline phosphatase activity and osteocalcin contents were observed. The differentiation was confirmed at both protein and gene expression levels. The cells can also be cryopreserved and, after thawing, could show in vivo bone-forming capability. These results indicate thatmore » mesenchymal type cells localize in dental papilla and that the cells can be culture expanded/utilized for bone tissue engineering.« less

  1. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells

    PubMed Central

    Hosseinzadeh Shirzeily, Maryam; Pasbakhsh, Parichehr; Amidi, Fardin; Mehrannia, Kobra; Sobhani, Aligholi

    2013-01-01

    Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam Hosseinzadeh Shirzeily) PMID:24639722

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motegi, Atsushi, E-mail: amotegi@east.ncc.go.jp; Fujii, Satoshi; Zenda, Sadamoto

    Purpose: To investigate the significance of CD44 protein expression on the treatment outcomes of radiation therapy in patients with oropharyngeal squamous cell carcinoma (OPSCC) with or without p16 protein expression in the tumor tissue. Methods and Materials: We reviewed the medical records of 58 OPSCC patients who had undergone radiation therapy and examined the tumor tissue expressions of CD44 and p16 protein by immunohistochemical staining. The correlations between the expressions of these proteins and the patients' treatment outcomes were analyzed. Results: The data of 58 consecutive OPSCC patients who had undergone definitive intensity modulated radiation therapy were analyzed. The male/femalemore » ratio was 55:3, and the median age was 64 years. The clinical stage of the disease was stage II in 7 patients, stage III in 5 patients, stage IVA in 35 patients, and stage IVB in 11 patients. Of the patients, 79% received additional induction and/or concurrent chemotherapy. The median follow-up duration was 34 months. The 3-year overall survival, progression-free survival (PFS) and locoregional control (LRC) rates of all the patients, regardless of the results of immunohistochemistry, were 73%, 64% and 76%, respectively. The PFS and LRC rates in the CD44{sup −} patients (86% and 93%, respectively) were significantly higher than those in the CD44{sup +} patients (57% and 70%, respectively). The PFS and LRC rates in the p16{sup +} patients (83% and 90%, respectively) were significantly higher than those in the p16{sup −} patients (45% and 61%, respectively). Patients who were CD44{sup −}/p16{sup +} showed the best LRC rates, and those who were CD44{sup +}/p16{sup −} showed the worst PFS and LRC rates among all the groups. Conclusions: Profiling of CD44 and p16 protein expressions by immunohistochemical staining is useful for predicting the treatment outcomes in patients with OPSCC undergoing definitive intensity modulated radiation therapy.« less

  3. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study.

    PubMed

    Wang, Shan-Zheng; Chang, Qing; Kong, Xiang-Fei; Wang, Chen

    2015-01-01

    The interests in platelet-rich plasma (PRP) and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs). We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs) on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1), dexamethasone (DEX), and vitamin C (Vc) was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  4. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage

    PubMed Central

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses. PMID:27347945

  5. Isolation and characterization of porcine adipose tissue-derived adult stem cells.

    PubMed

    Williams, Kellie J; Picou, Alicia A; Kish, Sharon L; Giraldo, Angelica M; Godke, Robert A; Bondioli, Kenneth R

    2008-01-01

    Stem cell characteristics such as self-renewal, differentiation and expression of CD34 and CD44 stem cell markers have not been identified in porcine adipose tissue-derived adult stem (ADAS) cells. The objective of this study was to develop a protocol for the isolation and culture of porcine adipose tissue-derived cells and to determine stem cell-like characteristics. Primary cultures were established and cell cultures were maintained. Cloning capacity was determined using a ring cloning procedure. Primary cultures and clones were differentiated and stained for multiple differentiated phenotypes. CD34 and CD44 messenger ribonucleic acid (mRNA) was isolated and reverse transcriptase polymerase chain reaction was used to compare expression profiles. An average of 2,700,000 nucleated cells/ml was isolated; 26% were adherent, and cells completed a cell cycle approximately every 3.3 days. Ring cloning identified 19 colonies. Primary cultures and clones were determined to differentiate along osteogenic, adipogenic and chondrogenic tissue lineages. The mRNA expression profiles showed CD34 expression was higher for undifferentiated ADAS cells versus differentiated cell types and the CD34 expression level was lower than that of CD44 among differentiated cells. Improved culture conditions and defined cellular characteristics of these porcine ADAS cells have been identified. Porcine ADAS can self-renew, can differentiate into multiple tissue lineages and they express CD34. Copyright 2008 S. Karger AG, Basel.

  6. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    PubMed Central

    Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880

  7. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  8. CD133+CD54+CD44+ circulating tumor cells as a biomarker of treatment selection and liver metastasis in patients with colorectal cancer

    PubMed Central

    Wang, Cun; Huang, Qiaorong; Meng, Wentong; Yu, Yongyang; Yang, Lie; Peng, Zhihai; Hu, Jiankun; Li, Yuan; Mo, Xianming; Zhou, Zongguang

    2016-01-01

    Introduction Liver is the most common site of distant metastasis in colorectal cancer (CRC). Early diagnosis and appropriate treatment selection decides overall prognosis of patients. However, current diagnostic measures were basically imaging but not functional. Circulating tumor cells (CTCs) known as hold the key to understand the biology of metastatic mechanism provide a novel and auxiliary diagnostic strategy for CRC with liver metastasis (CRC-LM). Results The expression of CD133+ and CD133+CD54+CD44+ cellular subpopulations were higher in the peripheral blood of CRC-LM patients when compared with those without metastasis (P<0.001). Multivariate analysis proved the association between the expression of CD133+CD44+CD54+ cellular subpopulation and the existence of CRC-LM (P<0.001). The combination of abdominal CT/MRI, CEA and the CD133+CD44+CD54+ cellular subpopulation showed increased detection and discrimination rate for liver metastasis, with a sensitivity of 88.2% and a specificity of 92.4%. Meanwhile, it also show accurate predictive value for liver metastasis (OR=2.898, 95% C.I.1.374–6.110). Materials and Method Flow cytometry and multivariate analysis was performed to detect the expression of cancer initiating cells the correlation between cellular subpopulations and liver metastasis in patients with CRC. The receiver operating characteristic curves combined with the area under the curve were generated to compare the predictive ability of the cellular subpopulation for liver metastasis with current CT and MRI images. Conclusions The identification, expression and application of CTC subpopulations will provide an ideal cellular predictive marker for CRC liver metastasis and a potential marker for further investigation. PMID:27764803

  9. Self-renewal and circulating capacities of metastatic hepatocarcinoma cells required for collaboration between TM4SF5 and CD44

    PubMed Central

    Lee, Doohyung; Lee, Jung Weon

    2015-01-01

    Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Hepatic TM4SF5 promotes EMT for malignant growth and migration. Hepatocellular carcinoma (HCC) biomarkers remain unexplored for metastatic potential throughout metastasis. Here, novel TM4SF5/CD44 interaction-mediated self-renewal and circulating tumor cell (CTC) capacities were mechanistically explored. TM4SF5-dependent sphere growth was correlated with CD133+, CD24-, ALDH activity, and a physical association between CD44 and TM4SF5. The TM4SF5/CD44 interaction activated c-Src/STAT3/ Twist1/ B mi1 signaling for spheroid formation, while disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts of less than 5,000 cells/injection, TM4SF5-positive tumors exhibited locally-increased CD44 expression, suggesting tumor cell differentiation. TM4SF5-positive cells were identified circulating in blood 4 to 6 weeks after orthotopic liver-injection. Anti-TM4SF reagents blocked their metastasis to distal intestinal organs. Altogether, our results provide evidence that TM4SF5 promotes self-renewal and CTC properties supported by CD133+/TM4SF5+/CD44+(TM4SF5-bound)/ALDH+/ CD24- markers during HCC metastasis. [BMB Reports 2015; 48(3): 127-128] PMID:25772760

  10. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    PubMed Central

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  11. Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor

    NASA Astrophysics Data System (ADS)

    Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao

    2017-09-01

    The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.

  12. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells.

    PubMed

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future.

  13. Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium.

    PubMed

    Khan, Zaman; Nisar, Muhammad Atif; Hussain, Syed Zajif; Arshad, Muhammad Nauman; Rehman, Abdul

    2015-12-01

    A cadmium-resistant bacterium was isolated from industrial wastewater and identified as Escherichia coli (dubbed as P4) on the basis of morphological, biochemical tests and 16S rRNA ribotyping. It showed optimum growth at 30 °C and pH 7. E. coli P4 found to resist Cd(+2) (10.6 mM) as well as Zn(+2) (4.4 mM), Pb(+2) (17 mM), Cu(+2) (3.5 mM), Cr(+6) (4.4 mM), As(+2) (10.6 mM), and Hg(+2) (0.53 mM). It could remove 18.8, 37, and 56 % Cd(+2) from aqueous medium after 48, 96, and 144 h, respectively. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and Energy-dispersive X-ray (EDX) analysis also confirmed the biosorption of Cd(+2) by E. coli P4. However, temperature and pH were found to be the most critical factors in biosorption of Cd(+2) by E. coli P4. Cd(+2) stress altered E. coli P4 cell physiology analyzed by measuring glutathione (GSH) and non-protein thiol (cysteine) levels which were increased up to 130 and 48 %, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) showed alteration in the expression levels of ftsZ, mutS, clpB, ef-tu, and dnaK genes in the presence of Cd(+2). Total protein profiles of E. coli P4 in the absence and presence of Cd(+2) were compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which showed remarkable difference in the banding pattern. czcB gene, a component of czcCBA operon, was amplified from genomic DNA which suggested the chromosomal-borne Cd(+2) resistance in E. coli P4. Furthermore, it harbors smtAB gene which plays a significant role in Cd(+2) resistance.

  14. miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells.

    PubMed

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2014-09-01

    This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.

  15. Prognostic value of CD44 expression in non-small cell lung cancer: a systematic review.

    PubMed

    Luo, Zhuang; Wu, Rong-Rong; Lv, Liang; Li, Peng; Zhang, Li-Yan; Hao, Qing-Lin; Li, Wei

    2014-01-01

    CD44 is a potentially interesting prognostic marker and therapeutic target in non-small cell lung cancer (NSCLC). Although the expression of CD44 has been reported to correlate with poor prognosis of NSCLC in most literatures, some controversies still exist. Since the limited patient numbers within independent studies, here we performed a meta-analysis to clarify the correlations between CD44 expression and prognosis and clinicopathological features in NSCLC. Relevant literatures were identified using PubMed, EMBASE and CNKI (China National Knowledge Infrastructure) databases (up to February 2014). Data from eligible studies were extracted and included into meta-analysis using a random effects model. Studies were pooled. Summary hazard ratios (HR) and clinical parameters were calculated. We performed a final analysis of 1772 patients from 23 evaluable studies for Prognostic Value and 2167 patients from 28 evaluable studies for clinicopathological features. Our study shows that the pooled hazard ratio (HR) of overexpression CD44-V6 for overall survival in NSCLC was 1.63 [95% confidence interval (CI): 1.20-2.21] by univariate analysis and 1.29 (95% CI: 0.71-2.37) by multivariate analysis.The pooled HR of overexprssion panCD44 for overall survival in NSCLC was 1.53 (95% CI: 0.58-4.04) by univariate analysis and 3.00 (95% CI: 1.53-5.87) by multivariate analysis. Overexpression of CD44-V6 is associated with tumor differentiation (poor differentiation, OR = 1.66, 95% CI: 1.12-2.45), tumor histological type [squamous cell carcinomas (SCC), OR = 2.6, 95% CI: 1.63-5.02], clinical TMN stage (TMN stage III, OR = 2.22, 95% CI: 1.44-3.43) and lymph node metastasis (N1-3, 3.52, 95% CI: 2.08-5.93) in patients with NSCLC. However, there was no significant association between CD44-V6 and tumor size [T category, OR = 1.42, 95% CI: 0.73-2.78]. Our meta-analysis showed that CD44-V6 is an efficient prognostic factor for NSCLC. Overexpression of CD44-V6 was significantly associated with tumor differentiation, tumor histological type, clinical TMN stage and lymph node metastasis. However, there was no significant association between CD44-V6 and tumor size. Large prospective studies are now needed to confirm the clinical utility of CD44 as an independent prognostic marker.

  16. Comparison of the Gene Expression Profiles of Human Hematopoietic Stem Cells between Humans and a Humanized Xenograft Model.

    PubMed

    Matsuzawa, Hideyuki; Matsushita, Hiromichi; Yahata, Takashi; Tanaka, Masayuki; Ando, Kiyoshi

    2017-04-20

    The aim of this study is to evaluate the feasibility of NOD/Shi-scid-IL2Rγ null (NOG) mice transplanted with human CD34 + /CD38 - /Lin -/low hematopoietic cells from cord blood (CB) as an experimental model of the gene expression in human hematopoiesis. We compared the gene expressions of human CD34 + /CD38 - /Lin -/low cells from human bone marrow (BM) and in xenograft models. The microarray data revealed that 25 KEGG pathways were extracted from the comparison of human CD34 + /CD38 - /Lin -/low HSCs between CB and BM, and that 17 of them--which were mostly related to cellular survival, RNA metabolism and lymphoid development--were shared with the xenograft model. When the probes that were commonly altered in CD34 + /CD38 - /Lin -/low cells from both human and xenograft BM were analyzed, most of them, including the genes related hypoxia, hematopoietic differentiation, epigenetic modification, translation initiation, and RNA degradation, were downregulated. These alterations of gene expression suggest a reduced differentiation capacity and likely include key alterations of gene expression for settlement of CB CD34 + /CD38 - /Lin -/low cells in BM. Our findings demonstrate that the xenograft model of human CB CD34 + /CD38 - /Lin -/low cells using NOG mice was useful, at least in part, for the evaluation of the gene expression profile of human hematopoietic stem cells.

  17. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study

    PubMed Central

    Hu, Shimin; Xu-Monette, Zijun Y.; Balasubramanyam, Aarthi; Manyam, Ganiraju C.; Visco, Carlo; Tzankov, Alexander; Liu, Wei-min; Miranda, Roberto N.; Zhang, Li; Montes-Moreno, Santiago; Dybkær, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W. L.; Han van Krieken, J.; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés J. M.; Zhao, Xiaoying; Winter, Jane N.; Zhang, Mingzhi; Li, Ling; Møller, Michael B.; Piris, Miguel A.; Li, Yong; Go, Ronald S.; Wu, Lin; Medeiros, L. Jeffrey; Young, Ken H.

    2013-01-01

    CD30, originally identified as a cell-surface marker of Reed-Sternberg and Hodgkin cells of classical Hodgkin lymphoma, is also expressed by several types of non-Hodgkin lymphoma, including a subset of diffuse large B-cell lymphoma (DLBCL). However, the prognostic and biological importance of CD30 expression in DLBCL is unknown. Here we report that CD30 expression is a favorable prognostic factor in a cohort of 903 de novo DLBCL patients. CD30 was expressed in ∼14% of DLBCL patients. Patients with CD30+ DLBCL had superior 5-year overall survival (CD30+, 79% vs CD30–, 59%; P = .001) and progression-free survival (P = .003). The favorable outcome of CD30 expression was maintained in both the germinal center B-cell and activated B-cell subtypes. Gene expression profiling revealed the upregulation of genes encoding negative regulators of nuclear factor κB activation and lymphocyte survival, and downregulation of genes encoding B-cell receptor signaling and proliferation, as well as prominent cytokine and stromal signatures in CD30+ DLBCL patients, suggesting a distinct molecular basis for its favorable outcome. Given the superior prognostic value, unique gene expression signature, and significant value of CD30 as a therapeutic target for brentuximab vedotin in ongoing successful clinical trials, it seems appropriate to consider CD30+ DLBCL as a distinct subgroup of DLBCL. PMID:23343832

  18. PDGF Suppresses the Sulfation of CD44v and Potentiates CD44v-Mediated Binding of Colon Carcinoma Cells to Fibrin under Flow

    PubMed Central

    Alves, Christina S.; Konstantopoulos, Konstantinos

    2012-01-01

    Fibrin(ogen) mediates sustained tumor cell adhesion and survival in the pulmonary vasculature, thereby facilitating the metastatic dissemination of tumor cells. CD44 is the major functional fibrin receptor on colon carcinoma cells. Growth factors, such as platelet-derived growth factor (PDGF), induce post-translational protein modifications, which modulate ligand binding activity. In view of the roles of PDGF, fibrin(ogen) and CD44 in cancer metastasis, we aimed to delineate the effect of PDGF on CD44-fibrin recognition. By immunoprecipitating CD44 from PDGF-treated and untreated LS174T colon carcinoma cells, which express primarily CD44v, we demonstrate that PDGF enhances the adhesion of CD44v-coated beads to immobilized fibrin. Enzymatic inhibition studies coupled with flow-based adhesion assays and autoradiography reveal that PDGF augments the binding of CD44v to fibrin by significantly attenuating the extent of CD44 sulfation primarily on chondroitin and dermatan sulfate chains. Surface plasmon resonance assays confirm that PDGF enhances the affinity of CD44v-fibrin binding by markedly reducing its dissociation rate while modestly increasing the association rate. PDGF mildly reduces the affinity of CD44v-hyaluronan binding without affecting selectin-CD44v recognition. The latter is attributed to the fact that CD44v binds to selectins via sialofucosylated O-linked residues independent of heparan, dermatan and chondroitin sulfates. Interestingly, PDGF moderately reduces the sulfation of CD44s and CD44s-fibrin recognition. Collectively, these data offer a novel perspective into the mechanism by which PGDF regulates CD44-dependent binding of metastatic colon carcinoma cells to fibrin(ogen). PMID:23056168

  19. Mucosal CCR1 gene expression as a marker of molecular activity in Crohn's disease: preliminary data.

    PubMed

    Dobre, Maria; Mănuc, Teodora Ecaterina; Milanesi, Elena; Pleşea, Iancu Emil; Ţieranu, Eugen Nicolae; Popa, Caterina; Mănuc, Mircea; Preda, Carmen Monica; Ţieranu, Ioana; Diculescu, Mihai Mircea; Ionescu, Elena Mirela; Becheanu, Gabriel

    2017-01-01

    A series of mechanisms of immune response, inflammation and apoptosis have been demonstrated to contribute to the appearance and evolution of Crohn's disease (CD) through the overexpression of several cytokines and chemokines in a susceptible host. The aim of this study was to identify the differences in gene expression profiles analyzing a panel of candidate genes in the mucosa from patients with active CD (CD-A), patients in remission (CD-R), and normal controls. Nine individuals were enrolled in the study: six CD patients (three with active lesions, three with mucosal healing) and three controls without inflammatory bowel disease (IBD) seen on endoscopy. All the individuals underwent mucosal biopsy during colonoscopy. Gene expression levels of 84 genes previously associated with CD were evaluated by polymerase chain reaction (PCR) array. Ten genes out of 84 were found significantly differentially expressed in CD-A (CCL11, CCL25, DEFA5, GCG, IL17A, LCN2, REG1A, STAT3, MUC1, CCR1) and eight genes in CD-R (CASP1, IL23A, STAT1, STAT3, TNF, CCR1, CCL5, and HSP90B1) when compared to controls. A quantitative gene expression analysis revealed that CCR1 gene was more expressed in CD-A than in CD-R. Our data suggest that CCR1 gene may be a putative marker of molecular activity of Crohn's disease. Following these preliminary data, a confirmation in larger cohort studies could represent a useful method in order to identify new therapeutic targets.

  20. CD44S-hyaluronan interactions protect cells resulting from EMT against anoikis

    PubMed Central

    Cieply, Benjamin; Koontz, Colton; Frisch, Steven M.

    2016-01-01

    The detachment of normal epithelial cells from matrix triggers an apoptotic response known as anoikis, during homeostatic turnover. Metastatic tumor cells evade anoikis, by mechanisms that are only partly characterized. In particular, the epithelial–mesenchymal transition (EMT) in a subset of invasive tumor cells confers anoikis-resistance. In some cases, EMT up-regulates the cancer stem cell marker CD44S and the enzyme hyaluronic acid synthase-2 (HAS2). CD44S is the major receptor for hyaluronan in the extracellular matrix. Herein, we demonstrate that CD44S, unlike the CD44E isoform expressed in normal epithelial cells, contributes to the protection against anoikis. This protection requires the interaction of CD44S with hyaluronan (HA). CD44S–HA interaction is proposed to play an important role in tumor metastasis through enhanced cell survival under detached conditions. PMID:25937513

  1. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer.

    PubMed

    Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A

    2018-06-01

    We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p < 0.001). Normal tissue from IBC patients is enriched for both mammary stem cells and macrophages and has higher association with both a tumorigenic stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or is induced by tumor warrants further investigation.

  2. Immunohistochemical Analysis of p53, Ki-67, CD44, HER-2/neu Expression Patterns in Gastric Cancer, and Their Association with One Year Survival in North-West of Iran

    PubMed Central

    Sanaat, Zohreh; Halimi, Monireh; Ghojezadeh, Morteza; Pirovi, Amir Hossein; Gharamaleki, Jalil Vaez; Ziae, Ali Esfahani Jamal Eivazi; Kermani, Iraj Aswadi

    2013-01-01

    Introduction Gastric cancer remains the second most common cause of cancer-related deaths worldwide. In many malignancies like, lung and breast, multiple prognostic factors are known, such as mutations in Ki-67, HER-2/neu, p53. In this study, we evaluated immunohistochemical protein expression patterns of cell-cycle-regulators p53, proliferation marker Ki-67, surface expression of CD44, HER-2/neu oncogene proposed as useful prognostic factors. Methods In this descriptive-analytic study, we evaluate 100 patients with gastric cancer who were referred to Shahid Ghazi Hospital or other oncology clinics of Tabriz University of Medical Sciences in 2005-2010. Patients with pathologic confirmation of gastric cancer were selected. Expression of p53, ki-67, CD-44, HER-2/neu were detected by immunohistochemical staining. Results In this study, 100 patients with gastric cancer participated. 76(76%) were men and 24(24%) were women with mean age of 64.02(8.05) years. Seventy two samples were intestinal type and 28 were diffuse type. CD44 was positive in 27(27%) patients. P53 was positive in 35(35%) patients. Ki-67 was positive in 53(53%) patients. HER-2/neu was positive in 51(51%) patients. Conclusion The frequency of positive p53, Ki-67, CD44 and HER-2/neu varied in different studies. Positive Ki-67 and HER-2/neu were not associated with changes in survival but positive p53 and CD44 were significantly associated with improved survival. PMID:24505530

  3. Construction of Hyaluronic Tetrasaccharide Clusters Modified Polyamidoamine siRNA Delivery System.

    PubMed

    Ma, Yingcong; Sha, Meng; Cheng, Shixuan; Yao, Wang; Li, Zhongjun; Qi, Xian-Rong

    2018-06-14

    The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted. In this study, we first use a HA tetrasaccharide cluster as the target ligand to enhance the binding ability to CD44. A polyamidoamine (PAMAM) dendrimer was modified by a HA tetrasaccharide cluster as a nonviral vector for small interfering RNA (siRNA) delivery. The dendrimer/siRNA nanocomplexes increased the cellular uptake capacity of siRNA through the CD44 receptor-mediated endocytosis pathway, allowing the siRNA to successfully escape the endosome/lysosome. Compared with the control group, nanocomplexes effectively reduced the expression of GFP protein and mRNA in MDA-MB-231-GFP cells. This delivery system provides a foundation to increase the clinical applications of PAMAM nanomaterials.

  4. Study of stem cell homing & self-renewal marker gene profile of ex vivo expanded human CD34+ cells manipulated with a mixture of cytokines & stromal cell-derived factor 1

    PubMed Central

    Kode, Jyoti; Khattry, Navin; Bakshi, Ashish; Amrutkar, Vasanti; Bagal, Bhausaheb; Karandikar, Rohini; Rane, Pallavi; Fujii, Nobutaka; Chiplunkar, Shubhada

    2017-01-01

    Background & objectives: Next generation transplantation medicine aims to develop stimulating cocktail for increased ex vivo expansion of primitive hematopoietic stem and progenitor cells (HSPC). The present study was done to evaluate the cocktail GF (Thrombopoietin + Stem Cell factor + Flt3-ligand) and homing-defining molecule Stromal cell-derived factor 1 (SDF1) for HSPC ex vivo expansion. Methods: Peripheral blood stem cell (n=74) harvests were analysed for CD34hi CD45lo HSPC. Immunomagnetically enriched HSPC were cultured for eight days and assessed for increase in HSPC, colony forming potential in vitro and in vivo engrafting potential by analyzing human CD45+ cells. Expression profile of genes for homing and stemness were studied using microarray analysis. Expression of adhesion/homing markers were validated by flow cytometry/ confocal microscopy. Results: CD34hi CD45lo HSPC expansion cultures with GF+SDF1 demonstrated increased nucleated cells (n=28, P< 0.001), absolute CD34+ cells (n=8, P=0.021) and increased colony forming units (cfu) compared to unstimulated and GF-stimulated HSPC. NOD-SCID mice transplanted with GF+SDF1-HSPC exhibited successful homing/engraftment (n=24, P< 0.001). Microarray analysis of expanded HSPC demonstrated increased telomerase activity and many homing-associated genes (35/49) and transcription factors for stemness/self-renewal (49/56) were significantly upregulated in GF+SDF1 stimulated HSPC when compared to GF-stimulated HSPC. Expression of CD44, CXCR4, CD26, CD14, CD45 and soluble IL-6 in expanded cultures were validated by flow cytometry and confocal microscopy. Interpretation & conclusions: Cocktail of cytokines and SDF1 showed good potential to successfully expand HSPC which exhibited enhanced ability to generate multilineage cells in short-term and long-term repopulation assay. This cocktail-mediated stem cell expansion has potential to obviate the need for longer and large volume apheresis procedure making it convenient for donors. PMID:29168461

  5. Gα13 Mediates a Signal That Is Essential for Proliferation and Survival of Thymocyte Progenitors

    PubMed Central

    McNeil Coffield, V.; Helms, Whitney S.; Jiang, Qi; Su, Lishan

    2004-01-01

    G protein signaling via the Gα12 family (Gα12 and Gα13) has not been well studied in T cells. To investigate whether Gα12 and Gα13 are involved in thymopoiesis, we expressed the regulator of G protein signaling domain of p115RhoGEF to inhibit Gα12 and Gα13 during thymopoiesis. Fetal thymus organ cultures seeded with p115ΔDH-expressing progenitor cells showed impaired thymopoiesis with a block at the CD4−CD8−CD44−CD25+ (DN3) stage. Using Gα13 or Gα12 minigenes, we demonstrated that Gα13, but not Gα12, is required for thymopoiesis. T progenitor cells expressing p115ΔDH showed reduced proliferation and increased cell death. T cell receptor stimulation of the fetal thymus organ cultures did not rescue the block. Overexpression of the antiapoptotic gene Bcl2 rescued the defect in DN3 cells and partially rescued T cell development. Therefore, Gα13-mediated signaling is necessary in early thymocyte proliferation and survival. PMID:15534370

  6. Characterization of a CD44/CD122int memory CD8 T cell subset generated under sterile inflammatory conditions.

    PubMed

    Mbitikon-Kobo, Florentin-Martial; Vocanson, Marc; Michallet, Marie-Cécile; Tomkowiak, Martine; Cottalorda, Anne; Angelov, Georgi S; Coupet, Charles-Antoine; Djebali, Sophia; Marçais, Antoine; Dubois, Bertrand; Bonnefoy-Bérard, Nathalie; Nicolas, Jean-François; Arpin, Christophe; Marvel, Jacqueline

    2009-03-15

    Most memory CD8 T cell subsets that have been hitherto defined are generated in response to infectious pathogens. In this study, we have characterized the CD8 T cells that survive priming conditions, devoid of pathogen-derived danger signals. In both a TCR-transgenic model and a model of contact hypersensitivity, we show that the priming of naive CD8 T cells under sterile inflammatory conditions generates memory. The corresponding memory CD8 T cells can be identified by their intermediate expression levels of CD44 and CD122. We also show that CD44/122(int) memory CD8 T cells spontaneously develop in wild type mice and that they display intermediate levels of several other memory traits including functional (IFN-gamma secretion capacity, CCL5 messenger stores), phenotypic, and molecular (T-bet and eomesodermin expression levels) features. We finally show that they correspond to an early differentiation stage and can further differentiate in CD44/122(high) memory T cells. Altogether, our results identify a new memory CD8 T cell subset that is generated under sterile inflammatory conditions and involved in the recall contact hypersensitivity reactions that are responsible for allergic contact dermatitis.

  7. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes.

    PubMed

    Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi

    2011-03-25

    Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  8. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  9. A Preliminary Study: Human Fibroid Stro-1+/CD44+ Stem Cells Isolated From Uterine Fibroids Demonstrate Decreased DNA Repair and Genomic Integrity Compared to Adjacent Myometrial Stro-1+/CD44+ Cells.

    PubMed

    Prusinski Fernung, Lauren E; Al-Hendy, Ayman; Yang, Qiwei

    2018-01-01

    Although uterine fibroids (UFs) continue to place a major burden on female reproductive health, the mechanisms behind their origin remain undetermined. Normal myometrial stem cells may be transformed into tumor-initiating stem cells, causing UFs, due to unknown causes of somatic mutations in MED12, found in up to 85% of sporadically formed UFs. It is well established in other tumor types that defective DNA repair increases the risk of such tumorigenic somatic mutations, mechanisms not yet studied in UFs. To examine the putative cause(s) of this stem cell transformation, we analyzed DNA repair within stem cells from human UFs compared to those from adjacent myometrium to determine whether DNA repair in fibroid stem cells is compromised. Human fibroid (F) and adjacent myometrial (Myo) stem cells were isolated from fresh tissues, and gene expression relating to DNA repair was analyzed. Fibroid stem cells differentially expressed DNA repair genes related to DNA double- (DSBs) and single-strand breaks. DNA damage was measured using alkaline comet assay. Additionally, DNA DSBs were induced in these stem cells and DNA DSB repair evaluated (1) by determining changes in phosphorylation of DNA DSB-related proteins and (2) by determining differences in γ-H2AX foci formation and relative DNA repair protein RAD50 expression. Overall, F stem cells demonstrated increased DNA damage and altered DNA repair gene expression and signaling, suggesting that human F stem cells demonstrate impaired DNA repair. Compromised F stem cell DNA repair may contribute to further mutagenesis and, consequently, further growth and propagation of UF tumors.

  10. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack.

    PubMed

    Singh, Vibuthi; Erb, Ulrike; Zöller, Margot

    2013-11-15

    A CD44 blockade drives leukemic cells into differentiation and apoptosis by dislodging from the osteogenic niche. Because anti-CD49d also supports hematopoietic stem cell mobilization, we sought to determine the therapeutic efficacy of a joint CD49d/CD44 blockade. To unravel the underlying mechanism, the CD49d(-) EL4 lymphoma was transfected with CD49d or point-mutated CD49d, prohibiting phosphorylation and FAK binding; additionally, a CD44(-) Jurkat subline was transfected with murine CD44, CD44 with a point mutation in the ezrin binding site, or with cytoplasmic tail-truncated CD44. Parental and transfected EL4 and Jurkat cells were evaluated for adhesion, migration, and apoptosis susceptibility in vitro and in vivo. Ligand-binding and Ab-blocking studies revealed CD44-CD49d cooperation in vitro and in vivo in adhesion, migration, and apoptosis resistance. The cooperation depends on ligand-induced proximity such that both CD44 and CD49d get access to src, FAK, and paxillin and via lck to the MAPK pathway, with the latter also supporting antiapoptotic molecule liberation. Accordingly, synergisms were only seen in leukemia cells expressing wild-type CD44 and CD49d. Anti-CD44 together with anti-CD49d efficiently dislodged EL4-CD49d/Jurkat-CD44 in bone marrow and spleen. Dislodging was accompanied by increased apoptosis susceptibility that strengthened low-dose chemotherapy, the combined treatment most strongly interfering with metastatic settlement and being partly curative. Ab treatment also promoted NK and Ab-dependent cellular cytotoxicity activation, which affected leukemia cells independent of CD44/CD49d tail mutations. Thus, mostly owing to a blockade of joint signaling, anti-CD44 and anti-CD49d hamper leukemic cell settlement and break apoptosis resistance, which strongly supports low-dose chemotherapy.

  11. Assessing Specific Oligonucleotides and Small Molecule Antibiotics for the Ability to Inhibit the CRD-BP-CD44 RNA Interaction

    PubMed Central

    Thomsen, Dana; Lee, Chow H.

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions. PMID:24622399

  12. Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction.

    PubMed

    King, Dustin T; Barnes, Mark; Thomsen, Dana; Lee, Chow H

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3'UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862-3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862-3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.

  13. Viremic HIV Infected Individuals with High CD4 T Cells and Functional Envelope Proteins Show Anti-gp41 Antibodies with Unique Specificity and Function

    PubMed Central

    Curriu, Marta; Fausther-Bovendo, Hughes; Pernas, María; Massanella, Marta; Carrillo, Jorge; Cabrera, Cecilia; López-Galíndez, Cecilio; Clotet, Bonaventura; Debré, Patrice; Vieillard, Vincent; Blanco, Julià

    2012-01-01

    Background CD4 T-cell decay is variable among HIV-infected individuals. In exceptional cases, CD4 T-cell counts remain stable despite high plasma viremia. HIV envelope glycoprotein (Env) properties, namely tropism, fusion or the ability to induce the NK ligand NKp44L, or host factors that modulate Env cytopathic mechanisms may be modified in such situation. Methods We identified untreated HIV-infected individuals showing non-cytopathic replication (VL>10,000 copies/mL and CD4 T-cell decay<50 cells/µL/year, Viremic Non Progressors, VNP) or rapid progression (CD4 T-cells<350 cells/µL within three years post-infection, RP). We isolated full-length Env clones and analyzed their functions (tropism, fusion activity and capacity to induce NKp44L expression on CD4 cells). Anti-Env humoral responses were also analyzed. Results Env clones isolated from VNP or RP individuals showed no major phenotypic differences. The percentage of functional clones was similar in both groups. All clones tested were CCR5-tropic and showed comparable expression and fusogenic activity. Moreover, no differences were observed in their capacity to induce NKp44L expression on CD4 T cells from healthy donors through the 3S epitope of gp41. In contrast, anti- Env antibodies showed clear functional differences: plasma from VNPs had significantly higher capacity than RPs to block NKp44L induction by autologous viruses. Consistently, CD4 T-cells isolated from VNPs showed undetectable NKp44L expression and specific antibodies against a variable region flanking the highly conserved 3S epitope were identified in plasma samples from these patients. Conversely, despite continuous antigen stimulation, VNPs were unable to mount a broad neutralizing response against HIV. Conclusions Env functions (fusion and induction of NKp44L) were similar in viremic patients with slow or rapid progression to AIDS. However, differences in humoral responses against gp41 epitopes nearby 3S sequence may contribute to the lack of CD4 T cell decay in VNPs by blocking the induction of NKp44L by gp41. PMID:22312424

  14. Presymptomatic Diagnosis of Celiac Disease in Predisposed Children: The Role of Gene Expression Profile.

    PubMed

    Galatola, Martina; Cielo, Donatella; Panico, Camilla; Stellato, Pio; Malamisura, Basilio; Carbone, Lorenzo; Gianfrani, Carmen; Troncone, Riccardo; Greco, Luigi; Auricchio, Renata

    2017-09-01

    The prevalence of celiac disease (CD) has increased significantly in recent years, and risk prediction and early diagnosis have become imperative especially in at-risk families. In a previous study, we identified individuals with CD based on the expression profile of a set of candidate genes in peripheral blood monocytes. Here we evaluated the expression of a panel of CD candidate genes in peripheral blood mononuclear cells from at-risk infants long time before any symptom or production of antibodies. We analyzed the gene expression of a set of 9 candidate genes, associated with CD, in 22 human leukocyte antigen predisposed children from at-risk families for CD, studied from birth to 6 years of age. Nine of them developed CD (patients) and 13 did not (controls). We analyzed gene expression at 3 different time points (age matched in the 2 groups): 4-19 months before diagnosis, at the time of CD diagnosis, and after at least 1 year of a gluten-free diet. At similar age points, controls were also evaluated. Three genes (KIAA, TAGAP [T-cell Activation GTPase Activating Protein], and SH2B3 [SH2B Adaptor Protein 3]) were overexpressed in patients, compared with controls, at least 9 months before CD diagnosis. At a stepwise discriminant analysis, 4 genes (RGS1 [Regulator of G-protein signaling 1], TAGAP, TNFSF14 [Tumor Necrosis Factor (Ligand) Superfamily member 14], and SH2B3) differentiate patients from controls before serum antibodies production and clinical symptoms. Multivariate equation correctly classified CD from non-CD children in 95.5% of patients. The expression of a small set of candidate genes in peripheral blood mononuclear cells can predict CD at least 9 months before the appearance of any clinical and serological signs of the disease.

  15. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.

    PubMed

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L

    2016-02-04

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.

  16. KITENIN is associated with tumor progression in human gastric cancer.

    PubMed

    Ryu, Ho-Seong; Park, Young-Lan; Park, Su-Jin; Lee, Ji-Hee; Cho, Sung-Bum; Lee, Wan-Sik; Chung, Ik-Joo; Kim, Kyung-Keun; Lee, Kyung-Hwa; Kweon, Sun-Seog; Joo, Young-Eun

    2010-09-01

    KAI1 COOH-terminal interacting tetraspanin (KITENIN) promotes tumor cell migration, invasion and metastasis in colon, bladder, head and neck cancer. The aims of current study were to evaluate whether KITENIN affects tumor cell behavior in human gastric cancer cell line and to document the expression of KITENIN in a well-defined series of gastric tumors, including complete long-term follow-up, with special reference to patient prognosis. To evaluate the impact of KITENIN knockdown on behavior of a human gastric cancer cell line, AGS, migration, invasion and proliferation assays using small-interfering RNA were performed. The expression of activator protein-1 (AP-1) target genes and AP-1 transcriptional activity were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and luciferase reporter assay. The expression of KITENIN and AP-1 target genes by RT-PCR and Western blotting or immunohistochemistry was also investigated in human gastric cancer tissues. The knockdown of KITENIN suppressed tumor cell migration, invasion and proliferation in AGS cells. The mRNA expression of matrix metalloproteinase-1 (MMP-1), MMP-3, cyclooxygenase-2 (COX-2), and CD44 was reduced by knockdown of KITENIN in AGS. AP-1 transcriptional activity was significantly decreased by knockdown of KITENIN in AGS cells. KITENIN expression was significantly increased in human cancer tissues at RNA and protein levels. Expression of MMP-1, MMP-3, COX-2 and CD44 were significantly increased in human gastric cancer tissues. Immunostaining of KITENIN was predominantly identified in the cytoplasm of cancer cells. Expression of KITENIN was significantly associated with tumor size, Lauren classification, depth of invasion, lymph node metastasis, tumor stage and poor survival. These results indicate that KITENIN plays an important role in human gastric cancer progression by AP-1 activation.

  17. CD44 increases the efficiency of distant metastasis of breast cancer

    PubMed Central

    McFarlane, Suzanne; Coulter, Jonathan A.; Tibbits, Paul; O'Grady, Anthony; McFarlane, Cheryl; Montgomery, Nicola; Hill, Ashleigh; McCarthy, Helen O.; Young, Leonie S.; Kay, Elaine W.; Isacke, Clare M.; Waugh, David J.J.

    2015-01-01

    Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and PR-negative tumors (p = 0.029), and correlated with increased distant recurrence and reduced disease-free survival in patients with lymph-node positive or large tumors. To determine its functional role in distant metastasis, CD44 was knocked-down in MDA-MB-231 cells using two independent shRNA sequences. Loss of CD44 attenuated tumor cell adhesion to endothelial cells and reduced cell invasion but did not affect proliferation in vitro. To verify the importance of CD44 to post-intravasation events, tumor formation was assessed by quantitative in vivo imaging and post-mortem tissue analysis following an intra-cardiac injection of transfected cells. CD44 knock-down increased survival and decreased overall tumor burden at multiple sites, including the skeleton in vivo. We conclude that elevated CD44 expression on tumour cells within the systemic circulation increases the efficiency of post-intravasation events and distant metastasis in vivo, consistent with its association with increased distant recurrence and reduced disease-free survival in patients. PMID:25888636

  18. The Gene Expression Profile of CD11c+CD8α− Dendritic Cells in the Pre-Diabetic Pancreas of the NOD Mouse

    PubMed Central

    Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2014-01-01

    Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904

  19. Is sphere assay useful for the identification of cancer initiating cells of the ovary?

    PubMed

    Martínez-Serrano, María José; Caballero-Baños, Miguel; Vilella, Ramon; Vidal, Laura; Pahisa, Jaume; Martínez-Roman, Sergio

    2015-01-01

    Current evidence suggests that the presence of tumor-initiating cells (TICs) in epithelial ovarian cancer (EOC) has a role in chemoresistance and relapse. Surface markers such as CD44(+)/CD24(-), CD117(+), and CD133(+) expression have been reported as potential markers for TICs related to ovarian cancer and tumorigenic cell lines. In this study, we have investigated if spheroid forms are TIC specific or whether they can also be produced by somatic stem cells from healthy tissue in vitro. In addition, we also investigated the specificity of surface markers to identify TICs from papillary serous EOC patients. Cells were obtained from fresh tumors from 10 chemotherapy-naive patients with EOC, and cells from ovarian and tubal epithelium were obtained from 5 healthy menopausal women undergoing surgery for benign pathology and cultured in standard and in selective medium. Cells forming nonadherent spheroids were considered TICs, and the adherent cells were considered as non-TIC-like. Percentages of CD24(+), CD44(+), CD117(+), CD133(+), and vascular endothelial growth factor receptor (VEGF-R)(+) cell surface markers were analyzed by flow cytometry. Four of 10 EOC cell tissues were excluded from the study. Tumor cells cultured in selective medium developed spheroid forms after 1 to 7 weeks in 5 of 6 EOC patients. No spheroid forms were observed in cultures of cells from healthy women. Unlike previously published data, low levels of CD24(+), CD44(+), CD117(+), and VEGF-R(+) expression were observed in spheroid cells, whereas expression of CD133(+) was moderate but higher in adherent cells from papillary serous EOC cells in comparison with adherent cells from controls. Papillary serous EOC contains TICs that form spheroids with low expression of CD44(+), CD24(+), CD117(+) and VEGF-R(+). Further research is required to find specific surface markers to identify papillary serous TICs.

  20. Evidence of inflammatory immune signaling in chronic fatigue syndrome: A pilot study of gene expression in peripheral blood.

    PubMed

    Aspler, Anne L; Bolshin, Carly; Vernon, Suzanne D; Broderick, Gordon

    2008-09-26

    Genomic profiling of peripheral blood reveals altered immunity in chronic fatigue syndrome (CFS) however interpretation remains challenging without immune demographic context. The object of this work is to identify modulation of specific immune functional components and restructuring of co-expression networks characteristic of CFS using the quantitative genomics of peripheral blood. Gene sets were constructed a priori for CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14+ monocytes and CD16+ neutrophils from published data. A group of 111 women were classified using empiric case definition (U.S. Centers for Disease Control and Prevention) and unsupervised latent cluster analysis (LCA). Microarray profiles of peripheral blood were analyzed for expression of leukocyte-specific gene sets and characteristic changes in co-expression identified from topological evaluation of linear correlation networks. Median expression for a set of 6 genes preferentially up-regulated in CD19+ B cells was significantly lower in CFS (p = 0.01) due mainly to PTPRK and TSPAN3 expression. Although no other gene set was differentially expressed at p < 0.05, patterns of co-expression in each group differed markedly. Significant co-expression of CD14+ monocyte with CD16+ neutrophil (p = 0.01) and CD19+ B cell sets (p = 0.00) characterized CFS and fatigue phenotype groups. Also in CFS was a significant negative correlation between CD8+ and both CD19+ up-regulated (p = 0.02) and NK gene sets (p = 0.08). These patterns were absent in controls. Dissection of blood microarray profiles points to B cell dysfunction with coordinated immune activation supporting persistent inflammation and antibody-mediated NK cell modulation of T cell activity. This has clinical implications as the CD19+ genes identified could provide robust and biologically meaningful basis for the early detection and unambiguous phenotyping of CFS.

  1. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells

    PubMed Central

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Background: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. Methods: The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Results: Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Conclusions: Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future. PMID:26722497

  2. CD36 is upregulated in mice with periodontitis and metabolic syndrome and involved in macrophage gene upregulation by palmitate.

    PubMed

    Lu, Z; Li, Y; Brinson, C W; Kirkwood, K L; Lopes-Virella, M F; Huang, Y

    2017-03-01

    We reported that high-fat diet (HFD)-induced metabolic syndrome (MetS) exacerbates lipopolysaccharide (LPS)-stimulated periodontitis and palmitate, the major saturated fatty acid in the HFD, amplified LPS-stimulated gene expression in vitro. As CD36 is a major receptor for fatty acids, we investigated periodontal CD36 expression in mice with periodontitis and MetS, and the role of CD36 in inflammatory gene expression in macrophages stimulated by palmitate. MetS and periodontitis were induced in mice by HFD and periodontal injection of LPS, respectively. The periodontal CD36 expression and its relationship with alveolar bone loss were studied using immunohistochemistry, real-time PCR, and correlation analysis. The role of CD36 in upregulation of inflammatory mediators by LPS and palmitate in macrophages was assessed using pharmacological inhibitor and small interfering RNA. Periodontal CD36 expression was higher in mice with both MetS and periodontitis than that in mice with periodontitis or MetS alone and was correlated with osteoclastogenesis and alveolar bone loss. In vitro studies showed that CD36 expression in macrophages was upregulated by LPS and palmitate, and targeting CD36 attenuated palmitate-enhanced gene expression. CD36 expression is upregulated in mice with periodontitis and MetS and involved in gene expression in macrophages stimulated by palmitate and LPS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Analysis of Cd44-Containing Lipid Rafts

    PubMed Central

    Oliferenko, Snezhana; Paiha, Karin; Harder, Thomas; Gerke, Volker; Schwärzler, Christoph; Schwarz, Heinz; Beug, Hartmut; Günthert, Ursula; Huber, Lukas A.

    1999-01-01

    CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II–p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II–lipid raft complexes were stabilized by addition of GTPγS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton. PMID:10459018

  4. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    DTIC Science & Technology

    2006-12-01

    prognostic value of CD44 standard and variant v3 and v6 isoforms in prostate cancer. Eur Urol, 2001. 39(2): p. 138-44. 32. De Marzo , A.M., et al., CD44...subcutaneous injection model [ 24 ]and in orthotopic or intrafemoral bone injection models (see progress report below). Importantly, the addition of...expression from these cells, completely reverses growth inhibition[ 24 ]. CD44 and Rhamm – Two Hyaladherins with Overlapping Function: The two most

  5. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytesmore » and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.« less

  6. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  7. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    PubMed

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles.

    PubMed

    Minchenko, Dmytro O; Tsymbal, D O; Yavorovsky, O P; Solokha, N V; Minchenko, O H

    2017-04-25

    The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.

  9. Single Nucleotide Polymorphisms of Stemness Genes Predicted to Regulate RNA Splicing, microRNA and Oncogenic Signaling are Associated with Prostate Cancer Survival.

    PubMed

    Freedman, Jennifer A; Wang, Yanru; Li, Xuechan; Liu, Hongliang; Moorman, Patricia G; George, Daniel J; Lee, Norman H; Hyslop, Terry; Wei, Qingyi; Patierno, Steven R

    2018-05-03

    Prostate cancer is a clinically and molecularly heterogeneous disease, with variation in outcomes only partially predicted by grade and stage. Additional tools to distinguish indolent from aggressive disease are needed. Phenotypic characteristics of stemness correlate with poor cancer prognosis. Given this correlation, we identified single nucleotide polymorphisms (SNPs) of stemness-related genes and examined their associations with prostate cancer survival. SNPs within stemness-related genes were analyzed for association with overall survival of prostate cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Significant SNPs predicted to be functional were selected for linkage disequilibrium analysis and combined and stratified analyses. Identified SNPs were evaluated for association with gene expression. SNPs of CD44 (rs9666607), ABCC1 (rs35605 and rs212091) and GDF15 (rs1058587) were associated with prostate cancer survival and predicted to be functional. A role for rs9666607 of CD44 and rs35605 of ABCC1 in RNA splicing regulation, rs212091 of ABCC1 in miRNA binding site activity and rs1058587 of GDF15 in causing an amino acid change was predicted. These SNPs represent potential novel prognostic markers for overall survival of prostate cancer and support a contribution of the stemness pathway to prostate cancer patient outcome.

  10. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

    NASA Astrophysics Data System (ADS)

    Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.

    2016-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

  11. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line.

    PubMed

    Ketkaew, Yuwaporn; Osathanon, Thanaphum; Pavasant, Prasit; Sooampon, Sireerat

    2017-02-01

    Cancer stem cells contribute to tumor recurrence, and a hypoxic environment is critical for maintaining cancer stem cells. Apigenin is a natural product with anticancer activity. However, the effect of apigenin on cancer stem cells remains unclear. Our aim was to investigate the effect of apigenin on cancer stem cell marker expression in head and neck squamous cell carcinoma cells under hypoxia. We used three head and neck squamous cell carcinoma cell lines; HN-8, HN-30, and HSC-3. The mRNA expression of cancer stem cell markers was determined by semiquantitative RT-PCR and Real-time PCR. The cytotoxic effect of apigenin was determined by MTT colorimetric assay. Flow cytometry was used to reveal the number of cells expressing cancer stem cell surface markers. HN-30 cells, a cancer cell line from the pharynx, showed the greatest response to hypoxia by increasing their expression of CD44, CD105, NANOG, OCT-4, REX-1, and VEGF. Apigenin significantly decreased HN-30 cell viability in dose- and time-dependent manners. In addition, 40μM apigenin significantly down-regulated the mRNA expression of CD44, NANOG, and CD105. Consistent with these results, the hypoxia-induced increase in CD44 + cells, CD105 + cells, and STRO-1 + cells was significantly abolished by apigenin. Apigenin suppresses cancer stem cell marker expression and the number of cells expressing cell surface markers under hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    PubMed Central

    2011-01-01

    Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270

  13. Paracrine Pathways in Uterine Leiomyoma Stem Cells Involve Insulinlike Growth Factor 2 and Insulin Receptor A.

    PubMed

    Moravek, Molly B; Yin, Ping; Coon, John S; Ono, Masanori; Druschitz, Stacy A; Malpani, Saurabh S; Dyson, Matthew T; Rademaker, Alfred W; Robins, Jared C; Wei, Jian-Jun; Kim, J Julie; Bulun, Serdar E

    2017-05-01

    Uterine leiomyomas (fibroids) are the most common benign tumors in women. Recently, three populations of leiomyoma cells were discovered on the basis of CD34 and CD49b expression, but molecular differences between these populations remain unknown. To define differential gene expression and signaling pathways in leiomyoma cell populations. Cells from human leiomyoma tissue were sorted by flow cytometry into three populations: CD34+/CD49b+, CD34+/CD49b-, and CD34-/CD49b-. Microarray gene expression profiling and pathway analysis were performed. To investigate the insulinlike growth factor (IGF) pathway, real-time quantitative polymerase chain reaction, immunoblotting, and 5-ethynyl-2'-deoxyuridine incorporation studies were performed in cells isolated from fresh leiomyoma. Research laboratory. Eight African American women. None. Gene expression patterns, cell proliferation, and differentiation. A total of 1164 genes were differentially expressed in the three leiomyoma cell populations, suggesting a hierarchical differentiation order whereby CD34+/CD49b+ stem cells differentiate to CD34+/CD49b- intermediary cells, which then terminally differentiate to CD34-/CD49b- cells. Pathway analysis revealed differential expression of several IGF signaling pathway genes. IGF2 was overexpressed in CD34+/CD49b- vs CD34-/CD49b- cells (83-fold; P < 0.05). Insulin receptor A (IR-A) expression was higher and IGF1 receptor lower in CD34+/CD49b+ vs CD34-/CD49b- cells (15-fold and 0.35-fold, respectively; P < 0.05). IGF2 significantly increased cell number (1.4-fold; P < 0.001), proliferation indices, and extracellular signal-regulated kinase (ERK) phosphorylation. ERK inhibition decreased IGF2-stimulated cell proliferation. IGF2 and IR-A are important for leiomyoma stem cell proliferation and may represent paracrine signaling between leiomyoma cell types. Therapies targeting the IGF pathway should be investigated for both treatment and prevention of leiomyomas. Copyright © 2017 by the Endocrine Society

  14. Disease duration and age influence CARD15 expression in Crohn's disease.

    PubMed

    Poniewierka, Elżbieta; Neubauer, Katarzyna; Kempiński, Radosław; Sadakierska-Chudy, Anna

    2016-01-05

    One of the susceptibility genes in Crohn's disease (CD) is CARD15. Our study examined the relationship between peripheral CARD15 expression and phenotype and duration of CD, treatment methods and inflammatory indices. Sixty patients with CD and 30 healthy volunteers as controls were enrolled in the study. Total RNA was isolated from peripheral blood mononuclear cells (PBMCs) with E.Z.N.A. Total RNA Kit (Omega Bio-tek) then quantitative real-time PCR was performed on the ABI Prism 7900 HT Real-Time PCR System. CARD15 gene expression in PBMCs in CD was significantly higher than in the control group. The highest level of gene expression was found in CD patients in the fourth decade of life. The mRNA level of the CARD15 gene was higher in patients with disease duration between 12 and 60 months. A positive correlation was found between erythrocyte sedimentation rate (ESR) and gene expression level. Gene expression increased with increasing level of C-reactive protein and ESR, but it was not statistically significant. CARD15 expression significantly decreased in CD patients treated with anti-TNFα agents compared to azathioprine or steroid treatment groups. Expression of the CARD15 gene in Crohn›s disease is higher than in healthy individuals. Disease duration and age of patients seem to be the most important factors influencing CARD15 expression.

  15. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles.

    PubMed

    Pesarrodona, Mireia; Ferrer-Miralles, Neus; Unzueta, Ugutz; Gener, Petra; Tatkiewicz, Witold; Abasolo, Ibane; Ratera, Imma; Veciana, Jaume; Schwartz, Simó; Villaverde, Antonio; Vazquez, Esther

    2014-10-01

    CD44 is a multifunctional cell surface protein involved in proliferation and differentiation, angiogenesis and signaling. The expression of CD44 is up-regulated in several types of human tumors and particularly in cancer stem cells, representing an appealing target for drug delivery in the treatment of cancer. We have explored here several protein ligands of CD44 for the construction of self-assembling modular proteins designed to bind and internalize target cells. Among five tested ligands, two of them (A5G27 and FNI/II/V) drive the formation of protein-only, ring-shaped nanoparticles of about 14 nm that efficiently bind and penetrate CD44(+) cells by an endosomal route. The potential of these newly designed nanoparticles is evaluated regarding the need of biocompatible nanostructured materials for drug delivery in CD44-linked conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans.

    PubMed

    van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T

    2000-10-16

    Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.

  17. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

    PubMed

    Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco

    2018-01-25

    Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Evaluation of in vitro macrophage differentiation during space flight

    NASA Astrophysics Data System (ADS)

    Ortega, M. Teresa; Lu, Nanyan; Chapes, Stephen K.

    2012-05-01

    We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells.

  19. Evaluation of in vitro macrophage differentiation during space flight.

    PubMed

    Ortega, M Teresa; Lu, Nanyan; Chapes, Stephen K

    2012-05-15

    We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells.

  20. Genetic Variants in CD44 and MAT1A Confer Susceptibility to Acute Skin Reaction in Breast Cancer Patients Undergoing Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumbrekar, Kamalesh Dattaram; Bola Sadashiva, Satish Rao; Kabekkodu, Shama Prasada

    Purpose: Heterogeneity in radiation therapy (RT)-induced normal tissue toxicity is observed in 10% of cancer patients, limiting the therapeutic outcomes. In addition to treatment-related factors, normal tissue adverse reactions also manifest from genetic alterations in distinct pathways majorly involving DNA damage–repair genes, inflammatory cytokine genes, cell cycle regulation, and antioxidant response. Therefore, the common sequence variants in these radioresponsive genes might modify the severity of normal tissue toxicity, and the identification of the same could have clinical relevance as a predictive biomarker. Methods and Materials: The present study was conducted in a cohort of patients with breast cancer to evaluatemore » the possible associations between genetic variants in radioresponsive genes described previously and the risk of developing RT-induced acute skin adverse reactions. We tested 22 genetic variants reported in 18 genes (ie, NFE2L2, OGG1, NEIL3, RAD17, PTTG1, REV3L, ALAD, CD44, RAD9A, TGFβR3, MAD2L2, MAP3K7, MAT1A, RPS6KB2, ZNF830, SH3GL1, BAX, and XRCC1) using TaqMan assay-based real-time polymerase chain reaction. At the end of RT, the severity of skin damage was scored, and the subjects were dichotomized as nonoverresponders (Radiation Therapy Oncology Group grade <2) and overresponders (Radiation Therapy Oncology Group grade ≥2) for analysis. Results: Of the 22 single nucleotide polymorphisms studied, the rs8193 polymorphism lying in the micro-RNA binding site of 3′-UTR of CD44 was significantly (P=.0270) associated with RT-induced adverse skin reactions. Generalized multifactor dimensionality reduction analysis showed significant (P=.0107) gene–gene interactions between MAT1A and CD44. Furthermore, an increase in the total number of risk alleles was associated with increasing occurrence of overresponses (P=.0302). Conclusions: The genetic polymorphisms in radioresponsive genes act as genetic modifiers of acute normal tissue toxicity outcomes after RT by acting individually (rs8193), by gene–gene interactions (MAT1A and CD44), and/or by the additive effects of risk alleles.« less

  1. Enhancement of expression of survivin promoter-driven CD/TK double suicide genes by the nuclear matrix attachment region in transgenic gastric cancer cells.

    PubMed

    Niu, Ying; Li, Jian-Sheng; Luo, Xian-Run

    2014-01-25

    This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR-survivin promoter-CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC+GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Cancer stem cell markers in patterning differentiation and in prognosis of oral squamous cell carcinoma.

    PubMed

    Mohanta, Simple; Siddappa, Gangotri; Valiyaveedan, Sindhu Govindan; Dodda Thimmasandra Ramanjanappa, Ravindra; Das, Debashish; Pandian, Ramanan; Khora, Samanta Sekhar; Kuriakose, Moni Abraham; Suresh, Amritha

    2017-06-01

    Differentiation is a major histological parameter determining tumor aggressiveness and prognosis of the patient; cancer stem cells with their slow dividing and undifferentiated nature might be one of the factors determining the same. This study aims to correlate cancer stem cell markers (CD44 and CD147) with tumor differentiation and evaluate their subsequent effect on prognosis. Immunohistochemical analysis in treatment naïve oral cancer patients (n = 53) indicated that the expression of CD147 was associated with poorly differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma (p < 0.01). Furthermore, co-expression analysis showed that 45% each of moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma patients were CD44 high /CD147 high as compared to only 10% of patients with well-differentiated squamous cell carcinoma. A three-way analysis indicated that differentiation correlated with recurrence and survival (p < 0.05) in only the patients with CD44 high /CD147 high cohort. Subsequently, relevance of these cancer stem cell markers in patterning the differentiation characteristics was evaluated in oral squamous cell carcinoma cell lines originating from different grades of oral cancer. Flowcytometry-based analysis indicated an increase in CD44 + /CD147 + cells in cell lines of poorly differentiated squamous cell carcinoma (94.35 ± 1.14%, p < 0.001) and moderately differentiated squamous cell carcinoma origin (93.49 ± 0.47%, p < 0.001) as compared to cell line of well-differentiated squamous cell carcinoma origin (23.12% ± 0.49%). Expression profiling indicated higher expression of cancer stem cell and epithelial-mesenchymal transition markers in SCC029B (poorly differentiated squamous cell carcinoma originated; p ≤ 0.001), which was further translated into increased spheroid formation, migration, and invasion (p < 0.001) as compared to cell line of well-differentiated squamous cell carcinoma origin. This study suggests that CD44 and CD147 together improve the prognostic efficacy of tumor differentiation; in vitro results further point out that these markers might be determinant of differentiation characteristics, imparting properties of increased self-renewal, migration, and invasion.

  3. Identification and characterization of a second CD4-like gene in teleost fish.

    PubMed

    Dijkstra, Johannes Martinus; Somamoto, Tomonori; Moore, Lindsey; Hordvik, Ivar; Ototake, Mitsuru; Fischer, Uwe

    2006-02-01

    In fish, T cell subdivision is not well studied, although CD8 and CD4 homologues have been reported. This study describes a second teleost CD4-like gene, CD4-like 2 (CD4L-2). Two rainbow trout copies of this gene were found, -2a and -2b, encoding molecules sharing 81% aa identity. The 2a/2b duplication may be related to tetraploid ancestry of salmonid fishes. In the Fugu genome CD4L-2 lies head to tail with an earlier reported, very different CD4-like gene [Suetake, H., Araki, K., Suzuki, Y., 2004. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics 56, 368-374], which was designated CD4L-1 in the present article. The flanking genes of the Fugu CD4L-1 and CD4L-2 are reminiscent of the genes surrounding CD4 and LAG-3 in mammals. However, neither synteny nor phylogenetic analysis could decide between CD4 and LAG-3 identity for the fish CD4L genes. CD4L-1 and CD4L-2 share a tyrosine protein kinase p56(lck) binding motif in the cytoplasmic tail with CD4 but not with LAG-3. Trout CD4L-2 expression is highest in the thymus, similar to mammalian and chicken CD4, whereas Fugu CD4L-1 expression was highest in the spleen. However, CD4L-2 encodes only two IG-like domains, whereas CD4L-1, CD4 and LAG-3 encode four. The CD4-like genes 1 and 2 in fish apparently went through an evolution different from that of LAG-3 and CD4 in higher vertebrates.

  4. Genes Related to Antiviral Activity, Cell Migration, and Lysis Are Differentially Expressed in CD4+ T Cells in Human T Cell Leukemia Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Pinto, Mariana Tomazini; Malta, Tathiane Maistro; Rodrigues, Evandra Strazza; Pinheiro, Daniel Guariz; Panepucci, Rodrigo Alexandre; Malmegrim de Farias, Kelen Cristina Ribeiro; Sousa, Alessandra De Paula; Takayanagui, Osvaldo Massaiti; Tanaka, Yuetsu; Covas, Dimas Tadeu

    2014-01-01

    Abstract Human T cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T cells and these cells play a central role in HTLV-1 infection. In this study, we investigated the global gene expression profile of circulating CD4+ T cells from the distinct clinical status of HTLV-1-infected individuals in regard to TAX expression levels. CD4+ T cells were isolated from asymptomatic HTLV-1 carrier (HAC) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in order to identify genes involved in HAM/TSP development using a microarray technique. Hierarchical clustering analysis showed that healthy control (CT) and HTLV-1-infected samples clustered separately. We also observed that the HAC and HAM/TSP groups clustered separately regardless of TAX expression. The gene expression profile of CD4+ T cells was compared among the CT, HAC, and HAM/TSP groups. The paxillin (Pxn), chemokine (C-X-C motif ) receptor 4 (Cxcr4), interleukin 27 (IL27), and granzyme A (Gzma) genes were differentially expressed between the HAC and HAM/TSP groups, regardless of TAX expression. The perforin 1 (Prf1) and forkhead box P3 (Foxp3) genes were increased in the HAM/TSP group and presented a positive correlation to the expression of TAX and the proviral load (PVL). The frequency of CD4+FOXP3+ regulatory T cells (Treg) was higher in HTLV-1-infected individuals. Foxp3 gene expression was positively correlated with cell lysis-related genes (Gzma, Gzmb, and Prf1). These findings suggest that CD4+ T cell activity is distinct between the HAC and HAM/TSP groups. PMID:24041428

  5. The Prognostic Role of Cancer Stem Cell Markers for Long-term Outcome After Resection of Colonic Liver Metastases.

    PubMed

    Spelt, Lidewij; Sasor, Agata; Ansari, Daniel; Hilmersson, Katarzyna Said; Andersson, Roland

    2018-01-01

    To assess the expression of cancer stem cell (CSC) markers CD44, CD133 and CD24 in colon cancer liver metastases and analyse their predictive value for overall survival (OS) and disease-free survival (DFS) after liver resection. Patients operated on for colon cancer liver metastases were included. CSC marker expression was determined through immunohistochemistry analysis. OS and DFS were compared between marker-positive and marker-negative patients. Multivariate analysis was performed to select predictive variables for OS and DFS. CD133-positive patients had a worse DFS than CD133-negative patients, with a median DFS of 12 and 25 months (p=0.051). Multivariate analysis selected CD133 expression as a significant predictor for DFS. CD44 and CD24 were not found to predict OS or DFS. CD133 expression in colonic liver metastases is a negative prognostic factor for DFS after liver resection. In the future, CD133 could be used as a biomarker for risk stratification, and possibly for developing novel targeted therapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis

    PubMed Central

    Eng, Diana G.; Sunseri, Maria W.; Kaverina, Natalya; Roeder, Sebastian S.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2015-01-01

    Since adult podocytes cannot adequately proliferate following depletion in disease states there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine if parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PECrtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, while in disease (cytotoxic sheep anti-podocyte antibody), labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14 and 28. Early in disease, the majority of PECs in the tuft co-expressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs co-expressed podocyte proteins but not CD44. Neither labeled PECs on the tuft, nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype which is likely reparative. PMID:25993321

  7. Angiotensin II AT1 receptor alters ACE2 activity, eNOS expression and CD44-hyaluronan interaction in rats with hypertension and myocardial fibrosis.

    PubMed

    Bai, Feng; Pang, Xue-Fen; Zhang, Li-Hui; Wang, Ning-Ping; McKallip, Robert J; Garner, Ronald E; Zhao, Zhi-Qing

    2016-05-15

    This study tested the hypothesis that angiotensin II (Ang II) AT1 receptor is involved in development of hypertension and cardiac fibrosis via modifying ACE2 activity, eNOS expression and CD44-hyaluronan interaction. Male Sprague-Dawley rats were subjected to Ang II infusion (500ng/kg/min) using osmotic minipumps up to 4weeks and the AT1 receptor blocker, telmisartan was administered by gastric gavage (10mg/kg/day) during Ang II infusion. Our results indicated that Ang II enhances AT1 receptor, downregulates AT2 receptor, ACE2 activity and eNOS expression, and increases CD44 expression and hyaluronidase activity, an enzyme for hyaluronan degradation. Further analyses revealed that Ang II increases blood pressure and augments vascular/interstitial fibrosis. Comparison of the Ang II group, treatment with telmisartan significantly increased ACE2 activity and eNOS expression in the intracardiac vessels and intermyocardium. These changes occurred in coincidence with decreased blood pressure. Furthermore, the locally-expressed AT1 receptor was downregulated, as evidenced by an increased ratio of the AT2 over AT1 receptor (1.4±0.4% vs. 0.4±0.1% in Ang II group, P<0.05). Along with these modulations, telmisartan inhibited membrane CD44 expression and hyaluronidase activity, decreased populations of macrophages and myofibroblasts, and reduced expression of TGFβ1 and Smads. Collagen I synthesis and tissue fibrosis were attenuated as demonstrated by the less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in development of hypertension and cardiac fibrosis. Selective activating ACE2/eNOS and inhibiting CD44/HA interaction might be considered as the therapeutic targets for attenuating Ang II induced deleterious cardiovascular effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament.

    PubMed

    Torii, Daisuke; Konishi, Kiyoshi; Watanabe, Nobuyuki; Goto, Shinichi; Tsutsui, Takeki

    2015-01-01

    The periodontal ligament (PDL) consists of a group of specialized connective tissue fibers embedded in the alveolar bone and cementum that are believed to contain progenitors for mineralized tissue-forming cell lineages. These progenitors may contribute to regenerative cell therapy or tissue engineering methods aimed at recovery of tissue formation and functions lost in periodontal degenerative changes. Some reports using immortal clonal cell lines of cementoblasts, which are cells containing mineralized tissue-forming cell lineages, have shown that their phenotypic alteration and gene expression are associated with mineralization. Immortal, multipotential PDL-derived cell lines may be useful biological tools for evaluating differentiation-inducing agents. In this study, we confirmed the gene expression and mineralization potential of primary and immortal human PDL cells and characterized their immunophenotype. Following incubation with mineralization induction medium containing β-glycerophosphate, ascorbic acid, and dexamethasone, normal human PDL (Pel) cells and an immortal derivative line (Pelt) cells showed higher levels of mineralization compared with cells grown in normal growth medium. Both cell types were positive for putative surface antigens of mesenchymal cells (CD44, CD73, CD90, and CD105). They were also positive for stage-specific embryonic antigen-3, a marker of multipotential stem cells. Furthermore, PDL cells expressed cementum attachment protein and cementum protein 1 when cultured with recombinant human bone morphogenetic protein-2 or -7. The results suggest that normal and immortal human PDL cells contain multipotential mesenchymal stem cells with cementogenic potential.

  9. Involvement of selenoprotein P and GPx4 gene expression in cadmium-induced testicular pathophysiology in rat.

    PubMed

    Messaoudi, Imed; Banni, Mohamed; Saïd, Lamia; Saïd, Khaled; Kerkeni, Abdelhamid

    2010-10-06

    To investigate the effect of co-exposure to cadmium (Cd) and selenium (Se) on selenoprotein P (SelP) and phospholipid hydroperoxide glutathione peroxidase (GPx4) gene expression in testis and to evaluate their possible involvement in Cd-induced testicular pathophysiology, male rats received either tap water, Cd or Cd+Se in their drinking water for 5 weeks. Cd exposure caused a down-regulation of SelP and GPx4 gene expression and a significant decrease in plasma and testicular concentrations of Se. These changes were accompanied by decreased plasma testosterone level, sperm count and motility, GSH content, protein-bound sulfhydryl concentration (PSH), enzymatic activities of catalase (CAT) and glutathione peroxidase (GSH-Px) as well as by increased glutathione-S-transferase (GST) activity, lipid peroxidation (as malondialdehyde, MDA) and proteins carbonyls (PC). The decrease of testicular SelP and GPx4 gene expression under Cd influence was significantly restored in Cd+Se group. Co-treatment with Cd and Se also totally reversed the Cd-induced depletion of Se, decrease in plasma testosterone level and partially restored Cd-induced oxidative stress and decrease in sperm count and motility. Taken together, these data suggest that down-regulation of SelP and GPx4 gene expression induces plasma and testicular Se depletion leading, at least in part, to Cd-induced testicular pathophysiology. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Osteograft, plastic material for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Zaidman, A. M.; Korel, A. V.; Shevchenko, A. I.; Shchelkunova, E. I.; Sherman, K. M.; Predein, Yu. A.; Kosareva, O. S.

    2016-08-01

    Creating tissue-engineering constructs based on the mechanism of cartilage-bone evolution is promising for traumatology and orthopedics. Such a graft was obtained from a chondrograft by transdifferentiation. The hondrograft placed in osteogenic medium is undergoing osteogenic differentiation for 14-30 days. Tissue specificity of the osteograft was studied by morphology, immunohistochemistry, electron microscopy, and the expression of the corresponding genes was estimated. The expression of osteonectin, fibronectin, collagen of type I, izolektin and CD 44 is determined. Alkaline phosphatase and matrix vesicles are determined in osteoblasts. Calcificates are observed in the matrix. Chondrogenic proteins expression is absent. These findings evidence the tissue specificity of the developed osteograft.

  11. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature.

    PubMed

    Haberman, Yael; Tickle, Timothy L; Dexheimer, Phillip J; Kim, Mi-Ok; Tang, Dora; Karns, Rebekah; Baldassano, Robert N; Noe, Joshua D; Rosh, Joel; Markowitz, James; Heyman, Melvin B; Griffiths, Anne M; Crandall, Wallace V; Mack, David R; Baker, Susan S; Huttenhower, Curtis; Keljo, David J; Hyams, Jeffrey S; Kugathasan, Subra; Walters, Thomas D; Aronow, Bruce; Xavier, Ramnik J; Gevers, Dirk; Denson, Lee A

    2014-08-01

    Interactions between the host and gut microbial community likely contribute to Crohn disease (CD) pathogenesis; however, direct evidence for these interactions at the onset of disease is lacking. Here, we characterized the global pattern of ileal gene expression and the ileal microbial community in 359 treatment-naive pediatric patients with CD, patients with ulcerative colitis (UC), and control individuals. We identified core gene expression profiles and microbial communities in the affected CD ilea that are preserved in the unaffected ilea of patients with colon-only CD but not present in those with UC or control individuals; therefore, this signature is specific to CD and independent of clinical inflammation. An abnormal increase of antimicrobial dual oxidase (DUOX2) expression was detected in association with an expansion of Proteobacteria in both UC and CD, while expression of lipoprotein APOA1 gene was downregulated and associated with CD-specific alterations in Firmicutes. The increased DUOX2 and decreased APOA1 gene expression signature favored oxidative stress and Th1 polarization and was maximally altered in patients with more severe mucosal injury. A regression model that included APOA1 gene expression and microbial abundance more accurately predicted month 6 steroid-free remission than a model using clinical factors alone. These CD-specific host and microbe profiles identify the ileum as the primary inductive site for all forms of CD and may direct prognostic and therapeutic approaches.

  12. Decreased gene expression of CD2AP in Chinese patients with sporadic Alzheimer's disease.

    PubMed

    Tao, Qing-Qing; Liu, Zhi-Jun; Sun, Yi-Min; Li, Hong-Lei; Yang, Ping; Liu, De-Shan; Jiang, Bin; Li, Xiao-Yan; Xu, Jian-Feng; Wu, Zhi-Ying

    2017-08-01

    Many sporadic Alzheimer's disease (SAD) risk genes have been identified in the last decades, but most of them have not been consistently accepted. Here, we sought to identify SAD-associated genes and their potential mechanisms involved in SAD pathogenesis. A 2-stage design was employed. In stage 1, 95 variants in 75 genes that were previously reported as SAD-risk genes in Caucasian populations were evaluated in 1857 subjects (422 SAD patients and 1435 controls). In stage 2, a subset of promising variants found in stage 1 were further evaluated in an independent cohort of 1001 subjects (254 SAD and 747 controls). Variants in CD2AP were significantly associated with SAD risk in our subjects. Furthermore, CD2AP gene expression in peripheral blood lymphocytes (PBL) from 209 SAD patients and 213 controls was determined. CD2AP gene expression in PBL was significantly decreased in patients with SAD as compared with controls. Our study suggests that CD2AP is an SAD-risk gene in Chinese Han population and CD2AP gene expression is decreased in the PBL of patients with SAD, indicating its possible systemic involvement in SAD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mucin2 is Required for Probiotic Agents-Mediated Blocking Effects on Meningitic E. coli-Induced Pathogenicities.

    PubMed

    Yu, Jing-Yi; He, Xiao-Long; Puthiyakunnon, Santhosh; Peng, Liang; Li, Yan; Wu, Li-Sha; Peng, Wen-Ling; Zhang, Ya; Gao, Jie; Zhang, Yao-Yuan; Boddu, Swapna; Long, Min; Cao, Hong; Huang, Sheng-He

    2015-10-01

    Mucin2 (MUC2), an important regulatory factor in the immune system, plays an important role in the host defense system against bacterial translocation. Probiotics known to regulate MUC2 gene expression have been widely studied, but the interactions among probiotic, pathogens, and mucin gene are still not fully understood. The aim of this study was to investigate the role of MUC2 in blocking effects of probiotics on meningitic E. coli-induced pathogenicities. In this study, live combined probiotic tablets containing living Bifidobacterium, Lactobacillus bulgaricus, and Streptococcus thermophilus were used. MUC2 expression was knocked down in Caco-2 cells by RNA interference. 5-Aza-2'-deoxycytidine (5-Aza-CdR), which enhances mucin-promoted probiotic effects through inducing production of Sadenosyl- L-methionine (SAMe), was used to up-regulate MUC2 expression in Caco-2 cells. The adhesion to and invasion of meningitic E. coli were detected by competition assays. Our studies showed that probiotic agents could block E. coli-caused intestinal colonization, bacteremia, and meningitis in a neonatal sepsis and meningitis rat model. MUC2 gene expression in the neonatal rats given probiotic agents was obviously higher than that of the infected and uninfected control groups without probiotic treatment. The prohibitive effects of probiotic agents on MUC2-knockdown Caco-2 cells infected with E44 were significantly reduced compared with nontransfected Caco-2 cells. Moreover, the results also showed that 5- Aza-CdR, a drug enhancing the production of SAMe that is a protective agent of probiotics, was able to significantly suppress adhesion and invasion of E44 to Caco-2 cells by upregulation of MUC2 expression. Taken together, our data suggest that probiotic agents can efficiently block meningitic E. coli-induced pathogenicities in a manner dependent on MUC2.

  14. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Luo, Huiyan; Cao, Zhong; Chen, Ya; Gao, Jinbiao; Li, Yingqin; Jiang, Qing; Xu, Ruihua; Liu, Jie

    2016-06-01

    Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44.Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01749e

  15. Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera).

    PubMed

    Chaâbene, Zayneb; Rorat, Agnieszka; Rekik Hakim, Imen; Bernard, Fabien; Douglas, Grubb C; Elleuch, Amine; Vandenbulcke, Franck; Mejdoub, Hafedh

    2018-04-01

    Phytochelatin synthase and metallothionein gene expressions were monitored via qPCR in order to investigate the molecular mechanisms involved in Cd and Cr detoxification in date palm (Phoenix dactylifera). A specific reference gene validation procedure using BestKeeper, NormFinder and geNorm programs allowed selection of the three most stable reference genes in a context of Cd or Cr contamination among six reference gene candidates, namely elongation factor α1, actin, aldehyde dehydrogenase, SAND family, tubulin 6 and TaTa box binding protein. Phytochelatin synthase (pcs) and metallothionein (mt) encoding gene expression were induced from the first days of exposure. At low Cd stress (0.02 mM), genes were still up-regulated until 60th day of exposure. At the highest metal concentrations, however, pcs and mt gene expressions decreased. pcs encoding gene was significantly up-regulated under Cr exposure, and was more responsive to increasing Cr concentration than mt encoding gene. Moreover, exposure to Cd or Cr influenced clearly seed germination and hypocotyls elongation. Thus, the results have proved that both analyzed genes participate in metal detoxification and their expression is regulated at transcriptional level in date palm subjected to Cr and Cd stress. Consequently, variations of expression of mt and pcs genes may serve as early-warning biomarkers of metal stress in this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells.

    PubMed

    Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru

    2016-09-01

    To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.

  17. Effect of cadmium exposure on hepatopancreas and gills of the estuary mud crab (Scylla paramamosain): Histopathological changes and expression characterization of stress response genes.

    PubMed

    Zhu, Qi-Hui; Zhou, Zhong-Kai; Tu, Dan-Dan; Zhou, Yi-Lian; Wang, Cong; Liu, Ze-Peng; Gu, Wen-Bin; Chen, Yu-Yin; Shu, Miao-An

    2018-02-01

    Cadmium (Cd) is a heavy metal that accumulates easily in organisms and causes several detrimental effects, including tissue damage. Cd contamination from anthropogenic terrestrial sources flows into rivers, and through estuaries to the ocean. To evaluate the toxic effects of Cd on estuary crustaceans, we exposed the mud crab Scylla paramamosain to various Cd concentrations (0, 10.0, 20.0, and 40.0mg/L) for 24h. We also exposed mud crabs to a fixed Cd concentration (20.0mg/L) for various periods of time (0, 6, 12, 24, 48, and 72h). We observed that after exposure to Cd, the surfaces of the gill lamellae were wrinkled, and the morphologies of the nuclei and mitochondria in the hepatopancreas were altered. We analyzed the expression profiles of 36 stress-related genes after Cd exposure, including those encoding metallothioneins, heat shock proteins, apoptosis-related proteins, and antioxidant proteins, with quantitative reverse transcription PCR. We found that exposure to Cd altered gene expression, and that some genes might be suitable bioindicators of Cd stress. Gene expression profiles were organ-, duration-, and concentration-dependent, suggesting that stress-response genes might be involved in an innate defense system for handling heavy metal exposure. To the best of our knowledge, this study is the first one of histopathology and stress-response gene expression pattern of Scylla paramamosain after Cd exposure. Our work could increase our understanding of the effect of environmental toxins on estuary crustaceans. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Expression of molecular markers detected by immunohistochemistry and risk of lymph node metastasis in stage T1 and T2 colorecrectal cancers].

    PubMed

    Wang, Fu-long; Wan, De-sen; Lu, Zhen-hai; Fang, Yu-jing; Li, Li-ren; Chen, Gong; Wu, Xiao-jun; Ding, Pei-rong; Kong, Ling-heng; Lin, Jun-zhong; Pan, Zhi-zhong

    2013-04-01

    To study the molecular risk factors of lymph node metastasis in stage T1 and T2 colorectal cancers by tissue microarray and immunohistochemistry techniques. Two hundred and three patients with stage T1 and T2 colorectal carcinoma who underwent radical surgery from 1999 to 2010 in our department were included in this study. Their clinicopathological data were retrospectively analyzed. Expression of the following 14 molecular markers were selected and assayed by tissue microarray and immunohistochemistry: VEGFR-3, HER2, CD44v6, CXCR4, TIMP-1, EGFR, IGF-1R, IGF-2, IGFBP-1, ECAD, MMP-9, RKIP, CD133, MSI. Chi-squared test and logistic regression were used to evaluate the variables as potential risk factors for lymph node metastasis. The positive expression rates of biomarkers were as following: VEGFR-3 (44.3%), EGFR (30.5%), HER-2 (28.1%), IGF-1R (63.5%), IGF-2 (44.8%), IGFBP-1 (70.9%), ECAD (45.8%), CD44v6 (51.2%), MMP-9 (44.3%), TIMP-1 (41.4%), RKIP (45.3%), CXCR4 (40.9%), and CD133 (49.8%). The positive rate of MSI expression was 22.2%. Both univariate and multivariate analyses showed that VEGFR-3, HER-2, and TIMP-1 were significant predictors of lymph node metastasis. Univariate analysis showed that CD44v6 and CXCR4 were significant significant predictors of lymph node metastasis. VEGFR-3, HER2 and TIMP-1 are independent factors for lymph node metastasis in stage T1 and T2 colorectal cancers.

  19. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes.

    PubMed

    Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud

    2018-01-01

    Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.

  20. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response

    PubMed Central

    Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping

    2006-01-01

    To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257

  1. Paracrine Pathways in Uterine Leiomyoma Stem Cells Involve Insulinlike Growth Factor 2 and Insulin Receptor A

    PubMed Central

    Moravek, Molly B.; Yin, Ping; Coon, John S.; Ono, Masanori; Druschitz, Stacy A.; Malpani, Saurabh S.; Dyson, Matthew T.; Rademaker, Alfred W.; Robins, Jared C.; Wei, Jian-Jun; Kim, J. Julie

    2017-01-01

    Context: Uterine leiomyomas (fibroids) are the most common benign tumors in women. Recently, three populations of leiomyoma cells were discovered on the basis of CD34 and CD49b expression, but molecular differences between these populations remain unknown. Objective: To define differential gene expression and signaling pathways in leiomyoma cell populations. Design: Cells from human leiomyoma tissue were sorted by flow cytometry into three populations: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b−. Microarray gene expression profiling and pathway analysis were performed. To investigate the insulinlike growth factor (IGF) pathway, real-time quantitative polymerase chain reaction, immunoblotting, and 5-ethynyl-2′-deoxyuridine incorporation studies were performed in cells isolated from fresh leiomyoma. Setting: Research laboratory. Patients: Eight African American women. Interventions: None Main Outcomes Measures: Gene expression patterns, cell proliferation, and differentiation. Results: A total of 1164 genes were differentially expressed in the three leiomyoma cell populations, suggesting a hierarchical differentiation order whereby CD34+/CD49b+ stem cells differentiate to CD34+/CD49b− intermediary cells, which then terminally differentiate to CD34−/CD49b− cells. Pathway analysis revealed differential expression of several IGF signaling pathway genes. IGF2 was overexpressed in CD34+/CD49b− vs CD34−/CD49b− cells (83-fold; P < 0.05). Insulin receptor A (IR-A) expression was higher and IGF1 receptor lower in CD34+/CD49b+ vs CD34−/CD49b− cells (15-fold and 0.35-fold, respectively; P < 0.05). IGF2 significantly increased cell number (1.4-fold; P < 0.001), proliferation indices, and extracellular signal-regulated kinase (ERK) phosphorylation. ERK inhibition decreased IGF2-stimulated cell proliferation. Conclusions: IGF2 and IR-A are important for leiomyoma stem cell proliferation and may represent paracrine signaling between leiomyoma cell types. Therapies targeting the IGF pathway should be investigated for both treatment and prevention of leiomyomas. PMID:28324020

  2. Prognostic value of E-cadherin, beta-catenin, CD44v6, and HER2/neu in metastatic cutaneous adenocarcinoma.

    PubMed

    Pozdnyakova, Olga; Hoang, Mai M P; Dresser, Karen A; Mahalingam, Meera

    2009-08-01

    Our recent experience with a patient developing cutaneous metastases within 3 months of diagnosis of esophageal adenocarcinoma suggests that altered expression of the cellular adhesion molecules, E-cadherin and CD44v6, may have had a role to play in the rapid onset of metastases. To corroborate these findings, we designed a cross-sectional study to investigate the expression of select molecules involved in the metastatic cascade. E-cadherin, beta-catenin, CD44v6, and HER2/neu immunohistochemical stains were performed on archival materials of metastatic adenocarcinoma to the skin from 27 patients and the available corresponding primary tumors in 10 patients. The primary sites included breast (n = 10; 37%), gastrointestinal tract (n = 10; 37%), ovary (n = 1; 4%), thyroid (n = 2; 7%), lung (n = 1; 4%), and unknown primary (n = 3; 11%). Expression of all markers was noted with the most significant increases observed in beta-catenin (26 of 27 cases; 96%), followed by CD44v6 (24 of 27 cases; 89%), E-cadherin (22 of 27 cases; 82%), and HER2/neu (11 of 27 cases; 41%). Contrasting expression of these molecules in the primary versus the metastatic tumors, enhanced expression of CD44v6 was observed in the cutaneous metastases relative to the primary in 6 of 10 (60%) cases. Of interest, 2 of these 6 cases (33%) also showed reduction in E-cadherin--a member of the cadherin family functioning as an invasion suppressor molecule. These findings reinforce the complexities of the metastatic cascade and imply that the variation in adhesive properties of tumor cells is, perhaps, a consequence of the difference in density of the molecules mediating this process.

  3. Recombination-activating gene 1 (Rag1)-deficient mice with severe combined immunodeficiency treated with lentiviral gene therapy demonstrate autoimmune Omenn-like syndrome.

    PubMed

    van Til, Niek P; Sarwari, Roya; Visser, Trudi P; Hauer, Julia; Lagresle-Peyrou, Chantal; van der Velden, Guus; Malshetty, Vidyasagar; Cortes, Patricia; Jollet, Arnaud; Danos, Olivier; Cassani, Barbara; Zhang, Fang; Thrasher, Adrian J; Fontana, Elena; Poliani, Pietro L; Cavazzana, Marina; Verstegen, Monique M A; Villa, Anna; Wagemaker, Gerard

    2014-04-01

    Recombination-activating gene 1 (RAG1) deficiency results in severe combined immunodeficiency (SCID) caused by a complete lack of T and B lymphocytes. If untreated, patients succumb to recurrent infections. We sought to develop lentiviral gene therapy for RAG1-induced SCID and to test its safety. Constructs containing the viral spleen-focus-forming virus (SF), ubiquitous promoters, or cell type-restricted promoters driving sequence-optimized RAG1 were compared for efficacy and safety in sublethally preconditioned Rag1(-/-) mice undergoing transplantation with transduced bone marrow progenitors. Peripheral blood CD3(+) T-cell reconstitution was achieved with SF, ubiquitous promoters, and cell type-restricted promoters but 3- to 18-fold lower than that seen in wild-type mice, and with a compromised CD4(+)/CD8(+) ratio. Mitogen-mediated T-cell responses and T cell-dependent and T cell-independent B-cell responses were not restored, and T-cell receptor patterns were skewed. Reconstitution of mature peripheral blood B cells was approximately 20-fold less for the SF vector than in wild-type mice and often not detectable with the other promoters, and plasma immunoglobulin levels were abnormal. Two months after transplantation, gene therapy-treated mice had rashes with cellular tissue infiltrates, activated peripheral blood CD44(+)CD69(+) T cells, high plasma IgE levels, antibodies against double-stranded DNA, and increased B cell-activating factor levels. Only rather high SF vector copy numbers could boost T- and B-cell reconstitution, but mRNA expression levels during T- and B-cell progenitor stages consistently remained less than wild-type levels. These results underline that further development is required for improved expression to successfully treat patients with RAG1-induced SCID while maintaining low vector copy numbers and minimizing potential risks, including autoimmune reactions resembling Omenn syndrome. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Thiopurine treatment in patients with Crohn's disease leads to a selective reduction of an effector cytotoxic gene expression signature revealed by whole-genome expression profiling.

    PubMed

    Bouma, G; Baggen, J M; van Bodegraven, A A; Mulder, C J J; Kraal, G; Zwiers, A; Horrevoets, A J; van der Pouw Kraan, C T M

    2013-07-01

    Crohn's disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, as a result of aberrant activation of the innate immune system through TLR stimulation by bacterial products. The conventional immunosuppressive thiopurine derivatives (azathioprine and mercaptopurine) are used to treat CD. The effects of thiopurines on circulating immune cells and TLR responsiveness are unknown. To obtain a global view of affected gene expression of the immune system in CD patients and the treatment effect of thiopurine derivatives, we performed genome-wide transcriptome analysis on whole blood samples from 20 CD patients in remission, of which 10 patients received thiopurine treatment, compared to 16 healthy controls, before and after TLR4 stimulation with LPS. Several immune abnormalities were observed, including increased baseline interferon activity, while baseline expression of ribosomal genes was reduced. After LPS stimulation, CD patients showed reduced cytokine and chemokine expression. None of these effects were related to treatment. Strikingly, only one highly correlated set of 69 genes was affected by treatment, not influenced by LPS stimulation and consisted of genes reminiscent of effector cytotoxic NK cells. The most reduced cytotoxicity-related gene in CD was the cell surface marker CD160. Concordantly, we could demonstrate an in vivo reduction of circulating CD160(+)CD3(-)CD8(-) cells in CD patients after treatment with thiopurine derivatives in an independent cohort. In conclusion, using genome-wide profiling, we identified a disturbed immune activation status in peripheral blood cells from CD patients and a clear treatment effect of thiopurine derivatives selectively affecting effector cytotoxic CD160-positive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. [Epstein-Barr virus associated gastric carcinoma: the genetic alteration and the expression of CD44 variant].

    PubMed

    Chong, J M; Fukayama, M

    1997-02-01

    Epstein-Barr virus (EBV), a ubiquitous human herpes virus, was recently identified in 2-16% of gastric carcinomas. EBV-encoded small RNA was found in nearly all of the carcinoma cells even at the intramucosal stage. EBV in EBV associated gastric carcinoma (EBVaGC) is monoclonal based on Southern blot hybridization using probes adjacent to the unique terminal repeat of EBV-DNA. Furthermore, the genetic pathway of this carcinogenesis is different of EBVaGC: deletion of 5q and/or 17p and microsatellite instability are extremely rare in EBVaGC, in contrast to their high frequency in EBV-negative carcinomas. We also examined the relationship between the expression of CD44 variants and EBVaGC, and found the expression of CD44 variants was significantly correlated with EBV-etiology.

  6. Prognostic value of CD8CD45RO tumor infiltrating lymphocytes in patients with extrahepatic cholangiocarcinoma

    PubMed Central

    Kim, Richard; Coppola, Domenico; Wang, Emilie; Chang, Young Doo; Kim, Yuhree; Anaya, Daniel; Kim, Dae Won

    2018-01-01

    Cholangiocarcinoma is a malignancy arising from the biliary tract epithelial cells with poor prognosis. Tumor infiltrating lymphocytes (TIL)s and programmed cell death receptor ligand 1 (PD-L1) have a prognostic impact in various solid tumors. We aimed to investigate TILs and PD-L1 expression and their clinical relevance in cholangiocarcinoma. Tumor samples from 44 patients with resected and histologically verified extrahepatic cholangiocarcinoma were evaluated for CD8, CD45RO and PD-L1 expression, and their correlations with clinicopathological data and survival data were analyzed. Total 44 extrahepatic cholangiocarcinoma tissues were evaluated. CD8+ tumor infiltrating lymphocytes (TIL)s were observed in 30 (68%) tumors. Among them, 14 had CD8+CD45RO+ TILs. PD-L1 was expressed on cancer cells in 10 (22.7%) tumors in 34 evaluable extrahepatic cholangiocarciniomas. The presence of CD8+ TILs or CD8+CD45RO+ TILs was not associated with clinical staging or tumor differentiation. Extrahepatic cholangiocarcinoma with CD8+CD45RO+ TILs had longer overall survival (OS) on univariate (P = 0.013) and multivariate (P = 0.012) analysis. Neither CD8+TIL nor PD-L1 expression on cancer cells correlated significantly with OS. These results add to the understanding of the clinical features associated with CD8 TILs and PD-L1 expression in extrahepatic cholangiocarcinoma, and they support the potential rationale of using PD-1 blockade immunotherapy in cholangiocarcinoma.

  7. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    PubMed

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (P<0.0001). MRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (P<0.0001). However, no difference was observed in the expression of Arp2, Arp3 or other WASPs. A neutralizing anti-MRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (P<0.0001), and reversed the morphological effects of MRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  8. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells.

    PubMed

    Tang, Ying-Mei; Bao, Wei-Min; Yang, Jin-Hui; Ma, Lin-Kun; Yang, Jing; Xu, Ying; Yang, Li-Hong; Sha, Feng; Xu, Zhi-Yuan; Wu, Hua-Mei; Zhou, Wei; Li, Yan; Li, Yu-Hua

    2016-09-01

    Hepatocellular carcinoma is the fifth most common type of cancer worldwide and remains difficult to treat. The aim of this study was to investigate the effects of mesenchymal stem cells (MSCs) derived from the umbilical cord (UC‑MSCs) on HepG2 hepatocellular carcinoma cells. UC‑MSCs were co‑cultured with HepG2 cells and biomarkers of UC‑MSCs were analyzed by flow cytometry. mRNA and protein expression of genes were determined by reverse transcription‑polymerase chain reaction and flow cytometry, respectively. Passage three and seven UC‑MSCs expressed CD29, CD44, CD90 and CD105, whereas CD34 and CD45 were absent on these cells. Co‑culture with UC‑MSCs inhibited proliferation and promoted apoptosis of HepG2 cells in a time‑dependent manner. The initial seeding density of UC‑MSCs also influenced the proliferation and apoptosis of HepG2 cells, with an increased number of UC‑MSCs causing enhanced proliferation inhibition and cell apoptosis. Co‑culture with UC‑MSCs downregulated mRNA and protein expression of α‑fetoprotein (AFP), Bcl‑2 and Survivin in HepG2 cells. Thus, UC‑MSCs may inhibit growth and promote apoptosis of HepG2 cells through downregulation of AFP, Bcl‑2 and Survivin. US-MSCs may be used as a novel therapy for treating hepatocellular carcinoma in the future.

  9. The role of human chorionic gonadotropin in regulation of naïve and memory T cells activity in vitro.

    PubMed

    Zamorina, S A; Litvinova, L S; Yurova, K A; Khaziakhmatova, O G; Timganova, V P; Bochkova, M S; Khramtsov, P V; Rayev, M B

    2018-01-01

    The role of human chorionic gonadotropin (hCG) in the regulation of molecular genetics factors determining the functional activity of human naïve and memory T cells in vitro was studied. It was found that hCG (10 and 100IU/ml) inhibited CD28 and CD25 expression on the naïve T cells (CD45RA+) and CD25 expression on the memory T cells (CD45R0+). hCG didn't affect the CD71 proliferation marker expression in total. Nevertheless, hCG reduced the percentage of proliferating memory T cells with simultaneous suppression of CD71 expression on proliferating CD45R0+cells. In parallel, expression of U2af1l4, Gfi1, and hnRNPLL genes, which are Ptprc gene alternative splicing regulators was evaluated. It was established that hCG stimulated the expression of U2af1l4 and hnRNPLL genes, responsible for the assembly of CD45R0 in memory T cells, but reduced the expression of Gfi1 in these cells. In general, hCG promotes the differentiation of memory T cells by increasing of CD45R0 expression, but inhibits proliferation and CD25 expression which reflects their functional activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury.

    PubMed

    Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki

    2017-09-01

    Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines

    PubMed Central

    Wang, Jian-Lin; Yu, Jing-Ping; Sun, Zhi-Qiang; Sun, Su-Ping

    2014-01-01

    AIM: To study the cancer stem cell population in esophageal cancer cell lines KYSE-150 and TE-1 and identify whether the resulting stem-like spheroid cells display cancer stem cells and radiation resistance characteristics. METHODS: A serum-free medium (SFM) suspension was used to culture esophageal cancer stem cell lines and enrich the esophageal stem-like spheres. A reverse transcription polymerase chain reaction assay was used to detect stem cell gene expression in the spheroid cells. Radiosensitivity of stem-like spheres and parental cells were evaluated by clonogenic assays. Furthermore, different cells after different doses of irradiation were tested to evaluate the change in sphere formation, cell cycle and CD44+CD271+ expression of tumor stem-like spheroid cells using flow cytometry before and after irradiation. RESULTS: The cells were observed to generate an increased number of spheres in SFM with increasing cell passage. Radiation increased the rate of generation of stem-like spheres in both types of cells. The average survival fraction (SF2) of the cultured KYSE-150 compared with TE-1 stem-like spheres after 2 Gy of radiation was 0.81 ± 0.03 vs 0.87 ± 0.01 (P < 0.05), while the average SF2 of KYSE-150 compared with TE-1 parental cells was 0.69 ± 0.04 vs 0.80 ± 0.03, P < 0.05. In the esophageal parental cells, irradiation dose-dependently induced G2 arrest. Stem-like esophageal spheres were resistant to irradiation-induced G2 arrest without significant changes in the percentage population of irradiated stem-like cells. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE150 parental cells was 1.08% ± 0.03% vs 1.29% ± 0.07% vs 1.11% ± 0.09%, respectively; the CD44+CD271+ cell percentage for TE1 parental cells was 1.16% ± 0.11% vs 0.97% ± 0.08% vs 1.45% ± 0.35%, respectively. The differences were not statistically significant. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE-150 stem-like spheres was 35.83% ± 1.23% vs 44.9% ± 1.67% vs 57.77% ± 1.88%, respectively; the CD44+CD271+ cell percentage for TE1 stem-like spheres was 16.07% ± 0.91% vs 22.67% ± 1.12%, 16.07% ± 0.91% vs 33.27% ± 1.07%, respectively. The 4 and 8 Gy irradiated KYSE-150 and TE-1 stem-like spheres were compared with the 0 Gy irradiated group, and the differences were statistically significant (P < 0.05). CONCLUSION: The KYSE-150 and TE-1 stem-like spheres are more radioresistant than their parental cells which may suggest that cancer stem cells are related to radioresistance. PMID:25561796

  12. Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines.

    PubMed

    Wang, Jian-Lin; Yu, Jing-Ping; Sun, Zhi-Qiang; Sun, Su-Ping

    2014-12-28

    To study the cancer stem cell population in esophageal cancer cell lines KYSE-150 and TE-1 and identify whether the resulting stem-like spheroid cells display cancer stem cells and radiation resistance characteristics. A serum-free medium (SFM) suspension was used to culture esophageal cancer stem cell lines and enrich the esophageal stem-like spheres. A reverse transcription polymerase chain reaction assay was used to detect stem cell gene expression in the spheroid cells. Radiosensitivity of stem-like spheres and parental cells were evaluated by clonogenic assays. Furthermore, different cells after different doses of irradiation were tested to evaluate the change in sphere formation, cell cycle and CD44(+)CD271(+) expression of tumor stem-like spheroid cells using flow cytometry before and after irradiation. The cells were observed to generate an increased number of spheres in SFM with increasing cell passage. Radiation increased the rate of generation of stem-like spheres in both types of cells. The average survival fraction (SF2) of the cultured KYSE-150 compared with TE-1 stem-like spheres after 2 Gy of radiation was 0.81 ± 0.03 vs 0.87 ± 0.01 (P < 0.05), while the average SF2 of KYSE-150 compared with TE-1 parental cells was 0.69 ± 0.04 vs 0.80 ± 0.03, P < 0.05. In the esophageal parental cells, irradiation dose-dependently induced G2 arrest. Stem-like esophageal spheres were resistant to irradiation-induced G2 arrest without significant changes in the percentage population of irradiated stem-like cells. Under irradiation at 0, 4, and 8 Gy, the CD44(+)CD271(+) cell percentage for KYSE150 parental cells was 1.08% ± 0.03% vs 1.29% ± 0.07% vs 1.11% ± 0.09%, respectively; the CD44(+)CD271(+) cell percentage for TE1 parental cells was 1.16% ± 0.11% vs 0.97% ± 0.08% vs 1.45% ± 0.35%, respectively. The differences were not statistically significant. Under irradiation at 0, 4, and 8 Gy, the CD44(+)CD271(+) cell percentage for KYSE-150 stem-like spheres was 35.83% ± 1.23% vs 44.9% ± 1.67% vs 57.77% ± 1.88%, respectively; the CD44(+)CD271(+) cell percentage for TE1 stem-like spheres was 16.07% ± 0.91% vs 22.67% ± 1.12%, 16.07% ± 0.91% vs 33.27% ± 1.07%, respectively. The 4 and 8 Gy irradiated KYSE-150 and TE-1 stem-like spheres were compared with the 0 Gy irradiated group, and the differences were statistically significant (P < 0.05). The KYSE-150 and TE-1 stem-like spheres are more radioresistant than their parental cells which may suggest that cancer stem cells are related to radioresistance.

  13. A Candidate Trans-acting Modulator of Fetal Hemoglobin Gene Expression in the Arab-Indian Haplotype of Sickle Cell Anemia

    PubMed Central

    Vathipadiekal, Vinod; Farrell, John J.; Wang, Shuai; Edward, Heather L.; Shappell, Heather; Al-Rubaish, A.M.; Al-Muhanna, Fahad; Naserullah, Z.; Alsuliman, A.; Qutub, Hatem Othman; Simkin, Irene; Farrer, Lindsay A.; Jiang, Zhihua; Luo, Hong-Yuan; Huang, Shengwen; Mostoslavsky, Gustavo; Murphy, George J.; Patra, Pradeep.K.; Chui, David H.K.; Alsultan, Abdulrahman; Al-Ali, Amein K.; Sebastiani, Paola.; Steinberg, Martin. H.

    2016-01-01

    Fetal hemoglobin (HbF) levels are higher in the Arab-Indian (AI) β-globin gene haplotype of sickle cell anemia compared with African-origin haplotypes. To study genetic elements that effect HbF expression in the AI haplotype we completed whole genome sequencing in 14 Saudi AI haplotype sickle hemoglobin homozygotes—seven selected for low HbF (8.2±1.3%) and seven selected for high HbF (23.5±.2.6%). An intronic single nucleotide polymorphism (SNP) in ANTXR1, an anthrax toxin receptor (chromosome 2p13), was associated with HbF. These results were replicated in two independent Saudi AI haplotype cohorts of 120 and 139 patients, but not in 76 Saudi Benin haplotype, 894 African origin haplotype and 44 Arab Indian haplotype patients of Indian descent, suggesting that this association is effective only in the Saudi AI haplotype background. ANTXR1 variants explained 10% of the HbF variability compared with 8% for BCL11A. These two genes had independent, additive effects on HbF and together explained about 15% of HbF variability in Saudi AI sickle cell anemia patients. ANTXR1 was expressed at mRNA and protein levels in erythroid progenitors derived from induced pluripotent stem cells (iPSCs) and CD34+ cells. As CD34+ cells matured and their HbF decreased ANTXR1 expression increased; as iPSCs differentiated and their HbF increased, ANTXR1 expression decreased. Along with elements in cis to the HbF genes, ANTXR1 contributes to the variation in HbF in Saudi AI haplotype sickle cell anemia and is the first gene in trans to HBB that is associated with HbF only in carriers of the Saudi AI haplotype. PMID:27501013

  14. Epigenetic Alterations May Regulate Temporary Reversal of CD4+ T Cell Activation Caused by Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Nelson, Ashley R.; Cooney, Craig A.; Reisfeld, Brad; Blossom, Sarah J.

    2012-01-01

    Previous studies have shown that short-term (4 weeks) or chronic (32 weeks) exposure to trichloroethylene (TCE) in drinking water of female MRL+/+ mice generated CD4+ T cells that secreted increased levels of interferon (IFN)-γ and expressed an activated (CD44hiCD62Llo) phenotype. In contrast, the current study of subchronic TCE exposure showed that midway in the disease process both of these parameters of CD4+ T cell activation were reversed. This phase of the disease process may represent an attempt by the body to counteract the inflammatory effects of TCE. The decrease in CD4+ T cell production of IFN-γ following subchronic TCE exposure could not be attributed to skewing toward a Th2 or Th17 phenotype or to an increase in Treg cells. Instead, the suppression corresponded to alterations in markers used to assess DNA methylation, namely increased expression of retrotransposons Iap (intracisternal A particle) and Muerv (murine endogenous retrovirus). Also observed was an increase in the expression of Dnmt1 (DNA methyltransferase-1) and decreased expression of several genes known to be downregulated by DNA methylation, namely Ifng, Il2, and Cdkn1a. CD4+ T cells from a second study in which MRL+/+ mice were treated for 17 weeks with TCE showed a similar increase in Iap and decrease in Cdkn1a. In addition, DNA collected from the CD4+ T cells in the second study showed TCE-decreased global DNA methylation. Thus, these results described the biphasic nature of TCE-induced alterations in CD4+ T cell function and suggested that these changes represented potentially reversible alterations in epigenetic processes. PMID:22407948

  15. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    PubMed

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  16. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma.

    PubMed

    Bourguignon, Lilly Y W; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-09-21

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer stem cell properties, including self-renewal, clonal formation, and chemotherapy resistance in HA-CD44v3-activated head and neck cancer.

  17. Hyaluronan-CD44v3 Interaction with Oct4-Sox2-Nanog Promotes miR-302 Expression Leading to Self-renewal, Clonal Formation, and Cisplatin Resistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma*

    PubMed Central

    Bourguignon, Lilly Y. W.; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-01-01

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer stem cell properties, including self-renewal, clonal formation, and chemotherapy resistance in HA-CD44v3-activated head and neck cancer. PMID:22847005

  18. A gene expression signature that correlates with CD8+T cell expansion in acute Epstein Barr virus infection1

    PubMed Central

    Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.

    2015-01-01

    Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268

  19. Role of flow-cytometric immunophenotyping in prediction of BCR/ABL1 gene rearrangement in adult B-cell acute lymphoblastic leukemia.

    PubMed

    Corrente, Francesco; Bellesi, Silvia; Metafuni, Elisabetta; Puggioni, Pier Luigi; Marietti, Sara; Ciminello, Angela Maria; Za, Tommaso; Sorà, Federica; Fianchi, Luana; Sica, Simona; De Stefano, Valerio; Chiusolo, Patrizia

    2018-05-01

    We performed a retrospective analysis of 88 adult patients with B-ALL diagnosed in our center by a flow-cytometric assessment. Immunophenotypic expression of leukemic cells was explored by simultaneous evaluation of positivity, percentage of expressing cells and median fluorescence intensity (MFI). BCR/ABL1 fusion transcripts were assessed by RT-PCR analysis and were identified in 36 patients (40.9%). CD10 and CD34 were positive in the totality of BCR/ABL1-positive cases. Patients with gene rearrangement had a greater frequency of CD66c, CD13 and CD33 positivity compared with BCR/ABL1-negative cases. Moreover, BCR/ABL1-positive cases exhibited a greater median percentage and MFI values of CD13, CD33, CD66c, CD10, CD34 and CD25 expressions, but a lower median percentage and MFI values of CD38 and CD22 expressions than patients without gene rearrangement. Multivariate logistic regression analysis showed that CD10, CD38 and CD13 expressions were independent predictors for the presence of BCR/ABL1 rearrangement. Predictive probabilities of molecular occurrence based on these markers are proposed. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  20. Novel Adult Stem Cells for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2012-09-01

    were also positive for MSC surface marker CD29 and CD44 (Fig. 1F-G). However, CD29 and CD44 are also expressed in SMCs, so we will not use these non...tubulin. In addition, MVSCs were negative for perivascular MSC marker CD146 (Fig. 1H) and SMC progenitor marker Sca-1 (Fig. 1I). MVSCs were also...University of California, Berkeley, California 94720, USA. 2 UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California 94720, USA. 3

  1. CD44 Gene Polymorphisms in Breast Cancer Risk and Prognosis: A Study in North Indian Population

    PubMed Central

    Tulsyan, Sonam; Agarwal, Gaurav; Lal, Punita; Agrawal, Sushma; Mittal, Rama Devi; Mittal, Balraj

    2013-01-01

    Background Cell surface biomarker CD44 plays an important role in breast cancer cell growth, differentiation, invasion, angiogenesis and tumour metastasis. Therefore, we aimed to investigate the role of CD44 gene polymorphisms in breast cancer risk and prognosis in North Indian population. Materials & Methods A total of 258 breast cancer patients and 241 healthy controls were included in the case-control study for risk prediction. According to RECIST, 114 patients who received neo-adjuvant chemotherapy were recruited for the evaluation of breast cancer prognosis. We examined the association of tagging SNP (rs353639) of Hapmap Gujrati Indians in Houston (GIH population) in CD44 gene along with a significant reported SNP (rs13347) in Chinese population by genotyping using Taqman allelic discrimination assays. Statistical analysis was done using SPSS software, version 17. In-silico analysis for prediction of functional effects was done using F-SNP and FAST-SNP. Results No significant association of both the genetic variants of the CD44 gene polymorphisms was found with breast cancer risk. On performing univariate analysis with clinicopathological characteristics and treatment response, we found significant association of genotype (CT+TT) of rs13347 polymorphism with earlier age of onset (P = 0.029, OR = 0.037). However, significance was lost in multivariate analysis. For rs353639 polymorphism, significant association was seen with clinical tumour size, both at the genotypic (AC+CC) (P = 0.039, OR = 3.02) as well as the allelic (C) (P = 0.042, OR = 2.87) levels. On performing multivariate analysis, increased significance of variant genotype (P = 0.017, OR = 4.29) and allele (P = 0.025, OR = 3.34) of rs353639 was found with clinical tumour size. In-silico analysis using F-SNP, showed altered transcriptional regulation for rs353639 polymorphism. Conclusions These findings suggest that CD44 rs353639 genetic variants may have significant effect in breast cancer prognosis. However, both the polymorphisms- rs13347 and rs353639 had no effect on breast cancer susceptibility. PMID:23940692

  2. Triple negative breast tumors in African-American and Hispanic/Latina women are high in CD44+, low in CD24+, and have loss of PTEN.

    PubMed

    Wu, Yanyuan; Sarkissyan, Marianna; Elshimali, Yahya; Vadgama, Jaydutt V

    2013-01-01

    African-American women have higher mortality from breast cancer than other ethnic groups. The association between poor survival and differences with tumor phenotypes is not well understood. The purpose of this study is to assess the clinical significance of (1) Stem cell-like markers CD44 and CD24; (2) PI3K/Akt pathway associated targets PTEN, activation of Akt, and FOXO1; and (3) the Insulin-like growth factor-1 (IGF-I) and IGF binding protein-3 (IGFBP3) in different breast cancer subtypes, and compare the differences between African-American and Hispanic/Latina women who have similar social-economic-status. A total of N=318 African-American and Hispanic/Latina women, with clinically-annotated information within the inclusion criteria were included. Formalin fixed paraffin embedded tissues from these patients were tested for the different markers using immunohistochemistry techniques. Kaplan-Meier survival-curves and Cox-regression analyses were used to assess Relative Risk and Disease-Free-Survival (DFS). The triple-negative-breast-cancer (TNBC) receptor-subtype was more prevalent among premenopausal women, and the Hormonal Receptor (HR) positive subtype was most common overall. TNBC tumors were more likely to have loss of PTEN, express high Ki67, and have increased CD44+/CD24- expression. TNBC was also associated with higher plasma-IGF-I levels. HR-/HER2+ tumors showed high pAkt, decreased FOXO1, and high CD24+ expression. The loss of PTEN impacted DFS significantly in African Americans, but not in Hispanics/Latinas after adjusted for treatment and other tumor pathological factors. The CD44+/CD24- and CD24+/CD44- phenotypes decreased DFS, but were not independent predictors for DFS. HER2-positive and TNBC type of cancers continued to exhibit significant decrease in DFS after adjusting for the selected biomarkers and treatment. TNBC incidence is high among African-American and Hispanic/Latino women residing in South Los Angeles. Our study also shows for the first time that TNBC was significantly associated with PTEN loss, high Ki67 and the CD44+/CD24- phenotype. The loss of PTEN impacts DFS significantly in African Americans.

  3. Identification and characterization of a silencer regulatory element in the 3'-flanking region of the murine CD46 gene.

    PubMed Central

    Nomura, M; Tsujimura, A; Begum, N A; Matsumoto, M; Wabiko, H; Toyoshima, K; Seya, T

    2000-01-01

    The murine membrane cofactor protein (CD46) gene is expressed exclusively in testis, in contrast to human CD46, which is expressed ubiquitously. To elucidate the mechanism of differential CD46 gene expression among species, we cloned entire murine CD46 genomic DNA and possible regulatory regions were placed in the flanking region of the luciferase reporter gene. The reporter gene assay revealed a silencing activity not in the promoter, but in the 3'-flanking region of the gene and the silencer-like element was identified within a 0.2-kb region between 0.6 and 0.8 kb downstream of the stop codon. This silencer-like element was highly similar to that of the pig MHC class-I gene. The introduction of a mutation into this putative silencer element of murine CD46 resulted in an abrogation of the silencing effect. Electrophoretic mobility-shift assay indicated the presence of the binding molecule(s) for this silencer sequence in murine cell lines and tissues. A size difference of the protein-silencer-element complex was observed depending upon the solubilizers used for preparation of the nuclear extracts. A mutated silencer sequence failed to interact with the binding molecules. The level of the binding factor was lower in the testicular germ cells compared with other organs. Thus the silencer element and its binding factor may play a role in transcriptional regulation of murine CD46 gene expression. These results imply that the effects of the CD46 silencer element encompass the innate immune and reproductive systems, and in mice may determine the testicular germ-cell-dominant expression of CD46. PMID:11023821

  4. Ethnicity-Dependent and -Independent Heterogeneity in Healthy Normal Breast Hierarchy Impacts Tumor Characterization

    PubMed Central

    Nakshatri, Harikrishna; Anjanappa, Manjushree; Bhat-Nakshatri, Poornima

    2015-01-01

    Recent reports of widespread genetic variation affecting regulation of gene expression raise the possibility of significant inter-individual differences in stem-progenitor-mature cell hierarchy in adult organs. This has not been explored because of paucity of methods to quantitatively assess subpopulation of normal epithelial cells on individual basis. We report the remarkable inter-individual differences in differentiation capabilities as documented by phenotypic heterogeneity in stem-progenitor-mature cell hierarchy of the normal breast. Ethnicity and genetic predisposition are partly responsible for this heterogeneity, evidenced by the finding that CD44+/CD24- and PROCR+/EpCAM- multi-potent stem cells were elevated significantly in African American women compared with Caucasians. ALDEFLUOR+ luminal stem/progenitor cells were lower in BRCA1-mutation carriers compared with cells from healthy donors (p = 0.0014). Moreover, tumor and adjoining-normal breast cells of the same patients showed distinct CD49f+/EpCAM+ progenitor, CD271+/EpCAM- basal, and ALDEFLUOR+ cell profiles. These inter-individual differences in the rate of differentiation in the normal breast may contribute to a substantial proportion of transcriptome, epigenome, and signaling pathway alterations and consequently has the potential to spuriously magnify the extent of documented tumor-specific gene expression. Therefore, comparative analysis of phenotypically defined subpopulations of normal and tumor cells on an individual basis may be required to identify cancer-specific aberrations. PMID:26311223

  5. Ethnicity-Dependent and -Independent Heterogeneity in Healthy Normal Breast Hierarchy Impacts Tumor Characterization.

    PubMed

    Nakshatri, Harikrishna; Anjanappa, Manjushree; Bhat-Nakshatri, Poornima

    2015-08-27

    Recent reports of widespread genetic variation affecting regulation of gene expression raise the possibility of significant inter-individual differences in stem-progenitor-mature cell hierarchy in adult organs. This has not been explored because of paucity of methods to quantitatively assess subpopulation of normal epithelial cells on individual basis. We report the remarkable inter-individual differences in differentiation capabilities as documented by phenotypic heterogeneity in stem-progenitor-mature cell hierarchy of the normal breast. Ethnicity and genetic predisposition are partly responsible for this heterogeneity, evidenced by the finding that CD44+/CD24- and PROCR+/EpCAM- multi-potent stem cells were elevated significantly in African American women compared with Caucasians. ALDEFLUOR+ luminal stem/progenitor cells were lower in BRCA1-mutation carriers compared with cells from healthy donors (p = 0.0014). Moreover, tumor and adjoining-normal breast cells of the same patients showed distinct CD49f+/EpCAM+ progenitor, CD271+/EpCAM- basal, and ALDEFLUOR+ cell profiles. These inter-individual differences in the rate of differentiation in the normal breast may contribute to a substantial proportion of transcriptome, epigenome, and signaling pathway alterations and consequently has the potential to spuriously magnify the extent of documented tumor-specific gene expression. Therefore, comparative analysis of phenotypically defined subpopulations of normal and tumor cells on an individual basis may be required to identify cancer-specific aberrations.

  6. The SPINK gene family and celiac disease susceptibility.

    PubMed

    Wapenaar, Martin C; Monsuur, Alienke J; Poell, Jos; van 't Slot, Ruben; Meijer, Jos W R; Meijer, Gerrit A; Mulder, Chris J; Mearin, Maria Luisa; Wijmenga, Cisca

    2007-05-01

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (n=15) and diet-treated patients (n=31) and controls (n=16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population.

  7. Elevated Expression of Osteopontin May Be Related to Adipose Tissue Macrophage Accumulation and Liver Steatosis in Morbid Obesity

    PubMed Central

    Bertola, Adeline; Deveaux, Vanessa; Bonnafous, Stéphanie; Rousseau, Déborah; Anty, Rodolphe; Wakkach, Abdelilah; Dahman, Moncef; Tordjman, Joan; Clément, Karine; McQuaid, Siobhán E.; Frayn, Keith N.; Huet, Pierre-Michel; Gugenheim, Jean; Lotersztajn, Sophie; Le Marchand-Brustel, Yannick; Tran, Albert; Gual, Philippe

    2009-01-01

    OBJECTIVE—Osteopontin (OPN) plays an important role in the development of insulin resistance and liver complications in dietary murine models. We aimed to determine the expression pattern of OPN and its receptor CD44 in obese patients and mice according to insulin resistance and liver steatosis. RESEARCH DESIGN AND METHODS—OPN and CD44 expressions were studied in 52 morbidly obese patients and in mice. Cellular studies were performed in HepG2 cells. RESULTS—Hepatic OPN and CD44 expressions were strongly correlated with liver steatosis and insulin resistance in obese patients and mice. This increased OPN expression could be due to the accumulation of triglycerides, since fat loading in HepG2 promotes OPN expression. In contrast, OPN expression in adipose tissue (AT) was enhanced independently of insulin resistance and hepatic steatosis in obese patients. The elevated OPN expression in AT was paralleled with the AT macrophage infiltration, and both phenomena were reversed after weight loss. The circulating OPN level was slightly elevated in obese patients and was not related to liver steatosis. Further, AT did not appear to secrete OPN. In contrast, bariatric surgery–induced weight loss induced a strong increase in circulating OPN. CONCLUSIONS—The modestly elevated circulating OPN levels in morbidly obese patients were not related to liver steatosis and did not appear to result from adipose tissue secretion. In subcutaneous AT, expression of OPN was directly related to macrophage accumulation independently from liver complications. In contrast, hepatic OPN and CD44 expressions were related to insulin resistance and steatosis, suggesting their local implication in the progression of liver injury. PMID:18952835

  8. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd

    PubMed Central

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted negatively. In summary, antioxidant enzymes responded to Cd and Pb interaction at an early stage of exposure, and their gene expression profiles provided more details of the activation of those systems. PMID:28046098

  9. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd.

    PubMed

    Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping

    2017-01-01

    Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted negatively. In summary, antioxidant enzymes responded to Cd and Pb interaction at an early stage of exposure, and their gene expression profiles provided more details of the activation of those systems.

  10. A transcriptome-based model of central memory CD4 T cell death in HIV infection.

    PubMed

    Olvera-García, Gustavo; Aguilar-García, Tania; Gutiérrez-Jasso, Fany; Imaz-Rosshandler, Iván; Rangel-Escareño, Claudia; Orozco, Lorena; Aguilar-Delfín, Irma; Vázquez-Pérez, Joel A; Zúñiga, Joaquín; Pérez-Patrigeon, Santiago; Espinosa, Enrique

    2016-11-22

    Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log 2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.

  11. Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs.

    PubMed

    Cheng, Xinlai; Kim, Jee Young; Ghafoory, Shahrouz; Duvaci, Tijen; Rafiee, Roya; Theobald, Jannick; Alborzinia, Hamed; Holenya, Pavlo; Fredebohm, Johannes; Merz, Karl-Heinz; Mehrabi, Arianeb; Hafezi, Mohammadreza; Saffari, Arash; Eisenbrand, Gerhard; Hoheisel, Jörg D; Wölfl, Stefan

    2016-06-01

    Pancreatic ductal adenocarcinoma (PDAC) clinically has a very poor prognosis. No small molecule is available to reliably achieve cures. Meisoindigo is chemically related to the natural product indirubin and showed substantial efficiency in clinical chemotherapy for CML in China. However, its effect on PDAC is still unknown. Our results showed strong anti-proliferation effect of meisoindigo on gemcitabine-resistant PDACs. Using a recently established primary PDAC cell line, called Jopaca-1 with a larger CSCs population as model, we observed a reduction of CD133+ and ESA+/CD44+/CD24+ populations upon treatment and concomitantly a decreased expression of CSC-associated genes, and reduced cellular mobility and sphere formation. Investigating basic cellular metabolic responses, we detected lower oxygen consumption and glucose uptake, while intracellular ROS levels increased. This was effectively neutralized by the addition of antioxidants, indicating an essential role of the cellular redox balance. Further analysis on energy metabolism related signaling revealed that meisoindigo inhibited LKB1, but activated AMPK. Both of them were involved in cellular apoptosis. Additional in situ hybridization in tissue sections of PDAC patients reproducibly demonstrated co-expression and -localization of LKB1 and CD133 in malignant areas. Finally, we detected that CD133+/CD44+ were more vulnerable to meisoindigo, which could be mimicked by LKB1 siRNAs. Our results provide the first evidence, to our knowledge, that LKB1 sustains the CSC population in PDACs and demonstrate a clear benefit of meisoindigo in treatment of gemcitabine-resistant cells. This novel mechanism may provide a promising new treatment option for PDAC. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides.

    PubMed

    Mukhopadhya, Indrani; Murray, Graeme I; Duncan, Linda; Yuecel, Raif; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-09-06

    CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

  13. Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway

    PubMed Central

    Zhang, Pu; Goodrich, Chris; Fu, Changliang; Dong, Cheng

    2014-01-01

    Cancer metastasis involves multistep adhesive interactions between tumor cells (TCs) and endothelial cells (ECs), but the molecular mechanisms of intercellular communication in the tumor microenvironment remain elusive. Using static and flow coculture systems in conjunction with flow cytometry, we discovered that certain receptors on the ECs are upregulated on melanoma cell adhesion. Direct contact but not separate coculture between human umbilical endothelial cells (HUVECs) and a human melanoma cell line (Lu1205) increased intercellular adhesion molecule 1 (ICAM-1) and E-selectin expression on HUVECs by 3- and 1.5-fold, respectively, compared with HUVECs alone. The nonmetastatic cell line WM35 failed to promote ICAM-1 expression changes in HUVECs on contact. Enzyme-linked immunosorbent assay (ELISA) revealed that EC–TC contact has a synergistic effect on the expression of the cytokines interleukin (IL)-8, IL-6, and growth-related oncogene α (Gro-α). By using E-selectin cross-linking and beads coated with CD44 immunopurified from Lu1205 cells, we showed that CD44/selectin ligation was responsible for the ICAM-1 up-regulation on HUVECs. Protein kinase Cα (PKC-α) activation was found to be the downstream target of the CD44/selectin-initiated signaling, as ICAM-1 elevation was inhibited by siRNA targeting PKCα or a dominant negative form of PKCα (PKCα DN). Western blot analysis and electrophoretic mobility shift assays (EMSAs) showed that TC–EC contact mediated p38 phosphorylation and binding of the transcription factor SP-1 to its regulation site. In conclusion, CD44/selectin binding signals ICAM-1 up-regulation on the EC surface through a PKCα–p38–SP-1 pathway, which further enhances melanoma cell adhesion to ECs during metastasis.—Zhang, P., Goodrich, C., Fu, C., Dong, C. Melanoma upregulates ICAM-1 expression on ECs through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway. PMID:25138157

  14. Characterization of Diabetogenic CD8+ T Cells

    PubMed Central

    Garyu, Justin W.; Uduman, Mohamed; Stewart, Alex; Rui, Jinxiu; Deng, Songyan; Shenson, Jared; Staron, Matt M.; Kleinstein, Steven H.

    2016-01-01

    Type 1 diabetes mellitus is caused by the killing of insulin-producing β cells by CD8+T cells. The disease progression, which is chronic, does not follow a course like responses to conventional antigens such as viruses, but accelerates as glucose tolerance deteriorates. To identify the unique features of the autoimmune effectors that may explain this behavior, we analyzed diabetogenic CD8+ T cells that recognize a peptide from the diabetes antigen IGRP (NRP-V7-reactive) in prediabetic NOD mice and compared them to others that shared their phenotype (CD44+CD62LloPD-1+CXCR3+) but negative for diabetes antigen tetramers and to LCMV (lymphocytic choriomeningitis)-reactive CD8+ T cells. There was an increase in the frequency of the NRP-V7-reactive cells coinciding with the time of glucose intolerance. The T cells persisted in hyperglycemic NOD mice maintained with an insulin pellet despite destruction of β cells. We compared gene expression in the three groups of cells compared with the other two subsets of cells, and the NRP-V7-reactive cells exhibited gene expression of memory precursor effector cells. They had reduced cellular proliferation and were less dependent on oxidative phosphorylation. When prediabetic NOD mice were treated with 2-deoxyglucose to block aerobic glycolysis, there was a reduction in the diabetes antigen versus other cells of similar phenotype and loss of lymphoid cells infiltrating the islets. In addition, treatment of NOD mice with 2-deoxyglucose resulted in improved β cell granularity. These findings identify a link between metabolic disturbances and autoreactive T cells that promotes development of autoimmune diabetes. PMID:26994137

  15. CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification.

    PubMed

    Friedel, Thorsten; Jung-Klawitter, Sabine; Sebe, Attila; Schenk, Franziska; Modlich, Ute; Ivics, Zoltán; Schumann, Gerald G; Buchholz, Christian J; Schneider, Irene C

    2016-05-01

    Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.

  16. The effect of extracellular alkalinization on lactate metabolism of breast cancer stem cells: Overview of LDH-A, LDH-B, MCT1 and MCT4 gene expression

    NASA Astrophysics Data System (ADS)

    Neolaka, G. M. G.; Yustisia, I.; Sadikin, M.; Wanandi, S. I.

    2017-08-01

    Changes in the metabolic status of cancer cells are presumed to be correlated with the adjustment of these cells to extracellular changes. Cell glycolysis increases the production of intracellular lactate catalyzed by the lactate dehydrogenases, both LDH-A and LDH-B. An increase in intracellular lactate can affect extracellular pH balance through monocarboxylate transporters, particularly MCT1 and MCT4. This study aimed to analyze the effects of extracellular alkalinization on the lactate metabolism of human breast cancer stem cells (BCSCs). In this study, human primary BCSCs (CD24-/CD44+ cells) were treated with 100 mM sodium bicarbonate for 0.5, 24, and 48 h in DMEM F12/HEPES. After incubation, extracellular pH was measured and cells were harvested to extract the total RNA and protein. The expression of LDH-A, LDH-B, MCT1, and MCT4 mRNA genes were analyzed using qRT-PCR method. Our study shows that administration of sodium bicarbonate in the BCSC culture medium could increase extracellular pH. To balance the increase of extracellular pH, BCSCs regulated the expression of LDH-A, LDH-B, MCT1, and MCT4 genes. As the extracellular pH increases, the expression of LDH-A that converts pyruvate to lactate increased along with the increase of MCT 4 and MCT 1 expression, which act as lactate transporters. As the incubation time increases, the pH decreases, leading to the suppression of LDH-A and increase of LDH-B expression that converts lactate into pyruvate. Therefore, we suggest that the extracellular alkalinization by sodium bicarbonate in BCSCs affected the genes that regulate lactate metabolism.

  17. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    PubMed

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-10-01

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29 + , CD44 + , CD73 + , CD90 + , CD34 - , CD45 - and MHC-II - with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90 + , CD73 + , CD105 + , CD44 + , CD13 + , CD29 + , Oct-4 + gene and CD31 - and CD45 - expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44.

    PubMed

    Babina, Irina S; McSherry, Elaine A; Donatello, Simona; Hill, Arnold D K; Hopkins, Ann M

    2014-02-10

    Most breast cancer-related deaths result from metastasis, a process involving dynamic regulation of tumour cell adhesion and migration. The adhesion protein CD44, a key regulator of cell migration, is enriched in cholesterol-enriched membrane microdomains termed lipid rafts. We recently reported that raft affiliation of CD44 negatively regulates interactions with its migratory binding partner ezrin. Since raft affiliation is regulated by post-translational modifications including palmitoylation, we sought to establish the contribution of CD44 palmitoylation and lipid raft affiliation to cell migration. Recovery of CD44 and its binding partners from raft versus non-raft membrane microdomains was profiled in non-migrating and migrating breast cancer cell lines. Site-directed mutagenesis was used to introduce single or double point mutations into both CD44 palmitoylation sites (Cys286 and Cys295), whereupon the implications for lipid raft recovery, phenotype, ezrin co-precipitation and migratory behaviour was assessed. Finally CD44 palmitoylation status and lipid raft affiliation was assessed in primary cultures from a small panel of breast cancer patients. CD44 raft affiliation was increased during migration of non-invasive breast cell lines, but decreased during migration of highly-invasive breast cells. The latter was paralleled by increased CD44 recovery in non-raft fractions, and exclusive non-raft recovery of its binding partners. Point mutation of CD44 palmitoylation sites reduced CD44 raft affiliation in invasive MDA-MB-231 cells, increased CD44-ezrin co-precipitation and accordingly enhanced cell migration. Expression of palmitoylation-impaired (raft-excluded) CD44 mutants in non-invasive MCF-10a cells was sufficient to reversibly induce the phenotypic appearance of epithelial-to-mesenchymal transition and to increase cell motility. Interestingly, cell migration was associated with temporal reductions in CD44 palmitoylation in wild-type breast cells. Finally, the relevance of these findings is underscored by the fact that levels of palmitoylated CD44 were lower in primary cultures from invasive ductal carcinomas relative to non-tumour tissue, while CD44 co-localisation with a lipid raft marker was less in invasive ductal carcinoma relative to ductal carcinoma in situ cultures. Our results support a novel mechanism whereby CD44 palmitoylation and consequent lipid raft affiliation inversely regulate breast cancer cell migration, and may act as a new therapeutic target in breast cancer metastasis.

  19. MERP1: a mammalian ependymin-related protein gene differentially expressed in hematopoietic cells.

    PubMed

    Gregorio-King, Claudia C; McLeod, Janet L; Collier, Fiona McL; Collier, Gregory R; Bolton, Karyn A; Van Der Meer, Gavin J; Apostolopoulos, Jim; Kirkland, Mark A

    2002-03-20

    We have utilized differential display polymerase chain reaction to investigate the gene expression of hematopoietic progenitor cells from adult bone marrow and umbilical cord blood. A differentially expressed gene was identified in CD34+ hematopoietic progenitor cells, with low expression in CD34- cells. We have obtained the full coding sequence of this gene which we designated human mammalian ependymin-related protein 1 (MERP1). Expression of MERP1 was found in a variety of normal human tissues, and is 4- and 10-fold higher in adult bone marrow and umbilical cord blood CD34+ cells, respectively, compared to CD34- cells. Additionally, MERP1 expression in a hematopoietic stem cell enriched population was down-regulated with proliferation and differentiation. Conceptual translation of the MERP1 open reading frame reveals significant homology to two families of glycoprotein calcium-dependant cell adhesion molecules: ependymins and protocadherins.

  20. Resveratrol-cyclodextrin complex affects the expression of genes associated with lipid metabolism in bovine in vitro produced embryos.

    PubMed

    Torres, V; Hamdi, M; Millán de la Blanca, M G; Urrego, R; Echeverri, J; López-Herrera, A; Rizos, D; Gutiérrez-Adán, A; Sánchez-Calabuig, M J

    2018-03-26

    Antioxidants have been widely used during in vitro production to decrease the negative effect of reactive oxygen species. It was reported that the complex resveratrol-methyl β-cyclodextrin (RV-CD) improves resveratrol's stability and bioavailability and increases its antioxidant activity. This study evaluates the effect of RV-CD during in vitro oocyte maturation (IVM) or in vitro embryo culture (IVC) on developmental competence and quantitative changes in gene expression of developmental important genes. In experiment 1, RV-CD was added to IVM media and maturation level, embryo development and oocytes, cumulus cells, and blastocysts gene expression by RT-qPCR were examined. In experiment 2, presumptive zygotes were cultured in SOF supplemented with RV-CD and embryo development and blastocysts gene expression by RT-qPCR were studied. A group without RV-CD (control - ) and a group with cyclodextrin (control + ) were included. No differences were found in cleavage rate or blastocyst yield between groups. However, the expression of LIPE was higher in blastocysts derived from oocytes treated with resveratrol compared with control groups (p < .05). Blastocysts produced by IVC with resveratrol showed that RV-CD could modify the expression of genes related to lipid metabolism (CYP51A1, PNPLA2 and MTORC1) compared with control groups (p < .05). RV-CD in the IVM and IVC media could reduce accumulated fat by increasing lipolysis and suppressing lipogenesis of blastocysts. © 2018 Blackwell Verlag GmbH.

  1. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells.

    PubMed

    Gao, Lijie; Wang, Yunqi; Li, Yi; Dong, Ya; Yang, Aimin; Zhang, Jie; Li, Fengying; Zhang, Rongqiang

    2018-07-01

    Comprehensive bioinformatics analyses were performed to explore the key biomarkers in response to HIV infection of CD4 + and CD8 + T cells. The numbers of CD4 + and CD8 + T cells of HIV infected individuals were analyzed and the GEO database (GSE6740) was screened for differentially expressed genes (DEGs) in HIV infected CD4 + and CD8 + T cells. Gene Ontology enrichment, KEGG pathway analyses, and protein-protein interaction (PPI) network were performed to identify the key pathway and core proteins in anti-HIV virus process of CD4 + and CD8 + T cells. Finally, we analyzed the expressions of key proteins in HIV-infected T cells (GSE6740 dataset) and peripheral blood mononuclear cells(PBMCs) (GSE511 dataset). 1) CD4 + T cells counts and ratio of CD4 + /CD8 + T cells decreased while CD8 + T cells counts increased in HIV positive individuals; 2) 517 DEGs were found in HIV infected CD4 + and CD8 + T cells at acute and chronic stage with the criterial of P-value <0.05 and fold change (FC) ≥2; 3) In acute HIV infection, type 1 interferon (IFN-1) pathway might played a critical role in response to HIV infection of T cells. The main biological processes of the DEGs were response to virus and defense response to virus. At chronic stage, ISG15 protein, in conjunction with IFN-1 pathway might play key roles in anti-HIV responses of CD4 + T cells; and 4) The expression of ISG15 increased in both T cells and PBMCs after HIV infection. Gene expression profile of CD4 + and CD8 + T cells changed significantly in HIV infection, in which ISG15 gene may play a central role in activating the natural antiviral process of immune cells. © 2018 Wiley Periodicals, Inc.

  2. Immunohistochemistry Analysis of CD44, EGFR, and p16 in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma.

    PubMed

    Cohen, Erin R; Reis, Isildinha M; Gomez, Carmen; Pereira, Lutecia; Freiser, Monika E; Hoosien, Gia; Franzmann, Elizabeth J

    2017-08-01

    Objectives We analyze the relationship between CD44, epidermal growth factor receptor (EGFR), and p16 expression in oral cavity and oropharyngeal cancers in a diverse population. We also describe whether particular patterns of staining are associated with progression-free survival and overall survival. Study Design Prospective study, single-blind to pathologist and laboratory technologist. Setting Hospital based. Subjects and Methods Immunohistochemistry, comprising gross staining and cellular expression, was performed and interpreted in a blinded fashion on 24 lip/oral cavity and 40 oropharyngeal cancer specimens collected between 2007 and 2012 from participants of a larger study. Information on overall survival and progression-free survival was obtained from medical records. Results Nineteen cases were clinically p16 positive, 16 of which were oropharyngeal. Oral cavity lesions were more likely to exhibit strong CD44 membrane staining ( P = .0002). Strong CD44 membrane and strong EGFR membrane and/or cytoplasmic staining were more common in p16-negative cancers ( P = .006). Peripheral/mixed gross p16 staining pattern was associated with worse survival than the universal staining on univariate and multivariate analyses ( P = .006, P = .030). This held true when combining gross and cellular localization for p16. For CD44, universal gross staining demonstrated poorer overall survival compared with the peripheral/mixed group ( P = .039). CD44 peripheral/mixed group alone and when combined with universal p16 demonstrated the best survival on multivariate analysis ( P = .010). Conclusion In a diverse population, systematic analysis applying p16, CD44, and EGFR gross staining and cellular localization on immunohistochemistry demonstrates distinct patterns that may have prognostic potential exceeding current methods. Larger studies are warranted to investigate these findings further.

  3. Rapid and efficient nonviral gene delivery of CD154 to primary chronic lymphocytic leukemia cells.

    PubMed

    Li, L H; Biagi, E; Allen, C; Shivakumar, R; Weiss, J M; Feller, S; Yvon, E; Fratantoni, J C; Liu, L N

    2006-02-01

    Interactions between CD40 and CD40 ligand (CD154) are essential in the regulation of both humoral and cellular immune responses. Forced expression of human CD154 in B chronic lymphocytic leukemia (B-CLL) cells can upregulate costimulatory and adhesion molecules and restore antigen-presenting capacity. Unfortunately, B-CLL cells are resistant to direct gene manipulation with most currently available gene transfer systems. In this report, we describe the use of a nonviral, clinical-grade, electroporation-based gene delivery system and a standard plasmid carrying CD154 cDNA, which achieved efficient (64+/-15%) and rapid (within 3 h) transfection of primary B-CLL cells. Consistent results were obtained from multiple human donors. Transfection of CD154 was functional in that it led to upregulated expression of CD80, CD86, ICAM-I and MHC class II (HLA-DR) on the B-CLL cells and induction of allogeneic immune responses in MLR assays. Furthermore, sustained transgene expression was demonstrated in long-term cryopreserved transfected cells. This simple and rapid gene delivery technology has been validated under the current Good Manufacturing Practice conditions, and multiple doses of CD154-expressing cells were prepared for CLL patients from one DNA transfection. Vaccination strategies using autologous tumor cells manipulated ex vivo for patients with B-CLL and perhaps with other hematopoietic malignancies could be practically implemented using this rapid and efficient nonviral gene delivery system.

  4. Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH17 cytokine interleukin-22

    PubMed Central

    Hughes, Tiffany; Becknell, Brian; McClory, Susan; Briercheck, Edward; Freud, Aharon G.; Zhang, Xiaoli; Mao, Hsiaoyin; Nuovo, Gerard; Yu, Jianhua

    2009-01-01

    Considerable functional heterogeneity within human natural killer (NK) cells has been revealed through the characterization of distinct NK-cell subsets. Accordingly, a small subset of CD56+NKp44+NK cells, termed NK-22 cells, was recently described within secondary lymphoid tissue (SLT) as IL-22− when resting, with a minor fraction of this population becoming IL-22+ when activated. Here we discover that the vast majority of stage 3 immature NK (iNK) cells in SLT constitutively and selectively express IL-22, a TH17 cytokine important for mucosal immunity, whereas earlier and later stages of NK developmental intermediates do not express IL-22. These iNK cells have a surface phenotype of CD34−CD117+CD161+CD94−, largely lack expression of NKp44 and CD56, and do not produce IFN-γ or possess cytolytic activity. In summary, stage 3 iNK cells are highly enriched for IL-22 and IL-26 messenger RNA, and IL-22 protein production, but do not express IL-17A or IL-17F. PMID:19244159

  5. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  6. Osteograft, plastic material for regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidman, A. M., E-mail: AZaydman@niito.ru; Korel, A. V., E-mail: AKorel@niito.ru; Shchelkunova, E. I., E-mail: EShelkunova@niito.ru

    Creating tissue-engineering constructs based on the mechanism of cartilage-bone evolution is promising for traumatology and orthopedics. Such a graft was obtained from a chondrograft by transdifferentiation. The hondrograft placed in osteogenic medium is undergoing osteogenic differentiation for 14–30 days. Tissue specificity of the osteograft was studied by morphology, immunohistochemistry, electron microscopy, and the expression of the corresponding genes was estimated. The expression of osteonectin, fibronectin, collagen of type I, izolektin and CD 44 is determined. Alkaline phosphatase and matrix vesicles are determined in osteoblasts. Calcificates are observed in the matrix. Chondrogenic proteins expression is absent. These findings evidence the tissuemore » specificity of the developed osteograft.« less

  7. Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL.

    PubMed

    Cruz-Rodriguez, Nataly; Combita, Alba L; Enciso, Leonardo J; Raney, Lauren F; Pinzon, Paula L; Lozano, Olga C; Campos, Alba M; Peñaloza, Niyireth; Solano, Julio; Herrera, Maria V; Zabaleta, Jovanny; Quijano, Sandra

    2017-02-28

    Survival of adults with B-Acute Lymphoblastic Leukemia requires accurate risk stratification of patients in order to provide the appropriate therapy. Contemporary techniques, using clinical and cytogenetic variables are incomplete for prognosis prediction. To improve the classification of adult patients diagnosed with B-ALL into prognosis groups, two strategies were examined and combined: the expression of the ID1/ID3/IGJ gene signature by RT-PCR and the immunophenotypic profile of 19 markers proposed in the EuroFlow protocol by Flow Cytometry in bone marrow samples. Both techniques were correlated to stratify patients into prognostic groups. An inverse relationship between survival and expression of the three-genes signature was observed and an immunophenotypic profile associated with clinical outcome was identified. Markers CD10 and CD20 were correlated with simultaneous overexpression of ID1, ID3 and IGJ. Patients with simultaneous expression of the poor prognosis gene signature and overexpression of CD10 or CD20, had worse Event Free Survival and Overall Survival than patients who had either the poor prognosis gene expression signature or only CD20 or CD10 overexpressed. By utilizing the combined evaluation of these two immunophenotypic markers along with the poor prognosis gene expression signature, the risk stratification can be significantly strengthened. Further studies including a large number of patients are needed to confirm these findings.

  8. Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats.

    PubMed

    Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Chi-Hung; Weng, Zen-Chung; Chen, Tien-Hua; Shyu, Jia-Fwu

    2014-01-01

    We studied the process of trans-differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) into insulin-producing cells. Streptozotocin (STZ)-induced diabetic rat model was used to study the effect of portal vein transplantation of these insulin-producing cells on blood sugar levels. The BM-MSCs were differentiated into insulin-producing cells under defined conditions. Real-time PCR, immunocytochemistry and glucose challenge were used to evaluate in vitro differentiation. Flow cytometry showed that hBM-MSCs were strongly positive for CD44, CD105 and CD73 and negative for hematopoietic markers CD34, CD38 and CD45. Differentiated cells expressed C-peptide as well as β-cells specific genes and hormones. Glucose stimulation increased C-peptide secretion in these cells. The insulin-producing, differentiated cells were transplanted into the portal vein of STZ-induced diabetic rats using a Port-A catheter. The insulin-producing cells were localized in the liver of the recipient rat and expressed human C-peptide. Blood glucose levels were reduced in diabetic rats transplanted with insulin-producing cells. We concluded that hBM-MSCs could be trans-differentiated into insulin-producing cells in vitro. Portal vein transplantation of insulin-producing cells alleviated hyperglycemia in diabetic rats.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67,more » EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black-Right-Pointing-Pointer Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential.« less

  10. Gene expression patterns regulating the seed metabolism in relation to deterioration/ageing of primed mung bean (Vigna radiata L.) seeds.

    PubMed

    Sharma, Satyendra Nath; Maheshwari, Ankita; Sharma, Chitra; Shukla, Nidhi

    2018-03-01

    We are proposing mechanisms to account for the loss of viability (seed deterioration/ageing) and enhancement in seed quality (post-storage priming treatment). In order to understand the regulatory mechanism of these traits, we conducted controlled deterioration (CD) test for up to 8 d using primed mung bean seeds and examined how CD effects the expression of many genes, regulating the seed metabolism in relation to CD and priming. Germination declined progressively with increased duration of CD, and the priming treatment completely/partially reversed the inhibition depending on the duration of CD. The loss of germination capacity by CD was accompanied by a reduction in total RNA content and RNA integrity, indicating that RNA quantity and quality impacts seed longevity. Expression analysis revealed that biosynthesis genes of GA, ethylene, ABA and ROS-scavenging enzymes were differentially affected in response to duration of CD and priming, suggesting coordinately regulated mechanisms for controlling the germination capacity of seeds by modifying the permeability characteristics of biological membranes and activities of different enzymes. ABA genes were highly expressed when germination was delayed and inhibited by CD. Whereas, GA and ethylene genes were more highly expressed when germination was enhanced and permitted by priming under similar conditions. GSTI, a well characterized enzyme family involved in stress tolerance, was expressed in primed seeds over the period of CD, suggesting an additional protection against deterioration. The results are discussed in light of understanding the mechanisms underlying longevity/priming which are important issues economically and ecologically. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Evaluation of Reference Genes for Normalization of Gene Expression Using Quantitative RT-PCR under Aluminum, Cadmium, and Heat Stresses in Soybean.

    PubMed

    Gao, Mengmeng; Liu, Yaping; Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies.

  12. Association Study between an SNP in CD147 and Its Expression With Acute Coronary Syndrome in a Jiangsu Chinese Population.

    PubMed

    Yan, Jinchuan; Mao, Yu; Wang, Cuiping; Wang, Zhongqun

    2015-10-01

    CD147 is an important molecule in the inflammation and proteolysis process. This molecule crucially contributes to the initial and progression of atherosclerotic lesions. A single nucleotide polymorphism in CD147 gene, the rs8259 T/A in the 3'-untranslated region, is responsible for its expression in various cells. This study assessed whether the genetic variation rs8259 is associated with acute coronary syndrome (ACS) and CD147. A total of 943 ACS subjects and 439 stable angina subjects, and 851 controls were genotyped for rs8259 polymorphism by polymerase chain reaction restriction fragment length polymorphism and DNA-sequencing method. Plasma soluble CD147 (sCD147) level was measured by enzyme-linked immunosorbent assay. CD147 mRNA and protein expression in peripheral blood mononuclear cells were tested by real-time quantitative polymerase chain reaction and western blot, respectively. We found that TT genotype and T-allele frequency of CD147 rs8259 in ACS patients were much lower than the other patient groups. Significant difference was not observed between stable angina and controls. CD147 T allele was negatively related to ACS. ACS patients exhibited the highest CD147 expression in peripheral blood mononuclear cells and plasma sCD147 level. The plasma sCD147 levels in the culprit vessel were higher than those in the radial artery. In ACS patients, AA gene carriers had the highest CD147 levels, whereas TT gene carriers had the lowest CD147 levels. Linear regression analysis showed that genotypes and disease conditions contributed 49% to the change of the plasma CD147 level. These results suggested that the single nucleotide polymorphism of CD147 gene rs8259 T/A was associated with ACS susceptibility. Allele T gene may decrease the relative risk of suffering from ACS through downregulation of CD147 expression.

  13. Extracellular matrix components expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

    PubMed

    Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-17

    The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican, IMPG1 & IMPG2 in the developing interphotoreceptor matrix (IPM). Retinal organoids were successfully generated from pluripotent stem cells. The expression of ECM components was examined in the retinal organoids and found to recapitulate human retinal development in vivo. Using functional blocking experiments, we were able to highlight an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation. Copyright © 2018 Acta Materialia Inc. All rights reserved.

  14. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp.

    PubMed

    Fink, Inge R; Benard, Erica L; Hermsen, Trudi; Meijer, Annemarie H; Forlenza, Maria; Wiegertjes, Geert F

    2015-02-01

    CD36 is a scavenger receptor which has been studied closely in mammals where it is expressed by many different cell types and plays a role in highly diverse processes, both homeostatic and pathologic. It is among other things important in the innate immune system, in angiogenesis, and in clearance of apoptotic cells, and it is also involved in lipid metabolism and atherosclerosis. Recently, in the cephalochordate amphioxus a primitive CD36 family member was described, which was present before the divergence of CD36 from other scavenger receptor B family members, SCARB1 and SCARB2. Not much is known on the Cd36 molecule in teleost fish. We therefore studied Cd36 in both zebrafish and common carp, two closely related cyprinid fish species. Whereas a single cd36 gene is present in zebrafish, carp has two cd36 genes, and all show conserved synteny compared to mammalian CD36. The gene expression of carp cd36 is high in brain, ovary and testis but absent in immune organs. Although in mammals CD36 expression in erythrocytes, monocytes and macrophages is high, gene expression studies in leukocyte subtypes of adult carp and zebrafish larvae, including thrombocytes and macrophages provided no indication for any substantial expression of cd36 in immune cell types. Surprisingly, analysis of the cd36 promoter region does show the presence of several binding sites for transcription factors known to regulate immune responses. Overexpression of carp cd36 locates the receptor on the cell surface of mammalian cell lines consistent with the predicted topology of cyprinid Cd36 with a large extracellular domain, two transmembrane domains, and short cytoplasmic tails at both ends. Gene expression of cd36 is down-regulated during infection of zebrafish with Mycobacterium marinum, whereas knockdown of cd36 in zebrafish larvae led to higher bacterial burden upon such infection. We discuss the putative role for Cd36 in immune responses of fish in the context of other members of the scavenger receptor class B family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Cell–specific Variation in E-selectin Ligand Expression Among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology

    PubMed Central

    Silva, Mariana; Fung, Ronald Kam Fai; Donnelly, Conor Brian; Videira, Paula Alexandra; Sackstein, Robert

    2017-01-01

    Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. Here, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human peripheral blood mononuclear cells (PBMCs). Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sLeX and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4+ and CD8+ T-cells but no binding by B-cells. Monocytes prominently present sLeX decorations on an array of protein scaffolds including PSGL-1, CD43, and CD44 (rendering the E-selectin ligands CLA, CD43E, and HCELL, respectively), and B-cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLeX reveal high transcript levels among circulating monocytes and low levels among circulating B-cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLeX are abundantly expressed on human monocytes yet are relatively deficient on B-cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory sites. PMID:28330896

  16. Exosomal tumor microRNA modulates premetastatic organ cells.

    PubMed

    Rana, Sanyukta; Malinowska, Kamilla; Zöller, Margot

    2013-03-01

    Tumor exosomes educate selected host tissues toward a prometastatic phenotype. We demonstrated this for exosomes of the metastatic rat adenocarcinoma BSp73ASML (ASML), which modulate draining lymph nodes and lung tissue to support settlement of poorly metastatic BSp73ASML-CD44v4-v7 knockdown (ASML-CD44v(kd)) cells. Now, we profiled mRNA and microRNA (miRNA) of ASML(wt) and ASML-CD44v(kd) exosomes to define the pathway(s), whereby exosomes prepare the premetastatic niche. ASML exosomes, recovered in draining lymph nodes after subcutaneous injection, preferentially are taken up by lymph node stroma cells (LnStr) and lung fibroblasts (LuFb) that were chosen as exosome targets. ASML(wt) and ASML-CD44v(kd) exosomes contain a restricted mRNA and miRNA repertoire that differs significantly between the two lines and exosomes thereof due to CD44v6 influencing gene and miRNA transcription/posttranscriptional regulation. Exosomal mRNA and miRNA are recovered in target cells, where transferred miRNA significantly affected mRNA translation. Besides others, this was exemplified for abundant ASML(wt)-exosomal miR-494 and miR-542-3p, which target cadherin-17 (cdh17). Concomitantly, matrix metalloproteinase transcription, accompanying cdh17 down-regulation, was upregulated in LnStr transfected with miR-494 or miR-542-3p or co-cultured with tumor exosomes. Thus, tumor exosomes target non-transformed cells in premetastatic organs and modulate premetastatic organ cells predominantly through transferred miRNA, where miRNA from a metastasizing tumor prepares premetastatic organ stroma cells for tumor cell hosting. Fitting the demands of metastasizing tumor cells, transferred exosomal miRNA mostly affected proteases, adhesion molecules, chemokine ligands, cell cycle- and angiogenesis-promoting genes, and genes engaged in oxidative stress response. The demonstration of function-competent exosomal miRNA in host target cells encourages exploiting exosomes as a therapeutic gene delivery system.

  17. Whole Genome Gene Expression Meta-Analysis of Inflammatory Bowel Disease Colon Mucosa Demonstrates Lack of Major Differences between Crohn's Disease and Ulcerative Colitis

    PubMed Central

    Østvik, Ann E.; Drozdov, Ignat; Gustafsson, Bjørn I.; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H.; Waldum, Helge L.; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K.

    2013-01-01

    Background In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn’s disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Methods Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Results Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. Conclusions There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology. PMID:23468882

  18. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn's disease and ulcerative colitis.

    PubMed

    Granlund, Atle van Beelen; Flatberg, Arnar; Østvik, Ann E; Drozdov, Ignat; Gustafsson, Bjørn I; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H; Waldum, Helge L; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K

    2013-01-01

    In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn's disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.

  19. Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Hellström Erkenstam, Nina; Smith, Peter L. P.; Fleiss, Bobbi; Nair, Syam; Svedin, Pernilla; Wang, Wei; Boström, Martina; Gressens, Pierre; Hagberg, Henrik; Brown, Kelly L.; Sävman, Karin; Mallard, Carina

    2016-01-01

    Immune cells display a high degree of phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with classical and alternative polarization phenotypes described for macrophages and to identify related cell populations in the brain following neonatal hypoxia-ischemia (HI). HI was induced in 9-day old mice and brain tissue was collected up to 7 days post-insult to investigate expression of genes associated with macrophage activation. Using cell-markers, CD86 (classic activation) and CD206 (alternative activation), we assessed temporal changes of CD11b+ cell populations in the brain and studied the protein expression of the immunomodulatory factor galectin-3 in these cells. HI induced a rapid regulation (6 h) of genes associated with both classical and alternative polarization phenotypes in the injured hemisphere. FACS analysis showed a marked increase in the number of CD11b+CD86+ cells at 24 h after HI (+3667%), which was coupled with a relative suppression of CD11b+CD206+ cells and cells that did not express neither CD86 nor CD206. The CD11b+CD206+ population was mixed with some cells also expressing CD86. Confocal microscopy confirmed that a subset of cells expressed both CD86 and CD206, particularly in injured gray and white matter. Protein concentration of galectin-3 was markedly increased mainly in the cell population lacking CD86 or CD206 in the injured hemisphere. These cells were predominantly resident microglia as very few galectin-3 positive cells co-localized with infiltrating myeloid cells in Lys-EGFP-ki mice after HI. In summary, HI was characterized by an early mixed gene response, but with a large expansion of mainly the CD86 positive population during the first day. However, the injured hemisphere also contained a subset of cells expressing both CD86 and CD206 and a large population that expressed neither activation marker CD86 nor CD206. Interestingly, these cells expressed the highest levels of galectin-3 and were found to be predominantly resident microglia. Galectin-3 is a protein involved in chemotaxis and macrophage polarization suggesting a novel role in cell infiltration and immunomodulation for this cell population after neonatal injury. PMID:28018179

  20. Fanconi anemia genes are highly expressed in primitive CD34+ hematopoietic cells

    PubMed Central

    Aubé, Michel; Lafrance, Matthieu; Brodeur, Isabelle; Delisle, Marie-Chantal; Carreau, Madeleine

    2003-01-01

    Background Fanconi anemia (FA) is a complex recessive genetic disease characterized by progressive bone marrow failure (BM) and a predisposition to cancer. We have previously shown using the Fancc mouse model that the progressive BM failure results from a hematopoietic stem cell defect suggesting that function of the FA genes may reside in primitive hematopoietic stem cells. Methods Since genes involved in stem cell differentiation and/or maintenance are usually regulated at the transcription level, we used a semiquantitative RT-PCR method to evaluate FA gene transcript levels in purified hematopoietic stem cells. Results We show that most FA genes are highly expressed in primitive CD34-positive and negative cells compared to lower levels in more differentiated cells. However, in CD34- stem cells the Fancc gene was found to be expressed at low levels while Fancg was undetectable in this population. Furthermore, Fancg expression is significantly decreased in Fancc -/- stem cells as compared to wild-type cells while the cancer susceptibility genes Brca1 and Fancd1/Brac2 are upregulated in Fancc-/- hematopoietic cells. Conclusions These results suggest that FA genes are regulated at the mRNA level, that increased Fancc expression in LTS-CD34+ cells correlates with a role at the CD34+ differentiation stage and that lack of Fancc affects the expression of other FA gene, more specifically Fancg and Fancd1/Brca2, through an unknown mechanism. PMID:12809565

  1. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.

    PubMed

    Joosten, Sander P J; Zeilstra, Jurrit; van Andel, Harmen; Mijnals, R Clinton; Zaunbrecher, Joost; Duivenvoorden, Annet A M; van de Wetering, Marc; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T

    2017-10-01

    Resistance of metastatic human colorectal cancer cells to drugs that block epidermal growth factor (EGF) receptor signaling could be caused by aberrant activity of other receptor tyrosine kinases, activating overlapping signaling pathways. One of these receptor tyrosine kinases could be MET, the receptor for hepatocyte growth factor (HGF). We investigated how MET signaling, and its interaction with CD44 (a putative MET coreceptor regulated by Wnt signaling and highly expressed by intestinal stem cells [ISCs] and adenomas) affects intestinal homeostasis, regeneration, and adenoma formation in mini-gut organoids and mice. We established organoid cultures from ISCs stimulated with HGF or EGF and assessed intestinal differentiation by immunohistochemistry. Mice with total epithelial disruption of MET (Ah Cre /Met fl/fl /LacZ) or ISC-specific disruption of MET (Lgr5 Creert2 /Met fl/fl /LacZ) and control mice (Ah Cre /Met +/+ /LacZ, Lgr5 Creert2 /Met +/+ /LacZ) were exposed to 10 Gy total body irradiation; intestinal tissues were collected, and homeostasis and regeneration were assessed by immunohistochemistry. We investigated adenoma organoid expansion stimulated by HGF or EGF using adenomas derived from Lgr5 Creert2 /Met fl/fl /Apc fl/fl and Lgr5 Creert2 /Met +/+ /Apc fl/fl mice. The same mice were evaluated for adenoma prevalence and size. We also quantified adenomas in Ah Cre /Met fl/fl /Apc fl/+ mice compared with Ah Cre /Met +/+ /Apc fl/+ control mice. We studied expansion of organoids generated from crypts and adenomas, stimulated by HGF or EGF, that were derived from mice expressing different CD44 splice variants (Cd44 +/+ , Cd44 -/- , Cd44 s/s , or Cd44 v4-10/v4-10 mice). Crypts incubated with EGF or HGF expanded into self-organizing mini-guts with similar levels of efficacy and contained all differentiated cell lineages. MET-deficient mice did not have defects in intestinal homeostasis. Total body irradiation reduced numbers of proliferating crypts in Ah Cre /Met fl/fl /LacZ mice. Lgr5 Creert2 /Met fl/fl /LacZ mice had impaired regeneration of MET-deficient ISCs. Adenoma organoids stimulated with EGF or HGF expanded to almost twice the size of nonstimulated organoids. MET-deficient adenoma organoids did not respond to HGF stimulation, but did respond to EGF. ISC-specific disruption of Met (Lgr5 Creert2 /Met fl/fl /Apc fl/fl mice) caused a twofold increase in apoptosis in microadenomas, resulting in an approximately 50% reduction of microadenoma numbers and significantly reduced average adenoma size. Total epithelial disruption of Met (Ah Cre /Met fl/fl /Apc fl/+ mice) resulted in an approximate 50% reduction in (micro)adenoma numbers. Intestinal crypts from Cd44 -/- mice did not expand to the same extent as crypts from Cd44 +/+ mice on stimulation with HGF, but had the same response to EGF. The negative effect on HGF-mediated growth was overcome by expression of CD44v4-10, but not by CD44s. Similarly, HGF-mediated expansion of adenoma organoids required CD44v4-10. In studies of intestinal organoid cultures and mice with inducible deletion of MET, we found HGF receptor signaling to regulate intestinal homeostasis and regeneration, as well as adenoma formation. These activities of MET are promoted by the stem cell CD44 isoform CD44v4-10. Our findings provide rationale for targeting signaling via MET and CD44 during anti-EGF receptor therapy of patients with colorectal cancer or in patients resistant to EGF receptor inhibitors. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis.

    PubMed

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-09-24

    In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (P<0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered. Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expressional profiles in endometriotic tissue.

  3. Isolation and identification of tumor-initiating cell properties in human gallbladder cancer cell lines using the marker cluster of differentiation 133.

    PubMed

    Yu, Jiwei; Tang, Zhaohui; Gong, Wei; Zhang, Mingdi; Quan, Zhiwei

    2017-12-01

    The present study aimed to isolate and identify the properties of the cluster of differentiation (CD)133 + subset in human gallbladder cancer cells. The CD133 + and CD133 - subpopulations of the GBC-SD cell line were separated using immunomagnetic separation, and the biological features of the two subpopulations were analyzed in vitro and in vivo . In particular, the present study aimed to determine whether the two subpopulations were resistant to anti-tumor reagents and to identify the underlying molecular mechanisms involved. Following cell sorting of GBC-SD cells using immunomagnetic beads, 90.2±2% of cells were identified as CD133 + . Immunofluorescence confirmed that CD133 was expressed at higher levels in the Cd133 + group compared with the CD133 - group. The proliferation of the CD133 + group was significantly increased compared with the CD133 - group in vitro and in vivo . Following treatment with fluorouracil or gemcitabine, cells in the CD133 + group exhibited a decreased sensitivity to these drugs. The number of transmembrane cells was significantly increased in the CD133 + group compared with the CD133 - group. In addition, the expression levels of ATP binding cassette subfamily G member 2, CD44, C-X-C motif chemokine receptor 4 (CXCR4), phosphorylated-protein kinase B (Akt) and CD133 in the CD133 + group were significantly increased, compared with those in the CD133 - group. In CD133 + GBC-SD cells, stromal cell-derived factor 1α (SDF-1α) or treatment with AMD3100, an inhibitor of CXCR4, promotes or suppresses the SDF-1α/CXCR4 axis, respectively, resulting in increased or decreased CD133 expression through the Akt signaling pathway. Inhibition of the Akt signaling pathway resulted in decreased CD133 expression in GBC-SD cells. Immunomagnetic beads were successfully used for isolation of the CD133 + subset from GBC-SD cells. Furthermore, the CD133 + subset revealed an increased potential for tumor formation, cell proliferation, invasion and resistance to chemotherapeutic agents with expression of stem cell-associated genes. Therefore, in GBC-SD cells, the CXCR4/Akt/CD133 signaling pathways may be activated.

  4. Transcriptomic profiling of curcumin treated human breast stem cells identifies a role for stearoyl coa-desaturase in breast cancer prevention

    PubMed Central

    Colacino, Justin A.; McDermott, Sean P.; Sartor, Maureen A.; Wicha, Max S.; Rozek, Laura S.

    2017-01-01

    Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal while remaining non-toxic to normal differentiated cells. We paired fluorescence activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH−/CD44+/CD24−) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24− cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self renewal. These results elucidate the mechanisms by which curcumin may act as a cancer preventive compound and provide novel targets for cancer prevention and treatment. PMID:27306423

  5. Transcriptomic profiling of curcumin-treated human breast stem cells identifies a role for stearoyl-coa desaturase in breast cancer prevention.

    PubMed

    Colacino, Justin A; McDermott, Sean P; Sartor, Maureen A; Wicha, Max S; Rozek, Laura S

    2016-07-01

    Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal, while remaining non-toxic to normal differentiated cells. We paired fluorescence-activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH-/CD44+/CD24-) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24- cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self-renewal. These results elucidate the mechanisms by which curcumin may act as a cancer-preventive compound and provide novel targets for cancer prevention and treatment.

  6. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells.

    PubMed

    Taha, Masoumeh Fakhr; Hedayati, Vahideh

    2010-08-01

    Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. THEMIS and PTPRK in celiac intestinal mucosa: coexpression in disease and after in vitro gliadin challenge

    PubMed Central

    Bondar, Constanza; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Irastorza, Iñaki; Withoff, Sebo; Wijmenga, Cisca; Chirdo, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Celiac disease (CD) is an immune mediated, polygenic disorder, where HLA-DQ2/DQ8 alleles contribute around 35% to genetic risk, but several other genes are also involved. Genome-wide association studies (GWASs) and the more recent immunochip genotyping projects have fine-mapped 39 regions of genetic susceptibility to the disease, most of which harbor candidate genes that could participate in this disease process. We focused our attention to the GWAS peak on chr6: 127.99–128.38 Mb, a region including two genes, thymocyte-expressed molecule involved in selection (THEMIS) and protein tyrosine phosphatase, receptor type, kappa (PTPRK), both of which have immune-related functions. The aim of this work was to evaluate the expression levels of these two genes in duodenal mucosa of active and treated CD patients and in controls, and to determine whether SNPs (rs802734, rs55743914, rs72975916, rs10484718 and rs9491896) associated with CD have any influence on gene expression. THEMIS showed higher expression in active CD compared with treated patients and controls, whereas PTPRK showed lower expression. Our study confirmed the association of this region with CD in our population, but only the genotype of rs802734 showed some influence in the expression of THEMIS. On the other hand, we found a significant positive correlation between THEMIS and PTPRK mRNA levels in CD patients but not in controls. Our results suggest a possible role for both candidate genes in CD pathogenesis and the existence of complex, regulatory relationships that reside in the vast non-coding, functional intergenic regions of the genome. Further investigation is needed to clarify the impact of the disease-associated SNPs on gene function. PMID:23820479

  8. Pursuing Intracellular Pathogens with Hyaluronan. From a 'Pro-Infection' Polymer to a Biomaterial for 'Trojan Horse' Systems.

    PubMed

    Montanari, Elita; Di Meo, Chiara; Oates, Angela; Coviello, Tommasina; Matricardi, Pietro

    2018-04-18

    Hyaluronan (HA) is among the most important bioactive polymers in mammals, playing a key role in a number of biological functions. In the last decades, it has been increasingly studied as a biomaterial for drug delivery systems, thanks to its physico-chemical features and ability to target and enter certain cells. The most important receptor of HA is ‘Cluster of Differentiation 44’ (CD44), a cell surface glycoprotein over-expressed by a number of cancers and heavily involved in HA endocytosis. Moreover, CD44 is highly expressed by keratinocytes, activated macrophages and fibroblasts, all of which can act as ‘reservoirs’ for intracellular pathogens. Interestingly, both CD44 and HA appear to play a key role for the invasion and persistence of such microorganisms within the cells. As such, HA is increasingly recognised as a potential target for nano-carriers development, to pursuit and target intracellular pathogens, acting as a ‘Trojan Horse’. This review describes the biological relationship between HA, CD44 and the entry and survival of a number of pathogens within the cells and the subsequent development of HA-based nano-carriers for enhancing the intracellular activity of antimicrobials.

  9. Lineage determination of CD7+ CD5- CD2- and CD7+ CD5+ CD2- lymphoblasts: studies on phenotype, genotype, and gene expression of myeloperoxidase, CD3 epsilon, and CD3 delta.

    PubMed

    Yoneda, N; Tatsumi, E; Teshigawara, K; Nagata, S; Nagano, T; Kishimoto, Y; Kimura, T; Yasunaga, K; Yamaguchi, N

    1994-04-01

    The gene expression of myeloperoxidase (MPO), CD3 epsilon, and CD3 delta molecules, the gene rearrangement of T-cell receptor (TCR) delta, gamma, and beta and immunoglobulin heavy (IgH) chain, and the expression of cell-surface antigens were investigated in seven cases of CD7+ CD5- CD2- and four cases of CD7+ CD5+ CD2- acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LBL) blasts, which were negative for cytochemical myeloperoxidase (cyMPO). More mature T-lineage blasts were also investigated in a comparative manner. In conclusion, the CD7+ CD5- CD2- blasts included four categories: undifferentiated blasts without lineage commitment, T-lineage blasts, T-/myeloid lineage blasts, and cyMPO-negative myeloblasts. The CD7+ CD5+ CD2- blasts included two categories; T-lineage and T-/myeloid lineage blasts. The 11 cases were of the germ-line gene (G) for TCR beta and IgH. Four cases were G for TCR delta and TCR gamma. The others were of the monoclonally rearranged gene (R) for TCR delta and G for TCR gamma or R for both TCR delta and TCR gamma. The expression or in vitro induction of CD13 and/or CD33 antigens correlated with the immaturity of these neoplastic T cells, since it was observed in all 11 CD7+ CD5- CD2- and CD7+ CD5+ CD2-, and some CD7+ CD5+ CD2+ (CD3- CD4- CD8-) cases, but not in CD3 +/- CD4+ CD8+ or CD3+ CD4+ CD8- cases. CD3 epsilon mRNA, but not CD3 delta mRNA, was detected in two CD7+ CD5- CD2- cases, while mRNA of neither of the two CD3 molecules was detected in the other tested CD7+ CD5- CD2- cases. In contrast, mRNA of both CD3 epsilon and CD3 delta were detected in all CD7+ CD5+ CD2- cases, indicating that CD7+ CD5- CD2- blasts at least belong to T-lineage. The blasts of two CD7+ CD5- CD2- cases with entire germ-line genes and without mRNA of the three molecules (MPO, CD3 epsilon, and CD3 delta) were regarded as being at an undifferentiated stage prior to their commitment to either T- or myeloid-lineage. The co-expression of the genes of MPO and CD3 epsilon in a CD7+ CD5- CD2- case MPO, CD3 epsilon, and CD3 delta in a CD7+ CD5+ CD2- case suggested the presence of some overlapping phase for T- and myeloid-lineage commitment during immature stages of differentiation. This helps understand the conversion of some T-ALL/LBL cases to acute myeloblastic leukemia (AML).(ABSTRACT TRUNCATED AT 400 WORDS)

  10. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase.

    PubMed

    Abdulrahman, Nabeel; Jaspard-Vinassa, Beatrice; Fliegel, Larry; Jabeen, Aayesha; Riaz, Sadaf; Gadeau, Alain-Pierre; Mraiche, Fatima

    2018-05-01

    Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na + /H + exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.

  11. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaseb, Hatem O.; Department of Clinical Pathology, National Cancer Institute; Fohrer-Ting, Helene

    Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumormore » cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66− is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance. - Highlights: • Spheroid enrichment selects cancer stem cells (CSC) from head & neck tumors (HNSCC). • Compared to normal epithelial cells, isolated CSC express increased SC/CSC markers. • Isolated CSC display enhanced radioresistance, clonogenicity and tumorigenicity. • HNSCC CSC express chromosomal instability. • CD44+/CD66− is a promising, consistent biomarker for HNSCC CSC.« less

  12. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.

    PubMed

    Okada, Masahiro; Kanamori, Mitsuhiro; Someya, Kazue; Nakatsukasa, Hiroko; Yoshimura, Akihiko

    2017-01-01

    Epigenome editing is expected to manipulate transcription and cell fates and to elucidate the gene expression mechanisms in various cell types. For functional epigenome editing, assessing the chromatin context-dependent activity of artificial epigenetic modifier is required. In this study, we applied clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9-based epigenome editing to mouse primary T cells, focusing on the Forkhead box P3 (Foxp3) gene locus, a master transcription factor of regulatory T cells (Tregs). The Foxp3 gene locus is regulated by combinatorial epigenetic modifications, which determine the Foxp3 expression. Foxp3 expression is unstable in transforming growth factor beta (TGF-β)-induced Tregs (iTregs), while stable in thymus-derived Tregs (tTregs). To stabilize Foxp3 expression in iTregs, we introduced dCas9-TET1CD (dCas9 fused to the catalytic domain (CD) of ten-eleven translocation dioxygenase 1 (TET1), methylcytosine dioxygenase) and dCas9-p300CD (dCas9 fused to the CD of p300, histone acetyltransferase) with guide RNAs (gRNAs) targeted to the Foxp3 gene locus. Although dCas9-TET1CD induced partial demethylation in enhancer region called conserved non-coding DNA sequences 2 (CNS2), robust Foxp3 stabilization was not observed. In contrast, dCas9-p300CD targeted to the promoter locus partly maintained Foxp3 transcription in cultured and primary T cells even under inflammatory conditions in vitro. Furthermore, dCas9-p300CD promoted expression of Treg signature genes and enhanced suppression activity in vitro. Our results showed that artificial epigenome editing modified the epigenetic status and gene expression of the targeted loci, and engineered cellular functions in conjunction with endogenous epigenetic modification, suggesting effective usage of these technologies, which help elucidate the relationship between chromatin states and gene expression.

  13. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44

    PubMed Central

    2014-01-01

    Introduction Most breast cancer-related deaths result from metastasis, a process involving dynamic regulation of tumour cell adhesion and migration. The adhesion protein CD44, a key regulator of cell migration, is enriched in cholesterol-enriched membrane microdomains termed lipid rafts. We recently reported that raft affiliation of CD44 negatively regulates interactions with its migratory binding partner ezrin. Since raft affiliation is regulated by post-translational modifications including palmitoylation, we sought to establish the contribution of CD44 palmitoylation and lipid raft affiliation to cell migration. Methods Recovery of CD44 and its binding partners from raft versus non-raft membrane microdomains was profiled in non-migrating and migrating breast cancer cell lines. Site-directed mutagenesis was used to introduce single or double point mutations into both CD44 palmitoylation sites (Cys286 and Cys295), whereupon the implications for lipid raft recovery, phenotype, ezrin co-precipitation and migratory behaviour was assessed. Finally CD44 palmitoylation status and lipid raft affiliation was assessed in primary cultures from a small panel of breast cancer patients. Results CD44 raft affiliation was increased during migration of non-invasive breast cell lines, but decreased during migration of highly-invasive breast cells. The latter was paralleled by increased CD44 recovery in non-raft fractions, and exclusive non-raft recovery of its binding partners. Point mutation of CD44 palmitoylation sites reduced CD44 raft affiliation in invasive MDA-MB-231 cells, increased CD44-ezrin co-precipitation and accordingly enhanced cell migration. Expression of palmitoylation-impaired (raft-excluded) CD44 mutants in non-invasive MCF-10a cells was sufficient to reversibly induce the phenotypic appearance of epithelial-to-mesenchymal transition and to increase cell motility. Interestingly, cell migration was associated with temporal reductions in CD44 palmitoylation in wild-type breast cells. Finally, the relevance of these findings is underscored by the fact that levels of palmitoylated CD44 were lower in primary cultures from invasive ductal carcinomas relative to non-tumour tissue, while CD44 co-localisation with a lipid raft marker was less in invasive ductal carcinoma relative to ductal carcinoma in situ cultures. Conclusion Our results support a novel mechanism whereby CD44 palmitoylation and consequent lipid raft affiliation inversely regulate breast cancer cell migration, and may act as a new therapeutic target in breast cancer metastasis. PMID:24512624

  14. MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress.

    PubMed

    Ding, Yanfei; Wang, Yi; Jiang, Zhihua; Wang, Feijuan; Jiang, Qiong; Sun, Junwei; Chen, Zhixiang; Zhu, Cheng

    2017-07-26

    MicroRNAs (miRNAs) are 21-24-nucleotide-long RNAs that function as ubiquitous post-transcriptional regulators of gene expression in plants and animals. Increasing evidence points to the important role of miRNAs in plant responses to abiotic and biotic stresses. Cadmium (Cd) is a nonessential heavy metal highly toxic to plants. Although many genes encoding metal transporters have been characterized, the mechanisms for the regulation of the expression of the heavy-metal transporter genes are largely unknown. In this study, we found that the expression of miR268 in rice was significantly induced under Cd stress. By contrast, expression of natural resistance-associated macrophage protein 3 (NRAMP3), a target gene of miR268, was dramatically decreased by Cd treatment. Overexpression of miR268 inhibited rice seedling growth under Cd stress. The transgenic miR268-overexpressing plant leaves contained increased levels of hydrogen peroxide and malondialdehyde, and their seedlings accumulated increased levels of Cd when compared to those in wild-type plants. These results indicate that miR268 acts as a negative regulator of rice's tolerance to Cd stress. Thus, miRNA-guided regulation of gene expression plays an important role in plant responses to heavy-metal stress.

  15. Expression and distribution of hyaluronic acid and CD44 in unphonated human vocal fold mucosa.

    PubMed

    Sato, Kiminori; Umeno, Hirohito; Nakashima, Tadashi; Nonaka, Satoshi; Harabuchi, Yasuaki

    2009-11-01

    The tension caused by phonation (vocal fold vibration) is hypothesized to stimulate vocal fold stellate cells (VFSCs) in the maculae flavae (MFe) to accelerate production of extracellular matrices. The distribution of hyaluronic acid (HA) and expression of CD44 (a cell surface receptor for HA) were examined in human vocal fold mucosae (VFMe) that had remained unphonated since birth. Five specimens of VFMe (3 adults, 2 children) that had remained unphonated since birth were investigated with Alcian blue staining, hyaluronidase digestion, and immunohistochemistry for CD44. The VFMe containing MFe were hypoplastic and rudimentary. The VFMe did not have a vocal ligament, Reinke's space, or a layered structure, and the lamina propria appeared as a uniform structure. In the children, HA was distributed in the VFMe containing MFe. In the adults, HA had decreased in the VFMe containing MFe. In both groups, the VFSCs in the MFe and the fibroblasts in the lamina propria expressed little CD44. This study supports the hypothesis that the tensions caused by vocal fold vibration stimulate the VFSCs in the MFe to accelerate production of extracellular matrices and form the layered structure. Phonation after birth is one of the important factors in the growth and development of the human VFMe.

  16. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody

    PubMed Central

    Weiss, Lola; Slavin, Shimon; Reich, Shoshana; Cohen, Patrizia; Shuster, Svetlana; Stern, Robert; Kaganovsky, Ella; Okon, Elimelech; Rubinstein, Ariel M.; Naor, David

    2000-01-01

    Inflammatory destruction of insulin-producing β cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4–7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44–hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes. PMID:10618410

  17. Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis.

    PubMed

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B

    2011-04-01

    The non-coding 3'-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3'-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3'-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3'-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3'-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3'-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed.

  18. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis

    PubMed Central

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B.

    2011-01-01

    The non-coding 3′-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3′-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3′-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3′-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3′-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3′-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed. PMID:21149267

  19. Induction of UO-44 gene expression by tamoxifen in the rat uterus and ovary.

    PubMed

    Huynh, H; Ng, C Y; Lim, K B; Ong, C K; Ong, C S; Tran, E; Tuyen Nguyen, T T; Chan, T W

    2001-07-01

    A complementary DNA, uterine-ovarian-specific gene 44 (UO-44), has been isolated from tamoxifen-induced rat uterine complementary DNA library using differential display techniques. UO-44 transcripts are found to be abundant in the uterus and ovary. UO-44 gene expression in the uterus is strictly regulated by estrogens, tamoxifen, and GH, whereas the pure antiestrogen ICI 182780 is inhibitory. Treatment of ovariectomized rats and hypophysectomized rats with tamoxifen and GH, respectively, resulted in up-regulation of UO-44 expression in a dose-dependent manner. In situ hybridization revealed that UO-44 gene expression was restricted to the luminal and glandular epithelial cells of the uterus and to granulosa cells of medium-size ovarian follicles. Transfection studies showed that UO-44 was a membrane-associated protein. Because estrogens, tamoxifen, and GH are stimulators of uterine luminal epithelial cell growth in vivo, UO-44 protein may serve as a mediator of the effect of these compounds in inducing epithelial proliferation and differentiation in these tissues.

  20. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy.

    PubMed

    Huang, Xun; He, Jiexiang; Zhang, Huan-Tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-Gang; Zhou, Changren

    2017-01-01

    CD44 ligand-receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand-receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand-receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight into the effect of DTIC on the CD44 ligand-binding process.

  1. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy

    PubMed Central

    Huang, Xun; He, Jiexiang; Zhang, Huan-tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-gang; Zhou, Changren

    2017-01-01

    CD44 ligand–receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand–receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand–receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight into the effect of DTIC on the CD44 ligand-binding process. PMID:29296081

  2. Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Oberg, Ann L.; Zimmermann, Michael T.; Grill, Diane E.; Poland, Gregory A.

    2016-01-01

    The goal of annual influenza vaccination is to reduce mortality and morbidity associated with this disease through the generation of protective immune responses. The objective of the current study was to examine markers of immunosenescence and identify immunosenescence-related differences in gene expression, gene regulation, cytokine secretion, and immunologic changes in an older study population receiving seasonal influenza A/H1N1 vaccination. Surprisingly, prior studies in this cohort revealed weak correlations between immunosenescence markers and humoral immune response to vaccination. In this report, we further examined the relationship of each immunosenescence marker (age, T cell receptor excision circle frequency, telomerase expression, percentage of CD28− CD4+ T cells, percentage of CD28− CD8+ T cells, and the CD4/CD8 T cell ratio) with additional markers of immune response (serum cytokine and chemokine expression) and measures of gene expression and/or regulation. Many of the immunosenescence markers indeed correlated with distinct sets of individual DNA methylation sites, miRNA expression levels, mRNA expression levels, serum cytokines, and leukocyte subsets. However, when the individual immunosenescence markers were grouped by pathways or functional terms, several shared biological functions were identified: antigen processing and presentation pathways, MAPK, mTOR, TCR, BCR, and calcium signaling pathways, as well as key cellular metabolic, proliferation and survival activities. Furthermore, the percent of CD4+ and/or CD8+ T cells lacking CD28 expression also correlated with miRNAs regulating clusters of genes known to be involved in viral infection. Integrated (DNA methylation, mRNA, miRNA, and protein levels) network biology analysis of immunosenescence-related pathways and genesets identified both known pathways (e.g., chemokine signaling, CTL, and NK cell activity), as well as a gene expression module not previously annotated with a known function. These results may improve our ability to predict immune responses to influenza and aid in new vaccine development, and highlight the need for additional studies to better define and characterize immunosenescence. PMID:27853459

  3. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease.

    PubMed

    Hamblin, Terry J; Orchard, Jenny A; Ibbotson, Rachel E; Davis, Zadie; Thomas, Peter W; Stevenson, Freda K; Oscier, David G

    2002-02-01

    Although the presence or absence of somatic mutations in the immunoglobulin variable region (IgV(H)) genes in chronic lymphocytic leukemia (B-CLL) identifies subtypes with very different prognoses, the assay is technically complex and unavailable to most laboratories. CD38 expression has been suggested as a surrogate marker for the 2 subtypes. IgV(H) mutations and CD38 expression in 145 patients with B-CLL with a long follow-up were compared. The 2 assays gave discordant results in 41 patients (28.3%). Multivariate analysis demonstrated that Binet stage, IgV(H) mutations and CD38 were independent prognostic indicators. Median survival time in patients whose cells had unmutated IgV(H) genes and expressed CD38 was 8 years; in those with mutated IgV(H) genes not expressing CD38, it was 26 years. For those with discordant results, median survival time was 15 years. Thus, although CD38 expression does not identify the same 2 subsets as IgV(H) mutations in CLL, it is an independent risk factor that can be used with IgV(H) mutations and clinical stage to select patients with B-CLL with the worst prognoses. Using cryopreserved cells taken at intervals during the course of the disease, however, changes of CD38 expression over time were demonstrated in 10 of 41 patients. Causes of the variation of CD38 expression require further study. Additional prospective studies are required for comparing CD38 expression with other prognostic factors and for taking sequential measurements during the course of the disease.

  4. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense

    NASA Astrophysics Data System (ADS)

    Sun, Min; Ting Li, Yi; Liu, Yang; Chin Lee, Shao; Wang, Lan

    2016-01-01

    Cadmium (Cd) pollution is a serious global problem, which causes irreversible toxic effects on animals. Freshwater crab, Sinopotamon henanense, is a useful environmental indicator since it is widely distributed in benthic habitats whereby it tends to accumulate Cd and other toxicants. However, its molecular responses to Cd toxicity remain unclear. In this study, we performed transcriptome sequencing and gene expression analyses of its hepatopancreas with and without Cd treatments. A total of 7.78 G clean reads were obtained from the pooled samples, and 68,648 unigenes with an average size of 622 bp were assembled, in which 5,436 were metabolism-associated and 2,728 were stimulus response-associated that include 380 immunity-related unigenes. Expression profile analysis demonstrated that most genes involved in macromolecular metabolism, oxidative phosphorylation, detoxification and anti-oxidant defense were up-regulated by Cd exposure, whereas immunity-related genes were down-regulated, except the genes involved in phagocytosis were up-regulated. The current data indicate that Cd exposure alters gene expressions in a concentration-dependent manner. Therefore, our results provide the first comprehensive S.henanense transcriptome dataset, which is useful for biological and ecotoxicological studies on this crab and its related species at molecular level, and some key Cd-responsive genes may provide candidate biomarkers for monitoring aquatic pollution by heavy metals.

  5. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74

    PubMed Central

    Djudjaj, Sonja; Lue, Hongqi; Rong, Song; Papasotiriou, Marios; Klinkhammer, Barbara M.; Zok, Stephanie; Klaener, Ole; Braun, Gerald S.; Lindenmeyer, Maja T.; Cohen, Clemens D.; Bucala, Richard; Tittel, Andre P.; Kurts, Christian; Moeller, Marcus J.; Floege, Juergen; Ostendorf, Tammo

    2016-01-01

    Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow–derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN. PMID:26453615

  6. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  7. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage

    PubMed Central

    Takeuchi, Arata; Badr, Mohamed El Sherif Gadelhaq; Miyauchi, Kosuke; Ishihara, Chitose; Onishi, Reiko; Guo, Zijin; Sasaki, Yoshiteru; Ike, Hiroshi; Takumi, Akiko; Tsuji, Noriko M.; Murakami, Yoshinori; Katakai, Tomoya; Kubo, Masato

    2016-01-01

    Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene. PMID:26694968

  8. Comparative characterization of stem cell marker expression, metabolic activity and resistance to doxorubicin in adherent and spheroid cells derived from the canine prostate adenocarcinoma cell line CT1258.

    PubMed

    Liu, Wen; Moulay, Mohammed; Willenbrock, Saskia; Roolf, Catrin; Junghanss, Christian; Ngenazahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2015-04-01

    Canine prostate cancer represents a spontaneous animal model for the human counterpart. Cells with stem cell-like character are considered to play a major role in therapeutic resistance and tumor relapse. Thus, the identification of markers allowing for recognition and characterization of these cells is essential. Expression of 12 stem cell marker genes in the canine prostate cancer cell line CT1258 and spheroid cells generated from these was analyzed by quantitative real-time PCR. In CT1258 and the generated spheroid cells, CD44 and CD133 expression was analyzed by flow cytometry, as well as proliferation and doxorubicin resistance. Integrin alpha-6 (ITGA6) expression and metabolic activity were significantly up-regulated in CT1258-derived spheroid cells, while doxorubicin resistance remained comparable. ITGA6 de-regulation and metabolic activity appear to be characteristic of the generated spheres, indicating potential intervention targets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Gene expression analysis of a Helicobacter pylori-infected and high-salt diet-treated mouse gastric tumor model: identification of CD177 as a novel prognostic factor in patients with gastric cancer

    PubMed Central

    2013-01-01

    Background Helicobacter pylori (H. pylori) infection and excessive salt intake are known as important risk factors for stomach cancer in humans. However, interactions of these two factors with gene expression profiles during gastric carcinogenesis remain unclear. In the present study, we investigated the global gene expression associated with stomach carcinogenesis and prognosis of human gastric cancer using a mouse model. Methods To find candidate genes involved in stomach carcinogenesis, we firstly constructed a carcinogen-induced mouse gastric tumor model combined with H. pylori infection and high-salt diet. C57BL/6J mice were given N-methyl-N-nitrosourea in their drinking water and sacrificed after 40 weeks. Animals of a combination group were inoculated with H. pylori and fed a high-salt diet. Gene expression profiles in glandular stomach of the mice were investigated by oligonucleotide microarray. Second, we examined an availability of the candidate gene as prognostic factor for human patients. Immunohistochemical analysis of CD177, one of the up-regulated genes, was performed in human advanced gastric cancer specimens to evaluate the association with prognosis. Results The multiplicity of gastric tumor in carcinogen-treated mice was significantly increased by combination of H. pylori infection and high-salt diet. In the microarray analysis, 35 and 31 more than two-fold up-regulated and down-regulated genes, respectively, were detected in the H. pylori-infection and high-salt diet combined group compared with the other groups. Quantitative RT-PCR confirmed significant over-expression of two candidate genes including Cd177 and Reg3g. On immunohistochemical analysis of CD177 in human advanced gastric cancer specimens, over-expression was evident in 33 (60.0%) of 55 cases, significantly correlating with a favorable prognosis (P = 0.0294). Multivariate analysis including clinicopathological factors as covariates revealed high expression of CD177 to be an independent prognostic factor for overall survival. Conclusions These results suggest that our mouse model combined with H. pylori infection and high-salt diet is useful for gene expression profiling in gastric carcinogenesis, providing evidence that CD177 is a novel prognostic factor for stomach cancer. This is the first report showing a prognostic correlation between CD177 expression and solid tumor behavior. PMID:23899160

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sur, Subhayan, E-mail: subhayansur18@gmail.com

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and inducemore » tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation/apoptosis and CD44 + ve population were seen in the events. • The self renewal Wnt and Hedgehog pathways were modulated during the restriction.« less

  11. Duodenal intraepithelial T lymphocytes in patients with functional dyspepsia

    PubMed Central

    Gargala, Gilles; Lecleire, Stéphane; François, Arnaud; Jacquot, Serge; Déchelotte, Pierre; Ballet, Jean Jacques; Favennec, Loic; Ducrotté, Philippe

    2007-01-01

    AIM: To quantify the intraepithelial lymphocytes (IELs) and to document the membrane expression of CD4, CD8, TCRγδ and adhesion and/or activation-associated molecules (CD103, CD28, CD44, CD69, HLA-DR, CD95/Fas) in the duodenal mucosa of patients with functional dyspepsia (FD) in order to provide arguments for an immunological process in FD. METHODS: Twenty-six FD patients according to Rome II criteria (20 were H pylori negative) were studied and compared to 12 healthy adults. IELs were isolated from five duodenal biopsy samples, then quantified by microscopy and flow cytometry while the membrane phenotypes were determined by cytofluorometry. RESULTS: Duodenal histological examination was normal. In H pylori negative patients, the number of IELs was not different from that in healthy controls. Median percentage expression of CD4, CD8, or TCRγδ and CD103, CD44, CD28, CD69 on CD3+ IELs, among the adhesion/activation associated molecules tested, was not different from that in healthy controls. In contrast, the median percentage expression of CD95/Fas [22 (9-65) vs 45 (19-88), P = 0.03] and HLA-DR expressing CD3+ IELs [4 (0-30) vs 13 (4-42), P = 0.04] was significantly lower in the H pylori negative FD group than in healthy controls, respectively. The number of IELs was significantly greater in H pylori positive FD patients than in healthy controls [median ratiofor 100 enterocytes 27.5 (6.7-62.5) vs 10.8 (3-33.3), P = 0.02] due to a higher number of CD8+ CD3+ IELs. CONCLUSION: In H pylori negative FD patients, the phenotypic characterization of IELs suggests that we cannot exclude a role of IELs in FD. PMID:17511033

  12. Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells

    PubMed Central

    Janjanin, Sasa; Djouad, Farida; Shanti, Rabie M; Baksh, Dolores; Gollapudi, Kiran; Prgomet, Drago; Rackwitz, Lars; Joshi, Arjun S; Tuan, Rocky S

    2008-01-01

    Introduction Mesenchymal progenitor cells (MPCs) are multipotent progenitor cells in adult tissues, for example, bone marrow (BM). Current challenges of clinical application of BM-derived MPCs include donor site morbidity and pain as well as low cell yields associated with an age-related decrease in cell number and differentiation potential, underscoring the need to identify alternative sources of MPCs. Recently, MPC sources have diversified; examples include adipose, placenta, umbilicus, trabecular bone, cartilage, and synovial tissue. In the present work, we report the presence of MPCs in human tonsillar tissue. Methods We performed comparative and quantitative analyses of BM-MPCs with a subpopulation of adherent cells isolated from this lymphoid tissue, termed tonsil-derived MPCs (T-MPCs). The expression of surface markers was assessed by fluorescent-activated cell sorting analysis. Differentiation potential of T-MPCs was analyzed histochemically and by reverse transcription-polymerase chain reaction for the expression of lineage-related marker genes. The immunosuppressive properties of MPCs were determined in vitro in mixed lymphocyte reactions. Results Surface epitope analysis revealed that T-MPCs were negative for CD14, CD31, CD34, and CD45 expression and positive for CD29, CD44, CD90, and CD105 expression, a characteristic phenotype of BM-MPCs. Similar to BM-MPCs, T-MPCs could be induced to undergo adipogenic differentiation and, to a lesser extent, osteogenic and chondrogenic differentiation. T-MPCs did not express class II major histocompatibility (MHC) antigens, and in a similar but less pronounced manner compared with BM-MPCs, T-MPCs were immunosuppressive, inhibiting the proliferation of T cells stimulated by allogeneic T cells or by non-specific mitogenic stimuli via an indoleamine 2,3-dioxygenase-dependent mechanism. Conclusion Human palatine T-MPCs represent a new source of progenitor cells, potentially applicable for cell-based therapies. PMID:18662393

  13. MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes.

    PubMed

    Comabella, Manuel; Cantó, Ester; Nurtdinov, Ramil; Río, Jordi; Villar, Luisa M; Picón, Carmen; Castilló, Joaquín; Fissolo, Nicolás; Aymerich, Xavier; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-15

    Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction. Gene expression profiling was determined in PBMC using microarrays, and validation of selected genes was performed by polymerase chain reaction (PCR). B-cell immunophenotyping was conducted by flow cytometry. Microarray analysis revealed the B-cell specific genes FCRL1, FCRL2, FCRL5 (Fc receptor-like 1, 2 and 5 respectively), and CD22 as the top differentially expressed genes between patients with high and low neurodegeneration. Levels for these genes were significantly down-regulated in PBMC from patients with MRI phenotypes characterized by high neurodegeneration and microarray findings were validated by PCR. In patients with high neurodegeneration, immunophenotyping showed a significant increase in the expression of the B-cell activation markers CD80 in naïve B cells (CD45+/CD19+/CD27-/IgD+), unswitched memory B cells (CD45+/CD19+/CD27+/IgD+), and switched memory B cells (CD45+/CD19+/CD27+/IgD-), and CD86 in naïve and switched memory B cells. These results suggest that RRMS patients with radiological phenotypes showing high neurodegeneration have changes in B cells characterized by down-regulation of B-cell-specific genes and increased activation status. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials

    PubMed Central

    2014-01-01

    Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272

  15. Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Zheng, Weite; Cao, Fangbin; Wu, Feibo

    2016-09-01

    Tobacco (Nicotiana tabacum L.) is more acclimated to cadmium (Cd) uptake and preferentially enriches Cd in leaves than other crops. MicroRNAs (miRNAs) play crucial roles in regulating expression of various stress response genes in plants. However, genome-wide expression of miRNAs and their target genes in response to Cd stress in tobacco are still unknown. Here, miRNA high-throughput sequencing technology was performed using two contrasting tobacco genotypes Guiyan 1 and Yunyan 2 of Cd-sensitive and tolerance. Comprehensive analysis of miRNA expression profiles in control and Cd treated plants identified 72 known (27 families) and 14 novel differentially expressed miRNAs in the two genotypes. Among them, 28 known (14 families) and 5 novel miRNAs were considered as Cd tolerance associated miRNAs, which mainly involved in cell growth, ion homeostasis, stress defense, antioxidant and hormone signaling. Finally, a hypothetical model of Cd tolerance mechanism in Yunyan 2 was presented. Our findings suggest that some miRNAs and their target genes and pathways may play critical roles in Cd tolerance.

  16. Interleukin-5 regulates genes involved in B-cell terminal maturation.

    PubMed

    Horikawa, Keisuke; Takatsu, Kiyoshi

    2006-08-01

    Interleukin (IL)-5 induces CD38-activated splenic B cells to differentiate into immunoglobulin M-secreting cells and undergo micro to gamma 1 class switch recombination (CSR) at the DNA level, resulting in immunoglobulin G1 (IgG1) production. Interestingly, IL-4, a well-known IgG1-inducing factor does not induce immunoglobulin production or micro to gamma 1 CSR in CD38-activated B cells. In the present study, we implemented complementary DNA microarrays to investigate the contribution of IL-5-induced gene expression in CD38-stimulated B cells to immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR. IL-5 and IL-4 stimulation of CD38-activated B cells induced the expression of 418 and 289 genes, respectively, that consisted of several clusters. Surprisingly, IL-5-inducible 78 genes were redundantly regulated by IL-4. IL-5 and IL-4 also suppressed the gene expression of 319 and 325 genes, respectively, 97 of which were overlapped. Genes critically regulated by IL-5 include immunoglobulin-related genes such as J chain and immunoglobulinkappa, and genes involved in B-cell maturation such as BCL6, activation-induced cytidine deaminase (Aid) and B lymphocyte-induced maturation protein-1 (Blimp-1) and tend to be induced slowly after IL-5 stimulation. Intriguingly, among genes, the retroviral induction of Blimp-1 and Aid in CD38-activated B cells could induce IL-4-dependent maturation to Syndecan-1+ antibody-secreting cells and micro to gamma 1 CSR, respectively, in CD38-activated B cells. Taken together, preferential Aid and Blimp-1 expression plays a critical role in IL-5-induced immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR in CD38-activated B cells.

  17. Coexpression of CD14 and CD326 discriminate hepatic precursors in the human fetal liver.

    PubMed

    Fomin, Marina E; Tai, Lung-Kuo; Bárcena, Alicia; Muench, Marcus O

    2011-07-01

    The molecular and cellular profile of liver cells during early human development is incomplete, complicating the isolation and study of hepatocytes, cholangiocytes, and hepatic stem cells from the complex amalgam of hepatic and hematopoietic cells, that is, the fetal liver. Epithelial cell adhesion molecule, CD326, has emerged as a marker of hepatic stem cells, and lipopolysaccharide receptor CD14 is known to be expressed on adult hepatocytes. Using flow cytometry, we studied the breadth of CD326 and CD14 expression in midgestation liver. Both CD45(+) hematopoietic and CD45(-) nonhematopoietic cells expressed CD326. Moreover, diverse cell types expressing CD326 were revealed among CD45(-) cells by costaining for CD14. Fluorescence-activated cell sorting was used to isolate nonhematopoietic cells distinguished by expression of high levels of CD326 and low CD14 (CD326(++)CD14(lo)), which were characterized for gene expression associated with liver development. CD326(++)CD14(lo) cells expressed the genes albumin, α-fetoprotein, hepatic nuclear factor 3α, prospero-related homeobox 1, cytochrome P450 3A7, α(1)-antitrypsin, and transferrin. Proteins expressed included cell-surface CD24, CD26, CD29, CD34, CD49f, CD243, and CD324 and, in the cytoplasm, cytokeratins-7/8 (CAM 5.2 antigen) and some cytokeratin-19. Cultured CD326(++)CD14(lo) cells yielded albumin(+) hepatocytes, cytokeratin-19(+) cholangiocytes, and hepatoblasts expressing both markers. Using epifluorescence microscopy we observed CD326 and CD14 expression on fetal hepatocytes comprising the liver parenchyma, as well as on cells associated with ductal plates and surrounding large vessels. These findings indicate that expression of CD14 and CD326 can be used to identify functionally distinct subsets of fetal liver cells, including CD326(++)CD14(lo) cells, representing a mixture of parenchymal cells, cholangiocytes, and hepatoblasts.

  18. Genetic and Transcriptomic Bases of Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease.

    PubMed

    Vancamelbeke, Maaike; Vanuytsel, Tim; Farré, Ricard; Verstockt, Sare; Ferrante, Marc; Van Assche, Gert; Rutgeerts, Paul; Schuit, Frans; Vermeire, Séverine; Arijs, Ingrid; Cleynen, Isabelle

    2017-10-01

    Intestinal barrier defects are common in patients with inflammatory bowel disease (IBD). To identify which components could underlie these changes, we performed an in-depth analysis of epithelial barrier genes in IBD. A set of 128 intestinal barrier genes was selected. Polygenic risk scores were generated based on selected barrier gene variants that were associated with Crohn's disease (CD) or ulcerative colitis (UC) in our study. Gene expression was analyzed using microarray and quantitative reverse transcription polymerase chain reaction. Influence of barrier gene variants on expression was studied by cis-expression quantitative trait loci mapping and comparing patients with low- and high-risk scores. Barrier risk scores were significantly higher in patients with IBD than controls. At single-gene level, the associated barrier single-nucleotide polymorphisms were most significantly enriched in PTGER4 for CD and HNF4A for UC. As a group, the regulating proteins were most enriched for CD and UC. Expression analysis showed that many epithelial barrier genes were significantly dysregulated in active CD and UC, with overrepresentation of mucus layer genes. In uninflamed CD ileum and IBD colon, most barrier gene levels restored to normal, except for MUC1 and MUC4 that remained persistently increased compared with controls. Expression levels did not depend on cis-regulatory variants nor combined genetic risk. We found genetic and transcriptomic dysregulations of key epithelial barrier genes and components in IBD. Of these, we believe that mucus genes, in particular MUC1 and MUC4, play an essential role in the pathogenesis of IBD and could represent interesting targets for treatment.

  19. Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis.

    PubMed

    Wasser, Beatrice; Pramanik, Gautam; Hess, Moritz; Klein, Matthias; Luessi, Felix; Dornmair, Klaus; Bopp, Tobias; Zipp, Frauke; Witsch, Esther

    2016-12-01

    The importance of CD11c + antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c + APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c + APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c + cells is technically difficult. To ask whether the CD11c + APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c + APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.

  20. Identification of Multipotent Stem/Progenitor Cells in Murine Sclera

    PubMed Central

    Tsai, Chia-Ling; Wu, Pei-Chang; Fini, M. Elizabeth; Shi, Songtao

    2011-01-01

    Purpose. The sclera forms the fibrous outer coat of the eyeball and acts as a supportive framework. The purpose of this study was to examine whether the sclera contains mesenchymal stem/progenitor cells. Method. Scleral tissue from C57BL6/J mice was separated from the retina and choroid and subsequently enzyme digested to release single cells. Proliferation capacity, self-renewal capacity, and ability for multipotent differentiation were analyzed by BrdU labeling, flow cytometry, reverse transcriptase–polymerase chain reaction, immunocytochemistry, and in vivo transplantation. Results. The scleral stem/progenitor cells (SSPCs) possessed clonogenic and high doubling capacities. These cells were positive for the mesenchymal markers Sca-1, CD90.2, CD44, CD105, and CD73 and negative for the hematopoietic markers CD45, CD11b, Flk1, CD34, and CD117. In addition to expressing stem cell genes ABCG2, Six2, Notch1, and Pax6, SSPCs were able to differentiate to adipogenic, chondrogenic, and neurogenic lineages. Conclusions. This study indicates that the sclera contains multipotent mesenchymal stem cells. Further study of SSPCs may help elucidate the cellular and molecular mechanism of scleral diseases such as scleritis and myopia. PMID:21788434

  1. CD133 expression in osteosarcoma and derivation of CD133⁺ cells.

    PubMed

    Li, Ji; Zhong, Xiao-Yan; Li, Zong-Yu; Cai, Jin-Fang; Zou, Lin; Li, Jian-Min; Yang, Tao; Liu, Wei

    2013-02-01

    Cluster of differentiation 133 (CD133) is recognized as a stem cell marker for normal and cancerous tissues. Using cell culture and real‑time fluorescent polymerase chain reaction, CD133 expression was analyzed in osteosarcoma tissue and Saos‑2 cell lines. In addition, cancer stem cell‑related gene expression in the Saos‑2 cell line was determined to explore the mechanisms underlying tumorigenesis and high drug resistance in osteosarcoma. CD133+ cells were found to be widely distributed in various types of osteosarcoma tissue. Following cell culture, cells entered the G2/M and S cell cycle stages from G0/G1. Levels of CD133+ cells decreased to normal levels rapidly over the course of cell culture. Colony forming efficiency was higher in the CD133+ compared with the CD133‑ subpopulation of Saos‑2 cells. Expression levels of stem cell‑related genes, including multidrug resistance protein 1 (MDR1) and sex determining region Y‑box 2 (Sox2) in the CD133+ subpopulation of cells were found to be significantly higher compared with the CD133‑ subpopulation. These observations indicate that CD133+ Saos‑2 cells exhibit stem cell characteristics, including low abundance, quiescence and a high potential to undergo differentiation, as well as expression of key stem cell regulatory and drug resistance genes, which may cause osteosarcoma and high drug resistance.

  2. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    PubMed Central

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass. PMID:28559903

  3. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    PubMed

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  4. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    PubMed

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (<50 copies/ml) and long-term nonprogressors (LTNPs) who maintain normal CD4 + T cell counts for prolonged periods (>10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  5. FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4+CD25high T cells in multiple sclerosis

    PubMed Central

    Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S

    2012-01-01

    Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885

  6. Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots.

    PubMed

    Tang, Song; Allagadda, Vinay; Chibli, Hicham; Nadeau, Jay L; Mayer, Gregory D

    2013-10-01

    Recent advances in the ability to manufacture and manipulate materials at the nanometer scale have led to increased production and use of many types of nanoparticles. Quantum dots (QDs) are small, fluorescent nanoparticles composed of a core of semiconductor material (e.g. cadmium selenide, zinc sulfide) and shells or dopants of other elements. Particle core composition, size, shell, and surface chemistry have all been found to influence toxicity in cells. The aim of this study was to compare the toxicities of ionic cadmium (Cd) and zinc (Zn) and Cd- and Zn-containing QDs in zebrafish liver cells (ZFL). As expected, Cd(2+) was more toxic than Zn(2+), and the general trend of IC50-24 h values of QDs was determined to be CdTe < CdSe/ZnS or InP/ZnS, suggesting that ZnS-shelled CdSe/ZnS QDs were more cytocompatible than bare core CdTe crystals. Smaller QDs showed greater toxicity than larger QDs. Isolated mRNA from these exposures was used to measure the expression of metal response genes including metallothionein (MT), metal response element-binding transcription factor (MTF-1), divalent metal transporter (DMT-1), zrt and irt like protein (ZIP-1) and the zinc transporter, ZnT-1. CdTe exposure induced expression of these genes in a dose dependent manner similar to that of CdSO4 exposure. However, CdSe/ZnS and InP/ZnS altered gene expression of metal homeostasis genes in a manner different from that of the corresponding Cd or Zn salts. This implies that ZnS shells reduce QD toxicity attributed to the release of Cd(2+), but do not eliminate toxic effects caused by the nanoparticles themselves.

  7. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth.

    PubMed

    Turrioni, Ana Paula S; Basso, Fernanda G; Montoro, Liege A; Almeida, Leopoldina de Fátima D de; Costa, Carlos A de Souza; Hebling, Josimeri

    2014-10-01

    The aim of this study was to evaluate the effects of infrared LED (850nm) irradiation on dentin matrix proteins expression and synthesis by cultured stem cells from human exfoliated deciduous teeth (SHED). Near-exfoliation primary teeth were extracted (n=3), and SHED cultures were characterized by immunofluorescence using STRO-1, CD44, CD146, Nanog and OCT3/4 antibodies, before experimental protocol. The SHEDs were seeded (3×10(4) cells/cm(2)) with DMEM containing 10% FBS. After 24-h incubation, the culture medium was replaced by osteogenic differentiation medium, and the cells were irradiated with LED light at energy densities (EDs) of 0 (control), 2, or 4J/cm(2) (n=8). The irradiated SHEDs were then evaluated for alkaline phosphatase (ALP) activity, total protein (TP) production, and collagen synthesis (SIRCOL™ Assay), as well as ALP, collagen type I (Col I), dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein (DMP-1) gene expression (qPCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=0.05). Increased ALP activity and collagen synthesis, as well as gene expression of DSPP and ALP, were observed for both EDs compared with non-irradiated cells. The ED of 4J/cm(2) also increased gene expression of COL I and DMP-1. In conclusion, infrared LED irradiation was capable of biostimulating SHEDs by increasing the expression and synthesis of proteins related with mineralized tissue formation, with overall better results for the energy dose of 4J/cm(2). Phototherapy is an additional approach for the clinical application of LED in Restorative Dentistry. Infrared LED irradiation of the cavity's floor could biostimulate subjacent pulp cells, improving local tissue healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wentao; Du, Bojing; Liu, Di

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerancemore » in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.« less

  9. Self-assembling HA/PEI/dsRNA-p21 ternary complexes for CD44 mediated small active RNA delivery to colorectal cancer.

    PubMed

    Feng, Chen-Lin; Han, Yan-Xing; Guo, Hui-Hui; Ma, Xiao-Lei; Wang, Zhi-Qiang; Wang, Lu-Lu; Zheng, Wen-Sheng; Jiang, Jian-Dong

    2017-11-01

    Our previous work proved that sequence specific double strand RNA (dsRNA-p21) effectively activated p21 gene expression of colorectal cancer (CRC) cells and consequently suppressed CRC growth. However, efficient delivery system is a significant challenge to achieve sufficient therapy. In this study, a self-assembled HA/PEI/dsRNA-p21 ternary complex (TC-dsRNA-p21) was developed for the tumor-target delivery of dsRNA-p21 into CRC cells. Hyaluronic acid (HA) was introduced to shield the PEI/dsRNA-p21 binary complexes (BC-dsRNA-p21) for reducing the cytotoxicity of PEI and for increasing the tumor-targeted intracellular uptake by cancer cells through HA-CD44 mediated endocytosis. Comparing to the BC-dsRNA-p21, the TC-dsRNA-p21 showed increase in size, decrease in zeta potential, low cytotoxicity as well as high stability in physiological conditions due to the anionic shielding. Confocal microscopy analysis and flow cytometry confirmed that TC-dsRNA-p21 had high transfection efficiency in the CD44-abundant Lovo cells, as compared with binary complex. In vitro physiological experiment showed that, comparing to the control group, the TC-dsRNA-p21 effectively activated the expression of p21 mRNA and P21 protein, causing blockage of cell cycle at G 0 /G 1 phase and suppression of cancer cell proliferation as well as colony formation. Furthermore, in vivo distribution experiment demonstrated that the TC-dsRNA-p21 could effectively accumulate at rectal wall for up to 10 h, following in situ application. These findings indicated that TC-dsRNA-p21 might hold great potential for delivering dsRNA-p21 to treat CRC.

  10. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    PubMed

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  11. Angiogenesis-related gene expression analysis in celiac disease.

    PubMed

    Castellanos-Rubio, Ainara; Caja, Sergio; Irastorza, Iñaki; Fernandez-Jimenez, Nora; Plaza-Izurieta, Leticia; Vitoria, Juan Carlos; Maki, Markku; Lindfors, Katri; Bilbao, Jose Ramon

    2012-05-01

    Celiac disease (CD) involves disturbance of the small-bowel mucosal vascular network, and transglutaminase autoantibodies (TGA) have been related to angiogenesis disturbance, a complex phenomenon probably also influenced by common genetic variants in angiogenesis-related genes. A set of genes with "angiogenesis" GO term identified in a previous expression microarray experiment (SCG2, STAB1, TGFA, ANG, ERBB2, GNA13, PML, CASP8, ECGF1, JAG1, HIF1A, TNFSF13 and TGM2) was selected for genetic and functional studies. SNPs that showed a trend for association with CD in the first GWAS were genotyped in 555 patients and 541 controls. Gene expression of all genes was quantified in 15 pairs of intestinal biopsies (diagnosis vs. GFD) and in three-dimensional HUVEC and T84 cell cultures incubated with TGA-positive and negative serum. A regulatory SNP in TNFSF13 (rs11552708) is associated with CD (p = 0.01, OR = 0.7). Expression changes in biopsies pointed to TGM2 and PML as up-regulated antiangiogenic genes and to GNA13, TGFA, ERBB2 and SCG2 as down-regulated proangiogenic factors in CD. TGA seem to enhance TGM2 expression in both cell models, but PML expression was induced only in T84 enterocytes while GNA13 and ERBB2 were repressed in HUVEC endothelial cells, with several genes showing discordant effects in each model, highlighting the complexity of gene interactions in the pathogenesis of CD. Finally, cell culture models are useful tools to help dissect complex responses observed in human explants.

  12. In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study

    PubMed Central

    2014-01-01

    Background Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. Methods The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. Results Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. Conclusions We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies. PMID:24598405

  13. Primary adipose-derived stem cells enriched by growth factor treatment improves cell adaptability toward cardiovascular differentiation in a rodent model of acute myocardial infarction.

    PubMed

    Chang, Jui-Chih; Lee, Ping-Chun; Lin, Yu-Chun; Lee, Kung-Wei; Hsu, Shan-hui

    2011-01-01

    The heterogeneous cell population in primary adipose-derived adult stem cells (ADAS) and difficulty in keeping their primitive properties have posed certain limitations on using these cells for cell therapy. Therefore, our objective was to generate a population of cells enriched from the adipose stromal-vascular fraction (SVF) with greater differentiation potential than ADAS and to explore the mechanism behind the repair of the injured myocardium in vivo. The distinct population of adipose stromal cells was enriched by immediate treatment of the growth factor cocktail (EGF and PDGF-BB) to the freshly isolated SVF. These cells (ADAS-GFs) had distinct cell morphology from ADAS and in average had a smaller size. They presented co-expression of CD140a (pericytic markers) and CD34 (hematopoietic marker), more obvious mesenchymal (CD13, CD29, CD44, CD90 and CD117) markers, but rare KDR, and were negative for CD45 and CD31. ADAS-GFs not only spontaneously expressed endothelial cell markers and formed capillary-like tubes on Matrigel but also clearly expressed early cardiomyocyte marker genes when embedded in methylcellulose-based medium. In Sprague-Dawley (SD) rats with left anterior descending artery (LAD)-induced myocardial infarction (MI), the ADAS-GFs transplanted group had the left ventricular function significantly improved compared with the ADAS transplanted group or the control group at 12 weeks post transplantation. The immunofluorescence staining revealed that the transplanted ADAS-GFs expressed GATA4, betamyosin heavy chain and troponin T protein but not vWF. More capillaries were also observed around the infarcted zone in the ADAS-GFs transplanted group. These data suggested that ADAS-GFs with a higher proangiogenic potential may restore the cardiac function of infarcted myocardium via the direct cardiomyocyte differentiation as well as angiogenesis recruitment.

  14. Homologs of CD83 from elasmobranch and teleost fish.

    PubMed

    Ohta, Yuko; Landis, Eric; Boulay, Thomas; Phillips, Ruth B; Collet, Bertrand; Secombes, Chris J; Flajnik, Martin F; Hansen, John D

    2004-10-01

    Dendritic cells are one of the most important cell types connecting innate and adaptive immunity, but very little is known about their evolutionary origins. To begin to study dendritic cells from lower vertebrates, we isolated and characterized CD83 from the nurse shark (Ginglymostoma cirratum (Gici)) and rainbow trout (Oncorhynchus mykiss (Onmy)). The open reading frames for Gici-CD83 (194 aa) and Onmy-CD83 (218 aa) display approximately 28-32% identity to mammalian CD83 with the presence of two conserved N-linked glycosylation sites. Identical with mammalian CD83 genes, Gici-CD83 is composed of five exons including conservation of phase for the splice sites. Mammalian CD83 genes contain a split Ig superfamily V domain that represents a unique sequence feature for CD83 genes, a feature conserved in both Gici- and Onmy-CD83. Gici-CD83 and Onmy-CD83 are not linked to the MHC, an attribute shared with mouse but not human CD83. Gici-CD83 is expressed rather ubiquitously with highest levels in the epigonal tissue, a primary site for lymphopoiesis in the nurse shark, whereas Onmy-CD83 mRNA expression largely paralleled that of MHC class II but at lower levels. Finally, Onmy-CD83 gene expression is up-regulated in virus-infected trout, and the promoter is responsive to trout IFN regulatory factor-1. These results suggest that the role of CD83, an adhesion molecule for cell-mediated immunity, has been conserved over 450 million years of vertebrate evolution.

  15. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  16. Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features.

    PubMed

    Kopanja, Dragana; Pandey, Akshay; Kiefer, Megan; Wang, Zebin; Chandan, Neha; Carr, Janai R; Franks, Roberta; Yu, Dae-Yeul; Guzman, Grace; Maker, Ajay; Raychaudhuri, Pradip

    2015-08-01

    Overexpression of FoxM1 correlates with poor prognosis in hepatocellular carcinoma (HCC). Moreover, the Ras-signaling pathway is found to be ubiquitously activated in HCC through epigenetic silencing of the Ras-regulators. We investigated the roles of FoxM1 in Ras-driven HCC, and on HCC cells with stem-like features. We employed a transgenic mouse model that expresses the oncogenic Ras in the liver. That strain was crossed with a strain that harbor floxed alleles of FoxM1 and the MxCre gene that allows conditional deletion of FoxM1. FoxM1 alleles were deleted after development of HCC, and the effects on the tumors were analyzed. Also, FoxM1 siRNA was used in human HCC cell lines to determine its role in the survival of the HCC cells with stem cell features. Ras-driven tumors overexpress FoxM1. Deletion of FoxM1 inhibits HCC progression. There was increased accumulation of reactive oxygen species (ROS) in the FoxM1 deleted HCC cells. Moreover, FoxM1 deletion caused a disproportionate loss of the CD44+ and EpCAM+ HCC cells in the tumors. We show that FoxM1 directly activates expression of CD44 in human HCC cells. Moreover, the human HCC cells with stem cell features are addicted to FoxM1 for ROS-regulation and survival. Our results provide genetic evidence for an essential role of FoxM1 in the progression of Ras-driven HCC. In addition, FoxM1 is required for the expression of CD44 in HCC cells. Moreover, FoxM1 plays a critical role in the survival of the HCC cells with stem cell features by regulating ROS. Published by Elsevier B.V.

  17. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Daisuke; Kato, Kazunori, E-mail: kzkatou@juntendo.ac.jp; Department of Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421

    2013-05-17

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present inmore » esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression was enhanced, suggesting that hypoxia had been induced. Comparison of cancer drug resistance using cisplatin and doxorubicin in 3-D-cultured esophageal cancer cells showed that cancer drug resistance had increased. These results indicate that 3-D culture of esophageal squamous cell carcinoma lines is a useful method for inducing cancer stem cells.« less

  18. Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly(lactic acid)-Poly(ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells.

    PubMed

    Dixit, Saurabh; Sahu, Rajnish; Verma, Richa; Duncan, Skyla; Giambartolomei, Guillermo H; Singh, Shree R; Dennis, Vida A

    2018-03-01

    We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3 + lymphoproliferation, CD3 + CD4 + IFN-γ-secreting cells along with CD3 + CD4 + memory (CD44 high and CD62L high ) and effector (CD44 high and CD62L low ) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4 + T cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelch, Katherine E.; Tokar, Erik J.; Merrick, B. Alex

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1)more » were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular transformation.« less

  20. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide) Copolymer for Tumor Targeting

    PubMed Central

    Son, Gyung Mo; Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Kang, Dae Hwan; Park, Su Bum; Jeong, Young-IL

    2014-01-01

    Graft copolymer composed hyaluronic acid (HA) and poly(d,l-lactide-co-glycolide) (PLGA) (HAgLG) was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA) to have amine end group in the end of chain (PLGA-amine). PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX)-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC)-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting. PMID:25216338

  1. A phase IIa study of HA-irinotecan, formulation of hyaluronic acid and irinotecan targeting CD44 in extensive-stage small cell lung cancer.

    PubMed

    Alamgeer, Muhammad; Neil Watkins, D; Banakh, Ilia; Kumar, Beena; Gough, Daniel J; Markman, Ben; Ganju, Vinod

    2018-04-01

    Preclinical studies in small cell lung cancer (SCLC) have shown that hyaluronic acid (HA) can be effectively used to deliver chemotherapy and selectively decrease CD44 expressing (stem cell-like) tumour cells. The current study aimed to replicate these findings and obtain data on safety and activity of HA-irinotecan (HA-IR). Eligible patients with extensive stage SCLC were consented. A safety cohort (n = 5) was treated with HA-IR and Carboplatin (C). Subsequently, the patients were randomised 1:1 to receive experimental (HA-IR + C) or standard (IR + C) treatment, to a maximum of 6 cycles. The second line patients were added to the study and treated with open label HA-IR + C. Tumour response was measured after every 2 cycles. Baseline tumour specimens were stained for CD44s and CD44v6 expression. Circulating tumour cells (CTCs) were enumerated before each treatment cycle. Out of 39 patients screened, 34 were evaluable for the study. The median age was 66 (range 39-83). The overall response rates were 69% and 75% for experimental and standard arms respectively. Median progression free survival was 42 and 28 weeks, respectively (p = 0.892). The treatments were well tolerated. The incidence of grade III/IV diarrhea was more common in the standard arm, while anaemia was more common in the experimental arm. IHC analysis suggested that the patients with CD44s positive tumours may gain survival benefit from HA-IR. HA-IR is well tolerated and active in ES-SCLC. The effect of HA-IR on CD44s + cancer stem-like cells provide an early hint towards a potential novel target.

  2. Metastatic Potential of Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Davis, Samantha J.; Divi, Vasu; Owen, John H.; Papagerakis, Silvana; Bradford, Carol R.; Carey, Thomas E.; Prince, Mark E. P.

    2012-01-01

    Objective Subpopulations of highly tumorigenic cells, which have the unique capacity to self-renew and produce differentiated progeny, have been identified in multiple malignancies. In head and neck squamous cell carcinoma (HNSCC), this subpopulation of cells, termed cancer stem cells (CSCs) are contained within the population with high CD44 expression. It has been postulated that CSCs play a role in invasion and metastasis; however, there is little evidence to support this theory. We designed in vitro and in vivo models of metastasis to study the behavior of CSCs in HNSCC. Design Cells were sorted for CD44 expression using flow cytometry. Sorted cells were used in an in vitro invasion assay. For in vivo studies, CSCs and non-CSCs were injected into the tail veins of mice, and lungs were either harvested or imaged to evaluate for metastases. Results In vitro, CD44high cells were more motile but less invasive than CD44low cells. In vivo, 4/5 mice injected with CD44high cells and 0/5 mice injected with CD44low cells formed lung metastases. Two of the metastases arose from CSCs from a primary tumor and three from CSCs from HNSCC cell lines. Conclusions In vitro, CSCs do not have an increased ability to invade through basement membrane, but they do migrate more efficiently through a porous barrier. In contrast, CSCs formed metastases quite efficiently in vivo, whereas non-CSCs did not form metastases at all. This phenomenon could be due to enhanced migratory capacity of CSCs, which may be more important than basement membrane degradation in vivo. PMID:21173377

  3. Molecular Biomarkers of Cancer Stem/Progenitor Cells Associated with Progression, Metastases, and Treatment Resistance of Aggressive Cancers

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2014-01-01

    The validation of novel diagnostic, prognostic, and predictive biomarkers and therapeutic targets in tumor cells is of critical importance for optimizing the choice and efficacy of personalized therapies. Importantly, recent advances have led to the identification of gene-expression signatures in cancer cells, including cancer stem/progenitor cells, in the primary tumors, exosomes, circulating tumor cells (CTC), and disseminated cancer cells at distant metastatic sites. The gene-expression signatures may help to improve the accuracy of diagnosis and predict the therapeutic responses and overall survival of patients with cancer. Potential biomarkers in cancer cells include stem cell–like markers [CD133, aldehyde dehydrogenase (ALDH), CD44, and CD24], growth factors, and their cognate receptors [epidermal growth factor receptor (EGFR), EGFRvIII, and HER2], molecules associated with epithelial–mesenchymal transition (EMT; vimentin, N-cadherin, snail, twist, and Zeb1), regulators of altered metabolism (phosphatidylinositol-3′ kinase/Akt/mTOR), and drug resistance (multidrug transporters and macrophage inhibitory cytokine-1). Moreover, different pluripotency-associated transcription factors (Oct3/4, Nanog, Sox2, and Myc) and microRNAs that are involved in the epigenetic reprogramming and acquisition of stem cell–like properties by cancer cells during cancer progression may also be exploited as molecular biomarkers to predict the risk of metastases, systemic treatment resistance, and disease relapse of patients with cancer. PMID:24273063

  4. Organotypic culture of human bone marrow adipose tissue.

    PubMed

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was <0.8 ng/mL under all culture conditions. Dexamethasone promoted adiponectin gene expression, while insulin inhibited it. This finding suggests that dexamethasone, but not insulin, may serve as a powerful adipogenic factor for BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  5. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers.

    PubMed

    Abend, M; Pfeiffer, R M; Ruf, C; Hatch, M; Bogdanova, T I; Tronko, M D; Hartmann, J; Meineke, V; Mabuchi, K; Brenner, A V

    2013-10-15

    A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.

  6. An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter.

    PubMed Central

    Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C

    1989-01-01

    The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122

  7. An Evaluation of Gestational Exposure to Perfluorooctanoic ...

    EPA Pesticide Factsheets

    Exposure to environmental pollutants can be a factor for induction of metabolic disorders. This study examined if exposure to PFOA during development could alter body composition and other physiological outcomes. Study 1: Pregnant CD-1 mice were gavaged with PFOA at 0,0.001,0.01, 0.1, or 0.3 mg/kg body weight (bw) from gestation day (GD) 1 — 17. At weaning, pups were fed a high fat (HFD) or control (CD) diet. Body composition, blood pressure (bp), and gene expression in tissues of offspring were examined. Male- BW increased, in 0 mg PFOA+HFD vs 0 m PFOA+CD and 0.01 mg PFOA+HFD vs 0.01 mg PFOA+CD. In HFD, bw decreased in 0.3 vs 0 mg PFOA. There were no effects on percent of body fat. At postnatal day (PND) 90, diastolic bp was decreased in 0.1 and 0.3 mg PFOA+HFD vs 0 mg PFOA+HFD and increased in 0.3 mg PFOA+HFD vs 0.3 mg PFOA+CD. The bp effects of 0.1 mg PFOA+HFD persisted to PND 180. Female- At 0 and 0.001 mg PFOA+HFD had increased weight gain vs CD. The %fat increased in 0.001 vs 0 mg PFOA+HFD. At PND 180, diastolic bp decreased in 0.01 and 0.3 mg PFOA+CD vs 0 mg PFOA+CD. Differential gene regulation was produced by HFD and PFOA in white fat and liver at 52 weeks of age. At 0.001 mg PFOA+HFD vs 0.001 mg PFOA+CD, 3 genes in white fat and liver were under-expressed while 14 genes in white fat and 19 in liver were over expressed. At 0.01 mg PFOA+HFD vs 0.01 mg PFOA+CD, 3 genes in white fat and 4 genes in liver were under-expressed while 14 genes in white fat an

  8. Hydrogen sulfide - cysteine cycle system enhances cadmium tolerance through alleviating cadmium-induced oxidative stress and ion toxicity in Arabidopsis roots

    PubMed Central

    Jia, Honglei; Wang, Xiaofeng; Dou, Yanhua; Liu, Dan; Si, Wantong; Fang, Hao; Zhao, Chen; Chen, Shaolin; Xi, Jiejun; Li, Jisheng

    2016-01-01

    Cadmium (Cd2+) is a common toxic heavy metal ion. We investigated the roles of hydrogen sulfide (H2S) and cysteine (Cys) in plant responses to Cd2+ stress. The expression of H2S synthetic genes LCD and DES1 were induced by Cd2+ within 3 h, and endogenous H2S was then rapidly released. H2S promoted the expression of Cys synthesis-related genes SAT1 and OASA1, which led to endogenous Cys accumulation. The H2S and Cys cycle system was stimulated by Cd2+ stress, and it maintained high levels in plant cells. H2S inhibited the ROS burst by inducing alternative respiration capacity (AP) and antioxidase activity. H2S weakened Cd2+ toxicity by inducing the metallothionein (MTs) genes expression. Cys promoted GSH accumulation and inhibited the ROS burst, and GSH induced the expression of phytochelatin (PCs) genes, counteracting Cd2+ toxicity. In summary, the H2S and Cys cycle system played a key role in plant responses to Cd2+ stress. The Cd2+ tolerance was weakened when the cycle system was blocked in lcddes1-1 and oasa1 mutants. This paper is the first to describe the role of the H2S and Cys cycle system in Cd2+ stress and to explore the relevant and specificity mechanisms of H2S and Cys in mediating Cd2+ stress. PMID:28004782

  9. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44.

    PubMed

    Bartheldyová, Eliška; Effenberg, Roman; Mašek, Josef; Procházka, Lubomír; Knötigová, Pavlína Turánek; Kulich, Pavel; Hubatka, František; Velínská, Kamila; Zelníčková, Jaroslava; Zouharová, Darina; Fojtíková, Martina; Hrebík, Dominik; Plevka, Pavel; Mikulík, Robert; Miller, Andrew D; Macaulay, Stuart; Zyka, Daniel; Drož, Ladislav; Raška, Milan; Ledvina, Miroslav; Turánek, Jaroslav

    2018-06-25

    New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.

  10. A Response Surface Methodology Approach to Investigate the Effect of Sulfur Dioxide, pH, and Ethanol on DbCD and DbVPR Gene Expression and on the Volatile Phenol Production in Dekkera/Brettanomyces bruxellensis CBS2499.

    PubMed

    Valdetara, Federica; Fracassetti, Daniela; Campanello, Alessia; Costa, Carlo; Foschino, Roberto; Compagno, Concetta; Vigentini, Ileana

    2017-01-01

    Dekkera/Brettanomyces bruxellensis , the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase ( DbCD ) and the vinylphenol reductase ( DbVPR ), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO 2 ) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO 2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC , DbALD , DbEF , DbACT , and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO 2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect ( p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO 2 , pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO 2 , pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect as individual factors. The obtained results can be useful to improve the SO 2 management at the grape harvesting and during winemaking in order to minimize the D./B. bruxellensis spoilage.

  11. Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium

    PubMed Central

    Cartularo, Laura; Laulicht, Freda; Sun, Hong; Kluz, Thomas; Freedman, Jonathan H.; Costa, Max

    2015-01-01

    Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the earth’s crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24 hours; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181 genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, and cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24 hours indicated a reduction in global levels of histone methylation and acetylation that persisted 72 hours post-treatment. PMID:26314618

  12. Natural Polymorphisms in Tap2 Influence Negative Selection and CD4∶CD8 Lineage Commitment in the Rat

    PubMed Central

    Tuncel, Jonatan; Haag, Sabrina; Yau, Anthony C. Y.; Norin, Ulrika; Baud, Amelie; Lönnblom, Erik; Maratou, Klio; Ytterberg, A. Jimmy; Ekman, Diana; Thordardottir, Soley; Johannesson, Martina; Gillett, Alan; Stridh, Pernilla; Jagodic, Maja; Olsson, Tomas; Fernández-Teruel, Alberto; Zubarev, Roman A.; Mott, Richard; Aitman, Timothy J.; Flint, Jonathan; Holmdahl, Rikard

    2014-01-01

    Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells. PMID:24586191

  13. Aggressive Phenotype of Cells Disseminated via Hematogenous and Lymphatic Route in Breast Cancer Patients.

    PubMed

    Markiewicz, Aleksandra; Nagel, Anna; Szade, Jolanta; Majewska, Hanna; Skokowski, Jaroslaw; Seroczynska, Barbara; Stokowy, Tomasz; Welnicka-Jaskiewicz, Marzena; Zaczek, Anna J

    2018-06-01

    Intratumoral heterogeneity of breast cancer remains a major challenge in successful treatment. Failure of cancer therapies can also be accredited to inability to systemically eradicate cancer stem cells (CSCs). Recent evidence points to the role of epithelial-mesenchymal transition (EMT) in expanding the pool of tumor cells with CSCs features. Thus, we assessed expression level as well as heterogeneity of CSCs markers in primary tumors (PT), lymph node metastasis (LNM), and circulating tumor cells (CTCs)-enriched blood fractions in order to correlate them with signs of EMT activation as well as clinicopathological data of breast cancer patients. Level of CSCs markers (ALDH1, CD44, CD133, OCT-4, NANOG) and EMT markers was quantified in PT (N=107), LNM (N=56), and CTCs-enriched blood fractions (N=85). Heterogeneity of CSCs markers expression within each PT and LNM was assessed by calculating Gini Index. Percentage of ALDH1-positive cells was elevated in PT in comparison to LNM (P = .005). However, heterogeneity of the four CSCs markers: ALDH1 (P = .019), CD133 (P = .009), OCT-4 (P = .027), and CD44 (P < .001) was decreased in LNM. Samples classified as mesenchymal (post-EMT) showed elevated expression of CSCs markers (OCT-4 and CD44 in PT; OCT-4 in LNM; ALDH1, OCT-4, NANOG, CD44 in CTCs). Patients with mesenchymal-like CTCs had worse prognosis than patients with epithelial-like or no CTCs (P = .0025). CSCs markers are enriched in PT, LNM, and CTCs with mesenchymal features, but their heterogeneity is decreased in metastatic lymph nodes. Mesenchymal CTCs phenotype correlates with poor prognosis of the patients. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells.

    PubMed

    Ventre, Erwan; Brinza, Lilia; Schicklin, Stephane; Mafille, Julien; Coupet, Charles-Antoine; Marçais, Antoine; Djebali, Sophia; Jubin, Virginie; Walzer, Thierry; Marvel, Jacqueline

    2012-10-01

    IL-4 is one of the main cytokines produced during Th2-inducing pathologies. This cytokine has been shown to affect a number of immune processes such as Th differentiation and innate immune responses. However, the impact of IL-4 on CD8 T cell responses remains unclear. In this study, we analyzed the effects of IL-4 on global gene expression profiles of Ag-induced memory CD8 T cells in the mouse. Gene ontology analysis of this signature revealed that IL-4 regulated most importantly genes associated with immune responses. Moreover, this IL-4 signature overlapped with the set of genes preferentially expressed by memory CD8 T cells over naive CD8 T cells. In particular, IL-4 downregulated in vitro and in vivo in a STAT6-dependent manner the memory-specific expression of NKG2D, thereby increasing the activation threshold of memory CD8 T cells. Furthermore, IL-4 impaired activation of memory cells as well as their differentiation into effector cells. This phenomenon could have an important clinical relevance as patients affected by Th2 pathologies such as parasitic infections or atopic dermatitis often suffer from viral-induced complications possibly linked to inefficient CD8 T cell responses.

  15. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    PubMed

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. [Expressions of angiogenesis-related factors: CD105, EphA2 and EphrinA1 in laryngeal squamous cell carcinoma and clinical implication].

    PubMed

    Su, J; Ji, X B; Xie, J H; Li, W

    2016-12-07

    Objective: To investigate the expressions of endoglin (CD105), erythropoietin-producing hepatocyte receptor A2 (EphA2) and its ligand ephrinA1 proteins in laryngeal squamous cell carcinoma (LSCC) and the relationship between their expressions and the clinicopathological factors of LSCC. Methods: The expressions of CD105, EphA2 and EphrinA1 proteins were detected with immunohistochemical staining in LSCC in 76 cases and adjacent normal laryngeal tissues (ANLT) (S-P) in 25 cases.SPSS 17.0 software was used to analyze the data. Results: The mean microvessel density (MVD) value marked by CD105 staining in LSCC was 10.33±2.29, which was significantly higher than that in ANLT(1.20±1.04, t =18.732, P <0.05). The CD105-MVD was correlated with T stage, histological grading, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (F value was 5.34, 4.79, 5.36, t value was -2.70, 2.56, all P <0.05). The positive expression rates of EphA2 and EphrinA1 in LSCC were 78.95% (60/76), and 81.85% (62/76), which were respectively significantly higher than 40% (10/25) for EphA2 expression and 44% (11/25) for EphrinA1, expression in ANLT (χ 2 value was 13.41, 13.26, both P <0.05). EphA2 expression was correlated with histological grading, T stage, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (χ 2 value was 6.25, 14.60, 15.11, 8.52, 5.54, all P <0.05). EphrinA1 expression was correlated with T stage, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (χ 2 value was 6.44, 12.28, 16.78, 6.44, all P <0.05). The expressions of CD105, EphA2 and EphrinA1 were positively correlated with each other r value was 0.72, 0.74, 0.64, all P <0.05. Survival analysis indicated that the expressions of CD105 and EphA2, histological grading, lymph node metastasis, clinical stage and recurrence were independent factors for tumor prognosis in LSCC ( P <0.05). Conclusions: The expressions of CD105, EphA2 and EphrinA1 protein were positively correlated with each other in LSCC. They may play important roles in the tumorigenesis, malignant progression and poor prognosis of LSCC.

  17. Research on DNA methylation of human osteosarcoma cell MGMT and its relationship with cell resistance to alkylating agents.

    PubMed

    Guo, Jun; Cui, Qiu; Jiang, WeiHao; Liu, Cheng; Li, DingFeng; Zeng, Yanjun

    2013-08-01

    The objective of this study was to explore the O(6)-methylguanine-DNA methyltransferase (MGMT) gene methylation status and its protein expression, as well as the effects of demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-CdR) on MGMT gene expression and its resistance to alkylating agents, and to elucidate MGMT expression mechanism and significance in osteosarcoma. The human osteosarcoma cell lines Saos-2 and MG-63 were collected and treated with 5-Aza-CdR for 6 days. The cells not treated with 5-Aza-CdR were set as a negative control. The genomic DNA was extracted from the Saos-2 and MG-63 cells using methylation-specific PCR to detect the promoter CpG island methylation status of the MGMT gene. Cell sensitivity to alkylating agents before and after drug administration was detected by the MTT method. The variation in MGMT gene mRNA and protein was detected by reverse transcription PCR (RT-PCR) and Western blotting. The MGMT promoter gene of normal Saos-2 cells was methylated, with reduced MGMT mRNA and protein expression; the MGMT mRNA and protein expression of Saos-2 cells treated with 5-Aza-CdR was obviously enhanced, and its sensitivity to alkylating agents was reversed. Meanwhile, with promoter CpG island unmethylation of the MGMT gene, MGMT protein was expressed in the normal MG-63 cells and the MG-63 cells treated with 5-Aza-CdR, and both showed resistance to alkylating agents. The methylation status of the MGMT gene promoter in human osteosarcoma cells reflected the cells' ability to induce MGMT protein expression and can be used as a molecular marker to project the sensitivity of cancer tissues to alkylating agent drugs.

  18. Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of ire1 signaling enzyme

    PubMed

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Riabovol, O O; Ratushna, O O; Karbovskyi, L L

    2016-01-01

    We have studied the effect of inhibition of IRE1 (inositol requiring enzyme 1), which is a central mediator of endoplasmic reticulum stress and a controller of cell proliferation and tumor growth, on hypoxic regulation of the expression of different proliferation related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of IL13RA2, CD24, ING1, ING2, ENDOG, and POLG genes and to down-regulation – of KRT18, TRAPPC3, TSFM, and MTIF2 genes at the mRNA level in control glioma cells. Changes for ING1 and CD24 genes were more significant. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes. In particular, it increases sensitivity to hypoxia of the expression of IL13RA2, TRAPPC3, ENDOG, and PLOG genes and suppresses the effect of hypoxia on the expression of ING1 gene. Additionally, it eliminates hypoxic regulation of KRT18, CD24, ING2, TSFM, and MTIF2 genes expressions and introduces sensitivity to hypoxia of the expression of BET1 gene in glioma cells. The present study demonstrates that hypoxia, which often contributes to tumor growth, affects the expression of almost all studied genes. Additionally, inhibition of IRE1 can both enhance and suppress the hypoxic regulation of these gene expressions in a gene specific manner and thus possibly contributes to slower glioma growth, but several aspects of this regulation must be further clarified.

  19. Spatiotemporal expression dynamics of selectins govern the sequential extravasation of neutrophils and monocytes in the acute inflammatory response.

    PubMed

    Zuchtriegel, Gabriele; Uhl, Bernd; Hessenauer, Maximilian E T; Kurz, Angela R M; Rehberg, Markus; Lauber, Kirsten; Krombach, Fritz; Reichel, Christoph A

    2015-04-01

    Leukocyte recruitment to the site of inflammation is a key event in a variety of cardiovascular pathologies. Infiltrating neutrophils constitute the first line of defense that precedes a second wave of emigrating monocytes reinforcing the inflammatory reaction. The mechanisms initiating this sequential process remained largely obscure. Using advanced in vivo microscopy and in vitro/ex vivo techniques, we identified individual spatiotemporal expression patterns of selectins and their principal interaction partners on neutrophils, resident/inflammatory monocytes, and endothelial cells. Coordinating the intraluminal trafficking of neutrophils and inflammatory monocytes to common sites of extravasation, selectins assign different sites to these immune cells for their initial interactions with the microvascular endothelium. Whereas constitutively expressed leukocyte L-selectin/CD62L and endothelial P-selectin/CD62P together with CD44 and P-selectin glycoprotein ligand-1/CD162 initiate the emigration of neutrophils, de novo synthesis of endothelial E-selectin/CD62E launches the delayed secondary recruitment of inflammatory monocytes. In this context, P-selectin/CD62P and L-selectin/CD62L together with P-selectin glycoprotein ligand-1/CD162 and CD44 were found to regulate the flux of rolling neutrophils and inflammatory monocytes, whereas E-selectin/CD62E selectively adjusts the rolling velocity of inflammatory monocytes. Moreover, selectins and their interaction partners P-selectin glycoprotein ligand-1/CD162 and CD44 differentially control the intraluminal crawling behavior of neutrophils and inflammatory monocytes collectively enabling the sequential extravasation of these immune cells to inflamed tissue. Our findings provide novel insights into the mechanisms initiating the sequential infiltration of the perivascular tissue by neutrophils and monocytes in the acute inflammatory response and might thereby contribute to the development of targeted therapeutic strategies for prevention and treatment of cardiovascular diseases. © 2015 American Heart Association, Inc.

  20. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.

  1. Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartularo, Laura; Laulicht, Freda; Sun, Hong

    Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the Earth's crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24 h; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181more » genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24 h indicated a reduction in global levels of histone methylation and acetylation that persisted 72 h post-treatment. - Highlights: • A common route of human exposure to the carcinogenic metal cadmium is via diet. • HepG2 cells were treated acutely or chronically with varying doses of cadmium. • Gene expression analysis was performed using Affymetrix Human Gene 1.0 Arrays. • Acute and chronic exposures altered the expression of 333 and 181 genes, respectively. • Acute cadmium exposure altered global levels of histone methylation and acetylation.« less

  2. [Stability analysis of reference gene based on real-time PCR in Artemisia annua under cadmium treatment].

    PubMed

    Zhou, Liang-Yun; Mo, Ge; Wang, Sheng; Tang, Jin-Fu; Yue, Hong; Huang, Lu-Qi; Shao, Ai-Juan; Guo, Lan-Ping

    2014-03-01

    In this study, Actin, 18S rRNA, PAL, GAPDH and CPR of Artemisia annua were selected as candidate reference genes, and their gene-specific primers for real-time PCR were designed, then geNorm, NormFinder, BestKeeper, Delta CT and RefFinder were used to evaluate their expression stability in the leaves of A. annua under treatment of different concentrations of Cd, with the purpose of finding a reliable reference gene to ensure the reliability of gene-expression analysis. The results showed that there were some significant differences among the candidate reference genes under different treatments and the order of expression stability of candidate reference gene was Actin > 18S rRNA > PAL > GAPDH > CPR. These results suggested that Actin, 18S rRNA and PAL could be used as ideal reference genes of gene expression analysis in A. annua and multiple internal control genes were adopted for results calibration. In addition, differences in expression stability of candidate reference genes in the leaves of A. annua under the same concentrations of Cd were observed, which suggested that the screening of candidate reference genes was needed even under the same treatment. To our best knowledge, this study for the first time provided the ideal reference genes under Cd treatment in the leaves of A. annua and offered reference for the gene expression analysis of A. annua under other conditions.

  3. CD25 expression status improves prognostic risk classification in AML independent of established biomarkers: ECOG phase 3 trial, E1900

    PubMed Central

    Gönen, Mithat; Sun, Zhuoxin; Figueroa, Maria E.; Patel, Jay P.; Abdel-Wahab, Omar; Racevskis, Janis; Ketterling, Rhett P.; Fernandez, Hugo; Rowe, Jacob M.; Tallman, Martin S.; Melnick, Ari; Levine, Ross L.

    2012-01-01

    We determined the prognostic relevance of CD25 (IL-2 receptor-α) expression in 657 patients (≤ 60 years) with de novo acute myeloid leukemia (AML) treated in the Eastern Cooperative Oncology Group trial, E1900. We identified CD25POS myeloblasts in 87 patients (13%), of whom 92% had intermediate-risk cytogenetics. CD25 expression correlated with expression of stem cell antigen CD123. In multivariate analysis, controlled for prognostic baseline characteristics and daunorubicin dose, CD25POS patients had inferior complete remission rates (P = .0005) and overall survival (P < .0001) compared with CD25NEG cases. In a subset of 396 patients, we integrated CD25 expression with somatic mutation status to determine whether CD25 impacted outcome independent of prognostic mutations. CD25 was positively correlated with internal tandem duplications in FLT3 (FLT3-ITD), DNMT3A, and NPM1 mutations. The adverse prognostic impact of FLT3-ITDPOS AML was restricted to CD25POS patients. CD25 expression improved AML prognostication independent of integrated, cytogenetic and mutational data, such that it reallocated 11% of patients with intermediate-risk disease to the unfavorable-risk group. Gene expression analysis revealed that CD25POS status correlated with the expression of previously reported leukemia stem cell signatures. We conclude that CD25POS status provides prognostic relevance in AML independent of known biomarkers and is correlated with stem cell gene-expression signatures associated with adverse outcome in AML. PMID:22855599

  4. BRCA1-IRIS overexpression promotes and maintains the tumor initiating phenotype: implications for triple negative breast cancer early lesions

    PubMed Central

    Sullivan, Lisa M.; Sims, Hillary; Bastawisy, Ahmed El; Yousef, Hend F.; Zekri, Abdel-Rahman N.; Bahnassy, Abeer A.; ElShamy, Wael M.

    2017-01-01

    Tumor-initiating cells (TICs) are cancer cells endowed with self-renewal, multi-lineage differentiation, increased chemo-resistance, and in breast cancers the CD44+/CD24-/ALDH1+ phenotype. Triple negative breast cancers show lack of BRCA1 expression in addition to enhanced basal, epithelial-to-mesenchymal transition (EMT), and TIC phenotypes. BRCA1-IRIS (hereafter IRIS) is an oncogene produced by the alternative usage of the BRCA1 locus. IRIS is involved in induction of replication, transcription of selected oncogenes, and promoting breast cancer cells aggressiveness. Here, we demonstrate that IRIS overexpression (IRISOE) promotes TNBCs through suppressing BRCA1 expression, enhancing basal-biomarkers, EMT-inducers, and stemness-enforcers expression. IRISOE also activates the TIC phenotype in TNBC cells through elevating CD44 and ALDH1 expression/activity and preventing CD24 surface presentation by activating the internalization pathway EGFR→c-Src→cortactin. We show that the intrinsic sensitivity to an anti-CD24 cross-linking antibody-induced cell death in membranous CD24 expressing/luminal A cells could be acquired in cytoplasmic CD24 expressing IRISOE TNBC/TIC cells through IRIS silencing or inactivation. We show that fewer IRISOE TNBC/TICs cells form large tumors composed of TICs, resembling TNBCs early lesions in patients that contain metastatic precursors capable of disseminating and metastasizing at an early stage of the disease. IRIS-inhibitory peptide killed these IRISOE TNBC/TICs, in vivo and prevented their dissemination and metastasis. We propose IRIS inactivation could be pursued to prevent dissemination and metastasis from early TNBC tumor lesions in patients. PMID:28052035

  5. Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells.

    PubMed

    Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng

    2017-04-01

    Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.

  6. Lineage mapping and characterization of the native progenitor population in cellular allograft.

    PubMed

    Neman, Josh; Duenas, Vincent; Kowolik, Claudia; Hambrecht, Amanda; Chen, Mike; Jandial, Rahul

    2013-02-01

    The gold standard for bone grafting remains the autograft. However, the attractiveness of autograft is counterbalanced by donor site morbidity. To mimic autograft-and its fundamental properties of osteoconductivity, osteoinductivity, and osteogenicity-novel bone grafting materials such as cellular allograft (Osteocel Plus) are composed of allograft in which the progenitor cells are preserved. However, the true identity of these cells remains obscure largely due to the lack of specific bona fide antigenic markers for stem versus progenitor cells. To characterize the stem and progenitor population in cellular allograft, Osteocel Plus. To determine whether cells endogenous to a cellular allograft undergo extensive self-renewal (a functional hallmark of stem cells), we employed a novel use of lineage mapping using a modern and refined replication incompetent lentiviral library with high complexity to uniquely label single cells with indelible genetic tags faithfully passed on to all progeny, allowing identification of highly proliferative clones. We used genetic and proteomic profiling as well as functional assays to show that these cells are capable of multipotential differentiation (the second functional hallmark of stem cells). Use of these two functional hallmarks enabled us to establish the existence of a stem and progenitor cell population in cellular allografts. Specifically, we employed (1) cellular dissociation and (2) in vitro expansion and differentiation capacity of cells released from cellular allograft. We determined differential gene expression profiling of a bona fide human mesenchymal stem cell line and cells from cellular allograft using focused PCR arrays mesenchymal stem cell (MSC) and osteogenesis associated. Proteomic profiling of cells from cellular allograft was performed using (1) immunofluorescence for BMP-2, Runx2 SMADs, CD44, Stro-1, Collagen, RANKL, Osterix Osteocalcin, and Ki67; (2) flow cytometry for Ki67, CD44, Stro-1, Thy1, CD146, and Osteocalcin; and (3) enzyme-linked immunosorbent assays (ELISA) for BMP-2, Osteocalcin, RANKL, Osteoprotegrin, and Osteocalcin. Clonal analysis of cells from cellular allograft was performed utilizing advance lentivirus lineage mapping techniques and massive parallel sequencing. Alizarin Red, Alcian Blue, and Oil red O staining assessed tripotential differentiation capacity. Serial trypsinization of allograft cellular bone matrix yielded approximately 1×105 cells per mL with viability greater than 90%. Cells expressed a panel of 84 MSC-associated genes in a pattern similar to but not identical to pure MSCs; specifically, 59 of 84 genes showed less than a 2.5-fold change in both cell types. Protein analysis showed that cellular allograft -derived cells maintained in nondifferentiation media expressed the early osteo-progenitor markers BMP-2, SMADs, and Runx2. Corresponding flow cytometry data for MSC markers revealed the presence of Stro-1 (49%), CD44 (99%), CD90 (42%), and CD146 (97%). Lineage mapping indicated that 62% of clones persisted and generated progeny through 10 passages, strongly suggesting the presence of bona fide stem cells. Passage 10 clones also exhibited tri-lineage differentiation capacity into osteogenic (Alizarin Red with H&E counterstain), chondrogenic (Alcian Blue), and adipogenic (Oil red O). Cells that did not proliferate through 10 passages presumably differentiated along an osteo-progenitor lineage. These data indicate that cellular allograft (Osteocel Plus) contains a heterogeneous population of cells with most cells demonstrating the capacity for extensive self-renewal and multipotential differentiation, which are hallmarks of stem cells. Whether stem cell-enriched allografts function comparably to autograft will require further studies, and their efficacy in facilitating arthrodesis will depend on randomized clinical studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy.

    PubMed

    Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping

    2013-01-01

    The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.

  8. Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Z.; Chen, S.; Wilson, D.B.

    1999-11-01

    An Mn{sup 2+} and Cd{sup 2+} uptake gene, mntA, was cloned from Lactobacillus plantarum ATCC 14917 into Escherichia coli. Its expression conferred on E. coli cells increased Cd{sup 2+} sensitivity as well as energy-dependent Cd{sup 2+} uptake activity. Both transcription and translation of mntA were induced by Mn{sup 2+} starvation in L. plantarum, as indicated by reverse transcriptase PCR and immunoblotting. Two Cd{sup 2+} uptake systems have been identified in L. plantarum: one is a high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system that is expressed in Mn{sup 2+}-starved cells, and the other is a nonsaturable Cd{sup 2+} uptake systemmore » that is expressed in Cd{sup 2+}-sufficient cells. MntA was not detected in an Mn{sup 2+}-dependent mutant of L. plantarum which had lost high-affinity Mn{sup 2+} and Cd{sup 2+} uptake activity. The results suggest that mntA is the gene encoding the high-affinity Mn{sup 2+} and Cd{sup 2+} transporter. On the basis of its predicted amino acid sequence, MntA belongs to the family of P-type cation-translocating ATPases. The topology and potential Mn{sup 2+}- and Cd{sup 2+}-binding sites of MntA are discussed. A second clone containing a low-affinity Cd{sup 2+} transport system was also isolated.« less

  9. Associations Between Markers of Colorectal Cancer Stem Cells and Adenomas Among Ethnic Groups

    PubMed Central

    Leavell, Bonita J.; Van Buren, Eric; Antaki, Fadi; Axelrod, Bradley N.; Rambus, Mary Ann; Majumdar, Adhip P. N.

    2013-01-01

    Background and Purposes Most colorectal tumors develop from adenomatous polyps, which are detected by colonoscopy. African Americans (AAs) have higher incidence of colorectal cancer (CRC) and greater mortality from this disease than Caucasian Americans (CAs). We investigated whether differences in predisposition to CRC and its surrogate (colonic adenomas) between these ethnic groups were related to numbers of cancer stem or stem-like cells (CSCs) in colonocytes. Methods We analyzed colonic effluent from 11 AA and 14 CA patients who underwent scheduled colonoscopy examinations at the John D. Dingell Veterans Affairs Medical Center. We determined proportions of cells that expressed the CSC markers CD44 and CD166 by flow cytometry. Results The proportion of colonocytes that were CD44+CD166– in effluent from patients with adenomas was significantly greater than from patients without adenomas (P = 0.01); the proportion of CD44+CD166+ colonocytes was also greater (P = 0.07). Effluent from AAs with adenomas had 60 % more CD44+166– colonocytes than from CAs with adenomas. Using cutoff values of 8 % for AAs and 3 % for CAs, the proportion of CD44+166– colonocytes that had positive predictive value for detection of adenomas was 100 % for AAs and CAs, determined by receiver operator characteristic curve analysis. Conclusion The proportion of CD44+166– colonocytes in colonic effluent can be used to identify patients with adenoma. AAs with adenomas have a higher proportion of CD44+166– colonocytes than CA. The increased proportion of CSCs in colonic tissue from AA might be associated with the increased incidence of CRC in this population. PMID:22562538

  10. Blocking the Adhesion Cascade at the Premetastatic Niche for Prevention of Breast Cancer Metastasis

    PubMed Central

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-01-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)–/CD44+ hormone-independent breast cancer cells, but not of the ER+/CD44-/low hormone-dependent breast cancer cells. Coincidentally, CD44+ breast cancer cells were abundant in metastatic lung and brain lesions in ER– breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER–/CD44+ breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44+ cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER–/CD44+ breast cancer. PMID:25815697

  11. Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis.

    PubMed

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-06-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.

  12. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus).

    PubMed

    Wu, Zhichao; Zhao, Xiaohu; Sun, Xuecheng; Tan, Qiling; Tang, Yafang; Nie, Zhaojun; Hu, Chengxiao

    2015-01-01

    Cadmium (Cd) is a toxic metal which harms human health through food chains. The mechanisms underlying Cd accumulation in oilseed rape are still poorly understood. Here, we investigated the physiological and genetic processes involved in Cd uptake and transport of two oilseed rape cultivars (Brassica napus). L351 accumulates more Cd in shoots but less in roots than L338. A scanning ion-selective electrode technique (SIET) and uptake kinetics of Cd showed that roots were not responsible for the different Cd accumulation in shoots since L351 showed a lower Cd uptake ability. However, concentration-dependent and time-dependent dynamics of Cd transport by xylem showed L351 exhibited a superordinate capacity of Cd translocation to shoots. Additionally, the Cd concentrations of shoots and xylem sap showed a great correlation in both cultivars. Furthermore, gene expression levels related to Cd uptake by roots (IRT1) and Cd transport by xylem (HMA2 and HMA4) were consistent with the tendencies of Cd absorption and transport at the physiological level respectively. In other words, L351 had stronger gene expression for Cd transport but lower for Cd uptake. Overall, results revealed that the process of Cd translocation to shoots is a determinative factor for Cd accumulation in shoots, both at physiological and genetic levels. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  14. Gene expression of cell surface antigens in the early phase of murine influenza pneumonia determined by a cDNA expression array technique.

    PubMed

    Sakai, Shinya; Mantani, Naoki; Kogure, Toshiaki; Ochiai, Hiroshi; Shimada, Yutaka; Terasawa, Katsutoshi

    2002-12-01

    Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especially in vivo study. To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis. Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided. We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.

  15. Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer.

    PubMed

    McGowan, Patricia M; Simedrea, Carmen; Ribot, Emeline J; Foster, Paula J; Palmieri, Diane; Steeg, Patricia S; Allan, Alison L; Chambers, Ann F

    2011-07-01

    Brain metastasis from breast cancer is an increasingly important clinical problem. Here we assessed the role of CD44(hi)/CD24(lo) cells and pathways that regulate them, in an experimental model of brain metastasis. Notch signaling (mediated by γ-secretase) has been shown to contribute to maintenance of the cancer stem cell (CSC) phenotype. Cells sorted for a reduced stem-like phenotype had a reduced ability to form brain metastases compared with unsorted or CD44(hi)/CD24(lo) cells (P < 0.05; Kruskal-Wallis). To assess the effect of γ-secretase inhibition, cells were cultured with DAPT and the CD44/CD24 phenotypes quantified. 231-BR cells with a CD44(hi)/CD24(lo) phenotype was reduced by about 15% in cells treated with DAPT compared with DMSO-treated or untreated cells (P = 0.001, ANOVA). In vivo, mice treated with DAPT developed significantly fewer micro- and macrometastases compared with vehicle treated or untreated mice (P = 0.011, Kruskal-Wallis). Notch1 knockdown reduced the expression of CD44(hi)/CD24(lo) phenotype by about 20%. In vitro, Notch1 shRNA resulted in a reduction in cellular growth at 24, 48, and 72 hours time points (P = 0.033, P = 0.002, and P = 0.009, ANOVA) and about 60% reduction in Matrigel invasion was observed (P < 0.001, ANOVA). Cells transfected with shNotch1 formed significantly fewer macrometastases and micrometastases compared with scrambled shRNA or untransfected cells (P < 0.001; Kruskal-Wallis). These data suggest that the CSC phenotype contributes to the development of brain metastases from breast cancer, and this may arise in part from increased Notch activity. ©2011 AACR.

  16. Epidermal growth factor/heat shock protein 27 pathway regulates vasculogenic mimicry activity of breast cancer stem/progenitor cells.

    PubMed

    Lee, Che-Hsin; Wu, Yu-Ting; Hsieh, Hung-Chun; Yu, Yun; Yu, Alice L; Chang, Wen-Wei

    2014-09-01

    Tumor vascularization, which is mainly contributed by angiogenesis and vascularization, is necessary for tumor maintenance and progression. Vasculogenic mimicry (VM), vascular-like channels which are lack of the involvement of endothelial cells, has been observed in aggressive cancers and also involves in tumor vascularization. Breast cancer stem/progenitor cells (BCSCs) have been identified as a subpopulation of breast cancer cells with markers of CD24(-)CD44(+), high aldehyde dehydrogenase activity (ALDH(+)) or could be enriched by mammosphere cultivation. These cells have been proven to be associated with tumor vascularization. Here we investigated the molecular mechanisms in VM activity of BCSCs. By periodic acid-Schiff or hematoxylin-eosin stain, we found that there were VM structures in two xenografted human breast cancer tissues established from CD24(-)CD44(+) or ALDH(+) cells. Only ALDH(+) or mammosphere-forming BCSCs could form tube structures on matrigel-coated surface as similar as microvascular endothelial cells. Inhibition of the phosphorylation of epidermal growth factor receptor (EGFR) by gefitinib or knockdown of EGFR by lentiviral shRNA abolished the in vitro VM activity of BCSCs. By quercetin treatment, a plant flavonoid compound which is known to suppress heat shock proteins, or siRNA-mediated gene silencing, both Hsp27 expression and VM capability of BCSCs were suppressed. Forced expression of phosphor-mimic form of Hsp27 in ALDH(+) BCSCs could overcome the inhibitory effect of gefitinib. In conclusion, our data demonstrate that VM activity of BCSCs is mediated by EGF/Hsp27 signaling and targeting this pathway may benefit to breast cancer therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. [Markers of stromal invasion during background and precancerous changes of the glandular epithelium and in adenocarcinoma of the cervix uteri].

    PubMed

    Danilova, N V; Andreeva, Iu Iu; Zavalishina, L É; Mal'kov, P G

    2012-01-01

    It is very difficult to identify stromal invasion when the glandular epithelium of the cervix uteri is involved. It is necessary to draw a clear distinction between its glandular structures and adenocarcinoma in situ, involving the preexisting crypts and invasive glands. An attempt was made to assess the possibilities of using as markers of invasion the following stromal proteins and adhesion molecules: CD44, E-cadherin, beta-catenin, tenascin, and laminin. Fifty-three cases of benign glandular changes, 66 cases of dysplasias and adenocarcinomas in situ, and 47 cases of invasive adenocarcinoma were examined. An immunohistochemical study was performed according to the standard protocol using the antibodies to CD44, laminin, tenascin, E-cadherin, and beta-catenin and a semiquantitative assessment of results was made. CD44 was found to be redistributed from the cells to the tumor stroma. CD44 was not detected in the stroma surrounding the intact glands, so were benign epithelial changes. In the tumor environment, there was, on the contrary, a reaction with CD44 in 74.5% of invasive adenocarcinomas cases (p < 0.05). The expression of tenascin in the invasive adenocarcinomas and around the foci of early stromal invasion significantly exceeded that in the stroma around the intact glands and dysplastic changes (p < 0.05). All the study groups showed a membrane reaction with E-cadherin and beta-catenin, which probably suggested that changes were absent in the Wnt signaling pathway. In 70.2% of invasive adenocarcinomas, laminin demonstrated a significant cytoplasmic expression in 5-30% of the tumor cells predominantly located along the tumor invasion area or in the deepest tumor complexes (p > 0.05). CD44 and tenascin are of great diagnostic value in examining invasive and microinvasive adenocarcinomas of the cervix uteri. E-cadherin and beta-catenin are of no diagnostic value in the study groups of pathological processes. Laminin is a potential marker of stromal invasion; however, its expression calls for further investigation.

  18. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    PubMed Central

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer reactivity mediated by CD8+ T cells double gene-modified to express WT1-specific TCR and CCR2 not only via CCL2-tropic tumor trafficking, but also CCL2-enhanced WT1-responsiveness. PMID:23441216

  19. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance.

    PubMed

    Pan, Fengshan; Meng, Qian; Wang, Qiong; Luo, Sha; Chen, Bao; Khan, Kiran Yasmin; Yang, Xiaoe; Feng, Ying

    2016-07-01

    A hydroponic experiment was conducted to verify the effects of inoculation with endophytic bacteria Sphingomonas SaMR12 on root growth, cadmium (Cd) uptake, reactive oxygen species (ROS), antioxidases, glutathione (GSH) and the related gene expression of Sedum alfredii Hance under different levels of Cd such as 0, 10, 25, 100 and 400 μM. The results showed that inoculation of SaMR12 improved Cd accumulation and upregulated glutathione synthase (GS) expression, but slightly reduced malondialdehyde (MDA) concentration and alleviated Cd-induced damage in roots. However it didn't alter the activities of antioxidant enzymes. When Cd concentration exceeded 25 μM, SaMR12 increased the concentration of GSH and the expression level of GSH1. At high Cd treatment levels (100 and 400 μM), SaMR12 significantly reduced H2O2 concentration and enhanced expression level of 1-Cys peroxiredoxin PER1 and ATPS genes. These results indicate that although SaMR12 has no significant effects on antioxidases activities, it reduces H2O2 concentration by enhancing GSH concentration and relevant genes expression, and subsequently improves Cd tolerance and accumulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    PubMed

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P < 0.01). After 72 hours of transfection, average down-regulation rate of CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P < 0.05), while TIMP-2 mRNA expression showed no significant deference (P > 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P < 0.05). After 24 hours of transection, average migration distance of MDA-MB-231 cell line and control group were (0.64 ± 0.12) mm and (4.69 ± 0.85) mm, respectively, which indicated a lower migrate speed. Down regulation of CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P < 0.05), with an average tumor mass of (1.85 ± 0.98) g and both reduction of tumor size and tumor mass. CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  1. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy.

    PubMed

    Sharrow, Allison C; Perkins, Brandy; Collector, Michael I; Yu, Wayne; Simons, Brian W; Jones, Richard J

    2016-08-01

    The cancer stem cell (CSC) paradigm hypothesizes that successful clinical eradication of CSCs may lead to durable remission for patients with ovarian cancer. Despite mounting evidence in support of ovarian CSCs, their phenotype and clinical relevance remain unclear. We and others have found high aldehyde dehydrogenase 1 (ALDH(high)) expression in a variety of normal and malignant stem cells, and sought to better characterize ALDH(high) cells in ovarian cancer. We compared ALDH(high) to ALDH(low) cells in two ovarian cancer models representing distinct subtypes: FNAR-C1 cells, derived from a spontaneous rat endometrioid carcinoma, and the human SKOV3 cell line (described as both serous and clear cell subtypes). We assessed these populations for stem cell features then analyzed expression by microarray and qPCR. ALDH(high) cells displayed CSC properties, including: smaller size, quiescence, regenerating the phenotypic diversity of the cell lines in vitro, lack of contact inhibition, nonadherent growth, multi-drug resistance, and in vivo tumorigenicity. Microarray and qPCR analysis of the expression of markers reported by others to enrich for ovarian CSCs revealed that ALDH(high) cells of both models showed downregulation of CD24, but inconsistent expression of CD44, KIT and CD133. However, the following druggable targets were consistently expressed in the ALDH(high) cells from both models: mTOR signaling, her-2/neu, CD47 and FGF18/FGFR3. Based on functional characterization, ALDH(high) ovarian cancer cells represent an ovarian CSC population. Differential gene expression identified druggable targets that have the potential for therapeutic efficacy against ovarian CSCs from multiple subtypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Production and first-in-man use of T cells engineered to express a HSVTK-CD34 sort-suicide gene.

    PubMed

    Zhan, Hong; Gilmour, Kimberly; Chan, Lucas; Farzaneh, Farzin; McNicol, Anne Marie; Xu, Jin-Hua; Adams, Stuart; Fehse, Boris; Veys, Paul; Thrasher, Adrian; Gaspar, Hubert; Qasim, Waseem

    2013-01-01

    Suicide gene modified donor T cells can improve immune reconstitution after allogeneic haematopoietic stem cell transplantation (SCT), but can be eliminated in the event of graft versus host disease (GVHD) through the administration of prodrug. Here we report the production and first-in-man use of mismatched donor T cells modified with a gamma-retroviral vector expressing a herpes simplex thymidine kinase (HSVTK):truncated CD34 (tCD34) suicide gene/magnetic selection marker protein. A stable packaging cell line was established to produce clinical grade vector pseudotyped with the Gibbon Ape Leukaemia Virus (GALV). T cells were transduced in a closed bag system following activation with anti-CD3/CD28 beads, and enriched on the basis of CD34 expression. Engineered cells were administered in two escalating doses to three children receiving T-depleted, CD34 stem cell selected, mismatched allogeneic grafts. All patients had pre-existing viral infections and received chemotherapy conditioning without serotherapy. In all three subjects cell therapy was tolerated without acute toxicity or the development of acute GVHD. Circulating gene modified T cells were detectable by flow cytometry and by molecular tracking in all three subjects. There was resolution of virus infections, concordant with detectable antigen-specific T cell responses and gene modified cells persisted for over 12 months. These findings highlight the suitability of tCD34 as a GMP compliant selection marker and demonstrate the feasibility, safety and immunological potential of HSVTK-tCD34 suicide gene modified donor T cells. ClinicalTrials.gov NCT01204502

  3. T-lymphocyte and cytokine expression in human inflammatory periapical lesions.

    PubMed

    de Brito, Luciana Carla Neves; Teles, Flávia Rocha Fonseca; Teles, Ricardo Palmier; Totola, Antônio Helvécio; Vieira, Leda Quércia; Sobrinho, Antônio Paulino Ribeiro

    2012-04-01

    Lymphocytes, among many cells, express different sets of cytokines, chemokines, and receptors, which are considered important mediators of periapical immune response to infection. The aim of this study was to evaluate the mRNA expression of CD4(+)CD28(+) and CD8(+) T genes and the gene expression of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-17A, IL-10, CCL2/MCP-1, CCL4, CCL5, CXCR4, CCR5, and receptor activator for nuclear factor kappa B ligand (RANKL) in periapical interstitial fluid from human root canal infections. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions. Real-time polymerase chain reaction demonstrated significantly higher levels of CD4(+)CD28(+) and CD8(+) T-cell markers in the former root canal condition and an increase of IL-10 and CXCR4, followed by a decrease of proinflammatory cytokines such as RANKL, interferon-γ, IL-1β, and CCL5. Analyses of T-lymphocyte and cytokine expression in periapical area were able to show that distinct root canal conditions might play regulatory roles in controlling local immune/inflammatory processes. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Minjie; Li, Yanjun; Zhang, Li; Wang, Jianying; Zheng, Chunli; Zhang, Xuefeng

    2015-02-01

    Acidithiobacillus ferrooxidans plays a critical role in metal solubilization in the biomining industry, and occupies an ecological niche characterized by high acidity and high concentrations of toxic heavy metal ions. In order to investigate the possible metal resistance mechanism, the cellular distribution of cadmium was tested. The result indicated that Cd(2+) entered the cells upon initial exposure resulting in increased intracellular concentrations, followed by its excretion from the cells during subsequent growth and adaptation. Sequence homology analyses were used to identify 10 genes predicted to participate in heavy metal homeostasis, and the expression of these genes was investigated in cells cultured in the presence of increasing concentrations of toxic divalent cadmium (Cd(2+)). The results suggested that one gene (cmtR A.f ) encoded a putative Cd(2+)/Pb(2+)-responsive transcriptional regulator; four genes (czcA1 A.f , czcA2 A.f , czcB1 A.f ; and czcC1 A.f ) encoded heavy metal efflux proteins for Cd(2+); two genes (cadA1 A.f and cadB1 A.f ) encoded putative cation channel proteins related to the transport of Cd(2+). No significant enhancement of gene expression was observed at low concentrations of Cd(2+) (5 mM) and most of the putative metal resistance genes were up-regulated except cmtR A.f , cadB3 A.f ; and czcB1 A.f at higher concentrations (15 and 30 mM) according to real-time polymerase chain reaction. A model was developed for the mechanism of resistance to cadmium ions based on homology analyses of the predicted genes, the transcription of putative Cd(2+) resistance genes, and previous work.

  5. Organotypic culture of normal, dysplastic and squamous cell carcinoma-derived oral cell lines reveals loss of spatial regulation of CD44 and p75 NTR in malignancy.

    PubMed

    Dalley, Andrew J; AbdulMajeed, Ahmad A; Upton, Zee; Farah, Camile S

    2013-01-01

    Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75(NTR), CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75(NTR) was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75(NTR), CD24 antigens and ALDH activity (ALDEFLUOR(®) assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells. © 2012 John Wiley & Sons A/S.

  6. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.

  7. Immune signatures of protective spleen memory CD8 T cells.

    PubMed

    Brinza, Lilia; Djebali, Sophia; Tomkowiak, Martine; Mafille, Julien; Loiseau, Céline; Jouve, Pierre-Emmanuel; de Bernard, Simon; Buffat, Laurent; Lina, Bruno; Ottmann, Michèle; Rosa-Calatrava, Manuel; Schicklin, Stéphane; Bonnefoy, Nathalie; Lauvau, Grégoire; Grau, Morgan; Wencker, Mélanie; Arpin, Christophe; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline

    2016-11-24

    Memory CD8 T lymphocyte populations are remarkably heterogeneous and differ in their ability to protect the host. In order to identify the whole range of qualities uniquely associated with protective memory cells we compared the gene expression signatures of two qualities of memory CD8 T cells sharing the same antigenic-specificity: protective (Influenza-induced, Flu-TM) and non-protective (peptide-induced, TIM) spleen memory CD8 T cells. Although Flu-TM and TIM express classical phenotypic memory markers and are polyfunctional, only Flu-TM protects against a lethal viral challenge. Protective memory CD8 T cells express a unique set of genes involved in migration and survival that correlate with their unique capacity to rapidly migrate within the infected lung parenchyma in response to influenza infection. We also enlighten a new set of poised genes expressed by protective cells that is strongly enriched in cytokines and chemokines such as Ccl1, Ccl9 and Gm-csf. CCL1 and GM-CSF genes are also poised in human memory CD8 T cells. These immune signatures are also induced by two other pathogens (vaccinia virus and Listeria monocytogenes). The immune signatures associated with immune protection were identified on circulating cells, i.e. those that are easily accessible for immuno-monitoring and could help predict vaccines efficacy.

  8. Human T-lymphotropic virus type I-associated myelopathy and tax gene expression in CD4+ T lymphocytes.

    PubMed

    Moritoyo, T; Reinhart, T A; Moritoyo, H; Sato, E; Izumo, S; Osame, M; Haase, A T

    1996-07-01

    Infection by human T-lymphotropic virus type I (HTLV-I) is associated with adult T-cell leukemia and a slowly progressive disease of the central nervous system (CNS), HTLV-I-associated myelopathy/tropical spastic paraparesis, characterized pathologically by inflammation and white matter degeneration in the spinal cord. One of the explanations for the tissue destruction is that HTLV-I infects cells in the CNS, or HTLV-I-infected CD4+ T lymphocytes enter the CNS, and this drives local expansion of virus-specific CD8+ cytotoxic T lymphocytes, which along with cytokines cause the pathological changes. Because both in the circulation and in the cerebrospinal fluid, CD8+ cytotoxic T lymphocytes are primarily reactive to the product of the HTLV-I tax gene, we sought evidence of expression of this gene within cells in the inflammatory lesions. After using double-label in situ hybridization techniques, we now report definitive localization of HTLV-I tax gene expression in CD4+ T lymphocytes in areas of inflammation and white matter destruction. These findings lend support to a hypothetical scheme of neuropathogenesis in which HTLV-I tax gene expression provokes and sustains an immunopathological process that progressively destroys myelin and axons in the spinal cord.

  9. [The Role of 5-Aza-CdR on Methylation of Promoter in RASSF1A Gene in Endometrial Carcinoma].

    PubMed

    Huang, Li-ping; Chen, Chen; Wang, Xue-ping; Liu, Hui

    2015-05-01

    To explore the effect of demethylating drug 5-Aza-2'-deoxycytidine (5-Aza-CdR) on methtylation status of the Ras-association domain familylA gene (RASSF1A) in human endometrial carcinoma. Randomly'assign the human endometrial carcinoma cell line HEC-1-B into groups and use demethylating drug 5-Aza-CdR of different concentration to treat them. Then Methylation-specific polymerase chain reaction (MSP), real-time PCR, Western blot, TUNEL technology were used to analyze methylation status of RASSF1A promoter CpG islands, RASSF1A mRNA expression, RASSF1A protein expression and apoptosis of HEC-1-B cell. High DNA methylation in RASSF1A gene promoter region, low RASSF1A mRNA level and protein expression and out of control of human endometrial carcinoma cell HEC-1-B apoptosis were observed. 5-Aza-CdR of different concentration could reverse RASSF1A gene's methylation status, recover the expression of mRNA and protein, and control the growth of HEC-1-B by inducing apoptosis. Aberrant methylation of RASSF1A in endometrial cancer as a therapeutic target, demethylating agent 5-Aza-CdR could be an effective way of gene therapy.

  10. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.

    PubMed

    Hey, Ying-Ying; O'Neill, Helen C

    This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.

  11. Isolation of stem-like cells from spontaneous feline mammary carcinomas: phenotypic characterization and tumorigenic potential.

    PubMed

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming

    PubMed Central

    Marzec, Michal; Halasa, Krzysztof; Liu, Xiaobin; Wang, Hong Y.; Cheng, Mangeng; Baldwin, Donald; Tobias, John W.; Schuster, Stephen J.; Woetmann, Anders; Zhang, Qian; Turner, Suzanne D.; Odum, Niels; Wasik, Mariusz A.

    2013-01-01

    Anaplastic lymphoma kinase (ALK) physiologically expressed only by nervous system cells displays remarkable capacity to transform CD4+ T lymphocytes and other types of non-neural cells. Here we report that activity of nucleophosphmin (NPM)/ALK chimeric protein, the dominant form of ALK expressed in T-cell lymphomas (ALK+TCL), closely resembles cell activation induced by interleukin 2 (IL-2), the key cytokine supporting growth and survival of normal CD4+ T lymphocytes. Direct comparison of gene expression by ALK+TCL cells treated with an ALK inhibitor and IL-2-dependent ALK-TCL cells stimulated with the cytokine revealed a very similar, albeit inverse, gene regulation pattern. Depending on the analysis method, up to 67% of the modulated genes could be defined as modulated in common by NPM/ALK and IL-2. Based on the gene expression patterns, Jak/STAT and IL-2 signaling pathways topped the list of pathways identified as affected by both IL-2 and NPM/ALK. The expression dependence on NPM/ALK and IL-2 of the five selected genes: CD25 (IL-2Rα), Egr-1, Fosl-1, SOCS3, and Irf-4 was confirmed at the protein level. In both ALK+TCL and IL-2-stimulated ALK-TCL cells, CD25, SOCS3, and Irf-4 genes were activated predominantly by the STAT5 and STAT3 transcription factors, while transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms the target CD4+ T lymphocytes, at least in part, by utilizing the pre-existing, IL-2-dependent signaling pathways. PMID:24218456

  13. Cancer stem cell-related gene expression as a potential biomarker of response for first-in-class imipridone ONC201 in solid tumors.

    PubMed

    Prabhu, Varun V; Lulla, Amriti R; Madhukar, Neel S; Ralff, Marie D; Zhao, Dan; Kline, Christina Leah B; Van den Heuvel, A Pieter J; Lev, Avital; Garnett, Mathew J; McDermott, Ultan; Benes, Cyril H; Batchelor, Tracy T; Chi, Andrew S; Elemento, Olivier; Allen, Joshua E; El-Deiry, Wafik S

    2017-01-01

    Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies.

  14. Cancer stem cell-related gene expression as a potential biomarker of response for first-in-class imipridone ONC201 in solid tumors

    PubMed Central

    Zhao, Dan; Kline, Christina Leah B.; Van den Heuvel, A. Pieter J.; Lev, Avital; Garnett, Mathew J.; McDermott, Ultan; Benes, Cyril H.; Batchelor, Tracy T.; Chi, Andrew S.; Elemento, Olivier; Allen, Joshua E.

    2017-01-01

    Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies. PMID:28767654

  15. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp.

    PubMed

    Miyazawa, Ryuichiro; Murata, Norifumi; Matsuura, Yuta; Shibasaki, Yasuhiro; Yabu, Takeshi; Nakanishi, Teruyuki

    2018-01-01

    TCR/CD3 complex is composed of the disulfide-linked TCR-αβ heterodimer that recognizes the antigen as a peptide presented by the MHC, and non-covalently paired CD3γε- and δε-chains together with disulfide-linked ζ-chain homodimers. The CD3 chains play key roles in T cell development and T cell activation. In the present study, we found nor or extremely lower expression of CD3ε in head- and trunk-kidney lymphocytes by flow cytometric analysis, while CD3ε was expressed at the normal level in lymphocytes from thymus, spleen, intestine, gill, and peripheral blood. Furthermore, CD4-1 + and CD8α + T cells from kidney express Zap-70, but not CD3ε, while the T cells from other tissues express both Zap-70 and CD3ε, although expression of CD3ε was low. Quantitative analysis of mRNA expression revealed that the expression level of T cell-related genes including tcrb, cd3 ε, zap-70 , and lck in CD4-1 + and CD8α + T cells was not different between kidney and spleen. Western blot analysis showed that CD3ε band was detected in the cell lysates of spleen but not kidney. To be interested, CD3ε-positive cells greatly increased after 24 h in in vitro culture of kidney leukocytes. Furthermore, expression of CD3ε in both transferred kidney and spleen leukocytes was not detected or very low in kidney, while both leukocytes expressed CD3ε at normal level in spleen when kidney and spleen leukocytes were injected into the isogeneic recipient. Lower expression of CD3ε was also found in kidney T lymphocytes of goldfish and carp. These results indicate that kidney lymphocytes express no or lower level of CD3ε protein in the kidney, although the mRNA of the gene was expressed. Here, we discuss this phenomenon from the point of function of kidney as reservoir for T lymphocytes in teleost, which lacks lymph node and bone marrow.

  16. Primary administration of Lactobacillus johnsonii NCC533 in weaning period suppresses the elevation of proinflammatory cytokines and CD86 gene expressions in skin lesions in NC/Nga mice.

    PubMed

    Inoue, Ryo; Otsuka, Mai; Nishio, Ayako; Ushida, Kazunari

    2007-06-01

    The administration of probiotic lactic acid bacteria (LAB) has been studied for its potential to prevent atopic dermatitis (AD). The objective of this study was to assess the inhibitory mechanism of a skin lesion by LAB using an experimental model that we previously demonstrated in NC/Nga mice. Lactobacillus johnsonii NCC533 (La1) was administered orally to the La1 group from 20 to 22 days after birth, while phosphate-buffered saline was given to the control group. After the induction of skin lesions in 6-week-old mice, the expression of genes supposedly involved in AD was evaluated. Gene expression of the proinflammatory cytokines [interleukin-8 (IL-8), IL-12 and IL-23] was significantly enhanced in the lesional skin of the control group by the induction of the lesion, whereas gene expression of those in the La1 group was not elevated. Interestingly, expression of the costimulatory molecule CD86 showed a pattern similar to the expression of the cytokines in the lesional skin. Moreover, the La1 group showed a significantly lower gene expression of CD86 in Peyer's patches and mesenteric lymph nodes than the control group. The suppression of proinflammatory cytokines and CD86 by primary administration of La1 may significantly contribute to the inhibitory effect on the skin lesion.

  17. Histone Acetylation at the Ifng Promoter in Tolerized CD4 Cells Is Associated with Increased IFN-γ Expression during Subsequent Immunization to the Same Antigen1

    PubMed Central

    Long, Meixiao; Slaiby, Aaron M.; Wu, Shuang; Hagymasi, Adam T.; Mihalyo, Marianne A.; Bandyopadhyay, Suman; Vella, Anthony T.; Adler, Adam J.

    2010-01-01

    When naive CD4+ Th cells encounter cognate pathogen-derived Ags they expand and develop the capacity to express the appropriate effector cytokines for neutralizing the pathogen. Central to this differentiation process are epigenetic modifications within the effector cytokine genes that allow accessibility to the transcriptional machinery. In contrast, when mature self-reactive CD4 cells encounter their cognate epitopes in the periphery they generally undergo a process of tolerization in which they become hyporesponsive/anergic to antigenic stimulation. In the current study, we used a TCR transgenic adoptive transfer system to demonstrate that in a dose-dependent manner parenchymal self-Ag programs cognate naive CD4 cells to acetylate histones bound to the promoter region of the Ifng gene (which encodes the signature Th1 effector cytokine) during peripheral tolerization. Although the Ifng gene gains transcriptional competence, these tolerized CD4 cells fail to express substantial amounts of IFN-γ in response to antigenic stimulation apparently because a blockage in TCR-mediated signaling also develops. Nevertheless, responsiveness to antigenic stimulation is partially restored when self-Ag-tolerized CD4 cells are retransferred into mice infected with a virus expressing the same Ag. Additionally, there is preferential boosting in the ability of these CD4 cells to express IFN-γ relative to other cytokines with expression that also becomes impaired. Taken together, these results suggest that epigenetic modification of the Ifng locus during peripheral CD4 cell tolerization might allow for preferential expression of IFN-γ during recovery from tolerance. PMID:17947638

  18. [Differentiation of bone marrow derived from mesenchymal stem cells into cardiomyocyte-like cells induced by co-culture with rat myocardial cells].

    PubMed

    Zhang, Rong-Li; Jiang, Er-Lie; Wang, Mei; Zhou, Zheng; Zhai, Wen-Jing; Zhai, Wei-Hua; Wang, Hua; Wang, Zhi-Yong; Bao, Yu-Shi; DU, Hong; Han, Ming-Zhe

    2008-10-01

    The study was purposed to investigate the differentiation ability of mesenchymal stem cells (MSCs) into myocardial cells in vitro. Rat bone marrow-derived MSCs were labeled and co-cultured with neonatal rat cardiomyocytes (CM) for 5 - 7 days. The expression of cell surface antigens was detected by flow cytometry, and the expression of muscle-specific marker myosin and troponin T in labeled cells was detected by immunofluorescence. The results showed that in vitro cultured MSCs expressed CD90, CD44, CD105, CD54, not expressed CD34, CD45, CD31. After co-cultured with neonatal rat CM, labeled MSCs differentiated into cardiomyocyte-like cells expressing myosin and troponin T. It is concluded that MSCs can differentiate into cardiomyocyte-like cells when co-cultured with neonatal myocardial cells in vitro. In co-culture of two kind of cells in ratio of four to one showed obvious efficacy differentiating MSCs into CMs.

  19. Estrogen Receptor-Alpha (ESR1) Governs the Lower Female Reproductive Tract Vulnerability to Candida albicans

    PubMed Central

    Salinas-Muñoz, Laura; Campos-Fernández, Raúl; Mercader, Enrique; Olivera-Valle, Irene; Fernández-Pacheco, Carlota; Matilla, Lara; García-Bordas, Julio; Brazil, Jennifer C.; Parkos, Charles A.; Asensio, Fernando; Muñoz-Fernández, Maria A.; Hidalgo, Andrés; Sánchez-Mateos, Paloma; Samaniego, Rafael; Relloso, Miguel

    2018-01-01

    Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM. PMID:29881378

  20. Estrogen Receptor-Alpha (ESR1) Governs the Lower Female Reproductive Tract Vulnerability to Candida albicans.

    PubMed

    Salinas-Muñoz, Laura; Campos-Fernández, Raúl; Mercader, Enrique; Olivera-Valle, Irene; Fernández-Pacheco, Carlota; Matilla, Lara; García-Bordas, Julio; Brazil, Jennifer C; Parkos, Charles A; Asensio, Fernando; Muñoz-Fernández, Maria A; Hidalgo, Andrés; Sánchez-Mateos, Paloma; Samaniego, Rafael; Relloso, Miguel

    2018-01-01

    Estradiol-based therapies predispose women to vaginal infections. Moreover, it has long been known that neutrophils are absent from the vaginal lumen during the ovulatory phase (high estradiol). However, the mechanisms that regulate neutrophil influx to the vagina remain unknown. We investigated the neutrophil transepithelial migration (TEM) into the vaginal lumen. We revealed that estradiol reduces the CD44 and CD47 epithelial expression in the vaginal ectocervix and fornix, which retain neutrophils at the apical epithelium through the estradiol receptor-alpha. In contrast, luteal progesterone increases epithelial expression of CD44 and CD47 to promote neutrophil migration into the vaginal lumen and Candida albicans destruction. Distinctive to vaginal mucosa, neutrophil infiltration is contingent to sex hormones to prevent sperm from neutrophil attack; although it may compromise immunity during ovulation. Thus, sex hormones orchestrate tolerance and immunity in the vaginal lumen by regulating neutrophil TEM.

  1. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines.

    PubMed

    Gelsomino, L; Panza, S; Giordano, C; Barone, I; Gu, G; Spina, E; Catalano, S; Fuqua, S; Andò, S

    2018-04-24

    The detection of recurrent mutations affecting the hormone binding domain (HBD) of estrogen receptor alpha (ERα/ESR1) in endocrine therapy-resistant and metastatic breast cancers has prompted interest in functional characterization of these genetic alterations. Here, we explored the role of HBD-ESR1 mutations in influencing the behavior of breast cancer stem cells (BCSCs), using various BC cell lines stably expressing wild-type or mutant (Y537 N, Y537S, D538G) ERα. Compared to WT-ERα clones, mutant cells showed increased CD44 + /CD24 - ratio, mRNA levels of stemness genes, Mammosphere Forming Efficiency (MFE), Self-Renewal and migratory capabilities. Mutant clones exhibited high expression of NOTCH receptors/ligands/target genes and blockade of NOTCH signaling reduced MFE and migratory potential. Mutant BCSC activity was dependent on ERα phosphorylation at serine 118, since its inhibition decreased MFE and NOTCH4 activation only in mutant cells. Collectively, we demonstrate that the expression of HBD-ESR1 mutations may drive BC cells to acquire stem cell traits through ER/NOTCH4 interplay. We propose the early detection of HBD-ESR1 mutations as a challenge in precision medicine strategy, suggesting the development of tailored-approaches (i.e. NOTCH inhibitors) to prevent disease development and metastatic spread in BC mutant-positive patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato

    PubMed Central

    Zhou, Xiangjun; Zha, Manrong; Huang, Jing; Li, Li; Imran, Muhammad

    2017-01-01

    Abstract Phosphorus is an important macronutrient for plant growth, but often deficient in soil. To understand the molecular basis of the complex responses of potato (Solanum tuberosum L.) to phosphate (Pi) deficiency stress, the RNA-Seq approach was taken to identify genes responding to Pi starvation in potato roots. A total of 359 differentially expressed genes were identified, among which the Solanum tuberosum transcription factor gene MYB44 (StMYB44) was found to be down-regulated by Pi starvation. StMYB44 was ubiquitously expressed in potato tissues and organs, and StMYB44 protein was exclusively localized in the nucleus. Overexpression of StMYB44 in potato resulted in lower accumulation of Pi in shoots. Transcriptomic analysis indicated that the abundance of S. tuberosum PHOSPHATE1 (StPHO1), a Pi transport-related gene, was reduced in StMYB44 overexpression lines. In contrast, knock-out of StMYB44 by a CRISPR/Cas9 system failed to increase transcription of StPHO1. Moreover, StMYB44 was found to interact in the nucleus with AtWRKY6, a known Arabidopsis transcription factor directly regulating PHO1 expression, and StWRKY6, indicating that StMYB44 could be a member of the regulatory complex controlling transcription of StPHO1. Taken together, our study demonstrates that StMYB44 negatively regulates Pi transport in potato by suppressing StPHO1 expression. PMID:28338870

  3. A Response Surface Methodology Approach to Investigate the Effect of Sulfur Dioxide, pH, and Ethanol on DbCD and DbVPR Gene Expression and on the Volatile Phenol Production in Dekkera/Brettanomyces bruxellensis CBS2499

    PubMed Central

    Valdetara, Federica; Fracassetti, Daniela; Campanello, Alessia; Costa, Carlo; Foschino, Roberto; Compagno, Concetta; Vigentini, Ileana

    2017-01-01

    Dekkera/Brettanomyces bruxellensis, the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase (DbCD) and the vinylphenol reductase (DbVPR), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO2) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC, DbALD, DbEF, DbACT, and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect (p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO2, pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO2, pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect as individual factors. The obtained results can be useful to improve the SO2 management at the grape harvesting and during winemaking in order to minimize the D./B. bruxellensis spoilage. PMID:28955312

  4. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 2. Tumor-specific immunity and cure after radio-inducible suicide gene therapy and systemic CD40-ligand and Flt3-ligand gene therapy in an orthotopic tumor model.

    PubMed

    Kawashita, Yujo; Deb, Niloy J; Garg, Madhur K; Kabarriti, Rafi; Fan, Zuoheng; Alfieri, Alan A; Roy-Chowdhury, Jayanta; Guha, Chandan

    2014-08-01

    Diffuse hepatocellular carcinoma (HCC) is a lethal disease that radiation therapy (RT) currently has a limited role in treating because of the potential for developing fatal radiation-induced liver disease. However, recently diffuse HCC, "radio-inducible suicide gene therapy" has been shown to enhance local tumor control and residual microscopic disease within the liver for diffuse HCC, by using a combination of chemoactivation and molecular radiosensitization. We have demonstrated that the addition of recombinant adenovirus-expressing human Flt3 ligand (Adeno-Flt3L) after radio-inducible suicide gene therapy induced a Th1-biased, immune response and enhanced tumor control in an ectopic model of HCC. We hypothesized that sequential administration of recombinant adenovirus-expressing CD40L (Adeno-CD40L) could further potentiate the efficacy of our trimodal therapy with RT + HSV-TK + Adeno-Flt3L. We examined our hypothesis in an orthotopic model of diffuse HCC using BNL1ME A.7R.1 (BNL) cells in Balb/c mice. BNL murine hepatoma cells (5 × 10(4)) transfected with an expression vector of HSV-TK under the control of a radiation-inducible promoter were injected intraportally into BALB/cJ mice. Fourteen days after the HCC injection, mice were treated with a 25 Gy dose of radiation to the whole liver, followed by ganciclovir (GCV) treatment and systemic adenoviral cytokine gene therapy (Flt3L or CD40L or both). Untreated mice died in 27 ± 4 days. Radiation therapy alone had a marginal effect on survival (median = 35 ± 7 days) and the addition of HSV-TK/GCV gene therapy improved the median survival to 47 ± 6 days. However, the addition of Adeno-Flt3L to radiation therapy and HSV-TK/GCV therapy significantly (P = 0.0005) increased survival to a median of 63 ± 20 days with 44% (7/16) of the animals still alive 116 days after tumor implantation. The curative effect of Flt3L was completely abolished when using immunodeficient nude mice or mice depleted for CD4, CD8 and natural killer cells. The addition of Adeno-CD40L further improved the median survival of animals to 80 ± 15 days and this effect was abolished only when using anti-CD8 antibodies. Chromium-51 (51Cr) release assay showed cytotoxic T lymphocyte (CTL) activation, suggesting efficient dendritic cell (DC) activation with CTL activation after the treatment. Furthermore, when surviving mice were rechallenged with BNL-ETK cells on the foot pad, RT + HSV-TK/GCV + Flt3L + CD40L-treated mice developed a small tumor on day 56 but the tumor eventually disappeared after 105 days. Mice treated with RT + HSV-TK/GCV + Flt3L showed a slowed tumor growth curve compared with untreated mice. Therefore, combination therapy using Flt3L to induce DC proliferation and CD40L to enhance DC maturation holds great promise for immunomodulation of radiation therapy to enhance HCC tumor control and prevent progression of disease in patients with diffuse HCC.

  5. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease.

    PubMed

    Yamano, Yoshihisa; Takenouchi, Norihiro; Li, Hong-Chuan; Tomaru, Utano; Yao, Karen; Grant, Christian W; Maric, Dragan A; Jacobson, Steven

    2005-05-01

    CD4(+)CD25(+) Tregs are important in the maintenance of immunological self tolerance and in the prevention of autoimmune diseases. As the CD4(+)CD25(+) T cell population in patients with human T cell lymphotropic virus type I-associated (HTLV-I-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) has been shown to be a major reservoir for this virus, it was of interest to determine whether the frequency and function of CD4(+)CD25(+) Tregs in HAM/TSP patients might be affected. In these cells, both mRNA and protein expression of the forkhead transcription factor Foxp3, a specific marker of Tregs, were lower than those in CD4(+)CD25(+) T cells from healthy individuals. The virus-encoded transactivating HTLV-I tax gene was demonstrated to have a direct inhibitory effect on Foxp3 expression and function of CD4(+)CD25(+) T cells. This is the first report to our knowledge demonstrating the role of a specific viral gene product (HTLV-I Tax) on the expression of genes associated with Tregs (in particular, foxp3) resulting in inhibition of Treg function. These results suggest that direct human retroviral infection of CD4(+)CD25(+) T cells may be associated with the pathogenesis of HTLV-I-associated neurologic disease.

  6. Dose-escalation study for the targeting of CD44v+ cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205).

    PubMed

    Shitara, Kohei; Doi, Toshihiko; Nagano, Osamu; Imamura, Chiyo K; Ozeki, Takeshi; Ishii, Yuya; Tsuchihashi, Kenji; Takahashi, Shunji; Nakajima, Takako E; Hironaka, Shuichi; Fukutani, Miki; Hasegawa, Hiromi; Nomura, Shogo; Sato, Akihiro; Einaga, Yasuaki; Kuwata, Takeshi; Saya, Hideyuki; Ohtsu, Atsushi

    2017-03-01

    Cancer stem cells (CSCs) have enhanced mechanisms of protection from oxidative stress. A variant form of CD44 (CD44v), a major CSC marker, was shown to interact with xCT, a subunit of cystine-glutamate transporter, which maintains high levels of intracellular reduced glutathione (GSH) which defend the cell against oxidative stress. Sulfasalazine (SSZ) is an inhibitor of xCT and was shown to suppress the survival of CD44v-positive stem-like cancer cells both in vitro and in vivo. To find the dose of SSZ which can safely reduce the population of CD44v-positive cells in tumors, a dose-escalation study in patients with advanced gastric cancer was conducted. SSZ was given four times daily by oral administration with 2 weeks as one cycle. Tumor biopsies were obtained before and after 14 days of administration of SSZ to evaluate expression of CD44v and the intratumoral level of GSH. Eleven patients were enrolled and received a dosage from 8 to 12 g/day. Safety was confirmed up to a dosage of 12 g/day, which was considered the maximum tolerated dose. Among the eight patients with CD44v-positive cells in their pretreatment biopsy samples, the CD44v-positive cancer cell population appeared to be reduced in the posttreatment biopsy tissues of four patients. Intratumoral GSH levels were also decreased in two patients, suggesting biological effectiveness of SSZ at 8 g/day or greater. This is the first study of SSZ as an xCT inhibitor for targeting CSCs. Reduction of the levels of CD44v-positive cells and GSH was observed in some patients, consistent with the mode of action of SSZ in CSCs.

  7. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis.

    PubMed

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination.

  8. High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris.

    PubMed

    Zarei, Najmeh; Vaziri, Behrouz; Shokrgozar, Mohammad Ali; Mahdian, Reza; Fazel, Ramin; Khalaj, Vahid

    2014-12-01

    Single-chain variable fragments (scFvs) have recently emerged as attractive candidates in targeted immunotherapy of various malignancies. The anti-CD22 scFv is able to target CD22, on B cell surface and is being considered as a promising molecule in targeted immunotherapy of B cell malignancies. The recombinant anti-CD22 scFv has been successfully expressed in Escherichia coli; however, the insufficient production yield has been a major bottleneck for its therapeutic application. The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the production of a wide variety of recombinant proteins such as antibody fragments. In this study, we used the Pichia expression system to express a humanized scFv antibody against CD22. The full-length humanized scFv gene was codon optimized, cloned into the pPICZαA and expressed in GS115 strain. The maximum production level of the scFv (25 mg/L) were achieved at methanol concentration, 1 %; pH 6.0; inoculum density, OD600 = 3 and the induction time of 72 h. The correlation between scFv gene dosage and expression level was also investigated by real-time PCR, and the results confirmed the presence of such correlation up to five gene copies. Immunofluorescence and flow cytometry studies and Biacore analysis demonstrated binding to CD22 on the surface of human lymphoid cell line Raji and recombinant soluble CD22, respectively. Taken together, the presented data suggest that the Pichia pastoris can be considered as an efficient host for the large-scale production of anti-CD22 scFv as a promising carrier for targeted drug delivery in treatment of CD22(+) B cell malignancies.

  9. The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study.

    PubMed

    Panach, Layla; Pineda, Begoña; Mifsut, Damián; Tarín, Juan J; Cano, Antonio; García-Pérez, Miguel Ángel

    2016-02-01

    Compelling data are revealing that the CD40/CD40L system is involved in bone metabolism. Furthermore, we have previously demonstrated that polymorphisms in both genes are associated with bone phenotypes. The aim of this study is to further characterize this association and to identify the causal functional mechanism. We conducted an association study of BMD with 15 SNPs in CD40/CD40L genes in a population of 779 women. In addition, we assessed the functionality of this association through the study of the allele-dependent expression of CD40 and CD40L in peripheral blood leukocytes (PBLs) and in human osteoblasts (OBs) obtained from bone explants by qPCR and by sequencing. When an allelic imbalance (AI) was detected, studies on allele-dependent in vitro transcription rate and on CpG methylation in the gene promoter were also performed. Our results confirm the genetic association between SNP rs116535 (T>C) of CD40L gene with LS-BMD. Regarding CD40 gene, two SNPs showed nominal P-values<0.05 for FN- and LS-BMD (Z-scores), although the association was not significant after correcting for multiple testing. Homozygous TT women for SNP rs1883832 (C>T) of CD40 gene showed a trend to have lower levels of OPG (Q-value=0.059), especially when women of BMD-quartile ends were selected (P<0.05). Regarding functionality, we detected an AI for rs1883832 with the C allele the most expressed in OBs and in PBLs. Since the rs116535 of CD40L gene did not show AI, it was not further analyzed. Finally, we described a differential methylation of CpGs in the CD40 promoter among women of high in comparison to low BMD. Our results suggest that the CD40/CD40L system plays a role in regulating BMD. Effectively, our data suggest that a decreased production of OPG could be the cause of the lower BMD observed in TT women for rs1883832 of the CD40 gene and that the degree of methylation of CpGs in the CD40 promoter could contribute to the acquisition of BMD. One possibility that deserves further study is whether the degree of methylation of the CD40 gene affects the level of CD40 expression and, consequently, the level of OPG. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.

    PubMed

    Kennedy, Brian M; Harris, Randall E

    2018-05-07

    We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

  11. Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3

    USGS Publications Warehouse

    Laing, K.J.; Zou, J.J.; Purcell, M.K.; Phillips, R.; Secombes, C.J.; Hansen, J.D.

    2006-01-01

    The T cell coreceptor CD4 is a transmembrane glycoprotein belonging to the Ig superfamily and is essential for cell-mediated immunity. Two different genes were identified in rainbow trout that resemble mammalian CD4. One (trout CD4) encodes four extracellular Ig domains reminiscent off mammalian CD4, whereas the other (CD4REL) codes for two Ig domains. Structural motifs within the amino acid sequences suggest that the two Ig domains of CD4REL duplicated to generate the four-domain molecule of CD4 and the related gene, lymphocyte activation gene-3. Here we present evidence that both of these molecules in trout are homologous to mammalian CD4 and that teleosts encode an additional CD4 family member, lymphocyte activation gene-3, which is a marker for activated T cells. The syntenic relationships of similar genes in other teleost and non-fish genomes provide evidence for the likely evolution of CD4-related molecules in vertebrates, with CD4REL likely representing the primordial form in fish. Expression of both CD4 genes is highest in the thymus and spleen, and mRNA expression of these genes is limited to surface IgM- lymphocytes, consistent with a role for T cell functionality. Finally, the intracellular regions of both CD4 and CD4REL possess the canonical CXC motif involved in the interaction off CD4 with p56LCK, implying that similar mechanisms for CD4 + T cell activation are present in all vertebrates. Our results therefore raise new questions about T cell development and functionality in lower vertebrates that cannot be answered by current mammalian models and, thus, is of fundamental importance for understanding the evolution of cell-mediated immunity in gnathosomes. Copyright ?? 2006 by The American Association of Immunologists, Inc.

  12. Trametinib plus 4-Methylumbelliferone Exhibits Antitumor Effects by ERK Blockade and CD44 Downregulation and Affects PD-1 and PD-L1 in Malignant Pleural Mesothelioma.

    PubMed

    Cho, Hiroyuki; Matsumoto, Seiji; Fujita, Yoshiko; Kuroda, Ayumi; Menju, Toshi; Sonobe, Makoto; Kondo, Nobuyuki; Torii, Ikuko; Nakano, Takashi; Lara, Primo N; Gandara, David R; Date, Hiroshi; Hasegawa, Seiki

    2017-03-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive malignancy in which the mitogen-activated protein kinase pathway plays a critical role in the regulation of tumorigenesis. Hyaluronic acid (HA) is a major component of the extracellular matrix, and elevated HA levels with a concurrent increase in malignant properties are associated with MPM. We evaluated the effects of trametinib, a mitogen-activated protein kinase (MEK) inhibitor, and 4-methylumbelliferone (4-MU), an HA synthesis inhibitor, alone and in combination on MPM cells in vitro and in vivo. We studied the effects of trametinib, 4-MU, and their combination on MPM cells by using cell viability assays, Western blot analysis, and a mouse xenograft model. Trametinib and 4-MU exhibited antiproliferative activity in MPM cells. Trametinib blocked MEK-dependent extracellular signal-regulated kinase (ERK) phosphorylation and decreased CD44 expression in a concentration-dependent manner. Trametinib inhibited the expression of Fra-1 (the activator protein 1 [AP1] component), inhibited ERK phosphorylation, and decreased CD44 expression. 4-MU inhibited ERK phosphorylation but not CD44 expression. In a mouse xenograft model, trametinib and 4-MU alone suppressed tumor growth compared with a control. The combination had a greater inhibitory effect than either monotherapy. Immunohistochemical analysis showed that trametinib treatment alone significantly reduced expression of programmed cell death 1 ligand 1. Furthermore, the combination of trametinib and 4-MU resulted in higher expression of programmed cell death 1 and programmed cell death 1 ligand 1 than did the 4-MU treatment alone. Our results suggest that trametinib and 4-MU are promising therapeutic agents in MPM and that further study of the combination is warranted. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  13. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    PubMed

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  14. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    PubMed Central

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and in limiting Cd availability in the food chain. PMID:21283689

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun-Mi, E-mail: lala1647@hanmail.net; Lee, Chung Won, E-mail: vasculardoctorlee@gmail.com; Kim, Bo-Young, E-mail: kimboyoung@pusan.ac.kr

    We attempted to determine the effects of a milieu rich in cholesterol molecules on expression of chemokine CXCL8. A high-cholesterol diet led to an increased transcription of the IL-8 gene in the arteries and elevated levels of CXCL8 in sera of ApoE{sup −/−} mice, compared with those of wild-type C57BL/6 mice. Treatment of THP-1 monocyte/macrophage cells with 27-hydroxycholesterol (27OHChol) resulted in transcription of the IL-8 gene and increased secretion of its corresponding gene product whereas cholesterol did not induce expression of CXCL8 in THP-1 cells. 27OHChol-induced transcription of the IL-8 gene was blocked by cycloheximide, but not by polymyxin B.more » Treatment of THP-1 cells with 27OHChol caused translocation of p65 NF-κB subunit into the nucleus and up-regulation of CD88. Inhibition of NF-κB and CD88 using SN50 and W-54011, respectively, resulted in reduced transcription of the IL-8 gene and attenuated secretion of CXCL8 induced by 27OHChol. We propose that oxidatively modified cholesterol like 27OHChol, rather than cholesterol, is responsible for sustained expression of CXCL8 in monocytes/macrophages in atherosclerotic arteries. - Highlights: • Consumption of a high-cholesterol diet leads to increased CXCL8 expression in ApoE{sup −/−} mice. • 27OHChol, but not cholesterol, up-regulates expression of CXCL8 in macrophages. • 27OHChol enhances nuclear translocation of NF-κB and expression of CD88 in macrophages. • Inhibition of NF-κB or CD88 results in decreased CXCL8 expression induced by 27OHChol. • 27OHChol up-regulates CXCL8 expression via NF-κB and CD88 in macrophages.« less

  16. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response.

    PubMed

    Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P; Schlosser, Anders; Sorensen, Grith L; Nielsen, Ole; Tornøe, Ida; Grønlund, Jørn; Nielsen, Maria E; Jørgensen, Jan S; Jensen, Ole N; Mollenhauer, Jan; Moestrup, Søren K; Holmskov, Uffe

    2012-03-01

    CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.

  17. Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination.

    PubMed

    de Alencar, Bruna C G; Persechini, Pedro M; Haolla, Filipe A; de Oliveira, Gabriel; Silverio, Jaline C; Lannes-Vieira, Joseli; Machado, Alexandre V; Gazzinelli, Ricardo T; Bruna-Romero, Oscar; Rodrigues, Mauricio M

    2009-10-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.

  18. Perforin and Gamma Interferon Expression Are Required for CD4+ and CD8+ T-Cell-Dependent Protective Immunity against a Human Parasite, Trypanosoma cruzi, Elicited by Heterologous Plasmid DNA Prime-Recombinant Adenovirus 5 Boost Vaccination▿

    PubMed Central

    de Alencar, Bruna C. G.; Persechini, Pedro M.; Haolla, Filipe A.; de Oliveira, Gabriel; Silverio, Jaline C.; Lannes-Vieira, Joseli; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bruna-Romero, Oscar; Rodrigues, Mauricio M.

    2009-01-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy. PMID:19651871

  19. Preparation of Cytokine-activated NK Cells for Use in Adoptive Cell Therapy in Cancer Patients: Protocol Optimization and Therapeutic Potential.

    PubMed

    van Ostaijen-ten Dam, Monique M; Prins, Henk-Jan; Boerman, Gerharda H; Vervat, Carly; Pende, Daniela; Putter, Hein; Lankester, Arjan; van Tol, Maarten J D; Zwaginga, Jaap J; Schilham, Marco W

    2016-01-01

    Cell-based immunotherapy using donor-derived natural killer (NK) cells after allogeneic hematopoietic stem cell transplantation may be an attractive treatment of residual leukemia. This study aimed to optimize clinical grade production of a cytokine-activated NK-cell product. NK cells were isolated either by double depletion (CD3(-), CD19(-)) or by sequential depletion and enrichment (CD3(-,) CD56(+)) via CliniMACS from leukapheresis material and cultured in vitro with interleukin (IL)-2 or IL-15. Both NK cell isolation procedures yielded comparable recovery of NK cells and levels of T-cell contamination. After culture with cytokines, the CD3(-)CD56(+) procedure resulted in NK cells of higher purity, that is, less T cells and monocytes, higher viability, and a slightly higher yield than the CD3(-)CD19- procedure. CD69, NKp44, and NKG2A expression were higher on CD3(-)CD56(+) products, whereas lysis of Daudi cells was comparable. Five days of culture led to higher expression of CD69, NKp44, and NKp30 and lysis of K562 and Daudi cell lines. Although CD69 expression and lysis of Daudi cells were slightly higher in cultures with IL-2, T-cell contamination was lower with IL-15. Therefore, further experiments were performed with CD3(-)CD56(+) products cultured with IL-15. Cryopreservation of IL-15-activated NK cells resulted in a loss of cytotoxicity (>92%), whereas thawing of isolated, uncultured NK cells followed by culture with IL-15 yielded cells with about 43% of the original lytic activity. Five-day IL-15-activated NK cells lysed tumor target cell lines and primary leukemic blasts, providing the basis for NK cell–based immunotherapeutic strategies in a clinical setting.

  20. [5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice].

    PubMed

    Ren, Jian-zhen; Huo, Ji-rong

    2012-01-01

    To determine the inhibitory effect of 5-aza-2'-deoxycytidine (5-Aza-CdR) on the growth of human colon carcinoma cells and xenografts in nude mice, to observe its effect on CDH13 gene expression and methylation in the xenografts, and to explore the possible mechanisms. Human colon carcinoma cell line HCT116 cells were treated with 5-Aza-CdR, and the cell morphology was observe by phase contrast microscopy. The cell growth was assessed by MTT assay. A tumor-bearing mouse model was generated by subcutaneous inoculation of human colon carcinoma HCT116 cells into nude mice. The tumor growth in the nude mice was observed, the CDH13 gene expression and its methylation status in the tumors were detected using methylation specific PCR (MSP), RT-PCR, Western blotting and immunohistochemistry. After treatment with 5-Aza-CdR, the inhibition rate of the growth of cultured HCT116 cells was increased as the concentration was increasing. The growth of the xenografts in nude mice was significantly inhibited, and the methylated CDH13 gene was reactivated. After 4 weeks of 5-Aza-CdR treatment, no significant difference was found between the body weights of nude mice in the 5-Aza-CdR group [(18.06 ± 1.29) g] and control group [(17.07 ± 0.84) g], (P > 0.10), and the average volume of xenografts of the 5-Aza-CdR group was (907.00 ± 87.29) mm(3), significantly smaller than the (1370.93 ± 130.20) mm(3) in the control group (P < 0.005). No expression of CDH13 gene was found in the control group. The expression of CDH13 gene in the 5-Aza-CdR group was increased along with the increasing concentration of 5-Aza-CdR. 5-Aza-CdR inhibits the growth of human colon cancer cells in culture and in nude mice, and induces the cancer cells to re-express CDH13 in nude mice. Its mechanism may be that demethylation of the methylated CDH13 promoter induced by 5-Aza-CdR restores CDH13 expression and thus inhibits the tumor growth in nude mice.

  1. Selection of transduced CD34+ progenitors and enzymatic correction of cells from Gaucher patients, with bicistronic vectors.

    PubMed Central

    Migita, M; Medin, J A; Pawliuk, R; Jacobson, S; Nagle, J W; Anderson, S; Amiri, M; Humphries, R K; Karlsson, S

    1995-01-01

    The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected. Images Fig. 2 Fig. 3 PMID:8618847

  2. Lymphocyte gene expression signatures from patients and mouse models of hereditary hemochromatosis reveal a function of HFE as a negative regulator of CD8+ T-lymphocyte activation and differentiation in vivo.

    PubMed

    Costa, Mónica; Cruz, Eugénia; Oliveira, Susana; Benes, Vladimir; Ivacevic, Tomi; Silva, Maria João; Vieira, Inês; Dias, Francisco; Fonseca, Sónia; Gonçalves, Marta; Lima, Margarida; Leitão, Catarina; Muckenthaler, Martina U; Pinto, Jorge; Porto, Graça

    2015-01-01

    Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both environmental and genetic components are known to influence CD8+ T-lymphocyte homeostasis but the role of the HH associated protein HFE is still insufficiently understood. Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe-/- mice maintained either under normal or high iron diet conditions. In addition, T-lymphocyte apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH patients with low CD8+ T-lymphocyte numbers show a differential expression of genes related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are significantly different in HH patients compared to controls. Hfe-/- mice do not show alterations in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an increased expression of S100a8 and S100a9 that is most pronounced in high iron diet conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 expression both at the mRNA and protein level. Altogether, our results support a role for HFE as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe-/- mice and HH patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory cells is evident in HH patients only. This supports the notion that HFE contributes, at least in part, to the generation of low peripheral blood CD8+ T lymphocytes in HH.

  3. Lymphocyte Gene Expression Signatures from Patients and Mouse Models of Hereditary Hemochromatosis Reveal a Function of HFE as a Negative Regulator of CD8+ T-Lymphocyte Activation and Differentiation In Vivo

    PubMed Central

    Costa, Mónica; Cruz, Eugénia; Oliveira, Susana; Benes, Vladimir; Ivacevic, Tomi; Silva, Maria João; Vieira, Inês; Dias, Francisco; Fonseca, Sónia; Gonçalves, Marta; Lima, Margarida; Leitão, Catarina; Muckenthaler, Martina U.; Pinto, Jorge; Porto, Graça

    2015-01-01

    Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both environmental and genetic components are known to influence CD8+ T-lymphocyte homeostasis but the role of the HH associated protein HFE is still insufficiently understood. Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe -/- mice maintained either under normal or high iron diet conditions. In addition, T-lymphocyte apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH patients with low CD8+ T-lymphocyte numbers show a differential expression of genes related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are significantly different in HH patients compared to controls. Hfe -/- mice do not show alterations in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an increased expression of S100a8 and S100a9 that is most pronounced in high iron diet conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 expression both at the mRNA and protein level. Altogether, our results support a role for HFE as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe -/- mice and HH patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory cells is evident in HH patients only. This supports the notion that HFE contributes, at least in part, to the generation of low peripheral blood CD8+ T lymphocytes in HH. PMID:25880808

  4. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium.

    PubMed

    Feng, Sheng Jun; Liu, Xue Song; Tao, Hua; Tan, Shang Kun; Chu, Shan Shan; Oono, Youko; Zhang, Xian Duo; Chen, Jian; Yang, Zhi Min

    2016-12-01

    We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant. © 2016 John Wiley & Sons Ltd.

  5. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.

    PubMed

    Jebbawi, Fadi; Fayyad-Kazan, Hussein; Merimi, Makram; Lewalle, Philippe; Verougstraete, Jean-Christophe; Leo, Oberdan; Romero, Pedro; Burny, Arsene; Badran, Bassam; Martiat, Philippe; Rouas, Redouane

    2014-08-06

    Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.

  6. Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology.

    PubMed

    Sackstein, Robert

    2016-06-01

    Glycoscience-based research that is performed expressly to address medical necessity and improve patient outcomes is called "translational glycobiology". In the 19th century, Robert Koch proposed a set of postulates to rigorously establish causality in microbial pathogenesis, and these postulates can be reshaped to guide knowledge into how naturally-expressed glycoconjugates direct molecular processes critical to human well-being. Studies in the 1990s indicated that E-selectin, an endothelial lectin that binds sialofucosylated carbohydrate determinants, is constitutively expressed on marrow microvessels, and investigations in my laboratory indicated that human hematopoietic stem cells (HSCs) uniquely express high levels of a specialized glycoform of CD44 called "hematopoietic cell E-/L-selectin ligand" (HCELL) that functions as a highly potent E-selectin ligand. To assess the role of HCELL in directing HSC migration to marrow, a method called "glycosyltransferase-programmed stereosubstitution" (GPS) was developed to custom-modify CD44 glycans to enforce HCELL expression on viable cell surfaces. Human mesenchymal stem cells (MSCs) are devoid of E-selectin ligands, but GPS-based glycoengineering of CD44 on MSCs licenses homing of these cells to marrow in vivo, providing direct evidence that HCELL serves as a "bone marrow homing receptor". This review will discuss the molecular basis of cell migration in historical context, will describe the discovery of HCELL and its function as the bone marrow homing receptor, and will inform on how glycoengineering of CD44 serves as a model for adapting Koch's postulates to elucidate the key roles that glycoconjugates play in human biology and for realizing the immense impact of translational glycobiology in clinical medicine. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Molecular cloning of a Poria cocos protein that activates Th1 immune response and allays Th2 cytokine and IgE production in a murine atopic dermatitis model.

    PubMed

    Lu, Ya-Ting; Kuan, Yen-Chou; Chang, Hui-Hsin; Sheu, Fuu

    2014-04-02

    Edible fungus Poria cocos (Schw.) Wolf is a cooking material that has myriad health benefits. However, its active constituents have not been well-defined. We previously purified an immunomodulatory protein, PCP, from P. cocos and described its biochemical features and its ability to activate primary macrophage via TLR4. In this study, we cloned the gene of PCP and demonstrated its ability to activate Th1 response in cell cultures and in mice. The complete cDNA sequence of PCP consisted of 807 bp, which included a 579 bp coding sequence that encoded 194 amino acids. With the addition of co-stimulatory CD3/CD28 signals, PCP significantly increased the surface expression of CD44 and CD69 on effector T cells. PCP could also up-regulate T-bet and STAT4 expressions and IFN-γ and IL-2 secretions. Oral administration of PCP suppressed the production of both total and OVA-specific IgG1 in serum and enhanced the amounts of serum and OVA-specific IgG2a and Th1-related cytokine production in BALB/c splenocytes. In addition, oral administration of PCP significantly reduced IL-4 and IgE expressions in a murine model of atopic dermatitis. In conclusion, these results provide evidence that PCP could regulate mammalian immune cells and reveal their pharmaceutical potential in developing therapeutic strategies against Th2-mediated immune disorders.

  8. Tissue-specific expression of human CD4 in transgenic mice.

    PubMed Central

    Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C

    1993-01-01

    The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453

  9. Intestinal DMBT1 Expression Is Modulated by Crohn’s Disease-Associated IL23R Variants and by a DMBT1 Variant Which Influences Binding of the Transcription Factors CREB1 and ATF-2

    PubMed Central

    Le Bras, Emmanuelle; Zimmermann, Eva; Olszak, Torsten; Bedynek, Andrea; Göke, Burkhard; Franke, Andre

    2013-01-01

    Objectives DMBT is an antibacterial pattern recognition and scavenger receptor. In this study, we analyzed the role of DMBT1 single nucleotide polymorphisms (SNPs) regarding inflammatory bowel disease (IBD) susceptibility and examined their functional impact on transcription factor binding and downstream gene expression. Methods Seven SNPs in the DMBT1 gene region were analyzed in 2073 individuals including 818 Crohn’s disease (CD) patients and 972 healthy controls in two independent case-control panels. Comprehensive epistasis analyses for the known CD susceptibility genes NOD2, IL23R and IL27 were performed. The influence of IL23R variants on DMBT1 expression was analyzed. Functional analysis included siRNA transfection, quantitative PCR, western blot, electrophoretic mobility shift and luciferase assays. Results IL-22 induces DMBT1 protein expression in intestinal epithelial cells dependent on STAT3, ATF-2 and CREB1. IL-22 expression-modulating, CD risk-associated IL23R variants influence DMBT1 expression in CD patients and DMBT1 levels are increased in the inflamed intestinal mucosa of CD patients. Several DMBT1 SNPs were associated with CD susceptibility. SNP rs2981804 was most strongly associated with CD in the combined panel (p = 3.0×10−7, OR 1.42; 95% CI 1.24–1.63). All haplotype groups tested showed highly significant associations with CD (including omnibus P-values as low as 6.1×10−18). The most strongly CD risk-associated, non-coding DMBT1 SNP rs2981804 modifies the DNA binding sites for the transcription factors CREB1 and ATF-2 and the respective genomic region comprising rs2981804 is able to act as a transcriptional regulator in vitro. Intestinal DMBT1 expression is decreased in CD patients carrying the rs2981804 CD risk allele. Conclusion We identified novel associations of DMBT1 variants with CD susceptibility and discovered a novel functional role of rs2981804 in regulating DMBT1 expression. Our data suggest an important role of DMBT1 in CD pathogenesis. PMID:24223725

  10. Intestinal DMBT1 expression is modulated by Crohn's disease-associated IL23R variants and by a DMBT1 variant which influences binding of the transcription factors CREB1 and ATF-2.

    PubMed

    Diegelmann, Julia; Czamara, Darina; Le Bras, Emmanuelle; Zimmermann, Eva; Olszak, Torsten; Bedynek, Andrea; Göke, Burkhard; Franke, Andre; Glas, Jürgen; Brand, Stephan

    2013-01-01

    DMBT is an antibacterial pattern recognition and scavenger receptor. In this study, we analyzed the role of DMBT1 single nucleotide polymorphisms (SNPs) regarding inflammatory bowel disease (IBD) susceptibility and examined their functional impact on transcription factor binding and downstream gene expression. Seven SNPs in the DMBT1 gene region were analyzed in 2073 individuals including 818 Crohn's disease (CD) patients and 972 healthy controls in two independent case-control panels. Comprehensive epistasis analyses for the known CD susceptibility genes NOD2, IL23R and IL27 were performed. The influence of IL23R variants on DMBT1 expression was analyzed. Functional analysis included siRNA transfection, quantitative PCR, western blot, electrophoretic mobility shift and luciferase assays. IL-22 induces DMBT1 protein expression in intestinal epithelial cells dependent on STAT3, ATF-2 and CREB1. IL-22 expression-modulating, CD risk-associated IL23R variants influence DMBT1 expression in CD patients and DMBT1 levels are increased in the inflamed intestinal mucosa of CD patients. Several DMBT1 SNPs were associated with CD susceptibility. SNP rs2981804 was most strongly associated with CD in the combined panel (p = 3.0 × 10(-7), OR 1.42; 95% CI 1.24-1.63). All haplotype groups tested showed highly significant associations with CD (including omnibus P-values as low as 6.1 × 10(-18)). The most strongly CD risk-associated, non-coding DMBT1 SNP rs2981804 modifies the DNA binding sites for the transcription factors CREB1 and ATF-2 and the respective genomic region comprising rs2981804 is able to act as a transcriptional regulator in vitro. Intestinal DMBT1 expression is decreased in CD patients carrying the rs2981804 CD risk allele. We identified novel associations of DMBT1 variants with CD susceptibility and discovered a novel functional role of rs2981804 in regulating DMBT1 expression. Our data suggest an important role of DMBT1 in CD pathogenesis.

  11. HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants.

    PubMed

    Cai, Shu-Yu; Zhang, Yun; Xu, You-Ping; Qi, Zhen-Yu; Li, Meng-Qi; Ahammed, Golam Jalal; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Reiter, Russel J; Yu, Jing-Quan; Zhou, Jie

    2017-03-01

    Melatonin regulates broad aspects of plant responses to various biotic and abiotic stresses, but the upstream regulation of melatonin biosynthesis by these stresses remains largely unknown. Herein, we demonstrate that transcription factor heat-shock factor A1a (HsfA1a) conferred cadmium (Cd) tolerance to tomato plants, in part through its positive role in inducing melatonin biosynthesis under Cd stress. Analysis of leaf phenotype, chlorophyll content, and photosynthetic efficiency revealed that silencing of the HsfA1a gene decreased Cd tolerance, whereas its overexpression enhanced plant tolerance to Cd. HsfA1a-silenced plants exhibited reduced melatonin levels, and HsfA1a overexpression stimulated melatonin accumulation and the expression of the melatonin biosynthetic gene caffeic acid O-methyltransferase 1 (COMT1) under Cd stress. Both an in vitro electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a binds to the COMT1 gene promoter. Meanwhile, Cd stress induced the expression of heat-shock proteins (HSPs), which was compromised in HsfA1a-silenced plants and more robustly induced in HsfA1a-overexpressing plants under Cd stress. COMT1 silencing reduced HsfA1a-induced Cd tolerance and melatonin accumulation in HsfA1a-overexpressing plants. Additionally, the HsfA1a-induced expression of HSPs was partially compromised in COMT1-silenced wild-type or HsfA1a-overexpressing plants under Cd stress. These results demonstrate that HsfA1a confers Cd tolerance by activating transcription of the COMT1 gene and inducing accumulation of melatonin that partially upregulates expression of HSPs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Hepatic CD36 downregulation parallels steatosis improvement in morbidly obese undergoing bariatric surgery.

    PubMed

    Pardina, E; Ferrer, R; Rossell, J; Ricart-Jané, D; Méndez-Lara, K A; Baena-Fustegueras, J A; Lecube, A; Julve, J; Peinado-Onsurbe, J

    2017-09-01

    The notion that hepatic expression of genes involved in lipid metabolism is altered in obese patients is relatively new and its relationship with hepatic steatosis and cardiometabolic alterations remains unclear. We assessed the impact of Roux-en-Y gastric bypass surgery (RYGB) on the expression profile of genes related to metabolic syndrome in liver biopsies from morbidly obese individuals using a custom-made, focused cDNA microarray, and assessed the relationship between the expression profile and hepatic steatosis regression. Plasma and liver samples were obtained from patients at baseline and 12 months after surgery. Samples were assayed for chemical and gene expression analyses, as appropriate. Gene expression profiles were assessed using custom-made, focused TaqMan low-density array cards. RYGB-induced weight loss produced a favorable reduction in fat deposits, insulin resistance (estimated by homeostasis model assessment of insulin resistance (HOMA-IR)), and plasma and hepatic lipid levels. Compared with the baseline values, the gene expression levels of key targets of lipid metabolism were significantly altered: CD36 was significantly downregulated (-40%; P=0.001), whereas APOB (+27%; P=0.032) and SCARB1 (+37%; P=0.040) were upregulated in response to surgery-induced weight reduction. We also observed a favorable reduction in the expression of the PAI1 gene (-80%; P=0.007) and a significant increase in the expression of the PPARA (+60%; P=0.014) and PPARGC1 genes (+36%; P=0.015). Notably, the relative fold decrease in the expression of the CD36 gene was directly associated with a concomitant reduction in the cholesterol (Spearman's r=0.92; P=0.001) and phospholipid (Spearman's r=0.76; P=0.04) contents in this tissue. For the first time, RYGB-induced weight loss was shown to promote a favorable downregulation of CD36 expression, which was proportional to a favorable reduction in the hepatic cholesterol and phospholipid contents in our morbidly obese subjects following surgery.

  13. Characterization of cancer stem cell properties of CD24 and CD26-positive human malignant mesothelioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Hiroto; Naito, Motohiko; Ghani, Farhana Ishrat

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer We focused on CD24 and CD26 for further analysis of CSC properties in MM. Black-Right-Pointing-Pointer Their expressions were correlated with chemoresistance, cell growth, and invasion. Black-Right-Pointing-Pointer Their expressions were also correlated with several cancer related genes. Black-Right-Pointing-Pointer The expression of each marker was correlated with different CSC property in Meso1. Black-Right-Pointing-Pointer Phosphorylation of ERK by EGF was regulated by expression of CD26, but not CD24. -- Abstract: Malignant mesothelioma (MM) is an asbestos-related malignancy characterized by rapid growth and poor prognosis. In our previous study, we have demonstrated that several cancer stem cell (CSC) markers correlated with CSCmore » properties in MM cells. Among these markers, we focused on two: CD24, the common CSC marker, and CD26, the additional CSC marker. We further analyzed the CSC properties of CD24 and CD26-positve MM cells. We established RNAi-knockdown cells and found that these markers were significantly correlated with chemoresistance, proliferation, and invasion potentials in vitro. Interestingly, while Meso-1 cells expressed both CD24 and CD26, the presence of each of these two markers was correlated with different CSC property. In addition, downstream signaling of these markers was explored by microarray analysis, which revealed that their expressions were correlated with several cancer-related genes. Furthermore, phosphorylation of ERK by EGF stimulation was significantly affected by the expression of CD26, but not CD24. These results suggest that CD24 and CD26 differentially regulate the CSC potentials of MM and could be promising targets for CSC-oriented therapy.« less

  14. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    PubMed Central

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  15. GENE EXPRESSION PATTERNS OF CD-1 DAY-8 EMBRYO CULTURES EXPOSED TO BROMOCHLORO ACETIC ACID

    EPA Science Inventory

    Gene expression patterns of CD-1 day-8 embryo cultures exposed to bromochloro acetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductiv...

  16. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional pro of CD4+T-lymphocytes in acute coronary syndromes

    PubMed Central

    Campioni, Mara; Flego, Davide; Angelini, Giulia; Pedicino, Daniela; Giglio, Ada Francesca; Trotta, Francesco; Giubilato, Simona; Pazzano, Vincenzo; Lucci, Claudia; Iaconelli, Antonio; Ruggio, Aureliano; Biasucci, Luigi Marzio

    2017-01-01

    Background- Adaptive immune-response is associated with a worse outcome in acute coronary syndromes. Statins have anti-inflammatory activity beyond lowering lipid levels. We investigated the effects of ex-vivo and in-vivo atorvastatin treatment in acute coronary syndromes on CD4+T-cells, and the underlying molecular mechanisms. Approach and results- Blood samples were collected from 50 statin-naïve acute coronary syndrome patients. We assessed CD4+T-cell activation by flow-cytometry, the expression of 84 T-helper transcription-factors and 84 T-cell related genes by RT-qPCR, and protein expression by Western-blot, before and after 24-hours incubation with increasing doses of atorvastatin: 3-10-26 g/ml (corresponding to blood levels achieved with doses of 10-40-80 mg, respectively). After incubation, we found a significant decrease in interferon-?-producing CD4+CD28nullT-cells (P = 0.009) and a significant increase in interleukin-10-producing CD4+CD25highT-cells (P < 0.001). Atorvastatin increased the expression of 2 genes and decreased the expression of 12 genes (in particular, EGR1, FOS,CCR2 and toll like receptor-4; >3-fold changes). The in-vivo effects of atorvastatin were analyzed in 10 statin-free acute coronary syndrome patients at baseline, and after 24h and 48h of atorvastatin therapy (80 mg/daily): EGR1-gene expression decreased at 24h (P = 0.01) and 48h (P = 0.005); EGR1-protein levels decreased at 48h (P = 0.03). Conclusions-In acute coronary syndromes, the effects of atorvastatin on immune system might be partially related to the inhibition of the master regulator gene EGR1. Our finding might offer a causal explanation on why statins improve the early outcome in acute coronary syndromes. PMID:28407684

  17. Relationship of PCNA, C-erbB2 and CD44s expression with tumor grade and stage in urothelial carcinomas of the bladder

    PubMed Central

    Yıldırım, Ayhan; Kösem, Mustafa; Sayar, İlyas; Gelincik, İbrahim; Yavuz, Alparslan; Bozkurt, Aliseydi; Erkorkmaz, Ünal; Bayram, İrfan

    2014-01-01

    In the present study, the intention was to reveal the relationship of histological grade and stage with c-erbB2, CD44s, and PCNA immunoreactivity in bladder urothelial carcinomas (UC). In our study, we evaluated 46 items of transurethral resection material of patients submitted by YYU Faculty of Medicine, Main Department of Pathology, with a mass revealed in their bladder after clinical and radiological studies at our laboratories and who were diagnosed with urothelial carcinomas. PCNA, c-erbB2, and CD44s were applied in an immunohistochemical manner comprised from nine low-malignant potential papillary urothelial neoplasia, 23 low-grade papillary urothelial carcinoma, and 14 high-grade papillary urothelial carcinoma. Immunostaining was scored according to the percentage of positive cells. The immunohistochemical study demonstrated that the c-erbB2 and PCNA staining ratio increased when an increase occurred in stage and grade. The CD44s staining ratio decreased. C-erbB2, PCNA, and CD44s appear to be a useful marker in the assessment of the prognosis and treatment options in urothelial carcinomas. PMID:25035774

  18. Hyaluronic acid-modified polyamidoamine dendrimer G5-entrapped gold nanoparticles delivering METase gene inhibits gastric tumor growth via targeting CD44+ gastric cancer cells.

    PubMed

    Li, Yi-Fan; Zhang, Hou-Ting; Xin, Lin

    2018-06-01

    Gastric cancer (GC) is the second most common leading cause of cancer-related death. Cancer stem cell (CSC) with the mark of CD44 played an important role in GC. rMETase was wildly exploited as chemotherapeutic option for GC. Polymers synthetic nanoparticle drug delivery systems have been commonly used for cancer therapy. With the decorating of Hyaluronic acid (HA), a receptor of CD44, nanoparticles exhibit with good biocompatibility and aqueous solubility. The characteristic of nanoparticles (NPs) was analyzed by TEM and DLS. The viability and proliferation of GC cells were examined by MTT assays. The levels of CD44, Cyt C, and c-caspase 3 were examined by Western blot. The level of ROS was measured by DCFH-DA assays. The morphology of tissues was detected using hematoxylin-eosin (H&E) stain. Nude mice xenograft models were used to evaluate the effect of HA-PAMAM-Au-METase on GC. The transfection of rMETase carried by HA-G5 PAMAM-Au visibly inhibited the proliferation and tumorsphere formation of GC cells through obviously enhancing METase activity. Elevation of METase activity suppressed the proliferation of CD44(+) GC cells through down-regulating MET in cellular supernatant that resulted in the increase of Cyc C and ROS levels. The number of CD44(+) GC cells in nude mice injected with G5 PAMAM-Au-METase decorated by HA was markly declined resulting in the inhibition of tumor growth. HA-G5 PAMAM-Au-METase significantly suppressed tumor growth of GC by targeted damaging the mitochondrial function of CD44(+) gastric CSCs.

  19. The effect of the nonionic block copolymer pluronic P85 on gene expression in mouse muscle and antigen-presenting cells.

    PubMed

    Gaymalov, Zagit Z; Yang, Zhihui; Pisarev, Vladimir M; Alakhov, Valery Yu; Kabanov, Alexander V

    2009-02-01

    DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO(26)-PO(40)-EO(26). Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DCs) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+ CD86+, CD11c+ CD80 +, and CD11c+ CD40+. We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs.

  20. Transcriptional response of peripheral lymphocytes to early fibrosarcoma: a model system for cancer detection based on hybridization signatures.

    PubMed

    Marques, Márcia M C; Junta, Cristina M; Zárate-Blades, Carlos R; Sakamoto-Hojo, Elza Tiemi; Donadi, Eduardo A; Passos, Geraldo A S

    2009-07-01

    Since circulating leukocytes, mainly B and T cells, continuously maintain vigilant and comprehensive immune surveillance, these cells could be used as reporters for signs of infection or other pathologies, including cancer. Activated lymphocyte clones trigger a sensitive transcriptional response, which could be identified by gene expression profiling. To assess this hypothesis, we conducted microarray analysis of the gene expression profile of lymphocytes isolated from immunocompetent BALB/c mice subcutaneously injected with different numbers of tumorigenic B61 fibrosarcoma cells. Flow cytometry demonstrated that the number of circulating T (CD3(+)CD4(+) or CD3(+)CD8(+)) or B (CD19(+)) cells did not change. However, the lymphocytes isolated from tumor cell-injected animals expressed a unique transcriptional profile that was identifiable before the development of a palpable tumor mass. This finding demonstrates that the transcriptional response appears before alterations in the main lymphocyte subsets and that the gene expression profile of peripheral lymphocytes can serve as a sensitive and accurate method for the early detection of cancer.

Top