Sample records for cd45 isoform expression

  1. Altered expression of CD45 isoforms in differentiation of acute myeloid leukemia.

    PubMed

    Miyachi, H; Tanaka, Y; Gondo, K; Kawada, T; Kato, S; Sasao, T; Hotta, T; Oshima, S; Ando, Y

    1999-11-01

    Specific expression of different CD45 isoforms can be seen in various stages of differentiation of normal nucleated hematopoietic cells. Association of membrane expression of CD45 isoforms and differential levels of leukemia cells was studied in 91 cases with de novo acute myeloid leukemia (AML). Membrane expression of CD45RA and CD45RO was analyzed by flow cytometry and their expression patterns were compared with AML subtypes classified according to the French-American-British (FAB) classification. CD45RA was essentially expressed in all of the FAB myelocytic subtypes (M0-M3). Its expression in percentage was lower in the most differentiated subtype of AML (M3) when compared with other myelocytic subtypes. CD45RO expression was rarely observed in cases with myelocytic subtypes (1/56 cases of M0, M1, M2, and M3) except for the minimally differentiated myelocytic subtype (M0) or those with potential for differentiation to T-cell lineage where three of 12 cases showed CD45RO expression. When leukemia cells of an M3 case were differentiated to mature granulocytes by treatment of all-trans-retinoic acid, they showed increasing expression of CD45RO. In subtypes with a monocytic component (M4 and M5), both of CD45RA and CD45RO expression were observed and mutually exclusive. When 10 cases of M5 were subdivided by the differential level into undifferentiated (M5a) and differentiated monocytic leukemia (M5b), expression of CD45RA and CD45RO was strictly restricted to cases with M5a and M5b, respectively. These results suggest that CD45 isoform expression in AML characterizes differential levels both in myelocytic and monocytic lineages and specifically disturbed in each subtype. The assessment of CD45 isoform expression appears to provide an insight on biological characteristics and a useful supplementary test for differential diagnosis of AML subtypes. Copyright 1999 Wiley-Liss, Inc.

  2. CD45RA and CD45RO isoforms in infected malnourished and infected well-nourished children

    PubMed Central

    Nájera, O; González, C; Toledo, G; López, L; Cortés, E; Betancourt, M; Ortiz, R

    2001-01-01

    The aim of this study was to determine if the distribution in vivo of CD4+CD45RA+/CD45RO− (naive), CD4+CD45RA+/CD45RO+ (Ddull) and CD4+CD45RO+ (memory) lymphocytes differs in malnourished infected and well-nourished infected children. The expression of CD45RA (naive) and CD45RO (memory) antigens on CD4+ lymphocytes was analysed by flow cytometry in a prospectively followed cohort of 15 malnourished infected, 12 well-nourished infected and 10 well-nourished uninfected children. Malnourished infected children showed higher fractions of Ddull cells (11·4 ± 0·7%) and lower fractions of memory cells (20·3 ± 1·7%) than the well-nourished infected group (8·8 ± 0·8 and 28·1 ± 1·8%, respectively). Well-nourished infected children showed increased percentages of memory cells, an expected response to infection. Impairment of the transition switch to the CD45 isoforms in malnourished children may explain these findings, and may be one of the mechanisms involved in immunodeficiency in these children. PMID:11737063

  3. CD45-mediated signaling pathway is involved in Rhizoctonia bataticola lectin (RBL)-induced proliferation and Th1/Th2 cytokine secretion in human PBMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pujari, Radha; Eligar, Sachin M.; Kumar, Natesh

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer RBL, a potent mitogenic and complex N-glycan specific lectin binds to CD45 on PBMC. Black-Right-Pointing-Pointer RBL triggers CD45-mediated signaling involved in activation of p38MAPK and STAT-5. Black-Right-Pointing-Pointer Inhibition of CD45 PTPase signaling blocks RBL-induced ZAP70 phosphorylation. Black-Right-Pointing-Pointer RBL-CD45 mediated signaling is crucial for RBL-induced immunodulatory activities. -- Abstract: We earlier reported the mitogenic and immunostimulatory activities of Rhizoctonia bataticola lectin (RBL), purified from phytopathogenic fungus R. bataticola in human PBMC. The lectin demonstrates specificity towards glycoproteins containing complex N-glycans. Since CD45-protein tyrosine phosphatase that abundantly expresses N-glycans is important in T-cell signaling, the study aimed to investigate themore » involvement of CD45 in the immunomodulatory activities of RBL. Flowcytometry and confocal microscopy studies revealed that RBL exhibited binding to PBMC and colocalized with CD45. The binding was comparable in cells expressing different CD45 isoforms-RA, -RB and -RO. CD45 blocking antibody reduced the binding and proliferation of PBMC induced by RBL. CD45-PTPase inhibitor dephostatin inhibited RBL-induced proliferation, expression of CD25 and pZAP-70. RBL-induced secretion of Th1/Th2 cytokines were significantly inhibited in presence of dephostatin. Also, dephostatin blocked phosphorylation of p38MAPK and STAT-5 that was crucial for the biological functions of RBL. The study demonstrates the involvement of CD45-mediated signaling in RBL-induced PBMC proliferation and Th1/Th2 cytokine secretion through activation of p38MAPK and STAT-5.« less

  4. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.

  5. CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C.

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed. PMID:23437366

  6. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  7. HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing

    PubMed Central

    Preußner, Marco; Schreiner, Silke; Hung, Lee-Hsueh; Porstner, Martina; Jäck, Hans-Martin; Benes, Vladimir; Rätsch, Gunnar; Bindereif, Albrecht

    2012-01-01

    CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4–6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4–6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons. PMID:22402488

  8. Analysis of human articular chondrocyte CD44 isoform expression and function in health and disease.

    PubMed

    Salter, D M; Godolphin, J L; Gourlay, M S; Lawson, M F; Hughes, D E; Dunne, E

    1996-08-01

    Interactions between articular chondrocytes and components of the extracellular matrix are of potential importance in the normal function of cartilage and in the pathophysiology of arthritis. Little is known of the basis of these interactions, but cell adhesive molecules such as CD44 are likely to be involved. Immunohistology using six well-characterized anti-CD44 monoclonal antibodies demonstrated standard CD44 isoform (CD44H) expression by all chondrocytes in normal and osteoarthrotic (OA) cartilage but absence of the CD44E variant. Polymerase chain reaction (PCR) of reverse transcribed mRNA from monolayer cultures of normal and OA chondrocytes using primer sequences which span the region containing variably spliced exons produced a predominant band representing the standard form of CD44, which lacks the variable exons 6-15 (v1-v10). No product was seen at the expected size of the epithelial variant of CD44 (CD44v8-10). Use of exon-specific primers, however, showed expression of variant exons resulting in multiple minor isoforms. Standard CD44 was also shown to be the predominantly expressed isoform identified by immunoprecipitation, but human articular chondrocytes did not adhere to hyaluronan in vitro. Chondrocyte CD44 may function as an adhesion receptor for other matrix molecules such as fibronectin or collagen.

  9. IL-10 production by B cells expressing CD5 with the alternative exon 1B.

    PubMed

    Garaud, Soizic; Le Dantec, Christelle; de Mendoza, Agnès Revol; Mageed, Rizgar A; Youinou, Pierre; Renaudineau, Yves

    2009-09-01

    B lymphocytes are divided into two subpopulations, B1 and B2 cells based on expression of the T cell-associated protein CD5. Natural B1 cells are further divided into B1a cells that express CD5 on their membrane and B1b cells that do not but share most other biological characteristics of B1a cells. Recent studies from our laboratory have revealed, in humans, the existence of two alternative isoforms of the CD5 protein. A cell surface CD5 isoform which uses exon 1A (E1A) of the gene in B1a cells, and an intracellular isoform which uses exon 1B (E1B) mainly in human B1b cells. Indeed, the protein isoform encoded by transcripts containing E1B lack the leader peptide and is, thus, retained in the cytoplasm of B cells. The restriction of interleukin (IL)-10 to B1 lymphocytes in the mouse raises the possibility that the human CD5-E1B-expressing B cells produce IL-10. This prediction was confirmed in the CD5 negative Jok-1 B cells transfected with cDNA for either isoforms resulted in high level IL-10 production. Our data indicate that E1B-CD5-expressing B cells have the capacity to interfere with the immune response through their ability to produce high levels of IL-10.

  10. The PBX1 lupus susceptibility gene regulates CD44 expression

    PubMed Central

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence

    2017-01-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976

  11. Specific Detection of CD56 (NCAM) Isoforms for the Identification of Aggressive Malignant Neoplasms with Progressive Development

    PubMed Central

    Gattenlöhner, Stefan; Stühmer, Thorsten; Leich, Ellen; Reinhard, Matthias; Etschmann, Benjamin; Völker, Hans-Ulrich; Rosenwald, Andreas; Serfling, Edgar; Christian Bargou, Ralf; Ertl, Georg; Einsele, Hermann; Müller-Hermelink, Hans-Konrad

    2009-01-01

    Alternative splicing of transcripts from many cancer-associated genes is believed to play a major role in carcinogenesis as well as in tumor progression. Alternative splicing of one such gene, the neural cell adhesion molecule CD56 (NCAM), impacts the progression, inadequate therapeutic response, and reduced total survival of patients who suffer from numerous malignant neoplasms. Although previous investigations have determined that CD56 exists in three major isoforms (CD56120kD, CD56140kD, and CD56180kD) with individual structural and functional properties, neither the expression profiles nor the functional relevance of these isoforms in malignant tumors have been consistently investigated. Using new quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) strategies and novel CD56 isoform-specific antibodies, CD56140kD was shown to be exclusively expressed in a number of highly malignant CD56+ neoplasms and was associated with the progression of CD56+ precursor lesions of unclear malignant potential. Moreover, only CD56140kD induced antiapoptotic/proliferative pathways and specifically phosphorylated calcium-dependent kinases that are relevant for tumorigenesis. We conclude, therefore, that the specific detection of CD56 isoforms will help to elucidate their individual functions in the pathogenesis and progression of malignant neoplasms and may have a positive impact on the development of CD56-based immunotherapeutic strategies. PMID:19246644

  12. Expression of two isoforms of CD44 in human endometrium.

    PubMed

    Behzad, F; Seif, M W; Campbell, S; Aplin, J D

    1994-10-01

    The distribution of the cell-surface adhesion glycoprotein CD44 in human endometrium was examined by immunofluorescence using six monoclonal antibodies to epitopes common to all forms of the molecule, and by reverse transcription-polymerase chain reaction (RT-PCR). Immunoreactivity was observed throughout the menstrual cycle in stroma, vessels, glandular, and luminal epithelium. Variations in staining intensity were observed, especially in the epithelial compartment. CD44 was also expressed strongly by decidualized stromal cells of first-trimester pregnancy. No systematic variation of immunoreactivity was observed with stages of the normal cycle, but a fraction (25%) of the specimens lacked reactivity in the epithelium. To determine the molecular size of the epithelial isoform, an immunoprecipitation technique was developed using surface-radioiodinated, detergent-extracted glands. This indicated the presence at the cell surface of a single dominant CD44E species with an approximate molecular mass of 130 kDa. RT-PCR was used to investigate the isoforms present in whole endometrial tissue, isolated gland fragments, and Ishikawa endometrial carcinoma cells. Complementary DNA produced from total endometrial mRNA was PCR-amplified across the splice junction between exons 5 and 15. Transcripts corresponding to the hyaluronate receptor CD44H as well as a larger isoform were identified. CD44H was absent, or very scarce, in cDNA from purified gland epithelium. In contrast, Ishikawa cells expressed this form abundantly. The glands and Ishikawa cells also expressed CD44E containing sequences encoded by exons 12, 13, and 14. These data demonstrate the presence of CD44 in human endometrium and decidua, and show that different isoforms of CD44 are associated with tissue compartments in which different functional roles can be anticipated.

  13. Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome.

    PubMed

    Shah, Trushil; Qin, Shanshan; Vashi, Mona; Predescu, Dan N; Jeganathan, Niranjan; Bardita, Cristina; Ganesh, Balaji; diBartolo, Salvatore; Fogg, Louis F; Balk, Robert A; Predescu, Sanda A

    2018-06-22

    Pulmonary endothelial cells' (ECs) injury and apoptotic death are necessary and sufficient for the pathogenesis of the acute respiratory distress syndrome (ARDS), regardless of epithelial damage. Interaction of dysfunctional ECs with circulatory extracellular vesicles (EVs) holds therapeutic promise in ARDS. However, the presence in the blood of long-term ARDS survivors of EVs with a distinct phenotype compared to the EVs of non-surviving patients is not reported. With a multidisciplinary translational approach, we studied EVs from the blood of 33 patients with moderate-to-severe ARDS. The EVs were isolated from the blood of ARDS and control subjects. Immunoblotting and magnetic beads immunoisolation complemented by standardized flow cytometry and nanoparticles tracking analyses identified in the ARDS patients a subset of EVs with mesenchymal stem cell (MSC) origin (CD73 + CD105 + Cd34 - CD45 - ). These EVs have 4.7-fold greater counts compared to controls and comprise the transforming growth factor-beta receptor I (TβRI)/Alk5 and the Runx1 transcription factor. Time course analyses showed that the expression pattern of two Runx1 isoforms is critical for ARDS outcome: the p52 isoform shows a continuous expression, while the p66 is short-lived. A high ratio Runx1p66/p52 provided a survival advantage, regardless of age, sex, disease severity or length of stay in the intensive care unit. Moreover, the Runx1p66 isoform is transiently expressed by cultured human bone marrow-derived MSCs, it is released in the EVs recoverable from the conditioned media and stimulates the proliferation of lipopolysaccharide (LPS)-treated ECs. The findings are consistent with a causal effect of Runx1p66 expression on EC proliferation. Furthermore, morphological and functional assays showed that the EVs bearing the Runx1p66 enhanced junctional integrity of LPS-injured ECs and decreased lung histological severity in the LPS-treated mice. The expression pattern of Runx1 isoforms might be a reliable circulatory biomarker of ARDS activity and a novel determinant of the molecular mechanism for lung vascular/tissue repair and recovery after severe injury.

  14. The PBX1 lupus susceptibility gene regulates CD44 expression.

    PubMed

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence

    2017-05-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Functional role of human NK cell receptor 2B4 (CD244) isoforms.

    PubMed

    Mathew, Stephen O; Rao, Krithi K; Kim, Jong R; Bambard, Nowland D; Mathew, Porunelloor A

    2009-06-01

    2B4 (CD244), a member of the signaling lymphocyte-activation molecule (SLAM/CD150), is expressed on all NK cells, a subpopulation of T cells, monocytes and basophils. Human NK cells express two isoforms of 2B4, h2B4-A and h2B4-B that differ in a small portion of the extracellular domain. In the present investigation, we have studied the functions of h2B4-A and h2B4-B. Our study demonstrated that these two isoforms differ in their binding affinity for CD48, which results in differential cytotoxic activity as well as intracellular calcium release by NK cells upon target cell recognition. Analysis of the predicted 3-D structure of the two isoforms showed conformational differences that could account for their differences in binding affinity to CD48. h2B4-A was able to mediate natural cytotoxicity against CD48-expressing K562 target cells and induce intracellular calcium release, whereas h2B4-B showed no effects. NK-92MI, U937, THP-1, KU812, primary monocytes, basophils and NK cells showed expression of both h2B4-A and h2B4-B whereas YT and IL-2-activated NK cells did not show any h2B4-B expression. Stimulation of NK cells through 2B4 resulted in decreased mRNA levels of both h2B4-A and h2B4-B indicating that down-regulation of 2B4 isoforms may be an important factor in controlling NK cell activation during immune responses.

  16. WT1 isoform expression pattern in acute myeloid leukemia.

    PubMed

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Ibañez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Oscar; Dolz, Sandra; Oltra, Silvestre; Alonso, Carmen; Vera, Belén; Lorenzo, Ignacio; Martínez-Cuadrón, David; Montesinos, Pau; Senent, M Leonor; Moscardó, Federico; Bolufer, Pascual; Sanz, Miguel A

    2013-12-01

    WT1 plays a dual role in leukemia development, probably due to an imbalance in the expression of the 4 main WT1 isoforms. We quantify their expression and evaluate them in a series of AML patients. Our data showed a predominant expression of isoform D in AML, although in a lower quantity than in normal CD34+ cells. We found a positive correlation between the total WT1 expression and A, B and C isoforms. The overexpression of WT1 in AML might be due to a relative increase in A, B and C isoforms, together with a relative decrease in isoform D expression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Biochemical features of the adhesion G protein-coupled receptor CD97 related to its auto-proteolysis and HeLa cell attachment activities

    PubMed Central

    Yang, Li-yun; Liu, Xiao-fang; Yang, Yang; Yang, Lin-lin; Liu, Kai-wen; Tang, Yu-bo; Zhang, Min; Tan, Min-jia; Cheng, Shan-mei; Xu, Ye-chun; Yang, Huai-yu; Liu, Zhi-jie; Song, Gao-jie; Huang, Wei

    2017-01-01

    CD97 belongs to the adhesion GPCR family characterized by a long ECD linked to the 7TM via a GPCR proteolytic site (GPS) and plays important roles in modulating cell migration and invasion. CD97 (EGF1-5) is a splicing variant of CD97 that recognizes a specific ligand chondroitin sulfate on cell membranes and the extracellular matrix. The aim of this study was to elucidate the extracellular molecular basis of the CD97 EGF1-5 isoform in protein expression, auto-proteolysis and cell adhesion, including epidermal growth factor (EGF)-like domain, GPCR autoproteolysis-inducing (GAIN) domain, as well as GPS mutagenesis and N-glycosylation. Both wild-type (WT) CD97-ECD and its truncated, GPS mutated, PNGase F-deglycosylated, and N-glycosylation site mutated forms were expressed and purified. The auto-proteolysis of the proteins was analyzed with Western blotting and SDS-PAGE. Small angle X-ray scattering (SAXS) and molecular modeling were used to determine a structural profile of the properly expressed receptor. Potential N-glycosylation sites were identified using MS and were modulated with PNGase F digestion and glyco-site mutations. A flow cytometry-based HeLa cell attachment assay was used for all aforementioned CD97 variants to elucidate the molecular basis of CD97-HeLa interactions. A unique concentration-dependent GPS auto-proteolysis was observed in CD97 EGF1-5 isoform with the highest concentration (4 mg/mL) per sample was self-cleaved much faster than the lower concentration (0.1 mg/mL), supporting an intermolecular mechanism of auto-proteolysis that is distinct to the reported intramolecular mechanism for other CD97 isoforms. N-glycosylation affected the auto-proteolysis of CD97 EGF1-5 isoform in a similar way as the other previously reported CD97 isoforms. SAXS data for WT and deglycosylated CD97ECD revealed a spatula-like shape with GAIN and EGF domains constituting the body and handle, respectively. Structural modeling indicated a potential interaction between the GAIN and EGF5 domains accounting for the absence of expression of the GAIN domain itself, although EGF5-GAIN was expressed similarly in the wild-type protein. For HeLa cell adhesion, the GAIN-truncated forms showed dramatically reduced binding affinity. The PNGase F-deglycosylated and GPS mutated forms also exhibited reduced HeLa attachment compared with WT CD97. However, neither N-glycosylation mutagenesis nor auto-proteolysis inhibition caused by N-glycosylation mutagenesis affected CD97-HeLa cell interactions. A comparison of the HeLa binding affinities of PNGase F-digested, GPS-mutated and N-glycosylation-mutated CD97 samples revealed diverse findings, suggesting that the functions of CD97 ECD were complex, and various technologies for function validation should be utilized to avoid single-approach bias when investigating N-glycosylation and auto-proteolysis of CD97. A unique mechanism of concentration-dependent auto-proteolysis of the CD97 EGF1-5 isoform was characterized, suggesting an intermolecular mechanism that is distinct from that of other previously reported CD97 isoforms. The EGF5 and GAIN domains are likely associated with each other as CD97 expression and SAXS data revealed a potential interaction between the two domains. Finally, the GAIN and EGF domains are also important for CD97-HeLa adhesion, whereas N-glycosylation of the CD97 GAIN domain and GPS auto-proteolysis are not required for HeLa cell attachment. PMID:27641734

  18. Biochemical features of the adhesion G protein-coupled receptor CD97 related to its auto-proteolysis and HeLa cell attachment activities.

    PubMed

    Yang, Li-Yun; Liu, Xiao-Fang; Yang, Yang; Yang, Lin-Lin; Liu, Kai-Wen; Tang, Yu-Bo; Zhang, Min; Tan, Min-Jia; Cheng, Shan-Mei; Xu, Ye-Chun; Yang, Huai-Yu; Liu, Zhi-Jie; Song, Gao-Jie; Huang, Wei

    2017-01-01

    CD97 belongs to the adhesion GPCR family characterized by a long ECD linked to the 7TM via a GPCR proteolytic site (GPS) and plays important roles in modulating cell migration and invasion. CD97 (EGF1-5) is a splicing variant of CD97 that recognizes a specific ligand chondroitin sulfate on cell membranes and the extracellular matrix. The aim of this study was to elucidate the extracellular molecular basis of the CD97 EGF1-5 isoform in protein expression, auto-proteolysis and cell adhesion, including epidermal growth factor (EGF)-like domain, GPCR autoproteolysis-inducing (GAIN) domain, as well as GPS mutagenesis and N-glycosylation. Both wild-type (WT) CD97-ECD and its truncated, GPS mutated, PNGase F-deglycosylated, and N-glycosylation site mutated forms were expressed and purified. The auto-proteolysis of the proteins was analyzed with Western blotting and SDS-PAGE. Small angle X-ray scattering (SAXS) and molecular modeling were used to determine a structural profile of the properly expressed receptor. Potential N-glycosylation sites were identified using MS and were modulated with PNGase F digestion and glyco-site mutations. A flow cytometry-based HeLa cell attachment assay was used for all aforementioned CD97 variants to elucidate the molecular basis of CD97-HeLa interactions. A unique concentration-dependent GPS auto-proteolysis was observed in CD97 EGF1-5 isoform with the highest concentration (4 mg/mL) per sample was self-cleaved much faster than the lower concentration (0.1 mg/mL), supporting an intermolecular mechanism of auto-proteolysis that is distinct to the reported intramolecular mechanism for other CD97 isoforms. N-glycosylation affected the auto-proteolysis of CD97 EGF1-5 isoform in a similar way as the other previously reported CD97 isoforms. SAXS data for WT and deglycosylated CD97ECD revealed a spatula-like shape with GAIN and EGF domains constituting the body and handle, respectively. Structural modeling indicated a potential interaction between the GAIN and EGF5 domains accounting for the absence of expression of the GAIN domain itself, although EGF5-GAIN was expressed similarly in the wild-type protein. For HeLa cell adhesion, the GAIN-truncated forms showed dramatically reduced binding affinity. The PNGase F-deglycosylated and GPS mutated forms also exhibited reduced HeLa attachment compared with WT CD97. However, neither N-glycosylation mutagenesis nor auto-proteolysis inhibition caused by N-glycosylation mutagenesis affected CD97-HeLa cell interactions. A comparison of the HeLa binding affinities of PNGase F-digested, GPS-mutated and N-glycosylation-mutated CD97 samples revealed diverse findings, suggesting that the functions of CD97 ECD were complex, and various technologies for function validation should be utilized to avoid single-approach bias when investigating N-glycosylation and auto-proteolysis of CD97. A unique mechanism of concentration-dependent auto-proteolysis of the CD97 EGF1-5 isoform was characterized, suggesting an intermolecular mechanism that is distinct from that of other previously reported CD97 isoforms. The EGF5 and GAIN domains are likely associated with each other as CD97 expression and SAXS data revealed a potential interaction between the two domains. Finally, the GAIN and EGF domains are also important for CD97-HeLa adhesion, whereas N-glycosylation of the CD97 GAIN domain and GPS auto-proteolysis are not required for HeLa cell attachment.

  19. In vitro reconstitution of T cell receptor-mediated segregation of the CD45 phosphatase

    PubMed Central

    Carbone, Catherine B.; Fernandes, Ricardo A.; Hui, Enfu; Su, Xiaolei; Garcia, K. Christopher; Vale, Ronald D.

    2017-01-01

    T cell signaling initiates upon the binding of peptide-loaded MHC (pMHC) on an antigen-presenting cell to the T cell receptor (TCR) on a T cell. TCR phosphorylation in response to pMHC binding is accompanied by segregation of the transmembrane phosphatase CD45 away from TCR–pMHC complexes. The kinetic segregation hypothesis proposes that CD45 exclusion shifts the local kinase–phosphatase balance to favor TCR phosphorylation. Spatial partitioning may arise from the size difference between the large CD45 extracellular domain and the smaller TCR–pMHC complex, although parsing potential contributions of extracellular protein size, actin activity, and lipid domains is difficult in living cells. Here, we reconstitute segregation of CD45 from bound receptor–ligand pairs using purified proteins on model membranes. Using a model receptor–ligand pair (FRB–FKBP), we first test physical and computational predictions for protein organization at membrane interfaces. We then show that the TCR–pMHC interaction causes partial exclusion of CD45. Comparing two developmentally regulated isoforms of CD45, the larger RABC variant is excluded more rapidly and efficiently (∼50%) than the smaller R0 isoform (∼20%), suggesting that CD45 isotypes could regulate signaling thresholds in different T cell subtypes. Similar to the sensitivity of T cell signaling, TCR–pMHC interactions with Kds of ≤15 µM were needed to exclude CD45. We further show that the coreceptor PD-1 with its ligand PD-L1, immunotherapy targets that inhibit T cell signaling, also exclude CD45. These results demonstrate that the binding energies of physiological receptor–ligand pairs on the T cell are sufficient to create spatial organization at membrane–membrane interfaces. PMID:29042512

  20. Altered STAT4 Isoform Expression in Patients with Inflammatory Bowel Disease.

    PubMed

    Jabeen, Rukhsana; Miller, Lucy; Yao, Weiguo; Gupta, Sandeep; Steiner, Steven; Kaplan, Mark H

    2015-10-01

    Crohn's disease (CD) and ulcerative colitis (UC) are the major forms of inflammatory bowel disease, and pathogenesis involves a complex interplay among genetic, environmental, and immunological factors. We evaluated isoform expression of the IL-12-activated transcription factor STAT4 in children with CD and UC. We collected biopsy samples from both patients newly diagnosed with CD and with UC. We further collected blood samples from patients newly diagnosed with CD and with UC as well as from patients who had a flare-up after being in clinical remission, and we examined the ratios of STAT4β/STAT4α mRNA. In addition to STAT4 isoforms, we measured the expression of the cytokines TNFα, IFNγ, granulocyte macrophage-colony stimulating factor, and IL-17 using polymerase chain reaction of biopsy samples and multiplex analysis of patient serum samples. Ratios of STAT4β/STAT4α were increased in specific gastrointestinal tract segments in both patients with CD and those with UC that correlate with the location and severity of inflammation. In contrast, we did not observe changes in STAT4β/STAT4α ratios in biopsy specimens from patients with eosinophilic esophagitis. We also observed increased STAT4β/STAT4α ratios in the peripheral blood mononuclear cells of patients with UC and those with CD, compared with healthy controls. Ratios were normalized after patients were treated with steroids. Collectively, these data indicate that STAT4 isoforms could be an important noninvasive biomarker in the diagnosis and treatment of inflammatory bowel disease and that expression of these isoforms might provide further insight into the pathogenesis of IBD.

  1. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: identification, molecular cloning and effects on cell migration.

    PubMed Central

    Zannettino, Andrew C W; Roubelakis, Maria; Welldon, Katie J; Jackson, Denise E; Simmons, Paul J; Bendall, Linda J; Henniker, Anthony; Harrison, Kate L; Niutta, Silvana; Bradstock, Kenneth F; Watt, Suzanne M

    2003-01-01

    SHP-2 (Src homology phosphatase type-2) is essential for haematopoietic skeletal and vascular development. Thus the identification of its binding partners is critically important. In the present study, we describe a unique monoclonal antibody, WM78, which interacts with PZR, a SHP-2 binding partner. Furthermore, we identify two novel isoforms of PZR, PZRa and PZRb, derived by differential splicing from a single gene transcription unit on human chromosome 1q24. All are type 1 transmembrane glycoproteins with identical extracellular and transmembrane domains, but differ in their cytoplasmic tails. The PZR intracellular domain contains two SHP-2 binding immunoreceptor tyrosine-based inhibitory motifs (VIY(246)AQL and VVY(263)ADI) which are not present in PZRa and PZRb. Using the WM78 monoclonal antibody, which recognizes the common extracellular domain of the PZR isoforms, we demonstrate that the PZR molecules are expressed on mesenchymal and haematopoietic cells, being present on the majority of CD34(+)CD38(+) and early clonogenic progenitors, and at lower levels on CD34(+)CD38(-) cells and the hierarchically more primitive pre-colony forming units. Interestingly, we show by reverse transcriptase-PCR that the PZR isoforms are differentially expressed in haematopoietic, endothelial and mesenchymal cells. Both PZR and PZRb are present in CD133(+) precursors and endothelial cells, PZRb predominates in mesenchymal and committed myelomonocytic progenitor cells, and all three isoforms occur in erythroid precursor cell lines. Importantly, using SHP-2 mutant (Delta 46-110) and SHP-2 rescue of embryonic fibroblasts stably expressing the PZR isoforms, we demonstrate for the first time that PZR, but not PZRa or PZRb, facilitates fibronectin- dependent migration of cells expressing a competent SHP-2 molecule. These observations will be instrumental in determining the mechanisms whereby PZR isoforms regulate cell motility. PMID:12410637

  2. Enhancing Adoptive Cell Therapy of Cancer through Targeted Delivery of Small-Molecule Immunomodulators to Internalizing or Noninternalizing Receptors.

    PubMed

    Zheng, Yiran; Tang, Li; Mabardi, Llian; Kumari, Sudha; Irvine, Darrell J

    2017-03-28

    Adoptive cell therapy (ACT) has achieved striking efficacy in B-cell leukemias, but less success treating other cancers, in part due to the rapid loss of ACT T-cell effector function in vivo due to immunosuppression in solid tumors. Transforming growth factor-β (TGF-β) signaling is an important mechanism of immune suppression in the tumor microenvironment, but systemic inhibition of TGF-β is toxic. Here we evaluated the potential of targeting a small molecule inhibitor of TGF-β to ACT T-cells using PEGylated immunoliposomes. Liposomes were prepared that released TGF-β inhibitor over ∼3 days in vitro. We compared the impact of targeting these drug-loaded vesicles to T-cells via an internalizing receptor (CD90) or noninternalizing receptor (CD45). When lymphocytes were preloaded with immunoliposomes in vitro prior to adoptive therapy, vesicles targeted to both CD45 and CD90 promoted enhanced T-cell expression of granzymes relative to free systemic drug administration, but only targeting to CD45 enhanced accumulation of granzyme-expressing T-cells in tumors, which correlated with the greatest enhancement of T-cell antitumor activity. By contrast, when administered i.v. to target T-cells in vivo, only targeting of a CD90 isoform expressed exclusively by the donor T-cells led to greater tumor regression over equivalent doses of free systemic drug. These results suggest that in vivo, targeting of receptors uniquely expressed by donor T-cells is of paramount importance for maximal efficacy. This immunoliposome strategy should be broadly applicable to target exogenous or endogenous T-cells and defines parameters to optimize delivery of supporting (or suppressive) drugs to these important immune effectors.

  3. Enhancing Adoptive Cell Therapy of Cancer through Targeted Delivery of Small-Molecule Immunomodulators to Internalizing or Non-Internalizing Receptors

    PubMed Central

    Zheng, Yiran; Tang, Li; Mabardi, Llian; Kumari, Sudha; Irvine, Darrell J.

    2017-01-01

    Adoptive cell therapy (ACT) has achieved striking efficacy in B-cell leukemias, but less success treating other cancers, in part due to the rapid loss of ACT T-cell effector function in vivo due to immunosuppression in solid tumors. Transforming growth factor-β (TGF-β) signaling is an important mechanism of immune suppression in the tumor microenvironment, but systemic inhibition of TGF-β is toxic. Here we evaluated the potential of targeting a small molecule inhibitor of TGF-β to ACT T-cells using PEGylated immunoliposomes. Liposomes were prepared that released TGF-β inhibitor over ~3 days in vitro. We compared the impact of targeting these drug-loaded vesicles to T-cells via an internalizing receptor (CD90) or non-internalizing receptor (CD45). When lymphocytes were pre-loaded with immunoliposomes in vitro prior to adoptive therapy, vesicles targeted to both CD45 and CD90 promoted enhanced T-cell expression of granzymes relative to free systemic drug administration, but only targeting to CD45 enhanced accumulation of granzyme-expressing T-cells in tumors, which correlated with the greatest enhancement of T-cell anti-tumor activity. By contrast, when administered i.v. to target T-cells in vivo, only targeting of a CD90 isoform expressed exclusively by the donor T-cells led to greater tumor regression over equivalent doses of free systemic drug. These results suggest that in vivo, targeting of receptors uniquely expressed by donor T-cells is of paramount importance for maximal efficacy. This immunoliposome strategy should be broadly applicable to target exogenous or endogenous T-cells and defines parameters to optimize delivery of supporting (or suppressive) drugs to these important immune effectors. PMID:28231431

  4. CD45RO enriches for activated, highly mutated human germinal center B cells

    PubMed Central

    Jackson, Stephen M.; Harp, Natessa; Patel, Darshna; Zhang, Jeffrey; Willson, Savannah; Kim, Yoon J.; Clanton, Christian

    2007-01-01

    To date, there is no consensus regarding the influence of different CD45 isoforms during peripheral B-cell development. Examining correlations between surface CD45RO expression and various physiologic processes ongoing during the germinal center (GC) reaction, we hypothesized that GC B cells, like T cells, that up-regulate surface RO should progressively acquire phenotypes commonly associated with activated, differentiating lymphocytes. GC B cells (IgD−CD38+) were subdivided into 3 surface CD45RO fractions: RO−, RO+/−, and RO+. We show here that the average number of mutations per IgVH transcript increased in direct correlation with surface RO levels. Conjunctional use of RO and CD69 further delineated low/moderately and highly mutated fractions. Activation-induced cytidine deaminase (AID) mRNA was slightly reduced among RO+ GC B cells, suggesting that higher mutation averages are unlikely due to elevated somatic mutation activity. Instead, RO+ GC B cells were negative for Annexin V, comprised mostly (93%) of CD77− centrocytes, and were enriched for CD69+ cells. Collectively, RO+ GC B cells occupy what seems to be a specialized niche comprised mostly of centrocytes that may be in transition between activation states. These findings are among the first to sort GC B cells into populations enriched for live mutated cells solely using a single extracellular marker. PMID:17644737

  5. Forced expression of the Ikaros 6 isoform in human placental blood CD34(+) cells impairs their ability to differentiate toward the B-lymphoid lineage.

    PubMed

    Tonnelle, C; Bardin, F; Maroc, C; Imbert, A M; Campa, F; Dalloul, A; Schmitt, C; Chabannon, C

    2001-11-01

    Studies in mice suggest that the Ikaros (Ik) gene encodes several isoforms and is a critical regulator of hematolymphoid differentiation. Little is known on the role of Ikaros in human stem cell differentiation. Herein, the biological consequences of the forced expression of Ikaros 6 (Ik6) in human placental blood CD34(+) progenitors are evaluated. Ik6 is one of the isoforms produced from the Ikaros premessenger RNA by alternative splicing and is thought to behave as a dominant negative isoform of the gene product because it lacks the DNA binding domain present in transcriptionally active isoforms. The results demonstrate that human cord blood CD34(+) cells that express high levels of Ik6 as a result of retrovirally mediated gene transfer have a reduced capacity to produce lymphoid B cells in 2 independent assays: (1) in vitro reinitiation of human hematopoiesis during coculture with the MS-5 murine stromal cell line and (2) xenotransplantation in nonobese diabetic-severe combined immunodeficient mice. These results suggest that Ikaros plays an important role in stem cell commitment in humans and that the balance between the different isoforms is a key element of this regulatory system; they support the hypothesis that posttranscriptional events can participate in the control of human hematopoietic differentiation.

  6. mRNA Quantification of NIPBL Isoforms A and B in Adult and Fetal Human Tissues, and a Potentially Pathological Variant Affecting Only Isoform A in Two Patients with Cornelia de Lange Syndrome

    PubMed Central

    Puisac, Beatriz; Teresa-Rodrigo, María-Esperanza; Hernández-Marcos, María; Baquero-Montoya, Carolina; Gil-Rodríguez, María-Concepción; Visnes, Torkild; Bot, Christopher; Gómez-Puertas, Paulino; Kaiser, Frank J.; Ramos, Feliciano J.; Ström, Lena; Pié, Juan

    2017-01-01

    Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction). Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys), showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers. PMID:28241484

  7. CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium

    PubMed Central

    Bertaux-Skeirik, Nina; Wunderlich, Mark; Teal, Emma; Chakrabarti, Jayati; Biesiada, Jacek; Mahe, Maxime; Sundaram, Nambirajan; Gabre, Joel; Hawkins, Jennifer; Jian, Gao; Engevik, Amy C.; Yang, Li; Wang, Jiang; Goldenring, James R.; Qualls, Joseph E.; Medvedovic, Mario; Helmrath, Michael A.; Diwan, Tayyab; Mulloy, James C.; Zavros, Yana

    2017-01-01

    The CD44 gene encodes several protein isoforms due to alternative splicing and post translational modifications. Given that CD44 variant isoform 9 (CD44v9) is expressed within Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) glands during repair, CD44v9 may be play a functional role during the process of regeneration of the gastric epithelium. Here we hypothesize that CD44v9 marks a regenerative cell lineage responsive to infiltrating macrophages during regeneration of the gastric epithelium. Ulcers were induced in CD44-decient (CD44KO) and C57BL/6 (BL6) mice by a localized application of acetic acid to the serosal surface of the stomach. Gastric organoids expressing CD44v9 were derived from mouse stomachs and transplanted at the ulcer site of CD44KO mice. Ulcers, CD44v9 expression, proliferation and histology were measured 1, 3, 5 and 7-days post-injury. Human-derived gastric organoids were generated from stomach tissue collected from elderly (>55 years) or young (14–20 years) patients. Organoids were transplanted into the stomachs of NOD scid gamma (NSG) mice at the site of injury. Gastric injury was induced in NRG-SGM3 (NRGS) mice harboring human-derived immune cells (hnNRGS) and the immune profile analyzed by CyTOF. CD44v9 expression emerged within regenerating glands the ulcer margin in response to injury. While ulcers in BL6 mice healed within 7-days post-injury, CD44KO mice exhibited loss of repair and epithelial regeneration. Ulcer healing was promoted in CD44KO mice by transplanted CD55v9-expressing gastric organoids. NSG mice exhibited loss of CD44v9 expression and gastric repair. Transplantation of human-derived gastric organoids from young, but not aged stomachs promoted repair in NSG mouse stomachs in response to injury. Finally, compared to NRGS mice, huNRGS animals exhibited reduced ulcer sizes, an infiltration of human CD162+ macrophages and an emergence of CD44v9 expression in SPEM. Thus, during repair of the gastric epithelium CD44v9 emerges within a regenerative cell lineage t hat coincides with macrophage infiltration within the injured mucosa. PMID:28497484

  8. Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance.

    PubMed

    Ansarypour, Zahra; Shahpiri, Azar

    Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd 2+ , H 2 O 2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd 2+ and accumulated more Cd 2+ ions when they were grown in the medium containing CdCl 2 . In addition, the heterologous expression of GST-OsMTI-1b conferred H 2 O 2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Detection of high CD44 expression in oral cancers using the novel monoclonal antibody, C44Mab-5.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Kaneko, Mika K; Kato, Yukinari

    2018-07-01

    CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C 44 Mab-5 (IgG 1 , kappa), recognized both CD44s and CD44v3-10. C 44 Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C 44 Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C 44 Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.

  10. Nuclear factor 45 of tongue sole (Cynoglossus semilaevis): evidence for functional differentiation between two isoforms in immune defense against viral and bacterial pathogens.

    PubMed

    Chi, Heng; Hu, Yong-hua; Xiao, Zhi-zhong; Sun, Li

    2014-02-01

    Nuclear factor 45 (NF45) is known to play an important role in regulating interleukin-2 expression in mammals. The function of fish NF45 is largely unknown. In a previous study, we reported the identification of a NF45 (named CsNF45) from half smooth tongue sole (Cynoglossus semilaevis). In the present study, we identified an isoform of CsNF45 (named CsNF45i) from half smooth tongue sole and examined its biological properties in comparison with CsNF45. We found that CsNF45i is a truncated version of CsNF45 and lacks the N-terminal 38 residues of CsNF45. Genetic analysis showed that the CsNF45 gene consists of 14 exons and 13 introns, and that CsNF45 and CsNF45i are the products of alternative splicing. Constitutive expression of CsNF45 and CsNF45i occurred in multiple tissues but differed in patterns. Experimental infection with viral and bacterial pathogens upregulated the expression of both isoforms but to different degrees, with potent induction of CsNF45 being induced by bacterial pathogen, while dramatic induction of CsNF45i being induced by viral pathogen. Transient transfection analysis showed that both isoforms were localized in the nucleus and able to stimulate the activity of IL-2 promoter to comparable extents. To examine their in vivo effects, the two isoforms were overexpressed in tongue sole. Subsequent analysis showed that following viral and bacterial infection, the viral loads in CsNF45i-overexpressing fish were significantly lower than those in CsNF45-overexpressing fish, whereas the bacterial loads in CsNF45-overexpressing fish were significantly lower than those in CsNF45i-overexpressing fish. These results indicate that both CsNF45 and CsNF45i possess immunoregulatory properties, however, the two isoforms most likely participate in different aspects of host immune defense that target different pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorita, I.; Bilbao, E.; Schad, A.

    2007-04-15

    Metallothioneins (MTs) are metal-inducible proteins that can be used as biomarkers of metal exposure. In mussels two families of MT isoforms (MT10 and MT20) have been characterized. In this study, mussels (Mytilus galloprovincialis) were exposed to 200 ppb Cd and 40 ppb Cu for 2 and 9 days to characterize the tissue and isoform specificity of metal-induced MT expression. Non-radioactive in situ hybridization demonstrated that both MT isoforms were mainly transcribed in digestive tubule epithelial cells, especially in basophilic cells. Weaker MT expression was detected in non-ciliated duct cells, stomach and gill epithelial cells, haemocytes, adipogranular cells, spermatic follicles andmore » oocytes. RT-PCR resulted in cloning of a novel M. galloprovincialis isoform homologous to recently cloned Mytilus edulis intron-less MT10B isoform. In gills, Cd only affected MT10 gene expression after 2 days of exposure while increases in MT protein levels occurred at day 9. In the digestive gland, a marked increase of both isoforms, but especially of MT20, was accompanied by increased levels of MT proteins and basophilic cell volume density (Vv{sub BAS}) after 2 and 9 days and of intralysosomal metal accumulation in digestive cells after 9 days. Conversely, although metal was accumulated in digestive cells lysosomes and the Vv{sub BAS} increased in Cu-exposed mussels, Cu exposure did not produce an increase of MT gene expression or MT protein levels. These data suggest that MTs are expressed in a tissue-, cell- and isoform-specific way in response to different metals.« less

  12. JNK1 Mediates Lipopolysaccharide-Induced CD14 and SR-AI Expression and Macrophage Foam Cell Formation.

    PubMed

    An, Dong; Hao, Feng; Hu, Chen; Kong, Wei; Xu, Xuemin; Cui, Mei-Zhen

    2017-01-01

    Foam cell formation is the key process in the development of atherosclerosis. The uptake of oxidized low-density lipoprotein (oxLDL) converts macrophages into foam cells. We recently reported that lipopolysaccharide (LPS)-induced foam cell formation is regulated by CD14 and scavenger receptor AI (SR-AI). In this study, we employed pharmaceutical and gene knockdown approaches to determine the upstream molecular mediators, which control LPS-induced foam cell formation. Our results demonstrated that the specific c-Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, but neither the specific inhibitor of extracellular signaling-regulated kinase (ERK) kinase MEK1/2, U0126, nor the specific inhibitor of p38 MAPK, SB203580, significantly blocks LPS-induced oxLDL uptake, suggesting that the JNK pathway is the upstream mediator of LPS-induced oxLDL uptake/foam cell formation. To address whether JNK pathway mediates LPS-induced oxLDL uptake is due to JNK pathway-regulated CD14 and SR-AI expression, we assessed whether the pharmaceutical inhibitor of JNK influences LPS-induced expression of CD14 and SR-AI. Our results indicate that JNK pathway mediates LPS-induced CD14 and SR-AI expression. To conclusively address the isoform role of JNK family, we depleted JNK isoforms using the JNK isoform-specific siRNA. Our data showed that the depletion of JNK1, but not JNK2 blocked LPS-induced CD14/SR-AI expression and foam cell formation. Taken together, our results reveal for the first time that JNK1 is the key mediator of LPS-induced CD14 and SR-AI expression in macrophages, leading to LPS-induced oxLDL uptake/foam cell formation. We conclude that the novel JNK1/CD14/SR-AI pathway controls macrophage oxLDL uptake/foam cell formation.

  13. CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway

    PubMed Central

    Jijiwa, Mayumi; Demir, Habibe; Gupta, Snehalata; Leung, Crystal; Joshi, Kaushal; Orozco, Nicholas; Huang, Tiffany; Yildiz, Vedat O.; Shibahara, Ichiyo; de Jesus, Jason A.; Yong, William H.; Mischel, Paul S.; Fernandez, Soledad; Kornblum, Harley I.; Nakano, Ichiro

    2011-01-01

    Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44high GBM but not from CD44low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44high GBM, but not in CD44low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKTpathway. PMID:21915300

  14. A negative regulatory role in mouse cardiac transplantation for a splice variant of CD80.

    PubMed

    Bugeon, Laurence; Wong, Kenneth K; Rankin, Alasdair M; Hargreaves, Roseanna E G; Dallman, Margaret J

    2006-11-27

    Members of the B7 costimulatory protein family (CD80 and CD86) play a determining role in allograft rejection. Both CD80 and CD86 have naturally occurring splice variants whose roles in transplantation are unknown. Full length CD80 has two immunoglobulin (Ig)-like domains in the extracellular portion, IgC and IgV. In mouse, the isoform IgV-CD80 lacks the IgC-like domain. Here we analyzed the role of mouse IgV-CD80 in heart allograft rejection and search for equivalent splice variants in human. Mice made deficient for full-length CD80 but which retain expression of the shorter IgV-CD80 (CD80 mice) were used as donor or recipient of a heart allograft. Recipient animals were untreated or pretreated with alloantigen expressing cells and/or treated with CD80 and CTLA4 monoclonal antibodies (mAbs). Recipients expressing IgV-CD80 but not full length CD80 exhibited a slight prolongation in survival of either wild-type (Wt) or CD80 grafts. More dramatically, CD80 animals pretreated with donor alloantigen exhibited permanent graft survival, whereas their Wt counterparts rejected their grafts with a median survival of 24 days. This prolonged survival was due to the expression of IgV-CD80 in recipients since treatment with CD80 mAb abrogated the beneficial effect observed. We identified and report here a similar isoform of CD80 from human cDNA encoding a putative soluble, IgV-containing protein. IgV-CD80 bearing recipients show enhanced allograft survival especially after donor alloantigen pretreatment. This together with data from other species suggests that regulation delivered by splice variants of CD80 significantly modulates immunity and may be common across the species.

  15. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  16. CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments.

    PubMed

    Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M

    2012-06-01

    Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

  17. Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques.

    PubMed

    Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A; Veazey, Ronald S

    2008-01-01

    Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross-react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define "memory" T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in approximately 44% of rhesus macaques (Macaca mulatta) of Indian but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques.

  18. Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques

    PubMed Central

    Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A.; Veazey, Ronald S.

    2008-01-01

    Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define “memory” T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in ~44% of rhesus macaques (Macaca mulatta) of Indian, but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques. PMID:18304631

  19. Differential induction of CD94 and NKG2 in CD4 helper T cells. A consequence of influenza virus infection and interferon-γ?

    PubMed Central

    Graham, Christine M; Christensen, Jillian R; Thomas, D Brian

    2007-01-01

    Influenza A virus causes worldwide epidemics and pandemics and the investigation of memory T helper (Th) cells that help maintain serological memory following infection is important for vaccine design. In this study we investigated CD94 and NKG2 gene expression in memory CD4 T-cell clones established from the spleens of C57BL/10 (H-2b) and BALB/c (H-2d) mice infected with influenza A virus (H3N2). CD94 and NKG2A/C/E proteins form heterodimeric membrane receptors that are involved in virus recognition. CD94 and NKG2 expression have been well characterized in natural killer (NK) and cytotoxic T cells. Despite CD94 being potentially an important marker for Th1 cells involved in virus infection, however, there has been little investigation of its expression or function in the CD4 T-cell lineage and no studies have looked at in-vivo-generated Th cells or memory cells. We show in this study that in-vivo-generated CD4 Th1 cells, but not Th2 cells, exhibited full-length CD94 and NKG2A gene expression following activation with viral peptide. For NKG2A, a novel ‘short’ (possibly redundant) truncated isoform was detectable in a Th2 cell clone. Another member of the NK receptor family, NKG2D, but not NKG2C or E, was also differentially expressed in Th1 cells. We show here that CD94 and NKG2A may exist as multiple isoforms with the potential to distinguish helper T-cell subsets. PMID:17462078

  20. Structural characterization of NRAS isoform 5

    PubMed Central

    Mal, Tapas K.; Yuan, Chunhua; Courtney, Nicholas B.; Patel, Mitra; Stiff, Andrew R.; Blachly, James; Walker, Christopher; Eisfeld, Ann‐Kathrin; de la Chapelle, Albert

    2016-01-01

    Abstract It was recently discovered that the NRAS isoform 5 (20 amino acids) is expressed in melanoma and results in a more aggressive cell phenotype. This novel isoform is responsible for increased phosphorylation of downstream targets such as AKT, MEK, and ERK as well as increased cellular proliferation. This structure report describes the NMR solution structure of NRAS isoform 5 to be used as a starting point to understand its biophysical interactions. The isoform is highly flexible in aqueous solution, but forms a helix‐turn‐coil structure in the presence of trifluoroethanol as determined by NMR and CD spectroscopy. PMID:26947772

  1. CKI isoforms α and ε regulate Star–PAP target messages by controlling Star–PAP poly(A) polymerase activity and phosphoinositide stimulation

    PubMed Central

    Laishram, Rakesh S.; Barlow, Christy A.; Anderson, Richard A.

    2011-01-01

    Star–PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P2), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P2 sensitive CKI isoform, CKIα associates with and phosphorylates Star–PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star–PAP, which is critical for both its polyadenylation activity and stimulation by PI4,5P2. CKI activity was required for the expression and efficient 3′-end processing of its target mRNAs in vivo as well as the polyadenylation activity of Star–PAP in vitro. Specific CKI activity inhibitors (IC261 and CKI7) block in vivo Star–PAP activity, but the knockdown of CKIα did not equivalently inhibit the expression of Star–PAP targets. We show that in addition to CKIα, Star–PAP associates with another CKI isoform, CKIε in the Star–PAP complex that phosphorylates Star–PAP and complements the loss of CKIα. Knockdown of both CKI isoforms (α and ε) resulted in the loss of expression and the 3′-end processing of Star–PAP targets similar to the CKI activity inhibitors. Our results demonstrate that CKI isoforms α and ε modulate Star–PAP activity and regulates Star–PAP target messages. PMID:21729869

  2. CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity.

    PubMed

    Pereira, Catia S; Macedo, M Fatima

    2016-01-01

    Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.

  3. Heparan Sulfate Modification of the Transmembrane Receptor CD47 Is Necessary for Inhibition of T Cell Receptor Signaling by Thrombospondin-1*

    PubMed Central

    Kaur, Sukhbir; Kuznetsova, Svetlana A.; Pendrak, Michael L.; Sipes, John M.; Romeo, Martin J.; Li, Zhuqing; Zhang, Lijuan; Roberts, David D.

    2011-01-01

    Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent Mr > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent Mr 230,000) and CD47 (apparent Mr > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser64 and Ser79. Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser64. PMID:21343308

  4. New pyrimido-indole compound CD-160130 preferentially inhibits the KV11.1B isoform and produces antileukemic effects without cardiotoxicity.

    PubMed

    Gasparoli, Luca; D'Amico, Massimo; Masselli, Marika; Pillozzi, Serena; Caves, Rachel; Khuwaileh, Rawan; Tiedke, Wolfgang; Mugridge, Kenneth; Pratesi, Alessandro; Mitcheson, John S; Basso, Giuseppe; Becchetti, Andrea; Arcangeli, Annarosa

    2015-02-01

    KV11.1 (hERG1) channels are often overexpressed in human cancers. In leukemias, KV11.1 regulates pro-survival signals that promote resistance to chemotherapy, raising the possibility that inhibitors of KV11.1 could be therapeutically beneficial. However, because of the role of KV11.1 in cardiac repolarization, blocking these channels may cause cardiac arrhythmias. We show that CD-160130, a novel pyrimido-indole compound, blocks KV11.1 channels with a higher efficacy for the KV11.1 isoform B, in which the IC50 (1.8 μM) was approximately 10-fold lower than observed in KV11.1 isoform A. At this concentration, CD-160130 also had minor effects on Kir2.1, KV 1.3, Kv1.5, and KCa3.1. In vitro, CD-160130 induced leukemia cell apoptosis, and could overcome bone marrow mesenchymal stromal cell (MSC)-induced chemoresistance. This effect was caused by interference with the survival signaling pathways triggered by MSCs. In vivo, CD-160130 produced an antileukemic activity, stronger than that caused by cytarabine. Consistent with its atypical target specificity, CD-160130 did not bind to the main binding site of the arrhythmogenic KV11.1 blockers (the Phe656 pore residue). Importantly, in guinea pigs CD-160130 produced neither alteration of the cardiac action potential shape in dissociated cardiomyocytes nor any lengthening of the QT interval in vivo. Moreover, CD-160130 had no myelotoxicity on human bone marrow-derived cells. Therefore, CD-160130 is a promising first-in-class compound to attempt oncologic therapy without cardiotoxicity, based on targeting KV11.1. Because leukemia and cardiac cells tend to express different ratios of the A and B KV11.1 isoforms, the pharmacological properties of CD-160130 may depend, at least in part, on isoform specificity. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma.

    PubMed

    Xie, Jeffrey X; Zhang, Shungang; Cui, Xiaoyu; Zhang, Jue; Yu, Hui; Khalaf, Fatimah K; Malhotra, Deepak; Kennedy, David J; Shapiro, Joseph I; Tian, Jiang; Haller, Steven T

    2017-12-22

    Recent studies have highlighted a critical role for CD40 in the pathogenesis of renal injury and fibrosis. However, little is currently understood about the regulation of CD40 in this setting. We use novel Na/K-ATPase cell lines and inhibitors in order to demonstrate the regulatory function of Na/K-ATPase with regards to CD40 expression and function. We utilize 5/6 partial nephrectomy as well as direct infusion of a Na/K-ATPase ligand to demonstrate this mechanism exists in vivo. We demonstrate that knockdown of the α1 isoform of Na/K-ATPase causes a reduction in CD40 while rescue of the α1 but not the α2 isoform restores CD40 expression in renal epithelial cells. Second, because the major functional difference between α1 and α2 is the ability of α1 to form a functional signaling complex with Src, we examined whether the Na/K-ATPase/Src complex is important for CD40 expression. We show that a gain-of-Src binding α2 mutant restores CD40 expression while loss-of-Src binding α1 reduces CD40 expression. Furthermore, loss of a functional Na/K-ATPase/Src complex also disrupts CD40 signaling. Importantly, we show that use of a specific Na/K-ATPase/Src complex antagonist, pNaKtide, can attenuate cardiotonic steroid (CTS)-induced induction of CD40 expression in vitro. Because the Na/K-ATPase/Src complex is also a key player in the pathogenesis of renal injury and fibrosis, our new findings suggest that Na/K-ATPase and CD40 may comprise a pro-fibrotic feed-forward loop in the kidney and that pharmacological inhibition of this loop may be useful in the treatment of renal fibrosis. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  6. The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B.

    PubMed

    Lieto, L D; Maasho, K; West, D; Borrego, F; Coligan, J E

    2006-01-01

    CD94/NKG2A is an inhibitory receptor expressed by natural killer (NK) cells and a subset of CD8+ T cells. Ligation of CD94/NKG2A by its ligand HLA-E results in tyrosine phosphorylation of the NKG2A immunoreceptor tyrosine-based inhibitory motifs, and recruitment and activation of the SH2 domain-bearing tyrosine phosphatase-1, which in turn suppresses activation signals. The nkg2a gene encodes two isoforms, NKG2A and NKG2B, with the latter lacking the stem region. We identified three new alternative transcripts of the cd94 gene in addition to the originally described canonical CD94Full. One of the transcripts, termed CD94-T4, lacks the portion that encodes the stem region. CD94-T4 associates with both NKG2A and NKG2B, but preferentially associates with the latter. This is probably due to the absence of a stem region in both CD94-T4 and NKG2B. CD94-T4/NKG2B is capable of binding HLA-E and, when expressed in E6-1 Jurkat T cells, inhibits TCR mediated signals, demonstrating that this heterodimer is functional. Coevolution of stemless isoforms of CD94 and NKG2A that preferentially pair with each other to produce a functional heterodimer indicates that this may be more than a serendipitous event. CD94-T4/NKG2B may contribute to the plasticity of the NK immunological synapse by insuring an adequate inhibitory signal.

  7. Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis*S⃞

    PubMed Central

    Panchal, Rekha G.; Ulrich, Ricky L.; Bradfute, Steven B.; Lane, Douglas; Ruthel, Gordon; Kenny, Tara A.; Iversen, Patrick L.; Anderson, Arthur O.; Gussio, Rick; Raschke, William C.; Bavari, Sina

    2009-01-01

    The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis. PMID:19269962

  8. A Novel Bcl-x Isoform Connected to the T Cell Receptor Regulates Apoptosis in T Cells

    PubMed Central

    Yang, Xiao-Feng; Weber, Georg F.

    2014-01-01

    Summary We define a novel Bcl-x isoform, Bcl-xγ, that is generated by alternative splicing and characterized by a unique 47 amino acid C-terminus. Bcl-xγ is expressed primarily in thymocytes, where it may depend on an interaction between the TCR and host MHC products, and in mature T cells, where its expression is associated with ligation of the T cell receptor. Overexpression of Bcl-xγ in T cells inhibits activation-induced apoptosis; inhibition of Bcl-xγ, after stable expression of Bcl-xγ antisense cDNA, enhances activation-induced apoptosis. In contrast to other Bcl-x isoforms, cells that fail to express Bcl-xγ after CD3 ligation undergo programmed cell death, while activated T cells that express Bcl-xγ are spared. Identification of Bcl-xγ helps provide amolecular explanation of T cell activation and death after antigen engagement. PMID:9390687

  9. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.

    PubMed

    Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2016-04-29

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp; Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180; Terasawa, Mariko

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreasedmore » CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.« less

  11. The role of human chorionic gonadotropin in regulation of naïve and memory T cells activity in vitro.

    PubMed

    Zamorina, S A; Litvinova, L S; Yurova, K A; Khaziakhmatova, O G; Timganova, V P; Bochkova, M S; Khramtsov, P V; Rayev, M B

    2018-01-01

    The role of human chorionic gonadotropin (hCG) in the regulation of molecular genetics factors determining the functional activity of human naïve and memory T cells in vitro was studied. It was found that hCG (10 and 100IU/ml) inhibited CD28 and CD25 expression on the naïve T cells (CD45RA+) and CD25 expression on the memory T cells (CD45R0+). hCG didn't affect the CD71 proliferation marker expression in total. Nevertheless, hCG reduced the percentage of proliferating memory T cells with simultaneous suppression of CD71 expression on proliferating CD45R0+cells. In parallel, expression of U2af1l4, Gfi1, and hnRNPLL genes, which are Ptprc gene alternative splicing regulators was evaluated. It was established that hCG stimulated the expression of U2af1l4 and hnRNPLL genes, responsible for the assembly of CD45R0 in memory T cells, but reduced the expression of Gfi1 in these cells. In general, hCG promotes the differentiation of memory T cells by increasing of CD45R0 expression, but inhibits proliferation and CD25 expression which reflects their functional activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells.

    PubMed

    Erb, Ulrike; Megaptche, Amelie Pajip; Gu, Xiaoyu; Büchler, Markus W; Zöller, Margot

    2014-03-31

    A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/EL4-v10. Ex vivo and in vitro studies evaluated the impact of anti-panCD44 and anti-CD44v10 as well as of EL4 and EL4-v10 on hematopoietic stem cells (HSC) in cocultures with bone marrow stroma cells with a focus on adhesion, migration, cell cycle progression and apoptosis resistance. Intravenously injected EL4-v10 grow in bone marrow and spleen. Anti-panCD44 and, more pronounced anti-CD44v10 prolong the survival time. The higher efficacy of anti-CD44v10 compared to anti-panCD44 does not rely on stronger antibody-dependent cellular cytotoxicity or on promoting EL4-v10 apoptosis. Instead, EL4 compete with HSC niche embedding. This has consequences on quiescence and apoptosis-protecting signals provided by the stroma. Anti-panCD44, too, more efficiently affected embedding of HSC than of EL4 in the bone marrow stroma. EL4-v10, by catching osteopontin, migrated on bone marrow stroma and did not or weakly interfere with HSC adhesion. Anti-CD44v10, too, did not affect the HSC--bone marrow stroma crosstalk. The therapeutic effect of anti-panCD44 and anti-CD44v10 is based on stimulation of antibody-dependent cellular cytotoxicity. The superiority of anti-CD44v10 is partly due to blocking CD44v10-stimulated osteopontin expression that could drive HSC out of the niche. However, the main reason for the superiority of anti-CD44v10 relies on neither EL4-v10 nor anti-CD44v10 severely interfering with HSC--stroma cell interactions that, on the other hand, are affected by EL4 and anti-panCD44. Anti-panCD44 disturbing HSC embedding in the osteogenic niche weakens its therapeutic effect towards EL4. Thus, as far as leukemic cells express CD44v isoforms, the therapeutic use of anti-panCD44 should be avoided in favor of CD44v-specific antibodies.

  13. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells

    PubMed Central

    2014-01-01

    Background A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). Methods The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/EL4-v10. Ex vivo and in vitro studies evaluated the impact of anti-panCD44 and anti-CD44v10 as well as of EL4 and EL4-v10 on hematopoietic stem cells (HSC) in cocultures with bone marrow stroma cells with a focus on adhesion, migration, cell cycle progression and apoptosis resistance. Results Intravenously injected EL4-v10 grow in bone marrow and spleen. Anti-panCD44 and, more pronounced anti-CD44v10 prolong the survival time. The higher efficacy of anti-CD44v10 compared to anti-panCD44 does not rely on stronger antibody-dependent cellular cytotoxicity or on promoting EL4-v10 apoptosis. Instead, EL4 compete with HSC niche embedding. This has consequences on quiescence and apoptosis-protecting signals provided by the stroma. Anti-panCD44, too, more efficiently affected embedding of HSC than of EL4 in the bone marrow stroma. EL4-v10, by catching osteopontin, migrated on bone marrow stroma and did not or weakly interfere with HSC adhesion. Anti-CD44v10, too, did not affect the HSC – bone marrow stroma crosstalk. Conclusion The therapeutic effect of anti-panCD44 and anti-CD44v10 is based on stimulation of antibody-dependent cellular cytotoxicity. The superiority of anti-CD44v10 is partly due to blocking CD44v10-stimulated osteopontin expression that could drive HSC out of the niche. However, the main reason for the superiority of anti-CD44v10 relies on neither EL4-v10 nor anti-CD44v10 severely interfering with HSC – stroma cell interactions that, on the other hand, are affected by EL4 and anti-panCD44. Anti-panCD44 disturbing HSC embedding in the osteogenic niche weakens its therapeutic effect towards EL4. Thus, as far as leukemic cells express CD44v isoforms, the therapeutic use of anti-panCD44 should be avoided in favor of CD44v-specific antibodies. PMID:24684724

  14. Dose-dependent modulation of CD8 and functional avidity as a result of peptide encounter

    PubMed Central

    Kroger, Charles J; Alexander-Miller, Martha A

    2007-01-01

    The generation of an optimal CD8+ cytotoxic T lymphocyte (CTL) response is critical for the clearance of many intracellular pathogens. Previous studies suggest that one contributor to an optimal immune response is the presence of CD8+ cells exhibiting high functional avidity. In this regard, CD8 expression has been shown to contribute to peptide sensitivity. Here, we investigated the ability of naive splenocytes to modulate CD8 expression according to the concentration of stimulatory peptide antigen. Our results showed that the level of CD8 expressed was inversely correlated with the amount of peptide used for the primary stimulation, with higher concentrations of antigen resulting in lower expression of both CD8α and CD8β. Importantly the ensuing CD8low and CD8high CTL populations were not the result of the selective outgrowth of naive CD8+ T-cell subpopulations expressing distinct levels of CD8. Subsequent encounter with peptide antigen resulted in continued modulation of both the absolute level and the isoform of CD8 expressed and in the functional avidity of the responding cells. We propose that CD8 cell surface expression is not a static property, but can be modulated to ‘fine tune’ the sensitivity of responding CTL to a defined concentration of antigen. PMID:17484768

  15. A CD133-expressing murine liver oval cell population with bilineage potential.

    PubMed

    Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M

    2007-10-01

    Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.

  16. The loss-of-function disease-mutation G301R in the Na+/K+-ATPase α2 isoform decreases lesion volume and improves functional outcome after acute spinal cord injury in mice.

    PubMed

    Ellman, Ditte Gry; Isaksen, Toke Jost; Lund, Minna Christiansen; Dursun, Safinaz; Wirenfeldt, Martin; Jørgensen, Louise Helskov; Lykke-Hartmann, Karin; Lambertsen, Kate Lykke

    2017-09-08

    The Na + /K + -ATPases are transmembrane ion pumps important for maintenance of ion gradients across the plasma membrane that serve to support multiple cellular functions, such as membrane potentials, regulation of cellular volume and pH, and co-transport of signaling transmitters in all animal cells. The α 2 Na + /K + -ATPase subunit isoform is predominantly expressed in astrocytes, which us the sharp Na + -gradient maintained by the sodium pump necessary for astroglial metabolism. Prolonged ischemia induces an elevation of [Na + ] i , decreased ATP levels and intracellular pH owing to anaerobic metabolism and lactate accumulation. During ischemia, Na + /K + -ATPase-related functions will naturally increase the energy demand of the Na + /K + -ATPase ion pump. However, the role of the α 2 Na + /K + -ATPase in contusion injury to the spinal cord remains unknown. We used mice heterozygous mice for the loss-of-function disease-mutation G301R in the Atp1a2 gene (α 2 +/G301R ) to study the effect of reduced α 2 Na + /K + -ATPase expression in a moderate contusion spinal cord injury (SCI) model. We found that α 2 +/G301R mice display significantly improved functional recovery and decreased lesion volume compared to littermate controls (α 2 +/+ ) 7 days after SCI. The protein level of the α 1 isoform was significantly increased, in contrast to the α 3 isoform that significantly decreased 3 days after SCI in both α 2 +/G301R and α 2 +/+ mice. The level of the α 2 isoform was significantly decreased in α 2 +/G301R mice both under naïve conditions and 3 days after SCI compared to α 2 +/+ mice. We found no differences in astroglial aquaporin 4 levels and no changes in the expression of chemokines (CCL2, CCL5 and CXCL1) and cytokines (TNF, IL-6, IL-1β, IL-10 and IL-5) between genotypes, just as no apparent differences were observed in location and activation of CD45 and F4/80 positive microglia and infiltrating leukocytes. Our proof of concept study demonstrates that reduced expression of the α 2 isoform in the spinal cord is protective following SCI. Importantly, the BMS and lesion volume were assessed at 7 days after SCI, and longer time points after SCI were not evaluated. However, the α 2 isoform is a potential possible target of therapeutic strategies for the treatment of SCI.

  17. Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation.

    PubMed

    Yu, Xin; Siegel, Rachael; Roeder, Robert G

    2006-06-02

    OCA-B is a B cell-specific transcriptional coactivator for OCT factors during the activation of immunoglobulin genes. In addition, OCA-B is crucial for B cell activation and germinal center formation. However, the molecular mechanisms for OCA-B function in these processes are not clear. Our previous studies documented two OCA-B isoforms and suggested a novel mechanism for the function of the myristoylated, membrane-bound form of OCA-B/p35 as a signaling molecule. Here, we report the identification of galectin-1, and related galectins, as a novel OCA-B-interacting protein. The interaction of OCA-B and galectin-1 can be detected both in vivo and in vitro. The galectin-1 binding domain in OCA-B has been localized to the N terminus of OCA-B. In B cells lacking OCA-B expression, increased galectin-1 expression, secretion, and cell surface association are observed. Consistent with these observations, and a reported inhibitory interaction of galectin-1 with CD45, the phosphatase activity of CD45 is reduced modestly, but significantly, in OCA-B-deficient B cells. Finally, galectin-1 is shown to negatively regulate B cell proliferation and tyrosine phosphorylation upon BCR stimulation. Together, these results raise the possibility that OCA-B may regulate BCR signaling through an association with galectin-1.

  18. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8+ T Lymphocyte Fates

    PubMed Central

    Metz, Patrick J.; Lopez, Justine; Kim, Stephanie H.; Akimoto, Kazunori; Ohno, Shigeo; Chang, John T.

    2016-01-01

    Naïve CD8+ T lymphocytes responding to microbial pathogens give rise to effector T cells that provide acute defense and memory T cells that provide long-lived immunity. Upon activation, CD8+ T lymphocytes can undergo asymmetric division, unequally distributing factors to the nascent daughter cells that influence their eventual fate towards the effector or memory lineages. Individual loss of either atypical protein kinase C (aPKC) isoform, PKCζ or PKCλ/ι, partially impairs asymmetric divisions and increases CD8+ T lymphocyte differentiation toward a long-lived effector fate at the expense of memory T cell formation. Here, we show that deletion of both aPKC isoforms resulted in a deficit in asymmetric divisions, increasing the proportion of daughter cells that inherit high amounts of effector fate-associated molecules, IL-2Rα, T-bet, IFNγR, and interferon regulatory factor 4 (IRF4). However, unlike CD8+ T cells deficient in only one aPKC isoform, complete loss of aPKC unexpectedly increased CD8+ T cell differentiation toward a short-lived, terminal effector fate, as evidenced by increased rates of apoptosis and decreased expression of Eomes and Bcl2 early during the immune response. Together, these results provide evidence for an important role for asymmetric division in CD8+ T lymphocyte fate specification by regulating the balance between effector and memory precursors at the initiation of the adaptive immune response. PMID:26765121

  19. CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia.

    PubMed

    Kersten, Bas; Valkering, Matthijs; Wouters, Rolf; van Amerongen, Rosa; Hanekamp, Diana; Kwidama, Zinia; Valk, Peter; Ossenkoppele, Gert; Zeijlemaker, Wendelien; Kaspers, Gertjan; Cloos, Jacqueline; Schuurhuis, Gerrit J

    2016-04-01

    Chemotherapy resistant leukaemic stem cells (LSC) are thought to be responsible for relapses after therapy in acute myeloid leukaemia (AML). Flow cytometry can discriminate CD34(+) CD38(-) LSC and normal haematopoietic stem cells (HSC) by using aberrant expression of markers and scatter properties. However, not all LSC can be identified using currently available markers, so new markers are needed. CD45RA is expressed on leukaemic cells in the majority of AML patients. We investigated the potency of CD45RA to specifically identify LSC and HSC and improve LSC quantification. Compared to our best other markers (CLL-1, also termed CLEC12A, CD33 and CD123), CD45RA was the most reliable marker. Patients with high percentages (>90%) of CD45RA on CD34(+) CD38(-) LSC have 1·69-fold higher scatter values compared to HSC (P < 0·001), indicating a more mature CD34(+) CD38(-) phenotype. Patients with low (<10%) or intermediate (10-90%) CD45RA expression on LSC showed no significant differences to HSC (1·12- and 1·15-fold higher, P = 0·31 and P = 0·44, respectively). CD45RA-positive LSC tended to represent more favourable cytogenetic/molecular markers. In conclusion, CD45RA contributes to more accurate LSC detection and is recommended for inclusion in stem cell tracking panels. CD45RA may contribute to define new LSC-specific therapies and to monitor effects of anti-LSC treatment. © 2016 John Wiley & Sons Ltd.

  20. Prognostic value of CD8CD45RO tumor infiltrating lymphocytes in patients with extrahepatic cholangiocarcinoma

    PubMed Central

    Kim, Richard; Coppola, Domenico; Wang, Emilie; Chang, Young Doo; Kim, Yuhree; Anaya, Daniel; Kim, Dae Won

    2018-01-01

    Cholangiocarcinoma is a malignancy arising from the biliary tract epithelial cells with poor prognosis. Tumor infiltrating lymphocytes (TIL)s and programmed cell death receptor ligand 1 (PD-L1) have a prognostic impact in various solid tumors. We aimed to investigate TILs and PD-L1 expression and their clinical relevance in cholangiocarcinoma. Tumor samples from 44 patients with resected and histologically verified extrahepatic cholangiocarcinoma were evaluated for CD8, CD45RO and PD-L1 expression, and their correlations with clinicopathological data and survival data were analyzed. Total 44 extrahepatic cholangiocarcinoma tissues were evaluated. CD8+ tumor infiltrating lymphocytes (TIL)s were observed in 30 (68%) tumors. Among them, 14 had CD8+CD45RO+ TILs. PD-L1 was expressed on cancer cells in 10 (22.7%) tumors in 34 evaluable extrahepatic cholangiocarciniomas. The presence of CD8+ TILs or CD8+CD45RO+ TILs was not associated with clinical staging or tumor differentiation. Extrahepatic cholangiocarcinoma with CD8+CD45RO+ TILs had longer overall survival (OS) on univariate (P = 0.013) and multivariate (P = 0.012) analysis. Neither CD8+TIL nor PD-L1 expression on cancer cells correlated significantly with OS. These results add to the understanding of the clinical features associated with CD8 TILs and PD-L1 expression in extrahepatic cholangiocarcinoma, and they support the potential rationale of using PD-1 blockade immunotherapy in cholangiocarcinoma.

  1. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    DTIC Science & Technology

    2006-12-01

    prognostic value of CD44 standard and variant v3 and v6 isoforms in prostate cancer. Eur Urol, 2001. 39(2): p. 138-44. 32. De Marzo , A.M., et al., CD44...subcutaneous injection model [ 24 ]and in orthotopic or intrafemoral bone injection models (see progress report below). Importantly, the addition of...expression from these cells, completely reverses growth inhibition[ 24 ]. CD44 and Rhamm – Two Hyaladherins with Overlapping Function: The two most

  2. Coexpression of CD14 and CD326 discriminate hepatic precursors in the human fetal liver.

    PubMed

    Fomin, Marina E; Tai, Lung-Kuo; Bárcena, Alicia; Muench, Marcus O

    2011-07-01

    The molecular and cellular profile of liver cells during early human development is incomplete, complicating the isolation and study of hepatocytes, cholangiocytes, and hepatic stem cells from the complex amalgam of hepatic and hematopoietic cells, that is, the fetal liver. Epithelial cell adhesion molecule, CD326, has emerged as a marker of hepatic stem cells, and lipopolysaccharide receptor CD14 is known to be expressed on adult hepatocytes. Using flow cytometry, we studied the breadth of CD326 and CD14 expression in midgestation liver. Both CD45(+) hematopoietic and CD45(-) nonhematopoietic cells expressed CD326. Moreover, diverse cell types expressing CD326 were revealed among CD45(-) cells by costaining for CD14. Fluorescence-activated cell sorting was used to isolate nonhematopoietic cells distinguished by expression of high levels of CD326 and low CD14 (CD326(++)CD14(lo)), which were characterized for gene expression associated with liver development. CD326(++)CD14(lo) cells expressed the genes albumin, α-fetoprotein, hepatic nuclear factor 3α, prospero-related homeobox 1, cytochrome P450 3A7, α(1)-antitrypsin, and transferrin. Proteins expressed included cell-surface CD24, CD26, CD29, CD34, CD49f, CD243, and CD324 and, in the cytoplasm, cytokeratins-7/8 (CAM 5.2 antigen) and some cytokeratin-19. Cultured CD326(++)CD14(lo) cells yielded albumin(+) hepatocytes, cytokeratin-19(+) cholangiocytes, and hepatoblasts expressing both markers. Using epifluorescence microscopy we observed CD326 and CD14 expression on fetal hepatocytes comprising the liver parenchyma, as well as on cells associated with ductal plates and surrounding large vessels. These findings indicate that expression of CD14 and CD326 can be used to identify functionally distinct subsets of fetal liver cells, including CD326(++)CD14(lo) cells, representing a mixture of parenchymal cells, cholangiocytes, and hepatoblasts.

  3. CD2-associated Protein (CD2AP) Enhances Casitas B Lineage Lymphoma-3/c (Cbl-3/c)-mediated Ret Isoform-specific Ubiquitination and Degradation via Its Amino-terminal Src Homology 3 Domains*

    PubMed Central

    Calco, Gina N.; Stephens, Olivia R.; Donahue, Laura M.; Tsui, Cynthia C.; Pierchala, Brian A.

    2014-01-01

    Ret is the receptor tyrosine kinase for the glial cell line-derived neurotrophic factor (GDNF) family of neuronal growth factors. Upon activation by GDNF, Ret is rapidly polyubiquitinated and degraded. This degradation process is isoform-selective, with the longer Ret51 isoform exhibiting different degradation kinetics than the shorter isoform, Ret9. In sympathetic neurons, Ret degradation is induced, at least in part, by a complex consisting of the adaptor protein CD2AP and the E3-ligase Cbl-3/c. Knockdown of Cbl-3/c using siRNA reduced the GDNF-induced ubiquitination and degradation of Ret51 in neurons and podocytes, suggesting that Cbl-3/c was a predominant E3 ligase for Ret. Coexpression of CD2AP with Cbl-3/c augmented the ubiquitination of Ret51 as compared with the expression of Cbl-3/c alone. Ret51 ubiquitination by the CD2AP·Cbl-3/c complex required a functional ring finger and TKB domain in Cbl-3/c. The SH3 domains of CD2AP were sufficient to drive the Cbl-3/c-dependent ubiquitination of Ret51, whereas the carboxyl-terminal coiled-coil domain of CD2AP was dispensable. Interestingly, activated Ret induced the degradation of CD2AP, but not Cbl-3/c, suggesting a potential inhibitory feedback mechanism. There were only two major ubiquitination sites in Ret51, Lys1060 and Lys1107, and the combined mutation of these lysines almost completely eliminated both the ubiquitination and degradation of Ret51. Ret9 was not ubiquitinated by the CD2AP·Cbl-3/c complex, suggesting that Ret9 was down-regulated by a fundamentally different mechanism. Taken together, these results suggest that only the SH3 domains of CD2AP were necessary to enhance the E3 ligase activity of Cbl-3/c toward Ret51. PMID:24425877

  4. The Expression and Characterization of Functionally Active Soluble CD83 by Pichia pastoris Using High-Density Fermentation

    PubMed Central

    Song, Xiaoping; Zhong, Yongjun; Wang, Chenguang; Jia, Hao; Wu, Lidan; Wang, Dong; Fang, Fang; Ma, Jiajia; Kang, Wenyao; Sun, Jie; Tian, Zhigang; Xiao, Weihua

    2014-01-01

    CD83 is a highly glycosylated type I transmembrane glycoprotein that belongs to the immunoglobulin superfamily. CD83 is upregulated during dendritic cell (DC) maturation, which is critical for the initiation of adaptive immune responses. The soluble isoform of CD83 (sCD83) is encoded by alternative splicing from full-length CD83 mRNA and inhibits DC maturation, which suggests that sCD83 acts as a potential immune suppressor. In this study, we developed a sound strategy to express functional sCD83 from Pichia pastoris in extremely high-density fermentation. Purified sCD83 was expressed as a monomer at a yield of more than 200 mg/L and contained N-linked glycosylation sites that were characterized by PNGase F digestion. In vitro tests indicated that recombinant sCD83 bound to its putative counterpart on monocytes and specifically blocked the binding of anti-CD83 antibodies to cell surface CD83 on DCs. Moreover, sCD83 from yeast significantly suppressed ConA-stimulated PBMC proliferation. Therefore, sCD83 that was expressed from the P. pastoris was functionally active and may be used for in vivo and in vitro studies as well as future clinical applications. PMID:24586642

  5. CXCR4(+)CD45(-) BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice.

    PubMed

    Wang, Jianping; Liu, Xi; Lu, Hong; Jiang, Chao; Cui, Xiaobing; Yu, Lie; Fu, Xiaojie; Li, Qian; Wang, Jian

    2015-03-01

    Cell-based therapy is considered to be a promising therapeutic strategy for stroke treatment. Although unfractionated bone marrow mononuclear cells (BMMNCs) have been tried in both preclinical and clinical trials, the effective subpopulations need to be identified. In this study, we used fluorescence-activated cell sorting to harvest the CXCR4(+)CD45(+) and CXCR4(+)CD45(-) BMMNC subpopulations from transgenic mice that express enhanced green fluorescent protein. We then allogeneically grafted unfractionated BMMNCs or a subpopulation into mice subjected to transient middle cerebral artery occlusion (tMCAO) and compared the effects on stroke outcomes. We found that CXCR4(+)CD45(-) BMMNCs, but not CXCR4(+)CD45(+) BMMNCs, more effectively reduced infarction volume and neurologic deficits than did unfractionated BMMNCs. Brain tissue from the ischemic hemisphere of mice treated with CXCR4(+)CD45(-) BMMNCs had higher levels of vascular endothelial growth factor and lower levels of TNF-α than did tissue from mice treated with unfractionated BMMNCs. In contrast, CXCR4(+)CD45(+) BMMNCs showed an increase in TNF-α. Additionally, CXCR4(+)CD45(+) and CXCR4(+)CD45(-) populations exhibited more robust migration into the lesion areas and were better able to express cell-specific markers of different linages than were the unfractionated BMMNCs. Endothelial and astrocyte cell markers did not colocalize with eGFP(+) cells in the brains of tMCAO mice that received CXCR4(+)CD45(+) BMMNCs. In vitro, the CXCR4(+)CD45(-) BMMNCs expressed significantly more Oct-4 and Nanog mRNA than did the unfractionated BMMNCs. However, we did not detect gene expression of these two pluripotent markers in CXCR4(+)CD45(+) BMMNCs. Taken together, our study shows for the first time that the CXCR4(+)CD45(-) BMMNC subpopulation is superior to unfractionated BMMNCs in ameliorating cerebral damage in a mouse model of tMCAO and could represent a new therapeutic approach for stroke treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Cellular FLICE-inhibitory Protein (cFLIP) Isoforms Block CD95- and TRAIL Death Receptor-induced Gene Induction Irrespective of Processing of Caspase-8 or cFLIP in the Death-inducing Signaling Complex*

    PubMed Central

    Kavuri, Shyam M.; Geserick, Peter; Berg, Daniela; Dimitrova, Diana Panayotova; Feoktistova, Maria; Siegmund, Daniela; Gollnick, Harald; Neumann, Manfred; Wajant, Harald; Leverkus, Martin

    2011-01-01

    Death receptors (DRs) induce apoptosis but also stimulate proinflammatory “non-apoptotic” signaling (e.g. NF-κB and mitogen-activated protein kinase (MAPK) activation) and inhibit distinct steps of DR-activated maturation of procaspase-8. To examine whether isoforms of cellular FLIP (cFLIP) or its cleavage products differentially regulate DR signaling, we established HaCaT cells expressing cFLIPS, cFLIPL, or mutants of cFLIPL (cFLIPD376N and cFLIPp43). cFLIP variants blocked TRAIL- and CD95L-induced apoptosis, but the cleavage pattern of caspase-8 in the death inducing signaling complex was different: cFLIPL induced processing of caspase-8 to the p43/41 fragments irrespective of cFLIP cleavage. cFLIPS or cFLIPp43 blocked procaspase-8 cleavage. Analyzing non-apoptotic signaling pathways, we found that TRAIL and CD95L activate JNK and p38 within 15 min. cFLIP variants and different caspase inhibitors blocked late death ligand-induced JNK or p38 MAPK activation suggesting that these responses are secondary to cell death. cFLIP isoforms/mutants also blocked death ligand-mediated gene induction of CXCL-8 (IL-8). Knockdown of caspase-8 fully suppressed apoptotic and non-apoptotic signaling. Knockdown of cFLIP isoforms in primary human keratinocytes enhanced CD95L- and TRAIL-induced NF-κB activation, and JNK and p38 activation, underscoring the regulatory role of cFLIP for these DR-mediated signals. Whereas the presence of caspase-8 is critical for apoptotic and non-apoptotic signaling, cFLIP isoforms are potent inhibitors of TRAIL- and CD95L-induced apoptosis, NF-κB activation, and the late JNK and p38 MAPK activation. cFLIP-mediated inhibition of CD95 and TRAIL DR could be of crucial importance during keratinocyte skin carcinogenesis and for the activation of innate and/or adaptive immune responses triggered by DR activation in the skin. PMID:21454681

  7. Comparative quantitative analysis of cluster of differentiation 45 antigen expression on lymphocyte subsets.

    PubMed

    Im, Mijeong; Chae, Hyojin; Kim, Taehoon; Park, Hun-Hee; Lim, Jihyang; Oh, Eun-Jee; Kim, Yonggoo; Park, Yeon-Joon; Han, Kyungja

    2011-07-01

    Since the recent introduction of radioimmunotherapy (RIT) using antibodies against cluster of differentiation (CD) 45 for the treatment of lymphoma, the clinical significance of the CD45 antigen has been increasing steadily. Here, we analyzed CD45 expression on lymphocyte subsets using flow cytometry in order to predict the susceptibility of normal lymphocytes to RIT. Peripheral blood specimens were collected from 14 healthy individuals aged 25-54 yr. The mean fluorescence intensity (MFI) of the cell surface antigens was measured using a FACSCanto II system (Becton Dickinson Bioscience, USA). MFI values were converted into antibody binding capacity values using a Quantum Simply Cellular microbead kit (Bangs Laboratories, Inc., USA). Among the lymphocyte subsets, the expression of CD45 was the highest (725,368±42,763) on natural killer T (NKT) cells, 674,030±48,187 on cytotoxic/suppressor T cells, 588,750±48,090 on natural killer (NK) cells, 580,211±29,168 on helper T (Th) cells, and 499,436±21,737 on B cells. The Th cells and NK cells expressed a similar level of CD45 (P=0.502). Forward scatter was the highest in NKT cells (P<0.05), whereas side scatter differed significantly between each of the lymphocyte subsets (P<0.05). CD3 expression was highest in the Th and NKT cells. NKT cells express the highest levels of CD45 antigen. Therefore, this lymphocyte subset would be most profoundly affected by RIT or pretargeted RIT. The monitoring of this lymphocyte subset during and after RIT should prove helpful.

  8. Low expression of CD39+/CD45RA+ on regulatory T cells (Treg) cells in type 1 diabetic children in contrast to high expression of CD101+/CD129+ on Treg cells in children with coeliac disease

    PubMed Central

    Åkesson, K; Tompa, A; Rydén, A; Faresjö, M

    2015-01-01

    Type 1 diabetes (T1D) and coeliac disease are both characterized by an autoimmune feature. As T1D and coeliac disease share the same risk genes, patients risk subsequently developing the other disease. This study aimed to investigate the expression of T helper (Th), T cytotoxic (Tc) and regulatory T cells (Treg) in T1D and/or coeliac disease children in comparison to healthy children. Subgroups of T cells (Th : CD4+ or Tc : CD8+); naive (CD27+CD28+CD45RA+CCR7+), central memory (CD27+CD28+CD45RA−CCR7+), effector memory (early differentiated; CD27+CD28+CD45RA−CCR7− and late differentiated; CD27−CD28−CD45RA−CCR7−), terminally differentiated effector cells (TEMRA; CD27−CD28−CD45RA+CCR7−) and Treg (CD4+CD25+FOXP3+CD127−) cells, and their expression of CD39, CD45RA, CD101 and CD129, were studied by flow cytometry in T1D and/or coeliac disease children or without any of these diseases (reference group). Children diagnosed with both T1D and coeliac disease showed a higher percentage of TEMRA CD4+ cells (P < 0·05), but lower percentages of both early and late effector memory CD8+ cells (P < 0·05) compared to references. Children with exclusively T1D had lower median fluorescence intensity (MFI) of forkhead box protein 3 (FoxP3) (P < 0·05) and also a lower percentage of CD39+ and CD45RA+ within the Treg population (CD4+CD25+FOXP3+CD127−) (P < 0·05). Children with exclusively coeliac disease had a higher MFI of CD101 (P < 0·01), as well as a higher percentage of CD129+ (P < 0·05), in the CD4+CD25hi lymphocyte population, compared to references. In conclusion, children with combined T1D and coeliac disease have a higher percentage of differentiated CD4+ cells compared to CD8+ cells. T1D children show signs of low CD39+/CD45RA+ Treg cells that may indicate loss of suppressive function. Conversely, children with coeliac disease show signs of CD101+/CD129+ Treg cells that may indicate suppressor activity. PMID:25421756

  9. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.

    PubMed

    Tamaki, Tetsuro; Akatsuka, Akira; Ando, Kiyoshi; Nakamura, Yoshihiko; Matsuzawa, Hideyuki; Hotta, Tomomitsu; Roy, Roland R; Edgerton, V Reggie

    2002-05-13

    Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45- fraction. Cells in this fraction were approximately 94% positive for Sca-1, and mostly negative (<3% positive) for CD14, 31, 49, 144, c-kit, and FLK-1. The CD34+/45- cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes, endothelial, and myogenic cells. The CD34+/45- cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting, CD34+/45- cells expressed only c-met mRNA, and did not express any other myogenic cell-related markers such as MyoD, myf-5, myf-6, myogenin, M-cadherin, Pax-3, and Pax-7. However, after 3 d of culture, these cells expressed mRNA for all myogenic markers. CD34+/45- cells were distinct from satellite cells, as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al., 2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles, and that they can potentially contribute to postnatal skeletal muscle growth.

  10. An abnormally glycosylated isoform of erythropoietin in hemangioblastoma is associated with polycythemia.

    PubMed

    Delanghe, Sigurd E; Dierick, Jan; Maenhout, Thomas M; Zabeau, Lennart; Tavernier, Jan; Claes, Kathleen; Bleyen, Joris; Delanghe, Joris R

    2015-01-01

    Hemangioblastomas express erythropoietin and the patients often present with polycythemia. Serum erythropoietin was measured using a commercial immunoassay, a functional erythropoietin assay and iso-electric focusing. Despite the polycythemia, serum erythropoietin remained low, while a functional erythropoietin-assay showed a 4-5 higher activity in serum compared to the immunoassay. Iso-electric focusing of serum erythropoietin indicated overrepresentation of highly sialylated erythropoietin isoforms produced by the tumor. As a result, altered affinity of the monoclonal antibody used in the immunoassay for the hypersialylated isoforms was suggested. Analysis of erythropoietin isoforms may be helpful in distinguishing the ectopic erythropoietin isoforms from normally glycosylated erythropoietin. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Reduced expression of CD45 Protein-Tyrosine Phosphatase Pr

    DTIC Science & Technology

    2009-05-08

    H S /D T R A on A ugust 19, 2009 w w w .jbc.org D ow nloaded from PTP1B , CD45, TCPTP, LMPTP-A, LMPTP-B, MEG1, MEG2, HePTP, PTP), three belong to...the dual specificity phosphatase VHR or the protein-tyrosine phosphatase PTP1B . Given these FIGURE 5. Mice expressing intermediate CD45 levels survive

  12. β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells.

    PubMed

    Molyneux, Karen; Wimbury, David; Pawluczyk, Izabella; Muto, Masahiro; Bhachu, Jasraj; Mertens, Peter R; Feehally, John; Barratt, Jonathan

    2017-12-01

    IgA nephropathy is characterized by mesangial deposition of IgA, mesangial cell proliferation, and extracellular matrix production. Mesangial cells bind IgA, but the identity of all potential receptors involved remains incomplete. The transferrin receptor (CD71) acts as a mesangial cell IgA receptor and its expression is upregulated in many forms of glomerulonephritis, including IgA nephropathy. CD71 is not expressed in healthy glomeruli and blocking CD71 does not completely abrogate mesangial cell IgA binding. Previously we showed that mesangial cells express a receptor that binds the Fc portion of IgA and now report that this receptor is an isoform of β-1,4-galactosyltransferase. A human mesangial cell cDNA library was screened for IgA binding proteins and β-1,4-galactosyltransferase identified. Cell surface expression of the long isoform of β-1,4-galactosyltransferase was shown by flow cytometry and confocal microscopy and confirmed by immunoblotting. Glomerular β-1,4-galactosyltransferase expression was increased in IgA nephropathy. IgA binding and IgA-induced mesangial cell phosphorylation of spleen tyrosine kinase and IL-6 synthesis were inhibited by a panel of β-1,4-galactosyltransferase-specific antibodies, suggesting IgA binds to the catalytic domain of β-1,4-galactosyltransferase. Thus, β-1,4-galactosyltransferase is a constitutively expressed mesangial cell IgA receptor with an important role in both mesangial IgA clearance and the initial response to IgA deposition. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Various types of stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohn's disease.

    PubMed

    Marlicz, Wojciech; Zuba-Surma, Ewa; Kucia, Magda; Blogowski, Wojciech; Starzynska, Teresa; Ratajczak, Mariusz Z

    2012-09-01

    Developmentally early cells, including hematopoietic stem progenitor cells (HSPCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like stem cells (VSELs), are mobilized into peripheral blood (PB) in response to tissue/organ injury. We sought to determine whether these cells are mobilized into PB in patients with Crohn's disease (CD). Twenty-five patients with active CD, 20 patients in clinical remission, and 25 age-matched controls were recruited and PB samples harvested. The circulating CD133+/Lin-/CD45+ and CD34+/Lin-/CD45+ cells enriched for HSPCs, CD105+/STRO-1+/CD45- cells enriched for MSCs, CD34+/KDR+/CD31+/CD45-cells enriched for EPCs, and small CXCR4+CD34+CD133+ subsets of Lin-CD45- cells that correspond to the population of VSELs were counted by fluorescence-activated cell sorting (FACS) and evaluated by direct immunofluorescence staining for pluripotency embryonic markers and by reverse-transcription polymerase chain reaction (RT-PCR) for expression of messenger (m)RNAs for a panel of genes expressed in intestine epithelial stem cells. The serum concentration of factors involved in stem cell trafficking, such as stromal derived factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) were measured by enzyme-linked immunosorbent assay (ELISA). Our data indicate that cells expressing markers for MSCs, EPCs, and small Oct-4+Nanog+SSEA-4+CXCR4+lin-CD45- VSELs are mobilized into PB in CD. The mobilized cells also expressed at the mRNA level genes playing a role in development and regeneration of gastrointestinal epithelium. All these changes were accompanied by increased serum concentrations of VEGF and HGF. CD triggers the mobilization of MSCs, EPCs, and VSELs, while the significance and precise role of these mobilized cells in repair of damaged intestine requires further study. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.

  14. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol

    PubMed Central

    Cario, Gunnar; Rhein, Peter; Mitlöhner, Rita; Zimmermann, Martin; Bandapalli, Obul R.; Romey, Renja; Moericke, Anja; Ludwig, Wolf-Dieter; Ratei, Richard; Muckenthaler, Martina U.; Kulozik, Andreas E.; Schrappe, Martin; Stanulla, Martin; Karawajew, Leonid

    2014-01-01

    Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75th percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72±3% versus 86±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60±8% versus 78±4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22±3% versus 11±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31±8% versus 11±3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1, MLL/AF4 and BCR/ABL1 rearrangements in B-cell-precursor acute lymphoblastic leukemia (P=0.002 and P=0.025, respectively). Consideration of CD45 expression may serve as an additional stratification tool in BFM-based protocols. (ClinicalTrials.gov identifier: NCT00430118) PMID:23911702

  15. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol.

    PubMed

    Cario, Gunnar; Rhein, Peter; Mitlöhner, Rita; Zimmermann, Martin; Bandapalli, Obul R; Romey, Renja; Moericke, Anja; Ludwig, Wolf-Dieter; Ratei, Richard; Muckenthaler, Martina U; Kulozik, Andreas E; Schrappe, Martin; Stanulla, Martin; Karawajew, Leonid

    2014-01-01

    Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75(th) percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72 ± 3% versus 86 ± 1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60 ± 8% versus 78 ± 4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22 ± 3% versus 11 ± 1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31 ± 8% versus 11 ± 3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1, MLL/AF4 and BCR/ABL1 rearrangements in B-cell-precursor acute lymphoblastic leukemia (P=0.002 and P=0.025, respectively). Consideration of CD45 expression may serve as an additional stratification tool in BFM-based protocols. (ClinicalTrials.gov identifier: NCT00430118).

  16. Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.

    PubMed

    Morgan, Huw; Olivero, Carlotta; Patel, Girish K

    2018-04-20

    The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

  17. Age and CD161 Expression Contribute to Inter-Individual Variation in Interleukin-23 Response in CD8+ Memory Human T Cells

    PubMed Central

    Abraham, Clara; Cho, Judy H.

    2013-01-01

    The interleukin-23 (IL-23) pathway plays a critical role in the pathogenesis of multiple chronic inflammatory disorders, however, inter-individual variability in IL-23-induced signal transduction in circulating human lymphocytes has not been well-defined. In this study, we observed marked, reproducible inter-individual differences in IL-23 responsiveness (measured by STAT3 phosphorylation) in peripheral blood CD8+CD45RO+ memory T and CD3+CD56+ NKT cells. Age, but not gender, was a significant (Pearson’s correlation coefficient, r = −0.37, p = 0.001) source of variability observed in CD8+CD45RO+ memory T cells, with IL-23 responsiveness gradually decreasing with increasing age. Relative to cells from individuals demonstrating low responsiveness to IL-23 stimulation, CD8+CD45RO+ memory T cells from individuals demonstrating high responsiveness to IL-23 stimulation showed increased gene expression for IL-23 receptor (IL-23R), RORC (RORγt) and CD161 (KLRB1), whereas RORA (RORα) and STAT3 expression were equivalent. Similar to CD4+ memory T cells, IL-23 responsiveness is confined to the CD161+ subset in CD8+CD45RO+ memory T cells, suggesting a similar CD161+ precursor as has been reported for CD4+ Th17 cells. We observed a very strong positive correlation between IL-23 responsiveness and the fraction of CD161+, CD8+CD45RO+ memory T cells (r = 0.80, p<0.001). Moreover, the fraction of CD161+, CD8+CD45RO+ memory T cells gradually decreases with aging (r = −0.34, p = 0.05). Our data define the inter-individual differences in IL-23 responsiveness in peripheral blood lymphocytes from the general population. Variable expression of CD161, IL-23R and RORC affects IL-23 responsiveness and contributes to the inter-individual susceptibility to IL-23-mediated defenses and inflammatory processes. PMID:23469228

  18. Functional Elements on SIRPα IgV domain Mediate Cell Surface Binding to CD47

    PubMed Central

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J.; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J.; Zen, Ke

    2007-01-01

    Summary SIRPα and SIRPβ1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPα with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPβ1 shares highly homologous extracellular IgV structure with SIRPα, it does not bind to CD47. In this study, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPα, but not SIRPβ1, which determine the extracellular binding interaction of SIRPα to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPα directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPα extracellular binding mediated cell interactions and cell migration. Another SIRPα-specific residue, Met102, appears to assist SIRPα IgV binding through Gln67 and Ala/Val57. An essential role of these amino acids in SIRPα binding to CD47 was further confirmed by introducing these residues into the SIRPβ1 IgV domain, which dramatically converts SIRPβ1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPα selectively binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses. PMID:17070842

  19. Functional elements on SIRPalpha IgV domain mediate cell surface binding to CD47.

    PubMed

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J; Yang, Yang; Zen, Ke

    2007-01-19

    SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.

  20. Conservation of CD44 exon v3 functional elements in mammals

    PubMed Central

    Vela, Elena; Hilari, Josep M; Delclaux, María; Fernández-Bellon, Hugo; Isamat, Marcos

    2008-01-01

    Background The human CD44 gene contains 10 variable exons (v1 to v10) that can be alternatively spliced to generate hundreds of different CD44 protein isoforms. Human CD44 variable exon v3 inclusion in the final mRNA depends on a multisite bipartite splicing enhancer located within the exon itself, which we have recently described, and provides the protein domain responsible for growth factor binding to CD44. Findings We have analyzed the sequence of CD44v3 in 95 mammalian species to report high conservation levels for both its splicing regulatory elements (the 3' splice site and the exonic splicing enhancer), and the functional glycosaminglycan binding site coded by v3. We also report the functional expression of CD44v3 isoforms in peripheral blood cells of different mammalian taxa with both consensus and variant v3 sequences. Conclusion CD44v3 mammalian sequences maintain all functional splicing regulatory elements as well as the GAG binding site with the same relative positions and sequence identity previously described during alternative splicing of human CD44. The sequence within the GAG attachment site, which in turn contains the Y motif of the exonic splicing enhancer, is more conserved relative to the rest of exon. Amplification of CD44v3 sequence from mammalian species but not from birds, fish or reptiles, may lead to classify CD44v3 as an exclusive mammalian gene trait. PMID:18710510

  1. Granulysin-Expressing CD4+ T Cells as Candidate Immune Marker for Tuberculosis during Childhood and Adolescence

    PubMed Central

    Mueller, Henrik; Faé, Kellen C.; Magdorf, Klaus; Ganoza, Christian A.; Wahn, Ulrich; Guhlich, Ute; Feiterna-Sperling, Cornelia; Kaufmann, Stefan H. E.

    2011-01-01

    Background Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB. Methods Peripheral blood mononuclear cells (PBMC) from children and adolescents (1–17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4+ CD45RO+ memory T cells. Results CD4+ CD45RO+ T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSElowCD4+CD45RO+) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4+ T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells. Conclusions Our data suggest granulysin expression by CD4+ memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence. PMID:22216262

  2. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET

    PubMed Central

    Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David

    2013-01-01

    Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005

  3. CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer's disease susceptibility

    PubMed Central

    Raj, Towfique; Ryan, Katie J.; Replogle, Joseph M.; Chibnik, Lori B.; Rosenkrantz, Laura; Tang, Anna; Rothamel, Katie; Stranger, Barbara E.; Bennett, David A.; Evans, Denis A.; De Jager, Philip L.; Bradshaw, Elizabeth M.

    2014-01-01

    We previously demonstrated that the Alzheimer's disease (AD) associated risk allele, rs3865444C, results in a higher surface density of CD33 on monocytes. Here, we find alternative splicing of exon 2 to be the primary mechanism of the genetically driven differential expression of CD33 protein. We report that the risk allele, rs3865444C, is associated with greater cell surface expression of CD33 in both subjects of European and African–American ancestry and that there is a single haplotype influencing CD33 surface expression. A meta-analysis of the two populations narrowed the number of significant SNPs in high linkage disequilibrium (LD) (r2 > 0.8) with rs3865444 to just five putative causal variants associated with increased protein expression. Using gene expression data from flow-sorted CD14+CD16− monocytes from 398 healthy subjects of three populations, we show that the rs3865444C risk allele is strongly associated with greater expression of CD33 exon 2 (pMETA = 2.36 × 10−60). Western blotting confirms increased protein expression of the full-length CD33 isoform containing exon 2 relative to the rs3865444C allele (P < 0.0001). Of the variants in strong LD with rs3865444, rs12459419, which is located in a putative SRSF2 splice site of exon 2, is the most likely candidate to mediate the altered alternative splicing of CD33's Immunoglobulin V-set domain 2 and ultimately influence AD susceptibility. PMID:24381305

  4. Association of CD147 and Calcium Exporter PMCA4 Uncouples IL-2 Expression from Early TCR Signaling.

    PubMed

    Supper, Verena; Schiller, Herbert B; Paster, Wolfgang; Forster, Florian; Boulègue, Cyril; Mitulovic, Goran; Leksa, Vladimir; Ohradanova-Repic, Anna; Machacek, Christian; Schatzlmaier, Philipp; Zlabinger, Gerhard J; Stockinger, Hannes

    2016-02-01

    The Ig superfamily member CD147 is upregulated following T cell activation and was shown to serve as a negative regulator of T cell proliferation. Thus, Abs targeting CD147 are being tested as new treatment strategies for cancer and autoimmune diseases. How CD147 mediates immunosuppression and whether association with other coreceptor complexes is needed have remained unknown. In the current study, we show that silencing of CD147 in human T cells increases IL-2 production without affecting the TCR proximal signaling components. We mapped the immunosuppressive moieties of CD147 to its transmembrane domain and Ig-like domain II. Using affinity purification combined with mass spectrometry, we determined the domain specificity of CD147 interaction partners and identified the calcium exporter plasma membrane calcium ATPase isoform 4 (PMCA4) as the interaction partner of the immunosuppressive moieties of CD147. CD147 does not control the proper membrane localization of PMCA4, but PMCA4 is essential for the CD147-dependent inhibition of IL-2 expression via a calcium-independent mechanism. In summary, our data show that CD147 interacts via its immunomodulatory domains with PMCA4 to bypass TCR proximal signaling and inhibit IL-2 expression. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Molecular Analysis of Neutrophil Differentiation from Human Induced Pluripotent Stem Cells Delineates the Kinetics of Key Regulators of Hematopoiesis.

    PubMed

    Sweeney, Colin L; Teng, Ruifeng; Wang, Hongmei; Merling, Randall K; Lee, Janet; Choi, Uimook; Koontz, Sherry; Wright, Daniel G; Malech, Harry L

    2016-06-01

    In vitro generation of mature neutrophils from human induced pluripotent stem cells (iPSCs) requires hematopoietic progenitor development followed by myeloid differentiation. The purpose of our studies was to extensively characterize this process, focusing on the critical window of development between hemogenic endothelium, hematopoietic stem/progenitor cells (HSPCs), and myeloid commitment, to identify associated regulators and markers that might enable the stem cell field to improve the efficiency and efficacy of iPSC hematopoiesis. We utilized a four-stage differentiation protocol involving: embryoid body (EB) formation (stage-1); EB culture with hematopoietic cytokines (stage-2); HSPC expansion (stage-3); and neutrophil maturation (stage-4). CD34(+) CD45(-) putative hemogenic endothelial cells were observed in stage-3 cultures, and expressed VEGFR-2/Flk-1/KDR and VE-cadherin endothelial markers, GATA-2, AML1/RUNX1, and SCL/TAL1 transcription factors, and endothelial/HSPC-associated microRNAs miR-24, miR-125a-3p, miR-126/126*, and miR-155. Upon further culture, CD34(+) CD45(-) cells generated CD34(+) CD45(+) HSPCs that produced hematopoietic CFUs. Mid-stage-3 CD34(+) CD45(+) HSPCs exhibited increased expression of GATA-2, AML1/RUNX1, SCL/TAL1, C/EBPα, and PU.1 transcription factors, but exhibited decreased expression of HSPC-associated microRNAs, and failed to engraft in immune-deficient mice. Mid-stage-3 CD34(-) CD45(+) cells maintained PU.1 expression and exhibited increased expression of hematopoiesis-associated miR-142-3p/5p and a trend towards increased miR-223 expression, indicating myeloid commitment. By late Stage-4, increased CD15, CD16b, and C/EBPɛ expression were observed, with 25%-65% of cells exhibiting morphology and functions of mature neutrophils. These studies demonstrate that hematopoiesis and neutrophil differentiation from human iPSCs recapitulates many features of embryonic hematopoiesis and neutrophil production in marrow, but reveals unexpected molecular signatures that may serve as a guide for enhancing iPSC hematopoiesis. Stem Cells 2016;34:1513-1526. © 2016 AlphaMed Press.

  6. Molecular analysis of neutrophil differentiation from human iPSCs delineates the kinetics of key regulators of hematopoiesis

    PubMed Central

    Sweeney, Colin L.; Teng, Ruifeng; Wang, Hongmei; Merling, Randall K.; Lee, Janet; Choi, Uimook; Koontz, Sherry; Wright, Daniel G.; Malech, Harry L.

    2016-01-01

    In vitro generation of mature neutrophils from human induced pluripotent stem cells (iPSCs) requires hematopoietic progenitor development followed by myeloid differentiation. The purpose of our studies was to extensively characterize this process, focusing on the critical window of development between hemogenic endothelium, hematopoietic stem/progenitor cells (HSPCs), and myeloid commitment, to identify associated regulators and markers that might enable the stem cell field to improve the efficiency and efficacy of iPSC hematopoiesis. We utilized a 4-stage differentiation protocol involving: embryoid body (EB) formation (Stage-1); EB culture with hematopoietic cytokines (Stage-2); HSPC expansion (Stage-3); and neutrophil maturation (Stage-4). CD34+CD45− putative hemogenic endothelial cells were observed in Stage-3 cultures, and expressed VEGFR-2/Flk-1/KDR and VE-cadherin endothelial markers, GATA-2, AML1/RUNX1, and SCL/TAL1 transcription factors, and endothelial/HSPC-associated microRNAs miR-24, miR-125a-3p, miR-126/126*, and miR-155. Upon further culture, CD34+CD45− cells generated CD34+CD45+ HSPCs that produced hematopoietic CFUs. Mid-Stage-3 CD34+CD45+ HSPCs exhibited increased expression of GATA-2, AML1/RUNX1, SCL/TAL1, C/EBPα, and PU.1 transcription factors, but exhibited decreased expression of HSPC-associated microRNAs, and failed to engraft in immune-deficient mice. Mid-stage-3 CD34−CD45+ cells maintained PU.1 expression and exhibited increased expression of hematopoiesis-associated miR-142-3p/5p and a trend towards increased miR-223 expression, indicating myeloid commitment. By late Stage-4, increased CD15, CD16b, and C/EBPε expression were observed, with 25–65% of cells exhibiting morphology and functions of mature neutrophils. These studies demonstrate that hematopoiesis and neutrophil differentiation from human iPSCs recapitulates many features of embryonic hematopoiesis and neutrophil production in marrow, but reveals unexpected molecular signatures that may serve as a guide for enhancing iPSC hematopoiesis. PMID:26866427

  7. Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8+ Cytolytic T Cell Responses

    PubMed Central

    Taylor, Alison; Harker, James A.; Chanthong, Kittiphat; Stevenson, Philip G.; Zuniga, Elina I.; Rudd, Christopher E.

    2016-01-01

    Summary Despite the importance of the co-receptor PD-1 in T cell immunity, the upstream signaling pathway that regulates PD-1 expression has not been defined. Glycogen synthase kinase 3 (GSK-3, isoforms α and β) is a serine-threonine kinase implicated in cellular processes. Here, we identified GSK-3 as a key upstream kinase that regulated PD-1 expression in CD8+ T cells. GSK-3 siRNA downregulation, or inhibition by small molecules, blocked PD-1 expression, resulting in increased CD8+ cytotoxic T lymphocyte (CTL) function. Mechanistically, GSK-3 inactivation increased Tbx21 transcription, promoting enhanced T-bet expression and subsequent suppression of Pdcd1 (encodes PD-1) transcription in CD8+ CTLs. Injection of GSK-3 inhibitors in mice increased in vivo CD8+ OT-I CTL function and the clearance of murine gamma-herpesvirus 68 and lymphocytic choriomeningitis clone 13 and reversed T cell exhaustion. Our findings identify GSK-3 as a regulator of PD-1 expression and demonstrate the applicability of GSK-3 inhibitors in the modulation of PD-1 in immunotherapy. PMID:26885856

  8. Organizing the Cellular and Molecular Heterogeneity in High Grade Serous Ovarian Cancer by Mass Cytometry

    DTIC Science & Technology

    2015-10-01

    expressed and the intensity by IHC and CyTOF (E-cadherin, vimentin, CD45, pAKT, FAP and p53). The examples show Figure 1: IHC of E-cadherin and...into CyTOF panels. Markers CD45, FAP and CD31 from the tumor antibody panel allow us to enumerate tumor, immune and stroma/angiogenic compartments...compartment as CD45-/CD31-/ FAP -, the immune compartment as CD45+/CD31-/ FAP . Data analysis of tumor compartment As with our pilot experiments from years 1 and

  9. Widespread Non-Hematopoietic Tissue Distribution by Transplanted Human Progenitor Cells with High Aldehyde Dehydrogenase Activity

    PubMed Central

    Hess, David A.; Craft, Timothy P.; Wirthlin, Louisa; Hohm, Sarah; Zhou, Ping; Eades, William C.; Creer, Michael H.; Sands, Mark S.; Nolta, Jan A.

    2011-01-01

    Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of pre-clinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/MPSVII mice, we characterized the distribution of lineage depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase activity (ALDH) with CD133 co-expression. ALDHhi or ALDHhiCD133+ cells produced robust hematopoietic reconstitution, and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that co-expressed human (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels, and CD45−/HLA− cells with diluted GUSB expression predominant in the liver parenchyma. However, true non-hematopoietic human (HLA+/CD45−) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA−/CD45− cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of non-hematopoietic cells. However, relying solely on continued expression of cell surface markers, as employed in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage. PMID:18055447

  10. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer

    PubMed Central

    Yoshida, Kazumichi; Tsujimoto, Hironori; Matsumura, Kouji; Kinoshita, Manabu; Takahata, Risa; Matsumoto, Yusuke; Hiraki, Shuichi; Ono, Satoshi; Seki, Shuhji; Yamamoto, Junji; Hase, Kazuo

    2015-01-01

    CD47 is an antiphagocytic molecule that acts via ligation to signal regulatory protein alpha on phagocytes; its enhanced expression and therapeutic targeting have recently been reported for several malignancies. However, CD47 expression in gastric cancer is not well documented. Immunohistochemical expression of CD47 in surgical specimens was investigated. Expression of CD47 and CD44, a known gastric cancer stem cell marker, were investigated in gastric cancer cell lines by flow cytometry. MKN45 and MKN74 gastric cancer cells were sorted by fluorescence-activated cell sorting according to CD44 and CD47 expression levels, and their in vitro proliferation, spheroid-forming capacity, and in vivo tumorigenicity were studied. In vitro phagocytosis of cancer cells by human macrophages in the presence of a CD47 blocking monoclonal antibody (B6H12) and the survival of immunodeficient mice intraperitoneally engrafted with MKN45 cells and B6H12 were compared to experiments using control antibodies. Immunohistochemistry of the clinical specimens indicated that CD47 was positive in 57 out of 115 cases, and its positivity was an independent adverse prognostic factor. Approximately 90% of the MKN45 and MKN74 cells expressed CD47 and CD44. CD47hi gastric cancer cells showed significantly higher proliferation and spheroid colony formation than CD47lo, and CD44hiCD47hi cells showed the highest proliferation in vitro and tumorigenicity in vivo. B6H12 significantly enhanced in vitro phagocytosis of cancer cells by human macrophages and prolonged the survival of intraperitoneal cancer dissemination in mice compared to control antibodies. In conclusion, CD47 is an adverse prognostic factor and promising therapeutic target in gastric cancer. PMID:26077800

  11. CD1d expression by hepatocytes is a main restriction element for intrahepatic T-cell recognition.

    PubMed

    Agrati, C; Martini, F; Nisii, C; Oliva, A; D'Offizi, G; Narciso, P; Nardacci, R; Piacentini, M; Dieli, F; Pucillo, L P; Poccia, F

    2005-01-01

    The liver has specific mechanisms to protect itself from infectious agents and to avoid autoimmunity, indicating an important role of the hepatic tissues in antigen presentation and tolerance induction. Since intrahepatic lymphocytes may contribute to the innate immunity and to the liver pathology, it is of interest to analyze the expression of antigen presenting molecules and of the related T cell recognition in liver, and how these change in relation to different diseases. We analyzed the expression of MHC class I, and of CD1-a, -b, -c, and -d proteins on liver tissues from patients with different hepatic diseases. Moreover, in the same patients we studied the intrahepatic and peripheral NKT cell recognition of alpha-galactosyl ceramide antigen in the context of CD1d. Unlike in other tissues, classical MHC class I molecules were poorly expressed in the hepatic compartment, suggesting that inflamed hepatocytes may trigger weak MHC-restricted T cell responses. Nevertheless, we observed a prevalent expression of HLA class I-like CD1d isoform on the hepatocyte surface, indicating that CD1d is the main restriction element in the liver. In patients with viral hepatitis, the intrahepatic CD1d expression parallels the recruitment of CD56+Valpha24Vbeta11+ NKT cells in the liver which recognize CD1d presenting glycolipids such as alpha-galactosyl ceramide, suggesting that the intrahepatic T cell immunity may focus on glycolipid antigens.

  12. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  13. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle.

    PubMed

    Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2016-08-01

    The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin.

  14. Circulating Endothelial Progenitor Cells Present an Inflammatory Phenotype and Function in Patients With Alcoholic Liver Cirrhosis

    PubMed Central

    Kaur, Savneet; Sehgal, Rashi; Shastry, Saggere M.; McCaughan, Geoffrey; McGuire, Helen M.; Fazekas St de Groth, Barbara; Sarin, Shiv; Trehanpati, Nirupma; Seth, Devanshi

    2018-01-01

    Background and Aim: Endothelial progenitor cells (EPCs) have been implicated in liver injury and repair. However, the phenotype and potential of these heterogenous EPCs remain elusive. In particular, their involvement in the pathogenesis of alcoholic liver cirrhosis (ALC) remains unclear. The current study extensively characterized the phenotype and functions of EPCs to understand their role in ALC pathogenesis. Methods: Circulating EPCs were identified as CD34+CD133+CD31+ cells by flow cytometer in ALC patients (n = 7) and healthy controls (HC, n = 7). A comprehensive characterization of circulating EPCs using more than 30 phenotype markers was performed by mass cytometer time of flight (CyTOF) in an independent cohort of age and gender matched ALC patients (n = 4) and controls (n = 5). Ex vivo cultures of circulating EPCs from ALC patients (n = 20) and controls (n = 18) were also tested for their functions, including colony formation, LDL uptake, lectin binding and cytokine secretion (ELISA). Results: Three distinct populations of circulating EPCs (CD34+CD133+CD31+) were identified, classified on their CD45 expression (negative: CD45−; intermediate: CD45int; high: CD45hi). CD45int and CD45hi EPCs significantly increased in ALC patients compared to controls (p-val = 0.006). CyTOF data showed that CD45hi EPCs were distinct from CD45− and CD45int EPCs, with higher expression of T cell and myeloid markers, including CD3, CD4, HLA-DR, and chemokine receptors, CCR2, CCR5, CCR7, and CX3CR1. Similar to circulating EPCs, percentage of CD45hiCD34+CD31+ EPCs in ex-vivo cultures from patients, were significantly higher compared to controls (p < 0.05). Cultured EPCs from patients also showed increased LDL uptake, lectin binding and release of TNF-alpha, RANTES, FGF-2, and VEGF. Conclusions: We report the first extensive characterization of circulating human EPCs with distinct EPC subtypes. Increase in CD45hi EPC subtype in ALC patients with enhanced functions, inflammatory cytokines and angiogenic mediators in patients suggests an inflammatory role for these cells in ALC. PMID:29872403

  15. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood.

    PubMed

    Mohanty, Niharika; Gulati, Baldev R; Kumar, Rajesh; Gera, Sandeep; Kumar, Pawan; Somasundaram, Rajesh K; Kumar, Sandeep

    2014-06-01

    Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36 ± 1.28%, 93.40 ± 0.70%, 73.23 ± 1.29% and 46.75 ± 3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65 ± 2.15% and 96.30 ± 1.00% of differentiated cells in comparison to 11.30 ± 0.10% and 19.45 ± 0.55% cells, respect vely in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.

  16. Fibrocyte-like cells recruited to the spleen support innate and adaptive immune responses to acute injury or infection

    PubMed Central

    von Köckritz-Blickwede, Maren; Reichart, Donna; McGillvray, Shauna M.; Wingender, Gerhard; Kronenberg, Mitchell; Glass, Christopher K.; Nizet, Victor; Brenner, David A.

    2011-01-01

    Bone marrow (BM)-derived fibrocytes are a population of CD45+ and collagen Type I-expressing cells that migrate to the spleen and to target injured organs, such as skin, lungs, kidneys, and liver. While CD45+Col+ fibrocytes contribute to collagen deposition at the site of injury, the role of CD45+Col+ cells in spleen has not been elucidated. Here, we demonstrate that hepatotoxic injury (CCl4), TGF-β1, lipopolysaccharide, or infection with Listeria monocytogenes induce rapid recruitment of CD45+Col+ fibrocyte-like cells to the spleen. These cells have a gene expression pattern that includes antimicrobial factors (myleoperoxidase, cathelicidin, and defensins) and MHC II at higher levels than found on quiescent or activated macrophages. The immune functions of these splenic CD45+Col+ fibrocyte-like cells include entrapment of bacteria into extracellular DNA-based structures containing cathelicidin and presentation of antigens to naïve CD8+ T cells to induce their proliferation. Stimulation of these splenic fibrocyte-like cells with granulocyte macrophage-colony stimulating factor or macrophage-colony stimulating factor induces downregulation of collagen expression and terminal differentiation into the dendritic cells or macrophage. Thus, splenic CD45+Col+ cells are a population of rapidly mobilized BM-derived fibrocyte-like cells that respond to inflammation or infection to participate in innate and adaptive immune responses. PMID:21499735

  17. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  18. Tcf7 Is an Important Regulator of the Switch of Self-Renewal and Differentiation in a Multipotential Hematopoietic Cell Line

    PubMed Central

    Schulz, Vincent P.; Hariharan, Manoj; Tuck, David; Lian, Jin; Du, Jiang; Shi, Minyi; Ye, Zhijia; Gerstein, Mark; Snyder, Michael P.; Weissman, Sherman

    2012-01-01

    A critical problem in biology is understanding how cells choose between self-renewal and differentiation. To generate a comprehensive view of the mechanisms controlling early hematopoietic precursor self-renewal and differentiation, we used systems-based approaches and murine EML multipotential hematopoietic precursor cells as a primary model. EML cells give rise to a mixture of self-renewing Lin-SCA+CD34+ cells and partially differentiated non-renewing Lin-SCA-CD34− cells in a cell autonomous fashion. We identified and validated the HMG box protein TCF7 as a regulator in this self-renewal/differentiation switch that operates in the absence of autocrine Wnt signaling. We found that Tcf7 is the most down-regulated transcription factor when CD34+ cells switch into CD34− cells, using RNA–Seq. We subsequently identified the target genes bound by TCF7, using ChIP–Seq. We show that TCF7 and RUNX1 (AML1) bind to each other's promoter regions and that TCF7 is necessary for the production of the short isoforms, but not the long isoforms of RUNX1, suggesting that TCF7 and the short isoforms of RUNX1 function coordinately in regulation. Tcf7 knock-down experiments and Gene Set Enrichment Analyses suggest that TCF7 plays a dual role in promoting the expression of genes characteristic of self-renewing CD34+ cells while repressing genes activated in partially differentiated CD34− state. Finally a network of up-regulated transcription factors of CD34+ cells was constructed. Factors that control hematopoietic stem cell (HSC) establishment and development, cell growth, and multipotency were identified. These studies in EML cells demonstrate fundamental cell-intrinsic properties of the switch between self-renewal and differentiation, and yield valuable insights for manipulating HSCs and other differentiating systems. PMID:22412390

  19. [Expression and clinical significance of CD45RO in laryngeal carcinoma tissue].

    PubMed

    Li, Manyi; Liu, Jishengi; Zhou, Hui; Wu, Wenying; Xiao, Gensheng; Yu, Yafeng; Guo, Lingchuan

    2014-03-01

    To investigate the role and significance of CD45RO in occurance and development in laryngeal squamous carcinoma, and to provide some valuable clues for searching new approaches to assess prognosis and theoretical basis for tumor biotherapy. The expression of CD45RO protein in 50 cases of laryngeal squamous carcinoma and 10 cases normal mucos was detected by immunohistochemical S-P method. The positive rate of CD45RO was 30% and 86% respectively in normal tissue and laryngeal squamous cell carcinoma tissue. The expresion of CD45RO was significantly and negatively associated with local metastatic of lymph nodes 0.713, P < 0.05) and tumor sites (r = -0.750, P < 0.05), but it have no notable difference with pathology differentiation, age, infiltrating depth and clinical stages in 50 cases of laryngeal squamous cell cancer. (1) The expresion of CD45RO in laryngeal squamous cell cancer is more than that in normal tissue. (2) It is possible that overexpresion of CD45RO in laryngeal squamous cell carcinoma cut local metastatic lymph nodes. (3) It is probable that overexpresion of CD45RO in laryngeal squamous cell cancer made for prognosis of patients. (4) Other than UICC-TNM stage, pathology differentiation, it provide valuable clues for searching new approaches to assess prognosis of laryngeal squamous cell carcinoma.

  20. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease.

    PubMed

    Canavan, James B; Scottà, Cristiano; Vossenkämper, Anna; Goldberg, Rimma; Elder, Matthew J; Shoval, Irit; Marks, Ellen; Stolarczyk, Emilie; Lo, Jonathan W; Powell, Nick; Fazekasova, Henrieta; Irving, Peter M; Sanderson, Jeremy D; Howard, Jane K; Yagel, Simcha; Afzali, Behdad; MacDonald, Thomas T; Hernandez-Fuentes, Maria P; Shpigel, Nahum Y; Lombardi, Giovanna; Lord, Graham M

    2016-04-01

    Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. To define the optimum population for Treg cell therapy in CD, CD4(+)CD25(+)CD127(lo)CD45RA(+) and CD4(+)CD25(+)CD127(lo)CD45RA(-) Treg subsets were isolated from patients' blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. Tregs can be expanded from the blood of patients with CD to potential target dose within 22-24 days. Expanded CD45RA(+) Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA(-) Tregs. CD45RA(+) Tregs highly express α4β7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA(+) Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA(+) Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. CD4(+)CD25(+)CD127(lo)CD45RA(+) Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease

    PubMed Central

    Canavan, James B; Scottà, Cristiano; Vossenkämper, Anna; Goldberg, Rimma; Elder, Matthew J; Shoval, Irit; Marks, Ellen; Stolarczyk, Emilie; Lo, Jonathan W; Powell, Nick; Fazekasova, Henrieta; Irving, Peter M; Sanderson, Jeremy D; Howard, Jane K; Yagel, Simcha; Afzali, Behdad; MacDonald, Thomas T; Hernandez-Fuentes, Maria P; Shpigel, Nahum Y; Lombardi, Giovanna; Lord, Graham M

    2016-01-01

    Background and aim Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. Methods To define the optimum population for Treg cell therapy in CD, CD4+CD25+CD127loCD45RA+ and CD4+CD25+CD127loCD45RA− Treg subsets were isolated from patients’ blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. Results Tregs can be expanded from the blood of patients with CD to potential target dose within 22–24 days. Expanded CD45RA+ Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA− Tregs. CD45RA+ Tregs highly express α4β7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA+ Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA+ Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. Conclusions CD4+CD25+CD127loCD45RA+ Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials. PMID:25715355

  2. An extracatalytic function of CD45 in B cells is mediated by CD22

    PubMed Central

    Coughlin, Sarah; Noviski, Mark; Mueller, James L.; Chuwonpad, Ammarina; Raschke, William C.; Weiss, Arthur; Zikherman, Julie

    2015-01-01

    The receptor-like tyrosine phosphatase CD45 regulates antigen receptor signaling by dephosphorylating the C-terminal inhibitory tyrosine of the src family kinases. However, despite its abundance, the function of the large, alternatively spliced extracellular domain of CD45 has remained elusive. We used normally spliced CD45 transgenes either incorporating a phosphatase-inactivating point mutation or lacking the cytoplasmic domain to uncouple the enzymatic and noncatalytic functions of CD45 in lymphocytes. Although these transgenes did not alter T-cell signaling or development irrespective of endogenous CD45 expression, both partially rescued the phenotype of CD45-deficient B cells. We identify a noncatalytic role for CD45 in regulating tonic, but not antigen-mediated, B-cell antigen receptor (BCR) signaling through modulation of the function of the inhibitory coreceptor CD22. This finding has important implications for understanding how naïve B cells maintain tonic BCR signaling while restraining inappropriate antigen-dependent activation to preserve clonal “ignorance.” PMID:26561584

  3. Functional heterogeneity of side population cells in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro

    2006-03-17

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also somemore » mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.« less

  4. Increased Numbers of CD4+CD25+ and CD8+CD25+ T-Cells in Peripheral Blood of Patients with Rheumatoid Arthritis with Parvovirus B19 Infection.

    PubMed

    Naciute, Milda; Maciunaite, Gabriele; Mieliauskaite, Diana; Rugiene, Rita; Zinkeviciene, Aukse; Mauricas, Mykolas; Murovska, Modra; Girkontaite, Irute

    2017-01-01

    To investigate T-cell subpopulations in peripheral blood of human parvovirus B19 DNA-positive (B19 + ) and -negative (B19 - ) patients with rheumatoid arthritis (RA) and healthy persons. Blood samples were collected from 115 patients with RA and 47 healthy volunteers; 27 patients with RA and nine controls were B19 + Cluster of differentiation (CD) 4, 8, 25 and 45RA were analyzed on blood cells. CD25 expression on CD4 + CD45RA + , CD4 + CD45RA - , CD8 + CD45RA + , CD8 + CD45RA - subsets were analyzed by flow cytometry. The percentage of CD25 low and CD25 hi cells was increased on CD4 + CD45RA + , CD4 + CD45RA - T-cells and the percentage of CD25 + cells was increased on CD8 + CD45RA + , CD8 + CD45RA - T-cells of B19 + patients with RA in comparison with B19 - patients and controls. Raised levels of CD4 and CD8 regulatory T-cells in B19 + RA patients could cause down-regulation of antiviral clearance mechanisms and lead to activation of persistent human parvovirus B19 infection in patients with RA. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Increased Numbers of CD4+CD25+ and CD8+CD25+ T-Cells in Peripheral Blood of Patients with Rheumatoid Arthritis with Parvovirus B19 Infection

    PubMed Central

    NACIUTE, MILDA; MACIUNAITE, GABRIELE; MIELIAUSKAITE, DIANA; RUGIENE, RITA; ZINKEVICIENE, AUKSE; MAURICAS, MYKOLAS; MUROVSKA, MODRA; GIRKONTAITE, IRUTE

    2017-01-01

    Aim: To investigate T-cell subpopulations in peripheral blood of human parvovirus B19 DNA-positive (B19+) and -negative (B19−) patients with rheumatoid arthritis (RA) and healthy persons. Patients and Methods: Blood samples were collected from 115 patients with RA and 47 healthy volunteers; 27 patients with RA and nine controls were B19+. Cluster of differentiation (CD) 4, 8, 25 and 45RA were analyzed on blood cells. CD25 expression on CD4+CD45RA+, CD4+CD45RA−, CD8+CD45RA+, CD8+CD45RA− subsets were analyzed by flow cytometry. Results: The percentage of CD25low and CD25hi cells was increased on CD4+CD45RA+, CD4+CD45RA− T-cells and the percentage of CD25+ cells was increased on CD8+CD45RA+, CD8+CD45RA− T-cells of B19+ patients with RA in comparison with B19− patients and controls. Conclusion: Raised levels of CD4 and CD8 regulatory T-cells in B19+ RA patients could cause down-regulation of antiviral clearance mechanisms and lead to activation of persistent human parvovirus B19 infection in patients with RA PMID:28358698

  6. A novel population of local pericyte precursor cells in tumor stroma that require Notch signaling for differentiation.

    PubMed

    Patenaude, Alexandre; Woerher, Stefan; Umlandt, Patricia; Wong, Fred; Ibrahim, Rawa; Kyle, Alastair; Unger, Sandy; Fuller, Megan; Parker, Jeremy; Minchinton, Andrew; Eaves, Connie J; Karsan, Aly

    2015-09-01

    Pericytes are perivascular support cells, the origin of which in tumor tissue is not clear. Recently, we identified a Tie1(+) precursor cell that differentiates into vascular smooth muscle, in a Notch-dependent manner. To understand the involvement of Notch in the ontogeny of tumor pericytes we used a novel flow immunophenotyping strategy to define CD146(+)/CD45(-)/CD31(-/lo) pericytes in the tumor stroma. This strategy combined with ex vivo co-culture experiments identified a novel pericyte progenitor cell population defined as Sca1(hi)/CD146(-)/CD45(-)/CD31(-). The differentiation of these progenitor cells was stimulated by co-culture with endothelial cells. Overexpression of the Notch ligand Jagged1 in endothelial cells further stimulated the differentiation of Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells into pericytes, while inhibition of Notch signaling with a γ-secretase inhibitor reduced this differentiation. However, Notch inhibition specifically in Tie1-expressing cells did not change the abundance of pericytes in tumors, suggesting that the pericyte precursor is distinct from the vascular smooth muscle cell precursor. Transplant experiments showed that the bone marrow contributes minimally to tumor pericytes. Immunophenotyping revealed that Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells have greater potential to differentiate into pericytes and have increased expression of classic mesenchymal stem cell markers (CD13, CD44, Nt5e and Thy-1) compared to Sca1(-/lo)/CD146(-)/CD45(-)/CD31(-) cells. Our results suggest that a local Sca1(hi)/CD146(-)/CD45(-)/CD31(-) pericyte progenitor resides in the tumor microenvironment and requires Notch signaling for differentiation into mature pericytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models

    PubMed Central

    Shoji, Takuhiro; Saito, Ryuta; Chonan, Masashi; Shibahara, Ichiyo; Sato, Aya; Kanamori, Masayuki; Sonoda, Yukihiko; Kondo, Toru; Ishii, Naoto; Tominaga, Teiji

    2016-01-01

    Background Glioblastoma is one of the most malignant brain tumors in adults and has a dismal prognosis. In a previous report, we reported that CD40, a TNF-R-related cell surface receptor, and its ligand CD40L were associated with glioma outcomes. Here we attempted to activate CD40 signaling in the tumor and determine if it exerted therapeutic efficacy. Methods CD40 expression was examined in 3 mouse glioma cell lines (GL261, NSCL61, and bRiTs-G3) and 5 human glioma cell lines (U87, U251, U373, T98, and A172). NSCL61 and bRiTs-G3, as glioma stem cells, also expressed the glioma stem cell markers MELK and CD44. In vitro, we demonstrated direct antitumor effects of an anti-CD40 agonistic monoclonal antibody (FGK45) against the cell lines. The efficacy of FGK45 was examined by local convection-enhanced delivery of the monoclonal antibody against each glioma model. Results CD40 was expressed in all mouse and human cell lines tested and was found at the cell membrane of each of the 3 mouse cell lines. FGK45 administration induced significant, direct antitumor effects in vitro. The local delivery of FGK45 significantly prolonged survival compared with controls in the NSCL61 and bRiTs-G3 models, but the effect was not significant in the GL261 model. Increases in apoptosis and CD4+ and CD8+ T cell infiltration were observed in the bRiTs-G3 model after FGK45 treatment. Conclusions Local delivery of FGK45 significantly prolonged survival in glioma stem cell models. Thus, local delivery of this monoclonal antibody is promising for immunotherapy against gliomas. PMID:26917236

  8. Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS− cell populations

    PubMed Central

    El-Sayed, Karim M Fawzy; Paris, Sebastian; Graetz, Christian; Kassem, Neemat; Mekhemar, Mohamed; Ungefroren, Hendrick; Fändrich, Fred; Dörfer, Christof

    2015-01-01

    Recently, gingival margin-derived stem/progenitor cells isolated via STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal regenerative potential in vivo. As a second-stage investigation, the present study's aim was to perform in vitro characterisation and comparison of the stem/progenitor cell characteristics of sorted STRO-1-positive (MACS+) and STRO-1-negative (MACS−) cell populations from the human free gingival margin. Cells were isolated from the free gingiva using a minimally invasive technique and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the MACS+ and MACS− cell fractions were characterized by flow cytometry for expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1. Colony-forming unit (CFU) and multilineage differentiation potential were assayed for both cell fractions. Mineralisation marker expression was examined using real-time polymerase chain reaction (PCR). MACS+ and MACS− cell fractions showed plastic adherence. MACS+ cells, in contrast to MACS− cells, showed all of the predefined mesenchymal stem/progenitor cell characteristics and a significantly higher number of CFUs (P<0.01). More than 95% of MACS+ cells expressed CD105, CD90 and CD73; lacked the haematopoietic markers CD45, CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS− cells showed a different surface marker expression profile, with almost no expression of CD14 or STRO-1, and more than 95% of these cells expressed CD73, CD90 and CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105. MACS+ cells could be differentiated along osteoblastic, adipocytic and chondroblastic lineages. In contrast, MACS− cells demonstrated slight osteogenic potential. Unstimulated MACS+ cells showed significantly higher expression of collagen I (P<0.05) and collagen III (P<0.01), whereas MACS− cells demonstrated higher expression of osteonectin (P<0.05; Mann–Whitney). The present study is the first to compare gingival MACS+ and MACS− cell populations demonstrating that MACS+ cells, in contrast to MACS− cells, harbour stem/progenitor cell characteristics. This study also validates the effectiveness of the STRO-1/MACS+ technique for the isolation of gingival stem/progenitor cells. Human free gingival margin-derived STRO-1/MACS+ cells are a unique renewable source of multipotent stem/progenitor cells. PMID:25257881

  9. Expression of CD 68, CD 45 and human leukocyte antigen-DR in central and peripheral giant cell granuloma, giant cell tumor of long bones, and tuberculous granuloma: An immunohistochemical study.

    PubMed

    Kumar, Anoop; Sherlin, Herald J; Ramani, Pratibha; Natesan, Anuja; Premkumar, Priya

    2015-01-01

    Multinucleated giant cells (MNCs) form an integral part of numerous bone and soft tissue tumors, tumor-like lesions and are often associated with granulomas of immunological and nonimmunological origin. The presence of various types of giant cells depends on the lesions in which they are present which are difficult to be diagnosed under routine histological techniques. Immunohistochemistry can be used for a better diagnosis and understanding of the origin of various giant cells using various markers of immune response like human leukocyte antigen-DR (HLA-DR) and those expressed on monocytes and macrophages like CD 68 and leukocyte common antigen (LCA). The study group consisted of 10 cases of giant cell tumor (GCT) of long bones, tuberculous granuloma, and giant cell granuloma to evaluate and analyze the expression pattern of LCA, CD 68, and HLA-DR in various giant cell lesions. Strong expression of CD 68 was observed in 80% of the lesions, strong and moderate expression of CD 45 observed in 70% of the lesions among and within the groups. In contrast, HLA-DR demonstrated negative expression in 80% of cases except for tuberculous granuloma where all the 10 cases showed moderate to strong immunoreactivity. CD 68 and CD 45 expression was found in central giant cell granuloma, peripheral giant cell granuloma and GCT, suggesting the origin from mononuclear phagocyte system and considering their clinical behavior of osteoclast type. High expressivity of HLA-DR in tuberculous granulomas which is an essential factor for presentation of the microbial antigen to CD 4 helper cells thus reassuring the fact that they are up-regulated in response to infection.

  10. CD4+ memory T cells retain surface expression of CD31 independently of thymic function in patients with lymphoproliferative disorders following autologous hematopoietic stem-cell transplantation.

    PubMed

    Batorov, Egor V; Tikhonova, Marina A; Kryuchkova, Irina V; Sergeevicheva, Vera V; Sizikova, Svetlana A; Ushakova, Galina Y; Batorova, Dariya S; Gilevich, Andrey V; Ostanin, Alexander A; Shevela, Ekaterina Y; Chernykh, Elena R

    2017-07-01

    High-dose chemotherapy with autologous hematopoietic stem-cell transplantation (AHSCT) causes severe and long-lasting immunodeficiency in patients with lymphoproliferative disorders. The thymus begins to restore the T-cell repertoire approximately from the sixth month post-transplant. We assessed the dynamics of post-transplant recovery of CD4 + CD45RA + CD31 + T cells, "recent thymic emigrants" (RTEs), and a poorly described subtype of CD4 + CD45RA - CD31 + T cells in 90 patients with lymphoproliferative disorders following high-dose chemotherapy with AHSCT. Relative and absolute counts of CD4 + CD31 + naïve and memory T cells were evaluated before AHSCT, at the day of engraftment, and 6- and 12-month post-transplant. The pre-transplant count of CD4 + CD45RA + CD31 + T cells was lower than in healthy controls, and did not reach donors' values during the 12-month period. The pre-transplant number of CD4 + CD45RA - CD31 + T cells was higher than in healthy controls and was restored rapidly following AHSCT. Post-transplant mediastinal radiotherapy reduced counts of RTEs and elongated recovery period. Non-thymic tissue irradiation did not reduce this subset. The obtained data indicate that homeostatic proliferation may decrease the significance of CD31 expression on CD4 + CD45RA + T cells as a marker of RTEs, and suggest that evaluation of RTEs recovery by flow cytometry requires an accurate gating strategy to exclude CD31 + memory T cells.

  11. Analysis for apoptosis and necrosis on adipocytes, stromal vascular fraction, and adipose-derived stem cells in human lipoaspirates after liposuction.

    PubMed

    Wang, Wei Z; Fang, Xin-Hua; Williams, Shelley J; Stephenson, Linda L; Baynosa, Richard C; Wong, Nancy; Khiabani, Kayvan T; Zamboni, William A

    2013-01-01

    Adipose-derived stem cells have become the most studied adult stem cells. The authors examined the apoptosis and necrosis rates for adipocyte, stromal vascular fraction, and adipose-derived stem cells in fresh human lipoaspirates. Human lipoaspirate (n = 8) was harvested using a standard liposuction technique. Stromal vascular fraction cells were separated from adipocytes and cultured to obtain purified adipose-derived stem cells. A panel of stem cell markers was used to identify the surface phenotypes of cultured adipose-derived stem cells. Three distinct stem cell subpopulations (CD90/CD45, CD105/CD45, and CD34/CD31) were selected from the stromal vascular fraction. Apoptosis and necrosis were determined by annexin V/propidium iodide assay and analyzed by flow cytometry. The cultured adipose-derived stem cells demonstrated long-term proliferation and differentiation evidenced by cell doubling time and positive staining with oil red O and alkaline phosphatase. Isolated from lipoaspirates, adipocytes exhibited 19.7 ± 3.7 percent apoptosis and 1.1 ± 0.3 percent necrosis; stromal vascular fraction cells revealed 22.0 ± 6.3 percent of apoptosis and 11.2 ± 1.9 percent of necrosis; stromal vascular fraction cells had a higher rate of necrosis than adipocytes (p < 0.05). Among the stromal vascular fraction cells, 51.1 ± 3.7 percent expressed CD90/CD45, 7.5 ± 1.0 percent expressed CD105/CD45, and 26.4 ± 3.8 percent expressed CD34/CD31. CD34/CD31 adipose-derived stem cells had lower rates of apoptosis and necrosis compared with CD105/CD45 adipose-derived stem cells (p < 0.05). Adipose-derived stem cells had a higher rate of apoptosis and necrosis than adipocytes. However, the extent of apoptosis and necrosis was significantly different among adipose-derived stem cell subpopulations.

  12. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase.

    PubMed

    Abdulrahman, Nabeel; Jaspard-Vinassa, Beatrice; Fliegel, Larry; Jabeen, Aayesha; Riaz, Sadaf; Gadeau, Alain-Pierre; Mraiche, Fatima

    2018-05-01

    Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na + /H + exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.

  13. Malignant and Tuberculous Pleural Effusions: Immunophenotypic Cellular Characterization

    PubMed Central

    de Aguiar, Lucia Maria Zanatta; Antonangelo, Leila; Vargas, Francisco S.; Zerbini, Maria Cláudia Nogueira; Sales, Maria Mirtes; Uip, David E.; Saldiva, Paulo Hilário Nascimento

    2008-01-01

    INTRODUCTION AND OBJECTIVES Tuberculosis and cancer are the main causes of pleural effusion. Pleural involvement is associated with migration of immune cells to the pleural cavity. We sought to characterize the immunophenotype of leukocytes in the pleural effusion and peripheral blood of patients with tuberculosis or malignancy. METHODS Thirty patients with tuberculosis (14) or malignancy (16) were studied. A control group included 20 healthy blood donors. RESULTS Malignant phycoerythrin pleural effusions showed higher percentages of CD3, CD4, CD3CD45RO, and CD20CD25 lymphocytes and lower percentages of CD3CD25 and CD20HLA-DR when compared to PB lymphocytes. Compared to PB, tuberculous effusions had a higher percentage of lymphocytes that co-expressed CD3, CD4, CD3CD45RO, CD3TCRαβ, CD3CD28, and CD20 and a lower percentage of CD14, CD8 and CD3TCRγδ-positive lymphocytes. Malignant effusions presented higher expression of CD14 whereas tuberculous effusions had higher expression of CD3 and CD3CD95L. Peripheral blood cells from tuberculosis patients showed higher expression of CD14, CD20CD25 and CD3CD95L. Compared with the control cells, tuberculosis and cancer peripheral blood cells presented a lower percentage of CD3CD4 and CD3CD28-positive cells as well as a higher percentage of CD3CD8, CD3CD25 and CD3CD80-positive cells. CONCLUSIONS Tuberculous and malignant peripheral blood is enriched with lymphocytes with a helper/inducer T cell phenotype, which are mainly of memory cells. CD14-positive cells were more frequently found in malignant effusions, while CD3-positive cells expressing Fas ligand were more frequently found in tuberculous effusions. PMID:18925324

  14. CD44S-hyaluronan interactions protect cells resulting from EMT against anoikis

    PubMed Central

    Cieply, Benjamin; Koontz, Colton; Frisch, Steven M.

    2016-01-01

    The detachment of normal epithelial cells from matrix triggers an apoptotic response known as anoikis, during homeostatic turnover. Metastatic tumor cells evade anoikis, by mechanisms that are only partly characterized. In particular, the epithelial–mesenchymal transition (EMT) in a subset of invasive tumor cells confers anoikis-resistance. In some cases, EMT up-regulates the cancer stem cell marker CD44S and the enzyme hyaluronic acid synthase-2 (HAS2). CD44S is the major receptor for hyaluronan in the extracellular matrix. Herein, we demonstrate that CD44S, unlike the CD44E isoform expressed in normal epithelial cells, contributes to the protection against anoikis. This protection requires the interaction of CD44S with hyaluronan (HA). CD44S–HA interaction is proposed to play an important role in tumor metastasis through enhanced cell survival under detached conditions. PMID:25937513

  15. CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+-activated human regulatory T cells.

    PubMed

    Solstad, Therese; Bains, Simer Jit; Landskron, Johannes; Aandahl, Einar Martin; Thiede, Bernd; Taskén, Kjetil; Torgersen, Knut Martin

    2011-11-10

    Human CD4(+)FoxP3(+) T cells are functionally and phenotypically heterogeneous providing plasticity to immune activation and regulation. To better understand the functional dynamics within this subset, we first used a combined strategy of subcellular fractionation and proteomics to describe differences at the protein level between highly purified human CD4(+)CD25(+) and CD4(+)CD25(-) T-cell populations. This identified a set of membrane proteins highly expressed on the cell surface of human regulatory T cells (Tregs), including CD71, CD95, CD147, and CD148. CD147 (Basigin or Emmprin) divided CD4(+)CD25(+) cells into distinct subsets. Furthermore, CD147, CD25, FoxP3, and in particular CTLA-4 expression correlated. Phenotypical and functional analyses suggested that CD147 marks the switch between resting (CD45RA(+)) and activated (CD45RO(+)) subsets within the FoxP3(+) T-cell population. Sorting of regulatory T cells into CD147(-) and CD147(+) populations demonstrated that CD147 identifies an activated and highly suppressive CD45RO(+) Treg subset. When analyzing CD4(+) T cells for their cytokine producing potential, CD147 levels grouped the FoxP3(+) subset into 3 categories with different ability to produce IL-2, TNF-α, IFN-γ, and IL-17. Together, this suggests that CD147 is a direct marker for activated Tregs within the CD4(+)FoxP3(+) subset and may provide means to manipulate cells important for immune homeostasis.

  16. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.

    PubMed

    Akondy, Rama S; Monson, Nathan D; Miller, Joseph D; Edupuganti, Srilatha; Teuwen, Dirk; Wu, Hong; Quyyumi, Farah; Garg, Seema; Altman, John D; Del Rio, Carlos; Keyserling, Harry L; Ploss, Alexander; Rice, Charles M; Orenstein, Walter A; Mulligan, Mark J; Ahmed, Rafi

    2009-12-15

    The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.

  17. IL-15 induces antigen-independent expansion and differentiation of human naive CD8+ T cells in vitro.

    PubMed

    Alves, Nuno L; Hooibrink, Berend; Arosa, Fernando A; van Lier, René A W

    2003-10-01

    Recent studies in mice have shown that although interleukin 15 (IL-15) plays an important role in regulating homeostasis of memory CD8+ T cells, it has no apparent function in controlling homeostatic proliferation of naive T cells. We here assessed the influence of IL-15 on antigen-independent expansion and differentiation of human CD8+ T cells. Both naive and primed human T cells divided in response to IL-15. In this process, naive CD8+ T cells successively down-regulated CD45RA and CD28 but maintained CD27 expression. Concomitant with these phenotypic changes, naive cells acquired the ability to produce interferon gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha), expressed perforin and granzyme B, and acquired cytotoxic properties. Primed CD8+ T cells, from both noncytotoxic (CD45RA-CD27+) and cytotoxic (CD45RA+CD27-) subsets, responded to IL-15 and yielded ample numbers of cytokine-secreting and cytotoxic effector cells. In summary, all human CD8+ T-cell subsets had the ability to respond to IL-15, which suggests a generic influence of this cytokine on CD8+ T-cell homeostasis in man.

  18. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4

    PubMed Central

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M.; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L.; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A.; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L.; Burgdorf, Sven

    2016-01-01

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8+ T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte–associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality. PMID:27601670

  19. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    PubMed

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  20. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars

    PubMed Central

    Balic, Anamaria; Aguila, H. Leonardo; Caimano, Melissa J.; Francone, Victor P.; Mina, Mina

    2010-01-01

    In the past few years there have been significant advances in the identification of putative stem cells also referred to as “mesenchymal stem cells” (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulp from erupted molars displayed a reduced number of cells, contained higher percentage of CD45+ and lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts. PMID:20193787

  1. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization

    PubMed Central

    Tormin, Ariane; Li, Ou; Brune, Jan Claas; Walsh, Stuart; Schütz, Birgit; Ehinger, Mats; Ditzel, Nicholas; Kassem, Moustapha

    2011-01-01

    Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype of primary human BM-MSCs and found that all assayable colony-forming units-fibroblast (CFU-Fs) were highly and exclusively enriched not only in the lin−/CD271+/CD45−/CD146+ stem-cell fraction, but also in lin−/CD271+/CD45−/CD146−/low cells. Both populations, regardless of CD146 expression, shared a similar phenotype and genotype, gave rise to typical cultured stromal cells, and formed bone and hematopoietic stroma in vivo. Interestingly, CD146 was up-regulated in normoxia and down-regulated in hypoxia. This was correlated with in situ localization differences, with CD146 coexpressing reticular cells located in perivascular regions, whereas bone-lining MSCs expressed CD271 alone. In both regions, CD34+ hematopoietic stem/progenitor cells were located in close proximity to MSCs. These novel findings show that the expression of CD146 differentiates between perivascular versus endosteal localization of non-hematopoietic BM-MSC populations, which may be useful for the study of the hematopoietic environment. PMID:21415267

  2. Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models.

    PubMed

    Shoji, Takuhiro; Saito, Ryuta; Chonan, Masashi; Shibahara, Ichiyo; Sato, Aya; Kanamori, Masayuki; Sonoda, Yukihiko; Kondo, Toru; Ishii, Naoto; Tominaga, Teiji

    2016-08-01

    Glioblastoma is one of the most malignant brain tumors in adults and has a dismal prognosis. In a previous report, we reported that CD40, a TNF-R-related cell surface receptor, and its ligand CD40L were associated with glioma outcomes. Here we attempted to activate CD40 signaling in the tumor and determine if it exerted therapeutic efficacy. CD40 expression was examined in 3 mouse glioma cell lines (GL261, NSCL61, and bRiTs-G3) and 5 human glioma cell lines (U87, U251, U373, T98, and A172). NSCL61 and bRiTs-G3, as glioma stem cells, also expressed the glioma stem cell markers MELK and CD44. In vitro, we demonstrated direct antitumor effects of an anti-CD40 agonistic monoclonal antibody (FGK45) against the cell lines. The efficacy of FGK45 was examined by local convection-enhanced delivery of the monoclonal antibody against each glioma model. CD40 was expressed in all mouse and human cell lines tested and was found at the cell membrane of each of the 3 mouse cell lines. FGK45 administration induced significant, direct antitumor effects in vitro. The local delivery of FGK45 significantly prolonged survival compared with controls in the NSCL61 and bRiTs-G3 models, but the effect was not significant in the GL261 model. Increases in apoptosis and CD4(+) and CD8(+) T cell infiltration were observed in the bRiTs-G3 model after FGK45 treatment. Local delivery of FGK45 significantly prolonged survival in glioma stem cell models. Thus, local delivery of this monoclonal antibody is promising for immunotherapy against gliomas. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells

    PubMed Central

    Beckenkamp, Aline; Willig, Júlia Biz; Santana, Danielle Bertodo; Nascimento, Jéssica; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Bruno, Alessandra Nejar; Pilger, Diogo André; Wink, Márcia Rosângela; Buffon, Andréia

    2015-01-01

    Dipeptidyl peptidase IV (DPPIV/CD26) is a transmembrane glycoprotein that inactivates or degrades some bioactive peptides and chemokines. For this reason, it regulates cell proliferation, migration and adhesion, showing its role in cancer processes. This enzyme is found mainly anchored onto the cell membrane, although it also has a soluble form, an enzymatically active isoform. In the present study, we investigated DPPIV/CD26 activity and expression in cervical cancer cell lines (SiHa, HeLa and C33A) and non-tumorigenic HaCaT cells. The effect of the DPPIV/CD26 inhibitor (sitagliptin phosphate) on cell migration and adhesion was also evaluated. Cervical cancer cells and keratinocytes exhibited DPPIV/CD26 enzymatic activity both membrane-bound and in soluble form. DPPIV/CD26 expression was observed in HaCaT, SiHa and C33A, while in HeLa cells it was almost undetectable. We observed higher migratory capacity of HeLa, when compared to SiHa. But in the presence of sitagliptin SiHa showed an increase in migration, indicating that, at least in part, cell migration is regulated by DPPIV/CD26 activity. Furthermore, in the presence of sitagliptin phosphate, SiHa and HeLa cells exhibited a significant reduction in adhesion. However this mechanism seems to be mediated independent of DPPIV/CD26. This study demonstrates, for the first time, the activity and expression of DPPIV/CD26 in cervical cancer cells and the effect of sitagliptin phosphate on cell migration and adhesion. PMID:26222679

  4. Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells.

    PubMed

    Beckenkamp, Aline; Willig, Júlia Biz; Santana, Danielle Bertodo; Nascimento, Jéssica; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Bruno, Alessandra Nejar; Pilger, Diogo André; Wink, Márcia Rosângela; Buffon, Andréia

    2015-01-01

    Dipeptidyl peptidase IV (DPPIV/CD26) is a transmembrane glycoprotein that inactivates or degrades some bioactive peptides and chemokines. For this reason, it regulates cell proliferation, migration and adhesion, showing its role in cancer processes. This enzyme is found mainly anchored onto the cell membrane, although it also has a soluble form, an enzymatically active isoform. In the present study, we investigated DPPIV/CD26 activity and expression in cervical cancer cell lines (SiHa, HeLa and C33A) and non-tumorigenic HaCaT cells. The effect of the DPPIV/CD26 inhibitor (sitagliptin phosphate) on cell migration and adhesion was also evaluated. Cervical cancer cells and keratinocytes exhibited DPPIV/CD26 enzymatic activity both membrane-bound and in soluble form. DPPIV/CD26 expression was observed in HaCaT, SiHa and C33A, while in HeLa cells it was almost undetectable. We observed higher migratory capacity of HeLa, when compared to SiHa. But in the presence of sitagliptin SiHa showed an increase in migration, indicating that, at least in part, cell migration is regulated by DPPIV/CD26 activity. Furthermore, in the presence of sitagliptin phosphate, SiHa and HeLa cells exhibited a significant reduction in adhesion. However this mechanism seems to be mediated independent of DPPIV/CD26. This study demonstrates, for the first time, the activity and expression of DPPIV/CD26 in cervical cancer cells and the effect of sitagliptin phosphate on cell migration and adhesion.

  5. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes.

    PubMed

    Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud

    2018-01-01

    Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.

  6. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle.

    PubMed

    Perez-Suarez, Ismael; Ponce-González, Jesús Gustavo; de La Calle-Herrero, Jaime; Losa-Reyna, Jose; Martin-Rincon, Marcos; Morales-Alamo, David; Santana, Alfredo; Holmberg, Hans-Christer; Calbet, Jose A L

    2017-11-01

    In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt -1 ·day -1 ) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt -1 ·day -1 ). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr 1141 OBR, phospho-Tyr 985 OBR, JAK2, and phospho-Tyr 1007/1008 JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr 705 STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r  = -0.75), phospho-Tyr 985 OBR ( r  = 0.88), and phospho-Tyr 705 STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in response to a severe energy deficit, contributing to increase maximal fat oxidation. The responses are more prominent in the arm muscles than in the legs but partly blunted by whey protein ingestion and high volume of exercise. This occurs despite an increase of protein tyrosine phosphatase 1B protein expression, a known inhibitor of insulin and leptin signaling. Copyright © 2017 the American Physiological Society.

  7. CD82 suppresses CD44 alternative splicing-dependent melanoma metastasis by mediating U2AF2 ubiquitination and degradation

    PubMed Central

    Fu, Ailing; Zhu, Huifeng; Ren, Qiao; Wang, Bochu; Xu, Xingran; Bai, Huiyuan; Dong, Cheng

    2016-01-01

    Melanoma is one of the most lethal forms of skin cancer due to its early metastatic spread. The variant form of CD44 (CD44v), a cell surface glycoprotein, is highly expressed on metastatic melanoma. The mechanisms of regulation of CD44 alternative splicing in melanoma and its pathogenic contributions are so far poorly understood. Here, we investigated the expression level of CD44 in a large set of melanocytic lesions at different stages. We found that the expression of CD44v8-10 and a splicing factor, U2AF2, is significantly increased during melanoma progression, while CD82/KAI1, a tetraspanin family of tumor suppressor, is reduced in metastatic melanoma. CD44v8-10 and U2AF2 expressions which are negatively correlated with CD82 levels are dramatically elevated in primary melanoma compared with dysplastic nevi and further increased in metastatic melanoma. We also showed that patients with higher CD44v8-10 and U2AF2 expression levels tended to have shorter survival. By using both in vivo and in vitro assays, we demonstrated that CD82 inhibits the production of CD44v8-10 on melanoma. Mechanistically, U2AF2 is a downstream target of CD82 and in malignant melanoma facilitates CD44v8-10 alternative splicing. U2AF2-mediated CD44 isoform switch is required for melanoma migration in vitro and lung and liver metastasis in vivo. Notably, overexpression of CD82 suppresses U2AF2 activity by inducing U2AF2 ubiquitination. In addition, our data suggested that enhancement of melanoma migration by U2AF2-dependent CD44v8-10 splicing is mediated by Src/FAK/RhoA activation and formation of stress fibers as well as CD44-E-selectin binding reinforcement. These findings uncovered a hitherto unappreciated function of CD82 in severing the linkage between U2AF2-mediated CD44 alternative splicing and cancer aggressiveness, with potential prognostic and therapeutic implications in melanoma. PMID:27041584

  8. CD44v10, osteopontin and lymphoma growth retardation by a CD44v10-specific antibody.

    PubMed

    Megaptche, Amelie Pajip; Erb, Ulrike; Büchler, Markus Wolfgang; Zöller, Margot

    2014-09-01

    Blockade of CD44 is considered a therapeutic option for the elimination of leukemia-initiating cells. However, the application of anti-panCD44 can be burdened by severe side effects. We determined whether these side effects could be avoided by replacing anti-panCD44 with CD44 variant isoform (CD44v)-specific antibodies in CD44v-positive hematological malignancies using the EL4 thymoma and CD44v10-transfected EL4 (EL4-v10) as models. Subcutaneous growth of EL4 and EL4-v10 was equally well inhibited by the anti-panCD44 and anti-CD44v10 antibodies, respectively. Ex vivo analysis indicated that natural killer cytotoxicity and antibody-dependent cellular cytotoxicity were the main effector mechanisms. Under local inflammation, the efficacy of anti-CD44v10 prolonged the survival time twofold compared with untreated, EL4-v10 tumor-bearing mice, and this was due to inflammation-induced expression of osteopontin (OPN). A high level of OPN in EL4-v10 tumors supported leukocyte recruitment and tumor-infiltrating T-cell activation. Taken together, in hematological malignancies expressing CD44v, anti-panCD44 can be replaced by CD44v-specific antibodies without a loss in efficacy. Furthermore, CD44v10-specific antibodies appear particularly advantageous in cutaneous leukemia therapy, as CD44v10 binding of OPN drives leukocyte recruitment and activation.

  9. Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury.

    PubMed

    Lassance, Luciana; Marino, Gustavo K; Medeiros, Carla S; Thangavadivel, Shanmugapriya; Wilson, Steven E

    2018-05-01

    The aim of this study was to determine whether bone marrow-derived fibrocytes migrate into the cornea after stromal scar-producing injury and differentiate into alpha-smooth muscle actin (αSMA) + myofibroblasts. Chimeric mice expressing green fluorescent protein (GFP) bone marrow cells had fibrosis (haze)-generating irregular phototherapeutic keratectomy (PTK). Multiplex immunohistochemistry (IHC) for GFP and fibrocyte markers (CD34, CD45, and vimentin) was used to detect fibrocyte infiltration into the corneal stroma and the development of GFP+ αSMA+ myofibroblasts. IHC for activated caspase-3, GFP and CD45 was used to detect fibrocyte and other hematopoietic cells undergoing apoptosis. Moderate haze developed in PTK-treated mouse corneas at 14 days after surgery and worsened, and persisted, at 21 days after surgery. GFP+ CD34+ CD45+ fibrocytes, likely in addition to other CD34+ and/or CD45+ hematopoietic and stem/progenitor cells, infiltrated the cornea and were present in the stroma in high numbers by one day after PTK. The fibrocytes and other bone marrow-derived cells progressively decreased at four days and seven days after surgery. At four days after PTK, 5% of the GFP+ cells expressed activated caspase-3. At 14 days after PTK, more than 50% of GFP+ CD45+ cells were also αSMA+ myofibroblasts. At 21 days after PTK, few GFP+ αSMA+ cells persisted in the stroma and more than 95% of those remaining expressed activated caspase-3, indicating they were undergoing apoptosis. GFP+ CD45+ SMA+ cells that developed from 4 to 21 days after irregular PTK were likely developed from fibrocytes. After irregular PTK in the strain of C57BL/6-C57/BL/6-Tg(UBC-GFP)30Scha/J chimeric mice, however, more than 95% of fibrocytes and other hematopoietic cells underwent apoptosis prior to the development of mature αSMA+ myofibroblasts. Most GFP+ CD45+ αSMA+ myofibroblasts that did develop subsequently underwent apoptosis-likely due to epithelial basement membrane regeneration and deprivation of epithelium-derived TGFβ requisite for myofibroblast survival. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells.

    PubMed

    Brunasso, Alexandra Maria Giovanna; Massone, Cesare

    2016-01-01

    In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 (+) cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 (+), CD45 (+), and CD34 (+)), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 (+), CD45 (+), CD34 (+), Col I (+), CD11b (+), CD68 (+), CD105 (+), and VEGFR1 (+)), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 (+), CD45 (+), CD34 (low/-), VEGFR2 (+/-), CXCR4 (+), c-kit (+), and DC117 (+)), late EPCs (CD14 (-), CD133 (+), VEGFR2 (+), CD144 (+) [VE-cadherin (+)], and CD146 (+)), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 (+), CD45 (+), CD34 (+/-), and Col I (+)), and fibrocytes (CD14 (-), CD45 (+), CD34 (+), Col I (+), and CXCR4 (+)). It has been demonstrated that circulating CD14 (+) monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 (+), CD34 (+), and Col I (+) spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future.

  11. CD4 and CD8 T-Cell Responses to Mycobacterial Antigens in African Children

    PubMed Central

    Tena-Coki, Nontobeko G.; Scriba, Thomas J.; Peteni, Nomathemba; Eley, Brian; Wilkinson, Robert J.; Andersen, Peter; Hanekom, Willem A.; Kampmann, Beate

    2010-01-01

    Rationale: The current tuberculosis (TB) vaccine, bacille Calmette-Guérin (BCG), does not provide adequate protection against TB disease in children. Furthermore, more efficacious TB vaccines are needed for children with immunodeficiencies such as HIV infection, who are at highest risk of disease. Objectives: To characterize mycobacteria-specific T cells in children who might benefit from vaccination against TB, focusing on responses to antigens contained in novel TB vaccines. Methods: Whole blood was collected from three groups of BCG-vaccinated children: HIV-seronegative children receiving TB treatment (n = 30), HIV-infected children (n = 30), and HIV-unexposed healthy children (n = 30). Blood was stimulated with Ag85B and TB10.4, or purified protein derivative, and T-cell cytokine production by CD4 and CD8 was determined by flow cytometry. The memory phenotype of antigen-specific CD4 and CD8 T cells was also determined. Measurements and Main Results: Mycobacteria-specific CD4 and CD8 T-cell responses were detectable in all three groups of children. Children receiving TB treatment had significantly higher frequencies of antigen-specific CD4 T cells compared with HIV-infected children (P = 0.0176). No significant differences in magnitude, function, or phenotype of specific T cells were observed in HIV-infected children compared with healthy control subjects. CD4 T cells expressing IFN-γ, IL-2, or both expressed a CD45RA−CCR7−CD27+/− effector memory phenotype. Mycobacteria-specific CD8 T cells expressed mostly IFN-γ in all groups of children; these cells expressed CD45RA−CCR7−CD27+/− or CD45RA+CCR7−CD27+/− effector memory phenotypes. Conclusions: Mycobacteria-specific T-cell responses could be demonstrated in all groups of children, suggesting that the responses could be boosted by new TB vaccines currently in clinical trials. PMID:20224065

  12. Signal Transduction in T Cell Activation and Tolerance

    DTIC Science & Technology

    1993-01-01

    chains and ’ chains may transduce different signals in intact T cells. These studies demonstrate that while c- deficient and c-containing TCR complexes...three independently derived pairs of CD45- and CD45+ murine T cell lymphomas, the CD45- expressing cells were consistently deficient in...D.B., Larsen, A. and Wilson, C.B. (1986) Reduced interferon-gamma mRNA levels in human neonates: Evidence for an intrinsic T cell deficiency yi 114

  13. CD137 is a Useful Marker for Identifying CD4+ T Cell Responses to Mycobacterium tuberculosis.

    PubMed

    Yan, Z-H; Zheng, X-F; Yi, L; Wang, J; Wang, X-J; Wei, P-J; Jia, H-Y; Zhou, L-J; Zhao, Y-L; Zhang, H-T

    2017-05-01

    Upregulation of CD137 on recently activated CD8 + T cells has been used to identify rare viral and tumour antigen-specific T cells from the peripheral blood. We aimed to evaluate the accuracy of CD137 for identifying Mycobacterium tuberculosis (Mtb)-reactive CD4 + T cells in the peripheral blood of infected individuals by flow cytometry and to investigate the characteristics of these CD137 + CD4 + T cells. We initially enrolled 31 active tuberculosis (TB) patients, 31 individuals with latent TB infection (LTBI) and 25 healthy donors. The intracellular CD137 and interferon-γ (IFN-γ) production by CD4 + T cells was simultaneously detected under unstimulated and CFP10-stimulated (culture filtrate protein 10, a Mtb-specific antigen) conditions. In unstimulated CD4 + T cells, we found that the CD137 expression in the TB group was significantly higher than that in the LTBI group. Stimulation with CFP10 largely increased the CD4 + T cell CD137 expression in both the TB and LTBI groups. After CFP10 stimulation, the frequency of CD137 + CD4 + T cells was higher than that of IFN-γ + CD4 + T cells in both the TB and LTBI groups. Most of the CFP10-activated IFN-γ-secreting cells were CD137-positive, but only a small fraction of the CD137-positive cells expressed IFN-γ. An additional 20 patients with TB were enrolled to characterize the CD45RO + CCR7 + , CD45RO + CCR7 - and CD45RO - subsets in the CD137 + CD4 + T cell populations. The Mtb-specific CD137 + CD4 + T cells were mainly identified as having an effector memory phenotype. In conclusion, CD137 is a useful marker that can be used for identifying Mtb-reactive CD4 + T cells by flow cytometry. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  14. Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+ T Cells

    PubMed Central

    Pearson, James A.; Thayer, Terri C.; McLaren, James E.; Ladell, Kristin; De Leenheer, Evy; Phillips, Amy; Davies, Joanne; Kakabadse, Dimitri; Miners, Kelly; Morgan, Peter; Wen, Li; Price, David A.

    2016-01-01

    NOD mice, a model strain for human type 1 diabetes, express proinsulin (PI) in the thymus. However, insulin-reactive T cells escape negative selection, and subsequent activation of the CD8+ T-cell clonotype G9C8, which recognizes insulin B15-23 via an αβ T-cell receptor (TCR) incorporating TRAV8-1/TRAJ9 and TRBV19/TRBJ2-3 gene rearrangements, contributes to the development of diabetes. In this study, we used fixed TRAV8-1/TRAJ9 TCRα-chain transgenic mice to assess the impact of PI isoform expression on the insulin-reactive CD8+ T-cell repertoire. The key findings were: 1) PI2 deficiency increases the frequency of insulin B15-23–reactive TRBV19+CD8+ T cells and causes diabetes; 2) insulin B15-23–reactive TRBV19+CD8+ T cells are more abundant in the pancreatic lymph nodes of mice lacking PI1 and/or PI2; 3) overexpression of PI2 decreases TRBV19 usage in the global CD8+ T-cell compartment; 4) a biased repertoire of insulin-reactive CD8+ T cells emerges in the periphery regardless of antigen exposure; and 5) low-avidity insulin-reactive CD8+ T cells are less affected by antigen exposure in the thymus than in the periphery. These findings inform our understanding of the diabetogenic process and reveal new avenues for therapeutic exploitation in type 1 diabetes. PMID:26953160

  15. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45{sup low} c-Kit{sup +} cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45{sup low} c-Kit{sup -} cells that showed a granulocyte morphology;more » CD45{sup high} c-Kit{sup low/-} that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45{sup low} c-Kit{sup +} cells from the AGM culture had the abilities to reproduce CD45{sup low} c-Kit{sup +} cells and differentiate into CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} cells, whereas CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} did not produce CD45{sup low} c-Kit{sup +} cells. Furthermore, CD45{sup low} c-Kit{sup +} cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45{sup low} c-Kit{sup +} cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells.« less

  16. Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans.

    PubMed

    van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T

    2000-10-16

    Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.

  17. Simulated microgravity reduces mRNA levels of multidrug resistance genes 4 and 5 in non-metastatic human melanoma cells

    NASA Astrophysics Data System (ADS)

    Eiermann, Peter; Tsiockas, Wasiliki; Hauslage, Jens; Hemmersbach, Ruth; Gerzer, Rupert; Ivanova, Krassimira

    Multidrug resistance proteins (MRP) are members of the ATP-binding cassette transporter superfamily that are able to export a large variety of substances into the extracellular space in-cluding nucleoside and nucleotide base analogs used in antiviral and anticancer therapy. MRP4 and 5 (MRP4/5) particularly transport cyclic nucleotides, e.g. guanosine 3',5'-cyclic monophos-phate (cGMP). The second messenger cGMP, which is synthesized by the catalytic activity of the guanylyl cyclase (GC), plays an import role in vasodilatation, smooth muscle relaxation, and nitric oxide (NO)-induced perturbation of melanocyte-extracellular matrix interactions. In previous studies we have reported that different GC isoforms are responsible for cGMP synthe-sis in melanocytic cells. Normal human melanocytes and non-metastatic melanoma cell lines predominantly express the NO-sensitive soluble GC isoform (sGC), a heterodimeric protein consisting of α and β subunits. Metastatic melanoma cells lack the expression of the β sub-unit and show up-regulated activities of the particulate isoforms. We have further found that long-term exposure to hypergravity (5 g for 24 h) induced an increased cGMP export in normal human melanocytes, and non-metastatic, but not in metastatic human melanoma cells as a re-sult of up-regulated MRP4/5 expression. The aim of the present study is to investigate whether simulated microgravity may also alter the expression of MRP4/5 in non-metastatic melanoma cells. Experiments were performed using a fast-rotating clinostat (60 rpm) with one rotation axis. The non-metastatic 1F6 melanoma cells were exposed to simulated microgravity (up to 1.21x10-2 g) for 24 h. The mRNA analyses were performed by a relative calibrator-normalized and efficiency corrected quantitative polymerase chain reaction (Light Cycler R , Roche). Our data show a reduced expression of approximately 35% for MRP4 and of 50% for MRP5 in simulated microgravity in comparison to 1 g controls. Also, the mRNA levels of sGC α and β were down-regulated by about 31% and 22%, respectively. Thus, the reduced expression of MRP4/5 could be related to the decrease in mRNA levels for the sGC subunits. In addition, the long-term exposure to simulated microgravity did not alter cellular morphology. Taken together, the results of our studies indicate that the expression of MRP4/5 in non-metastatic melanoma cells is inversely regulated by hypergravity and simulated microgravity. Finally, a reduced expression of MRP4 and MRP5 may increase the availability of drugs in cells and influence astronaut medication.

  18. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells

    PubMed Central

    Brunasso, Alexandra Maria Giovanna; Massone, Cesare

    2016-01-01

    In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 + cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 +, CD45 +, and CD34 +), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 +, CD45 +, CD34 +, Col I +, CD11b +, CD68 +, CD105 +, and VEGFR1 +), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 +, CD45 +, CD34 low/−, VEGFR2 +/−, CXCR4 +, c-kit +, and DC117 +), late EPCs (CD14 −, CD133 +, VEGFR2 +, CD144 + [VE-cadherin +], and CD146 +), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 +, CD45 +, CD34 +/−, and Col I +), and fibrocytes (CD14 −, CD45 +, CD34 +, Col I +, and CXCR4 +). It has been demonstrated that circulating CD14 + monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 +, CD34 +, and Col I + spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future. PMID:27158466

  19. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells.

    PubMed

    Taha, Masoumeh Fakhr; Hedayati, Vahideh

    2010-08-01

    Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Pre-B cell leukemia homeobox 1 is associated with lupus susceptibility in mice and humans

    PubMed Central

    Cuda, Carla M.; Li, Shiwu; Liang, Shujuan; Yin, Yiming; Potula, Hari Hara S.K.; Xu, Zhiwei; Sengupta, Mayami; Chen, Yifang; Butfiloski, Edward; Baker, Henry; Chang, Lung-Ji; Dozmorov, Igor; Sobel, Eric S.; Morel, Laurence

    2011-01-01

    Sle1a.1 is part of the Sle1 susceptibility locus, which has the strongest association with lupus nephritis in the NZM2410 mouse model. Here we show that Sle1a.1 results in the production of activated and autoreactive CD4+ T cells. In addition, Sle1a.1 expression reduces the peripheral regulatory T cell (Treg) pool, as well as induces a defective response of CD4+ T cells to the retinoic acid (RA) expansion of TGFβ-induced Tregs. At the molecular level, Sle1a.1 corresponds to an increased expression of a novel splice isoform of Pbx1, Pbx1-d. Pbx1-d over-expression is sufficient to induce an activated/inflammatory phenotype in Jurkat T cells, and to decrease their apoptotic response to RA. PBX1-d is expressed more frequently in the CD4+ T cells from lupus patients than from healthy controls, and its presence correlates with an increased central memory T cell population. These findings indicate that Pbx1 is a novel lupus susceptibility gene that regulates T cell activation and tolerance. PMID:22180614

  1. ALK Inhibitor Response in Melanomas Expressing EML4-ALK Fusions and Alternate ALK Isoforms.

    PubMed

    Couts, Kasey L; Bemis, Judson; Turner, Jacqueline A; Bagby, Stacey M; Murphy, Danielle; Christiansen, Jason; Hintzsche, Jennifer D; Le, Anh; Pitts, Todd M; Wells, Keith; Applegate, Allison; Amato, Carol; Multani, Pratik; Chow-Maneval, Edna; Tentler, John J; Shellman, Yiqun G; Rioth, Matthew J; Tan, Aik-Choon; Gonzalez, Rene; Medina, Theresa; Doebele, Robert C; Robinson, William A

    2018-01-01

    Oncogenic ALK fusions occur in several types of cancer and can be effectively treated with ALK inhibitors; however, ALK fusions and treatment response have not been characterized in malignant melanomas. Recently, a novel isoform of ALK ( ALK ATI ) was reported in 11% of melanomas but the response of melanomas expressing ALK ATI to ALK inhibition has not been well characterized. We analyzed 45 melanoma patient-derived xenograft models for ALK mRNA and protein expression. ALK expression was identified in 11 of 45 (24.4%) melanomas. Ten melanomas express wild-type (wt) ALK and/or ALK ATI and one mucosal melanoma expresses multiple novel EML4-ALK fusion variants. Melanoma cells expressing different ALK variants were tested for response to ALK inhibitors. Whereas the melanoma expressing EML4-ALK were sensitive to ALK inhibitors in vitro and in vivo , the melanomas expressing wt ALK or ALK ATI were not sensitive to ALK inhibitors. In addition, a patient with mucosal melanoma expressing ALK ATI was treated with an ALK/ROS1/TRK inhibitor (entrectinib) on a phase I trial but did not respond. Our results demonstrate ALK fusions occur in malignant melanomas and respond to targeted therapy, whereas melanomas expressing ALK ATI do not respond to ALK inhibitors. Targeting ALK fusions is an effective therapeutic option for a subset of melanoma patients, but additional clinical studies are needed to determine the efficacy of targeted therapies in melanomas expressing wt ALK or ALK ATI Mol Cancer Ther; 17(1); 222-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. CD45{sup low}c-Kit{sup high} cells have hematopoietic properties in the mouse aorta-gonad-mesonephros region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobuhisa, Ikuo, E-mail: nobuhisa.scr@mri.tmd.ac.jp; Department of Cell Fate Modulation, Institute of Molecular Embryology and Genetics/Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 860-0811; Yamasaki, Shoutarou

    Long-term reconstituting hematopoietic stem cells first arise from the aorta of the aorta-gonad-mesonephros (AGM) region in a mouse embryo. We have previously reported that in cultures of the dispersed AGM region, CD45{sup low}c-Kit{sup +} cells possess the ability to reconstitute multilineage hematopoietic cells, but investigations are needed to show that this is not a cultured artifact and to clarify when and how this population is present. Based on the expression profile of CD45 and c-Kit in freshly dissociated AGM cells from embryonic day 9.5 (E9.5) to E12.5 and aorta cells in the AGM from E13.5 to E15.5, we defined sixmore » cell populations (CD45{sup -}c-Kit{sup -}, CD45{sup -}c-Kit{sup low}, CD45{sup -}c-Kit{sup high}, CD45{sup low}c-Kit{sup high}, CD45{sup high}c-Kit{sup high}, and CD45{sup high}c-Kit{sup very} {sup low}). Among these six populations, CD45{sup low}c-Kit{sup high} cells were most able to form hematopoietic cell colonies, but their ability decreased after E11.5 and was undetectable at E13.5 and later. The CD45{sup low}c-Kit{sup high} cells showed multipotency in vitro. We demonstrated further enrichment of hematopoietic activity in the Hoechst dye-effluxing side population among the CD45{sup low}c-Kit{sup high} cells. Here, we determined that CD45{sup low}c-Kit{sup high} cells arise from the lateral plate mesoderm using embryonic stem cell-derived differentiation system. In conclusion, CD45{sup low}c-Kit{sup high} cells are the major hematopoietic cells of mouse AGM.« less

  3. Peripheral formalin injection induces unique spinal cord microglial phenotypic changes

    PubMed Central

    Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren

    2014-01-01

    Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat’s hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expression on day 7 following peripheral formalin injection. There was a very low basal expression of MHC class II, CD11c, and the Fc receptor, which did not change after the formalin injection. These results, for the first time, indicate that peripheral formalin injection can induce phenotypic changes of microglia with distinct upregulation of CD45 and MHC class I antigen. The data suggest that phenotypic changes of the activated microglia may be a unique pattern of central changes following peripheral tissue injury. PMID:19015000

  4. Recognition of Naegleriae ameba surface protein epitopes by anti-human CD45 antibodies.

    PubMed

    Ravine, Terrence J; Polski, Jacek M; Jenkins, James

    2010-04-01

    Phagocytosis is a highly conserved mechanism exhibited by both free-living amebas and mammalian blood cells. Similarities demonstrated by either cell type during engulfment of the same bacterial species may imply analogous surface proteins involved in receptor-mediated endocytosis. The increased availability of anti-human leukocyte antibodies or clusters of differentiation (CD) markers used in conjunction with flow cytometric (FCM) and/or immunohistochemical (IHC) analysis provides investigators with a relatively easy method to screen different cell populations for comparable plasma membrane proteins. In this study, we incubated Naegleria and Acanthamoeba amebas with several directly conjugated anti-human leukocyte monoclonal antibodies (mAb) for similarly recognized amebic epitopes. CD marker selection was based upon a recognized role of each mAb in phagocyte activation and/or uptake of bacteria. These included CD14, CD45, and CD206. In FCM, only one CD45 antibody demonstrated strong reactivity with both Naegleria fowleri and Naegleria gruberi that was not expressed in similarly tested Acanthamoeba species. Additional testing of N. gruberi by IHC demonstrated reactivity to a different CD45 antibody. Our results suggest a possible utility of using anti-human leukocyte antibodies to screen amebic cells for similarly expressed protein epitopes. In doing so, several important items must be considered when selecting potential mAbs for testing to increase the probability of a positive result.

  5. MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes.

    PubMed

    Comabella, Manuel; Cantó, Ester; Nurtdinov, Ramil; Río, Jordi; Villar, Luisa M; Picón, Carmen; Castilló, Joaquín; Fissolo, Nicolás; Aymerich, Xavier; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-15

    Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction. Gene expression profiling was determined in PBMC using microarrays, and validation of selected genes was performed by polymerase chain reaction (PCR). B-cell immunophenotyping was conducted by flow cytometry. Microarray analysis revealed the B-cell specific genes FCRL1, FCRL2, FCRL5 (Fc receptor-like 1, 2 and 5 respectively), and CD22 as the top differentially expressed genes between patients with high and low neurodegeneration. Levels for these genes were significantly down-regulated in PBMC from patients with MRI phenotypes characterized by high neurodegeneration and microarray findings were validated by PCR. In patients with high neurodegeneration, immunophenotyping showed a significant increase in the expression of the B-cell activation markers CD80 in naïve B cells (CD45+/CD19+/CD27-/IgD+), unswitched memory B cells (CD45+/CD19+/CD27+/IgD+), and switched memory B cells (CD45+/CD19+/CD27+/IgD-), and CD86 in naïve and switched memory B cells. These results suggest that RRMS patients with radiological phenotypes showing high neurodegeneration have changes in B cells characterized by down-regulation of B-cell-specific genes and increased activation status. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Characterization of kidney CD45intCD11bintF4/80+MHCII+CX3CR1+Ly6C- "intermediate mononuclear phagocytic cells".

    PubMed

    Lee, Sul A; Noel, Sanjeev; Sadasivam, Mohanraj; Allaf, Mohamad E; Pierorazio, Phillip M; Hamad, Abdel R A; Rabb, Hamid

    2018-01-01

    Kidney immune cells play important roles in pathogenesis of many diseases, including ischemia-reperfusion injury (IRI) and transplant rejection. While studying murine kidney T cells, we serendipitously identified a kidney mononuclear phagocytic cell (MPC) subset characterized by intermediate surface expression of CD45 and CD11b. These CD45intCD11bint MPCs were further identified as F4/80+MHCII+CX3CR1+Ly6C- cells, comprising ~17% of total CD45+ cells in normal mouse kidney (P < 0.01) and virtually absent from all other organs examined except the heart. Systemic clodronate treatment had more significant depletive effect on the CD45intCD11bint population (77.3%±5.9%, P = 0.03) than on CD45highCD11b+ population (14.8%±16.6%, P = 0.49). In addition, CD45intCD11bint MPCs had higher phagocytic function in the normal kidney (35.6%±3.3% vs. 24.1%±2.2%, P = 0.04), but lower phagocytic capacity in post-ischemic kidney (54.9%±1.0% vs. 67.8%±1.9%, P < 0.01) compared to the CD45highCD11b+ population. Moreover, the CD45intCD11bint population had higher intracellular production of the pro-inflammatory tumor necrosis factor (TNF)-α (58.4%±5.2% vs. 27.3%±0.9%, P < 0.001) after lipopolysaccharide (LPS) stimulation and lower production of the anti-inflammatory interleukin (IL)-10 (7.2%±1.3% vs. 14.9%±2.2%, P = 0.02) following kidney IRI, suggesting a functional role under inflammatory conditions. The CD45intCD11bint cells increased early after IRI, and then abruptly decreased 48h later, whereas CD45highCD11b+ cells steadily increased after IRI before declining at 72h (P = 0.03). We also identified the CD45intCD11bint MPC subtype in human kidney. We conclude that CD45intCD11bint F4/80+MHCII+CX3CR1+Ly6C-population represent a unique subset of MPCs found in both mouse and human kidneys. Future studies will further characterize their role in kidney health and disease.

  7. Possible role of CD22, CD79b and CD20 expression in distinguishing small lymphocytic lymphoma from chronic lymphocytic leukemia.

    PubMed

    Jovanovic, Danijela; Djurdjevic, Predrag; Andjelkovic, Nebojsa; Zivic, Ljubica

    2014-01-01

    Flow cytometry has an important role in diagnosis and classification of B-cell lymphoproliferative disorders (BCLPDs). However, in distinguishing chronic lymphocytic leukemia (CLL) from small lymphocytic lymphoma (SLL) only clinical criteria are available so far. Aim of the study was to determine differences in the expression of common B cell markers (CD22, CD79b and CD20) on the malignant lymphocytes in the peripheral blood samples of CLL and SLL patients. Peripheral blood samples of 56 CLL and 11 SLL patients were analyzed by 5-color flow cytometry on the CD45/CD19/CD5 gate for CD22, CD79b and CD20. In the samples collected from the CLL patients, CD22 expression was detected in only 20% of patients in the low pattern, while in SLL patients the expression was medium and present in 90.9% of patients (p < 0.0001). For CD79b expression, statistical significance is reached both in the expression pattern, which was low/medium for CLL and high for SLL, and expression level (p = 0.006). The expression of CD20 was counted as the CD20/CD19 ratio. The average ratio was 0.512 in the CLL patients vs. 0.931 in the SLL patients (p = 0.0001). The pattern of expression and expression level of CD22, CD79b and CD20 in peripheral blood could be used for distinguishing SLL from CLL patients.

  8. Interaction between hyaluronan and CD44 in the development of dimethylnitrosamine-induced liver cirrhosis.

    PubMed

    Satoh, T; Ichida, T; Matsuda, Y; Sugiyama, M; Yonekura, K; Ishikawa, T; Asakura, H

    2000-04-01

    A significant increase in serum hyaluronan (HA) levels has been reported in patients with liver cirrhosis. This mechanism is not yet clear, and receptors for HA have not been characterized. In this study, we examined the expression of both HA and its receptors, CD44 and intercellular adhesion molecule-1 (ICAM-1), in dimethylnitrosamine-induced liver cirrhosis. Using biotinylated HA binding protein, HA was detected in the area of periportal fibrosis and around the sinusoidal wall where hepatic fibrosis was developing. Electron microscopy revealed that HA was localized on Ito cells and sinusoidal endothelial cells (SEC). Conversely, CD44, which was only expressed weakly in normal liver, was present in large amounts in cirrhotic liver. The distribution pattern of CD44 was similar to that of HA, however, CD44 was mainly localized on the infiltrating lymphocytes and Kupffer cells. Moreover, CD44 was detected on part of factor VIII-positive SEC. Intercellular adhesion molecule-1, another receptor for HA, was detected on the surface of hepatocytes and around the sinusoidal wall in cirrhotic liver, but its distribution was not accompanied by expression of HA. With respect to CD44 isoforms, the standard form m-RNA predominated in both normal and cirrhotic liver. Variant pMeta-1 mRNA was detected at low levels. An interaction between HA and CD44 may play a role in the recruitment of numerous infiltrating cells and HA accumulation in hepatic sinusoids. Together with phenotypic changes in the SEC, these results may lead to a disturbance in the elimination of HA during the progression of liver cirrhosis.

  9. Altered lipid raft–associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus

    PubMed Central

    Jury, Elizabeth C.; Kabouridis, Panagiotis S.; Flores-Borja, Fabian; Mageed, Rizgar A.; Isenberg, David A.

    2004-01-01

    Systemic lupus erythematosus (SLE) is characterized by abnormalities in T lymphocyte receptor–mediated signal transduction pathways. Our previous studies have established that lymphocyte-specific protein tyrosine kinase (LCK) is reduced in T lymphocytes from patients with SLE and that this reduction is associated with disease activity and parallels an increase in LCK ubiquitination independent of T cell activation. This study investigated the expression of molecules that regulate LCK homeostasis, such as CD45, C-terminal Src kinase (CSK), and c-Cbl, in lipid raft domains from SLE T cells and investigated the localization of these proteins during T cell receptor (TCR) triggering. Our results indicate that the expression of raft-associated ganglioside, GM1, is increased in T cells from SLE patients and LCK may be differentially regulated due to an alteration in the association of CD45 with lipid raft domains. CD45 tyrosine phosphatase, which regulates LCK activity, was differentially expressed and its localization into lipid rafts was increased in T cells from patients with SLE. Furthermore, T cells allowed to “rest” in vitro showed a reversal of the changes in LCK, CD45, and GM1 expression. The results also revealed that alterations in the level of GM1 expression and lipid raft occupancy cannot be induced by serum factors from patients with SLE but indicated that cell-cell contact, activating aberrant proximal signaling pathways, may be important in influencing abnormalities in T cell signaling and, therefore, function in patients with SLE. PMID:15085197

  10. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less

  11. Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells.

    PubMed

    Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng

    2017-04-01

    Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.

  12. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis

    PubMed Central

    Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Mehta, Jawahar L.

    2013-01-01

    Our studies in HUVECs show that ox-LDL induced autophagy and damaged mtDNA leading to TLR9 expression. LOX-1 antibody or the ROS inhibitor apocynin attenuated ox-LDL-mediated autophagy, mtDNA damage and TLR9 expression, suggesting that these events are LOX-1 and ROS-dependent phenomena. Experiments using siRNA to DNase II indicated that DNase II digests mtDNA to protect the tissue from inflammation. Next, we studied and found intense autophagy, TLR9 expression and inflammatory signals (CD45 and CD68) in the aortas of LDLR knockout mice fed high cholesterol diet. Deletion of LOX-1 (LDLR/LOX-1 double knockout mice) attenuated autophagy, TLR9 expression as well as CD45 and CD68. Damaged mtDNA signal was also very high in LDLR knockout mice aortas, and this signal was attenuated by LOX-1 deletion. Thus, it appears that oxidative stress-mediated damaged mtDNA that escapes autophagy induces a potent inflammatory response in atherosclerosis. PMID:23326634

  13. Characterization of an adaptive immune response in microsatellite-instable colorectal cancer

    PubMed Central

    Boissière-Michot, Florence; Lazennec, Gwendal; Frugier, Hélène; Jarlier, Marta; Roca, Lise; Duffour, Jacqueline; Du Paty, Emilie; Laune, Daniel; Blanchard, France; Le Pessot, Florence; Sabourin, Jean-Christophe; Bibeau, Frédéric

    2014-01-01

    Sporadic or hereditary colorectal cancer (CRC) with microsatellite instability (MSI) is frequently characterized by inflammatory lymphocytic infiltration and tends to be associated with a better outcome than microsatellite stable (MSS) CRC, probably reflecting a more effective immune response. We investigated inflammatory mechanisms in 48 MSI CRCs and 62 MSS CRCs by analyzing: (1) the expression of 48 cytokines using Bio-Plex multiplex cytokine assays, and (2) the in situ immune response by immunohistochemical analysis with antibodies against CD3 (T lymphocytes), CD8 (cytotoxic T lymphocytes), CD45RO (memory T lymphocytes), T-bet (Th1 CD4 cells), and FoxP3 (regulatory T cells). MSI CRC exhibited significantly higher expression of CCL5 (RANTES), CXCL8 (IL-8), CXCL9 (MIG), IL-1β, CXCL10 (IP-10), IL-16, CXCL1 (GROα), and IL-1ra, and lower expression of MIF, compared with MSS CRC. Immunohistochemistry combined with image analysis indicated that the density of CD3+, CD8+, CD45RO+, and T-bet+ T lymphocytes was higher in MSI CRC than in MSS CRC, whereas the number of regulatory T cells (FoxP3+) was not statistically different between the groups. These results indicate that MSI CRC is associated with a specific cytokine expression profile that includes CCL5, CXCL10, and CXCL9, which are involved in the T helper type 1 (Th1) response and in the recruitment of memory CD45RO+ T cells. Our findings highlight the major role of adaptive immunity in MSI CRC and provide a possible explanation for the more favorable prognosis of this CRC subtype. PMID:25101223

  14. Direct anti-inflammatory effects of granulocyte colony-stimulating factor (G-CSF) on activation and functional properties of human T cell subpopulations in vitro.

    PubMed

    Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich

    2018-03-01

    We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Expression of VEGF₁₆₅b, VEGFR1, VEGFR2 and CD34 in benign and malignant tumors of parotid glands.

    PubMed

    Błochowiak, Katarzyna J; Sokalski, Jerzy; Bodnar, Magdalena B; Trzybulska, Dorota; Marszałek, Andrzej K; Witmanowski, Henryk

    2018-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic factor and could be involved in the pathogenesis of salivary gland tumors. VEGF exerts its biological function by binding to its receptors, VEGFR1 and VEGFR2. An alternative splice variant of VEGF (VEGFxxxb) is an anti-angiogenic factor. Binding VEGF165b with VEGFR2 results in an impaired angiogenic response. The imbalance of VEGFxxx and VEGFxxxb isoforms can underpin pathological angiogenesis. The purpose of this study was to evaluate and compare the expression of VEGF165b, VEGFR1, VEGFR2, and CD34 in benign and malignant parotid gland tumors and to explore the possible correlations between their expression and clinicopathological features of tumors. The study was performed on archived paraffin-embedded tissue samples derived from 70 patients with benign and malignant parotid gland tumors (25 with malignant tumors, 23 with pleomorphic adenoma and 22 with Warthin's tumor). Immunohistochemical staining of selected tissue sections was performed using monoclonal antibodies. Immunohistochemical staining of selected molecules was used for evaluation of their expression in tissue sections. There were no statistically significant differences in the expression of the selected proteins localized in the tumor and surgical margin taken from the same patient. Expression of VEGFR2 correlated with VEGF165b in mixed tumors. There was a statistically significant difference in the expression of VEGFR1 in malignant tumors between females and males, and between the expression of VEGFR1 and the score of T classification in malignant tumors. VEGF165b cannot be treated as a prognostic factor. VEGF receptors correlated with selected clinicopathological data of malignant tumors, indicating their possible role as a prognostic marker. The balance of VEGF isoforms have a limited influence on the development of parotid glands tumors. The correlation between VEGF165b and VEGFR2 in mixed tumors suggests the existence of an additional antiangiogenic pathway in poorly vascularized mixed tumors.

  16. Phosphoinositide 3-Kinase p110δ Mediates Estrogen- and FSH-Stimulated Ovarian Follicle Growth

    PubMed Central

    Li, Qian; He, Hui; Zhang, Yin-Li; Li, Xiao-Meng; Guo, Xuejiang; Huo, Ran; Bi, Ye; Li, Jing

    2013-01-01

    In the mammalian ovary, primordial follicles are generated early in life and remain dormant for prolonged periods. Their growth resumes via primordial follicle activation, and they continue to grow until the preovulatory stage under the regulation of hormones and growth factors, such as estrogen, FSH, and IGF-1. Both FSH and IGF-1 activate the phosphatidylinositol-3 kinase (PI3K)/Akt (acute transforming retrovirus thymoma protein kinase) signaling pathway in granulosa cells (GCs), yet it remains inconclusive whether the PI3K pathway is crucial for follicle growth. In this study, we investigated the p110δ isoform (encoded by the Pik3cd gene) of PI3K catalytic subunit expression in the mouse ovary and its function in fertility. Pik3cd-null females were subfertile, exhibited fewer growing follicles and more atretic antral follicles in the ovary, and responded poorly to exogenous gonadotropins compared with controls. Ovary transplantation showed that Pik3cd-null ovaries responded poorly to FSH stimulation in vitro; this confirmed that the follicle growth defect was intrinsically ovarian. In addition, estradiol (E2)-stimulated follicle growth and GC proliferation in preantral follicles was impaired in Pik3cd-null ovaries. FSH and E2 substantially activated the PI3K/Akt pathway in GCs of control mice but not in those of Pik3cd-null mice. However, primordial follicle activation and oocyte meiotic maturation were not affected by Pik3cd knockout. Taken together, our findings indicate that the p110δ isoform of the PI3K catalytic subunit is a key component of the PI3K pathway for both FSH and E2-stimulated follicle growth in ovarian GCs; however, it is not required for primordial follicle activation and oocyte development. PMID:23820902

  17. Social and immunological differences among uninfected Brazilians exposed or unexposed to human immunodeficiency virus-infected partners.

    PubMed

    Silva, Maria Luiza; Melo, Victor Hugo; Aleixo, Agdemir Waléria; Aleixo, Lúcia Fernandes; Pascoal-Xavier, Marcelo Antônio; Silva, Rafaela Oliveira; Ferreira, Laís Alves; Domingos, Willian Cunha; Greco, Dirceu Bartolomeu

    2014-09-01

    Understanding the social conditions and immunological characteristics that allow some human immunodeficiency virus (HIV)-exposed patients to remain uninfected represents an on-going challenge. In this study, the socio-demographic and sexual behaviour characteristics and immune activation profiles of uninfected individuals exposed to HIV-infected partners were investigated. A confidential and detailed questionnaire was administered and venous blood was tested using HIV-1/enzyme immunoassays, plasma HIV-1 RNA levels/bDNA and immunophenotyping/flow cytometry to determine the frequencies of CD4 and CD8 T cells expressing activation markers. The data analysis showed significant differences (p < 0.05) for immune parameters in individuals who were uninfected, albeit exposed to HIV-infected partners, compared with unexposed individuals. In particular, the exposed, uninfected individuals had a higher frequency (median, minimum-maximum) of CD4⁺HLA-DR⁺ (4.2, 1.8-6.1), CD8⁺HLA-DR⁺ (4.6, 0.9-13.7), CD4⁺CD45RO⁺ (27.5, 14.2-46.6), CD4⁺CD45RO⁺CD62L⁺ (46.7, 33.9-67.1), CD8⁺CD45RA⁺HLA-DR⁺ (12.1, 3.4-35.8) and CD8⁺CD45RO⁺HLA-DR⁺ (9.0, 3.2-14.8) cells, a decreased percentage of CD8⁺CD28⁺ cells (11.7, 4.5-24.0) and a lower cell-surface expression of Fcγ-R/CD16 on monocytes (56.5, 22.0-130.0). The plasma HIV-1 RNA levels demonstrated detectable RNA virus loads in 57% of the HIV-1⁺ female partners. These findings demonstrate an activation profile in both CD4 and CD8 peripheral T cells from HIV-1 exposed seronegative individuals of serodiscordant couples from a referral centre in Belo Horizonte, state of Minas Gerais.

  18. The retinal specific CD147 Ig0 domain: from molecular structure to biological activity

    PubMed Central

    Redzic, Jasmina S.; Armstrong, Geoffrey S.; Isern, Nancy. G.; Jones, David N.M.; Kieft, Jeffrey S.; Eisenmesser, Elan Zohar

    2011-01-01

    CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. In several cancers, CD147 expression is so high that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2 that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 that is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despite its potential role in retinoblastoma. We present the first crystal structure of the human CD147 Ig0 domain and show that the CD147 Ig0 domain is a crystallographic dimer with an I-type domain structure, which is maintained in solution. Furthermore, we have utilized our structural data together with mutagenesis to probe the biological activity of CD147-containing proteins both with and without the CD147 Ig0 domain within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6 and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Finally, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation. PMID:21620857

  19. Reciprocal patterns of allergen-induced GATA-3 expression in peripheral blood mononuclear cells from atopics vs. non-atopics.

    PubMed

    Macaubas, C; Lee, P T; Smallacombe, T B; Holt, B J; Wee, C; Sly, P D; Holt, P G

    2002-01-01

    T helper (Th)2 cytokines are considered to play a central role in the induction and expression of allergic disease. However, the relative importance of individual cytokines is unclear, and overall disease pathogenesis appears to involve the coordinate activities of a range of Th2 cytokines acting in sequence or in parallel. The present study examines an alternative approach to the study of cytokine gene function in atopy, focusing instead upon T cell transcription factors (TFs) which play a role in the regulation of multiple cytokine genes. To investigate the allergen-induced expression of the TF GATA-3 and c-Maf in peripheral blood mononuclear cells (PBMCs) and in cytokine-driven Th polarization. PBMC from house dust mite (HDM)-atopic and non-atopics were stimulated in vitro with allergen or anti-CD3/IL-2. TF expression was analysed by semiquantitative RT-PCR and major findings were validated by real-time PCR. Cell separations were performed to analyse the contribution of CD45RO+ cells. CD4+ cord blood cells were Th1 or Th2 polarized in vitro by exogenous cytokines and TF expression analysed by Northern blot and real-time PCR. Results We demonstrate for the first time that during differentiation of CD4+ CD45RA+ naïve human T cells towards Th2 commitment, and during allergen-specific reactivation of peripheral CD4+ CD45RO+ Th2 memory cells in established atopics, expression of the Th2-associated TF GATA-3 is rapidly up-regulated, whereas T cells from non-atopics display equally rapid GATA-3 down-regulation under identical conditions of allergen stimulation. These findings identify Th2-associated TFs as key determinants of the atopic phenotype, suggesting their unique potential as therapeutic targets for disease control.

  20. Phenotypically non-suppressive cells predominate among FoxP3-positive cells in oral lichen planus.

    PubMed

    Schreurs, Olav; Karatsaidis, Andreas; Schenck, Karl

    2016-11-01

    Oral lichen planus (OLP) is a common T-cell-dominated oral chronic inflammatory disease occurring in periods of remission, quiescence, activity with pronounced inflammation, and acute ulceration. Cell infiltrates in OLP contain varying numbers of CD4 + T cells expressing the transcription factor FoxP3. FoxP3 + CD4 + T cells are, however, a heterogeneous cell population containing suppressive and non-suppressive cells, and their distribution in infiltrates from OLP is unknown. Biopsies were taken from normal oral mucosa (n = 8) and OLP lesions (n = 19), and a set of in situ methods for the determination of the functional phenotype of FoxP3 + CD4 + T cells was applied. Numbers of FoxP3 + CD4 + T cells were highest in the atrophic form of the disease, yet low in the ulcerative form. The main FoxP3 + CD4 + T-cell population observed was FoxP3 + CD45RA - CD25 + CD45RO + and CD15s - , a phenotype delineating a non-suppressive subset. Numbers of cells with an actively suppressing phenotype (FoxP3 + CD45RA - CD25 + CD45RO + and CD15s + ) were, however, about twice as high in reticular lesions as compared with the atrophic form. Many FoxP3 + CD4 + T cells expressed T-bet, the hallmark transcription factor for IFN-γ-producing T cells, indicating that they may enhance immune and inflammatory responses rather than suppress them. The absence of actively suppressing FoxP3 + CD4 + T cells may in part explain why OLP is a remarkably persisting condition, in spite of the presence of substantially high numbers of FoxP3 + CD4 + T cells. The findings emphasize that it is crucial to examine not only numbers but also functional phenotype of FoxP3 + CD4 + T cells in human tissues. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The retinal specific CD147 Ig0 domain: from molecular structure to biological activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redzic, Jasmina S.; Armstrong, Geoffrey S.; Isern, Nancy G.

    2011-06-18

    CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. In several cancers, CD147 expression is so high that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2 that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 that is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despitemore » its potential role in retinoblastoma. Thus, here we have extensively characterized the CD147 Ig0 domain by elucidating its three-dimensional structure through crystallography and its solution behavior through several biophysical methods that include nuclear magnetic resonance. Furthermore, we have utilized this data together with mutagenesis to probe the biological activity of CD147-containing proteins both with and without the CD147 Ig0 domain within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6, which is a well-known contributor to retinoblastoma and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Furthermore, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation.« less

  2. Dynamics of CCR5 Expression by CD4+ T Cells in Lymphoid Tissues during Simian Immunodeficiency Virus Infection

    PubMed Central

    Veazey, Ronald S.; Mansfield, Keith G.; Tham, Irene C.; Carville, Angela C.; Shvetz, Daniel E.; Forand, Amy E.; Lackner, Andrew A.

    2000-01-01

    Early viral replication and profound CD4+ T-cell depletion occur preferentially in intestinal tissues of macaques infected with simian immunodeficiency virus (SIV). Here we show that a much higher percentage of CD4+ T cells in the intestine express CCR5 compared with those found in the peripheral blood, spleen, or lymph nodes. In addition, the selectivity and extent of the CD4+ T-cell loss in SIV infection may depend upon these cells coexpressing CCR5 and having a “memory” phenotype (CD45RA−). Following intravenous infection with SIVmac251, memory CD4+ CCR5+ T cells were selectively eliminated within 14 days in all major lymphoid tissues (intestine, spleen, and lymph nodes). However, the effect on CD4+ T-cell numbers was most profound in the intestine, where cells of this phenotype predominate. The CD4+ T cells that remain after 14 days of infection lacked CCR5 and/or were naive (CD45RA+). Furthermore, when animals in the terminal stages of SIV infection (with AIDS) were examined, virtually no CCR5-expressing CD4+ T cells were found in lymphoid tissues, and all of the remaining CD4+ T cells were naive and coexpressed CXCR4. These findings suggest that chemokine receptor usage determines which cells are targeted for SIV infection and elimination in vivo. PMID:11069995

  3. Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer

    PubMed Central

    Nelson, Nadine; Szekeres, Karoly; Iclozan, Cristina; Rivera, Ivannie Ortiz; McGill, Andrew; Johnson, Gbemisola; Nwogu, Onyekachi

    2017-01-01

    Pancreatic cancer (PC) evades immune destruction by favoring the development of regulatory T cells (Tregs) that inhibit effector T cells. The transcription factor Ikaros is critical for lymphocyte development, especially T cells. We have previously shown that downregulation of Ikaros occurs as a result of its protein degradation by the ubiquitin-proteasome system in our Panc02 tumor-bearing (TB) mouse model. Mechanistically, we observed a deregulation in the balance between Casein Kinase II (CK2) and protein phosphatase 1 (PP1), which suggested that increased CK2 activity is responsible for regulating Ikaros’ stability in our model. We also showed that this loss of Ikaros expression is associated with a significant decrease in CD4+ and CD8+ T cell percentages but increased CD4+CD25+ Tregs in TB mice. In this study, we evaluated the effects of the dietary flavonoid apigenin (API), on Ikaros expression and T cell immune responses. Treatment of splenocytes from naïve mice with (API) stabilized Ikaros expression and prevented Ikaros downregulation in the presence of murine Panc02 cells in vitro, similar to the proteasome inhibitor MG132. In vivo treatment of TB mice with apigenin (TB-API) improved survival, reduced tumor weights and prevented splenomegaly. API treatment also restored protein expression of some Ikaros isoforms, which may be attributed to its moderate inhibition of CK2 activity from splenocytes of TB-API mice. This partial restoration of Ikaros expression was accompanied by a significant increase in CD4+ and CD8+ T cell percentages and a reduction in Treg percentages in TB-API mice. In addition, CD8+ T cells from TB-API mice produced more IFN-γ and their splenocytes were better able to prime allogeneic CD8+ T cell responses compared to TB mice. These results provide further evidence that Ikaros is regulated by CK2 in our pancreatic cancer model. More importantly, our findings suggest that API may be a possible therapeutic agent for stabilizing Ikaros expression and function to maintain T cell homeostasis in murine PC. PMID:28152014

  4. Constitutive expression of the promyelocytic leukemia-associated oncogene PML-RARalpha in TF1 cells: isoform-specific and retinoic acid-dependent effects on growth, bcl-2 expression, and apoptosis.

    PubMed

    Slack, J L; Yu, M

    1998-05-01

    Two major isoforms of PML-RARalpha are associated with (15;17)-positive acute promyelocytic leukemia (APL); however, functional differences between these isoforms have been difficult to define, and the molecular mechanism by which each isoform contributes to the pathogenesis of APL is not fully understood. To address these issues, the 'short' (S) and 'long' (L) isoforms of PML-RARalpha were constitutively expressed in the factor-dependent human erythroleukemia cell line, TF1. Expression of the L, but not the S, isoform inhibited growth of these cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF). In the absence of GM-CSF, the S isoform partially protected against apoptosis, while the L isoform accelerated cell death. Treatment with all-trans retinoic acid (ATRA) inhibited cell growth and caused apoptosis only in PML-RARalpha-expressing cells, and these effects of ATRA were more marked in cells expressing the L isoform. ATRA treatment also led to downregulation of bcl-2 and endogenous RARalpha in PML-RARalpha-expressing cells, but had little effect on the level of exogenously expressed PML-RARalpha. We conclude that (1) subtle differences exist in the biologic activities of the L and S isoforms of PML-RARalpha, and (2) both isoforms are capable of transducing an ATRA-mediated signal that leads to downregulation of bcl-2 and induction of programmed cell death.

  5. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    PubMed

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of the cell-cell adhesion molecule PCDH18 correlated with poorer overall survival in the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma data highlighting it as a potential negative prognostic factor in this cancer.

  6. [Cytokine-mediated regulation of expression of Gfi1 and U2afll4 genes activated by T-cells with different differentiation status in vitro].

    PubMed

    Yurova, K A; Sokhonevich, N A; Khaziakhmatova, O G; Litvinova, L S

    2016-01-01

    The dose-dependent effects of cytokines (IL-2, IL-7, and IL-15), which have a common g-chain, on mRNA expression of U2afll4 and GFi1 genes involved in regulation of alternative splicing of the Ptprc gene, have been investigated in vitro using T-lymphocyte cultures with different degrees of differentiation. IL-2, IL-7, and IL-15 caused a similar unidirectional inhibitory effect of various severity on restimulated CD45RO+ T-cells exposed to an antigen-independent activation; they caused a dose-dependent decrease of the U2af1l4 gene expression, and an increase of Gfi1 gene expression. This may suggest formation of active forms of the CD45 receptor, and also limitation of the formation of low-molecular short splice variants of the CD45RO receptor. Under conditions of antigen-independent stimulation of naive CD45RA+-cells rIL-7 and IL-15 exhibited opposite effects on U2af1l4 and Gfi1 gene expression. The increase of IL-7 concentrations in the incubation medium of naive cells was accompanied by a decrease in expression of both genes. IL-15 IL-7 exhibited opposite effects. Cytokines possessing a common g-chain (IL-2, IL-7, and IL-15) prevented antigen-independent differentiation of naive T-cells, by preventing the formation of polyclonal "surrogate" cells. In general, the study of the molecular mechanisms of genetic control determining homeostatic processes of T-cells in response to exposure to antigenic or non-antigenic treatments may be important for construction of a general model of self-maintenance and differentiation of immune cells.

  7. Differential effects of phosphotyrosine phosphatase expression on hormone-dependent and independent pp60c-src activity.

    PubMed

    Way, B A; Mooney, R A

    1994-10-26

    pp60c-src kinase activity can be increased by phosphotyrosine dephosphorylation or growth factor-dependent phosphorylation reactions. Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit growth factor receptor signal transduction (Mooney, RA, Freund, GG, Way, BA and Bordwell, KL (1992) J Biol Chem 267, 23443-23446). Here it is shown that PTPase expression decreased platelet-derived growth factor (PDGF)-dependent activation of pp60c-src but failed to increase hormone independent (basal) pp60c-src activity. PDGF-dependent tyrosine phosphorylation of its receptor was reduced by approximately 60% in cells expressing the PTPase. In contrast, a change in phosphotyrosine content of pp60c-src was not detected in response to PDGF or in PTPase+ cells. PDGF increased the intrinsic tyrosine kinase activity of pp60c-src in both control and PTPase+ cells, but the effect was smaller in PTPase+ cells. In an in vitro assay, hormone-stimulated pp60c-src autophosphorylation from PTPase+ cells was decreased 64 +/- 22%, and substrate phosphorylation by pp60c-src was reduced 54 +/- 16% compared to controls. Hormone-independent pp60c-src kinase activity was unchanged by expression of the PTPase. pp60c-src was, however, an in vitro substrate for CD45, being dephosphorylated at both the regulatory (Tyr527) and kinase domain (Tyr416) residues. In addition, in vitro dephosphorylation by CD45 increased pp60c-src activity. These findings suggest that the PDGF receptor was an in vivo substrate of CD45 but pp60c-src was not. The lack of activation of pp60c-src in the presence of expressed PTPase may demonstrate the importance of compartmentalization and/or accessory proteins to PTPase-substrate interactions.

  8. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    PubMed

    Béziau, Delphine M; Toussaint, Fanny; Blanchette, Alexandre; Dayeh, Nour R; Charbel, Chimène; Tardif, Jean-Claude; Dupuis, Jocelyn; Ledoux, Jonathan

    2015-01-01

    Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the native endothelium.

  9. Human umbilical cord-derived mesenchymal stem cells suppress proliferation of PHA-activated lymphocytes in vitro by inducing CD4(+)CD25(high)CD45RA(+) regulatory T cell production and modulating cytokine secretion.

    PubMed

    Yang, Hongna; Sun, Jinhua; Li, Yan; Duan, Wei-Ming; Bi, Jianzhong; Qu, Tingyu

    2016-04-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are promising candidate cells for therapeutic application in autoimmune diseases due to their immunomodulatory properties. Unused human umbilical cords (UC) offer an abundant and noninvasive source of MSCs without ethical issues and are emerging as a valuable alternative to bone marrow tissue for producing MSCs. We thus investigated the immunomodulation effect of umbilical cord-derived MSCs (UC-MSCs) on human peripheral blood mononuclear cells (PBMCs), T cells in particular, in a co-culture system. We found that UC-MSCs efficiently suppressed the proliferation of phytohaemagglutinin (PHA)-stimulated PBMCs (p<0.01). Kinetic analysis revealed that UC-MSCs primarily inhibited the division of generation 3 (G3) and 4 (G4) of PBMCs. In addition, UC-MSCs augmented the expression of CD127(+) and CD45RA(+) but reduced the expression of CD25(+) in PBMCs stimulated by PHA (p<0.05). Furthermore, UC-MSCs inhibited PHA-resulted increase in the frequency of CD4(+)CD25(+)CD127(low/-) Tregs significantly (p<0.01) but augmented PHA-resulted increase in the frequency of CD4(+)CD25(high)CD45RA(+) Tregs to about three times in PBMCs. The levels of anti-inflammatory cytokines, PEG2, TGF-β, and IL-10 were greatly up-regulated, accompanied by a significant down-regulation of pro-inflammatory IFN-γ in the co-culture (p<0.01). Our results showed that UC-MSCs are able to suppress mitogen-induced PBMC activation and proliferation in vitro by altering T lymphocyte phenotypes, increasing the frequency of CD4(+)CD25(high)CD45RA(+) Tregs, and modulating the associated cytokine production. Further studies are warranted to investigate the therapeutic potential of UC-MSCs in immunologically-diseased conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Expression patterns of the aquaporin gene family during renal development: influence of genetic variability.

    PubMed

    Parreira, Kleber S; Debaix, Huguette; Cnops, Yvette; Geffers, Lars; Devuyst, Olivier

    2009-08-01

    High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.

  11. Study of stem cell homing & self-renewal marker gene profile of ex vivo expanded human CD34+ cells manipulated with a mixture of cytokines & stromal cell-derived factor 1

    PubMed Central

    Kode, Jyoti; Khattry, Navin; Bakshi, Ashish; Amrutkar, Vasanti; Bagal, Bhausaheb; Karandikar, Rohini; Rane, Pallavi; Fujii, Nobutaka; Chiplunkar, Shubhada

    2017-01-01

    Background & objectives: Next generation transplantation medicine aims to develop stimulating cocktail for increased ex vivo expansion of primitive hematopoietic stem and progenitor cells (HSPC). The present study was done to evaluate the cocktail GF (Thrombopoietin + Stem Cell factor + Flt3-ligand) and homing-defining molecule Stromal cell-derived factor 1 (SDF1) for HSPC ex vivo expansion. Methods: Peripheral blood stem cell (n=74) harvests were analysed for CD34hi CD45lo HSPC. Immunomagnetically enriched HSPC were cultured for eight days and assessed for increase in HSPC, colony forming potential in vitro and in vivo engrafting potential by analyzing human CD45+ cells. Expression profile of genes for homing and stemness were studied using microarray analysis. Expression of adhesion/homing markers were validated by flow cytometry/ confocal microscopy. Results: CD34hi CD45lo HSPC expansion cultures with GF+SDF1 demonstrated increased nucleated cells (n=28, P< 0.001), absolute CD34+ cells (n=8, P=0.021) and increased colony forming units (cfu) compared to unstimulated and GF-stimulated HSPC. NOD-SCID mice transplanted with GF+SDF1-HSPC exhibited successful homing/engraftment (n=24, P< 0.001). Microarray analysis of expanded HSPC demonstrated increased telomerase activity and many homing-associated genes (35/49) and transcription factors for stemness/self-renewal (49/56) were significantly upregulated in GF+SDF1 stimulated HSPC when compared to GF-stimulated HSPC. Expression of CD44, CXCR4, CD26, CD14, CD45 and soluble IL-6 in expanded cultures were validated by flow cytometry and confocal microscopy. Interpretation & conclusions: Cocktail of cytokines and SDF1 showed good potential to successfully expand HSPC which exhibited enhanced ability to generate multilineage cells in short-term and long-term repopulation assay. This cocktail-mediated stem cell expansion has potential to obviate the need for longer and large volume apheresis procedure making it convenient for donors. PMID:29168461

  12. CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment.

    PubMed

    Thanee, Malinee; Loilome, Watcharin; Techasen, Anchalee; Sugihara, Eiji; Okazaki, Shogo; Abe, Shinya; Ueda, Shiho; Masuko, Takashi; Namwat, Nisana; Khuntikeo, Narong; Titapun, Attapol; Pairojkul, Chawalit; Saya, Hideyuki; Yongvanit, Puangrat

    2016-07-01

    Expression of CD44, especially the variant isoforms (CD44v) of this major cancer stem cell marker, contributes to reactive oxygen species (ROS) defense through stabilizing xCT (a cystine-glutamate transporter) and promoting glutathione synthesis. This enhances cancer development and increases chemotherapy resistance. We investigate the role of CD44v in the regulation of the ROS defense system in cholangiocarcinoma (CCA). Immunohistochemical staining of CD44v and p38(MAPK) (a major ROS target) expression in Opisthorchis viverrini-induced hamster CCA tissues (at 60, 90, 120, and 180 days) reveals a decreased phospho-p38(MAPK) signal, whereas the CD44v signal was increased during bile duct transformation. Patients with CCA showed CD44v overexpression and negative-phospho-p38(MAPK) patients a significantly shorter survival rate than the low CD44v signal and positive-phospho-p38(MAPK) patients (P = 0.030). Knockdown of CD44 showed that xCT and glutathione levels were decreased, leading to a high level of ROS. We examined xCT-targeted CD44v cancer stem cell therapy using sulfasalazine. Glutathione decreased and ROS increased after the treatment, leading to inhibition of cell proliferation and induction of cell death. Thus, the accumulation of CD44v leads to the suppression of p38(MAPK) in transforming bile duct cells. The redox status regulation of CCA cells depends on the expression of CD44v to contribute the xCT function and is a link to the poor prognosis of patients. Thus, an xCT inhibitor could inhibit cell growth and activate cell death. This suggests that an xCT-targeting drug may improve CCA therapy by sensitization to the available drug (e.g. gemcitabine) by blocking the mechanism of the cell's ROS defensive system. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4+ T Cells following Simian Immunodeficiency Virus Infection.

    PubMed

    Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul

    2017-04-01

    Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is modulated by conditions such as CD4 + T cell differentiation, stimulation, tissue location, or SIV infection are currently poorly understood. We measured the expression of 45 confirmed and putative restriction factors in primary CD4 + T cells from rhesus macaques under various conditions, finding dynamic changes in each state. Most dramatically, in acute SIV infection, the expression of almost all target genes analyzed increased. These are the first measurements of many of these confirmed and putative restriction factors in primary cells or during the early events after SIV infection and suggest that the level of expression of restriction factors may contribute to the differential susceptibility of CD4 + T cells to SIV infection. Copyright © 2017 American Society for Microbiology.

  14. Ex vivo identification and characterization of a population of CD13(high) CD105(+) CD45(-) mesenchymal stem cells in human bone marrow.

    PubMed

    Muñiz, Carmen; Teodosio, Cristina; Mayado, Andrea; Amaral, Ana Teresa; Matarraz, Sergio; Bárcena, Paloma; Sanchez, Maria Luz; Alvarez-Twose, Iván; Diez-Campelo, María; García-Montero, Andrés C; Blanco, Juan F; Del Cañizo, Maria Consuelo; del Pino Montes, Javier; Orfao, Alberto

    2015-09-07

    Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and multilineage differentiation. Their multipotential capacity and immunomodulatory properties have led to an increasing interest in their biological properties and therapeutic applications. Currently, the definition of MSCs relies on a combination of phenotypic, morphological and functional characteristics which are typically evaluated upon in vitro expansion, a process that may ultimately lead to modulation of the immunophenotypic, functional and/or genetic features of these cells. Therefore, at present there is great interest in providing markers and phenotypes for direct in vivo and ex vivo identification and isolation of MSCs. Multiparameter flow cytometry immunophenotypic studies were performed on 65 bone marrow (BM) samples for characterization of CD13(high) CD105(+) CD45(-) cells. Isolation and expansion of these cells was performed in a subset of samples in parallel to the expansion of MSCs from mononuclear cells following currently established procedures. The protein expression profile of these cells was further assessed on (paired) primary and in vitro expanded BM MSCs, and their adipogenic, chondrogenic and osteogenic differentiation potential was also determined. Our results show that the CD13(high) CD105(+) CD45(-) immunophenotype defines a minor subset of cells that are systematically present ex vivo in normal/reactive BM (n = 65) and that display immunophenotypic features, plastic adherence ability, and osteogenic, adipogenic and chondrogenic differentiation capacities fully compatible with those of MSCs. In addition, we also show that in vitro expansion of these cells modulates their immunophenotypic characteristics, including changes in the expression of markers currently used for the definition of MSCs, such as CD105, CD146 and HLA-DR. BM MSCs can be identified ex vivo in normal/reactive BM, based on a robust CD13(high) CD105(+) and CD45(-) immunophenotypic profile. Furthermore, in vitro expansion of these cells is associated with significant changes in the immunophenotypic profile of MSCs.

  15. Purification and Characterization of Recombinant Darbepoetin Alfa from Leishmania tarentolae.

    PubMed

    Kianmehr, Anvarsadat; Mahrooz, Abdolkarim; Oladnabi, Morteza; Safdari, Yaghoub; Ansari, Javad; Veisi, Kamal; Evazalipour, Mehdi; Shahbazmohammadi, Hamid; Omidinia, Eskandar

    2016-09-01

    Darbepoetin alfa is a biopharmaceutical glycoprotein that stimulates erythropoiesis and is used to treat anemia, which associated with renal failure and cancer chemotherapy. We herein describe the structural characterization of recombinant darbepoetin alfa produced by Leishmania tarentolae T7-TR host. The DNA expression cassette was integrated into the L. tarentolae genome through homologous recombination. Transformed clones were selected by antibiotic resistance, diagnostic PCRs, and protein expression analysis. The structure of recombinant darbepoetin alfa was analyzed by isoelectric focusing, ultraviolet-visible spectrum, and circular dichroism (CD) spectroscopy. Expression analysis showed the presence of a protein band at 40 kDa, and its expression level was 51.2 mg/ml of culture medium. Darbepoetin alfa have 5 isoforms with varying degree of sialylation. The UV absorption and CD spectra were analogous to original drug (Aranesp), which confirmed that the produced protein was darbepoetin alfa. Potency test results revealed that the purified protein was biologically active. In brief, the structural and biological characteristics of expressed darbepoetin alfa were very similar to Aranesp which has been normally expressed in CHO. Our data also suggest that produced protein has potential to be developed for clinical use.

  16. Cadmium (Cd(2+)) exposure differentially elicits both cell proliferation and cell death related responses in SK-RC-45.

    PubMed

    Sinha, Krishnendu; Pal, Pabitra Bikash; Sil, Parames C

    2014-03-01

    Cadmium (Cd(2+)) is a major nephrotoxic environmental pollutant, affecting mostly proximal convoluted tubule (PCT) cells of the mammalian kidney, while conditionally Cd(2+) could also elicit protective responses with great variety and variability in different systems. The present study was designed to evaluate the molecular mechanism of Cd(2+) toxicity on human PCT derived Renal Cell Carcinoma (RCC), SK-RC-45 and compare its responses with normal human PCT derived cell line, NKE. Exposure of SK-RC-45 cells with different concentrations of CdCl2 (e.g. 0, 10 and 20μM) in serum free medium for 24h generate considerable amount of ROS, accompanied with decreased cell viability and alternations in the cellular and nuclear morphologies, heat shock responses and GCLC mediated protective responses. Also phosphatidylserine externalization, augmentation in the level of caspase-3, PARP, BAD, Apaf1 and cleaved caspase-9 along with decreased expression of Bcl2 and release of cytochrome c confirmed that, Cd(2+) dose dependently induces solely intrinsic pathway of apoptosis in SK-RC-45, independent of JNK. Furthermore, the non-toxic concentration (10μM) of Cd(2+) induced nuclear translocation of Nrf2 and increased expression in the level of HO-1 enzyme suggesting that at the milder concentration, Cd(2+) induces protective signaling pathways. On the other hand, exposure of NKE to different concentrations of CdCl2 (e.g. 0, 10, 20, 30 and 50μM) under the same conditions elevate stronger heat shock and SOD2 mediated protective responses. In contrary to the RCC PCT, the normal PCT derived cell follows JNK dependent and extrinsic pathways of apoptosis. Cumulatively, these results suggest that Cd(2+) exposure dose dependently elicit both cell proliferative and cell death related responses in SK-RC-45 cells and is differentially regulated with respect to normal kidney epithelia derived NKE cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells.

    PubMed

    Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith

    2017-05-01

    Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression networks. Stem Cells 2017;35:1273-1289. © 2017 AlphaMed Press.

  18. Resting and Activated Natural Tregs Decrease in the Peripheral Blood of Patients with Atherosclerosis.

    PubMed

    Yazdani, Mohammadreza; Khosropanah, Shahdad; Hosseini, Ahmad; Doroudchi, Mehrnoosh

    2016-12-01

    Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries. CD4+ T cells are known to play a role in the progression of the disease. CD4+CD25+Foxp3+ natural Treg (nTreg) cells seem to have a protective role in the disease and their reduction in acute coronary syndrome is recently shown. To investigate the frequency of nTreg subsets in the peripheral blood of patients with atherosclerosis. Confirmation of atherosclerosis was done by angiography and 15 ml heparinized blood was obtained from each of the 13 non-diabetic patients and 13 non-diabetic, non-smoker individuals with normal/insignificant coronary artery disease confirmed by angiography. Lipid profiles of the patients and controls were measured at the time of sampling. Mononuclear cells were used for both RNA extraction and immunophenotyping by real-time PCR and flowcytometry techniques, respectively. In natural Treg subsets, the frequency of CD4+CD45RO-CD25+Foxp3lo T-cells (resting nTregs) was greater in controls than patients (p=0.02). The frequency of CD4+CD45RO+CD25hiFoxp3hi T-cells (activated nTregs) was significantly higher in controls compared with patients (p=0.02). However, the frequency of CD4+CD25+CD45RO+Foxp3- T-cells (effector/memory T-cell) increased in patients compared with controls (p=0.01). Both the MFI and gene expression of Foxp3 were higher in control group than in patients (p=0.015 and p=0.017, respectively). Moreover, the TGF-β gene expression showed a decrease in the peripheral blood mononuclear cells of patients compared with controls (p=0.03). Decrease in both subsets of resting and activated nTregs along with a decrease in the expression of Foxp3 and TGF-β genes in patients with atherosclerosis suggests phenotypic changes in these subsets, which may as well be correlated with a more inflammatory profile in their lymphocytes.

  19. [Differentiation of bone marrow derived from mesenchymal stem cells into cardiomyocyte-like cells induced by co-culture with rat myocardial cells].

    PubMed

    Zhang, Rong-Li; Jiang, Er-Lie; Wang, Mei; Zhou, Zheng; Zhai, Wen-Jing; Zhai, Wei-Hua; Wang, Hua; Wang, Zhi-Yong; Bao, Yu-Shi; DU, Hong; Han, Ming-Zhe

    2008-10-01

    The study was purposed to investigate the differentiation ability of mesenchymal stem cells (MSCs) into myocardial cells in vitro. Rat bone marrow-derived MSCs were labeled and co-cultured with neonatal rat cardiomyocytes (CM) for 5 - 7 days. The expression of cell surface antigens was detected by flow cytometry, and the expression of muscle-specific marker myosin and troponin T in labeled cells was detected by immunofluorescence. The results showed that in vitro cultured MSCs expressed CD90, CD44, CD105, CD54, not expressed CD34, CD45, CD31. After co-cultured with neonatal rat CM, labeled MSCs differentiated into cardiomyocyte-like cells expressing myosin and troponin T. It is concluded that MSCs can differentiate into cardiomyocyte-like cells when co-cultured with neonatal myocardial cells in vitro. In co-culture of two kind of cells in ratio of four to one showed obvious efficacy differentiating MSCs into CMs.

  20. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma

    PubMed Central

    Thelen, Martin; Reuter, Sabrina; Zentis, Peter; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; Wennhold, Kerstin; Garcia-Marquez, Maria; Tharun, Lars; Quaas, Alexander; Schauss, Astrid; Isensee, Jörg; Hucho, Tim; Huebbers, Christian

    2017-01-01

    The composition of tumor-infiltrating lymphocytes (TIL) reflects biology and immunogenicity of cancer. Here, we characterize T-cell subsets and expression of immune checkpoint molecules in head and neck squamous cell carcinoma (HNSCC). We analyzed TIL subsets in primary tumors (n = 34), blood (peripheral blood mononuclear cells (PBMC); n = 34) and non-cancerous mucosa (n = 7) of 34 treatment-naïve HNSCC patients and PBMC of 15 healthy controls. Flow cytometry analyses revealed a highly variable T-cell infiltration mainly of an effector memory phenotype (CD45RA−/CCR7−). Naïve T cells (CD45RA+/CCR7+) were decreased in the microenvironment compared to PBMC of patients, while regulatory T cells (CD4+/CD25+/CD127low and CD4+/CD39+) were elevated. Furthermore, we performed digital image analyses of entire cross sections of HNSCC to define the ‘Immunoscore’ (CD3+ and CD8+ cell infiltration in tumor core and invasive margin) and quantified MHC class I expression on tumor cells by immunohistochemistry. Immune checkpoint molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) were increased in TILs compared to peripheral T cells in flow-cytometric analysis. Human papillomavirus (HPV) positive tumors showed higher numbers of TILs, but a similar composition of T-cell subsets and checkpoint molecule expression compared to HPV negative tumors. Taken together, the tumor microenvironment of HNSCC is characterized by a strong infiltration of regulatory T cells and high checkpoint molecule expression on T-cell subsets. In view of increasingly used immunotherapies, a detailed knowledge of TILs and checkpoint molecule expression on TILs is of high translational relevance. PMID:28574843

  1. Isolation and Characterization of Human Anterior Cruciate Ligament-Derived Vascular Stem Cells

    PubMed Central

    Matsumoto, Tomoyuki; Ingham, Sheila M.; Mifune, Yutaka; Osawa, Aki; Logar, Alison; Usas, Arvydas; Kuroda, Ryosuke; Kurosaka, Masahiro; Fu, Freddie H.

    2012-01-01

    The anterior cruciate ligament (ACL) usually fails to heal after rupture mainly due to the inability of the cells within the ACL tissue to establish an adequate healing process, making graft reconstruction surgery a necessity. However, some reports have shown that there is a healing potential of ACL with primary suture repair. Although some reports showed the existence of mesenchymal stem cell-like cells in human ACL tissues, their origin still remains unclear. Recently, blood vessels have been reported to represent a rich supply of stem/progenitor cells with a characteristic expression of CD34 and CD146. In this study, we attempted to validate the hypothesis that CD34- and CD146-expressing vascular cells exist in hACL tissues, have a potential for multi-lineage differentiation, and are recruited to the rupture site to participate in the intrinsic healing of injured ACL. Immunohistochemistry and flow cytometry analysis of hACL tissues demonstrated that it contains significantly more CD34 and CD146-positive cells in the ACL ruptured site compared with the noninjured midsubstance. CD34+CD45− cells isolated from ACL ruptured site showed higher expansionary potentials than CD146+CD45− and CD34−CD146−CD45− cells, and displayed higher differentiation potentials into osteogenic, adipogenic, and angiogenic lineages than the other cell populations. Immunohistochemistry of fetal and adult hACL tissues demonstrated a higher number of CD34 and CD146-positive cells in the ACL septum region compared with the midsubstance. In conclusion, our findings suggest that the ACL septum region contains a population of vascular-derived stem cells that may contribute to ligament regeneration and repair at the site of rupture. PMID:21732814

  2. Altered expression of pectoral myosin heavy chain isoforms corresponds to migration status in the white-crowned sparrow (Zonotrichia leucophrys gambelii)

    PubMed Central

    Welch, Kenneth C.; Ramenofsky, Marilyn

    2016-01-01

    Birds undergo numerous changes as they progress through life-history stages, yet relatively few studies have examined how birds adapt to both the dynamic energetic and mechanical demands associated with such transitions. Myosin heavy chain (MyHC) expression, often linked with muscle fibre type, is strongly correlated with a muscle's mechanical power-generating capability, thus we examined several morphological properties, including MyHC expression of the pectoralis, in a long-distance migrant, the white-crowned sparrow (Zonotrichia leucophrys gambelii) throughout the progression from winter, spring departure and arrival on breeding grounds. White-crowned sparrows demonstrated significant phenotypic flexibility throughout the seasonal transition, including changes in prealternate moult status, lipid fuelling, body condition and flight muscle morphology. Pectoral MyHC expression also varied significantly over the course of the study. Wintering birds expressed a single, newly classified adult fast 2 isoform. At spring departure, pectoral isoform expression included two MyHC isoforms: the adult fast 2 isoform along with a smaller proportion of a newly present adult fast 1 isoform. By spring arrival, both adult fast isoforms present at departure remained, yet expression had shifted to a greater relative proportion of the adult fast 1 isoform. Altering pectoral MyHC isoform expression in preparation for and during spring migration may represent an adaptation to modulate muscle mechanical output to support long-distance flight. PMID:28018664

  3. Successful construction and stable expression of an anti-CD45RA scFv-EGFP fusion protein in Chinese hamster ovary cells.

    PubMed

    Wang, Zhujun; Chen, Yuanyuan; Li, Sisi; Cheng, Yuping; Zhao, Haizhao; Jia, Ming; Luo, Zebin; Tang, Yongmin

    2014-02-01

    CD45RA has been found highly expressed on leukemia cells and may be a potential target of the disease. In this study, an anti-CD45RA single-chain antibody fragment (scFv3A4) was genetically linked to the N terminus of the enhanced green fluorescent protein (EGFP) to generate a scFv3A4-EGFP fusion protein. The scFv3A4-EGFP with a molecular weight of 57kDa was stably expressed and secreted from the transfected CHO cells through the ER/Golgi-dependent pathway. The fusion protein was soluble in the culture supernatant and the yield was 1350μg/L. Flow cytometry analysis showed that the scFv3A4-EGFP had the same binding site and a very similar reactivity pattern with its parental murine monoclonal antibody (mAb) 3A4. Furthermore, comparing to conventional labeled 3A4-FITC antibody, the scFv3A4-EGFP was more resistant to illumination and more suitable for immunofluorescence histology (IFH) detection. Therefore, the scFv3A4-EGFP fusion protein can be a powerful tool to investigate the targeting of CD45RA on leukemia cells, biological activity of the target and possibly for the genetic manipulation of the antibody. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Augmentation of the expression of the eotaxin receptor on duodenal neutrophils by IL-21.

    PubMed

    Takeda, Yuji; Kato, Tomoyuki; Nemoto, Nobuhito; Araki, Akemi; Gazi, Mohammad Yeashin; Nara, Hidetoshi; Asao, Hironobu

    2018-05-16

    Inflammation can occur via different mechanisms, such as via acute and chronic responses, on numerous occasions and function accordingly through various roles. There are more than five subsets of neutrophils; neutrophilic heterogeneity is modulated by the inflammatory condition. To understand the characteristics of inflammation, identification of atypical neutrophils is important. In this study, we found that the expression of eotaxin receptor (CD193) on atypical neutrophils in the duodenum is augmented in IL-21 isoform transgenic (Tg) mice. In a series of studies, we have established a Tg mouse strain to further investigate the functions of IL-21 in vivo. Interestingly, Tg mice immunized with ovalbumin (OVA) were more sensitive to OVA-induced systemic anaphylaxis as compared with wild type mice with duodenal and splenic gross congestion. Further analysis conducted in the duodenum of Tg mice revealed that only the number of neutrophils migrating into the duodenum was significantly increased prior to immunization. Previous studies have shown that the gastrointestinal compartment and the spleen constantly produce eotaxin, which regulates basal levels of tissue eosinophils. Therefore, we analyzed CD193 expression on neutrophils and eosinophils. As expected, its expression by duodenal neutrophils was upregulated in Tg mice. Furthermore, the addition of IL-21 into bone marrow cell culture increased the number of CD193 + neutrophils, which easily migrated into the duodenum. These observations suggested that CD193 + neutrophils increase in number under inflammatory conditions due to chronic IL-21 production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Cd²⁺-induced alteration of the global proteome of human skin fibroblast cells.

    PubMed

    Prins, John M; Fu, Lijuan; Guo, Lei; Wang, Yinsheng

    2014-03-07

    Cadmium (Cd(2+)) is a toxic heavy metal and a well-known human carcinogen. The toxic effects of Cd(2+) on biological systems are diverse and thought to be exerted through a complex array of mechanisms. Despite the large number of studies aimed to elucidate the toxic mechanisms of action of Cd(2+), few have been targeted toward investigating the ability of Cd(2+) to disrupt multiple cellular pathways simultaneously and the overall cellular responses toward Cd(2+) exposure. In this study, we employed a quantitative proteomic method, relying on stable isotope labeling by amino acids in cell culture (SILAC) and LC-MS/MS, to assess the Cd(2+)-induced simultaneous alterations of multiple cellular pathways in cultured human skin fibroblast cells. By using this approach, we were able to quantify 2931 proteins, and 400 of them displayed significantly changed expression following Cd(2+) exposure. Our results unveiled that Cd(2+) treatment led to the marked upregulation of several antioxidant enzymes (e.g., metallothionein-1G, superoxide dismutase, pyridoxal kinase, etc.), enzymes associated with glutathione biosynthesis and homeostasis (e.g., glutathione S-transferases, glutathione synthetase, glutathione peroxidase, etc.), and proteins involved in cellular energy metabolism (e.g., glycolysis, pentose phosphate pathway, and the citric acid cycle). Additionally, we found that Cd(2+) treatment resulted in the elevated expression of two isoforms of dimethylarginine dimethylaminohydrolase (DDAH I and II), enzymes known to play a key role in regulating nitric oxide biosynthesis. Consistent with these findings, we observed elevated formation of nitric oxide in human skin (GM00637) and lung (IMR-90) fibroblast cells following Cd(2+) exposure. The upregulation of DDAH I and II suggests a role of nitric oxide synthesis in Cd(2+)-induced toxicity in human cells.

  6. Distinct Roles for CXCR6(+) and CXCR6(-) CD4(+) T Cells in the Pathogenesis of Chronic Colitis.

    PubMed

    Mandai, Yasushi; Takahashi, Daisuke; Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4(+) T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4(+) T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4(+) T cells expressed CXCR6 in the CD45RB(high) T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn's disease. Although surface marker analysis demonstrated that both CXCR6(+) and CXCR6(-) CD4(+) T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6(+) subset produced IFN-γ and TNF-α compared to CXCR6(-) subset, and only the CXCR6(+) subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6(+) T cells into Rag1 (-/-) recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6(-) cells evoked colitis similar to that observed in CD4(+)CD45RB(high) T cell-transferred mice, and resulted in their conversion into CXCR6(+) cells. Collectively, these observations suggest that the CXCR6(+)CD4(+) T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6(-)CD4(+) T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6(+)CD4(+) T cells.

  7. Distinct Roles for CXCR6+ and CXCR6− CD4+ T Cells in the Pathogenesis of Chronic Colitis

    PubMed Central

    Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6− CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6− subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6− cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6−CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells. PMID:23840334

  8. Production of Pigs by Hand-Made Cloning Using Mesenchymal Stem Cells and Fibroblasts.

    PubMed

    Yang, Zhenzhen; Vajta, Gábor; Xu, Ying; Luan, Jing; Lin, Mufei; Liu, Cong; Tian, Jianing; Dou, Hongwei; Li, Yong; Liu, Tianbin; Zhang, Yijie; Li, Lin; Yang, Wenxian; Bolund, Lars; Yang, Huanming; Du, Yutao

    2016-08-01

    Mesenchymal stem cells (MSCs) exhibited self-renewal and less differentiation, making the MSCs promising candidates for adult somatic cell nuclear transfer (SCNT). In this article, we tried to produce genome identical pigs through hand-made cloning (HMC), with MSCs and adult skin fibroblasts as donor cells. MSCs were derived from either adipose tissue or peripheral blood (aMSCs and bMSCs, respectively). MSCs usually showed the expression pattern of CD29, CD73, CD90, and CD105 together with lack of expression of the hematopoietic markers CD34and CD45. Flow cytometry results demonstrated high expression of CD29 and CD90 in both MSC lines, while CD73, CD34, and CD45 expression were not detected. In contrary, in reverse transcription-polymerase chain reaction (RT-PCR) analysis, CD73 and CD34 were detected indicating that human antibodies CD73 and CD34 were not suitable to identify porcine cell surface markers and porcine MSC cellular surface markers of CD34 might be different from other species. MSCs also had potential to differentiate successfully into chondrocytes, osteoblasts, and adipocytes. After HMC, embryos reconstructed with aMSCs had higher blastocyst rate on day 5 and 6 than those reconstructed with bMSCs and fibroblasts (29.6% ± 1.3% and 41.1% ± 1.4% for aMSCs vs. 23.9% ± 1.2% and 35.5% ± 1.6% for bMSCs and 22.1% ± 0.9% and 33.3% ± 1.1% for fibroblasts, respectively). Live birth rate per transferred blastocyst achieved with bMSCs (1.59%) was the highest among the three groups. This article was the first report to compare the efficiency among bMSCs, aMSCs, and fibroblasts for boar cloning, which offered a realistic perspective to use the HMC technology for commercial breeding.

  9. The Na, K-ATPase β-Subunit Isoforms Expression in Glioblastoma Multiforme: Moonlighting Roles

    PubMed Central

    Rotoli, Deborah; Cejas, Mariana-Mayela; Maeso, María-del-Carmen; Pérez-Rodríguez, Natalia-Dolores; Morales, Manuel; Ávila, Julio

    2017-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Recent studies point out that gliomas exploit ion channels and transporters, including Na, K-ATPase, to sustain their singular growth and invasion as they invade the brain parenchyma. Moreover, the different isoforms of the β-subunit of Na, K-ATPase have been implicated in regulating cellular dynamics, particularly during cancer progression. The aim of this study was to determine the Na, K-ATPase β subunit isoform subcellular expression patterns in all cell types responsible for microenvironment heterogeneity of GBM using immunohistochemical analysis. All three isoforms, β1, β2/AMOG (Adhesion Molecule On Glia) and β3, were found to be expressed in GBM samples. Generally, β1 isoform was not expressed by astrocytes, in both primary and secondary GBM, although other cell types (endothelial cells, pericytes, telocytes, macrophages) did express this isoform. β2/AMOG and β3 positive expression was observed in the cytoplasm, membrane and nuclear envelope of astrocytes and GFAP (Glial Fibrillary Acidic Protein) negative cells. Interestingly, differences in isoforms expression have been observed between primary and secondary GBM: in secondary GBM, β2 isoform expression in astrocytes was lower than that observed in primary GBM, while the expression of the β3 subunit was more intense. These changes in β subunit isoforms expression in GBM could be related to a different ionic handling, to a different relationship between astrocyte and neuron (β2/AMOG) and to changes in the moonlighting roles of Na, K-ATPase β subunits as adaptor proteins and transcription factors. PMID:29117147

  10. Osteoblast gene expression is differentially regulated by TGF-beta isoforms.

    PubMed

    Fagenholz, P J; Warren, S M; Greenwald, J A; Bouletreau, P J; Spector, J A; Crisera, F E; Longaker, M T

    2001-03-01

    The transforming growth factor beta (TGF-beta) superfamily encompasses a number of important growth factors including several TGF-beta isoforms, the bone morphogenetic proteins, activins, inhibins, and growth and differentiation factors. TGF-beta 1, -beta 2, and -beta 3 are three closely related isoforms that are widely expressed during skeletal morphogenesis and bone repair. Numerous studies suggest that each isoform has unique in vivo functions; however, the effects of these TGF-beta isoforms on osteoblast gene expression and maturation have never been directly compared. In the current study, we treated undifferentiated neonatal rat calvaria osteoblast-enriched cell cultures with 2.5 ng/ml of each TGF-beta isoform and analyzed gene expression at 0, 3, 6, and 24 hours. We demonstrated unique isoform-specific regulation of endogenous TGF-beta 1 and type I collagen mRNA transcription. To assess the effects of extended TGF-beta treatment on osteoblast maturation, we differentiated osteoblast cultures in the presence of 2.5 ng/ml of each TGF-beta isoform. Analysis of collagen I, alkaline phosphatase, and osteocalcin demonstrated that each TGF-beta isoform uniquely suppressed the transcription of these osteoblast differentiation markers. Interestingly, TGF-beta isoform treatment increased osteopontin expression in primary osteoblasts after 4 and 10 days of differentiation. To our knowledge, these data provide the first direct comparison of the effects of the TGF-beta isoforms on osteoblast gene expression in vitro. Furthermore, these data suggest that TGF-beta isoforms may exert their unique in vivo effects by differentially regulating osteoblast cytokine secretion, extracellular matrix production, and the rate of cellular maturation.

  11. Midkine inhibits inducible regulatory T cell differentiation by suppressing the development of tolerogenic dendritic cells.

    PubMed

    Sonobe, Yoshifumi; Li, Hua; Jin, Shijie; Kishida, Satoshi; Kadomatsu, Kenji; Takeuchi, Hideyuki; Mizuno, Tetsuya; Suzumura, Akio

    2012-03-15

    Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.

  12. Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare).

    PubMed

    Ligaba, Ayalew; Katsuhara, Maki; Shibasaka, Mineo; Djira, Gemechis

    2011-02-01

    In one of the most important crops, barley (Hordeum vulgare L.), gene expression and physiological roles of most major intrinsic proteins (MIPs) remained to be elucidated. Here we studied expression of five tonoplast intrinsic protein isoforms (HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3 and HvTIP4;1), a NOD26-like intrinsic protein (HvNIP2;1) and a plasma membrane intrinsic protein (HvPIP2;1) by using the quantitative real-time RT-PCR. Five-day-old seedlings were exposed to abiotic stresses (salt, heavy metals and nutrient deficiency), abscisic acid (ABA) and gibberellic acid (GA) for 24 h. Treatment with 100 mM NaCl, 0.1 mM ABA and 1 mM GA differentially regulated gene expression in roots and shoots. Nitrogen and prolonged P-deficiency downregulated expression of most MIP genes in roots. Intriguingly, gene expression was restored to the values in the control three days after nutrient supply was resumed. Heavy metals (0.2 mM each of Cd, Cu, Zn and Cr) downregulated the transcript levels by 60-80% in roots, whereas 0.2 mM Hg upregulated expressions of most genes in roots. This was accompanied by a 45% decrease in the rate of transpiration. In order to study the physiological role of the MIPs, cDNA of three genes (HvTIP2;1, HvTIP2;3 and HvNIP2;1) have been cloned and heterologous expression was performed in Xenopus laevis oocytes. Osmotic water permeability was determined by a swelling assay. However, no water uptake activity was observed for the three proteins. Hence, the possible physiological role of the proteins is discussed. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. NHS-A isoform of the NHS gene is a novel interactor of ZO-1.

    PubMed

    Sharma, Shiwani; Koh, Katrina S Y; Collin, Caitlin; Dave, Alpana; McMellon, Amy; Sugiyama, Yuki; McAvoy, John W; Voss, Anne K; Gécz, Jozef; Craig, Jamie E

    2009-08-15

    Mutations in the NHS (Nance-Horan Syndrome) gene lead to severe congenital cataracts, dental defects and sometimes mental retardation. NHS encodes two protein isoforms, NHS-A and -1A that display cell-type dependent differential expression and localization. Here we demonstrate that of these two isoforms, the NHS-A isoform associates with the cell membrane in the presence of intercellular contacts and it immunoprecipitates with the tight junction protein ZO-1 in MDCK (Madin Darby Canine Kidney) epithelial cells and in neonatal rat lens. The NHS-1A isoform however is a cytoplasmic protein. Both Nhs isoforms are expressed during mouse development. Immunolabelling of developing mouse with the anti-NHS antibody that detects both isoforms revealed the protein in the developing head including the eye and brain. It was primarily expressed in epithelium including neural epithelium and certain vascular endothelium but only weakly expressed in mesenchymal cells. In the epithelium and vascular endothelium the protein associated with the cell membrane and co-localized with ZO-1, which indirectly indicates expression of the Nhs-A isoform in these structures. Membrane localization of the protein in the lens vesicle similarly supports Nhs-A expression. In conclusion, the NHS-A isoform of NHS is a novel interactor of ZO-1 and may have a role at tight junctions. This isoform is important in mammalian development especially of the organs in the head.

  14. Identification of alternatively spliced isoforms of interleukin-2/15 receptor β chain in ducks.

    PubMed

    Jeong, Jipseol; Kim, Woo H; Yeo, Jaeseung; Fernandez, Cherry P; Kim, Suk; Lee, Youn-Jeong; Lillehoj, Hyun S; Min, Wongi

    2014-12-15

    Interleukin (IL)-2 and IL-15 receptor β (IL-2/15Rβ, CD122) play important roles in signal transduction for biological functions of IL-2 and IL-15. We found that ducks possess three different IL-2/15Rβ transcripts, a conventional form (duIL-2/15Rβ) and two variants. Comparisons between the cDNA and genomic sequences revealed that the two variants, duIL-2/15Rβ-d7 and duIL-2/15Rβ-d9, were novel spliced transcripts resulting from skipping exons 7 and 9, respectively. Expression profiles of duIL-2/15Rβ and its isoforms were examined in healthy tissues, concanavalin A (ConA)-stimulated splenic lymphocytes and in livers and spleens of Riemerella anatipestifer-infected ducks using quantitative real-time PCR (qRT-PCR). Generally, duIL-2/15Rβ-d9 expression was undetectable in healthy tissues, ConA-activated samples, and R. anatipestifer-infected ducks. Expression levels of duIL-2/15Rβ transcript were relatively high to moderate in all healthy tissues tested, while duIL-2/15Rβ-d7 expression was low. Compared to untreated controls, expression levels of duIL-2/15Rβ were elevated in ConA-activated splenic lymphocytes and in livers on day 7 in R. anatipestifer-infected ducks, while duIL-2/15Rβ-d7 expression was unchanged. Additionally, COS-7 cells transfected with duIL-2/15Rβ, duIL-2/15Rβ-d7, or duIL-2/15Rβ-d9 constructs generated 73 kilodalton (kDa), 31kDa, and 40kDa proteins, respectively. This study identified three different IL-2/15Rβ transcripts, including two isoforms generated by alternative splicing and their gene expression patterns in stimulated conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Cellular Fibronectin Expression in Human Trabecular Meshwork and Induction by Transforming Growth Factor-β2

    PubMed Central

    Medina-Ortiz, Wanda E.; Belmares, Ricardo; Neubauer, Sandra; Wordinger, Robert J.; Clark, Abbot F.

    2013-01-01

    Purpose. Levels of TGF-β2 are higher in POAG aqueous humor, causing deposition of extracellular matrix (ECM) proteins, including fibronectin (FN), in the glaucomatous human trabecular meshwork (HTM) that may be responsible for elevated IOP. The purpose of this study was to identify the expression of cellular FN (cFN) isoforms (EDA and EDB) in HTM cells and tissues, and to determine whether TGF-β2 can induce cFN expression and fibril formation in cultured HTM cells. Methods. Expression of cFN mRNA isoforms and induction by recombinant TGF-β2 (5 ng/mL) were determined by quantitative RT-PCR. The TGF-β2 induction of EDA isoform protein expression and FN fibril formation were analyzed using Western immunoblots and immunocytochemistry (ICC), respectively. Immunohistochemistry (IHC) analysis was used to examine total FN and EDA isoform expression in normal (NTM) and glaucomatous (GTM) trabecular meshwork (TM) tissues. Results. Both cFN mRNA isoforms were expressed in cultured HTM cells and were induced by TGF-β2 after 2, 4, and 7 days (P < 0.05). Similarly, EDA isoform protein and fibril formation were increased after 4 and 7 days of TGF-β2 treatment. Finally, GTM tissues had significantly greater EDA isoform protein levels (1.7-fold, P < 0.05) compared to NTM tissues. Conclusions. This study demonstrated that cFN isoforms are expressed and induced in HTM cells by TGF-β2. Also, increased EDA isoform protein levels were seen in GTM tissues. Our findings suggest that induction of cFN isoform expression in the TM ECM may be a novel pathologic mechanism involved in the TM changes associated with glaucoma. PMID:24030464

  16. Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification.

    PubMed

    Vicinanza, Carla; Aquila, Iolanda; Scalise, Mariangela; Cristiano, Francesca; Marino, Fabiola; Cianflone, Eleonora; Mancuso, Teresa; Marotta, Pina; Sacco, Walter; Lewis, Fiona C; Couch, Liam; Shone, Victoria; Gritti, Giulia; Torella, Annalaura; Smith, Andrew J; Terracciano, Cesare Mn; Britti, Domenico; Veltri, Pierangelo; Indolfi, Ciro; Nadal-Ginard, Bernardo; Ellison-Hughes, Georgina M; Torella, Daniele

    2017-12-01

    Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kit pos ) cells. The adult heart indeed contains a heterogeneous mixture of c-kit pos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kit pos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kit pos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kit pos sorting. The blood/endothelial lineage-committed (Lineage pos ) CD45 pos c-kit pos cardiac cells were compared to CD45 neg (Lineage neg /Lin neg ) c-kit pos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kit pos cardiac cells are blood/endothelial lineage-committed CD45 pos CD31 pos c-kit pos cells. In contrast, the Lin neg CD45 neg c-kit pos cardiac cell cohort, which represents ⩽10% of the total c-kit pos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kit neg and the blood/endothelial lineage-committed c-kit pos cardiac cells. Single Lin neg c-kit pos cell-derived clones, which represent only 1-2% of total c-kit pos myocardial cells, when stimulated with TGF-β/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Lin neg c-kit pos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC's myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kit pos cardiac cells were injected. Thus, among the cardiac c-kit pos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs.

  17. Multiparameter fluorescence imaging for quantification of TH-1 and TH-2 cytokines at the single-cell level

    NASA Astrophysics Data System (ADS)

    Fekkar, Hakim; Benbernou, N.; Esnault, S.; Shin, H. C.; Guenounou, Moncef

    1998-04-01

    Immune responses are strongly influenced by the cytokines following antigenic stimulation. Distinct cytokine-producing T cell subsets are well known to play a major role in immune responses and to be differentially regulated during immunological disorders, although the characterization and quantification of the TH-1/TH-2 cytokine pattern in T cells remained not clearly defined. Expression of cytokines by T lymphocytes is a highly balanced process, involving stimulatory and inhibitory intracellular signaling pathways. The aim of this study was (1) to quantify the cytokine expression in T cells at the single cell level using optical imaging, (2) and to analyze the influence of cyclic AMP- dependent signal transduction pathway in the balance between the TH-1 and TH-2 cytokine profile. We attempted to study several cytokines (IL-2, IFN-(gamma) , IL-4, IL-10 and IL-13) in peripheral blood mononuclear cells. Cells were prestimulated in vitro using phytohemagglutinin and phorbol ester for 36h, and then further cultured for 8h in the presence of monensin. Cells were permeabilized and then simple-, double- or triple-labeled with the corresponding specific fluorescent monoclonal antibodies. The cell phenotype was also determined by analyzing the expression of each of CD4, CD8, CD45RO and CD45RA with the cytokine expression. Conventional images of cells were recorded with a Peltier- cooled CCD camera (B/W C5985, Hamamatsu photonics) through an inverted microscope equipped with epi-fluorescence (Diaphot 300, Nikon). Images were digitalized using an acquisition video interface (Oculus TCX Coreco) in 762 by 570 pixels coded in 8 bits (256 gray levels), and analyzed thereafter in an IBM PC computer based on an intel pentium processor with an adequate software (Visilog 4, Noesis). The first image processing step is the extraction of cell areas using an edge detection and a binary thresholding method. In order to reduce the background noise of fluorescence, we performed an opening procedure of the original image using a structuring element. The opened image was therefore subtracted from the original one, and the gray intensities were subsequently measured. Fluorescence intensities are mapped in MD representation using Matlab software. Consequently, quantitative comparative expression of intracellular cytokines and cell membrane markers was achieved. Using this technique, we showed that CD4+ and CD8+T lymphocytes expressed a large panel of cytokines, and that protein kinase A (PKA) activation pathway induced a polarization of activated human T cells to the TH-2 type profile. Data also showed different sensitivities of CD45 RO/CD45RA lymphocytes to the activation of PKA, thus suggesting the implication of memory CD4+- and CD8+-T cells in the T cell specific immune and inflammatory processes and their control by PKA activation pathway. Finally, this method represents a powerful tool for the detection and quantification of intracellular cytokine expression and the analysis of the functional properties of T lymphocytes during immune responses.

  18. Isoform-selective induction of human p110δ PI3K expression by TNFα: identification of a new and inducible PIK3CD promoter

    PubMed Central

    Whitehead, Maria A.; Bombardieri, Michele; Pitzalis, Costantino; Vanhaesebroeck, Bart

    2012-01-01

    PI3Ks (phosphoinositide 3-kinases) are signalling molecules and drug targets with important biological functions, yet the regulation of PI3K gene expression is poorly understood. Key PI3Ks are the class IA PI3Ks that consist of a catalytic subunit (p110α, p110β and p110δ) in complex with a p85 regulatory subunit. Whereas p110α and p110β are ubiquitously expressed, high levels of p110δ are mainly found in white blood cells, with most non-leucocytes expressing low levels of p110δ. In the present paper we report that TNFα (tumour necrosis factor α) stimulation induces p110δ expression in human ECs (endothelial cells) and synovial fibroblasts, but not in leucocytes, through transcription start sites located in a novel promoter region in the p110δ gene (PIK3CD). This promoter is used in all cell types, including solid tumour cell lines that express p110δ, and is activated by TNFα in ECs and synovial fibroblasts. We further present a detailed biochemical and bioinformatic characterization of p110δ gene regulation, demonstrating that PIK3CD has distinct promoters, some of which can be dynamically activated by pro-inflammatory mediators. This is the first molecular identification of a PI3K promoter under the control of acute extracellular stimulation. PMID:22375552

  19. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells.

    PubMed

    Babeu, Jean-Philippe; Jones, Christine; Geha, Sameh; Carrier, Julie C; Boudreau, François

    2018-06-13

    HNF4α is a key nuclear receptor for regulating gene expression in the gut. While both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms may regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism while P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms are rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome thereby promoting colorectal cancer progression. © 2018. Published by The Company of Biologists Ltd.

  20. Trans-differentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegiline.

    PubMed

    Abdanipour, Alireza; Tiraihi, Taki; Delshad, Alireza

    2011-01-01

    Adult stem cells (ASC) are undifferentiated cells found throughout the body. These cells are promising tools for cell replacement therapy in neurodegenerative disease. Adipose tissue is the most abundant and accessible source of ASC. This study was conducted to evaluate effect of selegiline on differentiation of adipose-derived stem cells (ADSC) into functional neuron-like cells (NLC), and also level of the neurotrophin expression in differentiated cells. ADSC were transdifferentiated into NLC using selegiline where CD90, CD49d, CD31, CD106 and CD45 were used as markers for ADSC identification. Lipogenic and osteogenic differentiation of ADSC were used to characterize the ADSC. ADSC were treated with selegiline at different concentrations (from 10(-6) to 10(-11) mM) and time points (3, 6, 12, 24 and 48 h). Percentage of viable cells, nestin and neurofilament 68 (NF-68) immunoreactive cells were used as markers for differentiation. The optimal dose for neurotrophin expressions in differentiating cells was evaluated using reverse transcriptase-PCR. NLC function was evaluated by loading and unloading with FM1-43 dye. ADSC were immunoreactive to CD90 (95.67 ± 2.26), CD49d (71.52 ± 6.64) and CD31 (0.6 ± 0.86), but no immunoreactivity was detected for CD106 and CD45. The results of neural differentiation showed the highest percentage of nestin and NF-68 positive cells at 10(-9) mM concentration of selegiline (exposed for 24 h). The differentiated cells expressed synapsin and neurotrophin genes except brain-derived neurotrophic factor. ADSC can be an alternative source in cell-based therapy for neurodegenerative diseases using selegiline to induce ADSC differentiation to neuronal lineage.

  1. First Trimester Pregnancy Loss and the Expression of Alternatively Spliced NKp30 Isoforms in Maternal Blood and Placental Tissue

    PubMed Central

    Shemesh, Avishai; Tirosh, Dan; Sheiner, Eyal; Benshalom-Tirosh, Neta; Brusilovsky, Michael; Segev, Rotem; Rosental, Benyamin; Porgador, Angel

    2015-01-01

    Capsule: We observed that first trimester pregnancy loss is associated with an altered expression profile of the three isoforms of the NK receptor NKp30 expressed by NKs in PBMC and placental tissue. In this study, we aimed to investigate whether first trimester pregnancy loss is associated with differences in expression of NKp30 splice variants (isoforms) in maternal peripheral blood or placental tissue. We conducted a prospective case–control study; a total of 33 women undergoing dilation and curettage due to first trimester pregnancy loss were further subdivided into groups with sporadic or recurrent pregnancy loss. The control group comprises women undergoing elective termination of pregnancy. The qPCR approach was employed to assess the relative expression of NKp30 isoforms as well as the total expression of NKp30 and NKp46 receptors between the selected groups. Results show that in both PBMC and placental tissue, NKp46 and NKp30 expressions were mildly elevated in the pregnancy loss groups compared with the elective group. In particular, NKp46 elevation was significant. Moreover, expression analysis of NKp30 isoforms manifested a different profile between PBMC and the placenta. NKp30-a and NKp30-b isoforms in the placental tissue, but not in PBMC, showed a significant increase in the pregnancy loss groups compared with the elective group. Placental expression of NKp30 activating isoforms-a and -b in the pregnancy loss groups was negatively correlated with PLGF expression. By contrast, placental expression of these isoforms in the elective group was positively correlated with TNFα, IL-10, and VEGF-A expression. The altered expression of NKp30 activating isoforms in placental tissue from patients with pregnancy loss compared to the elective group and the different correlations with cytokine expression point to the involvement of NKp30-mediated function in pregnancy loss. PMID:26082773

  2. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    PubMed Central

    2014-01-01

    Background Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and mutant plants. PMID:25082369

  3. Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry.

    PubMed

    Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M; Tourkina, Elena; Visconti, Richard P; Hoffman, Stanley

    2014-01-01

    Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45(high) fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47(high)/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ.

  4. Fibrocytes in the fibrotic lung: altered phenotype detected by flow cytometry

    PubMed Central

    Reese, Charles; Lee, Rebecca; Bonner, Michael; Perry, Beth; Heywood, Jonathan; Silver, Richard M.; Tourkina, Elena; Visconti, Richard P.; Hoffman, Stanley

    2014-01-01

    Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ. PMID:24999331

  5. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms

    PubMed Central

    Mattila, Joshua T.; Ojo, Olabisi O.; Kepka-Lenhart, Diane; Marino, Simeone; Kim, Jin Hee; Eum, Seok Yong; Via, Laura E.; Barry, Clifton E.; Klein, Edwin; Kirschner, Denise E.; Morris, Sidney M.; Lin, Philana Ling; Flynn, JoAnne L.

    2013-01-01

    Macrophages in granulomas are both anti-mycobacterial effector and host cell for Mycobacterium tuberculosis(M.tb), yet basic aspects of macrophage diversity and function within the complex structures of granulomas remain poorly understood. To address this, we examined myeloid cell phenotypes and expression of enzymes correlated with host defense in macaque and human granulomas. Macaque granulomas had upregulated inducible and endothelial nitric oxide synthase (iNOS and eNOS) and arginase (Arg1 and Arg2) expression and enzyme activity compared to non-granulomatous tissue. Immunohistochemical analysis indicated macrophages adjacent to uninvolved normal tissue were more likely to express CD163, while epithelioid macrophages in regions where bacteria reside strongly expressed CD11c, CD68 and HAM56. Calprotectin-positive neutrophils were abundant in regions adjacent to caseum. iNOS, eNOS, Arg1 and Arg2 proteins were identified in macrophages and localized similarly in granulomas across species, with greater eNOS expression and ratio of iNOS:Arg1 expression in epithelioid macrophages, as compared to cells in the lymphocyte cuff. iNOS, Arg1 and Arg2 expression in neutrophils was also identified. The combination of phenotypic and functional markers support that macrophages with anti-inflammatory phenotypes localized to outer regions of granulomas while the inner regions were more likely to contain macrophages with pro-inflammatory, presumably bactericidal, phenotypes. Together these data support the concept that granulomas have organized microenvironments that balance anti-microbial anti-inflammatory responses to limit pathology in the lungs. PMID:23749634

  6. DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates

    PubMed Central

    Peng, Hao; Yang, Yifan; Zhe, Shandian; Wang, Jian; Gribskov, Michael; Qi, Yuan

    2017-01-01

    Abstract Motivation High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy. Results We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improve the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature. Availability and implementation The software is available at https://github.com/hao-peng/DEIsoM Contact pengh@alumni.purdue.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28595376

  7. Peripheral CD4+ naïve/memory ratio is an independent predictor of survival in non-small cell lung cancer

    PubMed Central

    Yang, Peng; Ma, Junhong; Yang, Xin; Li, Wei

    2017-01-01

    Background To investigate the clinical significance of naïve T cells, memory T cells, CD45RA+CD45RO+ T cells, and naïve/memory ratio in non-small cell lung cancer (NSCLC) patients. Methods Pretreatment peripheral blood samples from 76 NSCLC patients and 28 age- and sex-matched healthy volunteers were collected and tested for immune cells by flow cytometry. We compared the expression of these immune cells between patients and healthy controls and evaluated their predictive roles for survival in NSCLC by cox proportional hazards model. Results Decreased naïve CD4+ T cells, naïve CD8+ T cells, CD4+ naïve/memory ratios and CD4+CD45RA+CD45RO+ T cells, and increased memory CD4+ T cells, were observed in 76 NSCLC patients compared to healthy volunteers. Univariate analysis revealed that elevated CD4+ naïve/memory ratio correlated with prolonged progression-free survival (P=0.013). Multivariate analysis confirmed its predictive role with a hazard ratio of 0.35 (95% confidence interval, 0.19-0.75, P=0.012). Conclusions Peripheral CD4+ naïve/memory ratio can be used as a predictive biomarker in NSCLC patients and used to optimize personalized treatment strategies. PMID:29137371

  8. Expression of CD30 in patients with acute graft-versus-host disease.

    PubMed

    Chen, Yi-Bin; McDonough, Sean; Hasserjian, Robert; Chen, Heidi; Coughlin, Erin; Illiano, Christina; Park, In Sun; Jagasia, Madan; Spitzer, Thomas R; Cutler, Corey S; Soiffer, Robert J; Ritz, Jerome

    2012-07-19

    Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8(+) T cells with the difference especially pronounced in the central memory subset (CD8(+)CD45RO(+)CD62L(+)): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4(+) T cells, and regulatory (CD4(+)CD127(low)CD25(+)) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30(+) infiltrating lymphocytes present. These results suggest that CD30 expression on CD8(+) T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD.

  9. Expression of CD30 in patients with acute graft-versus-host disease

    PubMed Central

    McDonough, Sean; Hasserjian, Robert; Chen, Heidi; Coughlin, Erin; Illiano, Christina; Park, In Sun; Jagasia, Madan; Spitzer, Thomas R.; Cutler, Corey S.; Soiffer, Robert J.; Ritz, Jerome

    2012-01-01

    Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8+ T cells with the difference especially pronounced in the central memory subset (CD8+CD45RO+CD62L+): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4+ T cells, and regulatory (CD4+CD127lowCD25+) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30+ infiltrating lymphocytes present. These results suggest that CD30 expression on CD8+ T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD. PMID:22661699

  10. CD10-bearing fibroblasts may inhibit skin inflammation by down-modulating substance P.

    PubMed

    Xie, Lining; Takahara, Masakazu; Nakahara, Takeshi; Oba, Junna; Uchi, Hiroshi; Takeuchi, Satoshi; Moroi, Yoichi; Furue, Masutaka

    2011-01-01

    Substance P (SP) is a multipotent neuropeptide that affects the proliferation, activation and motility of keratinocytes and fibroblasts (Fbs). SP in pulmonary and synovial cells is degraded by CD10, a 90- to 110-kDa cell surface zinc-dependent metalloprotease. However, the expression and function of CD10 in human dermal Fbs have not yet been investigated in vivo and in vitro specifically with reference to SP. Our immunohistologic study revealed moderate to strong fibroblastic CD10 expression in the majority of psoriasis vulgaris (16/16), chronic eczema (15/16), lichen planus (18/20) and atopic dermatitis (4/5). Keratinocytes showed no CD10 expression in vivo and in vitro. Cultured Fbs constitutively expressed CD10 and SP. CD10 expression was augmented by external interleukin (IL)-1β and IL-22, but not by IL-8 and IL-17A in Fbs. SP production was enhanced in CD10 knockdown-Fbs (CD10ND-Fbs) compared with control-Fbs. In the presence of IL-1β or IL-22, the enhancement of SP production was more prominent in CD10ND-Fbs than in control-Fbs, suggesting the down-modulating activity of CD10 on SP in cytokine-mediated inflammation. In conclusion, fibroblastic CD10 expression may down-regulate skin inflammation by degrading SP or reducing its level in the dermal microenvironment.

  11. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS

    PubMed Central

    Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni

    2017-01-01

    CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability. PMID:29155846

  12. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS.

    PubMed

    Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni; Lupia, Enrico

    2017-01-01

    CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.

  13. Tissue Non-specific Alkaline Phosphatase Expression is Needed for the Full Stimulation of T Cells and T Cell-Dependent Colitis.

    PubMed

    Hernández-Chirlaque, Cristina; Gámez-Belmonte, Reyes; Ocón, Borja; Martínez-Moya, Patricia; Wirtz, Stefan; Sánchez de Medina, Fermín; Martínez-Augustin, Olga

    2017-07-01

    Two alkaline phosphatase isoforms, intestinal [IAP] and tissue non-specific alkaline phosphatase [TNAP], are coexpressed in mouse colon, with the latter predominating in colitis. We aimed to examine the role of TNAP in T lymphocytes, using heterozygous TNAP+/- mice [as TNAP-/- mice are non-viable]. In vitro primary cultures and in vivo T cell models using TNAP+/- mice were used. Stimulated splenocytes [lipopolysaccharide and concanavalin A] and T lymphocytes [concanavalin A and a-CD3/a-CD28] showed a decreased cytokine production and expression when compared with wild-type [WT] cells. Decreased T cell activation was reproduced by the TNAP inhibitors levamisole, theophylline, and phenylalanine in WT cells. Intraperitoneal administration of anti-CD3 in vivo resulted in reduced plasma cytokine levels, and decreased activation of splenocytes and T cells ex vivo in TNAP+/- mice. We further tested the hypothesis that TNAP expressed in T lymphocytes is involved in T cell activation and inflammation, using the lymphocyte transfer model of colitis. Rag1-/- mice were transferred with T naïve cells [CD4+ CD62L+] from TNAP+/- or WT mice and developed colitis, which was attenuated in the group receiving TNAP+/- cells. Compared with WT, T cells from TNAP+/- mice showed a decreased capacity for proliferation, with no change in differentiation. Our results offer clear evidence that TNAP modulates T lymphocyte function and specifically T cell-dependent colitis. This was associated with distinct changes in the type of TNAP expressed, probably because of changes in glycosylation. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  14. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile.

    PubMed

    Pinto, Alexander R; Paolicelli, Rosa; Salimova, Ekaterina; Gospocic, Janko; Slonimsky, Esfir; Bilbao-Cortes, Daniel; Godwin, James W; Rosenthal, Nadia A

    2012-01-01

    Cardiac tissue macrophages (cTMs) are a previously uncharacterised cell type that we have identified and characterise here as an abundant GFP(+) population within the adult Cx(3)cr1(GFP/+) knock-in mouse heart. They comprise the predominant myeloid cell population in the myocardium, and are found throughout myocardial interstitial spaces interacting directly with capillary endothelial cells and cardiomyocytes. Flow cytometry-based immunophenotyping shows that cTMs exhibit canonical macrophage markers. Gene expression analysis shows that cTMs (CD45(+)CD11b(+)GFP(+)) are distinct from mononuclear CD45(+)CD11b(+)GFP(+) cells sorted from the spleen and brain of adult Cx(3)cr1(GFP/+) mice. Gene expression profiling reveals that cTMs closely resemble alternatively-activated anti-inflammatory M2 macrophages, expressing a number of M2 markers, including Mrc1, CD163, and Lyve-1. While cTMs perform normal tissue macrophage homeostatic functions, they also exhibit a distinct phenotype, involving secretion of salutary factors (including IGF-1) and immune modulation. In summary, the characterisation of cTMs at the cellular and molecular level defines a potentially important role for these cells in cardiac homeostasis.

  15. The lupus susceptibility gene Pbx1 regulates the balance between follicular helper T cell and regulatory T cell differentiation

    PubMed Central

    Choi, Seung-Chul; Hutchinson, Tarun E.; Titov, Anton A.; Seay, Howard R.; Li, Shiwu; Brusko, Todd M.; Croker, Byron P.; Salek-Ardakani, Shahram; Morel, Laurence

    2016-01-01

    Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant negative isoform is more frequent in the CD4+ T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus susceptibility locus. Transgenic expression of Pbx1-d in CD4+ T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4+ T cells and impaired regulatory T cell homeostasis. Pbx1-d Tg also expanded the number of follicular helper T cells in a cell-intrinsic and antigen-specific manner that was enhanced in recall responses, and resulted in TH1-biased antibodies. Moreover, Pbx1-d Tg CD4+ T cells upregulated the expression of miR-10a, miR-21 and miR-155, which have been implicated in Treg and TFH cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFH cells at the expense of Treg cells. In addition, our results identify Pbx1 as a novel regulator of CD4+ T cell effector function. PMID:27296664

  16. Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies

    PubMed Central

    Mirabelli, Peppino; Di Noto, Rosa; Lo Pardo, Catia; Morabito, Paolo; Abate, Giovanna; Gorrese, Marisa; Raia, Maddalena; Pascariello, Caterina; Scalia, Giulia; Gemei, Marica; Mariotti, Elisabetta; Del Vecchio, Luigi

    2008-01-01

    Background Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients. Results In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA). Conclusion Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH-/CD34+ and ALDH+/CD34- progenitor cell subsets in human bone marrow, clearly indicated that ALDH+CD34- cells are mainly committed towards erythropoiesis. To the best of our knowledge this finding is new and could be useful for basic studies about normal erythropoietic differentiation as well as for enabling the employment of ALDH as a red cell marker in polychromatic flow cytometry characterization of bone marrow from patients with aplastic anemia and myelodysplasia. PMID:18510759

  17. Regulated Expression of a Calmodulin Isoform Alters Growth and Development in Potato

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Takezawa, D.; An, G.; Han, T.-J.

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodutin iso-form on plant growth and development. Eight genomic clones of potato calmodulin (PCM 1 to 8) have been isolated and characterized. Among the potato calmodulin isoforms studied, PCM 1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM 1 fused to the CAMV 35S promoter. Transgenic plants showing a moderate increase in PCM 1 MRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM 1 MRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM 1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM 1 MRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM 1 protein in transgenic plants, indicating that the expression of both MRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM 1 alters growth and development in potato plants.

  18. Expression of Master Regulators of T-cell, Helper T-cell and Follicular Helper T-cell Differentiation in Angioimmunoblastic T-cell Lymphoma.

    PubMed

    Matsumoto, Yosuke; Nagoshi, Hisao; Yoshida, Mihoko; Kato, Seiichi; Kuroda, Junya; Shimura, Kazuho; Kaneko, Hiroto; Horiike, Shigeo; Nakamura, Shigeo; Taniwaki, Masafumi

    2017-11-01

    Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.

  19. Expression of interleukin-2 (IL-2) receptor alpha and CD45RO antigen on T-lymphocytes cultured with measles virus antigens, compared with humoral immunity in measles vaccinees.

    PubMed

    Toyoda, M; Ihara, T; Nakano, T; Ito, M; Kamiya, H

    1999-03-17

    In response to two types of measles virus (MV) antigens, a vaccine strain CAM and a wild strain isolated in 1994, the expression of IL-2 receptor alpha (CD25)(+)CD45RO(+)CD4(+) T-lymphocytes (T-cell activation) was analyzed by flow cytometry. In 75 healthy subjects with measles hemagglutination inhibition tests > or =1:16, the percentage of T-cell activation was significantly increased compared with that in seronegative individuals (p) < 0.05). Moreover, the T-cell expression was not significantly different among the vaccinated (n = 38), the naturally infected (n = 28) and the subclinically infected (exposed with wild type without history of measles infection and HI titers > or =1:16) (n = 10) groups. T-cell activation stimulated with MV antigens and HI antibody titers persisted for almost 30 years in the vaccinated group. These results suggest that cell-mediated immunity persists for long periods after vaccination and does not be influenced by antigenic drift.

  20. Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects.

    PubMed

    Garde, Seema V; Forté, André J; Ge, Michael; Lepekhin, Eugene A; Panchal, Chandra J; Rabbani, Shafaat A; Wu, Jinzi J

    2007-11-01

    In an effort to develop new agents and molecular targets for the treatment of cancer, aspargine-glycine-arginine (NGR)-targeted liposomal doxorubicin (TVT-DOX) is being studied. The NGR peptide on the surface of liposomal doxorubicin (DOX) targets an aminopeptidase N (CD13) isoform, specific to the tumor neovasculature, making it a promising strategy. To further understand the molecular mechanisms of action, we investigated cell binding, kinetics of internalization as well as cytotoxicity of TVT-DOX in vitro. We demonstrate the specific binding of TVT-DOX to CD13-expressing endothelial [human umbilical vein endothelial cells (HUVEC) and Kaposi sarcoma-derived endothelial cells (SLK)] and tumor (fibrosarcoma, HT-1080) cells in vitro. Following binding, the drug was shown to internalize through the endosomal pathway, eventually leading to the localization of doxorubicin in cell nuclei. TVT-DOX showed selective toxicity toward CD13-expressing HUVEC, sparing the CD13-negative colon-cancer cells, HT-29. Additionally, the nontargeted counterpart of TVT-DOX, Caelyx, was less cytotoxic to the CD13-positive HUVECs demonstrating the advantages of NGR targeting in vitro. The antitumor activity of TVT-DOX was tested in nude mice bearing human prostate-cancer xenografts (PC3). A significant growth inhibition (up to 60%) of PC3 tumors in vivo was observed. Reduction of tumor vasculature following treatment with TVT-DOX was also apparent. We further compared the efficacies of TVT-DOX and free doxorubicin in the DOX-resistant colon-cancer model, HCT-116, and observed the more pronounced antitumor effects of the TVT-DOX formulation over free DOX. The potential utility of TVT-DOX in a variety of vascularized solid tumors is promising.

  1. Smooth muscle myosin isoform expression and LC20 phosphorylation in innate rat airway hyperresponsiveness.

    PubMed

    Gil, Fulvio R; Zitouni, Nedjma B; Azoulay, Eric; Maghni, Karim; Lauzon, Anne-Marie

    2006-11-01

    Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.

  2. Factors involved in the generation of memory CD8+ T cells in patients with X-linked lymphoproliferative disease (XLP)

    PubMed Central

    Belmonte, L; Parodi, C; Baré, P; Malbrán, A; Ruibal-Ares, B; de E de Bracco, María M

    2007-01-01

    We have analysed the phenotype of T lymphocytes in two X-linked lymphoproliferative disease (XLP) patients with the same SH2D1A mutation differing in initial exposure to Epstein–Barr virus (EBV) and treatment. While memory T lymphocytes (with low CCR7 and CD62L expression) prevailed in both XLP patients, in patient 9, who developed acute infectious mononucleosis (AIM) and received B cell ablative treatment, the predominant phenotype was that of late effector CD8 T cells (CD27–, CD28–, CCR7–, CD62L–, CD45 RA+, perforin+), while in patient 4 (who did not suffer AIM) the prevalent phenotype of CD8 T lymphocytes was similar to that of normal controls (N) or to that of adult individuals who recovered from AIM: CD27+, CD28+, CCR7–, CD62L–, CD45 RO+ and perforin–. CD57 expression (related to senescence) was also higher in CD8 T cells from patient 9 than in patient 4, AIM or N. Persistently high EBV viral load was observed in patient 9. The results obtained from this limited number of XLP patients suggest that events related to the initial EBV encounter (antigen load, treatment, cytokine environment) may have more weight than lack of SH2D1A in determining the long-term differentiation pattern of CD8 memory T cells. PMID:17302894

  3. Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter.

    PubMed

    Schneider, Thomas; Karl, Stephan; Moore, Lee R; Chalmers, Jeffrey J; Williams, P Stephen; Zborowski, Maciej

    2010-01-01

    Cell separation and fractionation based on fluorescent and magnetic labeling procedures are common tools in contemporary research. These techniques rely on binding of fluorophores or magnetic particles conjugated to antibodies to target cells. Cell surface marker expression levels within cell populations vary with progression through the cell cycle. In an earlier work we showed the reproducible magnetic fractionation (single pass) of the Jurkat cell line based on the population distribution of CD45 surface marker expression. Here we present a study on magnetic fractionation of a stem and progenitor cell (SPC) population using the established acute myelogenous leukemia cell line KG-1a as a cell model. The cells express a CD34 cell surface marker associated with the hematopoietic progenitor cell activity and the progenitor cell lineage commitment. The CD34 expression level is approximately an order of magnitude lower than that of the CD45 marker, which required further improvements of the magnetic fractionation apparatus. The cells were immunomagnetically labeled using a sandwich of anti-CD34 antibody-phycoerythrin (PE) conjugate and anti-PE magnetic nanobead and fractionated into eight components using a continuous flow dipole magnetophoresis apparatus. The CD34 marker expression distribution between sorted fractions was measured by quantitative PE flow cytometry (using QuantiBRITE PE calibration beads), and it was shown to be correlated with the cell magnetophoretic mobility distribution. A flow outlet addressing scheme based on the concept of the transport lamina thickness was used to control cell distribution between the eight outlet ports. The fractional cell distributions showed good agreement with numerical simulations of the fractionation based on the cell magnetophoretic mobility distribution in the unsorted sample.

  4. Differential activation of human T cells to allogeneic endothelial cells, epithelial cells and fibroblasts in vitro

    PubMed Central

    2012-01-01

    Background In the direct pathway, T cells recognize intact donor major histocompatability complexes and allogeneic peptide on the surface of donor antigen presenting cells (APCs). Indirect allorecognition results from the recognition of processed alloantigen by self MHC complexes on self APCs. In this study, we wished to evaluate the relative contribution of different intragraft cells to the alloactivation of nave and memory T cells though the direct and the indirect pathway of allorecognition. Methods The processing of membrane fragments from IFN-treated single donor endothelial cells (EC), fibroblasts or renal epithelial cells (RPTEC) was evaluated by DiOC labeling of each cell type and flow cytometry following interaction with PBMC. Direct pathway activation of nave CD45RA+ or memory CD45RO+ CD4+ T cells was evaluated following coculture with IFN-treated and MHC class II-expressing EC, fibroblasts or RPTEC. Indirect pathway activation was assessed using CD45RA+ or CD45RO+ CD4+ T cells cocultured with autologous irradiated APCs in the absence or presence of sonicates derived from IFN-treated allogeneic EC, fibroblasts or RPTEC. Activation of T cells was assessed by [3H]thymidine incorporation and by ELISpot assays. Results We find that CD14+ APCs readily acquire membrane fragments from fibroblasts and RPTEC, but fail to acquire membrane fragments from intact EC. However, APCs process membranes from EC undergoing apoptosis.There was a notable direct pathway alloproliferative response of CD45RO+ CD4+ T cells to IFN-treated EC, but not to fibroblasts or RPTEC. Also, there was a minimal direct pathway response of CD45RA+ CD4+ T cells to all cell types. In contrast, we found that both CD45RA+ and CD45RO+ CD4+ T cells proliferated following coculture with autologous APCs in the presence of sonicates derived from IFN-treated EC, fibroblasts or RPTEC. By ELISpot, we found that these T cells stimulated via the indirect pathway also produced the cytokines IFN, IL-2, IL-4 and IL-5. Conclusions Recipient APCs may readily process membrane fragments from allogeneic intragraft cells, but not from EC unless they are undergoing apoptosis. This processing is sufficient for indirect pathway alloactivation of both CD45RA+ and CD45RO+ CD4+ T cells. Only graft vascular EC mediate direct pathway reactivation of CD4+ T cells. PMID:23369287

  5. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    PubMed

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  6. Tissue-specific expression of human CD4 in transgenic mice.

    PubMed Central

    Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C

    1993-01-01

    The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453

  7. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells

    PubMed Central

    Ferrell, Patrick I; Xi, Jiafei; Ma, Chao; Adlakha, Mitali; Kaufman, Dan S.

    2016-01-01

    Derivation of hematopoietic stem cells from human pluripotent stem cells remains a key goal for the fields of developmental biology and regenerative medicine. Here, we use a novel genetic reporter system to prospectively identify and isolate early hematopoietic cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (iPSCs). Cloning the human RUNX1c P1 promoter and +24 enhancer to drive expression of tdTomato (tdTom) in hESCs and iPSCs, we demonstrate that tdTom expression faithfully enriches for RUNX1c-expressing hematopoietic progenitor cells. Time-lapse microscopy demonstrated the tdTom+ hematopoietic cells to emerge from adherent cells. Furthermore, inhibition of primitive hematopoiesis by blocking Activin/Nodal signaling promoted the expansion and/or survival of tdTom+ population. Notably, RUNX1c/tdTom+ cells represent only a limited subpopuation of CD34+CD45+ and CD34+CD43+ cells with a unique genetic signature. Using gene array analysis, we find significantly lower expression of Let-7 and mir181a microRNAs in the RUNX1c/tdTom+ cell population. These phenotypic and genetic analyses comparing the RUNX1c/tdTom+ population to CD34+CD45+ umbilical cord blood and fetal liver demonstrate several key differences that likely impact the development of HSCs capable of long-term multilineage engraftment from hESCs and iPSCs. PMID:25546363

  8. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells

    PubMed Central

    Nemoto, Yasuhiro; Kanai, Takanori; Takahara, Masahiro; Oshima, Shigeru; Nakamura, Tetsuya; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Watanabe, Mamoru

    2013-01-01

    Objective Interleukin (IL)-7 is mainly produced in bone marrow (BM) that forms the niche for B cells. We previously demonstrated that BM also retains pathogenic memory CD4 T cells in murine models of inflammatory bowel disease (IBD). However, it remains unknown whether BM-derived IL-7 is sufficient for the development of IBD and which cells form the niche for colitogenic memory CD4 T cells in BM. Design To address these questions, we developed mice in which IL-7 expression was specific for BM, and identified colitis-associated IL-7-expressing mesenchymal stem cells (MSC) in the BM. Results IL-7–/–×RAG-1–/– mice injected with BM cells from IL-7+/+×RAG-1–/– mice, but not from IL-7–/–×RAG-1–/– mice, expressed IL-7 in BM, but not in their colon, and developed colitis when injected with CD4+CD45RBhigh T cells. Cultured BM MSC stably expressed a higher level of IL-7 than that of primary BM cells. IL-7-sufficient, but not IL-7-deficient, BM MSC supported upregulation of Bcl-2 in, and homeostatic proliferation of, colitogenic memory CD4 T cells in vitro. Notably, IL-7–/–×RAG-1–/– mice transplanted with IL-7-sufficient, but not IL-7-deficient, BM MSC expressed IL-7 in BM, but not in their colon, and developed colitis when transplanted with CD4+CD45RBhigh T cells. Conclusions We demonstrate for the first time that BM MSC are a major source of IL-7 and play a pathological role in IBD by forming the niche for colitogenic CD4 memory T cells in BM. PMID:23144054

  9. Passage-dependent morphological and phenotypical changes of a canine histiocytic sarcoma cell line (DH82 cells).

    PubMed

    Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo

    2015-01-15

    DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Differential Pre-mRNA Splicing Regulates Nnat Isoforms in the Hypothalamus after Gastric Bypass Surgery in Mice

    PubMed Central

    Scott, William R.; Gelegen, Cigdem; Chandarana, Keval; Karra, Efthimia; Yousseif, Ahmed; Amouyal, Chloé; Choudhury, Agharul I.; Andreelli, Fabrizio; Withers, Dominic J.; Batterham, Rachel L.

    2013-01-01

    Background Neuronatin (NNAT) is an endoplasmic reticulum proteolipid implicated in intracellular signalling. Nnat is highly-expressed in the hypothalamus, where it is acutely regulated by nutrients and leptin. Nnat pre-mRNA is differentially spliced to create Nnat-α and -β isoforms. Genetic variation of NNAT is associated with severe obesity. Currently, little is known about the long-term regulation of Nnat. Methods Expression of Nnat isoforms were examined in the hypothalamus of mice in response to acute fast/feed, chronic caloric restriction, diet-induced obesity and modified gastric bypass surgery. Nnat expression was assessed in the central nervous system and gastrointestinal tissues. RTqPCR was used to determine isoform-specific expression of Nnat mRNA. Results Hypothalamic expression of both Nnat isoforms was comparably decreased by overnight and 24-h fasting. Nnat expression was unaltered in diet-induced obesity, or subsequent switch to a calorie restricted diet. Nnat isoforms showed differential expression in the hypothalamus but not brainstem after bypass surgery. Hypothalamic Nnat-β expression was significantly reduced after bypass compared with sham surgery (P = 0.003), and was positively correlated with post-operative weight-loss (R2 = 0.38, P = 0.01). In contrast, Nnat-α expression was not suppressed after bypass surgery (P = 0.19), and expression did not correlate with reduction in weight after surgery (R2 = 0.06, P = 0.34). Hypothalamic expression of Nnat-β correlated weakly with circulating leptin, but neither isoform correlated with fasting gut hormone levels post- surgery. Nnat expression was detected in brainstem, brown-adipose tissue, stomach and small intestine. Conclusions Nnat expression in hypothalamus is regulated by short-term nutrient availability, but unaltered by diet-induced obesity or calorie restriction. While Nnat isoforms in the hypothalamus are co-ordinately regulated by acute nutrient supply, after modified gastric bypass surgery Nnat isoforms show differential expression. These results raise the possibility that in the radically altered nutrient and hormonal milieu created by bypass surgery, resultant differential splicing of Nnat pre-mRNA may contribute to weight-loss. PMID:23527188

  11. Overexpressed long noncoding RNA CRNDE with distinct alternatively spliced isoforms in multiple cancers.

    PubMed

    Ma, Xuefei; Zhang, Wei; Zhang, Rong; Li, Jingming; Li, Shufen; Ma, Yunlin; Jin, Wen; Wang, Kankan

    2018-05-26

    Alternative splicing is a tightly regulated process that contributes to cancer development. CRNDE is a long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers. However, whether deregulated expression of CRNDE is common and which isoforms are mainly involved in cancers remain unclear. In this study, we report that CRNDE is aberrantly expressed in the majority of solid and hematopoietic malignancies. The investigation of CRNDE expression in normal samples revealed that CRNDE was expressed in a tissue- and cell-specific manner. Further comparison of CRNDE expression in 2938 patient samples from 15 solid and hematopoietic tumors showed that CRNDE was significantly overexpressed in 11 malignancies, including 3 reported and 8 unreported, and also implicated that the overexpressed isoforms differed in various cancer types. Furthermore, anti-cancer drugs could efficiently repress CRNDE overexpression in cancer cell lines and primary samples, and even had different impacts on the expression of CRNDE isoforms. Finally, experimental profiles of 12 alternatively spliced isoforms demonstrated that the spliced variant CRNDE-g was the most highly expressed isoform in multiple cancer types. Collectively, our results emphasize the cancer-associated feature of CRNDE and its spliced isoforms, and may provide promising targets for cancer diagnosis and therapy.

  12. A putative mesenchymal stem cells population isolated from adult human testes.

    PubMed

    Gonzalez, R; Griparic, L; Vargas, V; Burgee, K; Santacruz, P; Anderson, R; Schiewe, M; Silva, F; Patel, A

    2009-08-07

    Mesenchymal stem cells (MSCs) isolated from several adult human tissues are reported to be a promising tool for regenerative medicine. In order to broaden the array of tools for therapeutic application, we isolated a new population of cells from adult human testis termed gonadal stem cells (GSCs). GSCs express CD105, CD166, CD73, CD90, STRO-1 and lack hematopoietic markers CD34, CD45, and HLA-DR which are characteristic identifiers of MSCs. In addition, GSCs express pluripotent markers Oct4, Nanog, and SSEA-4. GSCs propagated for at least 64 population doublings and exhibited clonogenic capability. GSCs have a broad plasticity and the potential to differentiate into adipogenic, osteogenic, and chondrogenic cells. These studies demonstrate that GSCs are easily obtainable stem cells, have growth kinetics and marker expression similar to MSCs, and differentiate into mesodermal lineage cells. Therefore, GSCs may be a valuable tool for therapeutic applications.

  13. Regulated expression of a calmodulin isoform alters growth and development in potato.

    PubMed

    Poovaiah, B W; Takezawa, D; An, G; Han, T J

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodulin isoform on plant growth and development. Eight genomic clones of potato calmodulin (PCM1 to 8) have been isolated and characterized (Takezawa et al., 1995). Among the potato calmodulin isoforms studied, PCM1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM1 fused to the CaMV 35S promoter. Transgenic plants showing a moderate increase in PCM1 mRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM1 mRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM1 mRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM1 protein in transgenic plants, indicating that the expression of both mRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM1 alters growth and development in potato plants.

  14. Extended diagnostic criteria for plasmacytoid dendritic cell leukaemia.

    PubMed

    Garnache-Ottou, Francine; Feuillard, Jean; Ferrand, Christophe; Biichle, Sabeha; Trimoreau, Franck; Seilles, Estelle; Salaun, Véronique; Garand, Richard; Lepelley, Pascale; Maynadié, Marc; Kuhlein, Emilienne; Deconinck, Eric; Daliphard, Sylvie; Chaperot, Laurence; Beseggio, Lucille; Foisseaud, Vincent; Macintyre, Elizabeth; Bene, Marie-Christine; Saas, Philippe; Jacob, Marie-Christine

    2009-06-01

    The diagnosis of plasmacytoid dendritic cell leukaemia (pDCL) is based on the immunophenotypic profile: CD4(+) CD56(+) lineage(neg) CD45RA(+)/RO(neg) CD11c(neg) CD116(low) CD123(+) CD34(neg) CD36(+) HLA-DR(+). Several studies have reported pDCL cases that do not express this exact profile or expressing some lineage antigens that could thus be misdiagnosed. This study aimed to validate pDCL-specific markers for diagnosis by flow-cytometry or quantitative reverse transcription polymerase chain reaction on bone marrow samples. Expression of markers previously found in normal pDC was analysed in 16 pDCL, four pDCL presenting an atypical phenotype (apDCL) and 113 non-pDC - lymphoid or myeloid - acute leukaemia. CD123 was expressed at significantly higher levels in pDCL and apDCL. BDCA-2 was expressed on 12/16 pDCL and on 2/4 apDCL, but was never detected in the 113 non-pDC acute leukaemia cases. BDCA-4 expression was found on 13/16 pDCL, but also in 12% of non-pDC acute leukaemia. High levels of LILRA4 and TCL1A transcripts distinguished pDCL and apDCL from all other acute leukaemia (except B-cell acute lymphoblastic leukaemia for TCL1A). We thus propose a diagnosis strategy, scoring first the CD4(+) CD56(+/-) MPO(neg) cCD3(neg) cCD79a(neg) CD11c(neg) profile and then the CD123(high), BDCA-2 and BDCA-4 expression. Atypical pDCL can be also identified this way and non-pDC acute leukaemia excluded: this scoring strategy is useful for diagnosing pDCL and apDCL.

  15. Expression of fas protein on CD4+T cells irradiated by low level He-Ne

    NASA Astrophysics Data System (ADS)

    Nie, Fan; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Objective: To investigate the influence on the Expression of Fas protein on CD4+ T cells irradiated by low level He-Ne laser in the cases of psoriasis. Methods:the expression of CD4+ T Fas protein was determined in the casee of psoriasis(n=5) pre and post-low level laser irradiation(30 min、60min and 120min)by flow cytometry as compared withthe control(n=5). Results:In the cases of psoriasis,the expression of CD4+T FAS protein 21.4+/-3.1% was increased significantly than that of control group 16.8+/-2.1% pre-irradiation, p<0.05in the control,there is no difference between pre and post- irradiation,p>0.05in the cases , the expression of CD4+T Fas protein wae positively corelated to the irradiation times, when the energy density arrived to 22.92J/cm2(60 minutes)and 45.84J/cm2(120minutes), the expression of CD4+ T Fas protein was increased significantly as compared with pre-irradiation,p<0.05.Conclusion: The expression of CD4+T Fas protein may be increased by low level He-Ne laser irradiation ,the uncontrolled status of apoptosis could be corrected.

  16. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180

  17. Porcine cluster of differentiation (CD) markers 2018 update.

    PubMed

    Dawson, Harry D; Lunney, Joan K

    2018-06-01

    Pigs are a major source of food worldwide; preventing and treating their infectious diseases is essential, requiring a thorough understanding of porcine immunity. The use of pigs as models for human physiology is a growing area; progress in this area has been limited because the immune toolkit is not robust. The international community has established cluster of differentiation (CD) markers for assessing cells involved in immunity as well as characterizing numerous other cells like stem cells. Overall, for humans 419 proteins have been designated as CD markers, each reacting with a defined set of antibodies (Abs). This paper summarizes current knowledge of swine CD markers and identifies 359 corresponding CD proteins in pigs. A broad-based literature and vendor search was conducted to identify defined sets of monoclonal (mAbs) and polyclonal Abs (pAbs) reacting with porcine CD markers along with other reagents (fusion proteins, ELISAs, PCR assays, and gene edited cell and pig models). This process identified over 800 reagents that are reportedly reactive with 266 pig CD markers. Despite this number, there is a great need to develop and characterize additional CD marker reagents, particularly mAbs, for pig research. There are numerous high priority targets: reagents for the characterization of porcine innate lymphoid cells, polarized macrophages and T regulatory cells and for the detection of porcine CD45 isoforms. Overall, improved technologies and genomics have contributed to dramatic increases in our knowledge of the pig, its immune system, disease and vaccine responses, and utility as a biomedical model. The development of more CD reagents will clearly advance these initiatives. Published by Elsevier Ltd.

  18. Brief Report: Effect of CMV and HIV Transcription on CD57 and PD-1 T-Cell Expression During Suppressive ART

    PubMed Central

    Massanella, Marta; Smith, Davey M.; Spina, Celsa A.; Schrier, Rachel; Daar, Eric S.; Dube, Michael P.; Morris, Sheldon R.; Gianella, Sara

    2016-01-01

    Abstract: HIV-infected men who have sex with men are nearly universally coinfected with cytomegalovirus (CMV). In this study of 45 HIV-infected men who have sex with men virologically suppressed on ART, we found that presence of seminal CMV DNA shedding and higher levels of systemic cellular HIV RNA transcription were both independently associated with increased PD-1 expression on circulating CD4+ T cells, but not with higher levels of senescent (CD57+) T cells. In addition, greater HIV RNA transcription was associated with lower CD57 expression on CD8 T cells. Although causality cannot be inferred from this retrospective study, these results suggest that asymptomatic CMV replication and residual cellular HIV transcription may contribute to persistent immune dysregulation during suppressive ART. PMID:26818740

  19. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.

    PubMed

    Liu, Xuejun; Shi, Xinxin; Chen, Chunlin; Zhang, Li

    2015-10-16

    The high-throughput sequencing technology, RNA-Seq, has been widely used to quantify gene and isoform expression in the study of transcriptome in recent years. Accurate expression measurement from the millions or billions of short generated reads is obstructed by difficulties. One is ambiguous mapping of reads to reference transcriptome caused by alternative splicing. This increases the uncertainty in estimating isoform expression. The other is non-uniformity of read distribution along the reference transcriptome due to positional, sequencing, mappability and other undiscovered sources of biases. This violates the uniform assumption of read distribution for many expression calculation approaches, such as the direct RPKM calculation and Poisson-based models. Many methods have been proposed to address these difficulties. Some approaches employ latent variable models to discover the underlying pattern of read sequencing. However, most of these methods make bias correction based on surrounding sequence contents and share the bias models by all genes. They therefore cannot estimate gene- and isoform-specific biases as revealed by recent studies. We propose a latent variable model, NLDMseq, to estimate gene and isoform expression. Our method adopts latent variables to model the unknown isoforms, from which reads originate, and the underlying percentage of multiple spliced variants. The isoform- and exon-specific read sequencing biases are modeled to account for the non-uniformity of read distribution, and are identified by utilizing the replicate information of multiple lanes of a single library run. We employ simulation and real data to verify the performance of our method in terms of accuracy in the calculation of gene and isoform expression. Results show that NLDMseq obtains competitive gene and isoform expression compared to popular alternatives. Finally, the proposed method is applied to the detection of differential expression (DE) to show its usefulness in the downstream analysis. The proposed NLDMseq method provides an approach to accurately estimate gene and isoform expression from RNA-Seq data by modeling the isoform- and exon-specific read sequencing biases. It makes use of a latent variable model to discover the hidden pattern of read sequencing. We have shown that it works well in both simulations and real datasets, and has competitive performance compared to popular methods. The method has been implemented as a freely available software which can be found at https://github.com/PUGEA/NLDMseq.

  20. Progesterone receptor isoforms expression pattern in the rat brain during the estrous cycle.

    PubMed

    Guerra-Araiza, C; Cerbón, M A; Morimoto, S; Camacho-Arroyo, I

    2000-03-24

    Progesterone receptor (PR) isoforms expression was determined in the hypothalamus, the preoptic area, the hippocampus and the frontal cerebral cortex of the rat at 12:00 h on each day of the estrous cycle by using reverse transcription coupled to polymerase chain reaction. Rats under a 14:10 h light-dark cycle, with lights on at 06:00 h were used. We found that PR-B isoform was predominant in the hypothalamus, the preoptic area and the frontal cerebral cortex. Both PR isoforms were similarly expressed in the hippocampus. The highest PR-B expression was found on proestrus day in the hypothalamus; on metestrus in the preoptic area; and on diestrus in the frontal cortex. We observed no changes in PR isoforms expression in the hippocampus during the estrous cycle. These results indicate that PR isoforms expression is differentially regulated during the estrous cycle in distinct brain regions and that PR-B may be involved in progesterone actions upon the hypothalamus, the preoptic area and the frontal cortex of the rat.

  1. Expression of cytoprotective proteins, heat shock protein 70and metallothioneins, in tissues ofOstrea edulis exposed to heat andheavy metals

    PubMed Central

    Piano, Annamaria; Valbonesi, Paola; Fabbri, Elena

    2004-01-01

    Heat shock proteins (Hsps) are constitutively expressed in cells and involved in protein folding, assembly, degradation, intracellular localization, etc, acting as molecular chaperones. However, their overexpression represents a ubiquitous molecular mechanism to cope with stress. Hsps are classified into families, and among them the Hsp70 family appears to be the most evolutionary preserved and distributed in animals. In this study, the expression of Hsp70 and the related messenger ribonucleic acid (mRNA) has been studied in Ostrea edulis after exposure to heat and heavy metals; moreover, levels of metallothioneins (MTs), another class of stress-induced proteins, have contemporaneously been assessed in the same animals. Thermal stress caused the expression of a 69-kDa inducible isoform in gills of O edulis but not in the digestive gland. Northern dot blot analysis confirmed that the transcription of Hsp69-mRNA occurs within 3 hours of stress recovery after oyster exposure at 32 and 35°C. Hsp69-mRNA transcripts were not present in the gills of animals exposed to 38°C after 3 hours of poststress recovery, but they were detected after 24 hours. The expression of the 69-kDa protein in O edulis exposed to 38°C was rather low or totally absent, suggesting that the biochemical machinery at the base of the heat shock response is compromised. Together with the expected increase in MT content, the oysters exposed to Cd showed a significant enhancement of Hsp70, although there was no clear appearance of Hsp69. Interestingly, the levels of MT were significantly increased in the tissues of individuals exposed to thermal stress. Unlike oysters, heat did not provoke the expression of inducible Hsp isoforms in Mytilus galloprovincialis, Tapes philippinarum, and Scapharca inaequivalvis, although it significantly enhanced the expression of constitutive proteins of the 70-kDa family. The expression of newly synthesized Hsp70 isoforms does not seem therefore a common feature in bivalves exposed to thermal stress. PMID:15497500

  2. Absence of Metallothionein 3 Expression in Breast Cancer is a Rare, But Favorable Marker of Outcome that is Under Epigenetic Control

    PubMed Central

    Somji, Seema; Garrett, Scott H.; Zhou, Xu Dong; Zheng, Yun; Sens, Donald A.; Sens, Mary Ann

    2010-01-01

    Cadmium (Cd+2), a known carcinogen mimics the effects of estrogen in the uterus and mammary gland suggesting its possible involvement in the development and progression of breast cancer. This lab showed through analysis of a small set of archival human diagnostic specimens that the third isoform of the classic Cd+2 binding protein metallothionein (MT-3), is not expressed in normal breast tissue, but is expressed in some breast cancers and that expression tends to correlate with a poor disease outcome. The goals of the present study were to verify that overexpression of MT-3 in a large set of archival human diagnostic specimens tends to correlate with poor disease outcome and define the mechanism of MT-3 gene regulation in the normal breast epithelial cell. The results showed that MT-3 was expressed in approximately 90% of all breast cancers and was absent in normal breast epithelium. The lack of MT-3 staining in some cancers correlated with a favorable patient outcome. High frequency of MT-3 staining was also found for in situ breast cancer suggesting that MT-3 might be an early biomarker for breast cancer. The study also demonstrated that the MCF-10A cell line, an immortalized, non-tumorigenic model of human breast epithelial cells, displayed no basal expression of MT-3, nor was it induced by Cd+2. Treatment of the MCF-10A cells with the demethylation agent, 5-Aza-2′-deoxycytidine, or the histone deacetylase inhibitor, MS-275, restored MT-3 mRNA expression. It was also shown that the MT-3 metal regulatory elements are potentially active binders of protein factors following treatment with these inhibitors suggesting that MT-3 expression may be subject to epigenetic regulation. PMID:21170156

  3. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells.

    PubMed

    Guo, Huaijian; Cruz-Munoz, Mario-Ernesto; Wu, Ning; Robbins, Michael; Veillette, André

    2015-01-01

    Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Immunophenotypic analysis of Waldenstrom's macroglobulinemia.

    PubMed

    San Miguel, J F; Vidriales, M B; Ocio, E; Mateo, G; Sánchez-Guijo, F; Sánchez, M L; Escribano, L; Bárez, A; Moro, M J; Hernández, J; Aguilera, C; Cuello, R; García-Frade, J; López, R; Portero, J; Orfao, A

    2003-04-01

    Immunophenotyping has become an essential tool for diagnosis of hematological malignancies. By contrast, for diagnosis of Waldenstrom's macroglobulinemia (WM) immunophenotyping is used only occasionally. From 150 patients with a IgM monoclonal gammopathy we have selected 60 cases with (1) morphological lymphoplasmocytoid bone marrow (BM) infiltration (>20%); (2) IgM paraprotein (>10g/L); and (3) absence of features of other lymphoma types. Immunophenotypic analysis was based on the use of the triple or quadruple monoclonal antibody (MoAb) combinations. To increase the sensitivity of the analysis of antigen expression, selected CD19(+)CD20(+) B cells were targeted. We have also explored the antigenic characteristics of both the plasma cell (PC) and mast cell (MC) compartments present in the BM from 15 WM patients. Clonal WM lymphocytes were characterized by the constant expression of pan-B markers (CD19, CD20, CD22, CD24) together with sIg, predominantly kappa (5:1, kappa:lambda ratio). A high proportion of cases (75%) were positive for FMC7 and CD25, but in contrast to hairy cell leukemia (HCL), these lymphocytes were always negative for CD103 and CD11c. CD10 antigen was also absent in all WM patients and less than one fifth of patients were positive for CD5 and CD23, while CD27, CD45RA, and BCL-2 were present in most malignant cells. In two cases, the coexistence of two different clones of B lymphocytes was identified, and in eight additional cases, intraclonal phenotypic heterogeneity was observed. As far as PCs are concerned, in most patients (85%) the number of PCs was within the normal range (median, 0.36%). The antigenic profile of these PCs differed from that observed in normal and myelomatous PC (CD38(++)CD19(++/-)CD56(-)CD45(++)CD20(+)). In three cases, PCs showed aberrant expression for CD5, CD22, or FMC7. Finally, the number of mast cells was significantly higher (0.058 +/- 0.13) as compared to normal BM (0.019 +/- 0.02) (P <.01), although they were immunophenotypically normal (CD117(+)CD2(-)CD25(-)). Copyright 2003 Elsevier Inc. All rights reserved.

  5. FAM13A is associated with non-small cell lung cancer (NSCLC) progression and controls tumor cell proliferation and survival

    PubMed Central

    Heim, Lisanne; Trump, Sonja; Mittler, Susanne; Sopel, Nina; Andreev, Katerina; Ferrazzi, Fulvia; Ekici, Arif B.; Rieker, Ralf; Springel, Rebekka; Assmann, Vera L.; Lechmann, Matthias; Koch, Sonja; Engelhardt, Marina; Trufa, Denis I.; Sirbu, Horia; Hartmann, Arndt; Finotto, Susetta

    2017-01-01

    ABSTRACT Genome-wide association studies (GWAS) associated Family with sequence similarity 13, member A (FAM13A) with non-small cell lung cancer (NSCLC) occurrence. Here, we found increased numbers of FAM13A protein expressing cells in the tumoral region of lung tissues from a cohort of patients with NSCLC. Moreover, FAM13A inversely correlated with CTLA4 but directly correlated with HIF1α levels in the control region of these patients. Consistently, FAM13A RhoGAP was found to be associated with T cell effector molecules like HIF1α and Tbet and was downregulated in immunosuppressive CD4+CD25+Foxp3+CTLA4+ T cells. TGFβ, a tumor suppressor factor, as well as siRNA to FAM13A, suppressed both isoforms of FAM13A and inhibited tumor cell proliferation. RNA-Seq analysis confirmed this finding. Moreover, siRNA to FAM13A induced TGFβ levels. Finally, in experimental tumor cell migration, FAM13A was induced and TGFβ accelerated this process by inducing cell migration, HIF1α, and the FAM13A RhoGAP isoform. Furthermore, siRNA to FAM13A inhibited tumor cell proliferation and induced cell migration without affecting HIF1α. In conclusion, FAM13A is involved in tumor cell proliferation and downstream of TGFβ and HIF1α, FAM13A RhoGAP is associated with Th1 gene expression and lung tumor cell migration. These findings identify FAM13A as key regulator of NSCLC growth and progression. PMID:28197372

  6. Distinct Transcript Isoforms of the Atypical Chemokine Receptor 1 (ACKR1) / Duffy Antigen Receptor for Chemokines (DARC) Gene Are Expressed in Lymphoblasts and Altered Isoform Levels Are Associated with Genetic Ancestry and the Duffy-Null Allele

    PubMed Central

    Davis, Melissa B.; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M.; Ford, DeJuana; Howerth, Elizabeth W.; Monteil, Michele

    2015-01-01

    The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357

  7. Overtraining and immune system: a prospective longitudinal study in endurance athletes.

    PubMed

    Gabriel, H H; Urhausen, A; Valet, G; Heidelbach, U; Kindermann, W

    1998-07-01

    A prospective longitudinal study investigated for 19 +/- 3) months whether immunophenotypes of peripheral leukocytes were altered in periods of severe training. Leukocyte membrane antigens (CD3, CD4, CD8, CD14, CD16, CD19, CD45, CD45RO, and CD56) of endurance athletes were immunophenotyped (dual-color flow cytometry) and list mode data analyzed by a self-learning classification system in a state of an overtraining syndrome (OT; N = 15) and several occasions without symptoms of staleness (NS; N = 70). Neither at physical rest nor after a short-term highly intensive cycle ergometer exercise session at 110% of the individual anaerobic threshold did cell counts of neutrophils, T, B, and natural killer cells differ between OT and NS. Eosinophils were lower during OT, activated T cells (CD3+HLA/DR+) showed slight increases (NS: 5.5 +/- 2.7; OT 7.3 +/- 2.4% CD3+ of cells; means +/- SD; P < 0.01) during OT without reaching pathological ranges. The cell-surface expression of CD45RO (P < 0.001) on T cells, but not cell concentrations of CD45RO+ T cells, were higher during OT. OT could be classified with high specificities (92%) and sensitivities (93%). It is concluded that OT does not lead to clinically relevant alterations of immunophenotypes in peripheral blood and especially that an immunosuppressive effect cannot be detected. Immunophenotyping may provide help with the diagnosis of OT in future, but the diagnostic approach presented here requires improvements before use in sports medicine practice is enabled.

  8. The CD47 “don’t eat me signal” is highly expressed in human ovarian cancer

    PubMed Central

    Brightwell, RM; Grzankowski, KS; Lele, S; Eng, K; Arshad, M; Chen, H; Odunsi, K

    2016-01-01

    Objectives The CD47 “don’t eat me” signal allows tumor immune evasion. We tested the association of CD47 expression with outcomes in EOC. Methods CD47 expression was examined within the TCGA database for ovarian carcinoma. For validation, IHC was performed on a TMA consisting of specimens from 265 patients with EOC. The medical records of the patients were also retrospectively reviewed to correlate demographic and survival data. Results CD47 was amplified in 15/316 (5%) ovarian serous cancers in TCGA. In the validation cohort, the majority of patients had stage III/IV disease (208/265, 78.4%). CD47 expression was seen in 210/265 (79.2%). Patients were categorized into CD47hi (129/265; 48.7%) versus CD47lo (136/265; 51.3%). Patients with CD47lo tumors were more likely to have a complete response to adjuvant therapy than CD47hi (65% vs 50%, p= 0.026). Although there was a trend towards an increase in median OS (37.64 vs 45.26 mos, p=0.92) in the CD47lo group compared with CD47hi, the difference was not significant. Conclusions CD47 is expressed at high frequency in EOC. Patients with CD47lo EOC had a better treatment response to standard therapy, and trended towards improved OS. This demonstrates that while CD47 may be an immunologic shield that may be considered for targeted therapies, it is likely that it operates in concert with other mechanisms of immune evasion. Future studies to evaluate CD47 expression with other known mechanisms of immune escape in the tumor microenvironment may help further define its role. PMID:27569584

  9. T-cell immunity and cytokine production in cosmonauts after long-duration space flights

    NASA Astrophysics Data System (ADS)

    Morukov, B.; Rykova, M.; Antropova, E.; Berendeeva, T.; Ponomaryov, S.; Larina, I.

    2011-04-01

    Long-duration spaceflight effects on T-cell immunity and cytokine production were studied in 12 Russian cosmonauts flown onto the International Space Station. Specific assays were performed before launch and after landing and included analysis of peripheral leukocyte distribution, analysis of T-cell phenotype, expression of activation markers, apoptosis, proliferation of T cells in response to a mitogen, concentrations of cytokines in supernatants of cell cultures. Statistically significant increase was observed in leukocytes', lymphocytes', monocytes' and granulocytes' total number, increase in percentage and absolutely number of CD3 +CD4 +-cells, CD4 +CD45RA +-cells and CD4 +CD45RA +/CD4 +CD45RО + ratio, CD4 +CD25 +Bright regulatory cells ( p<0,05) in peripheral blood after landing. T-lymphocytes' capacity to present CD69 and CD25 on its own surfaces was increased for the majority of crewmembers. Analysis of T-cell response to PHA-stimulation in vitro revealed there were some trends toward reduced proliferation of stimulated T-lymphocytes. There was an apparent post flight decrease in secreted IFN-g for the majority of crewmembers and in most instances there was elevation in secreted IL-10. It revealed depression of IFN-g/IL-10 ratio after flight. Correlation analysis according to Spearman's rank correlation test established significant positive correlations ( p<0.05) between cytokine production and T-cell activation (CD25+, CD38+) and negative correlation ( p<0.05) between cytokine production and number of bulk memory CD4+T-cells (CD45RO+). Thus, these results suggest that T-cell dysfunction can be conditioned by cytokine dysbalance and could lead to development of disease after long-duration space flights.

  10. PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit

    PubMed Central

    Aiello, Allison E.; Dowd, Jennifer B.; Jayabalasingham, Bamini; Feinstein, Lydia; Uddin, Monica; Simanek, Amanda M.; Cheng, Caroline K.; Galea, Sandro; Wildman, Derek E.; Koenen, Karestan; Pawelec, Graham

    2016-01-01

    Background Psychosocial stress is thought to play a key role in the acceleration of immunological aging. This study investigated the relationship between lifetime and past-year history of post-traumatic stress disorder (PTSD) and the distribution of T cell phenotypes thought to be characteristic of immunological aging. Methods Data were from 85 individuals who participated in the community-based Detroit Neighborhood Health Study. Immune markers assessed included the CD4:CD8 ratio, the ratio of late-differentiated effector (CCR7-CD45RA+CD27-CD28-) to naïve (CCR7+CD45RA+CD27+CD28+) T cells, the percentage of KLRG1-expressing cells, and the percentage of CD57-expressing cells. Results In models adjusted for age, gender, race/ethnicity, education, smoking status, and medication use, we found that past-year PTSD was associated with statistically significant differences in the CD8+ T cell population, including a higher ratio of late-differentiated effector to naïve T cells, a higher percentage of KLRG1+ cells, and a higher percentage of CD57+ cells. The percentage of CD57+ cells in the CD4 subset was also significantly higher and the CD4:CD8 ratio significantly lower among individuals who had experienced past-year PTSD. Lifetime PTSD was also associated with differences in several parameters of immune aging. Conclusions PTSD is associated with an aged immune phenotype and should be evaluated as a potential catalyzer of accelerated immunological aging in future studies. PMID:26894484

  11. Characterization of Effector and Memory T Cell Subsets in the Immune Response to Bovine Tuberculosis in Cattle

    PubMed Central

    Maggioli, Mayara F.; Palmer, Mitchell V.; Thacker, Tyler C.; Vordermeier, H. Martin; Waters, W. Ray

    2015-01-01

    Cultured IFN-γ ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses with humans; however, this important subset of lymphocytes is poorly characterized in cattle. Vaccine-elicited cultured IFN-γ ELISPOT responses correlate with protection against bovine tuberculosis in cattle. However, whether this assay measures cattle Tcm responses or not is uncertain. The objective of the present study was to characterize the relative contribution of Tcm (CCR7+, CD62Lhi, CD45RO+), T effector memory (Tem, defined as: CCR7-, CD62Llow/int, CD45RO+), and T effector cells (CCR7-, CD62L-/low, CD45RO-), in the immune response to Mycobacterium bovis. Peripheral blood mononuclear cells (PBMC) from infected cattle were stimulated with a cocktail of M. bovis purified protein derivative, rTb10.4 and rAg85A for 13 days with periodic addition of fresh media and rIL-2. On day 13, cultured PBMC were re-stimulated with medium alone, rESAT-6:CFP10 or PPDb with fresh autologous adherent cells for antigen presentation. Cultured cells (13 days) or fresh PBMCs (ex vivo response) from the same calves were analyzed for IFN-γ production, proliferation, and CD4, CD45RO, CD62L, CD44, and CCR7 expression via flow cytometry after overnight stimulation. In response to mycobacterial antigens, ~75% of CD4+ IFN-γ+ cells in long-term cultures expressed a Tcm phenotype while less than 10% of the ex vivo response consisted of Tcm cells. Upon re-exposure to antigen, long-term cultured cells were highly proliferative, a distinctive characteristic of Tcm, and the predominant phenotype within the long-term cultures switched from Tcm to Tem. These findings suggest that proliferative responses of Tcm cells to some extent occurs simultaneously with reversion to effector phenotypes (mostly Tem). The present study characterizes Tcm cells of cattle and their participation in the response to M. bovis infection. PMID:25879774

  12. 1,25-DIHYDROXYVITAMIN D3 INDUCES MONOCYTIC DIFFERENTIATION OF HUMAN MYELOID LEUKEMIA CELLS BY REGULATING C/EBPβ EXPRESSION THROUGH MEF2C

    PubMed Central

    Zheng, Ruifang; Wang, Xuening; Studzinski, George P.

    2015-01-01

    Myogenic enhancer factor2 (Mef2) consists of a family of transcription factors involved in morphogenesis of skeletal, cardiac and smooth muscle cells. Among the four isoforms (Mef2A, 2B, 2C, and 2D), Mef2C was also found to play important roles in hematopoiesis. At myeloid progenitor level, Mef2C expression favors monocytic differentiation. Previous studies from our laboratory demonstrated that ERK5 was activated in 1,25-dihydroxyvitamin D3 (1,25D)-induced monocytic differentiation in AML cells and ERK5 activation was accompanied by increased Mef2C phosphorylation. We therefore examined the role of Mef2C in 1,25D-induced monocytic differentiation in AML cell lines (HL60, U937 and THP1) and found that knockdown of Mef2C with small interfering RNA (siRNA) significantly decreases the expression of the monocytic marker, CD14, without affecting the expression of the general myeloid marker, CD11b. CCAAT/Enhancer-binding protein (C/EBP) β, which can bind to CD14 promoter and increase its transcription, has been shown to be the downstream effector of 1,25D-induced monocytic differentiation in AML cells. When Mef2C was knocked down, expression of C/EBPβ was reduced at both mRNA and protein levels. The protein expression levels of cell cycle regulators, p27Kip1 and cyclin D1, were not affected by Mef2C knockdown, nor the monopoiesis related transcription factor, ATF2 (Activating Transcription Factor 2). Thus, we conclude that 1,25D-induced monocytic differentiation, and CD14 expression in particular, is mediated through activation of ERK5-Mef2C-C/EBPβ signaling pathway, and that Mef2C does not seem to modulate cell cycle progression. PMID:25448741

  13. Functional characterization of mouse spinal cord infiltrating CD8+ lymphocytes

    PubMed Central

    Deb, Chandra; Howe, Charles L

    2011-01-01

    Understanding the immunopathogenesis of neuroimmunological diseases of the CNS requires a robust method for isolating and characterizing the immune effector cells that infiltrate the spinal cord in animal models. We have developed a simple and rapid isolation method that produces high yields of spinal cord infiltrating leukocytes from a single demyelinated spinal cord and which maintains high surface expression of key immunophenotyping antigens. Using this method and the Theiler’s virus model of chronic demyelination, we report the presence of spinal cord infiltrating acute effector CD8+ lymphocytes that are CD45hiCD44loCD62L− and a population of spinal cord infiltrating target effector memory CD8+ lymphocytes that are CD45hiCD44hiCD62L−. These cells respond robustly to ex vivo stimulation by producing interferon γ but do not exhibit specificity for Theiler’s virus in a cytotoxicity assay. We conclude that target-derived lymphocytes in a mouse model of chronic spinal cord demyelination may have unique functional specificities. PMID:19596449

  14. Differential expression of CD44 and CD24 markers discriminates the epitheliod from the fibroblastoid subset in a sarcomatoid renal carcinoma cell line: evidence suggesting the existence of cancer stem cells in both subsets as studied with sorted cells.

    PubMed

    Hsieh, Chin-Hsuan; Hsiung, Shih-Chieh; Yeh, Chi-Tai; Yen, Chih-Feng; Chou, Yah-Huei Wu; Lei, Wei-Yi; Pang, See-Tong; Chuang, Cheng-Keng; Liao, Shuen-Kuei

    2017-02-28

    Epithelioid and fibroblastoid subsets coexist in the human sarcomatoid renal cell carcinoma (sRCC) cell line, RCC52, according to previous clonal studies. Herein, using monoclonal antibodies to CD44 and CD24 markers, we identified and isolated these two populations, and showed that CD44bright/CD24dim and CD44bright/CD24bright phenotypes correspond to epithelioid and fibroblastoid subsets, respectively. Both sorted subsets displayed different levels of tumorigenicity in xenotransplantation, indicating that each harbored its own cancer stem cells (CSCs). The CD44bright/CD24bright subset, associated with higher expression of MMP-7, -8 and TIMP-1 transcripts, showed greater migratory/invasive potential than the CD44bright/CD24dim subset, which was associated with higher expression of MMP-2, -9 and TIMP-2 transcripts. Both subsets differentially expressed stemness gene products c-Myc, Oct4A, Notch1, Notch2 and Notch3, and the RCC stem cell marker, CD105 in 4-5% of RCC52 cells. These results suggest the presence of CSCs in both sRCC subsets for the first time and should therefore be considered potential therapeutic targets for this aggressive malignancy.

  15. MCT1, MCT4 and CD147 gene polymorphisms in healthy horses and horses with myopathy.

    PubMed

    Mykkänen, A K; Koho, N M; Reeben, M; McGowan, C M; Pösö, A R

    2011-12-01

    Polymorphisms in human lactate transporter proteins (monocarboxylate transporters; MCTs), especially the MCT1 isoform, can affect lactate transport activity and cause signs of exercise-induced myopathy. Muscles express MCT1, MCT4 and CD147, an ancillary protein, indispensable for the activity of MCT1 and MCT4. We sequenced the coding sequence (cDNA) of horse MCT4 for the first time and examined polymorphisms in the cDNA of MCT1, MCT4 and CD147 of 16 healthy horses. To study whether signs of myopathy are linked to the polymorphisms, biopsy samples were taken from 26 horses with exercise-induced recurrent myopathy. Two polymorphisms that cause a change in amino acid sequence were found in MCT1 (Val(432)Ile and Lys(457)Gln) and one in CD147 (Met(125)Val). All polymorphisms in MCT4 were silent. Mutations in MCT1 or CD147 in equine muscle were not associated with myopathy. In the future, a functional study design is needed to evaluate the physiological role of the polymorphisms found. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. HIV-TB coinfection impairs CD8(+) T-cell differentiation and function while dehydroepiandrosterone improves cytotoxic antitubercular immune responses.

    PubMed

    Suarez, Guadalupe V; Angerami, Matías T; Vecchione, María B; Laufer, Natalia; Turk, Gabriela; Ruiz, Maria J; Mesch, Viviana; Fabre, Bibiana; Maidana, Patricia; Ameri, Diego; Cahn, Pedro; Sued, Omar; Salomón, Horacio; Bottasso, Oscar A; Quiroga, María F

    2015-09-01

    Tuberculosis (TB) is the leading cause of death among HIV-positive patients. The decreasing frequencies of terminal effector (TTE ) CD8(+) T cells may increase reactivation risk in persons latently infected with Mycobacterium tuberculosis (Mtb). We have previously shown that dehydroepiandrosterone (DHEA) increases the protective antitubercular immune responses in HIV-TB patients. Here, we aimed to study Mtb-specific cytotoxicity, IFN-γ secretion, memory status of CD8(+) T cells, and their modulation by DHEA during HIV-TB coinfection. CD8(+) T cells from HIV-TB patients showed a more differentiated phenotype with diminished naïve and higher effector memory and TTE T-cell frequencies compared to healthy donors both in total and Mtb-specific CD8(+) T cells. Notably, CD8(+) T cells from HIV-TB patients displayed higher Terminal Effector (TTE ) CD45RA(dim) proportions with lower CD45RA expression levels, suggesting a not fully differentiated phenotype. Also, PD-1 expression levels on CD8(+) T cells from HIV-TB patients increased although restricted to the CD27(+) population. Interestingly, DHEA plasma levels positively correlated with TTE in CD8(+) T cells and in vitro DHEA treatment enhanced Mtb-specific cytotoxic responses and terminal differentiation in CD8(+) T cells from HIV-TB patients. Our data suggest that HIV-TB coinfection promotes a deficient CD8(+) T-cell differentiation, whereas DHEA may contribute to improving antitubercular immunity by enhancing CD8(+) T-cell functions during HIV-TB coinfection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Regulation of Asymmetric Division and CD8+ T Lymphocyte Fate Specification by PKCζ and PKCλ/ι

    PubMed Central

    Metz, Patrick J.; Arsenio, Janilyn; Kakaradov, Boyko; Kim, Stephanie H.; Remedios, Kelly A.; Oakley, Katherine; Akimoto, Kazunori; Ohno, Shigeo; Yeo, Gene W.; Chang, John T.

    2015-01-01

    During an immune response against a microbial pathogen, activated naïve T lymphocytes give rise to effector cells that provide acute host defense and memory cells that provide long-lived immunity. It has been shown that T lymphocytes can undergo asymmetric division, enabling the daughter cells to inherit unequal amounts of fate-determining proteins and thereby acquire distinct fates from their inception. Here, we show that the absence of the atypical protein kinase C (aPKC) isoforms, PKCζ and PKCλ/ι, disrupts asymmetric CD8+ T lymphocyte division. These alterations were associated with aberrant acquisition of a ‘pre-effector’ transcriptional program, detected by single-cell gene expression analyses, in lymphocytes that had undergone their first division in vivo and enhanced differentiation toward effector fates at the expense of memory fates. Together, these results demonstrate a role for aPKC in regulating asymmetric division and the specification of divergent CD8+ T lymphocyte fates early during an immune response. PMID:25617472

  18. Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression.

    PubMed

    Oudin, Madeleine J; Hughes, Shannon K; Rohani, Nazanin; Moufarrej, Mira N; Jones, Joan G; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-03-01

    Several functionally distinct isoforms of the actin regulatory Mena are produced by alternative splicing during tumor progression. Forced expression of the Mena(INV) isoform drives invasion, intravasation and metastasis. However, the abundance and distribution of endogenously expressed Mena(INV) within primary tumors during progression remain unknown, as most studies to date have only assessed relative mRNA levels from dissociated tumor samples. We have developed a Mena(INV) isoform-specific monoclonal antibody and used it to examine Mena(INV) expression patterns in mouse mammary and human breast tumors. Mena(INV) expression increases during tumor progression and to examine the relationship between Mena(INV) expression and markers for epithelial or mesenchymal status, stemness, stromal cell types and hypoxic regions. Further, while Mena(INV) robustly expressed in vascularized areas of the tumor, it is not confined to cells adjacent to blood vessels. Altogether, these data demonstrate the specificity and utility of the anti-Mena(INV)-isoform specific antibody, and provide the first description of endogenous Mena(INV) protein expression in mouse and human tumors.

  19. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    PubMed

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Identification of Insulin Receptor Splice Variant B in Neurons by in situ Detection in Human Brain Samples.

    PubMed

    Spencer, Brian; Rank, Logan; Metcalf, Jeff; Desplats, Paula

    2018-03-06

    Insulin and its receptor are widely expressed in a variety of tissues throughout the body including liver, adipose tissue, liver and brain. The insulin receptor is expressed as two functionally distinct isoforms, differentiated by a single 12 amino acid exon. The two receptor isoforms, designated IR/A and IR/B, are expressed in a highly tissue and cell specific manner and relative proportions of the different isoforms vary during development, aging and disease states. The high degree of similarity between the two isoforms has prevented detailed studies as differentiation of the two isoforms by traditional immunological methods cannot be achieved. We describe here a new in situ RT-PCR/ FISH assay that allows for the visualization of IR/A and IR/B in tissue along with tissue specific markers. We used this new method to show for the first time that IR/A and IR/B are both expressed in neurons in the adult human brain. Thus, we present a method that enables the investigation of IR/A and IR/B insulin receptor isoform expression in situ in various tissues.

  1. Triton-polyacrylamide gel electrophoresis and leucine aminopeptidase activity staining detect Triton-slowed bands including high-molecular-mass aminopeptidase N (CD13) isoform in cholestatic patient sera.

    PubMed

    Kawai, Makoto; Hara, Yukichi

    2006-02-01

    Western blotting of aminopeptidase N (APN) detects a high-molecular-mass isoform (260 kDa) [M. Kawai, Y. Otake, Y. Hara High-molecular-mass isoform of aminopeptidase N/CD13 in serum from cholestatic patients. Clin Chim Acta 330 (2003) 141-149] in cholestatic patient serum but is time-consuming. Human sera were electrophoresed on polyacrylamide gel containing Triton-X100 (Triton-PAGE) and stained with leucine-B-naphthylamide (LAP-staining). The stained bands were eluted from the gel, treated with N- and O-glycosidase if necessary, and analyzed by Western blotting [M. Kawai, Y. Otake, Y. Hara High-molecular-mass isoform of aminopeptidase N/CD13 in serum from cholestatic patients. Clin Chim Acta 330 (2003) 141-149]. Triton-PAGE and LAP-staining clearly detected fast bands in all the sera examined. Almost parallel with leucine aminopeptidase activity, slow bands were strongly stained in all 11 cholestatic patients but clearly stained in 3 out of 14 patients with hepatobiliary diseases other than cholestasis. PAGE with various concentrations of Triton showed that Triton slows down slow bands but not fast bands. Western blotting showed that Triton-PAGE-slow bands of cholestasis contained 140 and 260-kDa APN and that fast bands were slightly smaller than monomer-size slow bands after glycosidase treatment. Less time-consuming than Western blotting, Triton-PAGE and LAP-staining detect novel APN bands slowed by Triton and partly composed of the high-molecular-mass isoform in cholestasis. The slow bands seem to be homodimers of APN with transmembrane anchors. The polypeptide of the fast band seems to be processed differently from that of the slow band.

  2. Pixel based SHG probes of extracellular matrix (ECM) alterations in ovarian cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Campbell, Kirby R.; Chaudhary, Rajeev; Handel, Julia; Campagnola, Paul J.

    2017-02-01

    Remodeling of the extracellular matrix in human ovarian cancer, can be reflected in increased collagen concentration, changes in alignment and/or up-regulation of different collagen isoforms, including Col III. Using fibrillar gel models, we demonstrate that Col I and Col III can be quantitatively distinguished by 3 distinct SHG polarization specific metrics: i) determination of helical pitch angle via the single axis molecular model, ii) dipole alignment via anisotropy, and iii) chirality via SHG circular dichroism (SHG-CD). These sub-resolution differentiations are possible due to differences in the α helix angles of the two isoforms, which co-mingle in the same fibrils. We also investigated the mechanism of the SHG-CD response and show that unlike conventional CD, it is dominated by electric dipole interactions and is consistent with the two state SHG model. We further applied these 3 polarization resolved analyses to human normal, high risk, benign tumors, and malignant human ovarian tissues. We found that these tissues could all be differentiated by these metrics, where high grade tissues had analogous α-helical pitch angles to the in the Col I/Col III gel model. This confirms literature suggestions based on immunofluorescence and gene expression that Col III is up-regulated in high grade ovarian cancers. The different tissues also displayed differing anisotropies, indicating the fibril assemblies are distinct and likely do not result from remodeling of existing collagen but synthesis of new collagen. Importantly, these SHG polarization methods provide structural information not otherwise possible and can serve as label-free biomarkers for ovarian and other cancers.

  3. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets

    PubMed Central

    Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin

    1997-01-01

    We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growth factor (VEGF). Megakaryocytes (CD41a+) were generated by ex vivo expansion of hematopoietic progenitor cells with kit-ligand and thrombopoietin for 10 days and further purified with immunomagnetic microbeads. Using reverse transcription–PCR, we showed that megakaryocytic cell lines (Dami, HEL) and purified megakaryocytes expressed mRNA of the three VEGF isoforms (121, 165, and 189 amino acids). Large quantities of VEGF (>1 ng/106 cells/3 days) were detected in the supernatant of Dami cells, ex vivo-generated megakaryocytes, and CD41a+ cells isolated from bone marrow. The constitutive secretion of VEGF by CD41a+ cells was stimulated by growth factors of the megakaryocytic lineage (interleukin 3, thrombopoietin). Western blotting of heparin–Sepharose-enriched supernatant mainly detected the isoform VEGF165. In addition, immunohistochemistry showed intracytoplasmic VEGF in polyploid megakaryocytes. Thrombin stimulation of megakaryocytes and platelets resulted in rapid release of VEGF within 30 min. We conclude that human megakaryocytes produce and secrete VEGF in an inducible manner. Within the bone marrow microenvironment, VEGF secreted by megakaryocytes may contribute to the proliferation of endothelial cells. VEGF delivered to sites of vascular injury by activated platelets may initiate angiogenesis. PMID:9012841

  4. Overexpression of syndecan-1, MUC-1, and putative stem cell markers in breast cancer leptomeningeal metastasis: a cerebrospinal fluid flow cytometry study.

    PubMed

    Cordone, Iole; Masi, Serena; Summa, Valentina; Carosi, Mariantonia; Vidiri, Antonello; Fabi, Alessandra; Pasquale, Alessia; Conti, Laura; Rosito, Immacolata; Carapella, Carmine Maria; Villani, Veronica; Pace, Andrea

    2017-04-11

    Cancer is a mosaic of tumor cell subpopulations, where only a minority is responsible for disease recurrence and cancer invasiveness. We focused on one of the most aggressive circulating tumor cells (CTCs) which, from the primitive tumor, spreads to the central nervous system (CNS), evaluating the expression of prognostic and putative cancer stem cell markers in breast cancer (BC) leptomeningeal metastasis (LM). Flow cytometry immunophenotypic analysis of cerebrospinal fluid (CSF) samples (4.5 ml) was performed in 13 consecutive cases of BCLM. Syndecan-1 (CD138), MUC-1 (CD227) CD45, CD34, and the putative cancer stem cell markers CD15, CD24, CD44, and CD133 surface expression were evaluated on CSF floating tumor cells. The tumor-associated leukocyte population was also characterized. Despite a low absolute cell number (8 cell/μl, range 1-86), the flow cytometry characterization was successfully conducted in all the samples. Syndecan-1 and MUC-1 overexpression was documented on BC cells in all the samples analyzed; CD44, CD24, CD15, and CD133 in 77%, 75%, 70%, and 45% of cases, respectively. A strong syndecan-1 and MUC-1 expression was also documented by immunohistochemistry on primary breast cancer tissues, performed in four patients. The CSF tumor population was flanked by T lymphocytes, with a different immunophenotype between the CSF and peripheral blood samples (P ≤ 0.02). Flow cytometry can be successfully employed for solid tumor LM characterization even in CSF samples with low cell count. This in vivo study documents that CSF floating BC cells overexpress prognostic and putative cancer stem cell biomarkers related to tumor invasiveness, potentially representing a molecular target for circulating tumor cell detection and LM treatment monitoring, as well as a primary target for innovative treatment strategies. The T lymphocyte infiltration, documented in all CSF samples, suggests a possible involvement of the CNS lymphatic system in both lymphoid and cancer cell migration into and out of the meninges, supporting the extension of a new form of cellular immunotherapy to LM. Due to the small number of cases, validation on large cohorts of patients are warranted to confirm these findings and to evaluate the impact and value of these results for diagnosis and management of LM.

  5. Effect of filgrastim (recombinant human granulocyte colony stimulating factor) on IgE responses in human asthma: a case study.

    PubMed

    Smith-Norowitz, Tamar A; Joks, Rauno; Norowitz, Kevin B; Chice, Seto; Durkin, Helen G; Bluth, Martin H

    2013-10-01

    The role of peripheral blood progenitor cell mobilization on Immunoglobulin E (IgE) responses has not been studied. Distributions of blood lymphocytes (CD4+, CD8+, CD8+CD60+, CD19+, CD23+, CD16/56+, CD25, CD45RA+, CD45RO+, CD34+), and levels of serum immunoglobulins (IgM, IgG, IgA, IgE) were studied in an allergic asthmatic serum IgE+ (181IU/mL) adult (m/45 y/o) donor undergoing routine stem cell mobilization protocol (American Society of Hematology) before (day-30), during (day 4), and after (1 wk post last dose) filgrastim (subcutaneous, 480 mcg, 2qd) treatment (flow cytometry, nephelometry, UniCAP Total IgE Fluoro enzyme immunoassay). On day 4 of filgrastim treatment, numbers of CD8+CD60+T cells and CD23+ blood cells dramatically increased (98% and 240% respectively) compared with pre treatment. In contrast on day 4 of treatment, serum IgE levels decreased (>50%) compared with pre treatment. CD8+CD60+T cells and CD23+ blood cells and serum IgE levels approached pre-treatment levels at 1 week post treatment. Filgrastim treatment transiently increases numbers of CD8+CD60+T and CD23+ expressing cells, which are known to regulate human IgE responses, while also transiently suppressing ongoing IgE responses. These results suggest that filgrastim affects IgE related responses, and may be useful in modulating allergic responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells.

    PubMed

    Mihaylova, Ivana; DeRuyter, Marcel; Rummens, Jean-Luc; Bosmans, Eugene; Maes, Michael

    2007-08-01

    There is some evidence that patients with chronic fatigue syndrome (CFS) suffer from immune abnormalities, such as immune activation and decreased immune cell responsivity upon polyclonal stimili. This study was designed to evaluate lymphocyte activation in CFS by using a CD69 expression assay. CD69 acts as a costimulatory molecule for T- and natural killer (NK) cell activation. We collected whole blood from CFS patients, who met CDC criteria, and healthy volunteers. The blood samples were stimulated with mitogens during 18 h and the levels of activated T and NK cells expressing CD69 were measured on a Coulter Epics flow cytometer using a three color immunofluorescence staining protocol. The expression of the CD69 activation marker on T cells (CD3+, CD3+CD4+, and CD3+CD8+) and on NK cells (CD45+CD56+) was significantly lower in CFS patients than in healthy subjects. These differences were significant to the extent that a significant diagnostic performance was obtained, i.e. the area under the ROC curve was around 89%. No differences either in the number of leukocytes or in the number or percentage of lymphocytes, i.e. CD3, CD4, CD8 and CD19, could be found between CFS patients and the controls. Patients with CFS show defects in T- and NK cell activation. Since induction of CD69 surface expression is dependent on the activation of the protein kinase C (PKC) activation pathway, it is suggested that in CFS there is a disorder in the early activation of the immune system involving PKC.

  7. Level of PAX5 in differential diagnosis of non-Hodgkin's lymphoma

    PubMed Central

    Bharti, Brij; Shukla, Sachin; Tripathi, Ratnakar; Mishra, Suman; Kumar, Mohan; Pandey, Manoj; Mishra, Rajnikant

    2016-01-01

    Background & objectives: The PAX5, a paired box transcription factor and B-cell activator protein (BSAP), activates B-cell commitment genes and represses non-B-cell lineage genes. About 14 transcript variants of PAX5 have been observed in human. Any alteration in its expression pattern leads to lymphogenesis or associated diseases and carcinogenesis in non-lymphoid tissues. Its mechanisms of function in pathophysiology of non-Hodgkin's lymphoma (NHL) are unclear. This study was intended to explore influence of PAX5 in cascade of NHL pathogenesis and diagnosis. Methods: Samples of 65 patients were evaluated by immunohistochemical staining for cellular localization of PAX5, CD19, CD3, cABL, p53, Ras and Raf and by TUNEL assay, RNA-isolation and reverse transcriptase (RT)-PCR, Western blot analysis, and lactate dehydrogenase (LDH) specific staining. Results: B-cell type NHL patients were positive for PAX5, p53, Ras, CD19, Raf and CD3. All of them showed TUNEL-positive cells. The differential expression pattern of PAX5, CD19, p53, CD3, ZAP70, HIF1α, Ras, Raf and MAPK (mitogen-activated protein kinase) at the levels of transcripts and proteins was observed. The LDH assay showed modulation of LDH4 and LDH5 isoforms in the lymph nodes of NHL patients. Interpretation & conclusions: The histological observations suggested that the patients represent diverse cases of NHL like mature B-cell type, mature T-cell type and high grade diffuse B-cell type NHL. The findings indicate that patients with NHL may also be analyzed for status of PAX5, CD19 and ZAP70, and their transcriptional and post-translational variants for the differential diagnosis of NHL and therapy. PMID:27748274

  8. Differential Properties of Cytomegalovirus pUL97 Kinase Isoforms Affect Viral Replication and Maribavir Susceptibility

    PubMed Central

    Webel, Rike; Hakki, Morgan; Prichard, Mark N.; Rawlinson, William D.; Marschall, Manfred

    2014-01-01

    ABSTRACT The human cytomegalovirus (HCMV)-encoded kinase pUL97 is required for efficient viral replication. Previous studies described two isoforms of pUL97, the full-length isoform (M1) and a smaller isoform likely resulting from translation initiation at codon 74 (M74). Here, we report the detection of a third pUL97 isoform during viral infection resulting from translation initiation at codon 157 (isoform M157). The consistent expression of isoform M157 as a minor component of pUL97 during infection with clinical and laboratory-adapted HCMV strains was suppressed when codon 157 was mutagenized. Viral mutants expressing specific isoforms were generated to compare their growth and drug susceptibility phenotypes, as well as pUL97 intracellular localization patterns and kinase activities. The exclusive expression of isoform M157 resulted in substantially reduced viral growth and resistance to the pUL97 inhibitor maribavir while retaining susceptibility to ganciclovir. Confocal imaging demonstrated reduced nuclear import of amino-terminal deletion isoforms compared to isoform M1. Isoform M157 showed reduced efficiency of various substrate protein interactions and autophosphorylation, whereas Rb phosphorylation was preserved. These results reveal differential properties of pUL97 isoforms that affect viral replication, with implications for the antiviral efficacy of maribavir. IMPORTANCE The HCMV UL97 kinase performs important functions in viral replication that are targeted by the antiviral drug maribavir. Here, we describe a naturally occurring short isoform of the kinase that when expressed by itself in a recombinant virus results in altered intracellular localization, impaired growth, and high-level resistance to maribavir compared to those of the predominant full-length counterpart. This is another factor to consider in explaining why maribavir appears to have variable antiviral activity in cell culture and in vivo. PMID:24522923

  9. Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia

    PubMed Central

    Visser, J; Nijman, H W; Hoogenboom, B-N; Jager, P; van Baarle, D; Schuuring, E; Abdulahad, W; Miedema, F; van der Zee, A G; Daemen, T

    2007-01-01

    Oncogenic human papillomavirus (HPV)-infection is crucial for developing cervical cancer and its precursor lesions [cervical intraepithelial neoplasia (CIN)]. Regulatory T cells (Tregs) might be involved in the failure of the immune system to control the development of HPV-induced cancer. We investigated frequencies, phenotype and activity of Tregs in patients with cervical neoplasia. CIN and cervical cancer patients showed increased CD4+/CD25high T cell frequencies in peripheral blood and CD4+ T cell fraction. These CD4+/CD25high T cells represent Tregs as demonstrated by their low proliferation rate, low interferon (IFN)-γ/interleukin (IL)-10 ratio, high expression of CD45RO, GITR, CTLA-4, forkhead box P3 (FoxP3) and low CD45RA expression. Moreover, in HPV16+ cervical cancer patients, in-vitro depletion of CD25+ T cells resulted in increased IFN-γ T cell responses against HPV16 E6- and E7 peptides. Thus, increased frequencies of Tregs in cervical cancer patients may indeed suppress HPV-specific immunity. Longitudinal analysis of CD4+/CD25high T cell frequencies in patients showed a modest decline 1 year after curative surgery or chemoradiation. This study demonstrates increased frequencies and suppressive activity of Tregs in cervical cancer. These results imply that Tregs may suppress the immune control of cervical neoplasia and furthermore that suppression of immunity by Tregs will be another hurdle to overcome in therapeutic immunization strategies against cervical neoplasia. PMID:17937675

  10. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer

    PubMed Central

    Link, Petra A.; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R.

    2013-01-01

    Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1–sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination. PMID:23390377

  11. Isoform-level gene expression patterns in single-cell RNA-sequencing data.

    PubMed

    Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Pawitan, Yudi; Rantalainen, Mattias

    2018-02-27

    RNA sequencing of single cells enables characterization of transcriptional heterogeneity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a wide range of researches fields. However, few studies have focus on characterization of isoform-level expression patterns at the single-cell level. In this study we propose and apply a novel method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression patterns of isoform pairs from the same gene in single-cell isoform-level expression data. We define six principal patterns of isoform expression relationships and describe a method for differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern types to each of 16,562 isoform-pairs from 4,929 genes. Among those, 26% of the discovered patterns were significant (p<0.05), while remaining patterns are possibly effects of transcriptional bursting, drop-out and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-pattern analysis were not detected by differential-expression analysis. The effect of drop-out events, mean expression level, and properties of the expression distribution on the performances of ISOP were also investigated through simulated datasets. To conclude, ISOP provides a novel approach for characterization of isoformlevel preference, commitment and heterogeneity in single-cell RNA-sequencing data. The ISOP method has been implemented as a R package and is available at https://github.com/nghiavtr/ISOP under a GPL-3 license. mattias.rantalainen@ki.se. Supplementary data are available at Bioinformatics online.

  12. Monoamine Oxidase Deficiency Causes Prostate Atrophy and Reduces Prostate Progenitor Cell Activity.

    PubMed

    Yin, Lijuan; Li, Jingjing; Liao, Chun-Peng; Jason Wu, Boyang

    2018-04-10

    Monoamine oxidases (MAOs) degrade a number of biogenic and dietary amines, including monoamine neurotransmitters, and play an essential role in many biological processes. Neurotransmitters and related neural events have been shown to participate in the development, differentiation, and maintenance of diverse tissues and organs by regulating the specialized cellular function and morphological structures of innervated organs such as the prostate. Here we show that mice lacking both MAO isoforms, MAOA and MAOB, exhibit smaller prostate mass and develop epithelial atrophy in the ventral and dorsolateral prostates. The cellular composition of prostate epithelium showed reduced CK5 + or p63 + basal cells, accompanied by lower Sca-1 expression in p63 + basal cells, but intact differentiated CK8 + luminal cells in MAOA/B-deficient mouse prostates. MAOA/B ablation also decreased epithelial cell proliferation without affecting cell apoptosis in mouse prostates. Using a human prostate epithelial cell line, we found that stable knockdown of MAOA and MAOB impaired the capacity of prostate stem cells to form spheres, coinciding with a reduced CD133 + /CD44 + /CD24 - stem cell population and less expression of CK5 and select stem cell markers, including ALDH1A1, TROP2, and CD166. Alternative pharmacological inhibition of MAOs also repressed prostate cell stemness. In addition, we found elevated expression of MAOA and MAOB in epithelial and/or stromal components of human prostate hyperplasia samples compared with normal prostate tissues. Taken together, our findings reveal critical roles for MAOs in the regulation of prostate basal progenitor cells and prostate maintenance. Stem Cells 2018. © AlphaMed Press 2018.

  13. Biochemical basis of vocal fold mobilization after microflap surgery in a rabbit model.

    PubMed

    Mitchell, Joshua R; Kojima, Tsuyoshi; Wu, Hongmei; Garrett, C Gaelyn; Rousseau, Bernard

    2014-02-01

    To investigate phonation-related extracellular matrix (ECM) changes in the vocal fold lamina propria after microflap surgery using an in vivo rabbit phonation model. Prospective animal study. Twenty-four New Zealand White rabbits were used in this study. Quantitative polymerase chain reaction and immunohistochemistry were used to investigate alterations in vocal fold ECM proinflammatory and profibrotic gene, and protein expression from a control group of animals receiving a microflap without phonation and a separate group of animals receiving experimentally induced phonation on postmicroflap days 0, 3, and 7. IHC demonstrated the highest concentration of CD45 in vocal folds on postoperative day 0. Staining for CD45 was absent by postoperative day 7, with no differences in CD45 staining between groups. Fibronectin gene expression increased significantly on postoperative day 3 in the control and experimentally induced phonation groups, with maximal staining of fibronectin around the microflap incision on postoperative day 7. No alterations in cyclooxygenase-2, interleukin-1β, and transforming growth factor-β1 gene expression were observed between groups. Results of the present study revealed an acute inflammatory response in the vocal fold at the time of microflap (day 0) and up to 3 days post-microflap. By post-operative day 3, staining of CD45 positive cells decreased, with essentially no evidence of inflammation by post-operative day 7. With the end of the acute inflammatory response occurring around day 3, these data may provide support for mobilizing tissue after inflammation has subsided and the process of active tissue remodeling has ensued (days 3-7). N/A. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  14. The effect of omalizumab treatment on the low affinity immunoglobulin E receptor (CD23/fc epsilon RII) in patients with severe allergic asthma.

    PubMed

    Assayag, Miri; Moshel, Shabtai; Kohan, Martin; Berkman, Neville

    2018-01-01

    Omalizumab is an anti-immunoglobulin E (IgE) monoclonal antibody used in the treatment of severe asthma. Its therapeutic efficacy is primarily attributed to reduction of serum-free IgE and in the expression of high-affinity IgE receptor, fc epsilon RI. However, its effect on the low-affinity IgE receptor fc epsilon RII/CD23 in vivo has not been evaluated. To determine whether CD23 plays a role in the inflammatory process in severe uncontrolled asthma and whether anti-IgE therapy modulates fc epsilon RII/CD23 expression in these patients. We evaluated the expression of IgE receptors fc epsilon RI, fc epsilon RII/CD23, and soluble CD23 (sCD23), and the activation state of peripheral blood monocytes (tumor necrosis factor alpha, interleukin (IL) 1-beta, transforming growth factor (TGF) beta expression) in the patients with severe asthma before and after 24 weeks of omalizumab treatment and in the healthy controls. Cytokine expression of monocytes in response to different stimulation (IL-4, IL-4 plus IgE, IL-4 plus IgE plus anti-IgE, and IL-4 plus IgE plus anti-IgE plus anti-CD23 for 72 hours) was determined by enzyme-linked immunosorbent assay. Treatment with omalizumab (for 24 weeks) improved disease control and pulmonary function (forced expiratory volume in the first second of expiration, 64.5 versus 74%; p = 0.021). Mean ± SE expression of fc epsilon RI on monocytes was higher in the patients with asthma versus the controls (45.7 ± 12.2% versus 18.6 ± 5.8%; p = 0.04) and was reduced after omalizumab treatment (45.7 ± 12.2% versus 15.6 ± 4.4%; p = 0.027). Mean ± SE TGF-beta levels in supernatants from monocytes were reduced in the patients treated with omalizumab (211 ± 6 pg/mL versus 184 ± 9 pg/mL; p = 0.036). Modulation of the low affinity IgE receptor CD23 in severe asthma is complex, and sCD23 may inversely reflect disease activity. Treatment with omalizumab was associated with reduced monocyte activation.

  15. Salivary proline-rich proteins and gluten: Do structural similarities suggest a role in celiac disease?

    PubMed

    Tian, Na; Messana, Irene; Leffler, Daniel A; Kelly, Ciaran P; Hansen, Joshua; Cabras, Tiziana; D'Alessandro, Alfredo; Schuppan, Detlef; Castagnola, Massimo; Helmerhorst, Eva J

    2015-10-01

    Gluten proteins, the culprits in celiac disease (CD), show striking similarities in primary structure with human salivary proline-rich proteins (PRPs). Both are enriched in proline and glutamine residues that often occur consecutively in their sequences. We investigated potential differences in the spectrum of salivary PRPs in health and CD. Stimulated salivary secretions were collected from CD patients, patients with refractory CD, patients with gastrointestinal complaints but no CD, and healthy controls. PRP isoforms/peptides were characterized by anionic and SDS-PAGE, PCR, and LC-ESI-MS. The gene frequencies of the acidic PRP isoforms PIF, Db, Pa, PRP1, and PRP2 did not differ between groups. At the protein level, PRPs peptides showed minor group differences, but these could not differentiate the CD and/or refractory CDs groups from the controls. This extensive study established that salivary PRPs, despite similarity to gluten proteins, show no apparent correlation with CD and thus will not serve as diagnostic markers for the disease. The structural basis for the tolerance to the gluten-like PRP proteins in CD is worthy of further exploration and may lead to the development of gluten-like analogs lacking immunogenicity that could be used therapeutically. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Estrogen receptor mRNA expression patterns in the liver and ovary of female rainbow trout over a complete reproductive cycle

    PubMed Central

    Nagler, James J.; Cavileer, Timothy D.; Verducci, Joseph S.; Schultz, Irvin R.; Hook, Sharon E.; Hayton, William L.

    2012-01-01

    Estrogens are critical hormones involved in reproduction and need to bind to estrogen receptors in target organs for biological activity. Fishes have two distinct estrogen receptor subtypes, alpha (α) and beta (β), with variable combinations of additional isoforms of each subtype dependent on the history of genome duplication within a taxon. The comparative expression patterns of estrogen receptor isoforms during the female reproductive cycle will provide important insights into the unique function and importance of each. The purpose of this study was to measure the mRNAs for the four estrogen receptor isoforms (erα1, erα2, erβ1, erβ2) in the liver and ovary of adult, female rainbow trout over the course of an annual reproductive cycle. The expression of estrogen receptor mRNA isoforms was measured by quantitative real-time RT-PCR. Several reproductive indices (gonadosomatic index, maximum oocyte diameter, plasma estradiol-17β, plasma vitellogenin, and ovulation) were also quantified for comparison and used in a correlation analysis to examine any inter-relationships. Of the four isoforms, the expression of erα1 was highest in the liver, and had a significant positive correlation with liver erβ1 expression. Liver expression of erα2 mRNA was the lowest, but showed a significant positive correlation with maximum oocyte diameter in the ovary. The pattern of the erβ isoforms in liver was one of initially elevated mRNA expression followed by a gradual decrease as reproductive development proceeded. In the ovary the erβ1 isoform had the highest mRNA expression of all estrogen receptor isoforms, at the beginning of the reproductive cycle, but then decreased afterward. Both ovarian erβ isoforms had a significant positive correlation with one another. In contrast, erα2 mRNA expression showed a high maximum level in the ovary near the end of the cycle along with a significant positive correlation with plasma estradiol-17β levels; the highest gonadosomatic indices, maximum oocyte diameter, and vitellogenin levels occurred then too. PMID:22732076

  17. Peripheral Blood CD38 Bright CD8+ Effector Memory T Cells Predict Acute Graft-versus-Host Disease.

    PubMed

    Khandelwal, Pooja; Lane, Adam; Chaturvedi, Vijaya; Owsley, Erika; Davies, Stella M; Marmer, Daniel; Filipovich, Alexandra H; Jordan, Michael B; Marsh, Rebecca A

    2015-07-01

    Acute graft-versus-host disease (aGVHD) is mediated by allogeneic T cell responses. We hypothesized that increases of peripheral blood-activated CD8+ effector memory T (TEM) cells would be observed after hematopoietic stem cell transplantation (HSCT) before onset of aGVHD symptoms. Blood was collected twice weekly after HSCT for 7 weeks in 49 consecutive pediatric and adult HSCT recipients. Samples were incubated with fluorochrome-conjugated antibodies against CD45, CD3, CD8, CD38, CD45RA, and CCR7 and analyzed using flow cytometry. TEM cells were defined as CD3+ CD8+ CCR7- CD45RA(-) lymphocytes. CD38 expression was used as a marker of T cell activation. Patients were followed for 100 days for development of aGVHD. Twenty-three patients developed grade 1 to 4 aGVHD at a median of 37 days (range, 15 to 79 days) after HCST. Absolute CD38 bright CD8+ TEM of > 35 cells/μL predicted aGVHD at a median of 8 days (range, 1 to 34) before aGVHD onset with a sensitivity of 82.6% and specificity of 91.6%. The cumulative incidence of aGVHD was 90% in patients with absolute CD38 bright CD8+ TEM >35 cells/μL and 15% in patients without (P < .0001). Quantification of CD38 bright CD8+ TEM cells may predict aGVHD in children and young adult HSCT recipients. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype.

    PubMed

    Munier, C Mee Ling; van Bockel, David; Bailey, Michelle; Ip, Susanna; Xu, Yin; Alcantara, Sheilajen; Liu, Sue Min; Denyer, Gareth; Kaplan, Warren; Suzuki, Kazuo; Croft, Nathan; Purcell, Anthony; Tscharke, David; Cooper, David A; Kent, Stephen J; Zaunders, John J; Kelleher, Anthony D

    2016-10-17

    Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear. We undertook a detailed functional and genetic characterization of CD4 T-cells during acute VV-infection of humans. VV-specific T-cells were identified by up-regulation of activation markers directly ex vivo and through cytokine and co-stimulatory molecule expression. At day-13-post primary inoculation with VV, CD38highCD45RO+ CD4 T-cells were purified by cell sorting, RNA isolated and analysed by microarray. Differential expression of up-regulated genes in activated CD4 T-cells was confirmed at the mRNA and protein levels. We compared analyses of VV-specific CD4 T-cells to studies on 12 subjects with primary HIV infection (PHI). VV-specific T-cells lines were established from PBMCs collected post vaccination and checked for cytotoxicity potential. A median 11.9% CD4 T-cells were CD38highCD45RO+ at day-13 post-VV inoculation, compared to 3.0% prior and 10.4% during PHI. Activated CD4 T-cells had an up-regulation of genes related to cytolytic function, including granzymes K and A, perforin, granulysin, TIA-1, and Rab27a. No difference was seen between CD4 T-cell expression of perforin or TIA-1 to VV and PHI, however granzyme k was more dominant in the VV response. At 25:1 effector to target ratio, two VV-specific T-cell lines exhibited 62% and 30% cytotoxicity respectively and CD107a degranulation. We show for the first time that CD4 CTL are prominent in the early response to VV. Understanding the role of CD4 CTL in the generation of an effective anti-viral memory may help develop more effective vaccines for diseases such as HIV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Ouabain interactions with the α4 isoform of the sodium pump trigger non-classical steroid hormone signaling and integrin expression in spermatogenic cells.

    PubMed

    Upmanyu, Neha; Dietze, Raimund; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-11-01

    In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia.

    PubMed

    Volden, T A; Reyelts, C D; Hoke, T A; Arikkath, J; Bonasera, S J

    2015-12-01

    Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.

  1. Expression of transcription factors during sodium phenylacetate induced erythroid differentiation in K562 cells.

    PubMed

    Rath, A V; Schmahl, G E; Niemeyer, C M

    1997-01-01

    During 15 days of treatment of K562 cells with sodium phenylacetate, we observed an increase in the cellular hemoglobin concentration with a similar increase in the expression of gamma-globin mRNA. Morphological studies demonstrated characteristic features of erythroid differentiation and maturation. At the same time there was no change in the level of expression of the cell surface antigenes CD33, CD34, CD45, CD71 and glycophorin A. Likewise, the level of expression of the erythroid transcription factors GATA-1, GATA-2, NF-E2, SCL and RBTN2, all expressed in untreated K562 cells, did not increase during sodium phenylacetate induced erythroid differentiation. The expression of the nuclear factors Evi-1 and c-myb, known to inhibit erythroid differentiation, did not decrease. We conclude that sodium phenylacetate treatment of K562 cells increases gamma-globin mRNA and induces cell maturation as judged by morphology without affecting the expression of the erythroid transcription factors, some of which are known to be involved in the regulation of beta-like globin genes.

  2. Comparative Expression Profiling of Distinct T Cell Subsets Undergoing Oxidative Stress

    PubMed Central

    Lichtenfels, Rudolf; Mougiakakos, Dimitrios; Johansson, C. Christian; Dressler, Sven P.; Recktenwald, Christian V.; Kiessling, Rolf; Seliger, Barbara

    2012-01-01

    The clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response. In order to better define the key pathways/proteins involved in the response to oxidative stress a comparative 2-DE-based proteome analysis of naïve CD45RA+ and their memory/effector CD45RO+ T cell counterparts in the presence and absence of low dose hydrogen peroxide (H2O2) was performed in this pilot study. Based on the profiling data of these T cell subpopulations under the various conditions, a series of differentially expressed spots were defined, members thereof identified by mass spectrometry and subsequently classified according to their cellular function and localization. Representative targets responding to oxidative stress including proteins involved in signaling pathways, in regulating the cellular redox status as well as in shaping/maintaining the structural cell integrity were independently verified at the transcript and protein level under the same conditions in both T cell subsets. In conclusion the resulting profiling data describe complex, oxidative stress-induced, but not strictly concordant changes within the respective expression profiles of CD45RA+ and CD45RO+ T cells. Some of the differentially expressed genes/proteins might be further exploited as potential targets toward modulating the redox capacity of the distinct lymphocyte subsets thereby providing the basis for further studies aiming at rendering them more resistant to tumor micromilieu-induced oxidative stress. PMID:22911781

  3. Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts.

    PubMed Central

    Pujuguet, P.; Hammann, A.; Moutet, M.; Samuel, J. L.; Martin, F.; Martin, M.

    1996-01-01

    Alternative splicing of primary fibronectin (FN) mRNA results in the synthesis of different isoforms. ED-A+ and ED-B+ FN isoforms are absent from plasma FN and are representative of cellular FN. Their expression was studied in human and rat normal colon, in human colorectal carcinomas, and in transplanted tumors derived from a chemically-induced rat colon cancer. In normal colon, only the ED-A+ FN isoform was expressed as a thin deposit between crypt colonocytes and pericryptal myofibroblasts. Conversely, heavy ED-A+ FN deposits and lighter ED-B+ FN expression were found in the stroma of colorectal tumors in association with myofibroblasts surrounding tumor glands. Some colonic cancer cells also contained intracellular FN isoform granules and expressed FN mRNA. Tumor-associated myofibroblasts and some cancer cell lines were able to synthesize and deposit extracellular ED-A+ and ED-B+ FN in vitro. FN isoform deposition by tumor-associated myofibroblasts was not modulated by colon cancer cell-conditioned medium, but was strongly enhanced when myofibroblasts were cultured on colon cancer cell extracellular matrix or on laminin. These results show that the ED-A+ and ED-B+ FN isoforms were overexpressed in colorectal cancer. Cancer cells can deposit these FN isoforms directly and also stimulate their deposition by tumor-associated myofibroblasts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 PMID:8579120

  4. Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract.

    PubMed

    Posavad, C M; Zhao, L; Dong, L; Jin, L; Stevens, C E; Magaret, A S; Johnston, C; Wald, A; Zhu, J; Corey, L; Koelle, D M

    2017-09-01

    Local mucosal cellular immunity is critical in providing protection from HSV-2. To characterize and quantify HSV-2-reactive mucosal T cells, lymphocytes were isolated from endocervical cytobrush and biopsy specimens from 17 HSV-2-infected women and examined ex vivo for the expression of markers associated with maturation and tissue residency and for functional T-cell responses to HSV-2. Compared with their circulating counterparts, cervix-derived CD4+ and CD8+ T cells were predominantly effector memory T cells (CCR7-/CD45RA-) and the majority expressed CD69, a marker of tissue residency. Co-expression of CD103, another marker of tissue residency, was highest on cervix-derived CD8+ T cells. Functional HSV-2 reactive CD4+ and CD8+ T-cell responses were detected in cervical samples and a median of 17% co-expressed CD103. HSV-2-reactive CD4+ T cells co-expressed IL-2 and were significantly enriched in the cervix compared with blood. This first direct ex vivo documentation of local enrichment of HSV-2-reactive T cells in the human female genital mucosa is consistent with the presence of antigen-specific tissue-resident memory T cells. Ex vivo analysis of these T cells may uncover tissue-specific mechanisms of local control of HSV-2 to assist the development of vaccine strategies that target protective T cells to sites of HSV-2 infection.

  5. Impact of Two Measures of Micrometastatic Disease on Clinical Outcomes in Patients with Newly Diagnosed Ewing Sarcoma: A Report from the Children’s Oncology Group

    PubMed Central

    Vo, Kieuhoa T.; Edwards, Jeremy V.; Epling, C. Lorrie; Sinclair, Elizabeth; Hawkins, Douglas S.; Grier, Holcombe E.; Janeway, Katherine A.; Barnette, Phillip; McIlvaine, Elizabeth; Krailo, Mark D.; Barkauskas, Donald A.; Matthay, Katherine K.; Womer, Richard B.; Gorlick, Richard G.; Lessnick, Stephen L.; Mackall, Crystal L.; DuBois, Steven G.

    2016-01-01

    Purpose Flow cytometry and RT-PCR can detect occult Ewing sarcoma (ES) cells in the blood and bone marrow (BM). These techniques were used to evaluate the prognostic significance of micrometastatic disease in ES. Experimental Design Newly diagnosed patients with ES were enrolled on two prospective multi-center studies. In the flow cytometry cohort, patients were defined as “positive” for BM micrometastatic disease if their CD99+/CD45− values were above the upper limit in 22 control patients. In the PCR cohort, RT-PCR on blood or BM samples classified the patients as “positive” or “negative” for EWSR1/FLI1 translocations. The association between micrometastatic disease burden with clinical features and outcome was assessed. Co-expression of IGF-1R on detected tumor cells was performed in a subset of flow cytometry samples. Results The median total BM CD99+CD45− percent was 0.0012% (range 0–1.10%) in the flow cytometry cohort, with 14/109 (12.8%) of ES patients defined as “positive.” In the PCR cohort, 19.6% (44/225) patients were “positive” for any EWSR1/FLI1 translocation in blood or BM. There were no differences in baseline clinical features or event-free or overall survival between patients classified as “positive” vs. “negative” by either method. CD99+CD45− cells had significantly higher IGF-1R expression compared to CD45+ hematopoietic cells (mean geometric mean fluorescence intensity 982.7 vs. 190.9; p<0.001). Conclusion The detection of micrometastatic disease at initial diagnosis by flow cytometry or RT-PCR is not associated with outcome in newly diagnosed patients with ES. Flow cytometry provides a tool to characterize occult micrometastatic tumor cells for proteins of interest. PMID:26861456

  6. A new haemocyanin in cuttlefish (Sepia officinalis) eggs: sequence analysis and relevance during ontogeny

    PubMed Central

    2014-01-01

    Background Haemocyanin is the respiratory protein of most of the Mollusca. In cephalopods and gastropods at least two distinct isoforms are differentially expressed. However, their physiological purpose is unknown. For the common cuttlefish Sepia officinalis, three isoforms are known so far, whereas for only two of them the complete mRNA sequences are available. In this study, we sequenced the complete mRNA of the third haemocyanin isoform and measured the relative expression of all three isoforms during embryogenesis to reveal a potential ontogenetic relevance. Results The cDNA of isoform 3 clearly correlates to the known Sepia officinalis haemocyanin subunits consisting of eight functional units and an internal duplicated functional unit d. Our molecular phylogenetic analyses reveal the third isoform representing a potentially ancestral haemocyanin isoform, and the analyses of the expression of haemocyanin type 3 reveal that haemocyanin type 3 only can be observed within eggs and during early development. Isoforms 1 and 2 are absent at these stages. After hatching, isoform 3 is downregulated, and isoform 1 and 2 are upregulated. Conclusions Our study clearly shows an embryonic relevance of the third isoform, which will be further discussed in the light of the changes in the physiological function of haemocyanin during ontogeny. Taken together with the fact that it could also be the isoform closest related to the common ancestor of cuttlefish haemocyanin, the phylogeny of cuttlefish haemocyanin may be recapitulated during its ontogeny. PMID:24499521

  7. Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR

    PubMed Central

    He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao

    2015-01-01

    Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401

  8. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  9. NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells

    PubMed Central

    Pitrone, Maria; Pizzolanti, Giuseppe; Tomasello, Laura; Coppola, Antonina; Morini, Lorenzo; Pantuso, Gianni; Ficarella, Romina; Guarnotta, Valentina; Perrini, Sebastio; Giorgino, Francesco; Giordano, Carla

    2017-01-01

    The stromal vascular cell fraction (SVF) of visceral and subcutaneous adipose tissue (VAT and SAT) has increasingly come into focus in stem cell research, since these compartments represent a rich source of multipotent adipose-derived stem cells (ASCs). ASCs exhibit a self-renewal potential and differentiation capacity. Our aim was to study the different expression of the embryonic stem cell markers NANOG (homeobox protein NANOG), SOX2 (SRY (sex determining region Y)-box 2) and OCT4 (octamer-binding transcription factor 4) and to evaluate if there exists a hierarchal role in this network in ASCs derived from both SAT and VAT. ASCs were isolated from SAT and VAT biopsies of 72 consenting patients (23 men, 47 women; age 45 ± 10; BMI between 25 ± 5 and 30 ± 5 range) undergoing elective open-abdominal surgery. Sphere-forming capability was evaluated by plating cells in low adhesion plastic. Stem cell markers CD90, CD105, CD29, CD31, CD45 and CD146 were analyzed by flow cytometry, and the stem cell transcription factors NANOG, SOX2 and OCT4 were detected by immunoblotting and real-time PCR. NANOG, SOX2 and OCT4 interplay was explored by gene silencing. ASCs from VAT and SAT confirmed their mesenchymal stem cell (MSC) phenotype expressing the specific MSC markers CD90, CD105, NANOG, SOX2 and OCT4. NANOG silencing induced a significant OCT4 (70 ± 0.05%) and SOX2 (75 ± 0.03%) downregulation, whereas SOX2 silencing did not affect NANOG gene expression. Adipose tissue is an important source of MSC, and siRNA experiments endorse a hierarchical role of NANOG in the complex transcription network that regulates pluripotency. PMID:28545230

  10. Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli

    PubMed Central

    Rask, C; Adlerberth, I; Berggren, A; Ahrén, I L; Wold, A E

    2013-01-01

    Probiotics are live microorganisms which have beneficial effects on the host when ingested in adequate amounts. Probiotic bacteria may stimulate immune effector functions in a strain-specific manner. In this blind placebo-controlled trial, we investigated the effects on the immune system following daily intake of six different strains of lactobacilli or the Gram-negative bacterium Pseudomonas lundensis for 2 or 5 weeks. Blood lymphocyte subsets were quantified by fluorescence activated cell sorter and the expression of activation and memory markers was determined. The bacterial strains were also examined for their capacity to adhere to human intestinal cells and to be phagocytosed by human peripheral blood mononuclear cells. Intake of Lactobacillus plantarum strain 299v increased the expression of the activation marker CD25 (P = 0·01) on CD8+ T cells and the memory cell marker CD45RO on CD4+ T cells (P = 0·03), whereas intake of L. paracasei tended to expand the natural killer T (NK T) cell population (P = 0·06). The phagocytic activity of granulocytes was increased following intake of L. plantarum 299v, L. plantarum HEAL, L. paracasei or L. fermentum. In contrast, ingestion of L. rhamnosus decreased the expression of CD25 and CD45RO significantly within the CD4+ cell population. The observed immune effects after in-vivo administration of the probiotic bacteria could not be predicted by either their adherence capacity or the in-vitro-induced cytokine production. The stimulation of CD8+ T cells and NK T cells suggests that intake of probiotic bacteria may enhance the immune defence against, e.g. viral infections or tumours. PMID:23574328

  11. Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli.

    PubMed

    Rask, C; Adlerberth, I; Berggren, A; Ahrén, I L; Wold, A E

    2013-05-01

    Probiotics are live microorganisms which have beneficial effects on the host when ingested in adequate amounts. Probiotic bacteria may stimulate immune effector functions in a strain-specific manner. In this blind placebo-controlled trial, we investigated the effects on the immune system following daily intake of six different strains of lactobacilli or the Gram-negative bacterium Pseudomonas lundensis for 2 or 5 weeks. Blood lymphocyte subsets were quantified by fluorescence activated cell sorter and the expression of activation and memory markers was determined. The bacterial strains were also examined for their capacity to adhere to human intestinal cells and to be phagocytosed by human peripheral blood mononuclear cells. Intake of Lactobacillus plantarum strain 299v increased the expression of the activation marker CD25 (P = 0·01) on CD8(+) T cells and the memory cell marker CD45RO on CD4(+) T cells (P = 0·03), whereas intake of L. paracasei tended to expand the natural killer T (NK T) cell population (P = 0·06). The phagocytic activity of granulocytes was increased following intake of L. plantarum 299v, L. plantarum HEAL, L. paracasei or L. fermentum. In contrast, ingestion of L. rhamnosus decreased the expression of CD25 and CD45RO significantly within the CD4(+) cell population. The observed immune effects after in-vivo administration of the probiotic bacteria could not be predicted by either their adherence capacity or the in-vitro-induced cytokine production. The stimulation of CD8(+) T cells and NK T cells suggests that intake of probiotic bacteria may enhance the immune defence against, e.g. viral infections or tumours. © 2012 British Society for Immunology.

  12. Presence of Antigen-Experienced T Cells with Low Grade of Differentiation and Proliferative Potential in Chronic Chagas Disease Myocarditis

    PubMed Central

    Cabeza-Meckert, Patricia; Viotti, Rodolfo; Garelli, Fernando; Favaloro, Liliana E.; Favaloro, Roberto R.; Laguens, Rubén; Laucella, Susana A.

    2014-01-01

    Background The main consequence of chronic Trypanosoma cruzi infection is the development of myocarditis in approximately 20–30% of infected individuals but not until 10–20 years after the initial infection. We have previously shown that circulating interferon-γ-secreting T cells responsive to Trypanosoma cruzi antigens in chronic Chagas disease patients display a low grade of differentiation and the frequency of these T lymphocytes decreases along with the severity of heart disease. This study thought to explore the expression of inhibitory receptors, transcription factors of type 1 or regulatory T cells, and markers of T cell differentiation, immunosenescence or active cell cycle in cardiac explants from patients with advanced Chagas disease myocarditis. Methodology/Principal Findings The expression of different markers for T and B cells as well as for macrophages was evaluated by immunohistochemistry and immunofluorescence techniques in cardiac explants from patients with advanced chronic Chagas disease submitted to heart transplantation. Most infiltrating cells displayed markers of antigen-experienced T cells (CD3+, CD4+, CD8+, CD45RO+) with a low grade of differentiation (CD27+, CD57−, CD45RA−, PD-1−). A skewed T helper1/T cytotoxic 1 profile was supported by the expression of T-bet; whereas FOXP3+ cells were scarce and located only in areas of severe myocarditis. In addition, a significant proliferative capacity of CD3+ T cells, assessed by Ki67 staining, was found. Conclusions/Significance The quality of T cell responses and immunoregulatory mechanisms might determine the pattern of the cellular response and the severity of disease in chronic Trypanosoma cruzi infection. PMID:25144227

  13. Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum

    PubMed Central

    Montalvillo, Enrique; Bernardo, David; Martínez-Abad, Beatriz; Allegretti, Yessica; Fernández-Salazar, Luis; Calvo, Carmen; Chirdo, Fernando G.; Garrote, José A.; Arranz, Eduardo

    2015-01-01

    Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum. PMID:26529008

  14. Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum.

    PubMed

    Montalvillo, Enrique; Bernardo, David; Martínez-Abad, Beatriz; Allegretti, Yessica; Fernández-Salazar, Luis; Calvo, Carmen; Chirdo, Fernando G; Garrote, José A; Arranz, Eduardo

    2015-10-30

    Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum.

  15. Adiponectin isoform patterns in ethnic-specific ADIPOQ mutation carriers: The IRAS Family Study

    PubMed Central

    Tabb, Keri L.; Gao, Chuan; Hicks, Pamela J.; Hawkins, Gregory A.; Rotter, Jerome I.; da Chen, Yii-Der I; Guo, Xiuqing; Norris, Jill M.; Lorenzo, Carlos; Freedman, Barry I.; Bowden, Donald W.; Palmer, Nicholette D.

    2017-01-01

    Objective Adiponectin is found in human serum in three groups of multimers (high, medium, and low molecular weight). Previously, we reported two ethnic-specific variants in ADIPOQ, G45R (Hispanic Americans) and R55C (African Americans). Although carriers of both variants had mean adiponectin levels ≤20% of those of non-carriers, they were not clinically different from non-carriers. To compare carriers of both variants and non-carriers, relative quantification of adiponectin isoforms to total adiponectin was performed on serum samples. Methods The multimeric patterns of serum adiponectin in G45R carriers (n=23), R55C carriers (n=3), and Hispanic and African American non-carriers (n=84 and 44, respectively) from the IRAS Family Study were explored using native western blotting and densitometry. Results Serum samples from carriers showed an absence of the high molecular weight (HMW) isoform and a marked reduction in the medium molecular weight isoform but an approximate two-fold increase in the amount of the low molecular weight isoform (LMW). Thus, individuals making only LMW adiponectin are metabolically normal. Conclusions The results contrast with the proposed biological importance of the HMW multimer. This suggests that the LMW isoform may functionally compensate for some of the loss/reduction of the higher-order multimers in carriers of the G45R and R55C mutations. PMID:28643464

  16. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance.

    PubMed

    Mohana, Krishnamoorthy; Achary, Anant

    2017-08-01

    Glutathione-S-transferase (GST) inhibition is a strategy to overcome drug resistance. Several isoforms of human GSTs are present and they are expressed in almost all the organs. Specific expression levels of GSTs in various organs are collected from the human transcriptome data and analysis of the organ-specific expression of GST isoforms is carried out. The variations in the level of expressions of GST isoforms are statistically significant. The GST expression differs in diseased conditions as reported by many investigators and some of the isoforms of GSTs are disease markers or drug targets. Structure analysis of various isoforms is carried out and literature mining has been performed to identify the differences in the active sites of the GSTs. The xenobiotic binding H site is classified into H1, H2, and H3 and the differences in the amino acid composition, the hydrophobicity and other structural features of H site of GSTs are discussed. The existing inhibition strategies are compared. The advent of rational drug design, mechanism-based inhibition strategies, availability of high-throughput screening, target specific, and selective inhibition of GST isoforms involved in drug resistance could be achieved for the reversal of drug resistance and aid in the treatment of diseases.

  17. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.

    PubMed

    Joosten, Sander P J; Zeilstra, Jurrit; van Andel, Harmen; Mijnals, R Clinton; Zaunbrecher, Joost; Duivenvoorden, Annet A M; van de Wetering, Marc; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T

    2017-10-01

    Resistance of metastatic human colorectal cancer cells to drugs that block epidermal growth factor (EGF) receptor signaling could be caused by aberrant activity of other receptor tyrosine kinases, activating overlapping signaling pathways. One of these receptor tyrosine kinases could be MET, the receptor for hepatocyte growth factor (HGF). We investigated how MET signaling, and its interaction with CD44 (a putative MET coreceptor regulated by Wnt signaling and highly expressed by intestinal stem cells [ISCs] and adenomas) affects intestinal homeostasis, regeneration, and adenoma formation in mini-gut organoids and mice. We established organoid cultures from ISCs stimulated with HGF or EGF and assessed intestinal differentiation by immunohistochemistry. Mice with total epithelial disruption of MET (Ah Cre /Met fl/fl /LacZ) or ISC-specific disruption of MET (Lgr5 Creert2 /Met fl/fl /LacZ) and control mice (Ah Cre /Met +/+ /LacZ, Lgr5 Creert2 /Met +/+ /LacZ) were exposed to 10 Gy total body irradiation; intestinal tissues were collected, and homeostasis and regeneration were assessed by immunohistochemistry. We investigated adenoma organoid expansion stimulated by HGF or EGF using adenomas derived from Lgr5 Creert2 /Met fl/fl /Apc fl/fl and Lgr5 Creert2 /Met +/+ /Apc fl/fl mice. The same mice were evaluated for adenoma prevalence and size. We also quantified adenomas in Ah Cre /Met fl/fl /Apc fl/+ mice compared with Ah Cre /Met +/+ /Apc fl/+ control mice. We studied expansion of organoids generated from crypts and adenomas, stimulated by HGF or EGF, that were derived from mice expressing different CD44 splice variants (Cd44 +/+ , Cd44 -/- , Cd44 s/s , or Cd44 v4-10/v4-10 mice). Crypts incubated with EGF or HGF expanded into self-organizing mini-guts with similar levels of efficacy and contained all differentiated cell lineages. MET-deficient mice did not have defects in intestinal homeostasis. Total body irradiation reduced numbers of proliferating crypts in Ah Cre /Met fl/fl /LacZ mice. Lgr5 Creert2 /Met fl/fl /LacZ mice had impaired regeneration of MET-deficient ISCs. Adenoma organoids stimulated with EGF or HGF expanded to almost twice the size of nonstimulated organoids. MET-deficient adenoma organoids did not respond to HGF stimulation, but did respond to EGF. ISC-specific disruption of Met (Lgr5 Creert2 /Met fl/fl /Apc fl/fl mice) caused a twofold increase in apoptosis in microadenomas, resulting in an approximately 50% reduction of microadenoma numbers and significantly reduced average adenoma size. Total epithelial disruption of Met (Ah Cre /Met fl/fl /Apc fl/+ mice) resulted in an approximate 50% reduction in (micro)adenoma numbers. Intestinal crypts from Cd44 -/- mice did not expand to the same extent as crypts from Cd44 +/+ mice on stimulation with HGF, but had the same response to EGF. The negative effect on HGF-mediated growth was overcome by expression of CD44v4-10, but not by CD44s. Similarly, HGF-mediated expansion of adenoma organoids required CD44v4-10. In studies of intestinal organoid cultures and mice with inducible deletion of MET, we found HGF receptor signaling to regulate intestinal homeostasis and regeneration, as well as adenoma formation. These activities of MET are promoted by the stem cell CD44 isoform CD44v4-10. Our findings provide rationale for targeting signaling via MET and CD44 during anti-EGF receptor therapy of patients with colorectal cancer or in patients resistant to EGF receptor inhibitors. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells

    PubMed Central

    Hosseinzadeh Shirzeily, Maryam; Pasbakhsh, Parichehr; Amidi, Fardin; Mehrannia, Kobra; Sobhani, Aligholi

    2013-01-01

    Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam Hosseinzadeh Shirzeily) PMID:24639722

  19. Tissue specificity and regulation of the N-terminal diversity of reticulon 3

    PubMed Central

    Di Scala, Franck; Dupuis, Luc; Gaiddon, Christian; De Tapia, Marc; Jokic, Natasa; Gonzalez De Aguilar, Jose-Luis; Raul, Jean-Sébastien; Ludes, Bertrand; Loeffler, Jean-Philippe

    2004-01-01

    Over the last few years, the widely distributed family of reticulons (RTNs) is receiving renewed interest because of the implication of RTN4/Nogo in neurite regeneration. Four genes were identified in mammals and are referred to as RTN1, 2, 3 and the neurite outgrowth inhibitor RTN4/Nogo. In the present paper, we describe the existence of five new isoforms of RTN3 that differ in their N-termini, and analysed their tissue distribution and expression in neurons. We redefined the structure of human and murine rtn3 genes, and identified two supplementary exons that may generate up to seven putative isoforms arising by alternative splicing or differential promoter usage. We confirmed the presence of five of these isoforms at the mRNA and protein levels, and showed their preferential expression in the central nervous system. We analysed rtn3 expression in the cerebellum further, and observed increased levels of several of the RTN3 isoforms during cerebellum development and during in vitro maturation of cerebellar granule cells. This pattern of expression paralleled that shown by RTN4/Nogo isoforms. Specifically, RTN3A1 expression was down-regulated upon cell death of cerebellar granule neurons triggered by potassium deprivation. Altogether, our results demonstrate that the rtn3 gene generates multiple isoforms varying in their N-termini, and that their expression is tightly regulated in neurons. These findings suggest that RTN3 isoforms may contribute, by as yet unknown mechanisms, to neuronal survival and plasticity. PMID:15350194

  20. Immunophenotyping and activation status of maternal peripheral blood leukocytes during pregnancy and labour, both term and preterm.

    PubMed

    Zhang, Jianhong; Shynlova, Oksana; Sabra, Sally; Bang, Annie; Briollais, Laurent; Lye, Stephen J

    2017-10-01

    The onset of labour in rodents and in humans is associated with physiological inflammation which is manifested by infiltration of activated maternal peripheral leukocytes (mPLs) into uterine tissues. Here, we used flow cytometry to immunophenotype mPLs throughout gestation and labour, both term and preterm. Peripheral blood was collected from non-pregnant women and pregnant women in the 1st, 2nd and 3rd trimesters. Samples were also collected from women in active labour at term (TL) or preterm (PTL) and compared with women term not-in-labour (TNIL) and preterm not-in-labour (PTNIL). Different leukocyte populations were identified by surface markers such as CD45, CD14, CD15, CD3, CD4, CD8, CD19 and CD56. Their activation status was measured by the expression levels of CD11b, CD44, CD55, CD181 and CD192 proteins. Of all circulating CD45+ leukocytes, we detected significant increases in CD15+ granulocytes (i) in pregnant women versus non-pregnant; (ii) in TL women versus TNIL and versus pregnant women in the 1st/2nd/3rd trimester; (iii) in PTL women versus PTNIL. TL was characterized by (iv) increased expressions of CD11b, CD55 and CD192 on granulocytes; (v) increased mean fluorescent intensity (MFI) of CD55 and CD192 on monocytes; (vi) increased CD44 MFI on CD3+ lymphocytes as compared to late gestation. In summary, we have identified sub-populations of mPLs that are specifically activated in association with gestation (granulocytes) or with the onset of labour (granulocytes, monocytes and lymphocytes). Additionally, beta regression analysis created a set of reference values to rank this association between immune markers of pregnancy and to identify activation status with potential prognostic and diagnostic capability. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Left atrial appendages from adult hearts contain a reservoir of diverse cardiac progenitor cells.

    PubMed

    Leinonen, Jussi V; Emanuelov, Avishag K; Platt, Yardanna; Helman, Yaron; Feinberg, Yael; Lotan, Chaim; Beeri, Ronen

    2013-01-01

    There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs) are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA) and their fates. We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45(pos) cells grew with milder proteolysis, while CD45(neg) cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45(pos) cells expressed CD45 initially and rapidly lost its expression while differentiating. Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart.

  2. Somatic isoform of angiotensin I-converting enzyme in the pathology of testicular germ cell tumors.

    PubMed

    Franke, F E; Pauls, K; Kerkman, L; Steger, K; Klonisch, T; Metzger, R; Alhenc-Gelas, F; Burkhardt, E; Bergmann, M; Danilov, S M

    2000-12-01

    Retained fetal expression of angiotensin I-converting enzyme (ACE, CD143) has recently been shown in intratubular germ cell neoplasms (IGCN) and invasive germ cell tumors (GCT), suggesting the somatic isoform (sACE) as a characteristic component of neoplastic germ cells. We analyzed the distribution of sACE in 159 testicular GCT, including 87 IGCN. sACE protein was determined by immunohistochemistry (MAb CG2) on routinely formalin-fixed and paraffin-embedded tissue sections, supplemented by mRNA expression analysis using in situ hybridization. These data were compared with those obtained by germ cell/placental alkaline phosphatases (PIAP; MAbs PL8-F6 and 8A9) employing an uniform score system for the evaluation of immunoreactivity (IRS; possible values from 0 to 12). Expression of sACE and PIAP was found in all 87 analyzed IGCN (IRS > 4, median IRS of 12). Heterogeneous staining patterns were not related to the type of adjacent GCT but correlated with low expression in adjacent seminomas (P =.032 for sACE; P =.005 for PIAP). Both sACE and PIAP often showed a decreased and more heterogeneous but still moderate expression in 91 classic seminomas (median IRS of 8) and were completely absent in tumor cells of spermatocytic seminomas. Despite all similarities, we found sACE and PIAP differently regulated during GCT progression. This was documented by a well-preserved expression of either sACE or PIAP or both in all classic seminomas, low PIAP immunoreactivity in metastasis of seminomas, and completely diverging expression patterns in nonseminomatous GCT. Our findings underline the close molecular relationship between IGCN and seminoma, and suggest sACE as an appropriate marker for seminomatous differentiated tumors. HUM PATHOL 31:1466-1476. Copyright 2000 by W.B. Saunders Company

  3. Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    PubMed Central

    Miccichè, Francesca; Da Riva, Luca; Fabbi, Marina; Pilotti, Silvana; Mondellini, Piera; Ferrini, Silvano; Canevari, Silvana; Pierotti, Marco A.; Bongarzone, Italia

    2011-01-01

    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology. PMID:21364949

  4. Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells: membrane-bound SCF is sufficient to confer stroma competence to epithelial cells.

    PubMed

    Friel, Jutta; Itoh, Katsuhiko; Bergholz, Ulla; Jücker, Manfred; Stocking, Carol; Harrison, Paul; Ostertag, Wolfram

    2002-03-01

    Hemopoiesis takes place in a microenvironment where hemopoietic cells are closely associated with stroma by various interactions. Stroma coregulates the proliferation and differentiation of hemopoietic cells. Stroma-hemopoietic-cell contact can be supported by locally produced membrane associated growth factors. The stroma derived growth factor, stem cell factor (SCF) is important in hemopoiesis. We examined the different biological interactions of membrane bound and soluble SCF with human hemopoietic cells expressing the SCF receptor, c-kit. To analyze the function of the SCF isoforms in inducing the proliferation of hemopoietic TF1 or Cord blood (CB) CD34+ cells we used stroma cell lines that differ in their presentation of no SCF, membrane SCF, or soluble SCF. We established a new coculture system using an epithelial cell line that excludes potential interfering effects with other known stroma encoded hemopoietic growth factors. We show that soluble SCF, in absence of membrane-bound SCF, inhibits long term clonal growth of primary or established CD34+ hemopoietic cells, whereas membrane-inserted SCF "dominantly" induces long term proliferation of these cells. We demonstrate a hierarchy of these SCF isoforms in the interaction of stroma with hemopoietic TF1 cells. Membrane-bound SCF is "dominant" over soluble SCF, whereas soluble SCF acts epistatically in interacting with hemopoietic cells compared with other stroma derived factors present in SCF deficient stroma. A hierarchy of stroma cell lines can be arranged according to their presentation of membrane SCF or soluble SCF. In our model system, membrane-bound SCF expression is sufficient to confer stroma properties to an epithelial cell line but soluble SCF does not.

  5. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  6. Expression of metallothionein protein in the lungs of Wistar rats and C57 and DBA mice exposed to cadmium oxide fumes.

    PubMed

    McKenna, I M; Gordon, T; Chen, L C; Anver, M R; Waalkes, M P

    1998-12-01

    Chronic exposure to inhaled cadmium (Cd) has been shown to induce lung tumors in rats (Wistar strain) but not in mice (NMRI strain). The protein metallothionein (MT) plays an important role in Cd detoxification, and it has been suggested that differential inducibility of pulmonary MT may lead to interspecies susceptibility differences to inhaled Cd. Interstrain differences in the pulmonary response of the MT gene to Cd stimuli have not been examined in rats or mice. We compared pulmonary MT expression in Wistar Furth (WF) rats with that in DBA and C57 mice, following a single 3-h exposure to CdO fumes containing 1 mg Cd/m3. Induction of the MT gene was assessed by the levels of MT-I and MT-II transcripts, MT-protein content, and number of MT-labeled alveolar and bronchiolar epithelial cells immediately after Cd exposure and 1, 3, and 5 days later. Control animals were exposed to air/argon furnace gases. We observed differential intra- and interspecies inducibility of the MT gene in the lung following Cd inhalation. DBA mice exhibited greater levels of MT-mRNA, mainly for the MT-I isoform, MT-protein content, and number of MT positive cells relative to C57 mice. WF rats showed lower transcription and translation responses of the MT gene upon Cd stimuli than C57 mice. The present results, in concert with our previous findings of higher lung cell proliferation in Cd-exposed C57 relative to DBA mice, predict greater susceptibility of C57 to the carcinogenic effects of inhaled Cd. Furthermore, the low transcriptional and translation responses of the MT gene to Cd stimuli in WF rats might explain the higher susceptibility of this rat strain to develop malignant lung tumors after chronic exposure to Cd via inhalation. Parallel to our findings in mice, differences in the responsiveness of lung MT gene may exist across rat strains. Thus intraspecies genetic variability in pulmonary MT may influence the susceptibility of rats or mice to lung carcinogenesis induced by inhalation of Cd compounds. Copyright 1998 Academic Press.

  7. Differential gene expression of CYP3A isoforms in equine liver and intestines.

    PubMed

    Tydén, E; Löfgren, M; Pegolo, S; Capolongo, F; Tjälve, H; Larsson, P

    2012-12-01

    Recently, seven CYP3A isoforms - CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP129 - have been isolated from the horse genome. In this study, we have examined the hepatic and intestinal gene expression of these CYP3A isoforms using TaqMan probes. We have also studied the enzyme activity using luciferin-isopropyl acetal (LIPA) as a substrate. The results show a differential gene expression of the CYP3A isoforms in the liver and intestines in horses. In the liver, CYP3A89, CYP3A94, CYP3A96 and CYP3A97 were highly expressed, while in the intestine there were only two dominating isoforms, CYP3A93 and CYP3A96. The isoform CYP3A129 was not detected in the liver or the intestine, although this gene consists of a complete set of exons and should therefore code for a functional protein. It is possible that this gene is expressed in tissues other than the liver and intestines. In the intestine, both CYP3A96 and CYP3A93 showed the highest gene expression in the duodenum and the proximal parts of the jejunum. This correlated with a high protein expression in these tissues. Studies of the enzyme activity showed the same K(m) for the LIPA substrate in the liver and the intestine, while the maximum velocity (V(max)) in the liver was higher than in the intestine. Our finding of a differential gene expression of the CYP3A isoforms in the liver and the intestines contributes to a better understanding of drug metabolism in horses. © 2012 Blackwell Publishing Ltd.

  8. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility.

    PubMed

    Brotto, Marco A; Biesiadecki, Brandon J; Brotto, Leticia S; Nosek, Thomas M; Jin, Jian-Ping

    2006-02-01

    Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.

  9. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility

    PubMed Central

    BROTTO, MARCO A.; BIESIADECKI, BRANDON J.; BROTTO, LETICIA S.; NOSEK, THOMAS M; JIN, J.-P.

    2005-01-01

    (Summary) Brotto, Marco A., Brandon J. Biesiadecki, Leticia S. Brotto, Thomas M. Nosek, and J.-P. Jin. Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow and fast twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin and troponin T (TnT) and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton skinned single fibers from soleus, diaphragm, gastrocnemius and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of TnT and TnI isoform to investigate their role in determining contractility. Type IIa, IIx and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca2+ sensitivity than that of the fast troponin fibers, while fibers containing fast troponin showed a higher cooperativity of Ca2+ activation than that of the slow troponin fibers. The results demonstrate distinctive, but coordinated, regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties. PMID:16192301

  10. Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31.

    PubMed

    Wilson, S E; Smith, M C

    1998-05-15

    Three protein isoforms (74, 54 and 42 kDa) are expressed from repressor gene c in the Streptomyces temperate bacteriophage phiC31. Because expression of the two smaller isoforms, 54 and 42 kDa, is sufficient for superinfection immunity, the interaction between these isoforms was studied. The native 42 kDa repressor (Nat42) and an N-terminally 6x histidine-tagged 54 kDa isoform (His54) were shown by co-purification on a Ni-NTA column to interact in Streptomyces lividans . In vitro three repressor preparations, containing Nat42, His54 and the native 54 and 42 kDa isoforms expressed together (Nat54&42), were subjected to chemical crosslinking and gel filtration analysis. Homo- and hetero-tetramers were observed. Previous work showed that the smallest isoform bound to 17 bp operators containing aconservedinvertedrepeat (CIR) and that the CIRs were located at 16 loci throughout the phiC31 genome. One of the CIRs (CIR6) is believed to be critical for regulating the lytic pathway. The DNA binding activities of the three repressor preparations were studied using fragments containing CIRs (CIR3-CIR6) from the essential early region as templates for DNase I footprinting. Whereas Nat42 bound to CIR6, poorly to CIR5 but undetectably to CIR3 or CIR4, the Nat54&42 preparation could bind to all CIRs tested, albeit poorly to CIR3 and CIR4. The His54 isoform bound all CIRs tested. Isoforms expressed from the phiC31 repressor gene, like those which are expressed from many eukaryotic transcription factor genes, apparently have different binding specificities.

  11. Altered expression of alternatively spliced isoforms of the mRNA NMDAR1 receptor in the visual cortex of strabismic cats.

    PubMed

    Yin, Z Q; Deng, Z M; Crewther, S G; Crewther, D P

    2001-11-20

    Although much has been written about the role of the NMDA receptor's role in experience dependent visual plasticity, the function of the NMDAR1 receptor subunit in the post-plasticity stage of development is still not well understood. However, in the well studied model of strabismic amblyopia where binocularity is reduced, but where most primary visual cortex neurons can be driven by one or other eye, the density of expression of NMDAR1 receptor protein is significantly reduced, compared to normals. This study aims to identify which of eight isoforms of the spliced heterogeneous variants of the NMDAR1 mRNA receptor gene are associated with this decrease in expression as a means of elucidating possible function. A series of digoxygenin-labelled oligonucleotide probes based on the human gene sequence have been used for in situ hybridization (ISH) of sections from the striate cortex of four adult cats. The probes were used to uniquely detect the expression of alternatively spliced mRNA variants in 66,487 cells from sections from the area centralis projection of two normal cats and two cats made esotropic as kittens by tenotomy at two weeks of age. As expected, total NMDAR1 mRNA isoform expression was significantly lower in the striate cortex of strabismic compared to normal cats. The proportion of cortical cells expressing the R1-a, R1-b, and R1-1 isoforms in strabismic animals was decreased while the proportion expressing R1-3 was increased, especially in layers V and VI. No significant difference in expression of the R1-2 and R1-4 isoforms was seen comparing strabismic and normal cats. These results confirm our previous findings and suggest that transcriptional inhibition of specific isoforms of NMDAR1 mRNA may underlie the change in receptor expression. This preferential reduction in the proportion of neurons bearing particular NMDAR1 isoforms, i.e. isoforms R1-a and b, and R1-1 with partial compensation through the expression of the R1-3 isoform, is more likely related to lowered proportion of binocularly activated neurons in the strabismic cat than to changes in eye dominance or the presence of amblyopia in one eye.

  12. Tuning of shortening speed in coleoid cephalopod muscle: no evidence for tissue-specific muscle myosin heavy chain isoforms

    PubMed Central

    Shaffer, Justin F.; Kier, William M.

    2015-01-01

    The contractile protein myosin II is ubiquitous in muscle. It is widely accepted that animals express tissue-specific myosin isoforms that differ in amino acid sequence and ATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squid Doryteuthis pealeii might be an exception; members of this species do not express muscle-specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish, Sepia officinalis, and an octopus, Octopus bimaculoides, in order to determine if these cephalopods express tissue-specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms in S. officinalis and O. bimaculoides muscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thus S. officinalis and O. bimaculoides do not appear to express tissue-specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms of O. bimaculoides and the arms and tentacles of S. officinalis using transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles of S. officinalis have shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue-specific myosin isoforms to adjust contractile velocities. PMID:26997860

  13. Twelve actin-encoding cDNAs from the American lobster, Homarus americanus: cloning and tissue expression of eight skeletal muscle, one heart, and three cytoplasmic isoforms.

    PubMed

    Kim, Bo Kwang; Kim, Kyoung Sun; Oh, Chul-Woong; Mykles, Donald L; Lee, Sung Gu; Kim, Hak Jun; Kim, Hyun-Woo

    2009-06-01

    Lobster muscles express a diverse array of myofibrillar protein isoforms. Three fiber types (fast, slow-twitch or S1, and slow-tonic or S2) differ qualitatively and quantitatively in myosin heavy and light chains, troponin-T, -I, and -C, paramyosin, and tropomyosin variants. However, little is known about the diversity of actin isoforms present in crustacean tissues. In this report we characterized cDNAs that encode twelve actin isoforms in the American lobster, Homarus americanus: eight from skeletal muscle (Ha-ActinSK1-8), one from heart (Ha-ActinHT1), and three cytoplasmic type actins from hepatopancreas (Ha-ActinCT1-3). All twelve cDNAs were products of distinct genes, as indicated by differences in the 3'-untranslated regions (UTRs). The open reading frames specified polypeptides 376 or 377 amino acids in length. Although key amino residues are conserved in the lobster actins, variations in nearby sequences may affect actin polymerization and/or interactions with other myofibrillar proteins. Quantitative reverse transcription-polymerase chain reaction showed muscle fiber type- and tissue-specific expression patterns. Ha-Actin-HT1 was expressed exclusively in heart (87% of the total; 12% of the total was Ha-ActinCT1). Ha-ActinCT1 was expressed in all tissues, while CT2 and CT3 were expressed only in hepatopancreas, with Ha-ActinCT2 as the major isoform (93% of the total). Ha-ActinSK1 and SK2 were the major isoforms (88% and 12% of the total, respectively) in the S1 fibers of crusher claw closer muscle. Fast fibers in the cutter claw closer and deep abdominal muscles differed in SK isoforms. Ha-ActinSK3, SK4, and SK5 were the major isoforms in cutter claw closer muscle (12%, 48%, and 37% of the total, respectively). Ha-ActinSK5 and SK8 were the major isoforms in deep abdominal flexor (31% and 65% of the total, respectively) and extensor (46% and 53% of the total, respectively) muscles, with SK6 and SK7 expressed at low levels. These data indicate that fast fibers in cutter claw and abdominal muscles show a phenotypic plasticity with respect to the expression of actin isoforms and may constitute discrete subtypes that differ in contractile properties.

  14. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing

    PubMed Central

    Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai

    2017-01-01

    Abstract Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only. PMID:27899656

  15. Increase in substance P precursor mRNA in noninflamed small-bowel sections in patients with Crohn's disease.

    PubMed

    Michalski, Christoph W; Autschbach, Frank; Selvaggi, Federico; Shi, Xin; Di Mola, Fabio Francesco; Roggo, Antoine; Müller, Michael W; Di Sebastiano, Pierluigi; Büchler, Markus W; Giese, Thomas; Friess, Helmut

    2007-04-01

    Neuropeptides, such as substance P (SP), are mediators of neurogenic inflammation and play an important role in inflammatory disorders. To further investigate the role of the SP pathway in inflammatory bowel disease (IBD), we analyzed the following in normal intestinal tissue specimens and in tissue specimens from patients with Crohn's disease (CD) and ulcerative colitis (UC): neurokinin receptor-1 (NK-1R); its isoforms (NK-1R-L and NK-1R-S); its ligand SP, encoded by preprotachykinin-A (PPT-A); and the SP-degradation enzyme, neutral endopeptidase (NEP). Real-time quantitative reverse transcription-polymerase chain reaction was used to simultaneously determine the expression of NK-1R-L, NK-1R-S, and PPT-A. Protein levels of NK-1R and NEP were determined by immunoblot analysis. In noninflamed small-bowel tissue samples of CD patients, PPT-A mRNA expression was significantly increased, whereas there was no difference between inflamed or noninflamed UC and normal intestinal tissue samples. Examining subgroups of diverse intestinal segments from CD and UC samples with various levels of inflammation revealed no differences in NK-1R-L and NK-1R-S mRNA expression, whereas there was a tendency toward overall lower NK-1R-S mRNA copy numbers. Immunoblot analysis showed upregulation of NK-1R protein levels in cases of IBD, with more pronounced enhancement in cases of CD than in UC. For NEP, there were no differences in protein levels in normal, CD, and UC intestinal tissues. These observations suggest a contribution of SP and its receptor, NK-1R, in the local inflammatory reaction in IBD and particularly in ileal CD. Moreover, significant upregulation of PPT-A mRNA in the noninflamed ileum of these patients suggests an influence of inflamed intestines on their healthy counterparts.

  16. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance.

    PubMed

    Hamdollah Zadeh, Maryam A; Amin, Elianna M; Hoareau-Aveilla, Coralie; Domingo, Enric; Symonds, Kirsty E; Ye, Xi; Heesom, Katherine J; Salmon, Andrew; D'Silva, Olivia; Betteridge, Kai B; Williams, Ann C; Kerr, David J; Salmon, Andrew H J; Oltean, Sebastian; Midgley, Rachel S; Ladomery, Michael R; Harper, Steven J; Varey, Alexander H R; Bates, David O

    2015-01-01

    The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A165b. Whereas flTIA-1 selectively bound VEGF-A165 mRNA and increased translation of VEGF-A165b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Inverse Relationship between Tumor Proliferation Markers and Connexin Expression in a Malignant Cardiac Tumor Originating from Mesenchymal Stem Cell Engineered Tissue in a Rat in vivo Model

    PubMed Central

    Spath, Cathleen; Schlegel, Franziska; Leontyev, Sergey; Mohr, Friedrich-Wilhelm; Dhein, Stefan

    2013-01-01

    Background: Recently, we demonstrated the beneficial effects of engineered heart tissues for the treatment of dilated cardiomyopathy in rats. For further development of this technique we started to produce engineered tissue (ET) from mesenchymal stem cells. Interestingly, we observed a malignant tumor invading the heart with an inverse relationship between proliferation markers and connexin expression. Methods: Commercial CD54+/CD90+/CD34−/CD45− bone marrow derived mesenchymal rat stem cells (cBM-MSC), characterized were used for production of mesenchymal stem-cell-ET (MSC-ET) by suspending them in a collagen I, matrigel-mixture and cultivating for 14 days with electrical stimulation. Three MSC-ET were implanted around the beating heart of adult rats for days. Another three MSC-ET were produced from freshly isolated rat bone marrow derived stem cells (sBM-MSC). Results: Three weeks after implantation of the MSC-ETs the hearts were surgically excised. While in 5/6 cases the ET was clearly distinguishable and was found as a ring containing mostly connective tissue around the heart, in 1/6 the heart was completely surrounded by a huge, undifferentiated, pleomorphic tumor originating from the cMSC-ET (cBM-MSC), classified as a high grade malignant sarcoma. Quantitatively we found a clear inverse relationship between cardiac connexin expression (Cx43, Cx40, or Cx45) and increased Ki-67 expression (Cx43: p < 0.0001, Cx45: p < 0.03, Cx40: p < 0.014). At the tumor-heart border there were significantly more Ki-67 positive cells (p = 0.001), and only 2% Cx45 and Ki-67-expressing cells, while the other connexins were nearly completely absent (p < 0.0001). Conclusion and Hypothesis: These observations strongly suggest the hypothesis, that invasive tumor growth is accompanied by reduction in connexins. This implicates that gap junction communication between tumor and normal tissue is reduced or absent, which could mean that growth and differentiation signals can not be exchanged. PMID:23616767

  18. Characterization of CD34+ thymic stromal cells located in the subcapsular cortex of the human thymus.

    PubMed

    Martínez-Cáceres, E; Jaleco, A C; Res, P; Noteboom, E; Weijer, K; Spits, H

    1998-07-01

    In this paper we report that suspensions of human fetal thymocytes contain cells that express high levels of CD34 and Thy-1. These cells were characterized with regard to location within the thymus, phenotype, and function. Confocal laser scan analysis of frozen sections of fetal thymus with anti-CD34 and Thy-1 antibodies revealed that the double-labeled cells were located in the pericortical area. In addition, it was found that the CD34+Thy-1+ cells lacked CD45 and CD50, indicating that these cells are not of hematopoietic origin; this was confirmed by the finding that these cells could be cultured as adherent cells in a medium with cholera toxin and dexamethasone, but failed to grow in mixtures of hematopoietic growth factors. Further analysis indicated that most cultured CD34+Thy-1+ cells expressed cytokeratin (CK) 14 but lacked CK 13, suggesting that these cells are immature epithelial cells. Cultured CD34+Thy-1+ cells were able to induce differentiation of CD1-CD34+CD3-CD4-CD8- thymic precursors into CD4+CD8+ cells in a reaggregate culture in the absence of exogenous cytokines. The CD4+CD8+ cells that developed in these cultures did not express CD3, indicating that CD34+Thy-1+ thymic stromal cells are not capable of completing full T cell differentiation of thymic hematopoietic progenitor cells.

  19. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    PubMed

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  20. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells.

    PubMed

    Matsuoka, Yoshikazu; Takahashi, Masaya; Sumide, Keisuke; Kawamura, Hiroshi; Nakatsuka, Ryusuke; Fujioka, Tatsuya; Sonoda, Yoshiaki

    2017-06-09

    In the murine hematopoietic stem cell (HSC) compartment, thrombopoietin (THPO)/MPL (THPO receptor) signaling plays an important role in the maintenance of adult quiescent HSCs. However, the role of THPO/MPL signaling in the human primitive HSC compartment has not yet been elucidated. We have identified very primitive human cord blood (CB)-derived CD34- severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method. In this study, we investigated the roles of the MPL expression in the human primitive HSC compartment. The SRC activities of the highly purified CB-derived 18Lin-CD34+/-MPL+/- cells were analyzed using NOG mice. In the primary recipient mice, nearly all mice that received CD34+/-MPL+/- cells were repopulated with human CD45+ cells. Nearly all of these mice that received CD34+MPL+/- and CD34-MPL- cells showed a secondary repopulation. Interestingly, the secondary recipient mice that received CD34+/-MPL- cells showed a distinct tertiary repopulation. These results clearly indicate that the CD34+/- SRCs not expressing MPL sustain a long-term (LT) (>1 year) human cell repopulation in NOG mice. Moreover, CD34- SRCs generate CD34+CD38-CD90+ SRCs in vitro and in vivo. These findings provide a new concept that CD34-MPL- SRCs reside at the apex of the human HSC hierarchy.

  1. Characterization of mouse CD53: epitope mapping, cellular distribution and induction by T cell receptor engagement during repertoire selection.

    PubMed

    Tomlinson, M G; Hanke, T; Hughes, D A; Barclay, A N; Scholl, E; Hünig, T; Wright, M D

    1995-08-01

    The pan-leukocyte antigen CD53 is a member of the poorly understood transmembrane 4 superfamily (TM4SF) of cell membrane glycoproteins. CD53 is proposed to play a role in thymopoiesis, since rat CD53 is expressed on immature CD4-8-thymocytes and the functionally mature single-positive subset, but is largely absent from the intermediate CD4+8+ cells. We have characterized CD53 in the mouse through the production of two new monoclonal antibodies, MRC OX-79 and OX-80, which were raised against the RAW 264 cell line and screened on recombinant CD53 fusion proteins. The epitopes recognized by both antibodies are dependent on disulfide bonding and map to the major extracellular region of CD53, requiring the presence of a single threonine residue at position 154. Mouse CD53 has a molecular mass of 35-45 kDa and is expressed on virtually all peripheral leukocytes, but not on cells outside the lymphoid or myeloid lineages. CD53 expression distinguishes subpopulations of thymocytes in the mouse and resembles the expression pattern of rat CD53. Amongst the immature CD4-8-thymocytes, mouse CD53 is clearly detectable on the earliest CD44high25- subset, but down-regulated on the later CD44high25+, CD44low25+ and CD44low25- stages. Also, the subsequent transient TcR-/low CD4-8+ cells and most CD4+8+ thymocytes express little or no CD53. This is consistent with the idea that cells which are committed to enter the selectable CD4+8+ compartment switch off CD53. The effect of T cell receptor (TcR) engagement on the re-expression of CD53 on CD4+8+ thymocytes was studied both ex vivo and in vitro using F5 mice, transgenic for the H-2b/influenza nucleoprotein-peptide-specific TcR, back-crossed onto an H-2q or H-2b background of RAG-2-deficient mice. CD4+8+ thymocytes from non-selecting H-2q F5 mice are CD53 negative, but in vitro stimulation through the TcR dramatically induces CD53 expression. In contrast, a fraction of CD4+8+ thymocytes from positively selecting H-2b F5 transgenic mice express CD53. Therefore TcR engagement by selecting major histocompatibility complex peptide complexes, or surrogate ligands, induces CD53 expression on otherwise CD53-negative, non-selected CD4+8+ thymocytes. Whether CD53 itself participates as a signaling molecule in further stages of thymic selection is still a matter of speculation.

  2. Duodenal intraepithelial T lymphocytes in patients with functional dyspepsia

    PubMed Central

    Gargala, Gilles; Lecleire, Stéphane; François, Arnaud; Jacquot, Serge; Déchelotte, Pierre; Ballet, Jean Jacques; Favennec, Loic; Ducrotté, Philippe

    2007-01-01

    AIM: To quantify the intraepithelial lymphocytes (IELs) and to document the membrane expression of CD4, CD8, TCRγδ and adhesion and/or activation-associated molecules (CD103, CD28, CD44, CD69, HLA-DR, CD95/Fas) in the duodenal mucosa of patients with functional dyspepsia (FD) in order to provide arguments for an immunological process in FD. METHODS: Twenty-six FD patients according to Rome II criteria (20 were H pylori negative) were studied and compared to 12 healthy adults. IELs were isolated from five duodenal biopsy samples, then quantified by microscopy and flow cytometry while the membrane phenotypes were determined by cytofluorometry. RESULTS: Duodenal histological examination was normal. In H pylori negative patients, the number of IELs was not different from that in healthy controls. Median percentage expression of CD4, CD8, or TCRγδ and CD103, CD44, CD28, CD69 on CD3+ IELs, among the adhesion/activation associated molecules tested, was not different from that in healthy controls. In contrast, the median percentage expression of CD95/Fas [22 (9-65) vs 45 (19-88), P = 0.03] and HLA-DR expressing CD3+ IELs [4 (0-30) vs 13 (4-42), P = 0.04] was significantly lower in the H pylori negative FD group than in healthy controls, respectively. The number of IELs was significantly greater in H pylori positive FD patients than in healthy controls [median ratiofor 100 enterocytes 27.5 (6.7-62.5) vs 10.8 (3-33.3), P = 0.02] due to a higher number of CD8+ CD3+ IELs. CONCLUSION: In H pylori negative FD patients, the phenotypic characterization of IELs suggests that we cannot exclude a role of IELs in FD. PMID:17511033

  3. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  4. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Nuovo, Gerard J.; Hagood, James S.; Magro, Cynthia M.; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B.; Folcik, Virginia A.

    2011-01-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation. The regenerative mechanisms become skewed to ultimately result in lethal, fibrotic restriction of lung function. PMID:22037258

  5. Inhibition of thrombin receptor signaling on α-smooth muscle actin(+) CD34(+) progenitors leads to repair after murine immune vascular injury.

    PubMed

    Chen, Daxin; Shrivastava, Seema; Ma, Liang; Tham, El-Li; Abrahams, Joel; Coe, J David; Scott, Diane; Lechler, Robert I; McVey, John H; Dorling, Anthony

    2012-01-01

    The goal of this study was to use mice expressing human tissue factor pathway inhibitor (TFPI) on α-smooth muscle actin (α-SMA)(+) cells as recipients of allogeneic aortas to gain insights into the cellular mechanisms of intimal hyperplasia (IH). BALB/c aortas (H-2(d)) transplanted into α-TFPI-transgenic (Tg) mice (H-2(b)) regenerated a quiescent endothelium in contrast to progressive IH seen in C57BL/6 wild-type (WT) mice even though both developed aggressive anti-H-2(d) alloresponses, indicating similar vascular injuries. Adoptively transferred Tg CD34(+) (but not CD34(-)) cells inhibited IH in WT recipients, indicating the phenotype of α-TFPI-Tg mice was due to these cells. Compared with syngeneic controls, endogenous CD34(+) cells were mobilized in significant numbers after allogeneic transplantation, the majority showing sustained expression of tissue factor and protease-activated receptor-1 (PAR-1). In WT, most were CD45(+) myeloid progenitors coexpressing CD31, vascular endothelial growth factor receptor-2 and E-selectin; 10% of these cells coexpressed α-SMA and were recruited to the neointima. In contrast, the α-SMA(+) human TFPI(+) CD34(+) cells recruited in Tg recipients were from a CD45(-) lineage. WT CD34(+) cells incubated with a PAR-1 antagonist or taken from PAR-1-deficient mice inhibited IH as Tg cells did. Specific inhibition of thrombin generation or PAR-1 signaling on α-SMA(+) CD34(+) cells inhibits IH and promotes regenerative repair despite ongoing immune-mediated damage.

  6. Comparative analysis of human protein-coding and noncoding RNAs between brain and 10 mixed cell lines by RNA-Seq.

    PubMed

    Chen, Geng; Yin, Kangping; Shi, Leming; Fang, Yuanzhang; Qi, Ya; Li, Peng; Luo, Jian; He, Bing; Liu, Mingyao; Shi, Tieliu

    2011-01-01

    In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome.

  7. Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens.

    PubMed

    Cernadas, Manuela; Cavallari, Marco; Watts, Gerald; Mori, Lucia; De Libero, Gennaro; Brenner, Michael B

    2010-02-01

    A major step in understanding differences in the nature of Ag presentation was the realization that MHC class I samples peptides transported to the endoplasmic reticulum from the cytosol, whereas MHC class II samples peptides from lysosomes. In contrast to MHC class I and II molecules that present protein Ags, CD1 molecules present lipid Ags for recognition by specific T cells. Each of the five members of the CD1 family (CD1a-e) localizes to a distinct subcompartment of endosomes. Accordingly, it has been widely assumed that the distinct trafficking of CD1 isoforms must also have evolved to enable them to sample lipid Ags that traffic via different routes. Among the CD1 isoforms, CD1a is unusual because it does not have a tyrosine-based cytoplasmic sorting motif and uniquely localizes to the early endocytic recycling compartment. This led us to predict that CD1a might have evolved to focus on lipids that localize to early endocytic/recycling compartments. Strikingly, we found that the glycolipid Ag sulfatide also localized almost exclusively to early endocytic and recycling compartments. Consistent with colocalization of CD1a and sulfatide, wild-type CD1a molecules efficiently presented sulfatide to CD1a-restricted, sulfatide-specific T cells. In contrast, CD1a:CD1b tail chimeras, that retain the same Ag-binding capacity as CD1a but traffic based on the cytoplasmic tail of CD1b to lysosomes, failed to present sulfatide efficiently. Thus, the intracellular trafficking route of CD1a is essential for efficient presentation of lipid Ags that traffic through the early endocytic and recycling pathways.

  8. A Response Surface Methodology Approach to Investigate the Effect of Sulfur Dioxide, pH, and Ethanol on DbCD and DbVPR Gene Expression and on the Volatile Phenol Production in Dekkera/Brettanomyces bruxellensis CBS2499.

    PubMed

    Valdetara, Federica; Fracassetti, Daniela; Campanello, Alessia; Costa, Carlo; Foschino, Roberto; Compagno, Concetta; Vigentini, Ileana

    2017-01-01

    Dekkera/Brettanomyces bruxellensis , the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase ( DbCD ) and the vinylphenol reductase ( DbVPR ), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO 2 ) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO 2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC , DbALD , DbEF , DbACT , and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO 2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect ( p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO 2 , pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO 2 , pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect as individual factors. The obtained results can be useful to improve the SO 2 management at the grape harvesting and during winemaking in order to minimize the D./B. bruxellensis spoilage.

  9. Normal T lymphocytes can express two different T cell receptor beta chains: implications for the mechanism of allelic exclusion

    PubMed Central

    1995-01-01

    We have examined the extent of allelic exclusion at the T cell receptor (TCR) beta locus using monoclonal antibodies specific for V beta products. A small proportion (approximately 1%) of human peripheral blood T cells express two V beta as determined by flow cytometric analysis, isolation of representative clones, and sequencing of the corresponding V beta chains. Dual beta T cells are present in both the CD45R0+ and CD45R0- subset. These results indicate that dual beta expression is compatible with both central and peripheral selection. They also suggest that the substantial degree of TCR beta allelic exclusion is dependent only on asynchronous rearrangements at the beta locus, whereas the role of the pre-TCR is limited to signaling the presence of at least one functional beta protein. PMID:7699339

  10. Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity

    PubMed Central

    Mata-Greenwood, Eugenia; Jackson, P Naomi; Pearce, William J; Zhang, Lubo

    2016-01-01

    We have previously shown that in vitro sensitivity to dexamethasone (DEX) stimulation in human endothelial cells is positively regulated by the glucocorticoid receptor (NR3C1, GR). The present study determined the role of differential GR transcriptional regulation in glucocorticoid sensitivity. We studied 25 human umbilical vein endothelial cells (HUVECs) that had been previously characterized as DEX-sensitive (n = 15), or resistant (n = 10). Real-time PCR analysis of GR 5′UTR mRNA isoforms showed that all HUVECs expressed isoforms 1B, 1C, 1D, 1F, and 1H, and isoforms 1B and 1C were predominantly expressed. DEX-resistant cells expressed higher basal levels of the 5′UTR mRNA isoforms 1C and 1D, but lower levels of the 5′UTR mRNA isoform 1F than DEX-sensitive cells. DEX treatment significantly decreased GRα and GR-1C mRNA isoform expression in DEX-resistant cells only. Reporter luciferase assays indicated that differential GR mRNA isoform expression was not due to differential promoter usage between DEX-sensitive and DEX-resistant cells. Analysis of promoter methylation, however, showed that DEX-sensitive cells have higher methylation levels of promoter 1D and lower methylation levels of promoter 1F than DEX-resistant cells. Treatment with 5-aza-2-deoxycytidine abolished the differential 5′UTR mRNA isoform expression between DEX-sensitive and DEX-resistant cells. Finally, both GRα overexpression and 5-aza-2-deoxycytidine treatment eliminated the differences between sensitivity groups to DEX-mediated downregulation of endothelial nitric oxide synthase (NOS3), and upregulation of plasminogen activator inhibitor 1 (SERPINE1). In sum, human endothelial GR 5′UTR mRNA expression is regulated by promoter methylation with DEX-sensitive and DEX-resistant cells having different GR promoter methylation patterns. PMID:26242202

  11. Determining the Advantages, Costs, and Trade-Offs of a Novel Sodium Channel Mutation in the Copepod Acartia hudsonica to Paralytic Shellfish Toxins (PST)

    PubMed Central

    Finiguerra, Michael; Avery, David E.; Dam, Hans G.

    2015-01-01

    The marine copepod Acartia hudsonica was shown to be adapted to dinoflagellate prey, Alexandrium fundyense, which produce paralytic shellfish toxins (PST). Adaptation to PSTs in other organisms is caused by a mutation in the sodium channel. Recently, a mutation in the sodium channel in A. hudsonica was found. In this study, we rigorously tested for advantages, costs, and trade-offs associated with the mutant isoform of A. hudsonica under toxic and non-toxic conditions. We combined fitness with wild-type: mutant isoform ratio measurements on the same individual copepod to test our hypotheses. All A. hudsonica copepods express both the wild-type and mutant sodium channel isoforms, but in different proportions; some individuals express predominantly mutant (PMI) or wild-type isoforms (PWI), while most individuals express relatively equal amounts of each (EI). There was no consistent pattern of improved performance as a function of toxin dose for egg production rate (EPR), ingestion rate (I), and gross growth efficiency (GGE) for individuals in the PMI group relative to individuals in the PWI expression group. Neither was there any evidence to indicate a fitness benefit to the mutant isoform at intermediate toxin doses. No clear advantage under toxic conditions was associated with the mutation. Using a mixed-diet approach, there was also no observed relationship between individual wild-type: mutant isoform ratios and among expression groups, on both toxic and non-toxic diets, for eggs produced over three days. Lastly, expression of the mutant isoform did not mitigate the negative effects of the toxin. That is, the reductions in EPR from a toxic to non-toxic diet for copepods were independent of expression groups. Overall, the results did not support our hypotheses; the mutant sodium channel isoform does not appear to be related to adaptation to PST in A. hudsonica. Other potential mechanisms responsible for the adaptation are discussed. PMID:26075900

  12. Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells.

    PubMed

    Fatimah, Simat Siti; Tan, Geok Chin; Chua, Kienhui; Fariha, Mohd Manzor Nur; Tan, Ay Eeng; Hayati, Abdul Rahman

    2013-03-01

    Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs. HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the stemness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, stemness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Immunophenotype of infiltrating cells in protocol renal allograft biopsies from tacrolimus-versus cyclosporine-treated patients.

    PubMed

    Serón, Daniel; O'Valle, Francisco; Moreso, Francesc; Gomà, Montse; Hueso, Miguel; Grinyó, Josep M; Garcia del Moral, Raimundo

    2007-03-15

    The prevalence of subclinical rejection is lower in patients receiving tacrolimus than in patients treated with cyclosporine. However, it is not known whether this difference is related to the modulation of a specific cell immunophenotype. We perform a two case-one control study in patients treated with tacrolimus (n=44) or cyclosporine (n=22) with a protocol biopsy performed at 4 to 6 months. Immunophenotype of infiltrating cells was evaluated with monoclonal antibodies directed against CD45 (all leukocytes), CD3 (T lymphocytes), CD68 (monocytes/macrophages), and CD20 (B lymphocytes) and expressed as interstitial positive cells/mm(2). The number of interstitial CD45 (290+/-209 vs. 696+/-560; P<0.01), CD3 (121+/-84 vs. 208+/-104; P<0.01), and CD68 (155+/-232 vs. 242+/-280; P<0.05) but not CD20 (137+/-119 vs. 197+/-154) positive cells was lower in tacrolimus-treated patients. T lymphocytes and macrophages interstitial infiltration was reduced in tacrolimus treated patients evaluated with protocol biopsies in comparison to cyclosporine-treated patients.

  14. Reviewing and Updating the Major Molecular Markers for Stem Cells

    PubMed Central

    Calloni, Raquel; Cordero, Elvira Alicia Aparicio; Henriques, João Antonio Pêgas

    2013-01-01

    Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells. PMID:23336433

  15. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene

    PubMed Central

    Hsu, Cary; Jones, Stephanie A.; Cohen, Cyrille J.; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F.; Peng, Peter D.; Shen, Xinglei; Gomes, Theotonius J.; Dunbar, Cynthia E.; Munroe, David J.; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A.

    2007-01-01

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8+ T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus–based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28−, CD45RA−, CD45RO+, and CD62L−, a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen–specific T-cell receptors, the clone secreted IFN-γ upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15Rα expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation. PMID:17353346

  16. Expression of c-Kit isoforms in multiple myeloma: differences in signaling and drug sensitivity.

    PubMed

    Montero, Juan Carlos; López-Pérez, Ricardo; San Miguel, Jesús F; Pandiella, Atanasio

    2008-06-01

    c-Kit is expressed in the plasma cells from 30% of patients with multiple myeloma. Two different isoforms of c-Kit, characterized by the presence or absence of the tetrapeptide sequence GNNK in the extracellular domain, have been described. However, their expression and function in myeloma cells are unknown. We explored the function and expression of these c-Kit isoforms in myeloma cells. Expression of c-Kit isoforms was investigated by reverse transcriptase polymerase chain reaction in fresh plasma cells from patients and cell lines. The function of these c-Kit isoforms was analyzed upon expression in myeloma cells. Signaling was investigated by western blotting using antibodies specific for activated forms of several signaling proteins. The impact of c-Kit on the action of drugs commonly used in the treatment of multiple myeloma was investigated by MTT proliferation assays. Fresh plasma cells from patients as well as myeloma cell lines expressed the two isoforms of c-Kit. Retroviral infection of myeloma cells with vectors that code for c-Kit-GNNK+ or c-Kit-GNNK- forms demonstrated differences in the kinetics of phosphorylation between these isoforms. Stem cell factor-induced activation of the GNNK- form was faster and more pronounced than that of the GNNK+ form, whose activation, however, lasted for longer. The c-Kit receptors weakly activated the Erk1/2 and Erk5 pathways. Both receptors, however, efficiently coupled to the PI3K/Akt pathway, and stimulated p70S6K activation. The latter was sensitive to the mTOR inhibitor, rapamycin. Studies of drug sensitivity indicated that cells expressing the GNNK- form were more resistant to the anti-myeloma action of bortezomib and melphalan. Our data indicate that c-Kit expression in multiple myeloma cells is functional, and coupled to survival pathways that may modulate cell death in response to therapeutic compounds used in the treatment of this disease.

  17. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord.

    PubMed

    Wang, Hwai-Shi; Hung, Shih-Chieh; Peng, Shu-Tine; Huang, Chun-Chieh; Wei, Hung-Mu; Guo, Yi-Jhih; Fu, Yu-Show; Lai, Mei-Chun; Chen, Chin-Chang

    2004-01-01

    The Wharton's jelly of the umbilical cord contains mucoid connective tissue and fibroblast-like cells. Using flow cytometric analysis, we found that mesenchymal cells isolated from the umbilical cord express matrix receptors (CD44, CD105) and integrin markers (CD29, CD51) but not hematopoietic lineage markers (CD34, CD45). Interestingly, these cells also express significant amounts of mesenchymal stem cell markers (SH2, SH3). We therefore investigated the potential of these cells to differentiate into cardiomyocytes by treating them with 5-azacytidine or by culturing them in cardiomyocyte-conditioned medium and found that both sets of conditions resulted in the expression of cardiomyocyte markers, namely N-cadherin and cardiac troponin I. We also showed that these cells have multilineage potential and that, under suitable culture conditions, are able to differentiate into cells of the adipogenic and osteogenic lineages. These findings may have a significant impact on studies of early human cardiac differentiation, functional genomics, pharmacological testing, cell therapy, and tissue engineering by helping to eliminate worrying ethical and technical issues.

  18. Role of FAT/CD36 in fatty acid sensing, energy, and glucose homeostasis regulation in DIO and DR rats.

    PubMed

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Levin, Barry E

    2015-02-01

    Hypothalamic fatty acid (FA) sensing neurons alter their activity utilizing the FA translocator/receptor, FAT/CD36. Depletion of ventromedial hypothalamus (VMH) CD36 with adeno-associated viral vector expressing CD36 shRNA (AAV CD36 shRNA) leads to redistribution of adipose stores and insulin resistance in outbred rats. This study assessed the requirement of VMH CD36-mediated FA sensing for the regulation of energy and glucose homeostasis in postnatal day 5 (P5) and P21 selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats using VMH AAV CD36 shRNA injections. P5 CD36 depletion altered VMH neuronal FA sensing predominantly in DIO rats. After 10 wk on a 45% fat diet, DIO rats injected with VMH AAV CD36 shRNA at P21 ate more and gained more weight than DIO AAV controls, while DR AAV CD36 shRNA-injected rats gained less weight than DR AAV controls. VMH CD36 depletion increased inguinal fat pad weights and leptin levels in DIO and DR rats. Although DR AAV CD36 shRNA-injected rats became as obese as DIO AAV controls, only DIO control and CD36 depleted rats became insulin-resistant on a 45% fat diet. VMH CD36 depletion stunted linear growth in DIO and DR rats. DIO rats injected with AAV CD36 shRNA at P5 had increased fat mass, mostly due to a 45% increase in subcutaneous fat. They were also insulin-resistant with an associated 71% increase of liver triglycerides. These results demonstrate that VMH CD36-mediated FA sensing is a critical factor in the regulation of energy and glucose homeostasis and fat deposition in DIO and DR rats.

  19. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes.

    PubMed

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K

    2015-01-01

    Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen. © 2014 Wiley Periodicals, Inc.

  20. Enhanced expression of PD-1 and other activation markers by CD4+ T cells of young but not old patients with metastatic melanoma.

    PubMed

    van den Brom, Rob R H; van der Geest, Kornelis S M; Brouwer, Elisabeth; Hospers, Geke A P; Boots, Annemieke M H

    2018-06-01

    The biological behavior of melanoma is unfavorable in the elderly when compared to young subjects. We hypothesized that differences in T-cell responses might underlie the distinct behavior of melanoma in young and old melanoma patients. Therefore, we investigated the circulating T-cell compartment of 34 patients with metastatic melanoma and 42 controls, which were classified as either young or old. Absolute numbers of CD4+ T cells were decreased in young and old melanoma patients when compared to the age-matched control groups. Percentages of naive and memory CD4+ T cells were not different when comparing old melanoma patients to age-matched controls. Percentages of memory CD4+ T cells tended to be increased in young melanoma patients compared to young controls. Proportions of naive CD4+ T cells were lower in young patients than in age-matched controls, and actually comparable to those in old patients and controls. This was accompanied with increased percentages of memory CD4+ T cells expressing HLA-DR, Ki-67, and PD-1 in young melanoma patients in comparison to the age-matched controls, but not in old patients. Proportions of CD45RA-FOXP3 high memory regulatory T cells were increased in young and old melanoma patients when compared to their age-matched controls, whereas those of CD45RA+FOXP3 low naive regulatory T cells were similar. We observed no clear modulation of the circulating CD8+ T-cell repertoire in melanoma patients. In conclusion, we show that CD4+ T cells of young melanoma patients show signs of activation, whereas these signs are less clear in CD4+ T cells of old patients.

  1. Metabolism of two Go alpha isoforms in neuronal cells during differentiation.

    PubMed

    Brabet, P; Pantaloni, C; Bockaert, J; Homburger, V

    1991-07-15

    We have previously shown that undifferentiated N1E-115 neuroblastoma cells express only one isoform of Go alpha (pI = 5.8), whereas differentiated neuroblastoma cells expressed, in addition to this isoform, another Go alpha with a more acidic pI (5.55). Moreover, primary cultures of cerebellar granule cells, which are extremely well differentiated cells yielding a high density of synapses, expressed only a single Go alpha isoform with a pI of 5.55 (Brabet, P., Pantaloni, C., Rodriguez Martinez, J., Bockaert, J., and Homburger, V. (1990) J. Neurochem. 54, 1310-1320). In this report, using biosynthetic labeling with [35S]methionine and specific quantitative immunoprecipitation with a polyclonal antibody raised against the purified Go alpha protein, we have determined 1) the degradation rate of total Go alpha (sum of the two isoforms) in differentiated as well as in undifferentiated neuroblastoma cells and in cerebellar granule cells, 2) the degradation rates of each isoform in differentiated neuroblastoma cells. The t 1/2 for total Go alpha protein degradation was very different in the three neuronal cell populations and was 28 +/- 5 h (n = 5), 58 +/- 9 h (n = 5), and 154 +/- 22 h (n = 6) in undifferentiated, differentiated neuroblastoma, and granule cells, respectively. Using two-dimensional gel analysis of immunoprecipitates, we have also determined the individual t 1/2 for degradation of each Go alpha isoform in differentiated neuroblastoma cells, in which the two Go alpha isoforms were expressed. Results indicated that the two Go alpha isoforms exhibit similar t1/2 for degradation (49 +/- 5 h, n = 3). Thus, the t1/2 for degradation of the more basic Go alpha isoform is higher in differentiated neuroblastoma cells (49 +/- 5 h, n = 3) than in undifferentiated neuroblastoma cells (28 +/- 5 h, n = 5) which expressed only the more basic Go alpha isoform. It can be concluded that the degradation rate of the more basic Go alpha isoform is not a characteristic of the protein itself but depends on the state of the cell differentiation. The comparison between the t1/2 for degradation of the more acidic Go alpha isoform is differentiated neuroblastoma cells (51 +/- 6 h, n = 3) with that of cerebellar granule cells (154 +/- 22 h, n = 6) suggests that there is also a decrease in the degradation rate of the more acidic Go alpha isoform during differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Repair of astrocytes, blood vessels, and myelin in the injured brain: possible roles of blood monocytes

    PubMed Central

    2013-01-01

    Inflammation in injured tissue has both repair functions and cytotoxic consequences. However, the issue of whether brain inflammation has a repair function has received little attention. Previously, we demonstrated monocyte infiltration and death of neurons and resident microglia in LPS-injected brains (Glia. 2007. 55:1577; Glia. 2008. 56:1039). Here, we found that astrocytes, oligodendrocytes, myelin, and endothelial cells disappeared in the damage core within 1–3 d and then re-appeared at 7–14 d, providing evidence of repair of the brain microenvironment. Since round Iba-1+/CD45+ monocytes infiltrated before the repair, we examined whether these cells were involved in the repair process. Analysis of mRNA expression profiles showed significant upregulation of repair/resolution-related genes, whereas proinflammatory-related genes were barely detectable at 3 d, a time when monocytes filled injury sites. Moreover, Iba-1+/CD45+ cells highly expressed phagocytic activity markers (e.g., the mannose receptors, CD68 and LAMP2), but not proinflammatory mediators (e.g., iNOS and IL1β). In addition, the distribution of round Iba-1+/CD45+ cells was spatially and temporally correlated with astrocyte recovery. We further found that monocytes in culture attracted astrocytes by releasing soluble factor(s). Together, these results suggest that brain inflammation mediated by monocytes functions to repair the microenvironment of the injured brain. PMID:23758980

  3. An alternatively spliced CXCL16 isoform expressed by dendritic cells is a secreted chemoattractant for CXCR6+ cells.

    PubMed

    van der Voort, Robbert; Verweij, Viviènne; de Witte, Theo M; Lasonder, Edwin; Adema, Gosse J; Dolstra, Harry

    2010-06-01

    DC are professional APCs that initiate and regulate adaptive immune responses by interacting with naïve and memory T cells. Chemokines released by DC play an essential role in T cell recruitment and in the maintenance of antigen-specific T cell-DC conjugates. Here, we characterized the expression of the T cell-attracting chemokine CXCL16 by murine DC. We demonstrate that through alternative RNA splicing, DC not only express the previously characterized transmembrane CXCL16 isoform, which can be cleaved from the cell surface, but also a novel isoform lacking the transmembrane and cytoplasmic domains. Transfection of HEK293 cells shows that this novel isoform, termed CXCL16v, is not expressed on the cell membrane but is secreted as a protein of approximately 10 kDa. Quantitative PCR demonstrates that CXCL16v is broadly expressed in lymphoid and nonlymphoid tissues resembling the tissue distribution of DC. Indeed, CXCL16v mRNA is expressed significantly by spleen DC and BM-DC. Moreover, we show that mature DC have increased CXCL16v mRNA levels and express transmembrane and soluble CXCL16 proteins. Finally, we show that CXCL16v specifically attracts cells expressing the chemokine receptor CXCR6. Our data demonstrate that mature DC express secreted, transmembrane, and cleaved CXCL16 isoforms to recruit and communicate efficiently with CXCR6(+) lymphoid cells.

  4. Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells.

    PubMed

    Kovar, Lubomir; Etrych, Tomas; Kabesova, Martina; Subr, Vladimir; Vetvicka, David; Hovorka, Ondrej; Strohalm, Jiri; Sklenar, Jan; Chytil, Petr; Ulbrich, Karel; Rihova, Blanka

    2010-08-01

    To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.

  5. Characteristics of dental pulp in human upper first premolar teeth based on immunohistochemical and morphometric examinations.

    PubMed

    Tomaszewska, Joanna Maria; Miskowiak, Bogdan; Matthews-Brzozowska, Teresa; Wierzbicki, Piotr

    2013-01-01

    Teeth extracted for orthodontic reasons are commonly considered as healthy. Therefore, it is possible to examine structure of the dental pulp can be fully recognized and how it is affected by malocclusion. The aim of the study was to evaluate by immunohistochemistry (IHC) and morphometry dental pulp in human upper first premolar teeth extracted for orthodontic reasons. The material comprised 36 teeth of 20 patients in the age range 16-26 years. By the use of IHC markers the presence of immunocompetent cells (CD20, CD45RO, and CD68), blood vessels (CD31) and nerves (PGP9.5) were examined in the pulp. Inflammatory infiltrates and tissue atrophy were observed in 24 and 10 teeth, respectively. Strong positive correlation between the width of the odontoblastic layer, the number of rows of odontoblast nuclei and the increase of MVA (microvessel area) in the pulp of atrophic teeth was found. The cellular infiltrations found in H&E-stained sections were identified by IHC as memory T cells (CD45RO+) and B lymphocytes (CD20+) with macrophages (CD68+) present at the periphery. The CD20 antigen was intensively expressed in 13 teeth, CD45RO in 33 teeth, and CD68 in 20 teeth. Thus, despite the lack of any clinical signs of pulp disease many teeth extracted for orthodontic reasons show focal pulp inflammation and atrophy which probably results from the malocclusion stress accompanying teeth crowding.

  6. Molecular cloning, sequence characterization and expression analysis of a CD63 homologue from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo

    2013-10-15

    CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic "Cys-Cys-Gly" motif and "Cys188" residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.

  7. Molecular Cloning, Sequence Characterization and Expression Analysis of a CD63 Homologue from the Coleopteran Beetle, Tenebrio molitor

    PubMed Central

    Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo

    2013-01-01

    CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic “Cys-Cys-Gly” motif and “Cys188” residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%–56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens. PMID:24132157

  8. A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification.

    PubMed

    Sun-Wada, Ge-Hong; Imai-Senga, Yoko; Yamamoto, Akitsugu; Murata, Yoshiko; Hirata, Tomoyuki; Wada, Yoh; Futai, Masamitsu

    2002-05-17

    The vacuolar-type H(+)-ATPases (V-ATPases) are a family of multimeric proton pumps involved in a wide variety of physiological processes. We have identified two novel mouse genes, Atp6e1 and Atp6e2, encoding testis-specific (E1) and ubiquitous (E2) V-ATPase subunit E isoforms, respectively. The E1 transcript appears about 3 weeks after birth, corresponding to the start of meiosis, and is expressed specifically in round spermatids in seminiferous tubules. Immunohistochemistry with isoform-specific antibodies revealed that the V-ATPase with E1 and a2 isoforms is located specifically in developing acrosomes of spermatids and acrosomes in mature sperm. In contrast, the E2 isoform was expressed in all tissues examined and present in the perinuclear compartments of spermatocytes. The E1 isoform exhibits 70% identity with the E2, and both isoforms functionally complemented a null mutation of the yeast counterpart VMA4, indicating that they are bona fide V-ATPase subunits. The chimeric enzymes showed slightly lower K(m)(ATP) than yeast V-ATPase. Consistent with the temperature-sensitive growth of Deltavma4-expressing E1 isoform, vacuolar membrane vesicles exhibited temperature-sensitive coupling between ATP hydrolysis and proton transport. These results suggest that E1 isoform is essential for energy coupling involved in acidification of acrosome.

  9. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch.

    PubMed

    Doan; Rudi; Olsen

    1999-11-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed.

  10. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch1

    PubMed Central

    Doan, Danny N.P.; Rudi, Heidi; Olsen, Odd-Arne

    1999-01-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed. PMID:10557246

  11. Developmental expression of high molecular weight tropomyosin isoforms in Mesocestoides corti.

    PubMed

    Koziol, Uriel; Costábile, Alicia; Domínguez, María Fernanda; Iriarte, Andrés; Alvite, Gabriela; Kun, Alejandra; Castillo, Estela

    2011-02-01

    Tropomyosins are a family of actin-binding proteins with diverse roles in actin filament function. One of the best characterized roles is the regulation of muscle contraction. Tropomyosin isoforms can be generated from different genes, and from alternative promoters and alternative splicing from the same gene. In this work, we have isolated sequences for tropomyosin isoforms from the cestode Mesocestoides corti, and searched for tropomyosin genes and isoforms in other flatworms. Two genes are conserved in the cestodes M. corti and Echinococcus multilocularis, and in the trematode Schistosoma mansoni. Both genes have the same structure, and each gene gives rise to at least two different isoforms, a high molecular weight (HMW) and a low molecular weight (LMW) one. Because most exons are duplicated and spliced in a mutually exclusive fashion, isoforms from one gene only share one exon and are highly divergent. The gene duplication preceded the divergence of neodermatans and the planarian Schmidtea mediterranea. Further duplications occurred in Schmidtea, coupled to the selective loss of duplicated exons, resulting in genes that only code for HMW or LMW isoforms. A polyclonal antibody raised against a HMW tropomyosin from Echinococcus granulosus was demonstrated to specifically recognize HMW tropomyosin isoforms of M. corti, and used to study their expression during segmentation. HMW tropomyosins are expressed in muscle layers, with very low or absent levels in other tissues. No expression of HMW tropomyosins is present in early or late genital primordia, and expression only begins once muscle fibers develop in the genital ducts. Therefore, HMW tropomyosins are markers for the development of muscles during the final differentiation of genital primordia. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Expression of CD43 in chronic lymphoproliferative leukemias.

    PubMed

    Sorigue, Marc; Juncà, Jordi; Sarrate, Edurne; Grau, Javier

    2018-01-01

    CD43 has been used on histological samples for the differential diagnosis of lymphoproliferative disorders but there is scarce data on its use by flow cytometry (FC). We set out to characterize the expression of CD43 by FC in B-cell lymphoproliferative disorders and to determine its possible role in the differential diagnosis of these malignancies. We analyzed the expression of CD43 in clonal B-cell lymphoproliferative disorders with exclusive peripheral blood and/or bone marrow involvement based on their Moreau chronic lymphocytic leukemia (CLL) score with particular emphasis on Moreau CLL score 3 (MS3) cases, which often present a diagnostic challenge. The cohort included 433 CLL (score 4-5), 34 MS3 and 166 lymphoproliferative disorders with lower scores. Generally, the higher the Moreau CLL score, the higher CD43-positivity (425/443 [96%] for CLL, 23/34 [67%] for MS3 and 18/166 [11%] for cases with lower scores). MS3 cases constituted 5.4% of all cases and were more frequently CD5, CD200, CD43-positive and had del(q13) than score 0-2 cases. Among MS3 cases, del(13q) cases were predominantly CD43-positive (12/13). The frequency of CD43-positivity increases sharply with the Moreau score. MS3 cases seem to include both CLL and non-CLL lymphoproliferative disorders and CD43 could aid in the differential diagnosis between the two. However, studies analyzing the correlation between CD43 expression and the underlying biologic changes of these cases are warranted. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  13. eQTL Mapping Using RNA-seq Data

    PubMed Central

    Hu, Yijuan

    2012-01-01

    As RNA-seq is replacing gene expression microarrays to assess genome-wide transcription abundance, gene expression Quantitative Trait Locus (eQTL) studies using RNA-seq have emerged. RNA-seq delivers two novel features that are important for eQTL studies. First, it provides information on allele-specific expression (ASE), which is not available from gene expression microarrays. Second, it generates unprecedentedly rich data to study RNA-isoform expression. In this paper, we review current methods for eQTL mapping using ASE and discuss some future directions. We also review existing works that use RNA-seq data to study RNA-isoform expression and we discuss the gaps between these works and isoform-specific eQTL mapping. PMID:23667399

  14. Characterization of hepatic progenitors from human fetal liver during second trimester.

    PubMed

    Rao, Mekala-Subba; Khan, Aleem-Ahmed; Parveen, Nyamath; Habeeb, Mohammed-Aejaz; Habibullah, Chittoor-Mohammed; Pande, Gopal

    2008-10-07

    To enrich hepatic progenitors using epithelial cell adhesion molecule (EpCAM) as a marker from human fetal liver and investigate the expression of human leukocyte antigen (HLA) and their markers associated with hepatic progenitor cells. EpCAM +ve cells were isolated using magnetic cell sorting (MACS) from human fetuses (n = 10) at 15-25 wk gestation. Expression of markers for hepatic progenitors such as albumin, alpha-fetoprotein (AFP), CD29 (integrin beta1), CD49f (integrin alpha6) and CD90 (Thy 1) was studied by using flow cytometry, immunocytochemistry and RT-PCR; HLA class I (A, B, C) and class II (DR) expression was studied by flow cytometry only. FACS analysis indicated that EpCAM +ve cells were positive for CD29, CD49f, CD90, CD34, HLA class I, albumin and AFP but negative for HLA class II (DR) and CD45. RT PCR showed that EpCAM +ve cells expressed liver epithelial markers (CK18), biliary specific marker (CK19) and hepatic markers (albumin, AFP). On immunocytochemical staining, EpCAM +ve cells were shown positive signals for CK18 and albumin. Our study suggests that these EpCAM +ve cells can be used as hepatic progenitors for cell transplantation with a minimum risk of alloreactivity and these cells may serve as a potential source for enrichment of hepatic progenitor.

  15. Characterisation of monoclonal antibodies specific for hamster leukocyte differentiation molecules.

    PubMed

    Rees, Jennifer; Haig, David; Mack, Victoria; Davis, William C

    2017-01-01

    Flow cytometry was used to identify mAbs that recognize conserved epitopes on hamster leukocyte differentiation molecules (hLDM) and also to characterize mAbs developed against hLDM. Initial screening of mAbs developed against LDMs in other species yielded mAbs specific for the major histocompatibility (MHC) II molecule, CD4 and CD18. Screening of sets of mAbs developed against hLDM yielded 22 new mAbs, including additional mAbs to MHC II molecules and mAbs that recognize LDMs expressed on all leukocytes, granulocytes, all lymphocytes, all T cells, a subset of T cells, or on all B cells. Based on comparison of the pattern of expression of LDMs expressed on all hamster leukocytes with the patterns of expression of known LDMs in other species, as detected by flow cytometry (FC), four mAbs are predicted to recognize CD11a, CD44, and CD45. Cross comparison of mAbs specific for a subset of hamster T cells with a cross reactive mAb known to recognize CD4 in mice and one recognising CD8 revealed they recognize CD4. The characterization of these mAbs expands opportunities to use hamsters as an additional model species to investigate the mechanisms of immunopathogenesis of infectious diseases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. A dynamic dual role of IL-2 signaling in the two-step differentiation process of adaptive regulatory T cells.

    PubMed

    Guo, Zhiyong; Khattar, Mithun; Schroder, Paul M; Miyahara, Yoshihiro; Wang, Guohua; He, Xiaoshung; Chen, Wenhao; Stepkowski, Stanislaw M

    2013-04-01

    The molecular mechanism of the extrathymic generation of adaptive, or inducible, CD4(+)Foxp3(+) regulatory T cells (iTregs) remains incompletely defined. We show that exposure of splenic CD4(+)CD25(+)Foxp3(-) cells to IL-2, but not other common γ-chain cytokines, resulted in Stat5 phosphorylation and induced Foxp3 expression in ∼10% of the cells. Thus, IL-2/Stat5 signaling may be critical for Foxp3 induction in peripheral CD4(+)CD25(+)Foxp3(-) iTreg precursors. In this study, to further define the role of IL-2 in the formation of iTreg precursors as well as their subsequent Foxp3 expression, we designed a two-step iTreg differentiation model. During the initial "conditioning" step, CD4(+)CD25(-)Foxp3(-) naive T cells were activated by TCR stimulation. Inhibition of IL-2 signaling via Jak3-Stat5 was required during this step to generate CD4(+)CD25(+)Foxp3(-) cells containing iTreg precursors. During the subsequent Foxp3-induction step driven by cytokines, IL-2 was the most potent cytokine to induce Foxp3 expression in these iTreg precursors. This two-step method generated a large number of iTregs with relatively stable expression of Foxp3, which were able to prevent CD4(+)CD45RB(high) cell-mediated colitis in Rag1(-/-) mice. In consideration of this information, whereas initial inhibition of IL-2 signaling upon T cell priming generates iTreg precursors, subsequent activation of IL-2 signaling in these precursors induces the expression of Foxp3. These findings advance the understanding of iTreg differentiation and may facilitate the therapeutic use of iTregs in immune disorders.

  17. Impact of antibody subclass and disulfide isoform differences on the biological activity of CD200R and βklotho agonist antibodies.

    PubMed

    Grujic, Ognjen; Stevens, Jennitte; Chou, Robert Y-T; Weiszmann, Jennifer V; Sekirov, Laura; Thomson, Christy; Badh, Anita; Grauer, Stephanie; Chan, Brian; Graham, Kevin; Manchulenko, Kathy; Dillon, Thomas M; Li, Yang; Foltz, Ian N

    2017-05-13

    Agonism of cell surface receptors by monoclonal antibodies is dependent not only on its ability to bind the target, but also to deliver a biological signal through receptors to the cell. Immunoglobulin G2 antibodies (IgG2s) are made up of a mixture of distinct isoforms (IgG2-A, -B and A/B), which differ by the disulfide connectivity at the hinge region. When evaluating panels of agonistic antibodies against CD200 receptor (CD200R) or βklotho receptor (βklotho), we noticed striking activity differences of IgG1 or IgG2 antibodies with the same variable domains. For the CD200R antibody, the IgG2 antibody demonstrated higher activity than the IgG1 or IgG4 antibody. More significantly, for βklotho, agonist antibodies with higher biological activity as either IgG2 or IgG1 were identified. In both cases, ion exchange chromatography was able to isolate the bioactivity to the IgG2-B isoform from the IgG2 parental mixture. The subclass-related increase in agonist activity was not correlated with antibody aggregation or binding affinity, but was driven by enhanced avidity for the CD200R antibody. These results add to the growing body of evidence that show that conformational differences in the antibody hinge region can have a dramatic impact on the antibody activity and must be considered when screening and engineering therapeutic antibody candidates. The results also demonstrate that the IgG1 (IgG2-A like) or the IgG2-B form may provide the most active form of agonist antibodies for different antibodies and targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Left Atrial Appendages from Adult Hearts Contain a Reservoir of Diverse Cardiac Progenitor Cells

    PubMed Central

    Platt, Yardanna; Helman, Yaron; Feinberg, Yael; Lotan, Chaim; Beeri, Ronen

    2013-01-01

    Aims There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs) are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA) and their fates. Methods and Results We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45pos cells grew with milder proteolysis, while CD45neg cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45pos cells expressed CD45 initially and rapidly lost its expression while differentiating. Conclusions Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart. PMID:23555001

  19. Flow cytometry of sputum: assessing inflammation and immune response elements in the bronchial airways

    PubMed Central

    Lay, John C.; Peden, David B.; Alexis, Neil E.

    2012-01-01

    Background The evaluation of sputum leukocytes by flow cytometry is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. Objective To develop a gating strategy based on specific antibody panels in combination with light scatter properties for flow cytometric evaluation of sputum cells. Methods Healthy and mild asthmatic volunteers underwent sputum induction. Manually selected mucus “plug” material was treated with dithiothrietol, filtered and total leukocytes acquired. Multicolor flow cytometry was performed using specific gating strategies based on light scatter properties, differential expression of CD45 and cell lineage markers to discriminate leukocytes from squamous epithelial cells and debris. Results The combination of forward scatter and CD45 expression reliably segregated sputum leukocytes from contaminating squamous epithelial cells and debris. Overlap of major leukocyte populations (neutrophils, macrophages/monocytes) required the use of specific antibodies (e.g. CD16, CD64, CD14, HLA-DR) that differentiated granulocytes from monocytes and macrophages. These gating strategies allowed identification of small populations of eosinophils, CD11c+ myeloid dendritic cells, B cells and NK cells. Conclusions Multicolor flow cytometry can be successfully applied to sputum samples to identify and characterize leukocyte populations residing on the surfaces of the central airways. PMID:21639708

  20. Differences in glutamate receptors and inflammatory cell numbers are associated with the resolution of pain in human rotator cuff tendinopathy.

    PubMed

    Dean, Benjamin John Floyd; Snelling, Sarah J B; Dakin, Stephanie G; Murphy, Richard J; Javaid, Muhammad Kassim; Carr, Andrew Jonathan

    2015-07-10

    The relationship between peripheral tissue characteristics and pain symptoms in soft tissue inflammation is poorly understood. The primary aim of this study was to determine immunohistochemical differences in tissue obtained from patients with persistent pain and patients who had become pain-free after surgical treatment for rotator cuff tendinopathy. The secondary aim was to investigate whether there would be differences in glutaminergic and inflammatory gene expression between disease-derived and healthy control cells in vitro. Supraspinatus tendon biopsies were obtained from nine patients with tendon pain before shoulder surgery and from nine further patients whose pain had resolved completely following shoulder surgery. Histological markers relating to the basic tendon characteristics, inflammation and glutaminergic signalling were quantified by immunohistochemical analysis. Gene expression of glutaminergic and inflammatory markers was determined in tenocyte explants derived from painful rotator cuff tendon tears in a separate cohort of patients and compared to that of explants from healthy control tendons. Dual labelling was performed to identify cell types expressing nociceptive neuromodulators. Tendon samples from patients with persistent pain demonstrated increased levels of metabotropic glutamate receptor 2 (mGluR2), kainate receptor 1 (KA1), protein gene product 9.5 (PGP9.5), CD206 (macrophage marker) and CD45 (pan-leucocyte marker) versus pain-free controls (p <0.05). NMDAR1 co-localised with CD206-positive cells, whereas PGP9.5 and glutamate were predominantly expressed by resident tendon cells. These results were validated by in vitro increases in the expression of mGluR2, N-methyl-D-aspartate receptor (NMDAR1), KA1, CD45, CD206 and tumour necrosis factor alpha (TNF-α) genes (p <0.05) in disease-derived versus control cells. We conclude that differences in glutamate receptors and inflammatory cell numbers are associated with the resolution of shoulder pain in rotator cuff tendinopathy, and that disease-derived cells exhibit a distinctly different neuro-inflammatory gene expression profile to healthy control cells.

  1. Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia.

    PubMed

    Mansour, Iman; Zayed, Rania A; Said, Fadwa; Latif, Lamyaa Abdel

    2016-09-01

    The microenvironment of acute myeloid leukemia (AML) is suppressive for immune cells. Regulatory T cells (Tregs) have been recognized to play a role in helping leukemic cells to evade immunesurveillance. The mesenchymal stem cells (MSCs) are essential contributors in immunomodulation of the microenvironment as they can promote differentiation of Tregs via the indoleamine 2,3-dioxygenase (IDO) pathway. The aim of the present work was to evaluate the expression of IDO in bone marrow derived MSCs and to study its correlation to percentage of Tregs. Thirty-seven adult bone marrow samples were cultured in appropriate culture medium to isolate MSCs. Successful harvest of MSCs was determined by plastic adherence, morphology, and positive expression of CD271 and CD105; negative expression of CD34 and CD45 using flowcytometry. MSCs were examined for IDO expression by immunocytochemistry using anti-IDO monoclonal antibody. CD4+ CD25+ cells (Tregs) were measured in bone marrow samples by flowcytometry. MSCs were successfully isolated from 20 of the 37 bone marrow samples cultured. MSCs showed higher expression of IDO and Tregs percentage was higher in AML patients compared to control subjects (P = 0.002 and P < 0.001, respectively). A positive correlation was found between IDO expression and Tregs percentage (P value = 0.012, r = 0.5). In this study, we revealed an association between high IDO expression in MSCs and elevated levels of Tregs which could have an important role in the pathogenesis of AML, providing immunosuppressive microenvironment.

  2. Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11·2 microdeletion and partial DiGeorge syndrome

    PubMed Central

    Eberle, P; Berger, C; Junge, S; Dougoud, S; Büchel, E Valsangiacomo; Riegel, M; Schinzel, A; Seger, R; Güngör, T

    2009-01-01

    A subgroup of patients with 22q11·2 microdeletion and partial DiGeorge syndrome (pDGS) appears to be susceptible to non-cardiac mortality (NCM) despite sufficient overall CD4+ T cells. To detect these patients, 20 newborns with 22q11·2 microdeletion and congenital heart disease were followed prospectively for 6 years. Besides detailed clinical assessment, longitudinal monitoring of naive CD4+ and cytotoxic CD3+CD8+ T cells (CTL) was performed. To monitor thymic activity, we analysed naive platelet endothelial cell adhesion molecule-1 (CD31+) expressing CD45RA+RO−CD4+ cells containing high numbers of T cell receptor excision circle (TREC)-bearing lymphocytes and compared them with normal values of healthy children (n = 75). Comparing two age periods, low overall CD4+ and naive CD4+ T cell numbers were observed in 65%/75%, respectively, of patients in period A (< 1 year) declining to 22%/50%, respectively, of patients in period B (> 1/< 7 years). The percentage of patients with low CTLs (< P10) remained robust until school age (period A: 60%; period B: 50%). Low numbers of CTLs were associated with abnormally low naive CD45RA+RO−CD4+ T cells. A high-risk (HR) group (n = 11) and a standard-risk (SR) (n = 9) group were identified. HR patients were characterized by low numbers of both naive CD4+ and CTLs and were prone to lethal infectious and lymphoproliferative complications (NCM: four of 11; cardiac mortality: one of 11) while SR patients were not (NCM: none of nine; cardiac mortality: two of nine). Naive CD31+CD45RA+RO−CD4+, naive CD45RA+RO−CD4+ T cells as well as TRECs/106 mononuclear cells were abnormally low in HR and normal in SR patients. Longitudinal monitoring of naive CD4+ and cytotoxic T cells may help to discriminate pDGS patients at increased risk for NCM. PMID:19040613

  3. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells

    PubMed Central

    Matsuoka, Yoshikazu; Takahashi, Masaya; Sumide, Keisuke; Kawamura, Hiroshi; Nakatsuka, Ryusuke; Fujioka, Tatsuya; Sonoda, Yoshiaki

    2017-01-01

    In the murine hematopoietic stem cell (HSC) compartment, thrombopoietin (THPO)/MPL (THPO receptor) signaling plays an important role in the maintenance of adult quiescent HSCs. However, the role of THPO/MPL signaling in the human primitive HSC compartment has not yet been elucidated. We have identified very primitive human cord blood (CB)-derived CD34– severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method. In this study, we investigated the roles of the MPL expression in the human primitive HSC compartment. The SRC activities of the highly purified CB-derived 18Lin–CD34+/–MPL+/– cells were analyzed using NOG mice. In the primary recipient mice, nearly all mice that received CD34+/–MPL+/– cells were repopulated with human CD45+ cells. Nearly all of these mice that received CD34+MPL+/– and CD34–MPL– cells showed a secondary repopulation. Interestingly, the secondary recipient mice that received CD34+/–MPL– cells showed a distinct tertiary repopulation. These results clearly indicate that the CD34+/– SRCs not expressing MPL sustain a long-term (LT) (>1 year) human cell repopulation in NOG mice. Moreover, CD34– SRCs generate CD34+CD38–CD90+ SRCs in vitro and in vivo. These findings provide a new concept that CD34–MPL– SRCs reside at the apex of the human HSC hierarchy. PMID:27938494

  4. Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma

    PubMed Central

    Taylor, Sarah; Calder, Claudia J.; Albon, Julie; Erichsen, Jonathan T.; Boulton, Micheal E.; Morgan, James E.

    2013-01-01

    The interaction of the myeloid restricted molecule CD200R with its widely expressed ligand CD200 is involved in the down-regulation of microglia activation. In the present study, we examined the involvement of CD200R in microglia activation in experimental ocular hypertension to determine the role of microglia activation in retinal ganglion cell (RGC) death, the key pathological event in glaucoma. Experimental glaucoma was induced in adult Brown Norway rats by sclerosis of the episcleral veins with the injection of hypertonic saline. Immunohistochemical methods were used to determine the involvement of microglia using GFAP, CD45, OX42 and OX41 and the involvement of CD200 and CD200R in the optic nerve head. Our data demonstrate the increased presence of microglia within the optic nerve head during ocular hypertension, identified by positive staining with OX42 and OX41. The peak of microglia correlates with peak in RGC death at days 20–27 (T3) post OHT induction. In addition, CD200 and CD200R positive cells were increased in ocular hypertensive eyes. Increased expression of CD200 was detected in the early phase (days 1–7; T1) of OHT and decreased over time, whilst the expression of CD200R was detected in the middle phase (days 20–27; T3) of OHT, correlating with the increase in microglia markers. Changes in the expression of CD200R/CD200 occur early in experimental glaucoma and precede the peak in microglia infiltration and RGC death, suggesting that CD200R-positive microglia play an important role in the initiation of RGC death during OHT, indicating a potential area for therapeutic intervention in treating glaucoma. PMID:21296076

  5. Repopulating hematopoietic stem cells from steady-state blood before and after ex vivo culture are enriched in CD34+CD133+CXCR4low fraction.

    PubMed

    Lapostolle, Véronique; Chevaleyre, Jean; Duchez, Pascale; Rodriguez, Laura; Vlaski-Lafarge, Marija; Sandvig, Ioanna; Brunet de la Grange, Philippe; Ivanovic, Zoran

    2018-06-01

    Feasibility of ex vivo expansion allows us to consider the steady-state peripheral blood as an alternative source of hematopoietic stem progenitor cells for transplantation when growth factor-induced cell mobilization is contraindicated or inapplicable. Ex vivo expansion dramatically enhances the in vivo reconstituting cell population from steady-state blood. In order to investigate phenotype and the expression of homing molecules, CD34, CD133, CD90, CD45RA, CD26 and CD9 expression was determined on sorted CD34+ cells according to CXCR4 (neg, low, bright) and CD133 expression before and after ex vivo expansion. Hematopoietic stem cell activity was determined in vivo on the basis of hematopoietic repopulation of primary and secondary recipients - NSG immuno-deficient mice. In vivo reconstituting cells in steady-state blood CD34+ cell fraction before expansion belong to the CD133+ population and are CXCR4low or, to a lesser extent, CXCR4neg, while after ex vivo expansion they are contained in only the CD133+CXCR4low cells. The failure of CXCR4bright population to engraft is probably due to the exclusive expression of CD26 by these cells. The limiting-dilution analysis showed that both repopulating cell number and individual proliferative capacity were enhanced by ex vivo expansion. Thus, steady-state peripheral blood cells exhibit a different phenotype compared to mobilized and cord blood ones, as well as to those issued from the bone marrow. This data represent the first phenotypic characterization of steady-state blood cells exhibiting short and long term hematopoietic reconstituting potential, which can be expanded ex vivo, a sine qua non for their subsequent use for transplantation. Copyright © 2018, Ferrata Storti Foundation.

  6. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishi, Minoru; Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp; Abe, Yasuhisa

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cellsmore » induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.« less

  7. Differential expression of Na+, K(+)-ATPase α-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus.

    PubMed

    Urbina, Mauricio A; Schulte, Patricia M; Bystriansky, Jason S; Glover, Chris N

    2013-04-01

    Inanga (Galaxias maculatus) is an amphidromous fish with a well-known capacity to withstand a wide range of environmental salinities. To investigate the molecular mechanisms facilitating acclimation of inanga to seawater, several isoforms of the Na(+), K(+)-ATPase ion transporter were identified. This included three α-1 (a, b and c), an α-2 and two α-3 (a and b) isoforms. Phylogenetic analysis showed that the inanga α-1a and α-1b formed a clade with the α-1a and α-1b isoforms of rainbow trout, while another clade contained the α-1c isoforms of these species. The expression of all the α-1 isoforms was modulated after seawater exposure (28‰). In gills, the expression of the α-1a isoform was progressively down-regulated after seawater exposure, while the expression of the α-1b isoform was up-regulated. The α-1c isoform behaved similarly to the α-1a, although changes were less dramatic. Physiological indicators of salinity acclimation matched the time frame of the changes observed at the molecular level. A 24-h osmotic shock period was highlighted by small increases in plasma osmolality, plasma Na(+) and a decrease in muscle tissue water content. Thereafter, these values returned close to their pre-exposure (freshwater) values. Na(+), K(+)-ATPase activity showed a decreasing trend over the first 72 h following seawater exposure, but activity increased after 240 h. Our results indicate that inanga is an excellent osmoregulator, an ability that is conferred by the rapid activation of physiological and molecular responses to salinity change.

  8. Subcellular localization and expression pattern of the neurofibromatosis type 2 protein merlin/schwannomin.

    PubMed

    Schmucker, B; Ballhausen, W G; Kressel, M

    1997-01-01

    To elucidate the physiological function of the neurofibromatosis type 2 (NF2) tumor suppressor protein merlin/schwannomin, we studied the expression pattern and subcellular localization in human fibroblasts by Western blot analyses and immunofluorescence using a polyclonal antibody raised against the C-terminus of merlin. Three of the six merlin isoforms identified in this study (75 kDa, 58 kDa, 45 kDa) have been reported earlier and can be explained by alternative splicing. In addition, we detected higher molecular weight bands of about 110 kDa, 100 kDa and 84 kDa. Although the merlin bands of 100 kDa and 110 kDa may represent homo- or heterodimers, oligomerization due to formation of disulfide bonds was excluded. Furthermore, the isoforms of 84 kDa and 58 kDa were quantitatively extractable in Lubrol WX, indicating a localization in or close to the plasma membrane. The 45 kDa band, however, was not soluble in Lubrol WX compatible with a localization of this NF2 isoform in the endoplasmic reticulum. Applying confocal laser scanning microscopy, merlin was shown to be located in four subcellular compartments: (i) perinuclear in a compartment resembling endoplasmic reticulum, (ii) in ruffling membranes and at the leading edges, (iii) in filopodia, and (iv) at cell/substrate adhesion points. Codistribution of merlin and F-actin filaments was found in filopodia, ruffling membranes and at the insertion points of stress fibers at cell/substrate adhesion junctions as shown by phalloidin-rhodamine staining. Double immunofluorescence analyses of merlin and moesin revealed a colocalization in filopodia and ruffling membranes. The localization of merlin in the actin-rich cortical cytoskeleton corresponds to the ezrin-radixin-moesin family of proteins suggesting the NF2 protein to contribute to the regulation of cell growth by interaction with cytoskeleton-associated proteins.

  9. Transcriptomic investigation of meat tenderness in two Italian cattle breeds.

    PubMed

    Bongiorni, S; Gruber, C E M; Bueno, S; Chillemi, G; Ferrè, F; Failla, S; Moioli, B; Valentini, A

    2016-06-01

    Our objectives for this study were to understand the biological basis of meat tenderness and to provide an overview of the gene expression profiles related to meat quality as a tool for selection. Through deep mRNA sequencing, we analyzed gene expression in muscle tissues of two Italian cattle breeds: Maremmana and Chianina. We uncovered several differentially expressed genes that encode for proteins belonging to a family of tripartite motif proteins, which are involved in growth, cell differentiation and apoptosis, such as TRIM45, or play an essential role in regulating skeletal muscle differentiation and the regeneration of adult skeletal muscle, such as TRIM32. Other differentially expressed genes (SCN2B, SLC9A7 and KCNK3) emphasize the involvement of potassium-sodium pumps in tender meat. By mapping splice junctions in RNA-Seq reads, we found significant differences in gene isoform expression levels. The PRKAG3 gene, which is involved in the regulation of energy metabolism, showed four isoforms that were differentially expressed. This distinct pattern of PRKAG3 gene expression could indicate impaired glycogen storage in skeletal muscle, and consequently, this gene very likely has a role in the tenderization process. Furthermore, with this deep RNA-sequencing, we captured a high number of expressed SNPs, for example, we found 1462 homozygous SNPs showing the alternative allele with a 100% frequency when comparing tender and tough meat. SNPs were then classified into categories by their position and also by their effect on gene coding (174 non-synonymous polymorphisms) based on the available UMD_3.1 annotations. © 2016 Stichting International Foundation for Animal Genetics.

  10. Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice.

    PubMed

    Cuffe, James S M; Saif, Zarqa; Perkins, Anthony V; Moritz, Karen M; Clifton, Vicki L

    2017-08-01

    Maternal dexamethasone exposure in the mouse impairs placental development and programs adult disease in a sexually dimorphic manner. Glucocorticoids bind to different glucocorticoid receptor (GR) isoforms to regulate gene transcription and cellular signaling. We hypothesized that sexually dimorphic placental responses to glucocorticoids are due to differences in GR isoforms present in the placenta. Pregnant C57Bl6 mice were exposed to saline or dexamethasone from E12.5 until E14.5 (1 µg/kg/h) before the collection of placentae. Cytoplasmic and nuclear protein fractions were extracted from placentae of male and female fetuses for Western blot analysis of GR isoforms. Eight known isoforms of the GR were detected in the mouse placenta including the translational isoforms GRα-A, B, C and D1-3 and the splice variants GRA and GRP. The expression of GRA, GRP and each of the GRα isoforms were altered by dexamethasone in relation to fetal sex and cellular location. Placentae of female fetuses had higher GRα-A and GRP expression in the cytoplasm than males, and GRα-C was more highly expressed in the nucleus of females than that in males. Dexamethasone significantly increased the cytoplasmic expression of GRα-A, but reduced the expression of GRα-C in placentae of males. Dexamethasone increased the expression of the GRα-C-regulated genes Sgk1 and Bcl2l11 , particularly in females. The cleaved caspase-3 staining in placental sections indicated GRα-C may mediate sex differences in dexamethasone-induced apoptosis. These findings may underlie the sex-specific placental adaptations that regulate different growth profiles in males and females and different risks for programmed disease outcomes in offspring. © 2017 Society for Endocrinology.

  11. Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer.

    PubMed

    Lan, Chunyan; Huang, Xin; Lin, Suxia; Huang, Huiqiang; Cai, Qichun; Wan, Ting; Lu, Jiabin; Liu, Jihong

    2013-06-01

    Macrophages are polarized into two functionally distinct forms, M1 and M2, in response to different microenvironment. Tumor-associated macrophages (TAMs) generally have M2 phenotype and promote tumor progression. Few studies to date have described the infiltration of M2-polarized macrophages in ovarian cancer. We used two macrophages markers, CD68 and CD163, to analyze the expression of TAMs and to clarify the relationship between the M2 form and survival in advanced ovarian cancer. Clinical data of 110 patients with stages III-IV epithelial ovarian cancer at Sun Yat-sen University Cancer Center between 1999 and 2007 were retrospectively reviewed. Immunohistochemical staining of CD68 and CD163 was performed. Correlations between macrophage density and patient survival were analyzed. Our data showed that no significant difference was observed in survival between patients in the high- and the low-CD68 expression groups. In contrast, the progression-free survival (PFS) rates (p = 0.003) and overall survival (OS) rates (p = 0.004) were significantly higher in the low-CD163 expression group than in the high-CD163 expression group, respectively. Similarly, we also observed significantly improved 3-year PFS (49.8% vs. 11.0%, p < 0.001) and OS (77.4% vs. 45.0%, p < 0.001) rates in patients in the low-CD163/CD68 ratio group when compared with the high-CD163/CD68 ratio group. Multivariate analysis identified the density of CD163-positive cells as well as the ratio of CD163/CD68 as negative predictors for PFS and OS, respectively. Our results show that the infiltration of CD163-positive M2 macrophages as well as activation of macrophages towards the M2 phenotype may contribute to poor survival in advanced ovarian cancer.

  12. The Schizophrenia-Associated Kv11.1-3.1 Isoform Results in Reduced Current Accumulation during Repetitive Brief Depolarizations

    PubMed Central

    Heide, Juliane; Mann, Stefan A.; Vandenberg, Jamie I.

    2012-01-01

    Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A) with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing. PMID:23029143

  13. [Establishment of the retrovirus-mediated murine model with MLL-AF9 leukemia].

    PubMed

    Xu, Si-Miao; Yang, Yang; Zhou, Mi; Zhao, Xue-Jiao; Qin, Yu; Zhang, Pei-Ling; Yuan, Rui-Feng; Zhou, Jian-Feng; Fang, Yong

    2013-10-01

    This study was purposed to establish a retrovirus-mediated murine model with MLL-AF9 leukemia, so as to provide a basis for further investigation of the pathogenesis and therapeutic strategy of MLL associated leukemia. Murine (CD45.2) primary hematopoietic precursor positively selected for expression of the progenitor marker c-Kit by means of MACS were transduced with a retrovirus carrying MLL-AF9 fusion gene. After cultured in vitro, the transduced cells were injected intravenously through the tail vein into the lethally irradiated mice (CD45.1). PCR, flow cytometry and morphological observation were employed to evaluate the murine leukemia model system. The results showed that MLL-AF9 fusion gene was expressed in the infected cells, and the cells had a dramatically enhanced potential to generate myeloid colonies with primitive and immature morphology. Flow cytometric analysis revealed that the immortalized cells highly expressed myeloid lineage surface markers Gr-1 and Mac-1. Moreover, the expression levels of Hoxa9 and Meis1 mRNA were significantly higher in the MLL-AF9 cells than that in control. The mice transplanted with MLL-AF9 cells displayed typical signs of leukemia within 6-12 weeks. Extensive infiltration leukemic cells was observed in the Wright-Giemsa stained peripheral blood smear and bone marrow, and also in the histology of liver and spleen. Flow cytometric analysis of the bone marrow and spleen cells demonstrated that the CD45.2 populations expressed highly myeloid markers Gr-1 and Mac-1. The leukemic mice died within 12 weeks. It is concluded that the retrovirus-mediated murine model with MLL-AF9 leukemia is successfully established, which can be applied in the subsequent researches.

  14. Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver.

    PubMed

    Suzuki, Atsushi; Zheng, Yun-wen; Fukao, Katashi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2004-01-01

    Self-renewing stem cells responsible for tissue or organ development and regeneration have been recently described. To isolate such cells using flow cytometry, it should be required to find molecules expressing on their cell surfaces. We have previously reported that, on cells fulfilling the criteria for hepatic stem cells, the hepatocyte growth factor receptor c-Met is expressed specifically in the developing mouse liver. In this study, to determine whether c-Met is an essential marker for hepatic stem cells in other animal strains, we examined the potential for in vivo liver-repopulation in sorted fetal rat-derived c-Met+ cells using the retrorsine model. Using flow cytometry and monoclonal antibodies for c-Met and leukocyte common antigen CD45, fetal rat liver cells were fractionated according to the expression of these molecules. Then, cells in each cell subpopulation were sorted and transplanted into the retrorsine-treated adult rats with two-third hepatectomy. At 9 months post transplant, frequency of liver-repopulation was examined by qualitative and quantitative analyses. When we transplanted c-Met+ CD45- sorted cells, many donor-derived cells formed colonies that included mature hepatocytes expressing albumin and containing abundant glycogen in their cytoplasm. In contrast, c-Met- cells and CD45+ cells could not repopulate damaged recipient livers. High enrichment of liver-repopulating cells was conducted by sorting of c-Met+ cells from the developing rat liver. This result suggests that c-Met/HGF interaction plays a crucial role for stem cell growth, differentiation, and self-renewal in rat liver organogenesis. Since the c-Met is also expressed in the fetal mouse-derived hepatic stem cells, this molecule could be expected to be an essential marker for such cell population in the various animal strains, including human.

  15. Merlin Isoforms 1 and 2 Both Act as Tumour Suppressors and Are Required for Optimal Sperm Maturation

    PubMed Central

    Zoch, Ansgar; Mayerl, Steffen; Schulz, Alexander; Greither, Thomas; Frappart, Lucien; Rübsam, Juliane; Heuer, Heike; Giovannini, Marco; Morrison, Helen

    2015-01-01

    The tumour suppressor Merlin, encoded by the gene NF2, is frequently mutated in the autosomal dominant disorder neurofibromatosis type II, characterised primarily by the development of schwannoma and other glial cell tumours. However, NF2 is expressed in virtually all analysed human and rodent organs, and its deletion in mice causes early embryonic lethality. Additionally, NF2 encodes for two major isoforms of Merlin of unknown functionality. Specifically, the tumour suppressor potential of isoform 2 remains controversial. In this study, we used Nf2 isoform-specific knockout mouse models to analyse the function of each isoform during development and organ homeostasis. We found that both isoforms carry full tumour suppressor functionality and can completely compensate the loss of the other isoform during development and in most adult organs. Surprisingly, we discovered that spermatogenesis is strictly dependent on the presence of both isoforms. While the testis primarily expresses isoform 1, we noticed an enrichment of isoform 2 in spermatogonial stem cells. Deletion of either isoform was found to cause decreased sperm quality as observed by maturation defects and head/midpiece abnormalities. These defects led to impaired sperm functionality as assessed by decreased sperm capacitation. Thus, we describe spermatogenesis as a new Nf2-dependent process. Additionally, we provide for the first time in vivo evidence for equal tumour suppressor potentials of Merlin isoform 1 and isoform 2. PMID:26258444

  16. [Expression of molecular markers detected by immunohistochemistry and risk of lymph node metastasis in stage T1 and T2 colorecrectal cancers].

    PubMed

    Wang, Fu-long; Wan, De-sen; Lu, Zhen-hai; Fang, Yu-jing; Li, Li-ren; Chen, Gong; Wu, Xiao-jun; Ding, Pei-rong; Kong, Ling-heng; Lin, Jun-zhong; Pan, Zhi-zhong

    2013-04-01

    To study the molecular risk factors of lymph node metastasis in stage T1 and T2 colorectal cancers by tissue microarray and immunohistochemistry techniques. Two hundred and three patients with stage T1 and T2 colorectal carcinoma who underwent radical surgery from 1999 to 2010 in our department were included in this study. Their clinicopathological data were retrospectively analyzed. Expression of the following 14 molecular markers were selected and assayed by tissue microarray and immunohistochemistry: VEGFR-3, HER2, CD44v6, CXCR4, TIMP-1, EGFR, IGF-1R, IGF-2, IGFBP-1, ECAD, MMP-9, RKIP, CD133, MSI. Chi-squared test and logistic regression were used to evaluate the variables as potential risk factors for lymph node metastasis. The positive expression rates of biomarkers were as following: VEGFR-3 (44.3%), EGFR (30.5%), HER-2 (28.1%), IGF-1R (63.5%), IGF-2 (44.8%), IGFBP-1 (70.9%), ECAD (45.8%), CD44v6 (51.2%), MMP-9 (44.3%), TIMP-1 (41.4%), RKIP (45.3%), CXCR4 (40.9%), and CD133 (49.8%). The positive rate of MSI expression was 22.2%. Both univariate and multivariate analyses showed that VEGFR-3, HER-2, and TIMP-1 were significant predictors of lymph node metastasis. Univariate analysis showed that CD44v6 and CXCR4 were significant significant predictors of lymph node metastasis. VEGFR-3, HER2 and TIMP-1 are independent factors for lymph node metastasis in stage T1 and T2 colorectal cancers.

  17. TIM-3 Does Not Act as a Receptor for Galectin-9

    PubMed Central

    Leitner, Judith; Rieger, Armin; Pickl, Winfried F.; Zlabinger, Gerhard; Grabmeier-Pfistershammer, Katharina; Steinberger, Peter

    2013-01-01

    T cell immunoglobulin and mucin protein 3 (TIM-3) is a type I cell surface protein that was originally identified as a marker for murine T helper type 1 cells. TIM-3 was found to negatively regulate murine T cell responses and galectin-9 was described as a binding partner that mediates T cell inhibitory effects of TIM-3. Moreover, it was reported that like PD-1 the classical exhaustion marker, TIM-3 is up-regulated in exhausted murine and human T cells and TIM-3 blockade was described to restore the function of these T cells. Here we show that the activation of human T cells is not affected by the presence of galectin-9 or antibodies to TIM-3. Furthermore, extensive studies on the interaction of galectin-9 with human and murine TIM-3 did not yield evidence for specific binding between these molecules. Moreover, profound differences were observed when analysing the expression of TIM-3 and PD-1 on T cells of HIV-1-infected individuals: TIM-3 was expressed on fewer cells and also at much lower levels. Furthermore, whereas PD-1 was preferentially expressed on CD45RA−CD8 T cells, the majority of TIM-3-expressing CD8 T cells were CD45RA+. Importantly, we found that TIM-3 antibodies were ineffective in increasing anti-HIV-1 T cell responses in vitro, whereas PD-L antibodies potently reverted the dysfunctional state of exhausted CD8 T cells. Taken together, our results are not in support of an interaction between TIM-3 and galectin-9 and yield no evidence for a functional role of TIM-3 in human T cell activation. Moreover, our data indicate that PD-1, but not TIM-3, is a promising target to ameliorate T cell exhaustion. PMID:23555261

  18. Proinflammatory isoforms of IL-32 as novel and robust biomarkers for control failure in HIV-infected slow progressors

    PubMed Central

    El-Far, Mohamed; Kouassi, Pascale; Sylla, Mohamed; Zhang, Yuwei; Fouda, Ahmed; Fabre, Thomas; Goulet, Jean-Philippe; van Grevenynghe, Julien; Lee, Terry; Singer, Joel; Harris, Marianne; Baril, Jean-Guy; Trottier, Benoit; Ancuta, Petronela; Routy, Jean-Pierre; Bernard, Nicole; Tremblay, Cécile L.; Angel, Jonathan; Conway, Brian; Côté, Pierre; Gill, John; Johnston, Lynn; Kovacs, Colin; Loutfy, Mona; Logue, Kenneth; Piché, Alain; Rachlis, Anita; Rouleau, Danielle; Thompson, Bill; Thomas, Réjean; Trottier, Sylvie; Walmsley, Sharon; Wobeser, Wendy

    2016-01-01

    HIV-infected slow progressors (SP) represent a heterogeneous group of subjects who spontaneously control HIV infection without treatment for several years while showing moderate signs of disease progression. Under conditions that remain poorly understood, a subgroup of these subjects experience failure of spontaneous immunological and virological control. Here we determined the frequency of SP subjects who showed loss of HIV control within our Canadian Cohort of HIV+ Slow Progressors and identified the proinflammatory cytokine IL-32 as a robust biomarker for control failure. Plasmatic levels of the proinflammatory isoforms of IL-32 (mainly β and γ) at earlier clinic visits positively correlated with the decline of CD4 T-cell counts, increased viral load, lower CD4/CD8 ratio and levels of inflammatory markers (sCD14 and IL-6) at later clinic visits. We present here a proof-of-concept for the use of IL-32 as a predictive biomarker for disease progression in SP subjects and identify IL-32 as a potential therapeutic target. PMID:26978598

  19. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    PubMed

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  20. Renal F4/80+CD11c+ Mononuclear Phagocytes Display Phenotypic and Functional Characteristics of Macrophages in Health and in Adriamycin Nephropathy

    PubMed Central

    Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W.S.; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I.; Harris, David C.H.

    2015-01-01

    Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80+CD11c+ cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80+CD11c+ cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80+CD11c+ cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80+CD11c+ cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80+CD11c+ cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80+CD11c+ cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. PMID:25012165

  1. Renal F4/80+ CD11c+ mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy.

    PubMed

    Cao, Qi; Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W S; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I; Harris, David C H

    2015-02-01

    Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80(+)CD11c(+) cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80(+)CD11c(+) cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80(+)CD11c(+) cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80(+)CD11c(+) cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80(+)CD11c(+) cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80(+)CD11c(+) cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. Copyright © 2015 by the American Society of Nephrology.

  2. Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.

    PubMed

    Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A

    2017-01-01

    Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. CD4+ T cells defined by their Vβ T cell receptor expression are associated with immunoregulatory profiles and lesion size in human leishmaniasis

    PubMed Central

    Keesen, T S L; Antonelli, L R V; Faria, D R; Guimarães, L H; Bacellar, O; Carvalho, E M; Dutra, W O; Gollob, K J

    2011-01-01

    Leishmaniasis is caused by infection with the protozoan parasite, Leishmania, that parasitizes human cells, and the cellular immune response is essential for controlling infection. In order to measure the host T cell response to Leishmania infection, we have measured the expansion, activation state and functional potential of specific T cells as identified by their T cell receptor Vβ region expression. In a group of cutaneous leishmaniasis (CL) patients, we evaluated these characteristics in nine different T cell subpopulations as identified by their Vβ region expression, before and after specific Leishmania antigen stimulation. Our results show: (1) an increase in CD4+ T cells expressing Vβ 5·2 and Vβ 24 in CL compared to controls; (2) a Leishmania antigen-induced increase in CD4+ T cells expressing Vβ 5·2, 11, 12 and 17; (3) a profile of previous activation of CD4+ Vβ 5·2-, 11- and 24-positive T cells, with higher expression of CD45RO, HLA-DR, interferon-γ, tumour necrosis factor-α and interleukin-10 compared to other Vβ-expressing subpopulations; (4) a positive correlation between higher frequencies of CD4+Vβ5·2+ T cells and larger lesions; and (5) biased homing of CD4+ T cells expressing Vβ 5·2 to the lesion site. Given that CL disease involves a level of pathology (ulcerated lesions) and is often followed by long-lived protection and cure, the identification of specific subpopulations active in this form of disease could allow for the discovery of immunodominant Leishmania antigens important for triggering efficient host responses against the parasite, or identify cell populations most involved in pathology. PMID:21726211

  4. Novel mRNA isoforms and mutations of uridine monophosphate synthetase and 5-fluorouracil resistance in colorectal cancer.

    PubMed

    Griffith, M; Mwenifumbo, J C; Cheung, P Y; Paul, J E; Pugh, T J; Tang, M J; Chittaranjan, S; Morin, R D; Asano, J K; Ally, A A; Miao, L; Lee, A; Chan, S Y; Taylor, G; Severson, T; Hou, Y-C; Griffith, O L; Cheng, G S W; Novik, K; Moore, R; Luk, M; Owen, D; Brown, C J; Morin, G B; Gill, S; Tai, I T; Marra, M A

    2013-04-01

    The drug fluorouracil (5-FU) is a widely used antimetabolite chemotherapy in the treatment of colorectal cancer. The gene uridine monophosphate synthetase (UMPS) is thought to be primarily responsible for conversion of 5-FU to active anticancer metabolites in tumor cells. Mutation or aberrant expression of UMPS may contribute to 5-FU resistance during treatment. We undertook a characterization of UMPS mRNA isoform expression and sequence variation in 5-FU-resistant cell lines and drug-naive or -exposed primary and metastatic tumors. We observed reciprocal differential expression of two UMPS isoforms in a colorectal cancer cell line with acquired 5-FU resistance relative to the 5-FU-sensitive cell line from which it was derived. A novel isoform arising as a consequence of exon skipping was increased in abundance in resistant cells. The underlying mechanism responsible for this shift in isoform expression was determined to be a heterozygous splice site mutation acquired in the resistant cell line. We developed sequencing and expression assays to specifically detect alternative UMPS isoforms and used these to determine that UMPS was recurrently disrupted by mutations and aberrant splicing in additional 5-FU-resistant colorectal cancer cell lines and colorectal tumors. The observed mutations, aberrant splicing and downregulation of UMPS represent novel mechanisms for acquired 5-FU resistance in colorectal cancer.

  5. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform.

    PubMed

    Koushika, S P; Lisbin, M J; White, K

    1996-12-01

    Tissue-specific alternative pre-mRNA splicing is a widely used mechanism for gene regulation and the generation of different protein isoforms, but relatively little is known about the factors and mechanisms that mediate this process. Tissue-specific RNA-binding proteins could mediate alternative pre-mRNA splicing. In Drosophila melanogaster, the RNA-binding protein encoded by the elav (embryonic lethal abnormal visual system) gene is a candidate for such a role. The ELAV protein is expressed exclusively in neurons, and is important for the formation and maintenance of the nervous system. In this study, photoreceptor neurons genetically depleted of ELAV, and elav-null central nervous system neurons, were analyzed immunocytochemically for the expression of neural proteins. In both situations, the lack of ELAV corresponded with a decrease in the immunohistochemical signal of the neural-specific isoform of Neuroglian, which is generated by alternative splicing. Furthermore, when ELAV was expressed ectopically in cells that normally express only the non-neural isoform of Neuroglian, we observed the generation of the neural isoform of Neuroglian. Drosophila ELAV promotes the generation of the neuron-specific isoform of Neuroglian by the regulation of pre-mRNA splicing. The findings reported in this paper demonstrate that ELAV is necessary, and the ectopic expression of ELAV in imaginal disc cells is sufficient, to mediate neuron-specific alternative splicing.

  6. Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α

    PubMed Central

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit

    2017-01-01

    Abstract p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3′UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3′UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. PMID:28973454

  7. The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa.

    PubMed

    Suzuki, Yuichiro; Truman, James W; Riddiford, Lynn M

    2008-02-01

    The evolution of complete metamorphosis in insects is a key innovation that has led to the successful diversification of holometabolous insects, yet the origin of the pupa remains an enigma. Here, we analyzed the expression of the pupal specifier gene broad (br), and the effect on br of isoform-specific, double-stranded RNA-mediated silencing, in a basal holometabolous insect, the beetle Tribolium castaneum. All five isoforms are weakly expressed during the penultimate instar and highly expressed during the prepupal period of the final instar. Application of hydroprene, a juvenile hormone analog, during the penultimate instar caused a repeat of the penultimate br expression patterns, and the formation of supernumerary larvae. Use of dsRNA against the br core region, or against a pair of either the br-Z2 or br-Z3 isoform with the br-Z1 or br-Z4 isoform, produced mobile animals with well-differentiated adult-like appendages, but which retained larval-like urogomphi and epidermis. Disruption of either the br-Z2 or the br-Z3 isoform caused the formation of shorter wings. Disruption of both br-Z1 and br-Z4 caused the appearance of pupal traits in the adults, but disruption of br-Z5 had no morphological effect. Our findings show that the br isoform functions are broadly conserved within the Holometabola and suggest that evolution of br isoform expression may have played an important role in the evolution of the pupa in holometabolous insects.

  8. The prognostic and clinicopathologic characteristics of CD147 and esophagus cancer: A meta-analysis.

    PubMed

    Li, Hui; Jiang, Chunxiang; Wu, Dongwen; Shi, Shupeng; Liao, Mengting; Wang, Jing; Li, Yanwen; Xu, Zihao

    2017-01-01

    The prognostic significance of CD147 expression in esophageal cancer patients remains controversial. Using a meta-analysis, we investigated the prognostic and clinicopathologic characteristics of CD147 in esophageal cancer. A comprehensive literature search of the PubMed (1966-2016), EMBASE (1980-2016), Cochrane Library (1996-2016), Web of Science (1945-2016), China National Knowledge Infrastructure (1982-2016), and Wanfang databases (1988-2016) was performed to identify studies of all esophageal cancer subtypes. Correlations between CD147 expression and survival outcomes and clinicopathological features were analyzed using meta-analysis methods. Seventeen studies were included. High CD147 expression reduced the 3-year survival rate (OR = 3.26, 95% CI = (1.53, 6.93), p = 0.02) and 5-year survival rate(OR = 4.35, 95% CI = (2.13, 8.90), p < 0.0001). High CD147 expression reduced overall survival in esophageal cancer (HR = 1.60, 95% CI = (1.19, 2.15), p = 0.02). Additionally, higher CD147 expression was detected in esophageal cancer tissues than noncancerous tissues (OR = 9.45, 95% CI = (5.39, 16.59), p < 0.00001), normal tissues (OR = 12.73, 95% CI = (3.49, 46.46), p = 0.0001), para-carcinoma tissues (OR = 12.80, 95% CI = (6.57, 24.92), p < 0.00001), and hyperplastic tissues (OR = 3.27, 95% CI = (1.47, 7.29), p = 0.004). CD147 expression was associated with TNM stage (OR = 3.66, 95% CI = (2.20, 6.09), p < 0.00001), tumor depth (OR = 7.97, 95% CI = (4.13, 15.38), p < 0.00001), and lymph node status (OR = 5.14, 95% CI = (2.03,13.01), p = 0.0005), but not with tumor differentiation, age, or sex. Our meta-analysis suggests that CD147 is an efficient prognostic factor in esophageal cancer. High CD147 expression in patients with esophageal cancer was associated with worse survival outcomes and common clinicopathological indicators of poor prognosis.

  9. A Hydrogel-Endothelial Cell implant Mimics Infantile Hemangioma: Modulation by Survivin and the Hippo pathway*

    PubMed Central

    Tsuneki, Masayuki; Hardee, Steven; Michaud, Michael; Morotti, Raffaella; Lavik, Erin; Madri, Joseph A.

    2015-01-01

    Microvascular endothelial cells cultured in three-dimensional hydrogel scaffolds form a network of microvessel structures when implanted subcutaneously in mice, inosculate with host vessels and over time remodel into large ectatic vascular structures resembling hemangiomas. When compared to infantile hemaniomas similarities were noted including a temporal progression from a morphological appearance of a proliferative phase to the appearance of an involuted phase mimicking the proliferative and involutional phases of infantile hemangioma. Consistent with the progression of a proliferative phase to an involuted phase, both the murine implants and human biopsy tissue exhibit reduced expression of Ajuba, YAP and Survivin labeling as they progressed over time. Significant numbers of CD45+, CD11b+, Mac3+ mononuclear cells were found at the 2 week time point in our implant model which correlated with the presence of CD45+, CD68+ mononuclear cells observed in biopsies of human proliferative phase hemangiomas. At the 4 week time point in our implant model only small numbers of CD45+ cells were detected, which again correlated with our findings of significantly diminished CD45+, CD68+ mononuclear cells in human involutional phase hemangiomas. The demonstration of mononuclear cell infiltration transiently in the proliferative phase of these lesions suggests that the vascular proliferation and/or regression may be driven in part by an immune response. Gross and microscopic morphological appearances of human proliferative and involutional hemangiomas and our implant model correlate well with each other as do the expression levels of Hippo pathway components (Ajuba and YAP) and Survivin and correlate with proliferation in these entities. Inhibitors of Survivin and Ajuba (which we have demonstrated to inhibit proliferation and increase apoptosis in murine hemangioma cell tissue culture) may have potential as other beneficial treatments for proliferating infantile hemangiomas. This implant model may have potential as a modest through-put screen for testing and development of therapeutics targeted at the proliferative phase of infantile hemangiomas, reducing the subsequent post-involutional scarring sometimes associated with these lesions. PMID:25961170

  10. Oestrogen receptor beta isoform expression in sporadic colorectal cancer, familial adenomatous polyposis and progressive stages of colorectal cancer.

    PubMed

    Stevanato Filho, Paulo Roberto; Aguiar Júnior, Samuel; Begnami, Maria Dirlei; Kuasne, Hellen; Spencer, Ranyell Matheus; Nakagawa, Wilson Toshihiko; Bezerra, Tiago Santoro; Kupper, Bruna Catin; Takahashi, Renata Maymi; Barros Filho, Mateus; Rogatto, Silvia Regina; Lopes, Ademar

    2017-11-13

    Among the sex hormones, oestrogen may play a role in colorectal cancer, particularly in conjunction with oestrogen receptor-β (ERβ). The expression of ERβ isoform variants and their correlations with familial adenomatous polyposis (FAP) syndrome and sporadic colorectal carcinomas are poorly described. This study aimed to investigate the expression levels of the ERβ1, ERβ2, ERβ4 and ERβ5 isoform variants using quantitative RT-PCR (921 analyses) in FAP, normal mucosa, adenomatous polyps and sporadic colorectal carcinomas. Decreased expression of ERβ isoforms was identified in sporadic polyps and in sporadic colorectal cancer as well as in polyps from FAP syndrome patients compared with normal tissues (p < 0.001). In FAP patients, ERβ1 and ERβ5 isoforms showed significant down-expression in polyps (p < 0.001) compared with matched normal tissues. However, no differences were observed when sporadic colorectal carcinomas were compared to normal mucosa tissues. These findings suggest an association of the ERβ isoform variants in individuals affected by germline mutations of the APC gene. Progressively decreased expression of ERβ was found in polyps at early stages of low-grade dysplasia, followed by T1-T2 and T3-T4 tumours (p < 0.05). In sporadic colorectal cancer, the loss of expression was an independent predictor of recurrence, and ERβ1 and ERβ5 expression levels were associated with better disease-free survival (p = 0.002). These findings may provide a better understanding of oestrogens and their potential preventive and therapeutic effects on sporadic colorectal cancer and cancers associated with FAP syndrome.

  11. The Role of MAPT Haplotype H2 and Isoform 1N/4R in Parkinsonism of Older Adults.

    PubMed

    Valenca, Guilherme T; Srivastava, Gyan P; Oliveira-Filho, Jamary; White, Charles C; Yu, Lei; Schneider, Julie A; Buchman, Aron S; Shulman, Joshua M; Bennett, David A; De Jager, Philip L

    2016-01-01

    Recently, we have shown that the Parkinson's disease (PD) susceptibility locus MAPT (microtubule associated protein tau) is associated with parkinsonism in older adults without a clinical diagnosis of PD. In this study, we investigated the relationship between parkinsonian signs and MAPT transcripts by assessing the effect of MAPT haplotypes on alternative splicing and expression levels of the most common isoforms in two prospective clinicopathologic studies of aging. using regression analysis, controlling for age, sex, study and neuropathology, we evaluated 976 subjects with clinical, genotyping and brain pathology data for haplotype analysis. For transcript analysis, we obtained MAPT gene and isoform-level expression from the dorsolateral prefrontal cortex for 505 of these subjects. The MAPT H2 haplotype was associated with lower total MAPT expression (p = 1.2x10-14) and global parkinsonism at both study entry (p = 0.001) and proximate to death (p = 0.050). Specifically, haplotype H2 was primarily associated with bradykinesia in both assessments (p<0.001 and p = 0.008). MAPT total expression was associated with age and decreases linearly with advancing age (p<0.001). Analysing MAPT alternative splicing, the expression of 1N/4R isoform was inversely associated with global parkinsonism (p = 0.008) and bradykinesia (p = 0.008). Diminished 1N/4R isoform expression was also associated with H2 (p = 0.001). Overall, our results suggest that age and H2 are associated with higher parkinsonism score and decreased total MAPT RNA expression. Additionally, we found that H2 and parkinsonism are associated with altered expression levels of specific isoforms. These findings may contribute to the understanding of the association between MAPT locus and parkinsonism in elderly subjects and in some extent to age-related neurodegenerative diseases.

  12. Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling.

    PubMed

    Kukolj, Tamara; Trivanović, Drenka; Djordjević, Ivana Okić; Mojsilović, Slavko; Krstić, Jelena; Obradović, Hristina; Janković, Srdja; Santibanez, Juan Francisco; Jauković, Aleksandra; Bugarski, Diana

    2018-01-01

    Lipopolysaccharide (LPS) is a pertinent deleterious factor in oral microenvironment for cells which are carriers of regenerative processes. The aim of this study was to investigate the emerging in vitro effects of LPS (Escherichia coli) on human periodontal ligament stem cell (PDLSC) functions and associated signaling pathways. We demonstrated that LPS did not affect immunophenotype, proliferation, viability, and cell cycle of PDLSCs. However, LPS modified lineage commitment of PDLSCs inhibiting osteogenesis by downregulating Runx2, ALP, and Ocn mRNA expression, while stimulating chondrogenesis and adipogenesis by upregulating Sox9 and PPARγ mRNA expression. LPS promoted myofibroblast-like phenotype of PDLSCs, since it significantly enhanced PDLSC contractility, as well as protein and/or gene expression of TGF-β, fibronectin (FN), α-SMA, and NG2. LPS also increased protein and gene expression levels of anti-inflammatory COX-2 and pro-inflammatory IL-6 molecules in PDLSCs. Inhibition of peripheral blood mononuclear cells (MNCs) transendothelial migration in presence of LPS-treated PDLSCs was accompanied by the reduction of CD29 expression within MNCs. However, LPS treatment did not change the inhibitory effect of PDLSCs on mitogen-stimulated proliferation of CD4 + and the ratio of CD4 + CD25 high /CD4 + CD25 low lymphocytes. LPS-treated PDLSCs did not change the frequency of CD34 + and CD45 + cells, but decreased the frequency of CD33 + and CD14 + myeloid cells within MNCs. Moreover, LPS treatment attenuated the stimulatory effect of PDLSCs on CFC activity of MNCs, predominantly the CFU-GM number. The results indicated that LPS-activated ERK1,2 was at least partly involved in the observed effects on PDLSC differentiation capacity, acquisition of myofibroblastic attributes, and changes of their immunomodulatory features. © 2017 Wiley Periodicals, Inc.

  13. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    PubMed

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  15. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells.

    PubMed

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future.

  16. CD21+ (B2 antigen+) cell decrement and CD4+CD29+ (helper-inducer) cell increment suggest an activation of cell immune reactivity in multiple sclerosis.

    PubMed

    Gambi, D; Porrini, A M; Giampietro, A; Macor, S

    1991-08-01

    Two-color flow cytometric analysis on peripheral blood lymphocytes of 35 untreated multiple sclerosis (MS) patients, 17 other medical disease (OMD) patients and 14 healthy control (HC) subjects was performed to evaluate the levels of different T and B cell subpopulations. In MS patients we observed an increase in CD4+CD29+ helper-inducer cells but this increase was not related to the different phases of the disease. We hypothesize that this change is related to the reduction of CD21+ cells expressing B2 antigen, a 140 kDa molecule disappearing after B cell activation. An increased level of CD4+CD45RA- (helper-inducer-like cells) and a reduction of CD4+CD29- (suppressor-inducer-like cells) were also present in our patients. These findings demonstrate an immune 'disequilibrium' in MS, which is linked with an increased level of CD25+ cells expressing the interleukin-2 (IL-2) receptor. IL-2, besides being a T cell growth factor, is also a B cell growth factor. These data let us hypothesize that an activation of the immune response is present in MS.

  17. Naegleria fowleri immunization modifies lymphocytes and APC of nasal mucosa.

    PubMed

    Carrasco-Yepez, M M; Campos-Rodríguez, R; Reséndiz-Albor, A A; Peña-Juárez, C; Contis-Montes de Oca, A; Arciniega-Martínez, I M; Bonilla-Lemus, P; Rojas-Hernandez, S

    2018-03-01

    We investigated whether intranasal immunization with amoebic lysates plus cholera toxin modified the populations of T and B lymphocytes, macrophages and dendritic cells by flow cytometry from nose-associated lymphoid tissue (NALT), cervical lymph nodes (CN), nasal passages (NP) and spleen (SP). In all immunized groups, the percentage of CD4 was higher than CD8 cells. CD45 was increased in B cells from mice immunized. We observed IgA antibody-forming cell (IgA-AFC) response, mainly in NALT and NP. Macrophages from NP and CN expressed the highest levels of CD80 and CD86 in N. fowleri lysates with either CT or CT alone immunized mice, whereas dendritic cells expressed high levels of CD80 and CD86 in all compartment from immunized mice. These were lower than those expressed by macrophages. Only in SP from CT-immunized mice, these costimulatory molecules were increased. These results suggest that N. fowleri and CT antigens are taking by APCs, and therefore, protective immunity depends on interactions between APCs and T cells from NP and CN. Consequently, CD4 cells stimulate the differentiation from B lymphocytes to AFC IgA-positive; antibody that we previously found interacting with trophozoites in the nasal lumen avoiding the N. fowleri attachment to nasal epithelium. © 2017 John Wiley & Sons Ltd.

  18. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma.

    PubMed

    Andreucci, Elena; Bianchini, Francesca; Biagioni, Alessio; Del Rosso, Mario; Papucci, Laura; Schiavone, Nicola; Magnelli, Lucia

    2017-01-01

    Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.

  19. MITA/STING and Its Alternative Splicing Isoform MRP Restrict Hepatitis B Virus Replication

    PubMed Central

    Liu, Shuhui; Zhao, Kaitao; Su, Xi; Lu, Lu; Zhao, He; Zhang, Xianwen; Wang, Yun; Wu, Chunchen; Chen, Jizheng; Zhou, Yuan; Hu, Xue; Wang, Yanyi; Lu, Mengji; Chen, Xinwen; Pei, Rongjuan

    2017-01-01

    An efficient clearance of hepatitis B virus (HBV) requires the coordinated work of both the innate and adaptive immune responses. MITA/STING, an adapter protein of the innate immune signaling pathways, plays a key role in regulating innate and adaptive immune responses to DNA virus infection. Previously, we identified an alternatively spliced isoform of MITA/STING, called MITA-related protein (MRP), and found that MRP could specifically block MITA-mediated interferon (IFN) induction while retaining the ability to activate NF-κB. Here, we asked whether MITA/STING and MRP were able to control the HBV replication. Both MITA/STING and MRP significantly inhibited HBV replication in vitro. MITA overexpression stimulated IRF3-IFN pathway; while MRP overexpression activated NF-κB pathway, suggesting these two isoforms may inhibit HBV replication through different ways. Using a hydrodynamic injection (HI) mouse model, we found that HBV replication was reduced following MITA/STING and MRP expression vectors in mice and was enhanced by the knockout of MITA/STING (MITA/STING-/-). The HBV specific humoral and CD8+ T cell responses were impaired in MITA/STING deficient mice, suggesting the participation of MITA/STING in the initiation of host adaptive immune responses. In summary, our data suggest that MITA/STING and MRP contribute to HBV control via modulation of the innate and adaptive responses. PMID:28056087

  20. MITA/STING and Its Alternative Splicing Isoform MRP Restrict Hepatitis B Virus Replication.

    PubMed

    Liu, Shuhui; Zhao, Kaitao; Su, Xi; Lu, Lu; Zhao, He; Zhang, Xianwen; Wang, Yun; Wu, Chunchen; Chen, Jizheng; Zhou, Yuan; Hu, Xue; Wang, Yanyi; Lu, Mengji; Chen, Xinwen; Pei, Rongjuan

    2017-01-01

    An efficient clearance of hepatitis B virus (HBV) requires the coordinated work of both the innate and adaptive immune responses. MITA/STING, an adapter protein of the innate immune signaling pathways, plays a key role in regulating innate and adaptive immune responses to DNA virus infection. Previously, we identified an alternatively spliced isoform of MITA/STING, called MITA-related protein (MRP), and found that MRP could specifically block MITA-mediated interferon (IFN) induction while retaining the ability to activate NF-κB. Here, we asked whether MITA/STING and MRP were able to control the HBV replication. Both MITA/STING and MRP significantly inhibited HBV replication in vitro. MITA overexpression stimulated IRF3-IFN pathway; while MRP overexpression activated NF-κB pathway, suggesting these two isoforms may inhibit HBV replication through different ways. Using a hydrodynamic injection (HI) mouse model, we found that HBV replication was reduced following MITA/STING and MRP expression vectors in mice and was enhanced by the knockout of MITA/STING (MITA/STING-/-). The HBV specific humoral and CD8+ T cell responses were impaired in MITA/STING deficient mice, suggesting the participation of MITA/STING in the initiation of host adaptive immune responses. In summary, our data suggest that MITA/STING and MRP contribute to HBV control via modulation of the innate and adaptive responses.

  1. Isoform-Specific Upregulation of Palladin in Human and Murine Pancreas Tumors

    PubMed Central

    Goicoechea, Silvia M.; Bednarski, Brian; Stack, Christianna; Cowan, David W.; Volmar, Keith; Thorne, Leigh; Cukierman, Edna; Rustgi, Anil K.; Brentnall, Teresa; Hwang, Rosa F.; McCulloch, Christopher A. G.; Yeh, Jen Jen; Bentrem, David J.; Hochwald, Steven N.; Hingorani, Sunil R.

    2010-01-01

    Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with a characteristic pattern of early metastasis, which is driving a search for biomarkers that can be used to detect the cancer at an early stage. Recently, the actin-associated protein palladin was identified as a candidate biomarker when it was shown that palladin is mutated in a rare inherited form of PDA, and overexpressed in many sporadic pancreas tumors and premalignant precursors. In this study, we analyzed the expression of palladin isoforms in murine and human PDA and explored palladin's potential use in diagnosing PDA. We performed immunohistochemistry and immunoblot analyses on patient samples and tumor-derived cells using an isoform-selective monoclonal antibody and a pan-palladin polyclonal antibody. Immunoblot and real-time quantitative reverse transcription-PCR were used to quantify palladin mRNA levels in human samples. We show that there are two major palladin isoforms expressed in pancreas: 65 and 85–90 kDa. The 65 kDa isoform is expressed in both normal and neoplastic ductal epithelial cells. The 85–90 kDa palladin isoform is highly overexpressed in tumor-associated fibroblasts (TAFs) in both primary and metastatic tumors compared to normal pancreas, in samples obtained from either human patients or genetically engineered mice. In tumor-derived cultured cells, expression of palladin isoforms follows cell-type specific patterns, with the 85–90 kDa isoform in TAFs, and the 65 kDa isoform predominating in normal and neoplastic epithelial cells. These results suggest that upregulation of 85–90 kDa palladin isoform may play a role in the establishment of the TAF phenotype, and thus in the formation of a desmoplastic tumor microenvironment. Thus, palladin may have a potential use in the early diagnosis of PDA and may have much broader significance in understanding metastatic behavior. PMID:20436683

  2. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas.

    PubMed

    D'Amico, Agata Grazia; Maugeri, Grazia; Reitano, Rita; Cavallaro, Sebastiano; D'Agata, Velia

    2016-10-01

    PARK2 gene's mutations are related to the familial form of juvenile Parkinsonism, also known as the autosomic recessive juvenile Parkinsonism. This gene encodes for parkin, a 465-amino acid protein. To date, a large number of parkin isoforms, generated by an alternative splicing mechanism, have been described. Currently, Gene Bank lists 27 rat PARK2 transcripts, which matches to 20 exclusive parkin alternative splice variants. Despite the existence of these isoforms, most of the studies carried out so far, have been focused only on the originally cloned parkin. In this work we have analyzed the expression profile of parkin isoforms in some rat brain areas including prefrontal cortex, hippocampus, substantia nigra and cerebellum. To discriminate among these isoforms, we detected their localization through the use of two antibodies that are able to identify different domains of the parkin canonical sequence. Our analysis has revealed that at least fourteen parkin isoforms are expressed in rat brain with a various distribution in the regions analyzed. Our study might help to elucidate the pathophysiological role of these proteins in the central nervous system.

  3. A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection.

    PubMed

    Palmer, Clovis; Hampartzoumian, Taline; Lloyd, Andrew; Zekry, Amany

    2008-08-01

    Adipose tissue releases pro-inflammatory and anti-inflammatory mediators, including adiponectin, which elicit a broad range of metabolic and immunological effects. The study aim was to determine in subjects infected with chronic hepatitis C virus (HCV) the effects of total adiponectin and its high-molecular-weight (HMW) and low-molecular-weight isoforms on HCV-specific immune responses. Serum levels of total adiponectin and its isoforms were determined by immunoassay. The ex vivo effect of adiponectin on the HCV-specific T-cell response was examined by interferon gamma (IFN-gamma) enzyme-linked immunosorbent spot and enzyme-linked immunosorbent assay cytokine assays. The role of the mitogen-activated protein kinase (MAPK) signaling pathway in mediating the adiponectin effect on T cells was also evaluated. We found that serum levels of total and HMW adiponectin were significantly decreased in subjects with chronic HCV and increased body mass index (BMI) compared with HCV-infected lean subjects. The presence of an anti-HCV specific immune response was strongly associated with lower BMI (P = 0.004) and higher serum total (P = 0.01) and HMW (P = 0.02) adiponectin. In ex vivo assays, total adiponectin and the HMW adiponectin isoform enhanced HCV-specific IFN-gamma production (P = 0.02 and 0.03, respectively). Adiponectin-R1 receptors were expressed on T cells and monocytes. In depletion experiments, the IFN-gamma response to adiponectin was entirely dependent on the simultaneous presence of both CD4 and CD8 T cells, and to a lesser extent, natural killer cells. Selective inhibition of p38MAPK activity by SB203580 abrogated the IFN-gamma response to adiponectin, whereas extracellular signal-regulated kinase 1/2 inhibition by PD98059 did not affect the response. In chronic HCV, a reciprocal association exists between BMI, adiponectin, and the anti-HCV immune responses, emphasizing the important role played by adiposity in regulating the immune response in HCV infection.

  4. Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds.

    PubMed

    Troncoso-Ponce, M A; Rivoal, J; Venegas-Calerón, M; Dorion, S; Sánchez, R; Cejudo, F J; Garcés, R; Martínez-Force, E

    2012-07-01

    Three cDNAs encoding different phosphoglycerate kinase (PGK, EC 2.7.2.3) isoforms, two cytosolic (HacPGK1 and HacPGK2) and one plastidic (HapPGK), were cloned and characterized from developing sunflower (Helianthus annuus L.) seeds. The expression profiles of these genes showed differences in heterotrophic tissues, such as developing seeds and roots, where HacPGK1 was predominant, while HapPGK was highly expressed in photosynthetic tissues. The cDNAs were expressed in Escherichia coli, and the corresponding proteins purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Despite the high level of identity between sequences, the HacPGK1 isoform showed strong differences in terms of specific activity, temperature stability and pH sensitivity in comparison to HacPGK2 and HapPGK. A polyclonal immune serum was raised against the purified HacPGK1 isoform, which showed cross-immunoreactivity with the other PGK isoforms. This serum allowed the localization of high expression levels of PGK isozymes in embryo tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Normal T-cell activation in elite controllers with preserved CD4+ T-cell counts.

    PubMed

    Bansal, Anju; Sterrett, Sarah; Erdmann, Nathan; Westfall, Andrew O; Dionne-Odom, Jodie; Overton, Edgar T; Goepfert, Paul A

    2015-11-01

    HIV elite controllers suppress HIV viremia without antiretroviral therapy (ART), yet previous studies demonstrated that elite controllers maintain an activated T-cell phenotype. Chronic immune activation has detrimental consequences and thus ART has been advocated for all elite controllers. However, elite controllers are not a clinically homogenous group. Since CD4% is among the best predictors of AIDS-related events, in the current study, we assessed whether this marker can be used to stratify elite controllers needing ART. Sixteen elite controllers were divided into two groups based on CD4% (EC > 40% and EC ≤40%), and T-cell subsets were analyzed for markers of memory/differentiation (CD45RA, CCR7, CD28), activation (CD38/HLA-DR), immunosenescence (CD57), costimulation (CD73, CD28) and exhaustion (PD-1, CD160, Tim-3). Monocyte subsets (CD14, CD16) were also analyzed and sCD14 levels were quantified using ELISA. In the EC group, expression of activation, exhaustion, and immunosensescence markers on T cells were significantly reduced compared with the EC group and similar to the seronegative controls. The EC group expressed higher levels of costimulatory molecules CD28 and CD73 and had lower levels of monocyte activation (HLA-DR expression) with a reduced frequency of inflammatory monocyte (CD14 CD16) subset. Furthermore, the EC group maintained a stable CD4% during a median follow-up of 6 years. Elite controllers with preserved CD4T cells (EC) have normal T-cell and monocyte phenotypes and therefore may have limited benefit from ART. CD4% can be an important marker for evaluating future studies aimed at determining the need for ART in this group of individuals.

  6. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles.

    PubMed

    Minchenko, Dmytro O; Tsymbal, D O; Yavorovsky, O P; Solokha, N V; Minchenko, O H

    2017-04-25

    The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.

  7. NURD: an implementation of a new method to estimate isoform expression from non-uniform RNA-seq data

    PubMed Central

    2013-01-01

    Background RNA-Seq technology has been used widely in transcriptome study, and one of the most important applications is to estimate the expression level of genes and their alternative splicing isoforms. There have been several algorithms published to estimate the expression based on different models. Recently Wu et al. published a method that can accurately estimate isoform level expression by considering position-related sequencing biases using nonparametric models. The method has advantages in handling different read distributions, but there hasn’t been an efficient program to implement this algorithm. Results We developed an efficient implementation of the algorithm in the program NURD. It uses a binary interval search algorithm. The program can correct both the global tendency of sequencing bias in the data and local sequencing bias specific to each gene. The correction makes the isoform expression estimation more reliable under various read distributions. And the implementation is computationally efficient in both the memory cost and running time and can be readily scaled up for huge datasets. Conclusion NURD is an efficient and reliable tool for estimating the isoform expression level. Given the reads mapping result and gene annotation file, NURD will output the expression estimation result. The package is freely available for academic use at http://bioinfo.au.tsinghua.edu.cn/software/NURD/. PMID:23837734

  8. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.

    2011-08-26

    Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2more » teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.« less

  9. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression.

    PubMed

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  10. Influence of benzoporphyrin-derivative monoacid ring A (BPD-MA, verteporfin) on murine dendritic cells

    NASA Astrophysics Data System (ADS)

    Hunt, David W. C.; King, Diane E.; Levy, Julia G.

    1997-05-01

    The impact of bensoporphyrin derivative monoacid ring A, and visible light was determined for mouse splenic dendritic cells (DC), potent antigen-presenting cells (APC) of the immune system. It was discovered that sub-lethal doses of BPD-MA and light significantly altered the surface receptor pattern of DC as well as diminishing the capacity of these cells to activate allogeneic T cells. Treatment of highly purified DC with BPD-MA and 690 nm wavelength light decreased DC expression of major histocompatibility (MHC) Class I and II antigens, leukocyte common antigen CD45, intercellular adhesion molecule-1 (ICAM-1, CD54), the co- stimulatory molecules CD80 and CD86, CD95 as well as integrin CD11c. In contrast, DC expression of leukocyte function-associated-1 (LFA-1, CD11a), CD11b, CD18, CD40, and the DC DEC-205 receptor increased after the treatment. Changes in receptor levels occurred rapidly. DC MHC Class I and ICAM-1 expression declined to 40 percent of control levels by 2 hours post-PDT. DC treated with BPD-MA and light were poor stimulators of allogeneic T cells in the mixed leukocyte reaction. BPD-MA, in the absence of light, had no effect on the immunostimulatory properties of these cells. The changes in DC receptor expression pattern produced by BPD-MA and light were comparable to those produced by ultraviolet B light, a treatment known to alter the immunostimulatory characteristics of DC. Photodynamic therapy with BPD-MA represents an innovative approach for the modification of immune reactivity.

  11. Development of an unbiased, semi-automated approach for classifying plasma cell immunophenotype following multicolor flow cytometry of bone marrow aspirates.

    PubMed

    Post, Steven R; Post, Ginell R; Nikolic, Dejan; Owens, Rebecca; Insuasti-Beltran, Giovanni

    2018-03-24

    Despite increased usage of multiparameter flow cytometry (MFC) to assess diagnosis, prognosis, and therapeutic efficacy (minimal residual disease, MRD) in plasma cell neoplasms (PCNs), standardization of methodology and data analysis is suboptimal. We investigated the utility of using the mean and median fluorescence intensities (FI) obtained from MFC to objectively describe parameters that distinguish plasma cell (PC) phenotypes. In this retrospective study, flow cytometry results from bone marrow aspirate specimens from 570 patients referred to the Myeloma Institute at UAMS were evaluated. Mean and median FI data were obtained from 8-color MFC of non-neoplastic, malignant, and mixed PC populations using antibodies to CD38, CD138, CD19, CD20, CD27, CD45, CD56, and CD81. Of 570 cases, 252 cases showed only non-neoplastic PCs, 168 showed only malignant PCs, and 150 showed mixed PC populations. Statistical analysis of median FI data for each CD marker showed no difference in expression intensity on non-neoplastic and malignant PCs, between pure and mixed PC populations. ROC analysis of the median FI of CD expression in non-neoplastic and malignant PCs was used to develop an algorithm to convert quantitative FI values to qualitative assessments including "negative," "positive," "dim," and "heterogeneous" expression. FI data derived from 8-color MFC can be used to define marker expression on PCs. Translation of FI data from Infinicyt software to an Excel worksheet streamlines workflow and eliminates transcriptional errors when generating flow reports. © 2018 International Clinical Cytometry Society. © 2018 International Clinical Cytometry Society.

  12. CD24-Positive Cells from Normal Adult Mouse Liver Are Hepatocyte Progenitor Cells

    PubMed Central

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M.; Rao, Pulivarthi H.

    2011-01-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45−, Ter119−) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes. PMID:21361791

  13. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells.

    PubMed

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M; Rao, Pulivarthi H; Darlington, Gretchen J

    2011-12-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.

  14. A Response Surface Methodology Approach to Investigate the Effect of Sulfur Dioxide, pH, and Ethanol on DbCD and DbVPR Gene Expression and on the Volatile Phenol Production in Dekkera/Brettanomyces bruxellensis CBS2499

    PubMed Central

    Valdetara, Federica; Fracassetti, Daniela; Campanello, Alessia; Costa, Carlo; Foschino, Roberto; Compagno, Concetta; Vigentini, Ileana

    2017-01-01

    Dekkera/Brettanomyces bruxellensis, the main spoilage yeast in barrel-aged wine, metabolize hydroxycinnamic acids into off-flavors, namely ethylphenols. Recently, both the enzymes involved in this transformation, the cinnamate decarboxylase (DbCD) and the vinylphenol reductase (DbVPR), have been identified. To counteract microbial proliferation in wine, sulfur dioxide (SO2) is used commonly to stabilize the final product, but limiting its use is advised to preserve human health and boost sustainability in winemaking. In the present study, the influence of SO2 was investigated in relation with pH and ethanol factors on the expression of DbCD and DbVPR genes and volatile phenol production in D. bruxellensis CBS2499 strain under different model wines throughout a response surface methodology (RSM). In order to ensure an exact quantification of DbCD and DbVPR expression, an appropriate housekeeping gene was sought among DbPDC, DbALD, DbEF, DbACT, and DbTUB genes by GeNorm and Normfinder algorithms. The latter gene showed the highest expression stability and it was chosen as the reference housekeeping gene in qPCR assays. Even though SO2 could not be commented as main factor because of its statistical irrelevance on the response of DbCD gene, linear interactions with pH and ethanol concurred to define a significant effect (p < 0.05) on its expression. The DbCD gene was generally downregulated respect to a permissive growth condition (0 mg/L mol. SO2, pH 4.5 and 5% v/v ethanol); the combination of the factor levels that maximizes its expression (0.83-fold change) was calculated at 0.25 mg/L mol. SO2, pH 4.5 and 12.5% (v/v) ethanol. On the contrary, DbVPR expression was not influenced by main factors or by their interactions; however, its expression is maximized (1.80-fold change) at the same conditions calculated for DbCD gene. While no linear interaction between factors influenced the off-flavor synthesis, ethanol and pH produced a significant effect as individual factors. The obtained results can be useful to improve the SO2 management at the grape harvesting and during winemaking in order to minimize the D./B. bruxellensis spoilage. PMID:28955312

  15. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yong; Wang Honglan; Mazzone, Theodore

    2006-08-01

    We identified stem cells from the umbilical cord blood, designated cord blood-stem cells (CB-SC). CB-SC displayed important embryonic stem (ES) cell characteristics including expression of ES-cell-specific molecular markers including transcription factors OCT-4 and Nanog, along with stage-specific embryonic antigen (SSEA)-3 and SSEA-4. CB-SC also expressed hematopoietic cell antigens including CD9, CD45 and CD117, but were negative for CD34. CB-SC displayed very low immunogenicity as indicated by expression of a very low level of major histocompatibility complex (MHC) antigens and failure to stimulate the proliferation of allogeneic lymphocytes. CB-SC could give rise to cells with endothelial-like and neuronal-like characteristics in vitro,more » as demonstrated by expression of lineage-associated markers. Notably, CB-SC could be stimulated to differentiate into functional insulin-producing cells in vivo and eliminated hyperglycemia after transplantation into a streptozotocin-induced diabetic mouse model. These findings may have significant potential to advance stem-cell-based therapeutics.« less

  16. Cellular localization and changes in expression of prolactin receptor isoforms in sheep ovary throughout the estrous cycle.

    PubMed

    Picazo, R A; García Ruiz, J P; Santiago Moreno, J; González de Bulnes, A; Muñoz, J; Silván, G; Lorenzo, P L; Illera, J C

    2004-11-01

    The actions of prolactin (PRL) on target cells depend on the type of prolactin receptor (PRLr) predominantly expressed, particularly whether the long PRLr isoform is expressed. The aims of this study were to determine the cellular localization and the changes in expression of long and short PRLr isoforms in sheep ovary throughout the estrous cycle. Long and short PRLrs were localized mostly in the same ovarian cells. Maximum signal intensity, particularly for long PRLrs, was found in stromal cells surrounding primordial and primary follicles, and, for both PRLrs, in granulosa cells of preantral follicles and in luteal cells. Moderate signal intensity for PRLrs was found in theca cells of preantral to ovulatory follicles, and in granulosa cells of antral follicles up to the gonadotropin-dependent stage. Decreasing immunoreactivity to PRLrs was found in granulosa cells of gonadotropin-dependent to ovulatory follicles. For long PRLrs in particular, no signal was found in mural granulosa cells of gonadotropin-dependent follicles; for both isoforms, no signal was found in most granulosa cells of ovulatory follicles. In primordial to gonadotropin-dependent follicles, cellular localization of PRLr was similar on days 0, 10 and 15 of the cycle. Oocytes consistently showed positive immunostaining for PRLrs. Comparative RT-PCR analysis of long and short PRLr expression showed that the short isoform is evenly expressed throughout the estrous cycle, whereas the expression of the long form increases at the time of estrus and decreases at mid-luteal phase and at the onset of the follicular phase. Expression of long PRLrs was greater than that of short PRLrs on day 0 of cycle; expression of both isoforms was similar on day 10 and on day 15, long PRLrs expression was lower than that of short PRLrs. Our results indicate that in sheep ovary, the maximum responsiveness to PRL might occur during the preovulatory phase of the estrous cycle.

  17. Role of Myofibril-Inducing RNA in cardiac TnT expression in developing Mexican axolotl

    PubMed Central

    Sferrazza, Gian-Franco; Zhang, Chi; Jia, Pingping; Lemanski, Sharon L.; Athauda, Gagani; Stassi, Alyssa; Halager, Kristine; Maier, Jennifer A.; Rueda-de-Leon, Elena; Gupta, Amit; Dube, Syamalima; Huang, Xupei; Prentice, Howard M.; Dube, Dipak K.; Lemanski, Larry F.

    2007-01-01

    The Mexican axolotl, Ambystoma mexicanum, has been a useful animal model to study heart development and cardiac myofibrillogenesis. A naturally-occurring recessive mutant, gene “c”, for cardiac non-function in the Mexican axolotl causes a failure of myofibrillogenesis due to a lack of tropomyosin expression in homozygous mutant (c/c) embryonic hearts.. Myofibril-Inducing RNA (MIR) rescues mutant hearts in vitro by promoting tropomyosin expression and myofibril formation thereafter. We have studied the effect of MIR on the expression of various isoforms of cardiac Troponin-T (cTnT), a component of the thin filament that binds with tropomyosin. Four alternatively spliced cTnT isoforms have been characterized from developing axolotl heart. The expression of various cTnT isoforms in normal, mutant, and mutant hearts corrected with MIR, is evaluated by real-time RT-PCR using isoform specific primer pairs; MIR affects the total transcription as well as the splicing of the cTnT in axolotl heart PMID:17408593

  18. Brain endothelial adhesion molecule expression in experimental colitis.

    PubMed

    Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J

    2001-04-01

    1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.

  19. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer.

    PubMed

    Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E

    2013-01-04

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.

  20. Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing

    PubMed Central

    2013-01-01

    Background Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. Methods MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. Results We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ERα-dependent overexpression of FGFR2, whereas resistance to fulvestrant was associated with ERα-dependent isoform switching, which correlated with altered response to KGF. Conclusion E2 may partly alter cellular proteome through alternative splicing uncoupled to its effects on transcription initiation and aberration in E2-induced alternative splicing events may influence response to anti-estrogens. PMID:23758675

  1. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  2. Human trabecular meshwork cells exhibit several characteristics of, but are distinct from, adipose-derived mesenchymal stem cells.

    PubMed

    Morgan, Joshua T; Wood, Joshua A; Walker, Naomi J; Raghunathan, Vijay Krishna; Borjesson, Dori L; Murphy, Christopher J; Russell, Paul

    2014-01-01

    To support the growing promise of regenerative medicine in glaucoma, we characterized the similarities and differences between human trabecular meshwork (HTM) cells and human mesenchymal stem cells (hMSCs). HTM cells and hMSCs were phenotypically characterized by flow cytometry. Using quantitative polymerase chain reaction, the expression of myoc, angptl7, sox2, pou5f1, and notch1 was determined in both cell types with and without dexamethasone (Dex). Immunosuppressive behavior of HTM cells and hMSCs was determined using T cells activated with phytohemagglutinin. T-cell proliferation was determined using BrdU incorporation and flow cytometry. Multipotency of HTM cells and hMSCs was determined using adipogenic and osteogenic differentiation media as well as aqueous humor (AH). Alpha-smooth muscle actin (αSMA) expression was determined in HTM cells, hMSCs, and HTM tissue. Phenotypically, HTM and hMSCs expressed CD73, CD90, CD105, and CD146 but not CD31, CD34, and CD45 and similar sox2, pou5f1, and notch1 expression. Both cell types suppressed T-cell proliferation. However, HTM cells, but not hMSCs, upregulated myoc and angptl7 in response to Dex. Additionally, HTM cells did not differentiate into adipocytes or osteocytes. Culture of hMSCs in 20%, but not 100%, AH potently induced alkaline phosphatase activity. HTM cells in culture possessed uniformly strong expression of αSMA, which contrasted with the limited expression in hMSCs and spatially discrete expression in HTM tissue. HTM cells possess a number of important similarities with hMSCs but lack multipotency, one of the defining characteristics of stem cells. Further work is needed to explore the molecular mechanisms and functional implications underlying the phenotypic similarities.

  3. Human Trabecular Meshwork Cells Exhibit Several Characteristics of, but Are Distinct from, Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Morgan, Joshua T.; Wood, Joshua A.; Walker, Naomi J.; Raghunathan, Vijay Krishna; Borjesson, Dori L.; Murphy, Christopher J.

    2014-01-01

    Abstract Purpose: To support the growing promise of regenerative medicine in glaucoma, we characterized the similarities and differences between human trabecular meshwork (HTM) cells and human mesenchymal stem cells (hMSCs). Methods: HTM cells and hMSCs were phenotypically characterized by flow cytometry. Using quantitative polymerase chain reaction, the expression of myoc, angptl7, sox2, pou5f1, and notch1 was determined in both cell types with and without dexamethasone (Dex). Immunosuppressive behavior of HTM cells and hMSCs was determined using T cells activated with phytohemagglutinin. T-cell proliferation was determined using BrdU incorporation and flow cytometry. Multipotency of HTM cells and hMSCs was determined using adipogenic and osteogenic differentiation media as well as aqueous humor (AH). Alpha-smooth muscle actin (αSMA) expression was determined in HTM cells, hMSCs, and HTM tissue. Results: Phenotypically, HTM and hMSCs expressed CD73, CD90, CD105, and CD146 but not CD31, CD34, and CD45 and similar sox2, pou5f1, and notch1 expression. Both cell types suppressed T-cell proliferation. However, HTM cells, but not hMSCs, upregulated myoc and angptl7 in response to Dex. Additionally, HTM cells did not differentiate into adipocytes or osteocytes. Culture of hMSCs in 20%, but not 100%, AH potently induced alkaline phosphatase activity. HTM cells in culture possessed uniformly strong expression of αSMA, which contrasted with the limited expression in hMSCs and spatially discrete expression in HTM tissue. Conclusions: HTM cells possess a number of important similarities with hMSCs but lack multipotency, one of the defining characteristics of stem cells. Further work is needed to explore the molecular mechanisms and functional implications underlying the phenotypic similarities. PMID:24456002

  4. Patients with posttraumatic stress disorder exhibit an altered phenotype of regulatory T cells

    PubMed Central

    2014-01-01

    Background Regulatory T cells (Tregs) play a key role in immune homeostasis in vivo. Tregs have a critical role in preventing the development of autoimmune diseases and defects in Treg function are implicated in various autoimmune disorders. Individuals with posttraumatic stress disorder (PTSD) have higher prevalence of autoimmune disorders than the general population. We hypothesized that war veterans with PTSD would exhibit a decreased number and/or altered phenotype of Tregs. Methods We analyzed peripheral blood mononuclear cells (PBMCs) of patients with PTSD (N = 21) (mean age = 45.9) and age-matched healthy controls (N = 23) (mean age = 45.7) to determine the proportion of Tregs and their phenotype according to the expression of CD127 and HLA-DR markers which describe the differentiation stages of Tregs. In addition, we analyzed the expression of membrane ectoenzyme CD39 on Tregs of the study groups, an important component of the suppressive machinery of Tregs. Results We found no differences in the proportion of Tregs between PTSD patients and controls, but PTSD patients had a higher percentage of CD127-HLA-DR- Tregs and a lower percentage of CD127loHLA-DR+ Tregs compared to controls. There was no difference in expression of CD39 on Tregs of the study groups. Conclusions Although the proportions of Tregs in PTSD patients were unchanged, we found that they exhibit a different phenotype of Tregs that might be less suppressive. Impaired differentiation and function of Tregs is likely involved in disruption of immune homeostasis in PTSD. PMID:25670936

  5. Short- and long-term memory are modulated by multiple isoforms of the fragile X mental retardation protein.

    PubMed

    Banerjee, Paromita; Schoenfeld, Brian P; Bell, Aaron J; Choi, Catherine H; Bradley, Michael P; Hinchey, Paul; Kollaros, Maria; Park, Jae H; McBride, Sean M J; Dockendorff, Thomas C

    2010-05-12

    The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of Drosophila melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short- and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation.

  6. Graded versus Intermittent Exercise Effects on Lymphocytes in Chronic Fatigue Syndrome.

    PubMed

    Broadbent, Suzanne; Coutts, Rosanne

    2016-09-01

    There is increasing evidence of immune system dysfunction in chronic fatigue syndrome (CFS), but little is known of the regular exercise effects on immune cell parameters. This pilot study investigated the effects of graded and intermittent exercise on CD4 lymphocyte subset counts and activation compared with usual care. Twenty-four CFS patients (50.2 ± 10 yr) were randomized to graded exercise (GE), intermittent exercise (IE), or usual care (UC) groups; 18 sedentary non-CFS participants (50.6 ± 10 yr) were controls (CTL) for blood and immunological comparisons. Outcome measures were pre- and postintervention flow cytometric analyses of circulating lymphocyte subset cell counts; expression of CD3, CD4, CD25, and CD134; full blood counts; and V˙O2peak. Preintervention, CD3 cell counts, and expression of CD4, CD25, CD134, and CD4CD25CD134 were significantly lower in GE, IE, and UC compared with CTL (P < 0.05). Total lymphocyte concentration was significantly lower in GE and IE groups compared with CTL. There were significant postintervention increases in i) expression of CD4 and CD4CD25CD134 for GE and IE, but CD25 and CD134 for IE only; ii) circulating counts of CD3 and CD4 for GE, and CD3, CD4, CD8, CD3CD4CD8, CD3CD16CD56, CD19, and CD45 for IE; iii) neutrophil concentration for GE; and iv) V˙O2peak and elapsed test time for IE and GE, V˙Epeak for IE. Twelve weeks of GE and IE training significantly improved CD4 lymphocyte activation and aerobic capacity without exacerbating CFS symptoms. IE may be a more effective exercise modality with regard to enhanced CD4 activation in CFS patients.

  7. Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation.

    PubMed

    Mazerolles, Fabienne; Stolzenberg, Marie-Claude; Pelle, Olivier; Picard, Capucine; Neven, Benedicte; Fischer, Alain; Magerus-Chatinet, Aude; Rieux-Laucat, Frederic

    2018-01-01

    Autoimmune lymphoproliferative syndrome (ALPS) with FAS mutation (ALPS-FAS) is a nonmalignant, noninfectious, lymphoproliferative disease with autoimmunity. Given the central role of natural regulatory T cells (nTregs) in the control of lymphoproliferation and autoimmunity, we assessed nTreg-suppressive function in 16 patients with ALPS-FAS. The proportion of CD25 high CD127 low Tregs was lower in ALPS-FAS patients than in healthy controls. This subset was correlated with a reduced CD25 expression in CD3 + CD4 + T cells from ALPS patients and thus an abnormally low proportion of CD25 high FOXP3 + Helios + T cells. The ALPS patients also displayed a high proportion of naïve Treg (FOXP3 low CD45RA + ) and an unusual subpopulation (CD4 + CD127 low CD15s + CD45RA + ). Despite this abnormal phenotype, the CD25 high CD127 low Tregs' suppressive function was unaffected. Furthermore, conventional T cells from FAS -mutated patients showed normal levels of sensitivity to Treg suppression. An abnormal Treg phenotype is observed in circulating lymphocytes of ALPS patients. However, these Tregs displayed a normal suppressive function on T effector proliferation in vitro . This is suggesting that lymphoproliferation observed in ALPS patients does not result from Tregs functional defect or T effector cells insensitivity to Tregs suppression.

  8. Characterization of the expanded T cell population in infectious mononucleosis: apoptosis, expression of apoptosis-related genes, and Epstein–Barr virus (EBV) status

    PubMed Central

    Verbeke, C S; Wenthe, U; Bergler, W F; Zentgraf, H

    2000-01-01

    Infectious mononucleosis (IM), a manifestation of primary infection with EBV, is characterized by a massive expansion of the T cell population. In this study we examined this expanded T cell population regarding its EBV status, its proliferative and apoptotic activity, and its expression of apoptosis-related genes. Whereas previous studies were performed on ex vivo cultures or on peripheral blood, our investigations included in vivo analysis of IM tonsillectomy specimens (14 cases) by in situ hybridization for viral RNA (EBERs) combined with immunohistochemistry (IHC; CD3, CD45RO, CD20, CD79a, Ki-67, Bcl-2, Bax, Fas, FasL) and the TUNEL method. Of the EBER+ cells 50–70% showed expression of the B cell markers CD20/CD79a. The remainder of the EBER+ cells expressed neither B nor T cell antigens. No co-expression of EBERs and T cell antigens was detected in any of the specimens. In accordance with a high rate of apoptosis (up to 2·37%) within the expanded T cell population, Bcl-2 expression was drastically reduced and FasL expression remarkably increased. The levels of Bax and Fas expression showed no or moderate up-regulation. In conclusion, the massive expansion of IM T cells is not caused by EBV infection of these cells but merely represents an intense immune reaction. Through altered expression of Bcl-2/Bax and Fas/FasL, the activated T cells are subject to enhanced apoptosis while residing within the lymphoid tissue, which eventually allows the efficient silencing of this potentially damaging T cell response. PMID:10792379

  9. MicroRNA let-7, T cells, and patient survival in colorectal cancer

    PubMed Central

    Dou, Ruoxu; Nishihara, Reiko; Cao, Yin; Hamada, Tsuyoshi; Mima, Kosuke; Masuda, Atsuhiro; Masugi, Yohei; Shi, Yan; Gu, Mancang; Li, Wanwan; da Silva, Annacarolina; Nosho, Katsuhiko; Zhang, Xuehong; Meyerhardt, Jeffrey A.; Giovannucci, Edward L.; Chan, Andrew T.; Fuchs, Charles S.; Qian, Zhi Rong; Ogino, Shuji

    2016-01-01

    Experimental evidence suggests that the let-7 family of noncoding RNAs suppresses adaptive immune responses, contributing to immune evasion by the tumor. We hypothesized that the amount of let-7a and let-7b expression in colorectal carcinoma might be associated with limited T-lymphocyte infiltrates in the tumor microenvironment and worse clinical outcome. Utilizing the molecular pathological epidemiology resources of 795 rectal and colon cancers in two U.S.-nationwide prospective cohort studies, we measured tumor-associated let-7a and let-7b expression levels by quantitative reverse-transcription PCR, and CD3+, CD8+, CD45RO (PTPRC)+, and FOXP3+ cell densities by tumor tissue microarray immunohistochemistry and computer-assisted image analysis. Logistic regression analysis and Cox proportional hazards regression were used to assess associations of let-7a (and let-7b) expression (quartile predictor variables) with T-cell densities (binary outcome variables) and mortality, respectively, controlling for tumor molecular features, including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation, and KRAS, BRAF, and PIK3CA mutations. Compared with cases in the lowest quartile of let-7a expression, those in the highest quartile were associated with lower densities of CD3+ [multivariate odds ratio (OR), 0.40; 95% confidence interval (CI), 0.23 to 0.67; Ptrend = 0.003] and CD45RO+ cells (multivariate OR, 0.31; 95% CI, 0.17 to 0.58; Ptrend = 0.0004), and higher colorectal cancer-specific mortality (multivariate hazard ratio, 1.82; 95% CI, 1.42 to 3.13; Ptrend = 0.001). In contrast, let-7b expression was not significantly associated with T-cell density or colorectal cancer prognosis. Our data support the role of let-7a in suppressing antitumor immunity in colorectal cancer, and suggest let-7a as a potential target of immunotherapy. PMID:27737877

  10. Phosphatase CD45 Both Positively and Negatively Regulates T Cell Receptor Phosphorylation in Reconstituted Membrane Protein Clusters*♦

    PubMed Central

    Furlan, Gabriela; Minowa, Takashi; Hanagata, Nobutaka; Kataoka-Hamai, Chiho; Kaizuka, Yoshihisa

    2014-01-01

    T cell receptor (TCR) phosphorylation requires the kinase Lck and phosphatase CD45. CD45 activates Lck by dephosphorylating an inhibitory tyrosine of Lck to relieve autoinhibition. However, CD45 also dephosphorylates the TCR, and the spatial exclusion of CD45 from TCR clustering in the plasma membrane appears to attenuate this negative effect of CD45. To further investigate the role of CD45 in signal initiation, we reconstituted membrane TCR clusters in vitro on supported lipid bilayers. Fluorescence microscopy of single clusters showed that incorporation of CD45 enhanced phosphorylation of TCR clusters, but only when Lck co-clustered with TCR. We found that clustered Lck autophosphorylated the inhibitory tyrosine and thus could be activated by CD45, whereas diffusive Lck molecules did not. In the TCR-Lck clusters and at low CD45 density, we speculate that the effect of Lck activation may overcome dephosphorylation of TCR, resulting in a net positive regulation. The CD45 density in physiological TCR clusters is also low because of the exclusion of CD45. Thus, we propose that the spatial organization of TCR/Lck/CD45 in T cell membranes is important not only for modulating the negative role of CD45 but also for creating conditions in which CD45 has a positive role in signal initiation. PMID:25128530

  11. Proliferation marker pKi-67 occurs in different isoforms with various cellular effects.

    PubMed

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Finniss, Susan; Bögler, Oliver; Duchrow, Michael

    2004-04-15

    The Ki-67 antigen, pKi-67, is a commonly used proliferation marker in research and pathology. It has been recognized that the protein exists in two different splice variants that differ in one exon. In the current work, we present three new splice variants of human pKi-67 consisting of two naturally occurring isoforms and one atypical version. Additionally, data is presented indicating that alternative splicing of the pKi-67 N-terminus is common in tumor cell lines. Analyzing 93 tissues mainly consisting of brain tumor specimens, we found evidence that long and short isoform can be expressed independently of each other. Induction of mitosis in human peripheral blood mononuclear cells revealed that short pKi-67 appears earlier in the cell cycle than the long isoform and reaches its expression maximum when transcription of the latter sets in. Finally, transfection of mammalian culture cells with exon 7 (specific for the long pKi-67 isoform and not present in the short isoform) in a tetracycline regulated expression system decreased the rate of cell proliferation without affecting the cell cycle. In summary, we present evidence that the pKi-67 N-terminus is differentially spliced resulting in at least five different isoforms with different functions. Copyright 2004 Wiley-Liss, Inc.

  12. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium

    PubMed Central

    Begum, Jusnara; Lal, Neeraj; Zuo, Jianmin; Beggs, Andrew; Moss, Paul

    2016-01-01

    Cytomegalovirus (CMV) infection elicits a very strong and sustained intravascular T cell immune response which may contribute towards development of accelerated immune senescence and vascular disease in older people. Virus-specific CD8+ T cell responses have been investigated extensively through the use of HLA-peptide tetramers but much less is known regarding CMV-specific CD4+ T cells. We used a range of HLA class II-peptide tetramers to investigate the phenotypic and transcriptional profile of CMV-specific CD4+ T cells within healthy donors. We show that such cells comprise an average of 0.45% of the CD4+ T cell pool and can reach up to 24% in some individuals (range 0.01–24%). CMV-specific CD4+ T cells display a highly differentiated effector memory phenotype and express a range of cytokines, dominated by dual TNF-α and IFN-γ expression, although substantial populations which express IL-4 were seen in some donors. Microarray analysis and phenotypic expression revealed a profile of unique features. These include the expression of CX3CR1, which would direct cells towards fractalkine on activated endothelium, and the β2-adrenergic receptor, which could permit rapid response to stress. CMV-specific CD4+ T cells display an intense cytotoxic profile with high level expression of granzyme B and perforin, a pattern which increases further during aging. In addition CMV-specific CD4+ T cells demonstrate strong cytotoxic activity against antigen-loaded target cells when isolated directly ex vivo. PD-1 expression is present on 47% of cells but both the intensity and distribution of the inhibitory receptor is reduced in older people. These findings reveal the marked accumulation and unique phenotype of CMV-specific CD4+ T cells and indicate how such T cells may contribute to the vascular complications associated with CMV in older people. PMID:27606804

  13. CD10 is a marker for cycling cells with propensity to apoptosis in childhood ALL

    PubMed Central

    Cutrona, G; Tasso, P; Dono, M; Roncella, S; Ulivi, M; Carpaneto, E M; Fontana, V; Comis, M; Morabito, F; Spinelli, M; Frascella, E; Boffa, L C; Basso, G; Pistoia, V; Ferrarini, M

    2002-01-01

    CD10 constitutes a favourable prognostic marker for childhood acute lymphoblastic leukaemia. Since correlations between CD10, cell cycle and apoptotic abilities were demonstrated in various cell types, we investigated whether differences existed in the cycling/apoptotic abilities of CD10-positive and CD10-negative B acute lymphoblastic leukaemia cells. Twenty-eight cases of childhood acute lymphoblastic leukaemia (mean age of 6.8 years) were subdivided into two groups according to high (17 cases, 93.2±4.5%, MRFI 211±82 CD10-positive cells) or low (11 cases, 11.5±6.2%, MRFI 10±7 CD10-negative cells) expression of CD10. CD10-positive acute lymphoblastic leukaemia cells were cycling cells with elevated c-myc levels and propensity to apoptosis, whereas CD10-negative acute lymphoblastic leukaemia cells had lower cycling capacities and c-myc levels, and were resistant to apoptosis in vitro. A close correlation between all these properties was demonstrated by the observations that the few CD10-positive cells found in the CD10-negative acute lymphoblastic leukaemia group displayed elevated c-myc and cycling capacities and were apoptosis prone. Moreover, exposure of CD10-positive acute lymphoblastic leukaemia B cells to a peptide nucleic acid anti-gene specific for the second exon of c-myc caused inhibition of c-myc expression and reduced cell cycling and apoptotic abilities as well as decreased CD10 expression. British Journal of Cancer (2002) 86, 1776–1785. doi:10.1038/sj.bjc.6600329 www.bjcancer.com © 2002 Cancer Research UK PMID:12087466

  14. Ex-vivo characterization of regulatory T cells in pulmonary tuberculosis patients, latently infected persons, and healthy endemic controls.

    PubMed

    Zewdie, Martha; Howe, Rawleigh; Hoff, Søren T; Doherty, T Mark; Getachew, Nahom; Tarekegne, Azeb; Tessema, Bamlak; Yamuah, Lawrence; Aseffa, Abraham; Abebe, Markos

    2016-09-01

    Regulatory T cells (Treg) are an essential arm of adaptive immunity not only in tolerance and autoimmunity but also in infectious diseases. In Tuberculosis (TB), it has been suggested that the frequency of Tregs is higher in the blood of TB patients when compared to healthy controls with subsequent decline after treatment. However, with the discovery that FOXP3, the hallmark marker of Tregs, is not exclusive to Tregs and the lack of specific markers for Tregs, it has been a challenge to fully understand the role of Tregs in TB. We isolated PBMC from smear positive TB patients (TB, N = 13) before and after treatment, latent TB infected participants (LTBI, N = 8), and healthy endemic controls (EC, N = 9) and evaluated the frequency of different populations of Tregs and expression of FOXP3 by flowcytometry using six markers. The findings in this study showed that the association of Treg frequency with TB disease depends on the phenotypic markers used. While the frequency of CD4(+)CD25(+/hi) T cells was higher in TB patients compared to LTBI individuals, there was no difference in the frequency of CD4(+)CD25(+)FOXP3(+)CD127(lo) Treg among TB, LTBI, or EC. However, delineation of Tregs into active and naïve subsets revealed a significant increase in FOXP3 expression in active primed Tregs (CD4(+)CD25(+)FOXP3(+)CD127(lo)CD45RO(+)Ki-67(+)) of TB patients compared to LTBI and EC; and a significantly higher frequency of resting primed (CD45RO(+)Ki-67(-)) Treg in QuantiFERON negative EC compared to TB patients. After treatment completion, there was a significant decline in the frequency of active primed Treg, median (IQR) from 12.4% (9.5-21.9) of Tregs to 9.3% (7.0-12.2); P = 0.003 Wilcoxon signed rank test. We conclude that Treg subsets may be differentially regulated and expressed in TB disease, cure, and infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ex-vivo characterization of regulatory T cells in pulmonary tuberculosis patients, latently infected persons, and healthy endemic controls

    PubMed Central

    Zewdie, Martha; Howe, Rawleigh; Hoff, Søren T.; Doherty, T. Mark; Getachew, Nahom; Tarekegne, Azeb; Tessema, Bamlak; Yamuah, Lawrence; Aseffa, Abraham; Abebe, Markos

    2016-01-01

    SUMMARY Background Regulatory T cells (Treg) are an essential arm of adaptive immunity not only in tolerance and autoimmunity but also in infectious diseases. In Tuberculosis (TB), it has been suggested that the frequency of Tregs is higher in the blood of TB patients when compared to healthy controls with subsequent decline after treatment. However, with the discovery that FOXP3, the hallmark marker of Tregs, is not exclusive to Tregs and the lack of specific markers for Tregs, it has been a challenge to fully understand the role of Tregs in TB. Method We isolated PBMC from smear positive TB patients (TB, N = 13) before and after treatment, latent TB infected participants (LTBI, N = 8), and healthy endemic controls (EC, N = 9) and evaluated the frequency of different populations of Tregs and expression of FOXP3 by flowcytometry using six markers. Results The findings in this study showed that the association of Treg frequency with TB disease depends on the phenotypic markers used. While the frequency of CD4+CD25+/hi T cells was higher in TB patients compared to LTBI individuals, there was no difference in the frequency of CD4+CD25+FOXP3+CD127lo Treg among TB, LTBI, or EC. However, delineation of Tregs into active and naïve subsets revealed a significant increase in FOXP3 expression in active primed Tregs (CD4+CD25+FOXP3+CD127loCD45RO+Ki-67+) of TB patients compared to LTBI and EC; and a significantly higher frequency of resting primed (CD45RO+Ki-67−) Treg in QuantiFERON negative EC compared to TB patients. After treatment completion, there was a significant decline in the frequency of active primed Treg, median (IQR) from 12.4% (9.5–21.9) of Tregs to 9.3% (7.0–12.2); P = 0.003 Wilcoxon signed rank test. We conclude that Treg subsets may be differentially regulated and expressed in TB disease, cure, and infection. PMID:27553411

  16. Proteomic Analysis of Cytokeratin Isoforms Uncovers Association with Survival in Lung Adenocarcinoma1

    PubMed Central

    Gharib, Tarek G.; Chen, Guoan; Wang, Hong; Huang, Chiang-Ching; Prescott, Michael S.; Shedden, Kerby; Misek, David E.; Thomas, Dafydd G.; Giordano, Thomas J.; Taylor, Jeremy M.G.; Kardia, Sharon; Yee, John; Orringer, Mark B.; Hanash, Samir; Beer, David G.

    2002-01-01

    Abstract Cytokeratins (CK) are intermediate filaments whose expression is often altered in epithelial cancer. Systematic identification of lung adenocarcinoma proteins using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry has uncovered numerous CK isoforms. In this study, 93 lung adenocarcinomas (64 stage I and 29 stage III) and 10 uninvolved lung samples were quantitatively examined for protein expression. Fourteen of 21 isoforms of CK 7, 8, 18, and 19 occurred at significantly higher levels (P<.05) in tumors compared to uninvolved adjacent tissue. Specific isoforms of the four types of CK identified correlated with either clinical outcome or individual clinical-pathological parameters. All five of the CK7 isoforms associated with patient survival represented cleavage products. Two of five CK7 isoforms (nos. 2165 and 2091), one of eight CK8 isoforms (no. 439), and one of three CK19 isoforms (no. 1955) were associated with survival and significantly correlated to their mRNA levels, suggesting that transcription underlies overexpression of these CK isoforms. Our data indicate substantial heterogeneity among CK in lung adenocarcinomas resulting from posttranslational modifications, some of which correlated with patient survival and other clinical parameters. Therefore, specific isoforms of individual CK may have utility as diagnostic or predictive markers in lung adenocarcinomas. PMID:12192603

  17. Recovery of CD45(-)/Lin(-)/SSEA-4(+) very small embryonic-like stem cells by cord blood bank standard operating procedures.

    PubMed

    Chang, Yu-Jen; Tien, Kuei-Erh; Wen, Cheng-Hao; Hsieh, Tzu-Bou; Hwang, Shiaw-Min

    2014-04-01

    Very small embryonic-like (VSEL) stem cells are a rare cell population present in bone marrow, cord blood and other tissues that displays a distinct small cell size and the ability to give rise to cells of the three germ layers. VSEL stem cells were reported to be discarded in the red blood cell fraction by Ficoll-Paque density gradient centrifugation during the processing of bone marrow and cord blood specimens. However, most cord blood banks do not include density gradient centrifugation in their procedures while red blood cells are removed by Hespan sedimentation following the Cord Blood Transplantation Study cord blood bank standard operating procedures (COBLT SOP). To clarify the retention of VSEL stem cells, we investigated the recovery of VSEL stem cells following COBLT SOP guidelines. The recovery of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells of umbilical cord blood was examined by flow cytometry before and after COBLT SOP processing, and relative expression of pluripotent genes was analyzed by quantitative polymerase chain reaction. CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells were mostly recovered in the final products following COBLT SOP guidelines. The expression of pluripotent genes could be maintained at >80% in products after hetastarch (Hespan; B. Braun Medical Inc., Irvine, CA, USA) processing. The rare sub-population of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells survived after Hespan sedimentation. This finding suggests that umbilical cord blood units cryopreserved by COBLT SOP in cord blood banks should retain most VSEL stem cells present in the un-processed specimens. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. C/EBPβ LIP and c-Jun synergize to regulate expression of the murine progesterone receptor.

    PubMed

    Wang, Weizhong; Do, Han Ngoc; Aupperlee, Mark D; Durairaj, Srinivasan; Flynn, Emily E; Miksicek, Richard J; Haslam, Sandra Z; Schwartz, Richard C

    2018-06-02

    CCAAT/enhancer binding protein β (C/EBPβ) is required for murine mammary ductal morphogenesis and alveologenesis. Progesterone is critical for proliferation and alveologenesis in adult mammary glands, and there is a similar requirement for progesterone receptor isoform B (PRB) in alveologenesis. We examined C/EBPβ regulation of PR expression. All three C/EBPβ isoforms, including typically inhibitory LIP, transactivated the PR promoter. LIP, particularly, strongly synergized with c-Jun to drive PR transcription. Endogenous C/EBPβ and c-Jun stimulated a PR promoter-reporter and these two factors showed promoter occupancy on the endogenous PR gene. Additionally, LIP overexpression elevated endogenous PR protein expression. In pregnancy, both PRB and the relative abundance of LIP among C/EBPβ isoforms increase. Consistent with a role in PRB expression, in vivo C/EBPβ and PR isoform A expression showed mutually exclusive localization in mammary epithelium, while C/EBPβ and PRB largely co-localized. We suggest a critical role for C/EBPβ, particularly LIP, in PRB expression. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Characterization of the Sucrose Phosphate Phosphatase (SPP) Isoforms from Arabidopsis thaliana and Role of the S6PPc Domain in Dimerization.

    PubMed

    Albi, Tomás; Ruiz, M Teresa; de Los Reyes, Pedro; Valverde, Federico; Romero, José M

    2016-01-01

    Sucrose-phosphate phosphatase (SPP) catalyses the final step in the sucrose biosynthesis pathway. Arabidopsis thaliana genome codifies four SPP isoforms. In this study, the four Arabidopsis thaliana genes coding for SPP isoforms have been cloned, expressed in Escherichia coli and the kinetic and regulatory properties of the purified enzymes analysed. SPP2 is the isoform showing the highest activity, with SPP3b and SPP3a showing lower activity levels. No activity was detected for SPP1. We propose that this lack of activity is probably due to the absence of an essential amino acid participating in catalysis and/or in the binding of the substrate, sucrose-6-phosphate (Suc6P). The expression patterns of Arabidopsis SPP genes indicate that SPP2 and SPP3b are the main isoforms expressed in different tissues and organs, although the non-catalytic SPP1 is the main isoform expressed in roots. Thus, SPP1 could have acquired new unknown functions. We also show that the three catalytically active SPPs from Arabidopsis are dimers. By generating a chimeric SPP composed of the monomeric cyanobacterial SPP fused to the higher plant non-catalytic S6PPc domain (from SPP2), we show that the S6PPc domain is responsible for SPP dimerization. This is the first experimental study on the functionality and gene expression pattern of all the SPPs from a single plant species.

  20. Interplay between PTB and miR-1285 at the p53 3'UTR modulates the levels of p53 and its isoform Δ40p53α.

    PubMed

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit; Das, Saumitra

    2017-09-29

    p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Modeled Microgravity-Induced Protein Kinase C Isoform Expression in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2003-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited both in microgravity and modeled microgravity (MMG) as reflected in diminished DNA synthess in peripheral blood lymphocytes and their locomotion through gelled type 1 collagen. Direct activation of Protein Kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 19 and MMG-culture. Human lymphocytes were cultured and harvested at 24, 48, 72 and 96 hours and serial samples assessed for locomotion using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta and -epsilon was assessed by RT-PCR, flow cytometry and immunoblotting. Results indicated that PKC isoforms delta and epsilon were down-regulated by more than 50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 19 controls. Events upstream of PKC such as phosphorylation of Phospholipase C(gamma) (PLC-gamma) in MMG, revealed accumulation of inactive enzyme. Depressed Ca++ -independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than, but after ligand-receptor interaction. Keywords: Signal transduction, locomotion, immunity

  2. Enzymatic and biochemical properties of a novel human serine dehydratase isoform.

    PubMed

    Ogawa, Hirofumi; Gomi, Tomoharu; Nishizawa, Mikio; Hayakawa, Yumiko; Endo, Shunro; Hayashi, Kyoko; Ochiai, Hiroshi; Takusagawa, Fusao; Pitot, Henry C; Mori, Hisashi; Sakurai, Hiroaki; Koizumi, Keiichi; Saiki, Ikuo; Oda, Hirofumi; Fujishita, Takashi; Miwa, Toshiro; Maruyama, Muneharu; Kobayashi, Masashi

    2006-05-01

    A cDNA clone similar to human serine dehydratase (SDH) is deposited in the GenBank/EMBL databases, but its structural and functional bases remain unknown. Despite the occurrence of mRNA, the expected protein level was found to be low in cultured cells. To learn about physicochemical properties of the protein, we expressed the cDNA in Escherichia coli, and compared the expressed protein with that of a hepatic SDH. The purified protein showed l-serine and l-threonine dehydratase activity, demonstrating to be an isoform of SDH. However, their Km and Vmax constants were different in a range of two-order. Removal of Pro128 from the hepatic SDH consisting of 328 residues, which is missing in the corresponding position of the isoform consisting of 329 residues, significantly changed the Michaelis constants and Kd value for pyridoxal 5'-phosphate, whereas addition of a proline residue to the isoform was without effect. These findings suggest the difference in the structures of the active sites of the two enzymes. Another striking feature was that the expressed level of the isoform in E. coli was 7-fold lower than that of the hepatic SDH. Substitution of Val for Leu287 in the isoform dramatically increased the protein level. The high yield of the mutated isoform was also confirmed by the in vitro transcription and translation experiment. The poor expression of the isoform could be explained by the more stable secondary structure of the mRNA than that of the hepatic SDH mRNA. The present findings may provide a clue as to why the protein level in cultured cells is low.

  3. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats.

    PubMed

    Soukup, T; Diallo, M

    2015-01-01

    Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, 2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.

  4. The α2β2 isoform combination dominates the astrocytic Na+ /K+ -ATPase activity and is rendered nonfunctional by the α2.G301R familial hemiplegic migraine type 2-associated mutation.

    PubMed

    Stoica, Anca; Larsen, Brian Roland; Assentoft, Mette; Holm, Rikke; Holt, Leanne Melissa; Vilhardt, Frederik; Vilsen, Bente; Lykke-Hartmann, Karin; Olsen, Michelle Lynne; MacAulay, Nanna

    2017-11-01

    Synaptic activity results in transient elevations in extracellular K + , clearance of which is critical for sustained function of the nervous system. The K + clearance is, in part, accomplished by the neighboring astrocytes by mechanisms involving the Na + /K + -ATPase. The Na + /K + -ATPase consists of an α and a β subunit, each with several isoforms present in the central nervous system, of which the α2β2 and α2β1 isoform combinations are kinetically geared for astrocytic K + clearance. While transcript analysis data designate α2β2 as predominantly astrocytic, the relative quantitative protein distribution and isoform pairing remain unknown. As cultured astrocytes altered their isoform expression in vitro, we isolated a pure astrocytic fraction from rat brain by a novel immunomagnetic separation approach in order to determine the expression levels of α and β isoforms by immunoblotting. In order to compare the abundance of isoforms in astrocytic samples, semi-quantification was carried out with polyhistidine-tagged Na + /K + -ATPase subunit isoforms expressed in Xenopus laevis oocytes as standards to obtain an efficiency factor for each antibody. Proximity ligation assay illustrated that α2 paired efficiently with both β1 and β2 and the semi-quantification of the astrocytic fraction indicated that the astrocytic Na + /K + -ATPase is dominated by α2, paired with β1 or β2 (in a 1:9 ratio). We demonstrate that while the familial hemiplegic migraine-associated α2.G301R mutant was not functionally expressed at the plasma membrane in a heterologous expression system, α2 +/G301R mice displayed normal protein levels of α2 and glutamate transporters and that the one functional allele suffices to manage the general K + dynamics. © 2017 Wiley Periodicals, Inc.

  5. Selective ablation of Ppp1cc gene in testicular germ cells causes oligo-teratozoospermia and infertility in mice.

    PubMed

    Sinha, Nilam; Puri, Pawan; Nairn, Angus C; Vijayaraghavan, Srinivasan

    2013-11-01

    The four isoforms of serine/threonine phosphoprotein phosphatase 1 (PP1), derived from three genes, are among the most conserved proteins known. The Ppp1cc gene encodes two alternatively spliced variants, PP1 gamma1 (PPP1CC1) and PP1 gamma2 (PPP1CC2). Global deletion of the Ppp1cc gene, which causes loss of both isoforms, results in male infertility due to impaired spermatogenesis. This phenotype was assumed to be due to the loss of PPP1CC2, which is abundant in testis. While PPP1CC2 is predominant, other PP1 isoforms are also expressed in testis. Given the significant homology between the four PP1 isoforms, the lack of compensation by the other PP1 isoforms for loss of one, only in testis, is surprising. Here we document, for the first time, expression patterns of the PP1 isoforms in postnatal developing and adult mouse testis. The timing and sites of testis expression of PPP1CC1 and PPP1CC2 in testis are nonoverlapping. PPP1CC2 is the only one of the four PP1 isoforms not detected in sertoli cells and spermatogonia. Conversely, PPP1CC2 may be the only PP1 isoform expressed in postmeiotic germ cells. Deletion of the Ppp1cc gene in germ cells at the differentiated spermatogonia stage of development and beyond in Stra8 promoter-driven Cre transgenic mice results in oligo-terato-asthenozoospermia and male infertility, thus phenocopying global Ppp1cc null (-/-) mice. Taken together, these results confirm that spermatogenic defects observed in the global Ppp1cc knockout mice and in mice expressing low levels of PPP1CC2 in testis are due to compromised functions of PPP1CC2 in meiotic and postmeiotic germ cells.

  6. Immunomodulatory properties and anti-apoptotic effects of zinc and melatonin in an experimental model of chronic Chagas disease.

    PubMed

    Brazão, Vânia; Filipin, Marina Del Vecchio; Santello, Fabricia Helena; Azevedo, Angela Palamin; Toldo, Míriam Paula Alonso; de Morais, Fabiana Rossetto; do Prado, José Clóvis

    2015-05-01

    The immunomodulatory effects of melatonin and zinc during chronic experimental Chagas' disease were studied. Early and late apoptosis by Annexin V-propidium iodide staining were evaluated. The expression of CD28, CD80, CD86, CD45RA and CD4(+)T and CD8(+)T cells were also evaluated by flow cytometry analysis. The combination of zinc and melatonin notably reduced the apoptotic ratios of splenic cells in the infected and treated animals when compared to untreated rats, during early and late stages of apoptosis. The percentages of CD8(+)T cells in Zn, Mel or Zn and Mel treated rats were reduced when compared to infected and untreated animals. Higher percentages of CD28 expression in CD4(+) and CD8(+) T cell populations were observed in control and infected Zn-treated group as compared to untreated ones. Zn, Mel or the combination of both did not induce any statistically significant differences for B cells when comparing to treated control and infected groups. Zinc or Mel-treated animals presented a lower expression of CD86 when compared to untreated counterparts. According to our data, this work strongly suggest that the modulation of the immune system operated by zinc and melatonin administration affected the balance among T cell immune response, apoptosis and expression of co-stimulatory molecules during chronic Trypanosoma cruzi infection, inducing important changes in the host's immune response against the parasite. Future experiments in this field should be focused in improving our understanding of the key mechanisms underlying the involvement of melatonin and zinc in the immune response during chronic Chagas' disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. ERCC1 function in nuclear excision and interstrand crosslink repair pathways is mediated exclusively by the ERCC1-202 isoform

    PubMed Central

    Friboulet, Luc; Postel-Vinay, Sophie; Sourisseau, Tony; Adam, Julien; Stoclin, Annabelle; Ponsonnailles, Florence; Dorvault, Nicolas; Commo, Frédéric; Saulnier, Patrick; Salome-Desmoulez, Sophie; Pottier, Géraldine; André, Fabrice; Kroemer, Guido; Soria, Jean Charles; Olaussen, Ken André

    2013-01-01

    ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies. PMID:24036546

  8. Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues.

    PubMed

    Gronthos, Stan; McCarty, Rosa; Mrozik, Krzysztof; Fitter, Stephen; Paton, Sharon; Menicanin, Danijela; Itescu, Silviu; Bartold, P Mark; Xian, Cory; Zannettino, Andrew C W

    2009-11-01

    Mesenchymal stromal cells (MSCs) and their precursor cells (MPCs) can proliferate and differentiate into multiple mesodermal and some ectodermal and endodermal tissues. Culture-expanded MSCs are currently being evaluated as a possible cell therapy to replace/repair injured or diseased tissues. While a number of mAb reagents with specificity to human MSCs, including STRO-1, STRO-3 (BLK ALP), CD71 (SH2, SH3), CD106 (VCAM-1), CD166, and CD271, have facilitated the isolation of purified populations of human MSCs from primary tissues, few if any mAb reagents have been described that can be used to isolate equivalent cells from other species. This is of particular relevance when assessing the tissue regenerative efficacy of MSCs in large immunocompetent, preclinical animal models of disease. In light of this, we sought to generate novel monoclonal antibodies (mAb) with specific reactivity against a cell surface molecule that is expressed at high levels by MSCs from different species. Using CD106 (VCAM-1)-selected ovine MSCs as an immunogen, mAb-producing hybridomas were selected for their reactivity to both human and ovine MSCs. One such hybridoma, termed STRO-4, produced an IgG mAb that reacted with <5% of human and ovine bone marrow (BM) mononuclear cells. As a single selection reagent, STRO-4 mAb was able to enrich colony-forming fibroblasts (CFU-F) in both human and ovine BM by 16- and 8-folds, respectively. Cells isolated with STRO-4 exhibited reactivity with markers commonly associated with MSCs isolated by plastic adherence including CD29, CD44, and CD166. Moreover, when placed in inductive culture conditions in vitro, STRO-4(+) MSCs exhibited multilineage differentiation potential and were capable of forming a mineralized matrix, lipid-filled adipocytes, and chondrocytes capable of forming a glycosaminoglycan-rich matrix. Biochemical analysis revealed that STRO-4 identified the beta isoform of heat shock protein-90 (Hsp90beta). In addition to identifying an antibody reagent that identifies a highly conserved epitope expressed by MSCs from different species, our study also points to a potential role for Hsp90beta in MSC biology.

  9. Circulating progenitor and angiogenic cell frequencies are abnormally static over pregnancy in women with preconception diabetes: A pilot study.

    PubMed

    Lima, Patricia D A; Chen, Zhilin; Tayab, Aysha; Murphy, Malia S Q; Pudwell, Jessica; Smith, Graeme N; Croy, B Anne

    2017-01-01

    Type 1 and 2 diabetes decrease the frequencies and functional capacities of circulating angiogenic cells (CAC). Diabetes also elevates gestational complications. These observations may be interrelated. We undertook pilot studies to address the hypothesis that preconception diabetes deviates known gestational increases in CACs. Cross-sectional study of type 1 diabetic, type 2 diabetic and normoglycemic pregnant women was conducted at 1st, 2nd, and 3rd trimester and compared to a 6mo postpartum surrogate baseline. Circulating progenitor cells (CPC; CD34+CD45dimSSlow) and CACs (CD34+CD45dimSSlow expressing CD133 without or with KDR) were quantified by flow cytometry and by colony assay (CFU-Hill). In pregnant normoglycemic women, CD34+CD45dimSSlow cell frequency was greater in 1st and 3rd trimester than postpartum but frequency of these cells was static over type 1 or 2 diabetic pregnancies. Type 1 and type 2 diabetic women showed CACs variance versus normal controls. Type 1 diabetic women had more total CD34+KDR+ CACs in 1st trimester and a higher ratio of CD133+KDR+ to total CD133+ cells in 1st and 2nd trimesters than control women, demonstrating an unbalance in CD133+KDR+ CACs. Type 2 diabetic women had more CD133+KDR+ CACs in 1st trimester and fewer CD133+KDR- CACs at mid-late pregnancy than normal pregnant women. Thus, pregnancy stage-specific physiological fluctuation in CPCs (CD34+) and CACs (CD133+KDR+ and CD133+KDR-) did not occur in type 1 and type 2 diabetic women. Early outgrowth colonies were stable across normal and diabetic pregnancies. Therefore, preconception diabetes blocks the normal dynamic pattern of CAC frequencies across gestation but does not alter colony growth. The differences between diabetic and typical women were seen at specific gestational stages that may be critical for initiation of the uterine vascular pathologies characterizing diabetic gestations.

  10. Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis.

    PubMed

    Bégay, Valérie; Smink, Jeske J; Loddenkemper, Christoph; Zimmermann, Karin; Rudolph, Cornelia; Scheller, Marina; Steinemann, Doris; Leser, Ulf; Schlegelberger, Brigitte; Stein, Harald; Leutz, Achim

    2015-01-01

    Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPβ) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPβ mRNA. The truncated C/EBPβ LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPβ LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPβ knockin mice that constitutively express only the C/EBPβ LIP isoform from its own locus. Our data show that deregulated C/EBPβ LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPβ LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPβ LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPβ LIP isoform. Elevated C/EBPβ LIP promotes cancer in mice. C/EBPβ LIP is upregulated in B-NHL. Deregulated C/EBPβ LIP alters apoptosis and cytokine/chemokine networks. Deregulated C/EBPβ LIP may support a pro-tumorigenic microenvironment.

  11. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizio, Carmen; Galluccio, Michele; Wait, Robin

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-stepmore » affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosinmore » IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.« less

  13. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation

    PubMed Central

    Janbazian, Loury; Price, David A.; Canderan, Glenda; Filali-Mouhim, Abdelali; Asher, Tedi E.; Ambrozak, David R.; Scheinberg, Phillip; Boulassel, Mohamad Rachid; Routy, Jean-Pierre; Koup, Richard A.; Douek, Daniel C.; Sekaly, Rafick-Pierre; Trautmann, Lydie

    2011-01-01

    Persistent exposure to cognate antigen leads to the functional impairment and exhaustion of HIV-specific CD8 T cells. Antigen withdrawal, due either to antiretroviral treatment or the emergence of epitope escape mutations, causes HIV-specific CD8 T cell responses to wane over time. However, this process does not continue to extinction, and residual CD8 T cells likely play an important role in the control of HIV replication. Here, we conducted a longitudinal analysis of clonality, phenotype and function to define the characteristics of HIV-specific CD8 T cell populations that persist under conditions of limited antigenic stimulation. Antigen decay was associated with dynamic changes in the TCR repertoire, increased expression of CD45RA and CD127, decreased expression of PD-1 and the emergence of poly-functional HIV-specific CD8 T cells. High definition analysis of individual clonotypes revealed that the antigen loss-induced gain of function within HIV-specific CD8 T cell populations could be attributed to two non-exclusive mechanisms: (i) functional improvement of persisting clonotypes; and, (ii) recruitment of particular clonotypes endowed with superior functional capabilities. PMID:22210916

  14. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model

    PubMed Central

    2013-01-01

    Introduction The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS. PMID:23497755

  15. Dissection of a circulating CD3+ CD20+ T cell subpopulation in patients with psoriasis.

    PubMed

    Niu, J; Zhai, Z; Hao, F; Zhang, Y; Song, Z; Zhong, H

    2018-05-01

    CD3 + CD20 + T cells are a population of CD3 + T cells that express CD20 and identified in healthy donors and autoimmune diseases. However, the nature and role of these cells in patients with psoriasis remain unclear. In this study, we aimed to investigate the level, phenotype, functional and clinical relevance of CD3 + CD20 + T cells in the peripheral blood of patients with psoriasis. We found that a small subset of CD3 + T cells expressed CD20 molecule in the peripheral blood of patients with psoriasis, and their levels were similar to those in healthy donors. Circulating CD3 + CD20 + T cells in patients with psoriasis were enriched in CD4 + cells and displayed an activated effector phenotype, as these cells contained fewer CD45RA + -naive and CCR7 + cells with increased activity than those of CD3 + T cells lacking CD20. In addition, compared with healthy donors, circulating CD3 + CD20 + T cells in patients with psoriasis produced more cytokines, interleukin (IL)-17A, tumour necrosis factor (TNF)-α and IL-21, but not IL-4 and IFN-γ. Furthermore, a significantly positive correlation was found between the levels of IL-17A, TNF-α and IL-21-production CD3 + CD20 + T cells with Psoriasis Area and Severity Index scores. Our findings suggest that CD3 + CD20 + T cells may play a role in the pathogenesis of psoriasis. © 2018 British Society for Immunology.

  16. Influence of antiretroviral therapy on programmed death-1 (CD279) expression on T cells in lymph nodes of human immunodeficiency virus-infected individuals.

    PubMed

    Ehrhard, Simone; Wernli, Marion; Dürmüller, Ursula; Battegay, Manuel; Gudat, Fred; Erb, Peter

    2009-10-01

    Human immunodeficiency virus infection leads to T-cell exhaustion and involution of lymphoid tissue. Recently, the programmed death-1 pathway was found to be crucial for virus-specific T-cell exhaustion during human immunodeficiency virus infection. Programmed death-1 expression was elevated on human immunodeficiency virus-specific peripheral blood CD8+ and CD4+ T cells and correlated with disease severity. During human immunodeficiency infection, lymphoid tissue acts as a major viral reservoir and is an important site for viral replication, but it is also essential for regulatory processes important for immune recovery. We compared programmed death-1 expression in 2 consecutive inguinal lymph nodes of 14 patients, excised before antiretroviral therapy (antiretroviral therapy as of 1997-1999) and 16 to 20 months under antiretroviral therapy. In analogy to lymph nodes of human immunodeficiency virus-negative individuals, in all treated patients, the germinal center area decreased, whereas the number of germinal centers did not significantly change. Programmed death-1 expression was mostly found in germinal centers. The absolute extent of programmed death 1 expression per section was not significantly altered after antiretroviral therapy resulting in a significant-relative increase of programmed death 1 per shrunken germinal center. In colocalization studies, CD45R0+ cells that include helper/inducer T cells strongly expressed programmed death-1 before and during therapy, whereas CD8+ T cells, fewer in numbers, showed a weak expression for programmed death-1. Thus, although antiretroviral therapy seems to reduce the number of programmed death-1-positive CD8+ T lymphocytes within germinal centers, it does not down-regulate programmed death-1 expression on the helper/inducer T-cell subset that may remain exhausted and therefore unable to trigger immune recovery.

  17. Selective expression of the type 3 isoform of ryanodine receptor Ca{sup 2+} release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo

    2005-11-11

    The expression pattern of the RyR3 isoform of Ca{sup 2+} release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysismore » of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform.« less

  18. The N-terminal Set-β Protein Isoform Induces Neuronal Death*

    PubMed Central

    Trakhtenberg, Ephraim F.; Morkin, Melina I.; Patel, Karan H.; Fernandez, Stephanie G.; Sang, Alan; Shaw, Peter; Liu, Xiongfei; Wang, Yan; Mlacker, Gregory M.; Gao, Han; Velmeshev, Dmitry; Dombrowski, Susan M.; Vitek, Michael P.; Goldberg, Jeffrey L.

    2015-01-01

    Set-β protein plays different roles in neurons, but the diversity of Set-β neuronal isoforms and their functions have not been characterized. The expression and subcellular localization of Set-β are altered in Alzheimer disease, cleavage of Set-β leads to neuronal death after stroke, and the full-length Set-β regulates retinal ganglion cell (RGC) and hippocampal neuron axon growth and regeneration in a subcellular localization-dependent manner. Here we used various biochemical approaches to investigate Set-β isoforms and their role in the CNS, using the same type of neurons, RGCs, across studies. We found multiple alternatively spliced isoforms expressed from the Set locus in purified RGCs. Set transcripts containing the Set-β-specific exon were the most highly expressed isoforms. We also identified a novel, alternatively spliced Set-β transcript lacking the nuclear localization signal and demonstrated that the full-length (∼39-kDa) Set-β is localized predominantly in the nucleus, whereas a shorter (∼25-kDa) Set-β isoform is localized predominantly in the cytoplasm. Finally, we show that an N-terminal Set-β cleavage product can induce neuronal death. PMID:25833944

  19. The presence of both negative and positive elements in the 5'-flanking sequence of the rat Na,K-ATPase alpha 3 subunit gene are required for brain expression in transgenic mice.

    PubMed Central

    Pathak, B G; Neumann, J C; Croyle, M L; Lingrel, J B

    1994-01-01

    The Na,K-ATPase is an integral plasma membrane protein consisting of alpha and beta subunits, each of which has discrete isoforms expressed in a tissue-specific manner. Of the three functional alpha isoform genes, the one encoding the alpha 3 isoform is the most tissue-restricted in its expression, being found primarily in the brain. To identify regions of the alpha 3 isoform gene that are involved in directing expression in the brain, a 1.6 kb 5'-flanking sequence was attached to a reporter gene, chloramphenicol acetyltransferase (CAT). The alpha 3-CAT chimeric gene construct was microinjected into fertilized mouse eggs, and transgenic mice were produced. Analysis of adult transgenic mice from different lines revealed that the transgene is expressed primarily in the brain. To further delineate regions that are needed for conferring expression in this tissue, systematic deletions of the 5'-flanking sequence of the alpha 3-CAT fusion constructs were made and analyzed, again using transgenic mice. The results from these analyses indicate that DNA sequences required for mediating brain-specific expression of the alpha 3 isoform gene are present within 210 bp upstream of the transcription initiation site. alpha 3-CAT promoter constructs containing scanning mutations in this region were also assayed in transgenic mice. These studies have identified both a functional neural-restrictive silencer element as well as a positively acting cis element. Images PMID:7984427

  20. Ectopic expression of protein kinase C-β sensitizes head and neck squamous cell carcinoma to diterpene esters.

    PubMed

    Adams, Ryan A; D'Souza, Marjorie M A; Pierce, Carly J; Korica, Natasa; Wallwork, Ben; Parsons, Peter G; Panizza, Benedict; Boyle, Glen M

    2015-03-01

    The objective of this study was to examine the effect of specific Protein kinase C (PKC) isoform re-expression in solid malignancies, particularly head and neck squamous cell carcinoma cell lines, and the impact this may have on treatment with known activators of PKC. The constitutive expression of PKC isoforms were determined in six head and neck squamous cell carcinoma (SCC) cell lines. Cytotoxicity of the prototypic phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) and the novel diterpene ester PEP005 was established. Viral transduction to re-express PKCβ isoforms in two of these cell lines was performed, and its effect on the sensitivity to the compounds was quantified. Tongue and hypopharyngeal SCC cell lines were resistant to both TPA and PEP005, with the concentration required to inhibit growth by 50% (IC50) being >1,000 ng/ml. CAL-27 (tongue SCC) and FaDu (hypopharyngeal SCC) cell lines re-expressing PKCβI and -βII isoforms demonstrated IC50 of 1-5 ng/ml with TPA or PEP005. Re-expression of PKCβ in head and neck SCC cell lines leads to cells one thousand-times more sensitive to the cytotoxic effects of phorbol or diterpene esters in culture. This highlights the importance of the isoform in tumor progression and presents the potential benefit of these compounds in malignancies expressing the protein, and in combination therapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Differential expression and induction of two carbonic anhydrase isoforms in the gills of the euryhaline green crab, Carcinus maenas, in response to low salinity.

    PubMed

    Serrano, Laetitia; Henry, Raymond P

    2008-06-01

    Two isoforms of the enzyme carbonic anhydrase (CA) from the gills of the euryhaline green crab were sequenced and identified; these were found to match the cytoplasmic (CAc) and membrane-associated (CAg) isoforms known from other species. The mRNA of the membrane-associated isoform is present in significantly higher levels of abundance in gills of crabs acclimated to 32 ppt, at which the crab is an osmotic and ionic conformer. Upon transfer to low salinity (15 ppt), in which the crab is an osmoregulator, however, the cytoplasmic isoform undergoes a rapid 100-fold increase in abundance in the posterior gills, becoming the dominant isoform. CAg increases 3-fold initially and then remains elevated through 14 days of low salinity acclimation. The induction of CAc mRNA is believed to be the molecular basis for the 20 fold increase in CA protein-specific activity during low salinity acclimation. The initial increase in CAc mRNA takes place at 6 h, and maximal levels of expression are achieved by 24 h; this precedes the induction of CA activity and is within the time in which hemolymph osmotic and ionic concentrations stabilize at new acclimated levels. The increase in expression of the CAg isoform is believed to be more closely related to changes in the population of branchial chloride cells. Changes in the relative abundance of mRNA for the alpha-subunit of the Na(+)/K(+)-ATPase were smaller in magnitude than those for CAc, but the timing was similar. There were no changes in expression of a control gene, arginine kinase (AK) in posterior gills, and there were no significant changes in expression in anterior gills for any of the genes measured here. These results support the use of a control tissue (anterior gills) in addition to a control gene for expression studies.

  2. Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis.

    PubMed

    Kyriazis, George A; Wei, Zelan; Vandermey, Miriam; Jo, Dong-Gyu; Xin, Ouyang; Mattson, Mark P; Chan, Sic L

    2008-09-12

    Central to the pathogenesis of Alzheimer disease is the aberrant processing of the amyloid precursor protein (APP) to generate amyloid beta-peptide (Abeta), the principle component of amyloid plaques. The cell fate determinant Numb is a phosphotyrosine binding domain (PTB)-containing endocytic adapter protein that interacts with the carboxyl-terminal domain of APP. The physiological relevance of this interaction is unknown. Mammals produce four alternatively spliced variants of Numb that differ in the length of their PTB and proline-rich region. In the current study, we determined the influence of the four human Numb isoforms on the intracellular trafficking and processing of APP. Stable expression of Numb isoforms that differ in the PTB but not in the proline-rich region results in marked differences in the sorting of APP to the recycling and degradative pathways. Neural cells expressing Numb isoforms that lack the insert in the PTB (short PTB (SPTB)) exhibited marked accumulation of APP in Rab5A-labeled early endosomal and recycling compartments, whereas those expressing isoforms with the insertion in the PTB (long PTB (LPTB)) exhibited reduced amounts of cellular APP and its proteolytic derivatives relative to parental control cells. Neither the activities of the beta- and gamma-secretases nor the expression of APP mRNA were significantly different in the stably transfected cells, suggesting that the differential effects of the Numb proteins on APP metabolism is likely to be secondary to altered APP trafficking. In addition, the expression of SPTB-Numb increases at the expense of LPTB-Numb in neuronal cultures subjected to stress, suggesting a role for Numb in stress-induced Abeta production. Taken together, these results suggest distinct roles for the human Numb isoforms in APP metabolism and may provide a novel potential link between altered Numb isoform expression and increased Abeta generation.

  3. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells

    PubMed Central

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Background: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. Methods: The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Results: Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Conclusions: Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future. PMID:26722497

  4. Transcriptomic profile analysis of mouse neural tube development by RNA-Seq.

    PubMed

    Yu, Juan; Mu, Jianbing; Guo, Qian; Yang, Lihong; Zhang, Juan; Liu, Zhizhen; Yu, Baofeng; Zhang, Ting; Xie, Jun

    2017-09-01

    The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  5. Adipose-derived stem cell: a better stem cell than BMSC.

    PubMed

    Zhu, Yanxia; Liu, Tianqing; Song, Kedong; Fan, Xiubo; Ma, Xuehu; Cui, Zhanfeng

    2008-08-01

    To further study the proliferation and multi-differentiation potentials of adipose-derived stem cells (ADSCs), the cells were isolated with improved methods and their growth curves were achieved with cck-8. Surface protein expression was analyzed by flow cytometry to characterize the cell phenotype. The multi-lineage potential of ADSCs was testified by differentiating cells with adipogenic, chondrogenic, osteogenic, and myogenic inducers. The results showed that about 5 x 10(5) stem cells could be obtained from 400 to 600 mg adipose tissue. The ADSCs can be continuously cultured in vitro for up to 1 month without passage and they have several logarithmic growth phases during the culture period. Also, the flow cytometry analysis showed that ADSCs expressed high levels of stem cell-related antigens (CD13, CD29, CD44, CD105, and CD166), while did not express hematopoiesis-related antigens CD34 and CD45, and human leukocyte antigen HLA-DR was also negative. Moreover, stem cell-related transcription factors, Nanog, Oct-4, Sox-2, and Rex-1 were positively expressed in ADSCs. The expression of alkaline phosphatase (ALP) was detected in the early osteogenic induction and the calcified nodules were observed by von Kossa staining. Intracellular lipid droplets could be observed by Oil Red staining. Differentiated cardiomyocytes were observed by connexin43 fluorescent staining. In order to obtain more stem cells, we can subculture ADSCs every 14 days instead of the normal 5 days. ADSCs still keep strong proliferation ability, maintain their phenotypes, and have stronger multi-differentiation potential after 25 passages. Copyright 2008 John Wiley & Sons, Ltd.

  6. Biochemical Characterization of Individual Human Glycosylated pro-Insulin-like Growth Factor (IGF)-II and big-IGF-II Isoforms Associated with Cancer

    PubMed Central

    Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.

    2013-01-01

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326

  7. Multi-color CD34⁺ progenitor-focused flow cytometric assay in evaluation of myelodysplastic syndromes in patients with post cancer therapy cytopenia.

    PubMed

    Tang, Guilin; Jorgensen, L Jeffrey; Zhou, Yi; Hu, Ying; Kersh, Marian; Garcia-Manero, Guillermo; Medeiros, L Jeffrey; Wang, Sa A

    2012-08-01

    Bone marrow assessment for myelodysplastic syndrome (MDS) in a patient who develops cytopenia(s) following cancer therapy is challenging. With recent advances in multi-color flow cytometry immunophenotypic analysis, a CD34(+) progenitor-focused 7-color assay was developed and tested in this clinical setting. This assay was first performed in 73 MDS patients and 53 non-MDS patients (developmental set). A number of immunophenotypic changes were differentially observed in these two groups. Based on the sensitivity, specificity and reproducibility, a core panel of markers was selected for final assessment that included increased total CD34(+) myeloblasts; decreased stage I hematogones; altered CD45/side scatter; altered expression of CD13, CD33, CD34, CD38, CD117, and CD123; aberrant expression of lymphoid or mature myelomonocytic antigens on CD34(+) myeloblasts; and several marked alterations in maturing myelomonocytic cells. The data were translated into a simplified scoring system which was then used in 120 patients with cytopenia(s) secondary to cancer therapy over a 2-year period (validation set). With a median follow-up of 11 months, this assay demonstrated 89% sensitivity, 94% specificity, and 92% accuracy in establishing or excluding a diagnosis of MDS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors.

    PubMed Central

    Kliewer, S A; Forman, B M; Blumberg, B; Ong, E S; Borgmeyer, U; Mangelsdorf, D J; Umesono, K; Evans, R M

    1994-01-01

    To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in mammals, we have cloned and characterized two PPAR alpha-related cDNAs (designated PPAR gamma and -delta, respectively) from mouse. The three PPAR isoforms display widely divergent patterns of expression during embryogenesis and in the adult. Surprisingly, PPAR gamma and -delta are not activated by pirinixic acid (Wy 14,643), a potent peroxisome proliferator and activator of PPAR alpha. However, PPAR gamma and -delta are activated by the structurally distinct peroxisome proliferator LY-171883 and linoleic acid, respectively, indicating that each of the isoforms can act as a regulated activator of transcription. These data suggest that tissue-specific responsiveness to peroxisome proliferators, including certain fatty acids, is in part a consequence of differential expression of multiple, pharmacologically distinct PPAR isoforms. Images PMID:8041794

  9. Bioaccumulation, morphological changes, and induction of metallothionein gene expression in the digestive system of the freshwater crab Sinopotamon henanense after exposure to cadmium.

    PubMed

    Wu, Hao; Li, Yingjun; Lang, Xingping; Wang, Lan

    2015-08-01

    To study the responses of digestive system of the freshwater crab Sinopotamon henanense to the exposure with cadmium (Cd), crabs were acutely exposed to 7.25, 14.50, and 29.00 mg/l Cd for 96 h and subchronically exposed to 0.725, 1.450, and 2.900 mg/l for 21 days. Cd bioaccumulation in the hepatopancreas and digestive tract (esophagus and intestine) was examined. Furthermore, histopathological alterations of the esophagus, midgut, hindgut, and hepatopancreas were assessed in animals from the 29.0 and 2.90 mg/l Cd treatment groups, and expression of metallothionein messenger RNA (MT mRNA) in the hepatopancreas and intestine was measured in all treatment groups. The results showed difference in the middle and high concentrations between acute and subchronic treatment groups. Cd content in digestive tract after acute 14.5 and 29.0 mg/l Cd exposure was significantly higher than that at subchronic 1.45 and 2.90 mg/l exposure, but Cd levels in hepatopancreas were not significantly different under the same condition. Acute exposure to Cd induced greater morphological damage than subchronic exposure: large areas of epithelial cells were necrotic in hepatopancreas and midgut, which detached from the basal lamina. Vacuolated muscle cells were observed in the hindgut of animals from the acute exposure group, but the changes of esophageal morphology were not obvious after acute or subchronic treatments. The expression of MT mRNA increased with increasing Cd concentration, and MT mRNA level in acute exposure groups was significantly lower when compared to the subchronic exposure groups. Higher Cd content and lower MT mRNA expression in the acutely exposed groups may be responsible for more severe damage of digestive system in these exposure groups.

  10. Blood-derived small Dot cells reduce scar in wound healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Wuyi; Li Shaowei; Longaker, Michael T.

    2008-04-15

    Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin {beta}1, CD184, CD34, CD13{sup low} and Sca1{sup low}, but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 {mu}m diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherinmore » and integrin {beta}1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells.« less

  11. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    PubMed

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  12. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts

    PubMed Central

    Lindholm, Maléne E; Giacomello, Stefania; Werne Solnestam, Beata; Kjellqvist, Sanela

    2016-01-01

    Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. PMID:27657503

  13. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    PubMed Central

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  14. P110α-mediated constitutive PI3K signaling limits the efficacy of p110δ-selective inhibition in mantle cell lymphoma, particularly with multiple relapse

    PubMed Central

    Iyengar, Sunil; Clear, Andrew; Bödör, Csaba; Maharaj, Lenushka; Lee, Abigail; Calaminici, Maria; Matthews, Janet; Iqbal, Sameena; Auer, Rebecca; Joel, Simon

    2013-01-01

    Phosphoinositide-3 kinase (PI3K) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis, but early-phase studies of the PI3K p110δ inhibitor GS-1101 have reported inferior responses in MCL compared with other non-Hodgkin lymphomas. Because the relative importance of the class IA PI3K isoforms p110α, p110β, and p110δ in MCL is not clear, we studied expression of these isoforms and assessed their contribution to PI3K signaling in this disease. We found that although p110δ was highly expressed in MCL, p110α showed wide variation and expression increased significantly with relapse. Loss of phosphatase and tensin homolog expression was found in 16% (22/138) of cases, whereas PIK3CA and PIK3R1 mutations were absent. Although p110δ inhibition was sufficient to block B-cell receptor–mediated PI3K activation, combined p110α and p110δ inhibition was necessary to abolish constitutive PI3K activation. In addition, GDC-0941, a predominantly p110α/δ inhibitor, was significantly more active compared with GS-1101 against MCL cell lines and primary samples. We found that a high PIK3CA/PIK3CD ratio identified a subset of primary MCLs resistant to GS-1101 and this ratio increased significantly with relapse. These findings support the use of dual p110α/p110δ inhibitors in MCL and suggest a role for p110α in disease progression. PMID:23341541

  15. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology.

    PubMed

    Callaghan, Paul S; Siriwardana, Amila; Hassett, Matthew R; Roepe, Paul D

    2016-03-31

    Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.

  16. Thymic Stromal Lymphopoietin: To Cut a Long Story Short.

    PubMed

    Tsilingiri, Katerina; Fornasa, Giulia; Rescigno, Maria

    2017-03-01

    Thymic stromal lymphopoietin (TSLP) was identified more than 20 years ago as a secreted factor of a mouse thymic stromal cell line; later, a human orthologue was also identified. The signaling pathway triggered by TSLP has been extensively studied, and upregulation of the cytokine itself is linked to the pathogenesis of numerous Th2-related diseases, including atopic dermatitis, asthma, allergic responses, as well as certain types of cancers. On the other hand, TSLP mediates several immune homeostatic functions in both the gut and the thymus. Thus, a paradox occurs; why is TSLP homeostatic in certain tissues and a hallmark of exacerbated Th2 responses in the aforementioned pathologies? We and others have recently shown that in humans a novel isoform exists; this is a shorter isoform of TSLP whose expression is constitutive and controlled by a separate promoter. Short TSLP isoform mediates the homeostatic functions, whereas the long isoform is expressed at low/undetectable level at steady state and upregulated during inflammation in several tissues. Here we review the most recent data concerning the differential expression of the 2 isoforms and provide a potential explanation to the paradox. TSLP is regarded as a promising target for treatment of relevant pathologies, with a number of clinical trials already underway. It is important to design new strategies aimed at leaving intact the homeostatic effects of the short isoform while targeting the inflammatory effects of the long isoform.

  17. Differential expression of ryanodine receptor isoforms after spinal cord injury.

    PubMed

    Pelisch, Nicolas; Gomes, Cynthia; Nally, Jacqueline M; Petruska, Jeffrey C; Stirling, David P

    2017-11-01

    Ryanodine receptors (RyRs) are highly conductive intracellular Ca 2+ release channels and are widely expressed in many tissues, including the central nervous system. RyRs have been implicated in intracellular Ca 2+ overload which can drive secondary damage following traumatic injury to the spinal cord (SCI), but the spatiotemporal expression of the three isoforms of RyRs (RyR1-3) after SCI remains unknown. Here, we analyzed the gene and protein expression of RyR isoforms in the murine lumbar dorsal root ganglion (DRG) and the spinal cord lesion site at 1, 2 and 7 d after a mild contusion SCI. Quantitative RT PCR analysis revealed that RyR3 was significantly increased in lumbar DRGs and at the lesion site at 1 and 2 d post contusion compared to sham (laminectomy only) controls. Additionally, RyR2 expression was increased at 1 d post injury within the lesion site. RyR2 and -3 protein expression was localized to lumbar DRG neurons and their spinal projections within the lesion site acutely after SCI. In contrast, RyR1 expression within the DRG and lesion site remained unaltered following trauma. Our study shows that SCI initiates acute differential expression of RyR isoforms in DRG and spinal cord. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Side scatter versus CD45 flow cytometric plot can distinguish acute leukaemia subtypes.

    PubMed

    Saksena, Annapurna; Gautam, Parul; Desai, Parth; Gupta, Naresh; Dubey, A P; Singh, Tejinder

    2016-05-01

    Flow cytometry is an important tool to diagnose acute leukaemia. Attempts are being made to find the minimal number of antibodies for correctly diagnosing acute leukaemia subtypes. The present study was designed to evaluate the analysis of side scatter (SSC) versus CD45 flow dot plot to distinguish acute myeloid leukaemia (AML) from acute lymphoblastic leukaemia (ALL), with minimal immunological markers. One hundred consecutive cases of acute leukaemia were evaluated for blast cluster on SSC versus CD45 plots. The parameters studied included visual shape, CD45 and side scatter expression, continuity with residual granulocytes/lymphocytes/monocytes and ratio of maximum width to maximum height (w/h). The final diagnosis of ALL and AML and their subtypes was made by morphology, cytochemistry and immunophenotyping. Two sample Wilcoxon rank-sum (Mann Whitney) test and Kruskal-Wallis equality-of-populations rank tests were applied to elucidate the significance of the above ratios of blast cluster for diagnosis of ALL, AML and their subtypes. Receiver operating characteristic (ROC) curves were generated and the optimal cut-offs of the w/h ratio to distinguish between ALL and AML determined. Of the 100 cases, 57 of ALL and 43 cases of AML were diagnosed. The median w/h ratio of blast population was 3.8 for ALL and 1 for AML (P<0.001). ROC had area under curve of 0.9772.The optimal cut-off of the w/h ratio for distinction of ALL from AML was found to be 1.6. Our findings suggest that if w/h ratio on SSC versus CD45 plot is less than 1.6, AML may be considered, and if it is more than 1.6, ALL may be diagnosed. Using morphometric analysis of the blast cluster on SSC versus CD45, it was possible to distinguish between ALL and AML, and their subtypes.

  19. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    PubMed

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  20. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro.

    PubMed

    Peltzer, J; Colman, L; Cebrian, J; Musa, H; Peckham, M; Keller, A

    2008-05-01

    We have investigated whether the phenotype of myogenic clones derived from satellite cells of different muscles from the transgenic immortomouse depended on muscle type origin. Clones derived from neonatal, or 6- to 12-week-old fast and slow muscles, were analyzed for myosin and enolase isoforms as phenotypic markers. All clones derived from slow-oxidative muscles differentiated into myotubes with a preferentially slow contractile phenotype, whereas some clones derived from rapid-glycolytic or neonatal muscles expressed both fast and slow myosin isoforms. Thus, muscle origin appears to bias myosin isoform expression in myotubes. The neonatal clone (WTt) was cultivated in various medium and substrate conditions, allowing us to determine optimized conditions for their differentiation. Matrigel allowed expressions of adult myosin isoforms, and an isozymic switch from embryonic alpha- toward muscle-specific beta-enolase, never previously observed in vitro. These cells will be a useful model for in vitro studies of muscle fiber maturation and plasticity.

  1. Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression

    PubMed Central

    Beer, Philip A.; Knapp, David J. H. F.; Miller, Paul H.; Kannan, Nagarajan; Sloma, Ivan; Heel, Kathy; Babovic, Sonja; Bulaeva, Elizabeth; Rabu, Gabrielle; Terry, Jefferson; Druker, Brian J.; Loriaux, Marc M.; Loeb, Keith R.; Radich, Jerald P.; Erber, Wendy N.

    2015-01-01

    Without effective therapy, chronic-phase chronic myeloid leukemia (CP-CML) evolves into an acute leukemia (blast crisis [BC]) that displays either myeloid or B-lymphoid characteristics. This transition is often preceded by a clinically recognized, but biologically poorly characterized, accelerated phase (AP). Here, we report that IKAROS protein is absent or reduced in bone marrow blasts from most CML patients with advanced myeloid disease (AP or BC). This contrasts with primitive CP-CML cells and BCR-ABL1–negative acute myeloid leukemia blasts, which express readily detectable IKAROS. To investigate whether loss of IKAROS contributes to myeloid disease progression in CP-CML, we examined the effects of forced expression of a dominant-negative isoform of IKAROS (IK6) in CP-CML patients’ CD34+ cells. We confirmed that IK6 disrupts IKAROS activity in transduced CP-CML cells and showed that it confers on them features of AP-CML, including a prolonged increased output in vitro and in xenografted mice of primitive cells with an enhanced ability to differentiate into basophils. Expression of IK6 in CD34+ CP-CML cells also led to activation of signal transducer and activator of transcription 5 and transcriptional repression of its negative regulators. These findings implicate loss of IKAROS as a frequent step and potential diagnostic harbinger of progressive myeloid disease in CML patients. PMID:25370416

  2. Regulation of Dab2 expression in intestinal and renal epithelia by development.

    PubMed

    Vázquez-Carretero, María D; García-Miranda, Pablo; Calonge, María L; Peral, María J; Ilundáin, Anunciación A

    2011-01-01

    Disabled-2 (Dab2) is an intracellular adaptor protein proposed to function in endocytosis. Here, we investigate the intestinal and renal Dab2 expression versus maturation. Dab2 mRNA levels measured by RT-PCR are greater in the small than in the large intestine. Immunological studies localize Dab2 to the terminal web domain of the enterocytes and reveal the presence of a 96-kDa Dab2 isoform in the apical membrane of the jejunum, ileum, and renal cortex of the suckling and adult rat. A 69-kDa Dab2 isoform is only observed in the apical membranes of the suckling ileum. During the suckling period, the Dab2 mRNA levels measured in the enterocytes and crypts and those of the 96-kDa Dab2 isoform are greater in the ileum than in the jejunum. No segmental differences are observed in the adult intestine. In the intestine, the levels of Dab2 mRNA and those of the 96-kDa Dab2 isoform decrease to adult values at weaning, whereas in the kidney they increase with development. Weaning the pups on a commercial milk diet slows the periweaning decline in the levels of Dab2 mRNA in the crypts and of those of the 96-kDa isoform. This is the first report showing that the 96-kDa Dab2 isoform is expressed at the apical domain of rat small intestine, that ontogeny regulates Dab2 gene expression in intestine and kidney and that retarding weaning affects intestinal Dab2 gene expression.

  3. Identification and characterization of two ankyrin-B isoforms in mammalian heart

    PubMed Central

    Wu, Henry C.; Yamankurt, Gokay; Luo, JiaLie; Subramaniam, Janani; Hashmi, Syed Shahrukh; Hu, Hongzhen; Cunha, Shane R.

    2015-01-01

    Aims Excitation–contraction coupling in cardiomyocytes requires the proper targeting and retention of membrane proteins to unique domains by adaptor proteins like ankyrin-B. While ankyrin-B has been shown to interact with a variety of membrane and structural proteins located at different subcellular domains in cardiomyocytes, what regulates the specificity of ankyrin-B for particular interacting proteins remains elusive. Methods and results Here, we report the identification of two novel ankyrin-B isoforms AnkB-188 and AnkB-212 in human, rat, and mouse hearts. Novel cDNAs for both isoforms were isolated by long-range PCR of reverse-transcribed mRNA isolated from human ventricular tissue. The isoforms can be discriminated based on their function and subcellular distribution in cardiomyocytes. Heterologous overexpression of AnkB-188 increases sodium–calcium exchanger (NCX) membrane expression and current, while selective knockdown of AnkB-188 in cardiomyocytes reduces NCX expression and localization in addition to causing irregular contraction rhythms. Using an isoform-specific antibody, we demonstrate that the expression of AnkB-212 is restricted to striated muscles and is localized to the M-line of cardiomyocytes by interacting with obscurin. Selective knockdown of AnkB-212 significantly attenuates the expression of endogenous ankyrin-B at the M-line but does not disrupt NCX expression at transverse tubules in cardiomyocytes. Conclusion The identification and characterization of two functionally distinct ankyrin-B isoforms in heart provide compelling evidence that alternative splicing of the ANK2 gene regulates the fidelity of ankyrin-B interactions with proteins. PMID:26109584

  4. Fiber-specific regulation of Ca(2+)-ATPase isoform expression by thyroid hormone in rat skeletal muscle.

    PubMed

    van der Linden, C G; Simonides, W S; Muller, A; van der Laarse, W J; Vermeulen, J L; Zuidwijk, M J; Moorman, A F; van Hardeveld, C

    1996-12-01

    We studied the effect of thyroid hormone (3,5,3'-triiodo-L-thyronine, T3) on the expression of sarcoplasmic reticulum (SR) fast- and slow-type Ca(2+)-ATPase isoforms, SERCA1 and SERCA2a, respectively, and total SR Ca(2+)-ATPase activity in rat skeletal muscle. Cross sections and homogenates of soleus and extensor digitorum longus muscles from hypo-, eu-, and hyperthyroid rats were examined, and expression of Ca(2+)-ATPase isoforms in individual fibers was compared with expression of fast (MHC II) and slow (MHC I) myosin heavy chain isoforms. In both muscles, T3 induced a coordinated and full conversion to a fast-twitch phenotype in one-half of the fibers that were slow twitch in the absence of T3. The conversion was partial in the other one-half of the fibers, giving rise to a mixed phenotype. The stimulation by T3 of total SERCA expression in all fibers was reflected by increased SR Ca(2+)-ATPase activity. The time course of the T3-induced changes of SERCA isoform expression was examined 1-14 days after the start of daily T3 treatment of euthyroid rats. SERCA1 expression was stimulated by T3 at a pretranslational level in all fibers. SERCA2a mRNA expression was transiently stimulated and disappeared in a subset of fibers. In these fibers SR Ca(2+)-ATPase activity was high because of high SERCA1 protein levels. These data suggest that the ultimate downregulation of SERCA2a expression, which is always associated with high SR Ca(2+)-ATPase activities, occurs at a pretranslational level.

  5. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    PubMed

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  6. Associations of Circulating CXCR3-PD-1+CD4+T cells with Disease Activity of Systemic Lupus Erythematosus.

    PubMed

    Lei, Han; Xue, Yang; Yiyun, Yu; Weiguo, Wan; Ling, Lv; Zou, Hejian

    2018-04-25

    Which helper CD4 + T cell subset contributes to autoantibodies generation and severity of end-organ involvement in lupus patients remains to be explored. Our research aims to investigate the roles of circulating Tfh (cTfh) cell subsets and corresponding CXCR5 - Th cells in lupus patients and their correlation with SLEDAI. Peripheral blood mononuclear cells (PBMCs) were isolated from blood of SLE patients as well as healthy donors. The proportion of Th cell Subsets classified from cell surface markers (CD45RO, CXCR5, CXCR3, CCR6, PD-1, ICOS, and CCR7) is detected by flow cytometry. We found no difference in the frequency of CD45RO + CXCR5 + CD4 + T cells between SLE patients and health controls. As previous reported, SLE patients showed an increase in the percentage of CXCR5 + PD-1 + , CXCR5 + ICOS + PD-1 + and CXCR5 + CCR7 lo PD-1 hi cTfh subset, however, none of these populations had correlation with SLEDAI. Therefore, we further investigated the CXCR5 - subsets, and surprisingly we found that the frequency of CXCR3 - PD-1 + subset was correlated with SLEDAI, ds-DNA IgG, anti-nucleosome antibody, C3, and C4 independent of CXCR5. Consistently, CXCR3 - PD-1 + CD45RO + CD4 + T cells expressed factors associated with B-cell-help for the autoantibody production. CXCR3 - PD-1 + CD4 + T cells are a sensitive indicator to assess SLE disease activity and might contribute B cell help and the generation of autoantibodies in patients.

  7. Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates.

    PubMed

    Shikhagaie, Medya Mara; Björklund, Åsa K; Mjösberg, Jenny; Erjefält, Jonas S; Cornelissen, Anne S; Ros, Xavier Romero; Bal, Suzanne M; Koning, Jasper J; Mebius, Reina E; Mori, Michiko; Bruchard, Melanie; Blom, Bianca; Spits, Hergen

    2017-02-14

    Here, we characterize a subset of ILC3s that express Neuropilin1 (NRP1) and are present in lymphoid tissues, but not in the peripheral blood or skin. NRP1 + group 3 innate lymphoid cells (ILC3s) display in vitro lymphoid tissue inducer (LTi) activity. In agreement with this, NRP1 + ILC3s are mainly located in proximity to high endothelial venules (HEVs) and express cell surface molecules involved in lymphocyte migration in secondary lymphoid tissues via HEVs. NRP1 was also expressed on mouse fetal LTi cells, indicating that NRP1 is a conserved marker for LTi cells. Human NRP1 + ILC3s are primed cells because they express CD45RO and produce higher amounts of cytokines than NRP1 - cells, which express CD45RA. The NRP1 ligand vascular endothelial growth factor A (VEGF-A) served as a chemotactic factor for NRP1 + ILC3s. NRP1 + ILC3s are present in lung tissues from smokers and patients with chronic obstructive pulmonary disease, suggesting a role in angiogenesis and/or the initiation of ectopic pulmonary lymphoid aggregates. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity

    PubMed Central

    Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A.; Richter, Andreas S.; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland

    2015-01-01

    A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer. PMID:25514598

  9. Tenascin-C is associated with coronary plaque instability in patients with acute coronary syndromes.

    PubMed

    Kenji, Kajiwara; Hironori, Ueda; Hideya, Yamamoto; Michinori, Imazu; Yasuhiko, Hayashi; Nobuoki, Kohno

    2004-03-01

    Tenascin-C (TNC) is an extracellular matrix glycoprotein that increases after inflammation and injury. In cultured cells TNC has been reported to markedly induce the expression of matrix metalloproteinase-9, which stimulates collagen degradation in the fibrous cap of human atherosclerotic plaque. Immunohistochemical techniques were used to analyze the expression of TNC protein in 51 coronary atherectomy specimens obtained from patients with stable angina pectoris (SAP, n=23) or acute coronary syndromes (ACS) (n=28; unstable angina pectoris, n=20, acute myocardial infarction, n=8). Immunostaining for alpha-smooth muscle actin, CD68, CD45, and CD31 was also performed in serial sections to identify the cell types that express TNC protein. The %TNC + area (percentage of the area of immunostaining for TNC protein in the total surface area of the plaque) was larger in coronary samples with the plaque characteristics of thrombus, angiogenesis, intraplaque hemorrhage, and macrophage (CD68(+)), and lymphocyte (CD45 (+)) clusters than in coronary samples without them (52+/-3.4 vs 39+/-4.8, p<0.05; 57+/-3.7 vs 36+/-3.7, p<0.01; 51+/-3.6 vs 39+/-4.8, p<0.05; 53+/-3.4 vs 33+/-4.5, p<0.01; 56+/-4.1 vs 37+/-3.6, p<0.01, respectively). The presence of other components, such as dense fibrous tissue, neointimal hyperplasia, atheromatous gruel and calcification, was not significantly correlated with the %TNC + area. The %TNC + area was larger in coronary samples from patients with ACS than in samples from patients with SAP (56+/-3.2% vs 34+/-4.3%, p<0.01). The results suggest that TNC may have specific functions in coronary plaque formation and may be involved in the pathogenesis of coronary lesions in ACS.

  10. Intestinal double-positive CD4+CD8+ T cells of neonatal rhesus macaques are proliferating, activated memory cells and primary targets for SIVMAC251 infection

    PubMed Central

    Wang, Xiaolei; Das, Arpita; Lackner, Andrew A.; Veazey, Ronald S.

    2008-01-01

    Peripheral blood and thymic double-positive (DP) CD4+CD8+ T cells from neonates have been described earlier, but the function and immunophenotypic characteristics of other tissue-derived DP T cells are not clearly understood. Here, we demonstrate the functional and immunophenotypic characteristics of DP cells in 6 different tissues, including thymus from normal neonatal rhesus macaques (Macaca mulatta) between 0 and 21 days of age. In general, intestinal DP T cells of neonates have higher percentages of memory markers (CD28+CD95+CD45RAlowCD62Llow) and proliferation compared with single-positive (SP) CD4+ and CD8+ T cells. In addition, percentages of DP T cells increase and CD62L expression decreases as animals mature, suggesting that DP cells mature and proliferate with maturity and/or antigen exposure. Consistent with this, intestinal DP T cells in neonates express higher levels of CCR5 and are the primary targets in simian immunodeficiency virus (SIV) infection. Finally, DP T cells produce higher levels of cytokine in response to mitogen stimulation compared with SP CD4+ or CD8+ T cells. Collectively, these findings demonstrate that intestinal DP T cells of neonates are proliferating, activated memory cells and are likely involved in regulating immune responses, in contrast to immature DP T cells in the thymus. PMID:18820133

  11. Evaluation of membrane-bound and soluble forms of human leucocyte antigen-G in systemic sclerosis.

    PubMed

    Contini, P; Negrini, S; Murdaca, G; Borro, M; Puppo, F

    2018-04-16

    Systemic sclerosis (SSc) is a complex disease characterized by immune dysregulation, extensive vascular damage and widespread fibrosis. Human leucocyte antigen-G (HLA-G) is a non-classic class I major histocompatibility complex (MHC) molecule characterized by complex immunomodulating properties. HLA-G is expressed on the membrane of different cell lineages in both physiological and pathological conditions. HLA-G is also detectable in soluble form (sHLA-G) deriving from the shedding of surface isoforms (sHLA-G1) or the secretion of soluble isoforms (HLA-G5). Several immunosuppressive functions have been attributed to both membrane-bound and soluble HLA-G molecules. The plasma levels of sHLA-G were higher in SSc patients (444·27 ± 304·84 U/ml) compared to controls (16·74 ± 20·58 U/ml) (P < 0·0001). The plasma levels of transforming growth factor (TGF)-β were higher in SSc patients (18 937 ± 15 217 pg/ml) compared to controls (11 099 ± 6081 pg/ml; P = 0·003), and a significant correlation was found between TGF-β and the plasma levels of total sHLA-G (r = 0·65; P < 0·01), sHLA-G1 (r = 0·60; P = 0·003) and HLA-G5 (r = 0·47; P = 0·02). The percentage of HLA-G-positive monocytes (0·98 ± 1·72), CD4 + (0·37 ± 0·68), CD8 + (2·05 ± 3·74) and CD4 + CD8 + double-positive cells (14·53 ± 16·88) was higher in SSc patients than in controls (0·11 ± 0·08, 0·01 ± 0·01, 0·01 ± 0·01 and 0·39 ± 0·40, respectively) (P < 0·0001). These data indicate that in SSc the secretion and/or shedding of soluble HLA-G molecules and the membrane expression of HLA-G by peripheral blood mononuclear cells (PBMC) is clearly elevated, suggesting an involvement of HLA-G molecules in the immune dysregulation of SSc. © 2018 British Society for Immunology.

  12. Thiorphan-induced survival and proliferation of rat thymocytes by activation of Akt/survivin pathway and inhibition of caspase-3 activity.

    PubMed

    Amantini, Consuelo; Mosca, Michela; Lucciarini, Roberta; Perfumi, Marina Cecilia; Santoni, Giorgio

    2008-10-01

    The activity of substance P (SP) in the rat thymus seems to be tightly controlled by its bioavailability. In this study, we provide evidence for the expression of the SP-degrading enzyme, neutral endopeptidase (NEP)/CD10, by rat thymocyte subsets, and we illustrate its involvement in the in vivo SP/neurokinin-1 receptor (NK(1)R)-mediated regulation of thymocyte survival and proliferation. NEP/CD10 was expressed at both mRNA and protein levels on a substantial portion (45.5%) of CD5(+) thymocytes, namely on the CD4(+)CD8(+) (double positive; DP) and CD4(+) subsets. Continuous administration of thiorphan, a specific NEP/CD10 inhibitor, by means of miniosmotic pumps, enhanced rat thymocyte preprotachykinin-A (PPT-A) and NK(1)R mRNA expression as well as SP and NK(1)R protein levels in an NK(1)R-dependent manner. Thiorphan increased CD10(+)CD4(+) and CD10(+)DP thymocyte numbers, and an NK(1)R antagonist, (S)1-{2-[3(3-4-dichlorophenyl)-1-(3-iso-propoxyphenylacetyl)-piperidine-3-yl]ethyl}-4-pheny-1-azoniabicyclo[2.2.2]octane, chloride (SR140333), abrogated these stimulatory effects. In addition, the NEP/CD10 inhibitor stimulated interleukin (IL)-2 production, IL-2 receptor alpha chain expression, and concanavalin A-induced proliferation of CD5(+) thymocytes, and it inhibited spontaneous and NK(1)R-dependent thymocyte apoptosis. The thiorphan-protective antiapoptotic and proliferative effects involved the activation of Akt serine-threonine kinase, subsequent up-regulation of survivin mRNA, down-regulation of procaspase-3 mRNA levels, and suppression of caspase-3 activity, which were inhibited by SR140333 and mimicked by exogenous SP administration. Overall, our findings suggest that by controlling SP availability, NEP/CD10 negatively regulates thymocyte homeostasis and development.

  13. Serum amyloid A isoforms in serum and synovial fluid from spontaneously diseased dogs with joint diseases or other conditions.

    PubMed

    Kjelgaard-Hansen, Mads; Christensen, Michelle B; Lee, Marcel H; Jensen, Asger L; Jacobsen, Stine

    2007-06-15

    Serum amyloid A (SAA) is a major acute phase protein in dogs. However, knowledge of qualitative properties of canine SAA and extent of its synthesis in extrahepatic tissues is limited. The aim of the study was to investigate expression of different SAA isoforms in serum and synovial fluid in samples obtained from dogs (n=16) suffering from different inflammatory or non-inflammatory conditions, which were either related or unrelated to joints. Expression of SAA isoforms was visualized by denaturing isoelectric focusing and Western blotting. Serum amyloid A was present in serum from all dogs with systemic inflammatory activity, and up to four major isoforms with apparent isoelectric points between 6.1 and 7.9 were identified. In synovial fluid from inflamed joints one or more highly alkaline SAA isoforms (with apparent isoelectric points above 9.3) were identified, with data suggesting local production of these isoforms in the canine inflamed joint.

  14. Dual function of the UNC-45b chaperone with myosin and GATA4 in cardiac development

    PubMed Central

    Chen, Daisi; Li, Shumin; Singh, Ram; Spinette, Sarah; Sedlmeier, Reinhard; Epstein, Henry F.

    2012-01-01

    Summary Cardiac development requires interplay between the regulation of gene expression and the assembly of functional sarcomeric proteins. We report that UNC-45b recessive loss-of-function mutations in C3H and C57BL/6 inbred mouse strains cause arrest of cardiac morphogenesis at the formation of right heart structures and failure of contractile function. Wild-type C3H and C57BL/6 embryos at the same stage, E9.5, form actively contracting right and left atria and ventricles. The known interactions of UNC-45b as a molecular chaperone are consistent with diminished accumulation of the sarcomeric myosins, but not their mRNAs, and the resulting decreased contraction of homozygous mutant embryonic hearts. The novel finding that GATA4 accumulation is similarly decreased at the protein but not mRNA levels is also consistent with the function of UNC-45b as a chaperone. The mRNAs of known downstream targets of GATA4 during secondary cardiac field development, the cardiogenic factors Hand1, Hand2 and Nkx-2.5, are also decreased, consistent with the reduced GATA4 protein accumulation. Direct binding studies show that the UNC-45b chaperone forms physical complexes with both the alpha and beta cardiac myosins and the cardiogenic transcription factor GATA4. Co-expression of UNC-45b with GATA4 led to enhanced transcription from GATA promoters in naïve cells. These novel results suggest that the heart-specific UNC-45b isoform functions as a molecular chaperone mediating contractile function of the sarcomere and gene expression in cardiac development. PMID:22553207

  15. Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro.

    PubMed

    Suwala, Abigail Kora; Koch, Katharina; Rios, Dayana Herrera; Aretz, Philippe; Uhlmann, Constanze; Ogorek, Isabella; Felsberg, Jörg; Reifenberger, Guido; Köhrer, Karl; Deenen, René; Steiger, Hans-Jakob; Kahlert, Ulf D; Maciaczyk, Jaroslaw

    2018-04-27

    Glioblastoma is the most aggressive type of glioma. The Wingless (Wnt) signaling pathway has been shown to promote stem cell properties and resistance to radio- and chemotherapy in glioblastoma. Here, we demonstrate that pharmacological Wnt pathway inhibition using the porcupine inhibitor LGK974 acts synergistically with temozolomide (TMZ), the chemotherapeutic drug currently used as standard treatment for glioblastoma, to suppress in vitro growth of glioma cells. Synergistic growth inhibition was independent of the O 6 -alkylguanine DNA alkyltransferase ( MGMT ) promoter methylation status. Transcriptomic analysis revealed that expression of aldehyde dehydrogenase 3A1 ( ALDH3A1 ) was significantly down-regulated when cells were treated with LGK974 and TMZ. Suppressing ALDH3A1 expression increased the efficacy of TMZ and reduced clonogenic potential accompanied by decreased expression of stem cell markers CD133, Nestin and Sox2. Taken together, our study suggests that previous observations concerning Wnt signaling blockade to reduce chemoresistance in glioblastoma is at least in part mediated by inhibition of ALDH3A1.

  16. Expression of myosin heavy chain isoforms mRNA transcripts in the temporalis muscle of common chimpanzees (Pan troglodytes).

    PubMed

    Ciurana, Neus; Artells, Rosa; Muñoz, Carmen; Arias-Martorell, Júlia; Bello-Hellegouarch, Gaëlle; Casado, Aroa; Cuesta, Elisabeth; Pérez-Pérez, Alejandro; Pastor, Juan Francisco; Potau, Josep Maria

    2017-11-01

    The common chimpanzee (Pan troglodytes) is the primate that is phylogenetically most closely related to humans (Homo sapiens). In order to shed light on the anatomy and function of the temporalis muscle in the chimpanzee, we have analyzed the expression patterns of the mRNA transcripts of the myosin heavy chain (MyHC) isoforms in different parts of the muscle. We dissected the superficial, deep and sphenomandibularis portions of the temporalis muscle in five adult P. troglodytes and quantified the expression of the mRNA transcripts of the MyHC isoforms in each portion using real-time quantitative polymerase chain reaction. We observed significant differences in the patterns of expression of the mRNA transcripts of the MyHC-IIM isoform between the sphenomandibularis portion and the anterior superficial temporalis (33.6% vs 47.0%; P=0.032) and between the sphenomandibularis portion and the anterior deep temporalis (33.6% vs 43.0; P=0.016). We also observed non-significant differences between the patterns of expression in the anterior and posterior superficial temporalis. The differential expression patterns of the mRNA transcripts of the MyHC isoforms in the temporalis muscle in P. troglodytes may be related to the functional differences that have been observed in electromyographic studies in other species of primates. Our findings can be applicable to the fields of comparative anatomy, evolutionary anatomy, and anthropology. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Oligodendrocytes in brain and optic nerve express the beta3 subunit isoform of Na,K-ATPase.

    PubMed

    Martín-Vasallo, P; Wetzel, R K; García-Segura, L M; Molina-Holgado, E; Arystarkhova, E; Sweadner, K J

    2000-09-01

    The Na,K-ATPase, which catalyzes the active transport of Na(+) and K(+), has two principal subunits (alpha and beta) that have several genetically distinct isoforms. Most of these isoforms are expressed in the nervous system, but certain ones are preferentially expressed in glia and others in neurons. Of the beta isoforms, beta1 predominates in neurons and beta2 in astrocytes, although there are some exceptions. Here we demonstrate that beta3 is expressed in rat and mouse white matter oligodendrocytes. Immunofluorescence microscopy identified beta3 in oligodendrocytes of rat brain white matter in typical linear arrays of cell bodies between fascicles of axons. The intensity of stain peaked at 20 postnatal days. beta3 was identified in cortical oligodendrocytes grown in culture, where it was expressed in processes and colocalized with antibody to galactocerebroside. In the mouse and rat optic nerve, beta3 stain was seen in oligodendrocytes, where it colocalized with carbonic anhydrase II. For comparison, optic nerve was stained for the beta1 and beta2 subunits, showing distinct patterns of labelling of axons (beta1) and astrocytes (beta2). The C6 glioma cell line was also found to express the beta3 isoform preferentially. Since beta3 was not found at detectable levels in astrocytes, this suggests that C6 is closer to oligodendrocytes than astrocytes in the glial cell lineage. Copyright 2000 Wiley-Liss, Inc.

  18. Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors

    PubMed Central

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Askew, Charles; Garrige, Suneetha; Gratton, Michael Anne; Rothermund-Franklin, Christie A.; Cosgrove, Dominic

    2009-01-01

    The Usher syndrome 3A (CLRN1) gene encodes clarin-1, which is a member of the tetraspanin family of transmembrane proteins. Although identified more than 6 years ago, little is known about its localization or function in the eye and ear. We developed a polyclonal antibody that react with all clarin-1 isoforms and used it to characterize protein expression in cochlea and retina. In the cochlea, we observe clarin-1expression in the stereocilia of P0 mice, and in synaptic terminals present at the base of the auditory hair cells from E18 to P6. In the retina, clarin-1 localizes to the connecting cilia, inner segment of photoreceptors and to the ribbon synapses. RT-PCR from P0 cochlea and P28 retina show mRNAs encoding only isoforms 2 and 3. Western-blots show that only isoform 2 is present in protein extracts from these same tissues. We examined clarin-1 expression in the immortomouse-derived hair cell line UB/OC-1. Only isoform 2 is expressed in UB/OC-1 at both mRNA and protein levels, suggesting this isoform is biologically relevant to hair cell function. The protein co-localizes with microtubules and post-transgolgi vesicles. The sub-cellular localization of clarin-1 in hair cells and photoreceptors suggests it functions at both the basal and apical poles of neurosensoriepithelia. PMID:19539019

  19. Human umbilical cord blood-derived f-macrophages retain pluripotentiality after thrombopoietin expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yong; Mazzone, Theodore

    2005-11-01

    We have previously characterized a new type of stem cell from human peripheral blood, termed fibroblast-like macrophage (f-M{phi}). Here, using umbilical cord blood as a source, we identified cells with similar characteristics including expression of surface markers (CD14, CD34, CD45, CD117, and CD163), phagocytosis, and proliferative capacity. Further, thrombopoietin (TPO) significantly stimulated the proliferation of cord blood-derived f-M{phi} (CB f-M{phi}) at low dosage without inducing a megakaryocytic phenotype. Additional experiments demonstrated that TPO-expanded cord blood-derived f-M{phi} (TCB f-M{phi}) retained their surface markers and differentiation ability. Treatment with vascular endothelial cell growth factor (VEGF) gave rise to endothelial-like cells, expressing Flt-1,more » Flk-1, von Willebrand Factor (vWF), CD31, acetylated low density lipoprotein internalization, and the ability to form endothelial-like cell chains. In the presence of lipopolyssacharide (LPS) and 25 mM glucose, the TCB f-M{phi} differentiated to express insulin mRNA, C-peptide, and insulin. In vitro functional analysis demonstrated that these insulin-positive cells could release insulin in response to glucose and other secretagogues. These findings demonstrate a potential use of CB f-M{phi} and may lead to develop new therapeutic strategy for treating dominant disease.« less

  20. The Short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction

    PubMed Central

    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, E lizabeth M.; da Cunha, Andre Pires; Flak, Magdalena B.; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, J anelle C.; Dery, Ken J.; Nagaishi, Takashi; Beauchemin, Nicole; Holmes, Kathryn V.; Ho, Joshua W. K.; Shively, John E.; Jobin, Christian; Onderdonk, Andrew B.; Bry, Lynn; Weiner, Howard L.; Higgins, Darren E.; Blumberg, Richard S.

    2012-01-01

    Summary Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens. PMID:23123061

Top