An, Susun; Kim, Seoyoung; Huh, Yong; Lee, Tae Ryong; Kim, Han-Kon; Park, Kui-Lea; Eun, Hee Chul
2009-04-01
Evaluation of skin sensitization potential is an important part of the safety assessment of cosmetic ingredients and topical drugs. Recently, evaluation of changes in surface marker expression induced in dendritic cells (DC) or DC surrogate cell lines following exposure to chemicals represents one approach for in vitro test methods. The study aimed to test the change of expression patterns of surface markers on THP-1 cells by chemicals as a predictive in vitro method for contact sensitization. We investigated the expression of CD54, CD86, CD83, CD80, and CD40 after a 1-day exposure to sensitizers (1-chloro-2,4-dinitrobenzene; 2,4-dinitrofluorobenzene; benzocaine; 5-chloro-2-methyl-4-isothiazolin-3-one; hexyl cinnamic aldehyde; eugenol; nickel sulfate hexahydrate; potassium dichromate; cobalt sulfate; 2-mercaptobenzothiazole; and ammonium tetrachloroplatinate) and non-sensitizers (sodium lauryl sulfate, benzalkonium chloride, lactic acid, salicylic acid, isopropanol, and dimethyl sulphoxide). The test concentrations were 0.1x, 0.5x, and 1x of the 50% inhibitory concentration, and the relative fluorescence intensity was used as an expression indicator. By evaluating the expression patterns of CD54, CD86, and CD40, we could classify the chemicals as sensitizers or non-sensitizers, but CD80 and CD83 showed non-specific patterns of expression. These data suggest that the THP-1 cells are good model for screening contact sensitizers and CD40 could be a useful marker complementary to CD54 and CD86.
Acidic conditions induce the suppression of CD86 and CD54 expression in THP-1 cells.
Mitachi, Takafumi; Mezaki, Minori; Yamashita, Kunihiko; Itagaki, Hiroshi
2018-01-01
To evaluate the sensitization potential of chemicals in cosmetics, using non-animal methods, a number of in vitro safety tests have been designed. Current assays are based on the expression of cell surface markers, such as CD86 and CD54, which are associated with the activation of dendritic cells, in skin sensitization tests. However, these markers are influenced by culture conditions through activating danger signals. In this study, we investigated the relationship between extracellular pH and the expression of the skin sensitization test human cell line activation test (h-CLAT) markers CD86 and CD54. We measured expression levels after THP-1 cells were exposed to representative contact allergens, i.e., 2,4-dinitrochlorobenzene and imidazolidinyl urea, under acidic conditions. These conditions were set by exposure to hydrochloric acid, lactic acid, and citric acid. An acidic extracellular pH (6-7) suppressed the augmentation of CD86 and CD54 levels by the sensitizer. Additionally, when the CD86/CD54 expression levels were suppressed, a reduction in the intracellular pH was confirmed. Furthermore, we observed that Na + /H + exchanger 1 (NHE-1), a protein that contributes to the regulation of extracellular/intracellular pH, is involved in CD86 and CD54 expression. These findings suggest that the extracellular/intracellular pH has substantial effects on in vitro skin sensitization markers and should be considered in evaluations of the safety of mixtures and commercial products in the future.
Diao, Yingying; Geng, Wenqing; Fan, Xuejie; Cui, Hualu; Sun, Hong; Jiang, Yongjun; Wang, Yanan; Sun, Amy; Shang, Hong
2015-08-19
During early HIV-1 infection (EHI), the interaction between the immune response and the virus determines disease progression. Although CD1c + myeloid dendritic cells (mDCs) can trigger the immune response, the relationship between CD1c + mDC alteration and disease progression has not yet been defined. EHI changes in CD1c + mDC counts, surface marker (CD40, CD86, CD83) expression, and IL-12 secretion were assessed by flow cytometry in 29 patients. When compared with the normal controls, patients with EHI displayed significantly lower CD1c + mDC counts and IL-12 secretion and increased surface markers. CD1c + mDC counts were positively correlated with CD4+ T cell counts and inversely associated with viral loads. IL-12 secretion was only positively associated with CD4+ T cell counts. Rapid progressors had lower counts, CD86 expression, and IL-12 secretion of CD1c + mDCs comparing with typical progressors. Kaplan-Meier analysis and Cox regression models suggested patients with low CD1c + mDC counts (<10 cells/μL) had a 4-fold higher risk of rapid disease progression than those with high CD1c + mDC counts. However, no relationship was found between surface markers or IL-12 secretion and disease progression. During EHI, patients with low CD1c + mDC counts were more likely to experience rapid disease progression than those with high CD1c + mDC counts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulette, Ben C.; Ryan, Cindy A.; Gildea, Lucy A.
2005-12-01
Human peripheral blood-derived dendritic cells (DC) respond to a variety of chemical allergens by up-regulating expression of the co-stimulatory molecule CD86. It has been postulated that this measure might provide the basis for an in vitro alternative approach for the identification of skin sensitizing chemicals. We recently reported that DC, exposed in culture to the highest non-cytotoxic concentrations of various chemical allergens, displayed marginal up-regulation of membrane CD86 expression; the interpretation being that such changes were insufficiently sensitive for the purposes of hazard identification. For the work presented here, immature DC were derived from human monocytes and treated with themore » chemical allergens 2,4-dinitrobenzenesulfonic acid (DNBS), nickel sulfate (NiSO{sub 4}), p-phenylenediamine (PPD), Bandrowski's base (BB), hydroquinone (HQ) and propyl gallate (PG) for 48 h at concentrations which induced both no to slight to moderate cytotoxicity. For comparison, DC were treated with the irritants sodium dodecyl sulfate (SDS), benzoic acid (BA), and benzalkonium chloride (BZC) at concentrations resulting in comparable levels of cytotoxicity. CD86 expression, as measured by flow cytometry, was consistently up-regulated (ranging from 162 to 386% control) on DC treated with concentrations of chemical allergens that induced approximately 10-15% cytotoxicity. The irritants BA and BZC did not induce up-regulation of CD86 expression when tested at concentrations that induced similar levels of cytotoxicity. SDS, however, up-regulated CD86 expression to 125-138% of control in 2/4 preparations when tested at concentrations which induced similar toxicity. Our results confirm that chemical allergens up-regulate CD86 expression on blood-derived DC and illustrate further that up-regulation of CD86 surface marker expression is more robust when DC are treated with concentrations of chemical allergen that induce slight to moderate cytotoxicity.« less
Lynch, James T; Cockerill, Mark J; Hitchin, James R; Wiseman, Daniel H; Somervaille, Tim C P
2013-11-01
There is a lack of rapid cell-based assays that read out enzymatic inhibition of the histone demethylase LSD1 (lysine-specific demethylase 1). Through transcriptome analysis of human acute myeloid leukemia THP1 cells treated with a tranylcypromine-derivative inhibitor of LSD1 active in the low nanomolar range, we identified the cell surface marker CD86 as a sensitive surrogate biomarker of LSD1 inhibition. Within 24h of enzyme inhibition, there was substantial and dose-dependent up-regulation of CD86 expression, as detected by quantitative polymerase chain reaction, flow cytometry, and enzyme-linked immunosorbent assay. Thus, the use of CD86 expression may facilitate screening of compounds with putative LSD1 inhibitory activities in cellular assays. Copyright © 2013 Elsevier Inc. All rights reserved.
Sakaguchi, Hitoshi; Miyazawa, Masaaki; Yoshida, Yukiko; Ito, Yuichi; Suzuki, Hiroyuki
2007-02-01
Preservatives are important components in many products, but have a history of purported allergy. Several assays [e.g., guinea pig maximization test (GPMT), local lymph node assay (LLNA)] are used to evaluate allergy potential of preservatives. We recently developed the human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test using human THP-1 cells. This test evaluates the augmentation of CD86 and CD54 expression, which are key events in the sensitization process, as an indicator of allergy following treatment with test chemical. Earlier, we found that a sub-toxic concentration was needed for the up-regulation of surface marker expression. In this study, we further evaluate the capability of h-CLAT to predict allergy potential using eight preservatives. Cytotoxicity was determined using propidium iodide with flow cytometry analysis and five doses that produce a 95, 85, 75, 65, and 50% cell viability were selected. If a material did not have any cytotoxicity at the highest technical dose (HTD), five doses are set using serial 1.3 dilutions of the HTD. The test materials used were six known allergic preservatives (e.g., methylchloroisothiazolinone/methylisothiazolinone, formaldehyde), and two non-allergic preservatives (methylparaben and 4-hydroxybenzoic acid). All allergic preservatives augmented CD86 and/or CD54 expression, indicating h-CLAT correctly identified the allergens. No augmentation was observed with the non-allergic preservatives; also correctly identified by h-CLAT. In addition, we report two threshold concentrations that may be used to categorize skin sensitization potency like the LLNA estimated concentration that yield a three-fold stimulation (EC3) value. These corresponding values are the estimated concentration which gives a relative fluorescence intensity (RFI) = 150 for CD86 and an RFI = 200 for CD54. These data suggest that h-CLAT, using THP-1 cells, may be able to predict the allergy potential of preservatives and possibility classify the potency of an allergen.
Iida, Ryuji; Welner, Robert S.; Zhao, Wanke; Alberola-lla, José; Medina, Kay L.; Zhao, Zhizhuang Joe; Kincade, Paul W.
2014-01-01
Although extremely rare, hematopoietic stem cells (HSCs) are divisible into subsets that differ with respect to differentiation potential and cell surface marker expression. For example, we recently found that CD86− CD150+ CD48− HSCs have limited potential for lymphocyte production. This could be an important new tool for studying hematological abnormalities. Here, we analyzed HSC subsets with a series of stem cell markers in JAK2V617F transgenic (Tg) mice, where the mutation is sufficient to cause myeloproliferative neoplasia with lymphocyte deficiency. Total numbers of HSC were elevated 3 to 20 fold in bone marrow of JAK2V617F mice. Careful analysis suggested the accumulation involved multiple HSC subsets, but particularly those characterized as CD150HI CD86− CD18L°CD41+ and excluding Hoechst dye. Real-Time PCR analysis of their HSC revealed that the erythropoiesis associated gene transcripts Gata1, Klf1 and Epor were particularly high. Flow cytometry analyses based on two differentiation schemes for multipotent progenitors (MPP) also suggested alteration by JAK2 signals. The low CD86 on HSC and multipotent progenitors paralleled the large reductions we found in lymphoid progenitors, but the few that were produced functioned normally when sorted and placed in culture. Either of two HSC subsets conferred disease when transplanted. Thus, flow cytometry can be used to observe the influence of abnormal JAK2 signaling on stem and progenitor subsets. Markers that similarly distinguish categories of human HSCs might be very valuable for monitoring such conditions. They could also serve as indicators of HSC fitness and suitability for transplantation. PMID:24699465
Ayehunie, Seyoum; Snell, Maureen; Child, Matthew; Klausner, Mitchell
2009-01-01
A predictive allergenicity test system for assessing the contact allergenicity of chemicals is needed by the cosmetic and pharmaceutical industry to monitor product safety in the marketplace. Development of such non-animal alternative assay systems for skin sensitization and hazard identification has been pursued by policy makers and regulatory agencies. We investigated whether phenotypic and functional changes to a subset of dendritic cells (DC), plasmacytoid DC (pDC), could be used to identify contact allergens. To achieve this goal, normal human DC were generated from CD34+ progenitor cells and cryopreserved. Frozen DC were thawed and the pDC fraction (CD123+/CD11c-) was harvested using FACS sorting. The pDC were cultured, expanded, and exposed to chemical allergens (N=26) or non-allergens (N=22). Concentrations of each chemical that resulted in >50% viability was determined using FACS analysis of propidium iodide stained cells using pDC from 2-5 donors. Expression of the surface marker, CD86, which has been implicated in dendritic cell maturation, was used as a marker of allergenicity. CD86 expression increased (≥ 1.5 fold) for 25 of 26 allergens (sensitivity = 96%) but did not increase for 19 of 22 non-allergens (specificity = 86%). In a direct comparison to historical data for the regulatory approved, mouse local lymph node assay (LLNA) for 23 allergens and 22 non-allergens, the pDC method had sensitivity and specificity of 96% and 86%, respectively, while the sensitivity and specificity of the LLNA assay was 83% and 82%, respectively. In conclusion, CD86 expression in pDC appears to be a sensitive and specific indicator to identify contact allergenicity. Such an assay method utilizing normal human cells will be useful for high throughput screening of chemicals for allergenicity. PMID:19665512
Zhou, Zhong'e; Tang, Yong; Chen, Chengjun; Lu, Yi; Liu, Liang
2016-01-01
Advanced glycation end products (AGEs) are major inflammatory mediators in diabetes, affecting atherosclerosis progression via macrophages. Metformin slows diabetic atherosclerosis progression through mechanisms that remain to be fully elucidated. The present study of murine bone marrow derived macrophages showed that (1) AGEs enhanced proinflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)) mRNA expression, RAGE expression, and NFκB activation; (2) metformin pretreatment inhibited AGEs effects and AGEs-induced cluster designation 86 (CD86) (M1 marker) expression, while promoting CD206 (M2 marker) surface expression and anti-inflammatory cytokine (IL-10) mRNA expression; and (3) the AMPK inhibitor, Compound C, attenuated metformin effects. In conclusion, metformin inhibits AGEs-induced inflammatory response in murine macrophages partly through AMPK activation and RAGE/NFκB pathway suppression. PMID:27761470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azam, Philippe; Peiffer, Jean-Luc; Chamousset, Delphine
2006-04-01
Langerhans cells (LC) are key mediators of contact allergenicity in the skin. However, no in vitro methods exist which are based on the activation process of LC to predict the sensitization potential of chemicals. In this study, we have evaluated the performances of MUTZ-3, a cytokine-dependent human monocytic cell line, in its response to sensitizers. First, we compared undifferentiated MUTZ-3 cells with several standard human cells such as THP-1, KG-1, HL-60, K-562, and U-937 in their response to the strong sensitizer DNCB and the irritant SDS by monitoring the expression levels of HLA-DR, CD54, and CD86 by flow cytometry. Onlymore » MUTZ-3 and THP-1 cells show a strong and specific response to sensitizer, while other cell lines showed very variable responses. Then, we tested MUTZ-3 cells against a wider panel of sensitizers and irritants on a broader spectrum of cell surface markers (HLA-DR, CD40, CD54, CD80, CD86, B7-H1, B7-H2, B7-DC). Of these markers, CD86 proved to be the most reliable since it detected all sensitizers, including benzocaine, a classical false negative in local lymph node assay (LLNA) but not irritants. We confirmed the MUTZ-3 response to DNCB by real-time PCR analysis. Taken together, our data suggest that undifferentiated MUTZ-3 cells may represent a valuable in vitro model for the screening of potential sensitizers.« less
Hepatic dendritic cell subsets in the mouse.
Jomantaite, Ieva; Dikopoulos, Nektarios; Kröger, Andrea; Leithäuser, Frank; Hauser, Hansjörg; Schirmbeck, Reinhold; Reimann, Jörg
2004-02-01
The CD11c(+) cell population in the non-parenchymal cell population of the mouse liver contains dendritic cells (DC), NK cells, B cells and T cells. In the hepatic CD11c(+) DC population from immunocompetent or immunodeficient [recombinase-activating gene-1 (RAG1)(-/-)] C57BL/6 mice (rigorously depleted of T cells, B cells and NK cells), we identified a B220(+) CD11c(int) subset of 'plasmacytoid' DC, and a B220(-) CD11c(+) DC subset. The latter DC population could be subdivided into a major, immature (CD40(lo) CD80(lo) CD86(lo) MHC class II(lo)) CD11c(int) subset, and a minor, mature (CD40(hi) CD80(hi) CD86(hi) MHC class II(hi)) CD11c(hi) subset. Stimulated B220(+) but not B220(-) DC produced type I interferon. NKT cell activation in vivo increased the number of liver B220(-) DC three- to fourfold within 18 h post-injection, and up-regulated their surface expression of activation marker, while it contracted the B220(+) DC population. Early in virus infection, the hepatic B220(+) DC subset expanded, and both, the B220(+) as well as B220(-) DC populations in the liver matured. In vitro, B220(-) but not B220(+) DC primed CD4(+) or CD8(+)T cells. Expression of distinct marker profiles and functions, and distinct early reaction to activation signals hence identify two distinct B220(+) and B220(-) subsets in CD11c(+) DC populations freshly isolated from the mouse liver.
2013-01-01
The new ex vivo model system measuring functional input of individual granuloma cells to formation of granulomatous inflammatory lesions in mice with latent tuberculous infection has been developed and described in the current study. Monolayer cultures of cells that migrated from individual granulomas were established in the proposed culture settings for mouse spleen and lung granulomas induced by in vivo exposure to BCG vaccine. The cellular composition of individual granulomas was analyzed. The expression of the leukocyte surface markers such as phagocytic receptors CD11b, CD11c, CD14, and CD16/CD32 and the expression of the costimulatory molecules CD80, CD83, and CD86 were tested as well as the production of proinflammatory cytokines (IFNγ and IL-1α) and growth factors (GM-CSF and FGFb) for cells of individual granulomas. The colocalization of the phagocytic receptors and costimulatory molecules in the surface microdomains of granuloma cells (with and without acid-fast BCG-mycobacteria) has also been detected. It was found that some part of cytokine macrophage producers have carried acid-fast mycobacteria. Detected modulation in dynamics of production of pro-inflammatory cytokines, growth factors, and leukocyte surface markers by granuloma cells has indicated continued processes of activation and deactivation of granuloma inflammation cells during the latent tuberculous infection progress in mice. PMID:24198843
Hellström Erkenstam, Nina; Smith, Peter L. P.; Fleiss, Bobbi; Nair, Syam; Svedin, Pernilla; Wang, Wei; Boström, Martina; Gressens, Pierre; Hagberg, Henrik; Brown, Kelly L.; Sävman, Karin; Mallard, Carina
2016-01-01
Immune cells display a high degree of phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with classical and alternative polarization phenotypes described for macrophages and to identify related cell populations in the brain following neonatal hypoxia-ischemia (HI). HI was induced in 9-day old mice and brain tissue was collected up to 7 days post-insult to investigate expression of genes associated with macrophage activation. Using cell-markers, CD86 (classic activation) and CD206 (alternative activation), we assessed temporal changes of CD11b+ cell populations in the brain and studied the protein expression of the immunomodulatory factor galectin-3 in these cells. HI induced a rapid regulation (6 h) of genes associated with both classical and alternative polarization phenotypes in the injured hemisphere. FACS analysis showed a marked increase in the number of CD11b+CD86+ cells at 24 h after HI (+3667%), which was coupled with a relative suppression of CD11b+CD206+ cells and cells that did not express neither CD86 nor CD206. The CD11b+CD206+ population was mixed with some cells also expressing CD86. Confocal microscopy confirmed that a subset of cells expressed both CD86 and CD206, particularly in injured gray and white matter. Protein concentration of galectin-3 was markedly increased mainly in the cell population lacking CD86 or CD206 in the injured hemisphere. These cells were predominantly resident microglia as very few galectin-3 positive cells co-localized with infiltrating myeloid cells in Lys-EGFP-ki mice after HI. In summary, HI was characterized by an early mixed gene response, but with a large expansion of mainly the CD86 positive population during the first day. However, the injured hemisphere also contained a subset of cells expressing both CD86 and CD206 and a large population that expressed neither activation marker CD86 nor CD206. Interestingly, these cells expressed the highest levels of galectin-3 and were found to be predominantly resident microglia. Galectin-3 is a protein involved in chemotaxis and macrophage polarization suggesting a novel role in cell infiltration and immunomodulation for this cell population after neonatal injury. PMID:28018179
Crucian, Brian; Sams, Clarence
2015-01-01
Alterations in immune function have been documented during or post-spaceflight and in ground based models of microgravity. Identification of immune parameters that are dysregulated during spaceflight is an important step in mitigating crew health risks during deep space missions. The in vitro analysis of leukocyte activity post-spaceflight in both human and animal species is primarily focused on lymphocytic function. This report completes a broader spectrum analysis of mouse lymphocyte and monocyte changes post 13 days orbital flight (mission STS-135). Analysis includes an examination in surface markers for cell activation, and antigen presentation and co-stimulatory molecules. Cytokine production was measured after stimulation with T-cell mitogen or TLR-2, TLR-4, or TLR-5 agonists. Splenocyte surface marker analysis immediate post-spaceflight and after in vitro culture demonstrated unique changes in phenotypic populations between the flight mice and matched treatment ground controls. Post-spaceflight splenocytes (flight splenocytes) had lower expression intensity of CD4+CD25+ and CD8+CD25+ cells, lower percentage of CD11c+MHC II+ cells, and higher percentage of CD11c+MHC I+ populations compared to ground controls. The flight splenocytes demonstrated an increase in phagocytic activity. Stimulation with ConA led to decrease in CD4+ population but increased CD4+CD25+ cells compared to ground controls. Culturing with TLR agonists led to a decrease in CD11c+ population in splenocytes isolated from flight mice compared to ground controls. Consequently, flight splenocytes with or without TLR-agonist stimulation showed a decrease in CD11c+MHC I+, CD11c+MHC II+, and CD11c+CD86+ cells compared to ground controls. Production of IFN-γ was decreased and IL-2 was increased from ConA stimulated flight splenocytes. This study demonstrated that expression of surface molecules can be affected by conditions of spaceflight and impaired responsiveness persists under culture conditions in vitro. PMID:25970640
Role of CD81 and CD58 in minimal residual disease detection in pediatric B lymphoblastic leukemia.
Tsitsikov, E; Harris, M H; Silverman, L B; Sallan, S E; Weinberg, O K
2018-06-01
Minimal residual disease (MRD) in B lymphoblastic leukemia has been demonstrated to be a powerful predictor of clinical outcome in numerous studies in both children and adults. In this study, we evaluated 86 pediatric patients with both diagnostic and remission flow cytometry studies and compared expression of CD81, CD58, CD19, CD34, CD20, and CD38 in the detection of MRD. We evaluated 86 patients with B lymphoblastic leukemia who had both diagnostic studies and remission studies for the presence of MRD using multicolor flow cytometry. We established our detection limit for identifying abnormal lymphoblasts using serial dilutions. We also compared flow cytometry findings with molecular MRD detection in a subset of patients. We found that we can resolve differences between hematogones and lymphoblasts in 85 of 86 cases using a combination of CD45, CD19, CD34, CD10, CD20, CD38, CD58, and CD81. Our detection limit using flow cytometry is 0.002% for detecting a population of abnormal B lymphoblasts. Comparison with MRD assessment by molecular methods showed a high concordance rate with flow cytometry findings. Our study highlights importance of using multiple markers to detect MRD in B lymphoblastic leukemia. Our findings indicate that including both CD58 and CD81 markers in addition to CD19, CD34, CD20, CD38, and CD10 are helpful in MRD detection by flow cytometry. © 2018 John Wiley & Sons Ltd.
Lactoferrin modulation of BCG-infected dendritic cell functions
Hwang, Shen-An
2009-01-01
Lactoferrin, an 80-kDa iron-binding protein with immune modulating properties, is a unique adjuvant component able to enhance efficacy of the existing Mycobacterium bovis Bacillus Calmette Guerin (BCG) vaccine to protect against murine model of tuberculosis. Although identified as having effects on macrophage presentation events, lactoferrin's capability to modulate dendritic cells (DCs) function when loaded with BCG antigens has not been previously recognized. In this study, the potential of lactoferrin to modulate surface expression of MHC II, CD80, CD86 and CD40 from bone marrow-derived dendritic cells (BMDCs) was examined. Generally, lactoferrin decreased pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6 and IL-12p40] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-2] and increased regulatory cytokine, transforming growth factor-β1 and a T-cell chemotatic factor, monocyte chemotactic protein-1, from uninfected or BCG-infected BMDCs. Culturing BCG-infected BMDCs with lactoferrin also enhanced their ability to respond to IFN-γ activation through up-regulation of maturation markers: MHC I, MHC II and the ratio of CD86:CD80 surface expression. Furthermore, lactoferrin-exposed BCG-infected DCs increased stimulation of BCG-specific CD3+CD4+ splenocytes, as defined by increasing IFN-γ production. Finally, BCG-/lactoferrin-vaccinated mice possessed an increased pool of BCG antigen-specific IFN-γ producing CD3+CD4+CD62L− splenocytes. These studies suggest a mechanism in which lactoferrin may exert adjuvant activity by enhancing DC function to promote generation of antigen-specific T cells. PMID:19692539
Jin, Xian; Yao, Tongqing; Zhou, Zhong'e; Zhu, Jian; Zhang, Song; Hu, Wei; Shen, Chengxing
2015-01-01
Atherosclerotic lesions are accelerated in patients with diabetes. M1 (classically activated in contrast to M2 alternatively activated) macrophages play key roles in the progression of atherosclerosis. Since advanced glycation end products (AGEs) are major pathogenic factors and active inflammation inducers in diabetes mellitus, this study assessed the effects of AGEs on macrophage polarization. The present study showed that AGEs significantly promoted macrophages to express IL-6 and TNF-α. M1 macrophage markers such as iNOS and surface markers including CD11c and CD86 were significantly upregulated while M2 macrophage markers such as Arg1 and CD206 remained unchanged after AGEs stimulation. AGEs significantly increased RAGE expression in macrophages and activated NF-κB pathway, and the aforementioned effects were partly abolished by administration of anti-RAGE antibody or NF-κB inhibitor PDTC. In conclusion, our results suggest that AGEs enhance macrophage differentiation into proinflammatory M1 phenotype at least partly via RAGE/NF-κB pathway activation. PMID:26114112
Fung, Erik; Esposito, Laura; Todd, John A.; Wicker, Linda S.
2010-01-01
We describe two modular protocols for immunostaining and multiparameter flow cytometric analysis of major human antigen-presenting cells (dendritic cells, monocytes, B lymphocytes) in minimally manipulated whole blood. Simultaneous detection of up to eight colors is enabled by careful selection and testing of cell-subset-defining monoclonal antibodies (anchor markers) in the appropriate fluorochrome combinations, to demonstrate the quantification of surface expression levels of molecules involved in chemotaxis (e.g. CX3CR1, CCR2), adhesion (e.g. CD11b, CD62L), antigen presentation (e.g. CD83, CD86, CD209) and immune regulation (e.g. CD101) on circulating antigen-presenting cells. Each immunostaining reaction requires as little as 50–100 μl of peripheral whole blood, no density-gradient separation, and the entire procedure from preparation of reagents to flow cytometry can be completed in <5 h. PMID:20134434
Dendritic cell co-stimulatory and co-inhibitory markers in chronic HCV: An Egyptian study
Fouad, Hanan; Raziky, Maissa Saeed El; Aziz, Rasha Ahmed Abdel; Sabry, Dina; Aziz, Ghada Mahmoud Abdel; Ewais, Manal; Sayed, Ahmed Reda
2013-01-01
AIM: To assess co-stimulatory and co-inhibitory markers of dendritic cells (DCs) in hepatitis C virus (HCV) infected subjects with and without uremia. METHODS: Three subject groups were included in the study: group 1 involved 50 control subjects, group 2 involved 50 patients with chronic HCV infection and group 3 involved 50 HCV uremic subjects undergoing hemodialysis. CD83, CD86 and CD40 as co-stimulatory markers and PD-L1 as a co-inhibitory marker were assessed in peripheral blood mononuclear cells by real-time polymerase chain reaction. Interleukin-10 (IL-10) and hyaluronic acid (HA) levels were also assessed. All findings were correlated with disease activity, viral load and fibrogenesis. RESULTS: There was a significant decrease in co-stimulatory markers; CD83, CD86 and CD40 in groups 2 and 3 vs the control group. Co-stimulatory markers were significantly higher in group 3 vs group 2. There was a significant elevation in PD-L1 in both HCV groups vs the control group. PD-L1 was significantly lower in group 3 vs group 2. There was a significant elevation in IL-10 and HA levels in groups 2 and 3, where IL-10 was higher in group 3 and HA was lower in group 3 vs group 2. HA level was significantly correlated with disease activity and fibrosis grade in group 2. IL-10 was significantly correlated with fibrosis grade in group 2. There were significant negative correlations between co-stimulatory markers and viral load in groups 2 and 3, except CD83 in dialysis patients. There was a significant positive correlation between PD-L1 and viral load in both HCV groups. CONCLUSION: A significant decrease in DC co-stimulatory markers and a significant increase in a DC co-inhibitory marker were observed in HCV subjects and to a lesser extent in dialysis patients. PMID:24282359
Bajek, Anna; Gurtowska, Natalia; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz
2015-05-14
Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from healthy donors, due to mechanical and ultrasound-assisted liposuction and cultured in standard medium to the second passage. Differentiation potential and markers expression was evaluated to confirm the mesenchymal nature of cells. Then, the BD LyoplateTM Human Cell Surface Marker Screening Panel was used. Results shown that both population of ASCs are characterized by high expression of markers specific for ASCs: cluster of differentiation (CD)9, CD10, CD34, CD44, CD49d, CD54, CD55, CD59, CD71 and low expression of CD11a, CD11c and CD144. Moreover, we have noticed significant differences in antigen expression in 58 markers from the 242 studied. Presented study shows for the first time that different liposuction methods are not a significant factor which can influence the expression of human ASCs surface markers. © 2015 The Authors.
Lee, Jun Sik; Lee, Je Chul; Lee, Chang-Min; Jung, In Duk; Jeong, Young-Il; Seong, Eun-Young; Chung, Hae-Young; Park, Yeong-Min
2007-06-30
Acinetobacter baumannii is an increasing hospital-acquired pathogen that causes a various type of infections, but little is known about the protective immune response to this microorganism. Outer membrane protein A of A. baumannii (AbOmpA) is a major porin protein and plays an important role in pathogenesis. We analyzed interaction between AbOmpA and dendritic cells (DCs) to characterize the role of this protein in promoting innate and adaptive immune responses. AbOmpA functionally activates bone marrow-derived DCs by augmenting expression of the surface markers, CD40, CD54, B7 family (CD80 and CD86) and major histocompatibility complex class I and II. AbOmpA induces production of Th1-promoting interleukin-12 from DCs and augments the syngeneic and allogeneic immunostimulatory capacity of DCs. AbOmpA stimulates production of interferon-gamma from T cells in mixed lymphocyte reactions, which suggesting Th1-polarizing capacity. CD4(+) T cells stimulated by AbOmpA-stimulated DCs show a Th1-polarizing cytokine profile. The expression of surface markers on DCs is mediated by both mitogen-activated protein kinases and NF-kappaB pathways. Our findings suggest that AbOmpA induces maturation of DCs and drives Th1 polarization, which are important properties for determining the nature of immune response against A. baumannii.
Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer
2007-12-01
CAR. CD40 is a surface marker expressed by DCs that plays a crucial role in their maturation and subsequent stimulation of T cells. DC infection with... surface . CD40 is a cell surface marker expressed by DCs, is crucial for their maturation and the subsequent activation of the immune system by the DCs...cell surface . CD40 is a cell surface marker expressed by DCs, is crucial for their maturation and the subsequent activation of the immune system by the
Kvistborg, P; Bechmann, C M; Pedersen, A W; Toh, H C; Claesson, M H; Zocca, M B
2009-12-11
Dendritic cells (DCs) are bone marrow-derived professional antigen presenting cells. Due to their role as potent inducers of immune responses, these cells are widely used as adjuvant in experimental clinical settings for cancer immune therapy. We have developed a DC-based vaccine using autologous blood monocytes loaded with allogeneic tumor cell lysate rich in cancer/testis antigens. This vaccine has at present been tested for activity in three phase II clinical trials including two cohorts of patients with advanced colorectal cancer (CRC) and one cohort of patients with advanced non-small-cell-lung-cancer (NSCLC). In the present paper we retrospectively compare the maturation profile based on surface marker expression on DCs generated from the three patient cohorts and between cancer patient cohorts and a cohort of healthy donors. Vaccines were generated under cGMP conditions and phenotypic profiles of DC were analyzed by flow cytometry and the obtained data were used as a basis to set guideline values for our quality control of GMP produced DC vaccines. Each vaccine batch was analyzed for the expression of the surface maturation and differentiation molecules CD14, CD1a, CD83, CD86, MHC class II and CCR7, and the optimal expression pattern is considered as CD14(low), CD1a, CD83(high), CD86(high), MHC class II(high) and CCR7(high). In accordance with data from other studies including other types of cancer patients, especially breast cancer patients, we found that the maturation status of the DC batches depends on cancer type and correlates with clinical status of cancer patients included.
Monocyte:T cell interaction regulates human T cell activation through a CD28/CD46 crosstalk
Charron, Lauren; Doctrinal, Axelle; Choileain, Siobhan Ni; Astier, Anne L.
2015-01-01
T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation. PMID:25787182
Camilleri, Emily T; Gustafson, Michael P; Dudakovic, Amel; Riester, Scott M; Garces, Catalina Galeano; Paradise, Christopher R; Takai, Hideki; Karperien, Marcel; Cool, Simon; Sampen, Hee-Jeong Im; Larson, A Noelle; Qu, Wenchun; Smith, Jay; Dietz, Allan B; van Wijnen, Andre J
2016-08-11
Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria. Use of Autologous Bone Marrow Aspirate Concentrate in Painful Knee Osteoarthritis (BMAC): Clinicaltrials.gov NCT01931007 . Registered August 26, 2013. MSC for Occlusive Disease of the Kidney: Clinicaltrials.gov NCT01840540 . Registered April 23, 2013. Mesenchymal Stem Cell Therapy in Multiple System Atrophy: Clinicaltrials.gov NCT02315027 . Registered October 31, 2014. Efficacy and Safety of Adult Human Mesenchymal Stem Cells to Treat Steroid Refractory Acute Graft Versus Host Disease. Clinicaltrials.gov NCT00366145 . Registered August 17, 2006. A Dose-escalation Safety Trial for Intrathecal Autologous Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis. Clinicaltrials.gov NCT01609283 . Registered May 18, 2012.
Targeting of Cytolytic T-Cells for Breast Cancer Therapy Using Novel-Fusion Proteins
1999-07-01
1 construct was subsequently subcloned into the Pichia pastoris expression plasmid pPICZcxB (Invitrogen) which contains the alcohol oxidase promoter...breast carcinomas, and the extracellular domain of B7.2 (CD86). This fusion protein was expressed and purified from Pichia pastoris, shown to retain...year’s report, the hB7.2/B1 chimeric fusion protein produced in Pichia pastoris, was shown to bind to both recombinant and cell surface tumor marker erbB
Seydoux, Emilie; Rothen-Rutishauser, Barbara; Nita, Izabela M; Balog, Sandor; Gazdhar, Amiq; Stumbles, Philip A; Petri-Fink, Alke; Blank, Fabian; von Garnier, Christophe
2014-01-01
Introduction Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods Bone marrow–derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4+ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results The frequency of PS particle–positive CD11c+/CD11b+ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles. PMID:25152619
In vitro suppression of dendritic cells by Helicobacter pylori OipA.
Teymournejad, Omid; Mobarez, Ashraf M; Hassan, Zuhair M; Moazzeni, Seyed M; Ahmadabad, Hassan N
2014-04-01
Outer inflammatory protein A (OipA) has an important role in Helicobacter pylori pathogenesis. In this study, we purified the outer membrane protein and evaluated the effects of this protein on maturation and cytokine production by dendritic cells (DCs). The oipA gene was inserted into pET28a, and this construct was transformed into Escherichia coli BL21 (DE3). Purification of the recombinant protein was performed by Ni-NTA affinity chromatography. Immature DCs were purified from spleen of C57BL/6 mice with more than 90% purity and were treated with several concentrations of OipA (1-20 μg/mL) overnight. Expression of maturation markers (CD86, CD40, and MHC-II) on the surface of DCs and production of IL-10 and IL-12 were assessed by flow cytometry and ELISA, respectively. The expression of DC maturation markers CD40, CD86, and MHC-II was downregulated on the surface of OipA-treated DCs at concentrations of 10 and 20 μg/mL compared with negative control. Production of IL-10 decreases with increasing OipA concentration at a concentration of 5 μg/mL, but we detected no change in IL-12 production. Inability to eliminate H. pylori from stomach is partly due to the evasion of the bacteria from the immune response. DCs are central mediators between innate and adaptive immunity, and DC cytokines direct the types of adaptive immune response. This study indicated that OipA of H. pylori is a DC maturation suppression factor. Previous studies have shown that H. pylori manage tolerogenic programming in DCs leading to long-time gastric colonization. In conclusion, H. pylori OipA helps the establishment of chronic infection with reduction in IL-10 and suppression of DC maturation. © 2014 John Wiley & Sons Ltd.
Suppression of dendritic cells' maturation and functions by daidzein, a phytoestrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yum, Min Kyu; Jung, Mi Young; Cho, Daeho
2011-12-15
Isoflavones are ubiquitous compounds in foods and in the environment in general. Daidzein and genistein, the best known of isoflavones, are structurally similar to 17{beta}-estradiol and known to exert estrogenic effects. They also evidence a broad variety of biological properties, including antioxidant, anti-carcinogenic, anti-atherogenic and anti-osteoporotic activities. Previously, daidzein was reported to increase the phagocytic activity of peritoneal macrophages and splenocyte proliferation, and to inhibit nitric oxide (NO) production in macrophages. However, its potential impacts on immune response in dendritic cells (DCs), antigen-presenting cells that link innate and adaptive immunity, have yet to be clearly elucidated. In this study, wemore » evaluated the effects of isoflavones on the maturation and activation of DCs. Isoflavones (formononetin, daidzein, equol, biochanin A, genistein) were found to differentially affect the expression of CD86, a costimulatory molecule, on lipopolysaccharide (LPS)-stimulated DCs. In particular, daidzein significantly and dose-dependently inhibited the expression levels of maturation-associated cell surface markers including CD40, costimulatory molecules (CD80, CD86), and major histocompatibility complex class II (I-A{sup b}) molecule on LPS-stimulated DCs. Daidzein also suppressed pro-inflammatory cytokine production such as IL-12p40, IL-6 and TNF-{alpha}, whereas it didn't affect IL-10 and IL-1{beta} expression. Furthermore, daidzein enhanced endocytosis and inhibited the allo-stimulatory ability of LPS-stimulated DCs on T cells, indicating that daidzein treatment can inhibit the functional maturation of DCs. These results demonstrate that daidzein may exhibit immunosuppressive activity by inhibiting the maturation and activation of DCs. -- Highlights: Black-Right-Pointing-Pointer Daidzein inhibited expression of maturation-associated cell surface markers in DCs. Black-Right-Pointing-Pointer Daidzein suppressed expression of pro-inflammatory cytokines in LPS-stimulated DCs. Black-Right-Pointing-Pointer Daidzein enhanced endocytosis and inhibited allo-stimulatory ability of DCs. Black-Right-Pointing-Pointer Daidzein exhibited immunosuppressive activity by inhibiting the activation of DCs.« less
Universal monitoring of minimal residual disease in acute myeloid leukemia.
Coustan-Smith, Elaine; Song, Guangchun; Shurtleff, Sheila; Yeoh, Allen Eng-Juh; Chng, Wee Joo; Chen, Siew Peng; Rubnitz, Jeffrey E; Pui, Ching-Hon; Downing, James R; Campana, Dario
2018-05-03
Optimal management of acute myeloid leukemia (AML) requires monitoring of treatment response, but minimal residual disease (MRD) may escape detection. We sought to identify distinctive features of AML cells for universal MRD monitoring. We compared genome-wide gene expression of AML cells from 157 patients with that of normal myeloblasts. Markers encoded by aberrantly expressed genes, including some previously associated with leukemia stem cells, were studied by flow cytometry in 240 patients with AML and in nonleukemic myeloblasts from 63 bone marrow samples. Twenty-two (CD9, CD18, CD25, CD32, CD44, CD47, CD52, CD54, CD59, CD64, CD68, CD86, CD93, CD96, CD97, CD99, CD123, CD200, CD300a/c, CD366, CD371, and CX3CR1) markers were aberrantly expressed in AML. Leukemia-associated profiles defined by these markers extended to immature CD34+CD38- AML cells; expression remained stable during treatment. The markers yielded MRD measurements matching those of standard methods in 208 samples from 52 patients undergoing chemotherapy and revealed otherwise undetectable MRD. They allowed MRD monitoring in 129 consecutive patients, yielding prognostically significant results. Using a machine-learning algorithm to reduce high-dimensional data sets to 2-dimensional data, the markers allowed a clear visualization of MRD and could detect 1 leukemic cell among more than 100,000 normal cells. The markers uncovered in this study allow universal and sensitive monitoring of MRD in AML. In combination with contemporary analytical tools, the markers improve the discrimination between leukemic and normal cells, thus facilitating data interpretation and, hence, the reliability of MRD results. National Cancer Institute (CA60419 and CA21765); American Lebanese Syrian Associated Charities; National Medical Research Council of Singapore (1299/2011); Viva Foundation for Children with Cancer, Children's Cancer Foundation, Tote Board & Turf Club, and Lee Foundation of Singapore.
Ex vivo testing of immune responses in precision-cut lung slices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henjakovic, M.; Sewald, K.; Switalla, S.
2008-08-15
The aim of this study was the establishment of precision-cut lung slices (PCLS) as a suitable ex vivo alternative approach to animal experiments for investigation of immunomodulatory effects. For this purpose we characterized the changes of cytokine production and the expression of cell surface markers after incubation of PCLS with immunoactive substances lipopolysaccharide (LPS), macrophage-activating lipopeptide-2 (MALP-2), interferon {gamma} (IFN{gamma}), and dexamethasone. Viability of PCLS from wild-type and CD11c-enhanced yellow fluorescent protein (CD11-EYFP)-transgenic mice was controlled by measurement of lactate dehydrogenase (LDH) enzyme activity and live/dead fluorescence staining using confocal microscopy. Cytokines and chemokines were detected with Luminex technology andmore » ELISA. Antigen presenting cell (APC) markers were investigated in living mouse PCLS in situ using confocal microscopy. LPS triggered profound pro-inflammatory effects in PCLS. Dexamethasone prevented LPS-induced production of cytokines/chemokines such as interleukin (IL)-5, IL-1{alpha}, TNF{alpha}, IL-12(p40), and RANTES in PCLS. Surface expression of MHC class II, CD40, and CD11c, but not CD86 was present in APCs of naive PCLS. Incubation with LPS enhanced specifically the expression of MHC class II on diverse cells. MALP-2 only failed to alter cytokine or chemokine levels, but was highly effective in combination with IFN{gamma} resulting in increased levels of TNF{alpha}, IL-12(p40), RANTES, and IL-1{alpha}. PCLS showed characteristic responses to typical pro-inflammatory stimuli and may thus provide a suitable ex vivo technique to predict the immunomodulatory potency of inhaled substances.« less
Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S
2012-01-01
AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167
Ghoneum, Mamdooh; Felo, Nouran; Agrawal, Sudhanshu; Agrawal, Anshu
2015-12-01
Lactobacilli have been widely studied for their probiotic effects and have been reported to function as antiviral and anticancer agents. However, the underlying mechanisms via immune modulation are poorly understood. PFT is a freeze dried compound of Lactobacillus kefiri P-IF with a unique composition and functionality. In this study, we examined the potential stimulatory effects of two concentrations (50 µg and 100 µg/mL) of PFT on human monocyte-derived dendritic cell (DC) function in vitro. Results showed that PFT upregulated the expression of DC surface co-stimulatory and maturation markers CD80, CD86, and HLADR in a concentration dependent manner. PFT at 100 µg/mL markedly increased the secretion of IL-6, IL-10, TNF-α, and IL-1β by DCs. This concentration of PFT also stimulated the production of antiviral cytokines, IFN-α and IFN-λ(IL29) in DCs. Additionally, PFT at 100 µg/mL activated moDCs prime CD4(+)T cells and significantly increased the levels of IL-10, IFN-γ, and TNF-α by 1.7, four, three-fold, respectively. Furthermore PFT-stimulated DCs were also effective in enhancing the cytotoxic potential of CD8(+)T cells via the induction of Granzyme-B and upregulation of CD107a, and CD103 expression, a marker of resident/regulatory CD8(+)T cells. These data suggest that PFT functions as a natural adjuvant for DC activation and thus may be used in DC-based vaccine strategies against viral infections and cancer. © The Author(s) 2015.
Sakaguchi, H; Ashikaga, T; Miyazawa, M; Yoshida, Y; Ito, Y; Yoneyama, K; Hirota, M; Itagaki, H; Toyoda, H; Suzuki, H
2006-08-01
Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen/non-allergen, especially using THP-1 cells. These results suggest that our method, human Cell Line Activation Test (h-CLAT), using human cell lines THP-1 and U-937, but especially THP-1 cells at 24h treatment, may be a useful in vitro skin sensitization model to predict various contact allergens.
Matsui, Hotaka; Sopko, Nikolai A; Hannan, Johanna L; Reinhardt, Allison A; Kates, Max; Yoshida, Takahiro; Liu, Xiaopu; Castiglione, Fabio; Hedlund, Petter; Weyne, Emmanuel; Albersen, Maarten; Bivalacqua, Trinity J
2017-02-01
Neurogenic erectile dysfunction is a common sequela of radical prostatectomy. The etiology involves injury to the autonomic cavernous nerves, which arise from the major pelvic ganglion (MPG), and subsequent neuroinflammation, which leads to recruitment of macrophages to the injury site. Currently, two macrophage phenotypes are known: neurotoxic M1 macrophages and neuroprotective M2 macrophages. To examine whether bilateral cavernous nerve injury (BCNI) in a rat model of erectile dysfunction would increase recruitment of neurotoxic M1 macrophages to the MPG. Male Sprague-Dawley rats underwent BCNI and the MPG was harvested at various time points after injury. The corpora cavernosa was used to evaluate tissue myographic responses to electrical field stimulation ex vivo. Quantitative real-time polymerase chain reaction was used to examine the gene expression of global macrophage markers, M1 macrophage markers, M2 macrophage markers, and cytokines and chemokines in the MPG. Mathematical calculation of the M1/M2 index was used to quantify macrophage changes temporally. Western blot of MPG tissues was used to evaluate the protein amount of M1 and M2 macrophage markers quantitatively. Immunohistochemistry staining of MPGs for CD68, CD86, and CD206 was used to characterize M1 and M2 macrophage infiltration. Corpora cavernosa responsiveness ex vivo; gene (quantitative real-time polymerase chain reaction) and protein (western blot) expressions of M1 and M2 markers, cytokines, and chemokines; and immunohistochemical localization of M1 and M2 macrophages. BCNI impaired the corporal parasympathetic-mediated relaxation response to electrical field stimulation and enhanced the contraction response to electrical field stimulation. Gene expression of proinflammatory (Il1b, Il16, Tnfa, Tgfb, Ccl2, Ccr2) and anti-inflammatory (Il10) cytokines was upregulated in the MPG 48 hours after injury. M1 markers (CD86, inducible nitric oxide synthase, interleukin-1β) and M2 markers (CD206, arginase-1, interleukin-10) were increased after BCNI in the MPG, with the M1/M2 index above 1.0 indicating that more M1 than M2 macrophages were recruited to the MPG. Protein expression of the M1 macrophage marker (inducible nitric oxide synthase) was increased in MPGs after BCNI. However, the protein amount of M2 macrophage markers (arginase-1) remained unchanged. Immunohistochemical characterization demonstrated predominant increases in M1 (CD68 + CD86 + ) macrophages in the MPG after BCNI. These results suggest that an increase in M1 macrophage infiltration of the MPG after BCNI is associated with impaired neurogenically mediated erectile tissue physiology ex vivo and thus has significant implications for cavernous nerve axonal repair. Future studies are needed to demonstrate that inhibition of M1 macrophage recruitment prevents erectile dysfunction after CNI. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium.
Letouzey, Vincent; Tan, Ker Sin; Deane, James A; Ulrich, Daniela; Gurung, Shanti; Ong, Y Rue; Gargett, Caroline E
2015-01-01
Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.
Is sphere assay useful for the identification of cancer initiating cells of the ovary?
Martínez-Serrano, María José; Caballero-Baños, Miguel; Vilella, Ramon; Vidal, Laura; Pahisa, Jaume; Martínez-Roman, Sergio
2015-01-01
Current evidence suggests that the presence of tumor-initiating cells (TICs) in epithelial ovarian cancer (EOC) has a role in chemoresistance and relapse. Surface markers such as CD44(+)/CD24(-), CD117(+), and CD133(+) expression have been reported as potential markers for TICs related to ovarian cancer and tumorigenic cell lines. In this study, we have investigated if spheroid forms are TIC specific or whether they can also be produced by somatic stem cells from healthy tissue in vitro. In addition, we also investigated the specificity of surface markers to identify TICs from papillary serous EOC patients. Cells were obtained from fresh tumors from 10 chemotherapy-naive patients with EOC, and cells from ovarian and tubal epithelium were obtained from 5 healthy menopausal women undergoing surgery for benign pathology and cultured in standard and in selective medium. Cells forming nonadherent spheroids were considered TICs, and the adherent cells were considered as non-TIC-like. Percentages of CD24(+), CD44(+), CD117(+), CD133(+), and vascular endothelial growth factor receptor (VEGF-R)(+) cell surface markers were analyzed by flow cytometry. Four of 10 EOC cell tissues were excluded from the study. Tumor cells cultured in selective medium developed spheroid forms after 1 to 7 weeks in 5 of 6 EOC patients. No spheroid forms were observed in cultures of cells from healthy women. Unlike previously published data, low levels of CD24(+), CD44(+), CD117(+), and VEGF-R(+) expression were observed in spheroid cells, whereas expression of CD133(+) was moderate but higher in adherent cells from papillary serous EOC cells in comparison with adherent cells from controls. Papillary serous EOC contains TICs that form spheroids with low expression of CD44(+), CD24(+), CD117(+) and VEGF-R(+). Further research is required to find specific surface markers to identify papillary serous TICs.
Human Lyb-2 homolog CD72 is a marker for progenitor B-cell leukemias.
Schwarting, R; Castello, R; Moldenhauer, G; Pezzutto, A; von Hoegen, I; Ludwig, W D; Parnes, J R; Dörken, B
1992-11-01
S-HCL 2 is the prototype antibody of the recently defined CD72 cluster (human Lyb-2). Under nonreducing conditions, S-HCL 2 monoclonal antibody (mAb) precipitates a glycoprotein of 80-86 kDa. Under reducing conditions, a dimer of 43 and 39 kDa, with core proteins of 40 and 36 kDa, is precipitated. CD72 expression in normal and malignant tissues is different from expression of all other previously described human B-cell antigens. In peripheral blood and bone marrow, the antigen appears to be present on all B lymphocytes, with the exception of plasma cells. In tissue, immunohistochemical staining revealed positivity for all known B-cell compartments; however, pulpa macrophages of the spleen and von Kupffer cells exhibited distinct positivity for CD72 also. Among 83 malignant non-Hodgkin's lymphomas examined by immunohistochemistry (alkaline phosphatase anti-alkaline phosphatase technique), all 54 B-cell lymphomas, including precursor B-cell lymphomas, Burkitt's lymphomas, germinal center lymphomas, chronic lymphocytic leukemias, and hairy cell leukemias, were CD72 positive, but no T-cell lymphomas were. Flow cytometry study of more than 80 mainly acute leukemias (52 B-cell leukemias) showed reactivity with S-HCL 2 mAb over the full range of B-cell differentiation. In particular, very early B cells in cytoplasmic Ig (cIg)-negative, CD19-positive pre-pre-B-cell leukemias and hybrid leukemias (mixed myeloid and B-cell type) were consistently positive for CD72 on the cell surface. Therefore, CD72 may become an important marker for progenitor B-cell leukemias.
Stravoravdi, P; Toliou, T; Kirtsis, P; Natsis, K; Konstandinidis, E; Barich, A; Gigis, P; Dimitriadis, K
1999-03-01
Our purpose was to investigate a new therapeutic model, GM-CSF-targeted immunomodulation on transitional cell carcinoma (TCC) marker lesions and to evaluate the immunologic response of the bladder mucosa. Eleven patients with pTa or pT1 bladder cancer were eligible for the study. All lesions were removed by transurethral resection (TUR) except for a marker lesion. All patients received 8 weekly instillations of 300 microg of GM-CSF, after which cystoscopy with bladder biopsies +/- TUR was repeated on adjacent urothelium or tumor or both. Paraffin-embedded sections were immunohistochemically stained with CD68, which labels monocytes and macrophages. The CD68+ cell population was evaluated as 1+ to 3+. Comparable specimens were routinely processed for ultrastructural analysis. Complete response was observed in 6 patients (55%), persistent tumor occurred in 4 patients (approximately 36.4%), and 1 patient (8.6%) showed recurrence. Immunohistochemically, an at least twofold increase in the number of the CD68+ cells was observed in all responders. Submicroscopically, migration of macrophages to the surface layer occurred. Macrophages showed an extensive lysosomal system and pseudopodia. This study indicates that the prophylactic treatment of TCC with GM-CSF may induce immunomodulatory effects on macrophage activities, which could be associated with the clinical evolution of the disease.
Arthroscopic Harvest of Adipose-Derived Mesenchymal Stem Cells From the Infrapatellar Fat Pad.
Dragoo, Jason L; Chang, Wenteh
2017-11-01
The successful isolation of adipose-derived mesenchymal stem cells (ADSCs) from the arthroscopically harvested infrapatellar fat pad (IFP) would provide orthopaedic surgeons with an autologous solution for regenerative procedures. To demonstrate the quantity and viability of the mesenchymal stem cell population arthroscopically harvested from the IFP as well as the surrounding synovium. Descriptive laboratory study. The posterior border of the IFP, including the surrounding synovial tissue, was harvested arthroscopically from patients undergoing anterior cruciate ligament reconstruction. Tissue was then collected in an AquaVage adipose canister, followed by fat fractionization using syringe emulsification and concentration with an AdiPrep device. In the laboratory, the layers of tissue were separated and then digested with 0.3% type I collagenase. The pelleted stromal vascular fraction (SVF) cells were then immediately analyzed for viability, mesenchymal cell surface markers by fluorescence-activated cell sorting, and clonogenic capacity. After culture expansion, the metabolic activity of the ADSCs was assessed by an AlamarBlue assay, and the multilineage differentiation capability was tested. The transition of surface antigens from the SVF toward expanded ADSCs at passage 2 was further evaluated. SVF cells were successfully harvested with a mean yield of 4.86 ± 2.64 × 10 5 cells/g of tissue and a mean viability of 69.03% ± 10.75%, with ages ranging from 17 to 52 years (mean, 35.14 ± 13.70 years; n = 7). The cultured ADSCs composed a mean 5.85% ± 5.89% of SVF cells with a mean yield of 0.33 ± 0.42 × 10 5 cells/g of tissue. The nonhematopoietic cells (CD45 - ) displayed the following surface antigens as a percentage of the viable population: CD44 + (52.21% ± 4.50%), CD73 + CD90 + CD105 + (19.20% ± 17.04%), and CD44 + CD73 + CD90 + CD105 + (15.32% ± 15.23%). There was also a significant increase in the expression of ADSC markers CD73 (96.97% ± 1.72%; P < .01), CD10 (84.47% ± 15.46%; P < .05), and CD166 (11.63% ± 7.84%; P < .005) starting at passage 2 compared with freshly harvested SVF cells. The clonogenic efficiency of SVF cells was determined at a mean 3.21% ± 1.52% for layer 1 and 1.51% ± 0.55% for layer 2. Differentiation into cartilage, fat, and bone tissue was demonstrated by tissue-specific staining and quantitative polymerase chain reaction. SVF cells from the IFP and adjacent synovial tissue were successfully harvested using an arthroscopic technique and produced ADSCs with surface markers that meet criteria for defined mesenchymal stem cells. An autologous source of stem cells can now be harvested using a simple arthroscopic technique that will allow orthopaedic surgeons easier access to progenitor cells for regenerative procedures.
Early hematological and immunological alterations in gasoline station attendants exposed to benzene.
Moro, Angela M; Brucker, Natália; Charão, Mariele F; Sauer, Elisa; Freitas, Fernando; Durgante, Juliano; Bubols, Guilherme; Campanharo, Sarah; Linden, Rafael; Souza, Ana P; Bonorino, Cristina; Moresco, Rafael; Pilger, Diogo; Gioda, Adriana; Farsky, Sandra; Duschl, Albert; Garcia, Solange C
2015-02-01
Elucidation of effective biomarkers may provide tools for the early detection of biological alterations caused by benzene exposure and may contribute to the reduction of occupational diseases. This study aimed to assess early alterations on hematological and immunological systems of workers exposed to benzene. Sixty gasoline station attendants (GSA group) and 28 control subjects were evaluated. Environmental and biological monitoring of benzene exposure was performed in blood and urine. The potential effect biomarkers evaluated were δ-aminolevulinate dehydratase (ALA-D) activity, CD80 and CD86 expression in lymphocytes and monocytes, and serum interleukin-8 (IL-8). The influence of confounding factors and toluene co-exposure were considered. Although exposures were below ACGIH (American Conference of Governmental Industrial Hygienists) limits, reduced ALA-D activity, decreased CD80 and CD86 expression in monocytes and increased IL-8 levels were found in the GSA group compared to the control subjects. Furthermore, according to multiple linear regression analysis, benzene exposure was associated to a decrease in CD80 and CD86 expression in monocytes. These findings suggest, for the first time, a potential effect of benzene exposure on ALA-D activity, CD80 and CD86 expression, IL-8 levels, which could be suggested as potential markers for the early detection of benzene-induced alterations. Copyright © 2014 Elsevier Inc. All rights reserved.
Fazal, Nadeem
2013-01-01
Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury.
Fazal, Nadeem
2013-01-01
Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury. PMID:24600560
Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes.
Liang, Lisa; Aiken, Christopher; McClelland, Robyn; Morrison, Ludivine Coudière; Tatari, Nazanin; Remke, Marc; Ramaswamy, Vijay; Issaivanan, Magimairajan; Ryken, Timothy; Del Bigio, Marc R; Taylor, Michael D; Werbowetski-Ogilvie, Tamra E
2015-11-17
Major research efforts have focused on defining cell surface marker profiles for characterization and selection of brain tumor stem/progenitor cells. Medulloblastoma is the most common primary malignant pediatric brain cancer and consists of 4 molecular subgroups: WNT, SHH, Group 3 and Group 4. Given the heterogeneity within and between medulloblastoma variants, surface marker profiles may be subtype-specific. Here, we employed a high throughput flow cytometry screen to identify differentially expressed cell surface markers in self-renewing vs. non-self-renewing SHH medulloblastoma cells. The top 25 markers were reduced to 4, CD271/p75NTR/NGFR, CD106/VCAM1, EGFR and CD171/NCAM-L1, by evaluating transcript levels in SHH tumors relative to samples representing the other variants. However, only CD271/p75NTR/NGFR and CD171/NCAM-L1 maintain differential expression between variants at the protein level. Functional characterization of CD271, a low affinity neurotrophin receptor, in cell lines and primary cultures suggested that CD271 selects for lower self-renewing progenitors or stem cells. Moreover, CD271 levels were negatively correlated with expression of SHH pathway genes. Our study reveals a novel role for CD271 in SHH medulloblastoma and suggests that targeting CD271 pathways could lead to the design of more selective therapies that lessen the broad impact of current treatments on developing nervous systems.
Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms.
Shahbazi, Mohammad-Ali; Fernández, Tahia D; Mäkilä, Ermei M; Le Guével, Xavier; Mayorga, Cristobalina; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A
2014-11-01
Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
Novel Adult Stem Cells for Peripheral Nerve Regeneration
2012-09-01
were also positive for MSC surface marker CD29 and CD44 (Fig. 1F-G). However, CD29 and CD44 are also expressed in SMCs, so we will not use these non...tubulin. In addition, MVSCs were negative for perivascular MSC marker CD146 (Fig. 1H) and SMC progenitor marker Sca-1 (Fig. 1I). MVSCs were also...University of California, Berkeley, California 94720, USA. 2 UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California 94720, USA. 3
Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias
2013-07-30
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.
2013-01-01
Background Accumulating evidence supports cancer to initiate and develop from a small population of stem-like cells termed as cancer stem cells (CSC). The exact phenotype of CSC and their counterparts in normal mammary gland is not well characterized. In this study our aim was to evaluate the phenotype and function of stem/progenitor cells in normal mammary epithelial cell populations and their malignant counterparts. Methods Freshly isolated cells from both normal and malignant human breasts were sorted using 13 widely used stem/progenitor cell markers individually or in combination by multi-parametric (up to 9 colors) cell sorting. The sorted populations were functionally evaluated by their ability to form colonies and mammospheres, in vitro. Results We have compared, for the first time, the stem/progenitor markers of normal and malignant breasts side-by-side. Amongst all markers tested, we found CD44high/CD24low cell surface marker combination to be the most efficient at selecting normal epithelial progenitors. Further fractionation of CD44high/CD24low positive cells showed that this phenotype selects for luminal progenitors within Ep-CAMhigh/CD49f + cells, and enriches for basal progenitors within Ep-CAM-/low/CD49f + cells. On the other hand, primary breast cancer samples, which were mainly luminal Ep-CAMhigh, had CD44high/CD24low cells among both CD49fneg and CD49f + cancer cell fractions. However, functionally, CSC were predominantly CD49f + proposing the use of CD44high/CD24low in combination with Ep-CAM/CD49f cell surface markers to further enrich for CSC. Conclusion Our study clearly demonstrates that both normal and malignant breast cells with the CD44high/CD24low phenotype have the highest stem/progenitor cell ability when used in combination with Ep-CAM/CD49f reference markers. We believe that this extensive characterization study will help in understanding breast cancer carcinogenesis, heterogeneity and drug resistance. PMID:23768049
Oreshkova, Nadia; Wichgers Schreur, Paul J; Spel, Lotte; Vloet, Rianka P M; Moormann, Rob J M; Boes, Marianne; Kortekaas, Jeroen
2015-01-01
Vaccines based on nonspreading Rift Valley fever virus (NSR) induce strong humoral and robust cellular immune responses with pronounced Th1 polarisation. The present work was aimed to gain insight into the molecular basis of NSR-mediated immunity. Recent studies have demonstrated that wild-type Rift Valley fever virus efficiently targets and replicates in dendritic cells (DCs). We found that NSR infection of cultured human DCs results in maturation of DCs, characterized by surface upregulation of CD40, CD80, CD86, MHC-I and MHC-II and secretion of the proinflammatory cytokines IFN-β, IL-6 and TNF. Interestingly, expression of the most prominent marker of DC maturation, CD83, was consistently downregulated at 24 hours post infection. Remarkably, NSR infection also completely abrogated CD83 upregulation by LPS. Downregulation of CD83 was not associated with reduced mRNA levels or impaired CD83 mRNA transport from the nucleus and could not be prevented by inhibition of the proteasome or endocytic degradation pathways, suggesting that suppression occurs at the translational level. In contrast to infected cells, bystander DCs displayed full maturation as evidenced by upregulation of CD83. Our results indicate that bystander DCs play an important role in NSR-mediated immunity.
Antibody-immobilized column for quick cell separation based on cell rolling.
Mahara, Atsushi; Yamaoka, Tetsuji
2010-01-01
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.
Chen, Zhihong; Huang, Guilin; Zhang, Nini; Yi, Jie; Yao, Li; Zhang, Lin
2016-04-01
To explore the effects of aspirin and inflammation on the maturation and function of dendritic cells (DC) on the supernatant of VX-2 squamous cell carcinoma. The rabbit buccal VX-2 squamous cell carcinoma models with inflammation were established by tumor particle implantation, mechanical trauma, and high sugar diet. The rabbits were divided into three groups. For the experimental group (rabbit buccal VX-2 squamous cell carcinoma with local inflammation), aspirin were given by gavage for three consecutive days. For the control group (rabbit buccal VX-2 squamous cell carcinoma with local inflammation), normal saline was given by gavage for three consecutive days. For the blank group (tumor without inflammation), normal saline was given by gavage for three consecutive days. Each tumor specimens were collected in three days and made into tissue homogenate. The supernatant was collected after centrifugation. Normal rabbit peripheral blood mononuclear cells were separated and co-cultured with different states of supernatant. The expression of DC surface markers CD83, CD86, and human leukocyte antigen-DR (HLA-DR) were detected by flow cytometry. The state of function of DC was tested by mixed lymphocyte reaction. The positive rate of CD83, CD86, and HLA-DR of the experimental and control groups were both lower than that of the blank group (P<0.05). In addition, the ability to stimulate T cell proliferation of the experimental and control groups were weaker than that of the blank group (P<0.05). No significant difference was observed between the experi- and HLADR of DC. The short-term administration of aspirin is not conducive to the phenoty and function of DC in a rabbit mental and control groups (P>0.05). Inflammation may inhibit the function and expression of CD83, CD86, buccal VX-2 squamous cell carcinoma inflammatory environment
Hao, Tong; Li, Jun-Jie; Du, Zhi-Yan; Duan, Cui-Mi; Wang, Yan-Meng; Wang, Chang-Yong; Song, Jing-Ping; Wang, Lin-Jie; Li, Ying-Hui; Wang, Yan
2012-10-01
This study was aimed to explore the effect of cordyceps sinensis enhancing lymphocyte proliferation and surface CD marker expression in simulated microgravity environment. The splenic lymphocytes were separated from mice and cultured in the rotary cell culture system simulated microgravity environment. The cells were treated with different concentration of cordyceps sinensis solution (0, 6.25, 12.5, 25 and 50 µg/ml) for 24, 48 and 72 h respectively, then the cells were harvested, and analyzed for cell proliferation and the expression of cell surface markers (CD4 and CD8). The results showed that under simulated microgravity environment, the lymphocyte proliferation was inhibited. When the concentration of cordyceps sinensis was 25 or 50 µg/ml, the lymphocyte proliferation, CD4 and CD8 expressions all increased, but 50 µg/ml cordyceps sinensis could inhibit the proliferation ability with the time prolonging. It is concluded that the suitable concentration of cordyceps sinensis displayed the ability to enhance the lymphocyte proliferation and CD marker expression in simulated microgravity environment. These results may be valuable for screening drugs which can be potentially against immunosuppression under simulated microgravity.
Garg, Swati; Madkaikar, Manisha
2013-01-01
Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their ‘abnormal’ expression from the normal. PMID:24386557
Garg, Swati; Madkaikar, Manisha; Ghosh, Kanjaksha
2013-11-01
Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their 'abnormal' expression from the normal.
Molecular cloning and characterization of markers and cytokines for equid myeloid cells.
Steinbach, Falko; Stark, Robert; Ibrahim, Sherif; Gawad, Eman Abd-El; Ludwig, Hanns; Walter, Jakob; Commandeur, Ulrich; Mauel, Susanne
2005-10-18
The myeloid cell system comprises of monocytes, macrophages (MPhi), dendritic cells (DC), Kupffer cells, osteoclasts or microglia and is also known as the mononuclear phagocytic system (MPS). Essential cytokines to differentiate or activate these cells include GM-CSF or IL-4. Important markers for characterization include CD1, CD14, CD68, CD163 and CD206. All these markers, however, were not cloned or further characterized in equids by use of monoclonal antibodies earlier. To overcome this problem with the present study, two approaches were used. First, we cloned equine cytokines and markers, and second we analyzed cross-reactivity of human homologues or anti-human monoclonal antibodies. For cloning of equine cytokines and markers, we used degenerate primers delineated from other species, or equine-specific primers based on previous information in Genbank. Flow cytometry was used to determine the expression of markers on myeloid cells. Cross-reactivity could be shown for anti-human CD14, CD163 and mannose receptor (CD206) mAbs. Surface markers such as CD1 and CD68 that distinguish MPhi and DC were cloned and sequenced. According to blast homology, equine CD1a and CD1b could be identified and distinguished. With the resulting information, dendritic cells and macrophages of horses may be characterized.
CD24-Positive Cells from Normal Adult Mouse Liver Are Hepatocyte Progenitor Cells
Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M.; Rao, Pulivarthi H.
2011-01-01
The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45−, Ter119−) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes. PMID:21361791
CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells.
Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M; Rao, Pulivarthi H; Darlington, Gretchen J
2011-12-01
The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.
Wang, Hui; Yu, Qiang; Nie, Shao-Ping; Xiang, Quan-Dan; Zhao, Ming-Ming; Liu, Shi-Yu; Xie, Ming-Yong; Wang, Shun-Qi
2017-10-01
Ganoderma atrum (G. atrum), a member of the genus Ganoderma, is an edible and medicinal fungus. In this study, we investigated the direct and indirect effects of G. atrum polysaccharide (PSG-1) on dendritic cells (DCs). Firstly, flow cytometric and ELISA analysis showed that PSG-1 increased cell surface molecule expression of MHC-II, CD80 and CD86, and enhanced the production of IL-12 p70, IL-6, IL-10, RANTES, MIP-1α and MCP-1 in DCs. PSG-1-treated DCs promoted the proliferation of splenic T lymphocyte of mouse in mixed lymphocyte reaction. The above results demonstrated that PSG-1 induced the maturation of DCs. Secondly, PSG-1 increased the phosphorylation of p38, ERK and JNK determined by western blot. Inhibitors of p38, ERK and JNK decreased PSG-1-induced expression of MHC-II, CD80 and CD86 and production of IL-6 and IL-10 by DCs. These results suggested that PSG-1 induced mitogen-activated protein kinase (MAPK) activation was involved in the regulation of maturation markers and cytokines expression in DCs. Finally, PSG-1 increased expression of MHC-II of DCs in a DCs-Caco-2 co-culture model, suggesting that PSG-1 could indirectly influence DCs. In summary, our data suggested that PSG-1 directly induced DCs maturation via activating MAPK pathways, and indirectly stimulated DCs separated by intestinal epithelial cells. Copyright © 2017. Published by Elsevier Ltd.
Wohleb, Eric S; Hanke, Mark L; Corona, Angela W; Powell, Nicole D; Stiner, La'Tonia M; Bailey, Michael T; Nelson, Randy J; Godbout, Jonathan P; Sheridan, John F
2011-04-27
Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.
Wohleb, Eric S.; Hanke, Mark L.; Corona, Angela W.; Powell, Nicole D.; Stiner, La'Tonia M.; Bailey, Michael T.; Nelson, Randy J.; Godbout, Jonathan P.; Sheridan, John F.
2011-01-01
Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b+/CD45high/Ly6Chigh macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of de-ramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes (GILZ and FKBP51). The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) after stimulation with lipopolysaccharide (LPS) compared to microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1 deficient (IL-1r1-/-) mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors. PMID:21525267
Cordone, Iole; Masi, Serena; Summa, Valentina; Carosi, Mariantonia; Vidiri, Antonello; Fabi, Alessandra; Pasquale, Alessia; Conti, Laura; Rosito, Immacolata; Carapella, Carmine Maria; Villani, Veronica; Pace, Andrea
2017-04-11
Cancer is a mosaic of tumor cell subpopulations, where only a minority is responsible for disease recurrence and cancer invasiveness. We focused on one of the most aggressive circulating tumor cells (CTCs) which, from the primitive tumor, spreads to the central nervous system (CNS), evaluating the expression of prognostic and putative cancer stem cell markers in breast cancer (BC) leptomeningeal metastasis (LM). Flow cytometry immunophenotypic analysis of cerebrospinal fluid (CSF) samples (4.5 ml) was performed in 13 consecutive cases of BCLM. Syndecan-1 (CD138), MUC-1 (CD227) CD45, CD34, and the putative cancer stem cell markers CD15, CD24, CD44, and CD133 surface expression were evaluated on CSF floating tumor cells. The tumor-associated leukocyte population was also characterized. Despite a low absolute cell number (8 cell/μl, range 1-86), the flow cytometry characterization was successfully conducted in all the samples. Syndecan-1 and MUC-1 overexpression was documented on BC cells in all the samples analyzed; CD44, CD24, CD15, and CD133 in 77%, 75%, 70%, and 45% of cases, respectively. A strong syndecan-1 and MUC-1 expression was also documented by immunohistochemistry on primary breast cancer tissues, performed in four patients. The CSF tumor population was flanked by T lymphocytes, with a different immunophenotype between the CSF and peripheral blood samples (P ≤ 0.02). Flow cytometry can be successfully employed for solid tumor LM characterization even in CSF samples with low cell count. This in vivo study documents that CSF floating BC cells overexpress prognostic and putative cancer stem cell biomarkers related to tumor invasiveness, potentially representing a molecular target for circulating tumor cell detection and LM treatment monitoring, as well as a primary target for innovative treatment strategies. The T lymphocyte infiltration, documented in all CSF samples, suggests a possible involvement of the CNS lymphatic system in both lymphoid and cancer cell migration into and out of the meninges, supporting the extension of a new form of cellular immunotherapy to LM. Due to the small number of cases, validation on large cohorts of patients are warranted to confirm these findings and to evaluate the impact and value of these results for diagnosis and management of LM.
Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan
2017-02-01
Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud
2018-01-01
Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.
Tropea, Margaret M.; Harper, Bonnie J. A.; Graninger, Grace M.; Phillips, Terry M.; Ferreyra, Gabriela; Mostowski, Howard S.; Danner, Robert L.; Suffredini, Anthony F.; Solomon, Michael A.
2016-01-01
Summary Accurately detecting circulating endothelial cells (CECs) is important since their enumeration has been proposed as a biomarker to measure injury to the vascular endothelium. However, there is no single methodology for determining CECs in blood, making comparison across studies difficult. Many methods for detecting CECs rely on characteristic cell surface markers and cell viability indicators, but lack secondary validation. Here, a CEC population in healthy adult human subjects was identified by flow cytometry as CD45−, CD34dim that is comparable to a previously described CD45−, CD31bright population. In addition, nuclear staining with 7-aminoactinomycin D (7-AAD) was employed as a standard technique to exclude dead cells. Unexpectedly, the CD45−, CD34dim, 7-AAD− CECs lacked surface detectable CD146, a commonly used marker of CECs. Furthermore, light microscopy revealed this cell population to be composed primarily of large cells without a clearly defined nucleus. Nevertheless, immunostains still demonstrated the presence of the lectin Ulex europaeus and van Willebrand factor. Ultramicro analytical immunochemistry assays for the endothelial cell proteins CD31, CD34, CD62E, CD105, CD141, CD144 and vWF indicated these cells possess an endothelial phenotype. However, only a small amount of RNA, which was mostly degraded, could be isolated from these cells. Thus the majority of CECs in healthy individuals as defined by CD45−, CD34dim, and 7-AAD− have shed their CD146 surface marker and are senescent cells without an identifiable nucleus and lacking RNA of sufficient quantity and quality for transcriptomal analysis. This study highlights the importance of secondary validation of CEC identification. PMID:25057108
Miao, Jinxin; Ying, Baoling; Li, Rong; Tollefson, Ann E; Spencer, Jacqueline F; Wold, William S M; Song, Seok-Hwan; Kong, Il-Keun; Toth, Karoly; Wang, Yaohe; Wang, Zhongde
2018-05-06
The accumulating evidence demonstrates that Syrian hamsters have advantages as models for various diseases. To develop a Syrian hamster ( Mesocricetus auratus ) model of human immunodeficiency caused by RAG1 gene mutations, we employed the CRISPR/Cas9 system and introduced an 86-nucleotide frameshift deletion in the hamster RAG1 gene encoding part of the N-terminal non-core domain of RAG1. Histological and immunohistochemical analyses demonstrated that these hamsters (referred herein as RAG1-86nt hamsters) had atrophic spleen and thymus, and developed significantly less white pulp and were almost completely devoid of splenic lymphoid follicles. The RAG1-nt86 hamsters had barely detectable CD3⁺ and CD4⁺ T cells. The expression of B and T lymphocyte-specific genes (CD3γ and CD4 for T cell-specific) and (CD22 and FCMR for B cell-specific) was dramatically reduced, whereas the expression of macrophage-specific (CD68) and natural killer (NK) cell-specific (CD94 and KLRG1) marker genes was increased in the spleen of RAG1-nt86 hamsters compared to wildtype hamsters. Interestingly, despite the impaired development of B and T lymphocytes, the RAG1-86nt hamsters still developed neutralizing antibodies against human adenovirus type C6 (HAdV-C6) upon intranasal infection and were capable of clearing the infectious viruses, albeit with slower kinetics. Therefore, the RAG1-86nt hamster reported herein (similar to the hypomorphic RAG1 mutations in humans that cause Omenn syndrome), may provide a useful model for studying the pathogenesis of the specific RAG1-mutation-induced human immunodeficiency, the host immune response to adenovirus infection and other pathogens as well as for evaluation of cell and gene therapies for treatment of this subset of RAG1 mutation patients.
Diagnostic value of CD117 in differential diagnosis of acute leukemias.
Ahmadi, Abbas; Poorfathollah, Ali-Akbar; Aghaiipour, Mahnaz; Rezaei, Mansour; Nikoo-ghoftar, Mahin; Abdi, Mohammad; Gharib, Alireza; Amini, Amir
2014-07-01
C-kit receptor (CD117) and its ligand, stem cell factor, play a key role in normal hematopoiesis. It has been demonstrated that its expression extremely increases in leukemias with myeloid commitment. We analyzed findings on CD117 expression together with other myeloid related markers in 203 de novo acute leukemias, referred to Iranian immunophenotyping centers: Iranian Blood Transfusion Organization (IBTO) and Baghiatallah Hospital (BH). All cases were characterized based on the French American British cooperative group (FAB) and European Group for Immunological Classification of Leukemias (EGIL). The cases comprised of 111 acute myeloblastic leukemia (AML), 86 acute lymphoblastic leukemia (ALL), and 6 acute undifferentiated leukemia (AUL). CD117 was positive in 75 % of AML and 50 % of AUL, whereas none of the ALL cases was positive for this marker. Although CD117 was positive in 100 % of M5a cases, no M5b positive was found (p = 0.036). The calculated specificity for myeloid involvement was 100 % for CD117 and CD33, and 98 % for CD13 and CD15 (p < 0.001). The calculated sensitivity for myeloid involvement was 83, 76, 64, and 41 % for CD13, CD117, CD33, and CD15, respectively (p < 0.001). We concluded that CD117 expression is a specific and rather sensitive marker for differential diagnosis between AML and ALL, and except for M5 subtypes, it fails to determine FAB subtypes; lack of expression in M5 can identify M5b. Therefore, it should be included in the routine primary panel for diagnosis of acute leukemias.
Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma
2014-01-01
Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407
Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter.
Schneider, Thomas; Karl, Stephan; Moore, Lee R; Chalmers, Jeffrey J; Williams, P Stephen; Zborowski, Maciej
2010-01-01
Cell separation and fractionation based on fluorescent and magnetic labeling procedures are common tools in contemporary research. These techniques rely on binding of fluorophores or magnetic particles conjugated to antibodies to target cells. Cell surface marker expression levels within cell populations vary with progression through the cell cycle. In an earlier work we showed the reproducible magnetic fractionation (single pass) of the Jurkat cell line based on the population distribution of CD45 surface marker expression. Here we present a study on magnetic fractionation of a stem and progenitor cell (SPC) population using the established acute myelogenous leukemia cell line KG-1a as a cell model. The cells express a CD34 cell surface marker associated with the hematopoietic progenitor cell activity and the progenitor cell lineage commitment. The CD34 expression level is approximately an order of magnitude lower than that of the CD45 marker, which required further improvements of the magnetic fractionation apparatus. The cells were immunomagnetically labeled using a sandwich of anti-CD34 antibody-phycoerythrin (PE) conjugate and anti-PE magnetic nanobead and fractionated into eight components using a continuous flow dipole magnetophoresis apparatus. The CD34 marker expression distribution between sorted fractions was measured by quantitative PE flow cytometry (using QuantiBRITE PE calibration beads), and it was shown to be correlated with the cell magnetophoretic mobility distribution. A flow outlet addressing scheme based on the concept of the transport lamina thickness was used to control cell distribution between the eight outlet ports. The fractional cell distributions showed good agreement with numerical simulations of the fractionation based on the cell magnetophoretic mobility distribution in the unsorted sample.
Ketkaew, Yuwaporn; Osathanon, Thanaphum; Pavasant, Prasit; Sooampon, Sireerat
2017-02-01
Cancer stem cells contribute to tumor recurrence, and a hypoxic environment is critical for maintaining cancer stem cells. Apigenin is a natural product with anticancer activity. However, the effect of apigenin on cancer stem cells remains unclear. Our aim was to investigate the effect of apigenin on cancer stem cell marker expression in head and neck squamous cell carcinoma cells under hypoxia. We used three head and neck squamous cell carcinoma cell lines; HN-8, HN-30, and HSC-3. The mRNA expression of cancer stem cell markers was determined by semiquantitative RT-PCR and Real-time PCR. The cytotoxic effect of apigenin was determined by MTT colorimetric assay. Flow cytometry was used to reveal the number of cells expressing cancer stem cell surface markers. HN-30 cells, a cancer cell line from the pharynx, showed the greatest response to hypoxia by increasing their expression of CD44, CD105, NANOG, OCT-4, REX-1, and VEGF. Apigenin significantly decreased HN-30 cell viability in dose- and time-dependent manners. In addition, 40μM apigenin significantly down-regulated the mRNA expression of CD44, NANOG, and CD105. Consistent with these results, the hypoxia-induced increase in CD44 + cells, CD105 + cells, and STRO-1 + cells was significantly abolished by apigenin. Apigenin suppresses cancer stem cell marker expression and the number of cells expressing cell surface markers under hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elevated numbers of SCART1+ gammadelta T cells in skin inflammation and inflammatory bowel disease.
Fink, Dorte Rosenbek; Holm, Dorte; Schlosser, Anders; Nielsen, Ole; Latta, Markus; Lozano, Francisco; Holmskov, Uffe
2010-05-01
The members of the scavenger receptor cysteine-rich (SRCR) superfamily group B have diverse functions, including roles in the immune system. For years it has been known that the WC1 protein is expressed on the surface of bovine gammadelta T cells, and more recent studies indicate that WC1(+) gammadelta T cells respond to stimulation with bacterial antigens by producing interferon-gamma. The SRCR proteins CD5, CD6, Sp alpha, CD163, and DMBT1/gp-340 are also involved in the immune response, since they are pattern recognition receptors capable of binding directly to bacterial and/or fungal components. Here, we investigate a novel murine SRCR protein named SCART1. The ectodomain and the full-length SCART1 were expressed in mammalian cells and used to raise monoclonal antibodies against the ectodomain for immunohistochemical and FACS analysis. Immunohistochemical analysis shows that SCART1 is expressed in a range of lymphoid organs and epithelial-rich tissues by a subset of T cells identified as being gammadelta T cells by FACS analysis. SCART1 was present in 86% of the gammadelta T cells and was not found in CD4(+) or CD8(+) T cells. The numbers of SCART1(+) cells were elevated in two mouse models of human diseases: skin inflammation and inflammatory bowel disease. In the skin inflammation model, an 8.6-fold increase in SCART1(+) cells was observed. Finally, recombinant SCART1 protein was found not to bind to selected bacterial or fungal components or to whole bacteria. Our results show that SCART1 is a novel gammadelta T cell marker and it is therefore likely that SCART1 plays a role in the immune response. (c) 2010 Elsevier Ltd. All rights reserved.
Lacotte, Stéphanie; Slits, Florence; Orci, Lorenzo A.; Meyer, Jeremy; Oldani, Graziano; Gonelle-Gispert, Carmen; Morel, Philippe; Toso, Christian
2016-01-01
ABSTRACT Kupffer cells represent the first line of defense against tumor cells in the liver. Myeloid-derived suppressor cells (MDSC) have recently been observed in the liver parenchyma of tumor-bearing animals. The present study investigates the function of the MDSC subsets, and their impact on Kupffer cell phenotype and function. RIL-175 mouse hepatocellular carcinoma (HCC) cells were injected into the median liver lobe of C57BL/6 mice. Three weeks later, the median lobe hosting the tumor nodule was removed, and Kupffer cells and MDSCs were sorted from the remaining liver. Mouse livers devoid of HCC served as control. Kupffer cells expressed less co-stimulatory CD86 and MHCII and more co-inhibitory CD274 molecules in HCC-bearing livers than in control livers. Corresponding to this phenotype, Kupffer cells from HCC-bearing mice were less efficient in their function as antigen-presenting cells. Three CD11b+ cell populations were identified and sorted from HCC-bearing mice. These cells had various phenotypes with different levels of MDSC-specific surface markers (Ly6Ghigh cells, Gr1high cells, and Ly6Clow cells), and may be considered as bonafide MDSCs given their suppression of antigen-specific T cell proliferation. Primary isolated Kupffer cells in co-culture with the three MDSC subsets showed a decrease in CCL2 and IL-18 secretion, and an increase in IL-10 and IL-1β secretion, and an increased expression of CD86, CD274, and MHCII. In conclusion, these data demonstrated the existence of three MDSC subsets in HCC-bearing animals. These cells altered Kupffer cell function and may decrease the migration and activation of anticancer effector cells in the liver. PMID:27999748
Activation of Basophils Is a New and Sensitive Marker of Biocompatibility in Hemodialysis
Aljadi, Zenib; Mansouri, Ladan; Nopp, Anna; Paulsson, Josefin M; Winqvist, Ola; Russom, Aman; Ståhl, Mårten; Hylander, Britta; Jacobson, Stefan H; Lundahl, Joachim
2014-01-01
The hemodialysis procedure involves contact between peripheral blood and the surface of dialyzer membranes, which may lead to alterations in the pathways of innate and adaptive immunity. We aimed to study the effect of blood–membrane interaction on human peripheral basophils and neutrophils in hemodialysis with high- and low-permeability polysulfone dialyzers. The surface expression of CD203c (basophil selection marker) and CD63 (activation marker) after activation by the bacterial peptide formyl-methionyl-leucyl-phenylalanine (fMLP) or anti-Fcε receptor I (FcεRI) antibody and the absolute number of basophils was investigated before and after hemodialysis with each of the dialyzers. Moreover, the expression on neutrophils of CD11b, the CD11b active epitope, and CD88 was analyzed in the same groups of individuals. The expression of CD63 in basophils following activation by fMLP was significantly higher in the patient group compared with that in healthy controls, but no differences were observed after activation by anti-FcεRI. During the hemodialysis procedure, the low-flux membrane induced up-regulation of CD63 expression on basophils, while passage through the high-flux membrane did not significantly alter the responsiveness. In addition, the absolute number of basophils was unchanged after hemodialysis with either of the dialyzers and compared with healthy controls. We found no significant differences in the expression of the neutrophil activation markers (CD11b, the active epitope of CD11b, and CD88) comparing the two different dialyzers before and after dialysis and healthy controls. Together, these findings suggest that alterations in basophil activity may be a useful marker of membrane bioincompatibility in hemodialysis. PMID:24712758
Matsumoto, Yosuke; Nagoshi, Hisao; Yoshida, Mihoko; Kato, Seiichi; Kuroda, Junya; Shimura, Kazuho; Kaneko, Hiroto; Horiike, Shigeo; Nakamura, Shigeo; Taniwaki, Masafumi
2017-11-01
Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.
NASA Astrophysics Data System (ADS)
MacLaughlin, Christina M.; Parker, Edward P. K.; Walker, Gilbert C.; Wang, Chen
2012-01-01
The ease and flexibility of functionalization and inherent light scattering properties of plasmonic nanoparticles make them suitable contrast agents for measurement of cell surface markers. Immunophenotyping of lymphoproliferative disorders is traditionally undertaken using fluorescence detection methods which have a number of limitations. Herein, surface-enhanced Raman scattering (SERS) gold nanoparticles conjugated to monoclonal antibodies are used for the selective targeting of CD molecules on the surface of chronic lymphocytic leukemia (CLL) cells. Raman-active reporters were physisorbed on to the surface of 60 nm spherical Au nanoparticles, the particles were coated with 5kDa polyethylene glycol (PEG) including functionalities for conjugation to monoclonal IgG1 antibodies. A novel method for quantifying the number of antibodies bound to SERS probes on an individual basis as opposed to obtaining averages from solution was demonstrated using metal dots in transmission electron microscopy (TEM). The specificity of the interaction between SERS probes and surface CD molecules of CLL cells was assessed using Raman spectroscopy and dark field microscopy. An in-depth study of SERS probe targeting to B lymphocyte marker CD20 was undertaken, and proof-of-concept targeting using different SERS nanoparticle dyes specific for cell surface CD19, CD45 and CD5 demonstrated using SERS spectroscopy.
Schmidt, Janine; Bonzheim, Irina; Steinhilber, Julia; Montes-Mojarro, Ivonne A; Ortiz-Hidalgo, Carlos; Klapper, Wolfram; Fend, Falko; Quintanilla-Martínez, Leticia
2017-09-01
Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is characterized by expression of oncogenic ALK fusion proteins due to the translocation t(2;5)(p23;q35) or variants. Although genotypically a T-cell lymphoma, ALK+ ALCL cells frequently show loss of T-cell-specific surface antigens and expression of monocytic markers. C/EBPβ, a transcription factor constitutively overexpressed in ALK+ ALCL cells, has been shown to play an important role in the activation and differentiation of macrophages and is furthermore capable of transdifferentiating B-cell and T-cell progenitors to macrophages in vitro. To analyze the role of C/EBPβ for the unusual phenotype of ALK+ ALCL cells, C/EBPβ was knocked down by RNA interference in two ALK+ ALCL cell lines, and surface antigen expression profiles of these cell lines were generated using a Human Cell Surface Marker Screening Panel (BD Biosciences). Interesting candidate antigens were further analyzed by immunohistochemistry in primary ALCL ALK+ and ALK- cases. Antigen expression profiling revealed marked changes in the expression of the activation markers CD25, CD30, CD98, CD147, and CD227 after C/EBPβ knockdown. Immunohistochemical analysis confirmed a strong, membranous CD147 (EMMPRIN) expression in ALK+ ALCL cases. In contrast, ALK- ALCL cases showed a weaker CD147 expression. CD274 or PD-L1, an immune inhibitory receptor ligand, was downregulated after C/EBPβ knockdown. PD-L1 also showed stronger expression in ALK+ ALCL compared with ALK- ALCL, suggesting an additional role of C/EBPβ in ALK+ ALCL in generating an immunosuppressive environment. Finally, no expression changes of T-cell or monocytic markers were detected. In conclusion, surface antigen expression profiling demonstrates that C/EBPβ plays a critical role in the activation state of ALK+ ALCL cells and reveals CD147 and PD-L1 as important downstream targets. The multiple roles of CD147 in migration, adhesion, and invasion, as well as T-cell activation and proliferation suggest its involvement in the pathogenesis of ALCL.
Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin
2015-01-01
ABSTRACT Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. PMID:25784697
Ocaña, L; Cos, J; Quer, J; Bilbao, I; Palou, E; Parra, R; Sauleda, S; Esteban, J I; Guàrdia, J; Massuet, L I; Margarit, C
2005-11-01
Hepatitis C virus (HCV) infection is one of the leading causes of chronic liver disease and the reason for more than 50% of liver transplantations (OLT). Recurrent HCV infection occurs in almost all transplant recipients and has an unfavorable course. Although immunosuppressive agents are necessary to avoid allograft rejection, these drugs may favor viral replication facilitating viral-mediated graft injury. To predict the evolution of two HCV(+) patients who underwent OLT, we studied INF-gamma and TNF-alpha production and the maturation capacity of dendritic cells (DCs) at three time points: before transplantation (Pre-Tx) and at 2 (2M) and 6 (6M) months after transplantation. Cytometric bead assays were used to quantify INF-gamma and TNF-alpha production in the supernates of mixed leukocyte reactions (MLR) between spleen cells from the liver donor and CD4(+) cells from the recipients. Immature and mature DCs were generated in vitro from patient monocytes. The one patient who experienced recurrent HCV showed loss of CD4(+) responses to donor antigens and INF-gamma and TNF-alpha production after OLT. In contrast, the other patient maintained detectable levels of these cytokines after OLT. It was possible to generate mature DCs from monocytes with the aid of CD40L in both cases, but decreased expression of HLA-DR, CD80, and CD86 markers was observed upon posttransplantation analyses in the patient with recurrent HCV. Loss of the proliferative response as well as INF-gamma and TNF-alpha production, together with a decreased HLA-DR, CD80, and CD86 (markers of mature DCs), indicated an inadequate immune response to viral progression in the liver transplant recipient with relapsing HCV infection.
Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo
Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.
2015-01-01
Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015
1995-10-06
these activation markers on B cells and changes in B cell size (forward light scatter) were analyzed by flow cytometry (Figure 7). B cell surface B7...activation ofnaive CD4+ Th cells requires two signals delivered from antigen presenting cells (APes). The engagement ofthe T cell surface receptor...shown that T cell surface ii molecule CD28, and its homologue CTLA-4, can provide costimulatory signals to 10 cells when they interact with their ligands
Analysis of Microtubule Mediated Functions of Prostate Specific Membrane Antigen
2006-04-01
localization of vesicles containing these markers increased to approximately 43% (38/88) when cells are incubated with tunicamycin, indicating a role...PSMA at both plasma membrane domains following nocodazole treatment. Polarity of the basolateral marker Na,K- ATPase was unaffected by nocodazole...restricted to the apical surface facing the lumen. This staining was clearly distinct from that of the endothelial cell marker CD 34 and CD31
Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith
2017-05-01
Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression networks. Stem Cells 2017;35:1273-1289. © 2017 AlphaMed Press.
Human immunotoxicologic markers of chemical exposures: preliminary validation studies.
Wartenberg, D; Laskin, D; Kipen, H
1993-01-01
The circulating cells of the immune system are sensitive to environmental contaminants, and effects are often manifested as changes in the cell surface differentiation antigens of affected populations of cells, particularly lymphocytes. In this investigation, we explore the likelihood that variation in the expression of the surface markers of immune cells can be used as an index of exposure to toxic chemicals. We recruited 38 healthy New Jersey men to study pesticides effects: 19 orchard farmers (high exposure); 13 berry farmers (low exposure); and 6 hardware store owners (no exposure). Immunophenotyping was performed assaying the following cell surface antigens: CD2, CD4, CD8, CD14, CD20, CD26, CD29, CD45R, CD56, and PMN. Data were analyzed using univariate and multivariate methods. There were no significant differences among the groups with respect to routine medical histories, physical examinations, or routine laboratory parameters. No striking differences between groups were seen in univariate tests. Multivariate tests suggested some differences among groups and limited ability to correctly classify individuals based on immunophenotyping results. Immunophenotyping represents a fruitful area of research for improved exposure classification. Work is needed both on mechanistic understanding of the patterns observed and on the statistical interpretation of these patterns.
Yang, Ming-Chia; Chi, Nai-Hsin; Chou, Nai-Kuan; Huang, Yi-You; Chung, Tze-Wen; Chang, Yu-Lin; Liu, Hwa-Chang; Shieh, Ming-Jium; Wang, Shoei-Shen
2010-02-01
Since MSCs contain an abundant of CD44 surface markers, it is of interesting to investigate whether CD44 on rat MSC (rMSCs) influenced cell growth, fibronectin expression and cardiomyogenic differentiation on new SF/HA cardiac patches. For this investigation, we examined the influences of rMSCs with or without a CD44-blockage treatment on the aforementioned issues after they were cultivated, and further induced by 5-aza on SF and SF/HA patches. The results showed that the relative growth rates of rMSCs cultured on cultural wells, SF/HA patches without or with a CD44-blockage treatment were 100%, 208.9+/-7.1 (%) or 48.4+/-6.0 (%) (n=3, for all), respectively, after five days of cultivations. Moreover, rMSCs cultivated on SF/HA patches highly promoted fibronectin expressions (e.g., 1.8x10(5)/cell, in fluorescent intensity) while cells with a CD44-blockage treatment markedly diminished the expressions (e.g., 1.1x10(4)/cell, in fluorescent intensity) on same patches. For investigating possible influences of CD44 surface markers of rMSCs on their cardiomyogenic differentiation, the expressions of specific cardiac genes of cells were examined by using real-time PCR analysis. The results indicated that 5-aza inducing rMSCs significantly promoted the expressions of Gata4, Nkx2.5, Tnnt2 and Actc1 genes (all, P<0.01 or better, n=3) on SF/HA patches compared with those expressions on SF patches and for cells with a CD44-blockage treatment on SF/HA patches. Furthermore, the intensity of the expressions of cardiotin and connexin 43 of 5-aza inducing rMSCs were markedly higher than those of cells with a CD44-blockage treatment after they were cultured on SF/HA patches. Through this study, we reported that CD44 surface markers of rMSCs highly influenced the proliferations, fibronectin expressions and cardiomyogenic differentiation of rMSCs cultivated on cardiac SF/HA patches.
Konermann, Anna; Stabenow, Dirk; Knolle, Percy A; Held, Stefanie A E; Deschner, James; Jäger, Andreas
2012-10-01
Innate immunity is crucial for an effective host defense against pathogenic microorganisms in periodontal tissues. As periodontal ligament (PDL) cells synthesize immunomodulatory cytokines, the aim of this in vitro study was to investigate whether these cells can interact with innate immune cells. Resting and inflammatory primed (IL-1β, TNF-α, HMGB1) human PDL cells were co-cultured with human monocyte-derived dendritic cells or macrophages. Migration, phenotypic maturation and modulation of phagocytosis of Porphyromonas gingivalis by immune cells were investigated upon co-culture with PDL cells and/or their released soluble factors. PDL cells interacted with immune cells under both non-inflammatory and inflammatory conditions. Immune cell migration was significantly enhanced by co-culture with PDL cells, which also affected their phenotypic maturation both through cell-cell contact and through released soluble mediators. The dendritic cell maturation markers CD83 and CD86 were upregulated as much as both 'alternatively activated' M2 macrophage maturation markers CD23 and CD163. In contrast, the 'classically activated' M1 macrophage maturation marker CD64 was downregulated. Finally, PDL cells significantly enhanced the phagocytosis of Porphyromonas gingivalis by immune cells. Our experiments revealed that PDL cells are not only structural elements of the periodontium, but actively influence immune responses by interaction with innate immune cells.
Dixit, Saurabh; Sahu, Rajnish; Verma, Richa; Duncan, Skyla; Giambartolomei, Guillermo H; Singh, Shree R; Dennis, Vida A
2018-03-01
We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3 + lymphoproliferation, CD3 + CD4 + IFN-γ-secreting cells along with CD3 + CD4 + memory (CD44 high and CD62L high ) and effector (CD44 high and CD62L low ) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4 + T cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Casey, T. T.; Cousar, J. B.; Collins, R. D.
1988-01-01
Routine fixation and paraffin embedding destroys many hematopoietic and lymphoid differentiation antigens detected by flow cytometry or frozen section immunohistochemistry. On the other hand, morphologic evaluation is difficult in flow cytometric or frozen section studies. A simplified three-step plastic embedding system using acetone-fixed tissues embedded in glycol-methacrylate (GMA) resin has been found to provide both excellent morphologic and antigenic preservation. With our system, a wide variety of antigens are detected in plastic sections without trypsinization or prolonged embedding procedures; pan-B (CD19, CD22), pan-T (CD7, CD5, CD3, CD2), T-subset (CD4, CD8, CD1, CD25) markers as well as surface immunoglobulin and markers for myeloid and mononuclear-phagocyte cells are preserved. In summary, modifications of plastic embedding techniques used in this study simplify the procedure, apparently achieve excellent antigenic preservation, and facilitate evaluation of morphologic details in relation to immunocytochemical markers. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3282442
Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.
Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J
2013-01-01
After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.
Jin, Hye Jin; Kwon, Ji Hye; Kim, Miyeon; Bae, Yun Kyung; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Jeon, Hong Bae
2016-04-01
Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated β-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required. However, long-term growth inevitably induces cellular senescence, which potentially causes poor clinical outcomes by inducing growth arrest and the loss of stem cell properties. Thus, the identification of markers for evaluating the status of MSC senescence during long-term culture may enhance the success of MSC-based therapy. This study provides strong evidence that CD146 is a novel and useful marker for predicting senescence in human umbilical cord blood-derived MSCs (hUCB-MSCs), and CD146 can potentially be applied in quality-control assessments of hUCB-MSC-based therapy. ©AlphaMed Press.
Ghafourian, Mehri; Karami, Najmeh; Khodadadi, Ali; Nikbakht, Roshan
2014-06-01
Recurrent spontaneous abortion (RSA) and in vitro fertilization (IVF) failure with unknown causes are the controversial issues that are probably related to the immune system. To compare circulating NK cells expressing activation and inhibition surface markers between patients with RSA and IVF failure with those of healthy multiparous and successful IVF control women, respectively. In this case-control study peripheral blood samples were collected from 43 patients who included 23 women with RSA and 20 with IVF failure, plus 43 healthy control women comprising of 36 normal multiparous women and seven women with successful IVF. The expression of CD69, CD94 and CD161 surface markers on CD56+NK cells were assessed using specific monoclonal antibodies by flowcytometry. The percentage of NK cells increased significantly in patients with RSA and in women with IVF failure in comparison to healthy multiparous and successful IVF control groups (p<0.001). The overall expression of CD69, CD94, CD161 were also increased significantly on NK cells in both patient groups compared to control groups (p<0.001). Elevated expression of CD69 and CD161 on NK cells can be considered as immunological risk markers in RSA and IVF failure. However, it is not clear if high expression of CD94 on peripheral blood NK cells is related to abnormal activity of endometrial NK cells.
Basbous, Sara; Levescot, Anaïs; Piccirilli, Nathalie; Brizard, Françoise; Guilhot, François; Roy, Lydia; Bourmeyster, Nicolas; Gombert, Jean-Marc; Herbelin, André
2016-11-01
CD1d-restricted invariant natural killer T (iNKT) cells are believed to play a key role in cancer immune surveillance, and are functionally deficient in patients with chronic myeloid leukaemia (CML). Herein, we have hypothesized that this defect might originate from BCR-ABL-dependent dysfunctions in myeloid dendritic cells (mDCs). Indeed, flow cytometry and confocal microscopy revealed that cell surface expression of CD1d was downregulated in CML mDCs, relative to healthy donor (HD) controls. The decreased cell surface display of CD1d could not be ascribed to defective mDC differentiation, as attested by normal expression of HLA-DR and the CD86 maturation marker. On the other hand, reduced membrane expression was not associated with decreased intracytoplasmic levels of CD1d or its mRNA transcripts, consistent with intracellular retention. In vitro treatment of CML mDCs with the Rho-associated protein kinase (ROCK) inhibitor Y-27632 partially restored both cell surface CD1d expression and CD1d-mediated antigen presentation, whereas it had no effect on HD mDCs. An inhibitor of BCR-ABL tyrosine kinase (TK), imatinib mesylate (IM), had no such activity. Similar recovery of CD1d expression occurred with fasudil, another ROCK inhibitor that is commonly used in clinical trials. Our data support the conclusion that BCR-ABL-dependent ROCK, but not TK, is involved in CD1d downregulation. We propose that ROCK, which is most likely activated by the DH/PH domain of BCR-ABL, mediates iNKT-cell immune subversion in CML patients by downregulating CD1d expression on CML mDCs. Our study reveals the ROCK-mDC axis as a new potential target to restore immune surveillance in patients with CML, offering new therapeutic perspectives for CML treatment. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Karimzadeh, Alborz; Scarfone, Vanessa M.; Varady, Erika; Chao, Connie; Grathwohl, Karin; Fathman, John W.; Fruman, David A.; Serwold, Thomas
2018-01-01
Abstract Hematopoietic stem cells (HSCs) are the self‐renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two‐color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. stem cells translational medicine 2018;7:468–476 PMID:29543389
Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.
2012-01-01
Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795
Altered CD19/CD22 balance in Egyptian children and adolescents with systemic lupus erythematosus.
El-Sayed, Zeinab A; Ragab, Seham M; Khalifa, Khaled A; El Ashmawy, Ramy A
2009-01-01
B cells from systemic lupus erythematosus (SLE) patients display signalling defects that may underlie disease pathogenesis activity.CD19 and CD22 play a major role as regulators of B-cell response. The aim of this study was to clarify the relationship between B cell surface markers namely CD19, CD20 and CD22 expression and clinical and laboratory indices of SLE activity. The study included 33 SLE patients and 20 healthy children and adolescents as controls. Flowcytometric assay of dual markers, CD19/CD20, and CD20/CD22 was done. SLE disease activity was assessed by SLEDAI score. CD22% was significantly higher while CD20% was significantly lower in the study compared to the control group. No significant difference was observed in both groups with respect to CD19% or CD19/CD22% ratio. The level of CD22 expression was significantly lower in high and very high active cases than in mild and moderate cases and negatively correlated with SLDEAI score and ESR. Results obtained showed that, B cell surface receptors CD20 and CD22 are significantly affected in patients with SLE, pointing to their possible involvement in the aetiopathogenesis of the disease and in the regulatory mechanisms in response to the immune disturbance.
Wang, Sheng; Sun, Cuifang; Liao, Wang; Wu, Zhongwei; Wang, Yudai; Huang, Xiuxian; Lu, Sijia; Dong, Xiaoli; Shuai, Fujie; Li, Bin
2017-07-01
Objective To investigate the impact of thrombotic events on the alterations of monocyte and monocyte-platelet aggregates (MPAs) in patients with acute myocardial infarction (AMI) during percutaneous coronary intervention (PCI). Methods Blood was collected before PCI for flow cytometry. Monocyte subsets and MPAs were detected by four-color platform (CDl4-APC, CDl6-PE-Cy7, CD86-PE and CD41-Alexa Fluor R 488). According to the expression of the platelet surface marker CD41, the number of monocyte subsets and MPAs was analyzed using the fluorescent microspheres of absolute counting tube. The Wilcoxon rank sum test and receiver operating characteristic (ROC) curve analysis were performed. Results CD14 + CD16 ++ monocytes in intraprocedural thrombotic events (IPTE) group were significantly fewer than those in non-IPTE group, and the percentage in total mononuclear cells decreased. Compared with non-IPTE group, MPA binding ratio and monocyte subset MPA binding ratio were significantly higher in IPTE group. ROC analysis showed that MPA binding ratio and subgroup MPA binding ratio had a better predictive value for IPTE in patients with AMI. Conclusion The CD14 + CD16 ++ monocytes in IPTE group were significantly fewer than those in the non-IPTE group. MPA binding ratio and MPA binding ratio of monocyte subsets were significantly higher in the IPTE group than in the non-IPTE group, so they have a good predictive value for IPTE in patients with AMI.
Effect of aging and oral tolerance on dendritic cell function.
Simioni, P U; Fernandes, L G R; Gabriel, D L; Tamashiro, W M S C
2010-01-01
Oral tolerance can be induced in some mouse strains by gavage or spontaneous ingestion of dietary antigens. In the present study, we determined the influence of aging and oral tolerance on the secretion of co-stimulatory molecules by dendritic cells (DC), and on the ability of DC to induce proliferation and cytokine secretion by naive T cells from BALB/c and OVA transgenic (DO11.10) mice. We observed that oral tolerance could be induced in BALB/c mice (N = 5 in each group) of all ages (8, 20, 40, 60, and 80 weeks old), although a decline in specific antibody levels was observed in the sera of both tolerized and immunized mice with advancing age (40 to 80 weeks old). DC obtained from young, adult and middle-aged (8, 20, and 40 weeks old) tolerized mice were less efficient (65, 17 and 20%, respectively) than DC from immunized mice (P < 0.05) in inducing antigen-specific proliferation of naive T cells from both BALB/c and DO11.10 young mice, or in stimulating IFN-g, IL-4 and IL-10 production. However, TGF-beta levels were significantly elevated in co-cultures carried out with DC from tolerant mice (P < 0.05). DC from both immunized and tolerized old and very old (60 and 80 weeks old) mice were equally ineffective in inducing T cell proliferation and cytokine production (P < 0.05). A marked reduction in CD86+ marker expression was observed in DC isolated from both old and tolerized mice (75 and 50%, respectively). The results indicate that the aging process does not interfere with the establishment of oral tolerance in BALB/c mice, but reduces DC functions, probably due to the decline of the expression of the CD86 surface marker.
Adaptation of the human Cell Line Activation Test (h-CLAT) to Animal-Product-Free Conditions.
Edwards, Alexander; Roscoe, Lottie; Longmore, Christopher; Bailey, Fiona; Sim, Bushra; Treasure, Carol
2018-06-13
Skin sensitisers are substances that can elicit allergic responses following skin contact and the process by which this occurs is described as skin sensitisation. Skin sensitisation is defined as a series of key events, that form an adverse outcome pathway (AOP). Key event three in the AOP is dendritic cell activation that can be modelled by the human Cell Line Activation Test (h-CLAT) and is typified by changes in cell surface markers CD54 and CD86 in dendritic cells. The h-CLAT is accepted at a regulatory level (OECD Test-Guideline (TG)442E) and can be used to assess skin sensitisation potential as part of an integrated approach to testing and assessment (IATA). Stakeholders in the cosmetics and chemical industries have scientific and ethical concerns relating to use of animal derived material and have communicated a strong preference for fully human based in vitro methods. Therefore, we adapted the h-CLAT to animal-product-free conditions and validated the adapted method with the proficiency panel substances in Annex II of TG442E, using 3 independent batches of pooled human serum. The modified method showed equivalence to the validated reference method (VRM), as all proficiency substances were correctly classified. Comparable values for CV75 (concentration yielding 75% cell viability), EC150 and EC200 (concentration yielding RFI of ≥150 for CD86 and ≥200 for CD54) were obtained. Data generated using the adapted method may be used in European REACH submissions, provided the proficiency data is included. We are seeking formal inclusion of the adaptation into TG442E, enabling compliance with global regulations.
Tumas, D B; Brassfield, A L; Travenor, A S; Hines, M T; Davis, W C; McGuire, T C
1994-12-01
Murine monoclonal antibodies, HB88A, B29A and DH59B separately identify the CD2 T lymphocyte molecule, a unique pan-B lymphocyte surface marker and a pan-granulocyte/monocyte surface molecule, respectively, in the horse. Specificity was shown by two-color immunofluorescent flow cytometry and immunofluorescent microscopy. MAb HB88A reacted with a 52 kDa pan-T lymphocyte molecule present on 75% +/- 7 of peripheral blood lymphocytes (PBL) (n = 15 horses). It also reacted with lymphocytes restricted to T lymphocyte dependent areas of lymph node and spleen. Specificity of mAb HB88A to CD2 was demonstrated by its reactivity to COS7 cells which expressed a transfected 1.5 kb equine lymphocyte c-DNA clone having 77.5% overall sequence homology with human CD2 c-DNA. MAb B29A reacted with a pan-B lymphocyte specific cell surface complex, 143, 72, 50, 40, 27 and 14.5 kDa, present on 19% +/- 7 of PBL (n = 15 horses). This complex has not been described in the horse or other species. MAb DH59B reacted with a 96 kDa pan-granulocyte/monocyte specific surface protein and identified macrophages and Kupffer cells in equine tissue sections. Together these mAbs can be used to identify and quantitate the major constituents of equine leukocytes.
Qadan, Maha A; Piuzzi, Nicolas S; Boehm, Cynthia; Bova, Wesley; Moos, Malcolm; Midura, Ronald J; Hascall, Vincent C; Malcuit, Christopher; Muschler, George F
2018-03-01
Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (P CTP ) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. Mean [Cell], [CTP] and P CTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm 2 ; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences between cell populations in biological performance. Understanding the underlying reasons for variation in the concentration, prevalence, marker expression and biological potential of CTPs between patients and source tissues and determining the means of managing this variation will contribute to the rational development of cell-based clinical diagnostics and targeted cell-based therapies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Elevated Endomyocardial Biopsy Macrophage-Related Markers in Intractable Myocardial Diseases.
Hayashi, Yuka; Hanawa, Haruo; Jiao, Shuang; Hasegawa, Go; Ohno, Yukako; Yoshida, Kaori; Suzuki, Tomoyasu; Kashimura, Takeshi; Obata, Hiroaki; Tanaka, Komei; Watanabe, Tohru; Minamino, Tohru
2015-12-01
Tissue macrophages can be activated by endogenous danger signals released from cells that are stressed or injured, leading to infiltration of inflammatory macrophages and neutrophils. We postulated that macrophage-related markers might be closely associated with the existence of endogenous danger signals, reflecting ongoing tissue injury in the absence of foreign substances. This study was designed to assess the ability of macrophage-related markers in endomyocardial biopsies to predict ongoing cardiac injury in non-inflammatory myocardial diseases. We examined levels of macrophage-related markers (CD68, CD163, CD45) in endomyocardial biopsies from patients (n = 86) with various myocardial diseases by quantitative reverse transcription-polymerase chain reaction (n = 78) and immunohistochemistry (n = 56). Thirty-three patients without inflammatory cardiac disease such as myocarditis and sarcoidosis were classified as "improved" or "non-improved" defined as a 10% increase in left ventricular ejection fraction by echocardiograph and a value greater than 30% at the time of follow-up. All macrophage-related (MacR) markers levels were not higher in non-improved dilated cardiomyopathy (DCM) patients than improved patients. However, patients with cardiac amyloidosis, cardiac Fabry disease, mitochondrial cardiomyopathy, and biventricular arrhythmogenic right ventricular cardiomyopathy (ARVC), which were categorized as "non-improvement diseases," had elevated macrophage-related markers compared to improved patients. Macrophage-related markers levels were increased in endomyocardial biopsy samples of patients with intractable myocardial diseases such as amyloidosis, mitochondrial disease, Fabry disease, and biventricular ARVC.
Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer
2008-12-01
transduction of dendritic cells (DCs) is inefficient because of the lack of the primary Ad receptor, CAR. CD40 is a surface marker expressed by DCs that...ligands or antibodies that can bind to the cell surface markers expressed by DCs. The tumor antigen or peptides are linked to the ligands...thus pose the risk of insertional mutagenesis and oncogenesis. The various cell- surface markers that have been exploited for targeting DCs have
Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.
Knapp, W; Strobl, H; Majdic, O
1994-12-15
New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).
Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru
2016-09-01
To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.
When to screen children with Down syndrome for celiac disease?
Pavlovic, Momcilo; Radlovic, Nedeljko; Lekovic, Zoran; Stojsic, Zorica; Puleva, Katja; Berenji, Karolina
2010-12-01
The coexistence of Down syndrome (DS) and celiac disease (CD) has been reported in many studies. In our study, we examined 82 children with DS aged 8 months to 8.6 years for the existence of CD using serological markers immunoglobulin A (IgA) and immunoglobulin G (IgG) transglutaminase antibodies, followed by follow-up determination of total IgA levels. In four children who were positive for one of the above-mentioned antibodies, enteric biopsy has been performed that showed absence of CD. Our findings raise doubt about the need for obligatory serological screening of children with DS aged <8 years.
Meckenstock, G; Heyll, A; Schneider, E M; Hildebrandt, B; Runde, V; Aul, C; Bartram, C R; Ludwig, W D; Schneider, W
1995-02-01
Coexpression of myeloid, B-, and T-lineage associated markers was found in a patient with morphologically and cytochemically undifferentiated acute leukemia. Surface marker analysis using two-color immunofluorescence staining characterized blast cells to express CD34, CD38, CD117, and class II antigens, coexpressing TdT, CD4, CD7, CD13, CD19, and CD33. Cytoplasmic expression of myeloperoxidase, CD3, and CD22 could not be demonstrated. Monosomy for chromosome 7 was found by cytogenetic analysis. The absence of clonal rearrangements of immunoglobulin or T-cell receptor genes was shown by Southern blot analysis. Using a 3H-thymidine incorporation assay, DNA synthesis of leukemic blasts could be stimulated by IL-3, IL-6 and G-CSF in vitro. The present case did not offer specific criteria of lineage commitment. Corresponding to an equivalent counterpart in normal hematopoiesis, the involved cell population may reflect an early, most immature developmental stage within a multipotent progenitor cell compartment.
Laihia, J K; Jansen, C T
2000-08-01
It has been postulated that Langerhans cells (LC) provide tolerogenic signals in the local impairment of cutaneous immune functions and antigen-specific tolerance induced by UV radiation. Studies in vitro and ex vivo have indicated that UV radiation may down-regulate the expression of costimulatory molecules on LC, leading to reduced antigen-presenting function. In contrast, we recently observed an up-regulatory stage in the number of human epidermal LC with induced expression of B7 costimulatory molecules 12-24 h after solar-simulating UV radiation (SSR) in vivo. To examine the apparent discrepancy between the observed human LC responses in vitro, ex vivo and in vivo, we compared the three protocols in a parallel fashion. The intact skin as well as skin explants and epidermal cell suspensions from the same individuals were irradiated with a single erythematogenic dose of SSR. The expression of cell surface markers in the epidermal cells was analysed with flow cytometry 24 h later. The number of CD1a+/HLA-DR+ LC increased post-SSR in vivo by a factor of 2.8+/-0.4, whereas in irradiated skin explants ex vivo or in cell suspensions in vitro, reduced numbers were seen. HLA-DR expression intensities were found to have increased on DR+ and CD1a+/DR+ cells in vivo. Similarly, SSR induced B7-2 (CD86) expression in CD1a+ cells significantly in vivo (P=0.031) but reduced the expression ex vivo or in vitro. We conclude that the early up-regulatory stage of human LC number and membrane markers, recorded at 24 h after a single exposure to SSR, is exclusively an in vivo phenomenon.
CD146 Expression Influences Periapical Cyst Mesenchymal Stem Cell Properties.
Paduano, Francesco; Marrelli, Massimo; Palmieri, Francesca; Tatullo, Marco
2016-10-01
Recent studies have identified a new human dental derived progenitor cell population with multi-lineage differentiation potential referred to as human periapical cyst mesenchymal stem cells (hPCy-MSCs). In the present study, we compared two subpopulations of hPCy-MSCs characterised by the low or high expression of CD146 to establish whether this expression can regulate their stem cell properties. Using flow cytometry, we evaluated the stem cell marker profile of hPCy-MSCs during passaging. Furthermore, CD146 Low and CD146 High cells were sorted by magnetic beads and subsequently both cell populations were evaluated for differences in their proliferation, self-renewal, stem cell surface markers, stemness genes expression and osteogenic differentiation potential.We found that hPCy-MSCs possessed a stable expression of several mesenchymal stem cell surface markers, whereas CD146 expression declined during passaging.In addition, sorted CD146 Low cells proliferated significantly faster, displayed higher colony-forming unit-fibroblast capacity and showed higher expression of Klf4 when compared to the CD146 High subset. Significantly, the osteogenic potential of hPCy-MSCs was greater in the CD146 Low than in CD146 High population. These results demonstrate that CD146 is spontaneously downregulated with passaging at both mRNA and protein levels and that the high expression of CD146 reduces the proliferative, self-renewal and osteogenic differentiation potential of hPCy-MSCs. In conclusion, our study demonstrates that changes in the expression of CD146 can influence the stem cell properties of hPCy-MSCs.
Hardy, Andrew W; Graham, David R; Shearer, Gene M; Herbeuval, Jean-Philippe
2007-10-30
Plasmacytoid dendritic cells (pDC) are key players in viral immunity and produce IFN-alpha after HIV-1 exposure, which in turn regulates TNF-related apoptosis-inducing ligand (TRAIL) expression by CD4(+) T cells. We show here that infectious and noninfectious HIV-1 virions induce activation of pDC into TRAIL-expressing IFN-producing killer pDC (IKpDC). IKpDC expressed high levels of activation markers (HLA-DR, CD80, CD83, and CD86) and the migration marker CCR7. Surprisingly, CXCR4 and CCR5 were down-regulated on IKpDC. We also show that HIV-1-induced IKpDC depended on Toll-like receptor 7 (TLR7) activation. HIV-1 or TLR7 agonistexposed IKpDC induced apoptosis of the CD4(+) T cell line SupT1 via the TRAIL pathway. Furthermore, IFN-alpha produced after HIV-induced TLR7 stimulation was responsible for TRAIL expression and the down-regulation of both CXCR4 and CCR5 by IKpDC. In contrast, activation and migration markers were not regulated by IFN-alpha. Finally, IFN-alpha increased the survival of IKpDC. We characterized a subset of pDC with a killer activity that is activated by endosomal-associated viral RNA and not by infection.
Karimzadeh, Alborz; Scarfone, Vanessa M; Varady, Erika; Chao, Connie; Grathwohl, Karin; Fathman, John W; Fruman, David A; Serwold, Thomas; Inlay, Matthew A
2018-06-01
Hematopoietic stem cells (HSCs) are the self-renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two-color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. Stem Cells Translational Medicine 2018;7:468-476. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
1992-07-27
cell surface marker CD22 , which plays a role in early B-cell activation, is present within the cytoplasm of all B- cells, but expressed only on the...surface of a subpopulation of those cells. CD22 is an activation receptor associated with cell proliferation of small resting B-cells, and acts as an...adhesion molecule mediating the binding of B-cells to other hematopoietic cells (Stamenkovic & Seed, 1990). The CD22 surface glycoprotein is the putative
USDA-ARS?s Scientific Manuscript database
To replace animal testing and to improve the prediction of skin sensitization, significant attention has been directed to the use of alternative methods. Along with induction of Nrf2 target gene and upregulation of CD86 and C54 markers, the direct peptide reactivity assay (DPRA), the regulatory agen...
Tsuji, Kunikazu; Ojima, Miyoko; Otabe, Koji; Horie, Masafumi; Koga, Hideyuki; Sekiya, Ichiro; Muneta, Takeshi
2017-06-09
Flow cytometric analysis of cell surface antigens is a powerful tool for the isolation and characterization of stem cells residing in adult tissues. In contrast to the collection of hematopoietic stem cells, the process of enzymatic digestion is usually necessary to prepare mesenchymal stem cells (MSCs) suspensions, which can influence the expression of cell surface markers. In this study, we examined the effects of various cell-detaching reagents and digestion times on the expression of stem cell-related surface antigens and MSC functions. Human MSCs were detached from dishes using four different reagents: trypsin, TrypLE, collagenase, and a nonenzymatic cell dissociation reagent (C5789; Sigma-Aldrich). Following dissociation reagent incubations ranging from 5 to 120 min, cell surface markers were analyzed by flow cytometry. Trypsin and TrypLE quickly dissociated the cells within 5 min, while collagenase and C5789 required 60 min to obtain maximum cell yields. C5789 significantly decreased cell viability at 120 min. Trypsin treatment significantly reduced CD44+, CD55+, CD73+, CD105+, CD140a+, CD140b+, and CD201+ cell numbers within 30 min. Collagenase treatment reduced CD140a expression by 30 min. In contrast, TrypLE treatment did not affect the expression of any cell surface antigens tested by 30 min. Despite the significant loss of surface antigen expression after 60 min of treatment with trypsin, adverse effects of enzymatic digestion on multipotency of MSCs were limited. Overall, our data indicated that TrypLE is advantageous over other cell dissociation reagents tested for the rapid preparation of viable MSC suspensions.
Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya
2015-01-01
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13+CD133+ cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13+CD133+ cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation. PMID:25808356
Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya; Kamiya, Akihide
2015-07-15
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.
Morgan, Angela J; Guillen, Cristina; Symon, Fiona A; Birring, Surinder S; Campbell, James J; Wardlaw, Andrew J
2008-01-01
Expressions of activation markers have been described on the surface of T cells in the blood and the lung in both health and disease. We have studied the distribution of activation markers on human lung T cells and have found that only certain populations exist. Importantly, the presence or absence of some markers appears to predict those of others, in particular cells which express CD103 also express CD49a and CD69, whereas cells which do not express CD69 also do not express CD49a or CD103. In view of the paucity of activation marker expression in the peripheral blood, we have hypothesised that these CD69+, CD49a+, and CD103+ (triple positive) cells are retained in the lung, possess effector function (IFNgamma secretion) and express particular chemokine receptors which allow them to be maintained in this environment. We have found that the ability of the triple negative cells to secrete IFNgamma is significantly less than the triple positive cells, suggesting that the expression of activation markers can highlight a highly specialised effector cell. We have studied the expression of 14 chemokine receptors and have found that the most striking difference between the triple negative cells and the triple positive cells is the expression of CXCR6 with 12.8+/-9.8% of triple negative cells expressing CXCR6 compared to 89.5+/-5.5% of triple positive cells. We propose therefore that CXCR6 may play an important role in the retention of T cells within the lung.
Patel, Vineet I.; Booth, J. Leland; Duggan, Elizabeth S.; Cate, Steven; White, Vicky L.; Hutchings, David; Kovats, Susan; Burian, Dennis M.; Dozmorov, Mikhail; Metcalf, Jordan P.
2016-01-01
The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Due to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole lung bronchoalveolar lavage. Six subsets of phagocytic antigen presenting (HLA-DR+) cells were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1− CD14+, BDCA1+ CD14+, BDCA1+ CD14−, and BDCA1− CD14− cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared to E. coli. Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared to the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole genome transcriptional profiling revealed a clade of “true dendritic cells” consisting of Langerin+, BDCA1+ CD14+, and BDCA1+ CD14− cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6. Each clade, and each member of both clades, were discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states. PMID:28031342
The effects of Candida albicans cell wall protein fraction on dendritic cell maturation.
Roudbary, Maryam; Roudbar Mohammadi, Shahla; Bozorgmehr, Mahmood; Moazzeni, Seyed Mohammad
2009-06-01
Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, beta glucans and chitins, and proteins that partially modulate the host immune responses. Dendritic cells (DC), as the most important antigen-presenting cells of the immune system, play a critical role in inducing immune responses against different pathogens. We investigated the effect of the cell wall protein fraction (CPF) of C. albicans on DC maturation. The CPF of C. albicans cells was extracted by a lysis buffer containing sodium dodecyl sulphate, 2-mercaptoethanol and phosphate-buffered saline. The extract was dialyzed and its protein pattern was evaluated by electrophoresis. Dendritic cells were purified from Balb/c mice spleens through a three-step method including mononuclear cell separation, as well as 2-h and overnight cultures. The purified CPF was added at different concentrations to DC. The purity and maturation status of DC were determined by flow cytometry using monoclonal antibodies against CD11c, MHC-II, CD40 and CD86. Treatment of DC with 10 microg/ml of CPF increased the expression of maturation markers including MHC-II, CD86 and CD40 on DC compared to the control group. In this study we used C. albicans CPF with the molecular weight of 40-45 kDa for pulsing and maturation of dendritic cells. Since according to our results CPF significantly increased the expression of maturation markers on DC, we suggest that CPF may act as an efficient immunomodulator, or may be used as a potential adjuvant to boost the host immune system against infections.
Effects of space flight on surface marker expression
NASA Astrophysics Data System (ADS)
Sonnenfeld, G.
1999-01-01
Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.
2011-01-01
Background Natural Killer (NK) cells are the most abundant lymphocytes in the decidua during early gestation. The interactions of NK cells with the extravillous cytotrophoblast have been associated with a normal spiral artery remodeling process, an essential event for a successful pregnancy. Recent data indicate that alterations in the amount of decidual NK (dNK) cells contribute to the development of preeclampsia (PE). Moreover, genetic studies suggest that Killer Immunoglobulin-like Receptors (KIR) expressed in dNK cells influence the susceptibility to PE. Although dNK cells have been well characterized during early pregnancy, they have been scarcely studied in the third trimester of gestation. The aim of this work was to characterize dNK cells at the last trimester of gestation and to analyze the KIR genotype of healthy and PE women. Methods Decidual samples were obtained during Caesarean section from control (n = 10) and PE (n = 9) women. Flow cytometric analysis of CD3, CD56, CD16 and CD9 was used to characterize and quantify dNK cells in both groups. Cell surface markers from decidual leukocytes were compared with PBMC from healthy donors. KIR genotyping was performed in genomic DNA (control, n = 86; PE, n = 90) using PCR-SSP. Results The results indicate that dNK cells persist throughout pregnancy. They represented 20% of total leukocytes in control and PE groups, and they expressed the same cell surface markers (CD3-, CD56+, CD16- and CD9+) as dNK in the first trimester of gestation. There were no significant differences in the percentage of dNK cells between control and PE groups. The analysis of KIR gene frequencies and genotypes was not statistically different between control and PE groups. The ratio of activating to inhibitory genes indicated that the overall inhibitory balance (0.2-0.5) was more frequent in the PE group (control, 31.3% vs PE, 45.5%), and the activating balance (0.6-1.1) was more frequent in the control group (control, 68.6% vs PE, 54.4%). However this difference was not significant. Conclusion We demonstrated the persistence of dNK cells in PE and control women at the third trimester of pregnancy; these dNK cells had a similar phenotype to those found during early pregnancy. The predominance of a KIR inhibitory balance in the PE group could be associated to the physiopathology of PE. PMID:21247496
CD10 is a marker for cycling cells with propensity to apoptosis in childhood ALL
Cutrona, G; Tasso, P; Dono, M; Roncella, S; Ulivi, M; Carpaneto, E M; Fontana, V; Comis, M; Morabito, F; Spinelli, M; Frascella, E; Boffa, L C; Basso, G; Pistoia, V; Ferrarini, M
2002-01-01
CD10 constitutes a favourable prognostic marker for childhood acute lymphoblastic leukaemia. Since correlations between CD10, cell cycle and apoptotic abilities were demonstrated in various cell types, we investigated whether differences existed in the cycling/apoptotic abilities of CD10-positive and CD10-negative B acute lymphoblastic leukaemia cells. Twenty-eight cases of childhood acute lymphoblastic leukaemia (mean age of 6.8 years) were subdivided into two groups according to high (17 cases, 93.2±4.5%, MRFI 211±82 CD10-positive cells) or low (11 cases, 11.5±6.2%, MRFI 10±7 CD10-negative cells) expression of CD10. CD10-positive acute lymphoblastic leukaemia cells were cycling cells with elevated c-myc levels and propensity to apoptosis, whereas CD10-negative acute lymphoblastic leukaemia cells had lower cycling capacities and c-myc levels, and were resistant to apoptosis in vitro. A close correlation between all these properties was demonstrated by the observations that the few CD10-positive cells found in the CD10-negative acute lymphoblastic leukaemia group displayed elevated c-myc and cycling capacities and were apoptosis prone. Moreover, exposure of CD10-positive acute lymphoblastic leukaemia B cells to a peptide nucleic acid anti-gene specific for the second exon of c-myc caused inhibition of c-myc expression and reduced cell cycling and apoptotic abilities as well as decreased CD10 expression. British Journal of Cancer (2002) 86, 1776–1785. doi:10.1038/sj.bjc.6600329 www.bjcancer.com © 2002 Cancer Research UK PMID:12087466
Isolation, Identification, and Culture of Human Lymphatic Endothelial Cells.
Lokmic, Zerina
2016-01-01
A protocol describing the isolation of foreskin lymphatic endothelial cells (LECs) and lymphatic malformation lymphatic endothelial cells (LM LECs) is presented herein. To isolate LECs and LM LECs, tissues are mechanically disrupted to make a single-cell suspension, which is then enzymatically digested in dispase and collagenase type II. LECs and LM LECs, in the resulting single-cell suspension, are then sequentially labeled with antibodies recognizing fibroblast and endothelial cell surface antigens CD34 and CD31 and separated from the remaining components in the cell suspension by capture with magnetic beads. Viable LECs and LM LECs are then seeded and expanded on fibronectin-coated flasks. LEC and LM LEC purity is determined immunohistochemically using cell surface markers CD31, CD34, podoplanin, VEGFR-3 and nuclear marker PROX-1. Cells whose purity is >98 % are used for experiments between passage 4 and 6.
Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver
2015-03-17
Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be important for fungal clearance and protective immunity. We show that farnesol is able to enhance inflammation by inducing activation of neutrophils and monocytes. At the same time, farnesol impairs differentiation of monocytes into immature dendritic cells (iDC) by modulating surface phenotype, cytokine release and migrational behavior. Consequently, iDC generated in the presence of farnesol are unable to induce proper T cell responses and fail to secrete Th1 promoting interleukin 12 (IL-12). As farnesol induced down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor, desensitization to GM-CSF could potentially explain transcriptional reprofiling of iDC effector molecules. Taken together, our data show that farnesol can also mediate Candida-host communication and is able to act as a virulence factor. Copyright © 2015 Leonhardt et al.
CD24 tracks divergent pluripotent states in mouse and human cells
Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W
2015-01-01
Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835
Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming
2015-01-01
The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.
Pode-Shakked, Naomi; Pleniceanu, Oren; Gershon, Rotem; Shukrun, Rachel; Kanter, Itamar; Bucris, Efrat; Pode-Shakked, Ben; Tam, Gal; Tam, Hadar; Caspi, Revital; Pri-Chen, Sara; Vax, Einav; Katz, Guy; Omer, Dorit; Harari-Steinberg, Orit; Kalisky, Tomer; Dekel, Benjamin
2016-03-29
When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1(+)CD133(-) marks SIX2(+) multipotent renal stem cells transiting to NCAM1(+)CD133(+) differentiating segment-specific SIX2(-) epithelial progenitors and NCAM1(-)CD133(+) differentiated nephron cells. In tumorigenesis, NCAM1(+)CD133(-) marks SIX2(+) blastema that includes the ALDH1(+) WT cancer stem/initiating cells, while NCAM1(+)CD133(+) and NCAM1(-)CD133(+) specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1(+) nephron stem cells in normal and malignant nephrogenesis.
HgCdTe Surface and Defect Study Program.
1986-03-01
different potential for Hg and Cd and hence be reflected in the electronic structure. The techniques of PES and ARPES available to our research group ...D-A166 795 HOME SURFCE ND DEFECT STUDY PROQRN(U) SATA / BARBRA RESEARCH CENTER GOLETA CALXF J A WILSON ET AL. USI FE MAR 86 SBRC-60411 ND93-63-C...0168 FO2/2 N L6 ILO 1.5 1. 11111 .6 .ICnrnp CHR HgCdTo SURFACE AND DEFECT STUDY PROGRAM J. A. Wilson and V. A. Cotton Santa Barbara Research Center
Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.
Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald
2012-03-01
Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.
Hess, David A.; Craft, Timothy P.; Wirthlin, Louisa; Hohm, Sarah; Zhou, Ping; Eades, William C.; Creer, Michael H.; Sands, Mark S.; Nolta, Jan A.
2011-01-01
Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of pre-clinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/MPSVII mice, we characterized the distribution of lineage depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase activity (ALDH) with CD133 co-expression. ALDHhi or ALDHhiCD133+ cells produced robust hematopoietic reconstitution, and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that co-expressed human (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels, and CD45−/HLA− cells with diluted GUSB expression predominant in the liver parenchyma. However, true non-hematopoietic human (HLA+/CD45−) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA−/CD45− cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of non-hematopoietic cells. However, relying solely on continued expression of cell surface markers, as employed in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage. PMID:18055447
NASA Astrophysics Data System (ADS)
Lin, Shu-Hai; Liu, Tengfei; Ming, Xiaoyan; Tang, Zhi; Fu, Li; Schmitt-Kopplin, Philippe; Kanawati, Basem; Guan, Xin-Yuan; Cai, Zongwei
2016-02-01
Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.
Production of Pigs by Hand-Made Cloning Using Mesenchymal Stem Cells and Fibroblasts.
Yang, Zhenzhen; Vajta, Gábor; Xu, Ying; Luan, Jing; Lin, Mufei; Liu, Cong; Tian, Jianing; Dou, Hongwei; Li, Yong; Liu, Tianbin; Zhang, Yijie; Li, Lin; Yang, Wenxian; Bolund, Lars; Yang, Huanming; Du, Yutao
2016-08-01
Mesenchymal stem cells (MSCs) exhibited self-renewal and less differentiation, making the MSCs promising candidates for adult somatic cell nuclear transfer (SCNT). In this article, we tried to produce genome identical pigs through hand-made cloning (HMC), with MSCs and adult skin fibroblasts as donor cells. MSCs were derived from either adipose tissue or peripheral blood (aMSCs and bMSCs, respectively). MSCs usually showed the expression pattern of CD29, CD73, CD90, and CD105 together with lack of expression of the hematopoietic markers CD34and CD45. Flow cytometry results demonstrated high expression of CD29 and CD90 in both MSC lines, while CD73, CD34, and CD45 expression were not detected. In contrary, in reverse transcription-polymerase chain reaction (RT-PCR) analysis, CD73 and CD34 were detected indicating that human antibodies CD73 and CD34 were not suitable to identify porcine cell surface markers and porcine MSC cellular surface markers of CD34 might be different from other species. MSCs also had potential to differentiate successfully into chondrocytes, osteoblasts, and adipocytes. After HMC, embryos reconstructed with aMSCs had higher blastocyst rate on day 5 and 6 than those reconstructed with bMSCs and fibroblasts (29.6% ± 1.3% and 41.1% ± 1.4% for aMSCs vs. 23.9% ± 1.2% and 35.5% ± 1.6% for bMSCs and 22.1% ± 0.9% and 33.3% ± 1.1% for fibroblasts, respectively). Live birth rate per transferred blastocyst achieved with bMSCs (1.59%) was the highest among the three groups. This article was the first report to compare the efficiency among bMSCs, aMSCs, and fibroblasts for boar cloning, which offered a realistic perspective to use the HMC technology for commercial breeding.
Jahan, Sheikh Tasnim; Sadat, Sams Ma; Haddadi, Azita
2018-01-01
The aim of this research was to develop a targeted antigen-adjuvant assembled delivery system that will enable dendritic cells (DCs) to efficiently mature to recognize antigens released from tumor cells. It is important to target the DCs with greater efficiency to prime T cell immune responses. In brief, model antigen, ovalbumin (OV), and monophosphoryl lipid A adjuvant were encapsulated within the nanoparticle (NP) by double emulsification solvent evaporation method. Targeted NPs were obtained through ligand incorporation via physical adsorption or chemical conjugation process. Intracellular uptake of the NPs and the maturation of DCs were evaluated with flow cytometry. Remarkably, the developed delivery system had suitable physicochemical properties, such as particle size, surface charge, OV encapsulation efficiency, biphasic OV release pattern, and safety profile. The ligand modified formulations had higher targeting efficiency than the non-tailored NPs. This was also evident when the targeted formulations expressed comparatively higher fold increase in surface activation markers such as CD40, CD86, and major histocompatibility complex class II molecules. The maturation of DCs was further confirmed through secretion of extracellular cytokines compared to control cells in the DC microenvironment. Physicochemical characterization of NPs was performed based on the polymer end groups, their viscosities, and ligand-NP bonding type. In conclusion, the DC stimulatory response was integrated to develop a relationship between the NP structure and desired immune response. Therefore, the present study narrates a comparative evaluation of some selected parameters to choose a suitable formulation useful for in vivo cancer immunotherapy.
Hu, Xiaofang; Cao, Yan; Meng, Yiming; Hou, Mingxiao
2015-01-01
IL-2 is a pleiotropic cytokine produced by T cell after antigen activation of T cell and it is so called T cell growth factor. A large number of documents suggest that Il-2 plays pivotal roles in the immune response and now Il-2 is an approved drug being used for various kinds of diseases such as cancer and dermatitis. (1) The aim of present exploration was to look at effect of IL-2 on structural, phenotypic and functional maturation of murine BMDCs. The structural and phenotypic maturation of BMDCs under influence of IL-2 were evaluated by light microscope and flow cytometry (FCM). The functional maturation of BMDCs was confirmed by cytochemistry assay, FITC-dextran, acid phosphatase (ACP) activity, bio-assay and enzyme linked immunosorbent assay (ELISA).We elucidated that IL-2 up-regulated the expression of key surface markers such as: CD80, CD83, CD86, CD40 and MHC II molecules on BMDCs, down-regulated phagocytosis activity, induced more production of IL-12 and TNF-α secreted by BMDCs. Therefore it can be concluded that IL-2 effectively enhance the maturation of BMDCs. Our results provide direct evidence to support IL-2 would be used as a potent adjuvant in preparation of DC-based vaccines, as well as an immune remedy for cancer situation.
Immunologic reconstitution during PEG-ADA therapy in an unusual mosaic ADA deficient patient.
Liu, Ping; Santisteban, Ines; Burroughs, Lauri M; Ochs, Hans D; Torgerson, Troy R; Hershfield, Michael S; Rawlings, David J; Scharenberg, Andrew M
2009-02-01
We report detailed genetic and immunologic studies in a patient diagnosed with adenosine deaminase (ADA) deficiency and combined immune deficiency at age 5 years. At the time of diagnosis, although all other lymphocyte subsets were depleted, circulating CD8(+) T cells with a terminally differentiated phenotype were abundant and expressed normal ADA activity due to a reversion mutation in a CD8(+) T cell or precursor. Over the first 9 months of replacement therapy with PEG-ADA, the patient steadily accumulated mature naïve CD4(+) and CD8(+) T cells, as well as CD4(+)/FOXP3(+) regulatory T cells, consistent with restoration of a functional cellular immune system. While CD19(+) naïve B cells also accumulated in response to PEG-ADA therapy, a high proportion of these B cells exhibited an immature surface marker phenotype even after 9 months, and immunization with neoantigen bacteriophage varphiX174 demonstrated a markedly subnormal humoral immune response. Our observations in this single patient have important implications for gene therapy of human ADA deficiency, as they indicate that ADA expression within even a large circulating lymphocyte population may not be sufficient to support adequate immune reconstitution. They also suggest that an immature surface marker phenotype of the peripheral B cell compartment may be a useful surrogate marker for incomplete humoral immune reconstitution during enzyme replacement, and possibly other forms of hematopoietic cell therapies.
Altered Innate and Lymphocytic Immune Responses in Mouse Splenocytes Post-Flight
NASA Technical Reports Server (NTRS)
Hwang, ShenAn; Crucian, Brian E.; Sams, Clarence F.; Actor, Jeffrey K.
2011-01-01
Space flight is known to affect immune responses of astronauts and animals, decreasing lymphocytic responses to mitogenic stimuli, delayed typed hypersensitivity reactions, and T-cell activation. Despite changes in immune suppression, there are no reports of consistent adverse clinical events post flight. To further investigate the spectrum of affected immune responses, murine splenocytes were stimulated immediately post-shuttle flight (14 days on STS-135) with T-cell stimulators or toll-like receptor agonists. Comparisons were made to ground control splenocytes from age-matched mice. Cell phenotypes were assessed, as well as activation markers and associated cytokine production. The CD4+ population decreased with no concurrent decrease in CD8+ cells from shuttle mice post flight compared to ground controls. Regarding antigen presenting cell populations, the number of CD11c+ cells were slightly elevated post flight, compared to ground controls, with increased MHC Class I expression (I-A(sup b)) and no change in Class II expression (H-2K(sup b)). CD86+ populations were also significantly diminished. However, the decreased markers did not correlate with activity. Stimulation of splenocytes post flight showed significant increase in bead uptake, increased Class I expression, increased TNF-alpha and IL-6 production in response to TLR-2 (zymosan) and TLR-4 (LPS) agonists. While most activated (ConA or anti-CD3/anti-CD28) CD4+ cells showed markedly diminished responses (reduced IL-2 production), non-specific T cell responses to superantigen (SEA/SEB) increased post flight as determined by expression of early activation markers. Production of additional cytokines was also dysregulated postflight. Overall, persistent immune changes during space flight could represent unique clinical risks for exploration class missions. The consequences of pathogenic encounter remain an important concern that should be addressed.
Generation of Mesenchymal-Like Stem Cells From Urine in Pediatric Patients.
He, W; Zhu, W; Cao, Q; Shen, Y; Zhou, Q; Yu, P; Liu, X; Ma, J; Li, Y; Hong, K
2016-01-01
Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine. Traditionally, the procedures of MSC isolation are usually invasive and time-consuming. Urine is merely a body waste, and recent studies have suggested that urine represents an alternative source of stem cells. We, therefore, determined whether the possibility of isolating mesenchymal-like stem cells was practical from human urine. A total of 16 urine samples were collected from pediatric patients. Urine-derived cells were isolated, expanded, and identified for specific cell surface markers using flow cytometry. Cell morphology was observed by microscopy. Osteogenic and adipogenic differentiation potential were determinded by culturing cells in specific induction medium, and assessed by alkaline phosphatase and oil red O stainings, respectively. Clones were established and passaged successfully from primary cultures of urine cells. Cultured urine-derived cells at passage 3 were fusiform and arranged with certain directionality. Urine-derived cells at passage 5 displayed expressions of cell surface markers (CD29, CD105, CD166, CD90, and CD13). There was no expression of the general hematopoietic cell markers (CD45, CD34, and HLA-DR). Under in vitro induction conditions, urine-derived cells at passage 5 were able to differentiate into osteoblasts, but not adipocytes. Urine may be a noninvasive source for mesenchymal-like stem cells. These cells could potentially provide a new source of autologous stem cells for regenerative medicine and cell therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Lechner, Melissa G; Lade, Stephen; Liebertz, Daniel J; Prince, H Miles; Brody, Garry S; Webster, Howard R; Epstein, Alan L
2011-04-01
Primary lymphomas of the breast are very rare (0.2-1.5% of breast malignancies) and the vast majority (95%) are of B-cell origin. Recently, 40 cases of clinically indolent anaplastic large-cell kinase (ALK)-negative, T-cell, anaplastic, non-Hodgkin lymphomas (T-ALCL) have been reported worldwide. A tumor biopsy specimen from a patient in this series was obtained for characterization. By using a human stromal feeder layer and IL-2, a novel cell line, TLBR-1, was established from this biopsy and investigated by using cytogenetics and various biomolecular methods. Immunoperoxidase staining of the tumor biopsy showed a CD30/CD8/CD4 coexpressing T-cell population that was epithelial membrane antigen (EMA)(+) and perforin(+) . Multiplex polymerase chain reaction (PCR) of TCRγ genes showed monoclonality that suggested a T-cell origin, yet pan-T markers CD2/5/7, anaplastic large-cell kinase (ALK)-1, pancytokeratins, CD20, CD56, and Epstein-Barr virus (EBV) by in situ hybridization (ISH) were negative. TLBR-1 is IL-2 dependent, has a relatively long doubling time (55 hours), and displays different cellular shapes in culture. Cytogenetic analysis of tumor and TLBR-1 cells confirmed a highly anaplastic cell population with a modal number of 47 chromosomes lacking t(2;5). PCR screens for EBV and human T-lymphotropic virus types 1 and 2 (HTLV-1/2) were negative. Fluorescence-activated cell-sorting (FACS) analysis showed strong positivity for CD4/8, CD30, CD71, and CD26 expression, and antigen presentation (HLA-DR(+) CD80(+) CD86(+) ), IL-2 signaling (CD25(+) CD122(+) ), and NK (CD56(+) ) markers, and Western blots demonstrated strong Notch1 expression. Severe combined immunodeficiency (SCID) mouse TLBR-1 heterotransplants recapitulated the histology and marker characteristics of the original tumor. TLBR-1, a novel ALK-negative, T-cell, anaplastic, large-cell lymphoma, closely resembles the original biopsy and represents an important tool for studying this newly recognized disease entity. Copyright © 2010 American Cancer Society.
Lechner, Melissa G.; Lade, Stephen; Liebertz, Daniel J.; Prince, H. Miles; Brody, Garry S.; Webster, Howard R.; Epstein, Alan L.
2014-01-01
BACKGROUND Primary lymphomas of the breast are very rare (0.2–1.5% of breast malignancies) and the vast majority (95%) are of B-cell origin. Recently, 40 cases of clinically indolent anaplastic large-cell kinase (ALK)-negative, T-cell, anaplastic, non-Hodgkin lymphomas (T-ALCL) have been reported worldwide. METHODS A tumor biopsy specimen from a patient in this series was obtained for characterization. By using a human stromal feeder layer and IL-2, a novel cell line, TLBR-1, was established from this biopsy and investigated by using cytogenetics and various biomolecular methods. RESULTS Immunoperoxidase staining of the tumor biopsy showed a CD30/CD8/CD4 coexpressing T-cell population that was epithelial membrane antigen (EMA)+ and perforin+. Multiplex polymerase chain reaction (PCR) of TCRγ genes showed monoclonality that suggested a T-cell origin, yet pan-T markers CD2/5/7, anaplastic large-cell kinase (ALK)-1, pancytokeratins, CD20, CD56, and Epstein-Barr virus (EBV) by in situ hybridization (ISH) were negative. TLBR-1 is IL-2 dependent, has a relatively long doubling time (55 hours), and displays different cellular shapes in culture. Cytogenetic analysis of tumor and TLBR-1 cells confirmed a highly anaplastic cell population with a modal number of 47 chromosomes lacking t(2;5). PCR screens for EBV and human T-lymphotropic virus types 1 and 2 (HTLV-1/2) were negative. Fluorescence-activated cell-sorting (FACS) analysis showed strong positivity for CD4/8, CD30, CD71, and CD26 expression, and antigen presentation (HLA-DR+CD80+CD86+), IL-2 signaling (CD25+CD122+), and NK (CD56+) markers, and Western blots demonstrated strong Notch1 expression. Severe combined immunodeficiency (SCID) mouse TLBR-1 heterotransplants recapitulated the histology and marker characteristics of the original tumor. CONCLUSIONS TLBR-1, a novel ALK-negative, T-cell, anaplastic, large-cell lymphoma, closely resembles the original biopsy and represents an important tool for studying this newly recognized disease entity. PMID:21425149
Meng, Kai; Zhang, Wei; Zhong, Yucheng; Mao, Xiaobo; Lin, Yingzhong; Huang, Ying; Lang, Mingjian; Peng, Yudong; Zhu, Zhengfeng; Liu, Yuzhou; Zhao, Xiaoqi; Yu, Kunwu; Wu, Bangwei; Ji, Qingwei; Zeng, Qiutang
2014-01-01
Atherosclerosis (AS) is an inflammatory and immune disease. Regulatory T cells (Tregs) suppress the activation of T cells and have been shown to play a protective role during the pathogenesis of AS. However, specific markers for Tregs are lacking. Recently, glycoprotein A repetitions predominant (GARP) was discovered as a specific marker of activated Tregs, and we therefore utilized GARP as a specific surface marker for Tregs in the current study. To assess whether GARP(+) Tregs are downregulated in patients with acute coronary syndrome (ACS), we examined CD4(+)CD25(+)GARP(+) T cell frequencies as well as their associated cytokines and suppressive function. Additionally, we compared GARP expression to that of FOXP3, which may be more sensitive as a marker of activated Tregs in patients with ACS. Patients with ACS demonstrated a significant decrease in circulating CD4(+)CD25(+)GARP(+) Tregs. Moreover, the suppressive function of Tregs and levels of related cytokines were also impaired in ACS patients compared to those with stable angina (SA) or normal coronary artery (NCA). Additionally, after TCR stimulation, peripheral blood mononuclear cells (PBMCs) from patients with ACS exhibited a decrease in CD4(+)CD25(+)GARP(+) Tregs. These fnding indicate that circulating CD4(+)CD25(+)GARP(+) Tregs are impaired in patients withACS. Thus, targeting GARP may promote the protective function of Tregs in ACS. © 2014 S. Karger AG, Basel.
Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver.
Kakinuma, Sei; Ohta, Haruhiko; Kamiya, Akihide; Yamazaki, Yuji; Oikawa, Tsunekazu; Okada, Ken; Nakauchi, Hiromitsu
2009-07-01
Hepatic stem/progenitor cells possess active proliferative ability and the capacity for differentiation into hepatic and cholangiocytic lineages. Our group and others have shown that a prospectively defined population in mid-gestational fetal liver contains hepatic stem/progenitor cells. However, the phenotypes of such cells are incompletely elucidated. We analyzed the profile of cell-surface molecules on primary hepatic stem/progenitor cells. Expression of cell surface molecules on primary hepatic stem/progenitor cells in mouse mid-gestational fetal liver was analyzed using flow cytometric multicolor analyses and colony-formation assays. The potential of the cells for liver repopulation was examined by transplantation assay. We found that CD13 (aminopeptidase N) was detected on the cells of the previously reported (Dlk/Pref-1(+)) hepatic stem/progenitor fraction. Colony-formation assays revealed that the CD13(+) fraction, compared with the Dlk(+) fraction, of non-hematopoietic cells in fetal liver was enriched in hepatic stem/progenitor cells. Transplantation assay showed the former fraction exhibited repopulating potential in regenerating liver. Moreover, flow cytometric analysis for over 90 antigens demonstrated enrichment of hepatic stem/progenitor cells using several positive selection markers, including (hitherto unknown) CD13, CD73, CD106, and CD133. Our data indicated that CD13 is a positive selection marker for hepatic stem/progenitor cells in mid-gestational fetal liver.
Isolation and characterization of human CXCR4-positive pancreatic cells.
Koblas, T; Zacharovová, K; Berková, Z; Mindlová, M; Girman, P; Dovolilová, E; Karasová, L; Saudek, F
2007-01-01
The existence of an adult PSC that may be used in the treatment of diabetes is still a matter of scientific debate as conclusive evidence of such a stem cell in the adult pancreas has not yet been presented. The main reason why putative PSC has not yet been identified is the lack of specific markers that may be used to isolate and purify them. In order to increase the list of potential PSC markers we have focused on the human pancreatic cells that express cell surface receptor CXCR4, a marker of stem cells derived from different adult tissues. Here we report that CXCR4-positive pancreatic cells express markers of pancreatic endocrine progenitors (neurogenin-3, nestin) and markers of pluripotent stem cells (Oct-4, Nanog, ABCG2, CD133, CD117). Upon in vitro differentiation, these cells form ILCC and produce key islet hormones including insulin. Based on our results, we assume that CXCR4 marks pancreatic endocrine progenitors and in combination with other cell surface markers may be used in the attempt to identify and isolate PSC.
Ferreira da Mota, Nadijane Valeria; Brunialti, Milena Karina Colo; Santos, Sidneia Sousa; Machado, Flavia Ribeiro; Assunçao, Murillo; de Azevedo, Luciano Cesar Pontes; Salomao, Reinaldo
2017-12-05
Monocytes and macrophages are pivotal in the host response to sepsis, recognizing the infecting microorganism and triggering an inflammatory response. These functions are, at least in part, modulated by the expression of cell surface receptors. We aimed to characterize the monocyte phenotype from septic patients during an ongoing sepsis process and its association with clinical outcomes. Sixty-one septic patients and 31 healthy volunteers (HVs) were enrolled in the study. Samples were obtained from patients at baseline (D0, N = 61), and after 7 (D7, N = 36) and 14 days of therapy (D14, N = 22). Monocytes from septic patients presented decreased expression of CD86, HLA-DR, CD200R, CCR2, CXCR2, and CD163 compared with HV monocytes. In contrast, the PD-1, PD-L1, CD206, CD64, and CD16 expression levels were upregulated in patients. HLA-DR, CD64, PD-1, and PD-L1 expression levels were higher in survivors than in nonsurvivors. Increased CD86, HLA-DR, and CXCR2 expression levels were observed in follow-up samples; in contrast, CD64 and CD16 GMFI decreased over time. In conclusion, monocytes from septic patients show antigen presentation impairment as characterized by decreased HLA-DR and costimulatory CD86 expression and increased PD-1 and PD-L1 expression. On the contrary, increased monocyte inflammatory and phagocytic activities may be inferred by the increased CD16 and CD64 expression. We found conflicting results regarding differentiation toward the M2 phenotype, with increased CD206 expression and decreased CD163 expression on monocytes from septic patients, whereas the subset of nonclassical monocytes was demonstrated by increased CD16.
Booiman, Thijs; Wit, Ferdinand W.; Maurer, Irma; De Francesco, Davide; Sabin, Caroline A.; Harskamp, Agnes M.; Prins, Maria; Garagnani, Paolo; Pirazzini, Chiara; Franceschi, Claudio; Fuchs, Dietmar; Gisslén, Magnus; Winston, Alan; Reiss, Peter; Reiss, P.; Wit, F. W. N. M.; Schouten, J.; Kooij, K. W.; van Zoest, R. A.; Elsenga, B. C.; Janssen, F. R.; Heidenrijk, M.; Zikkenheiner, W.; van der Valk, M.; Kootstra, N. A.; Booiman, T.; Harskamp-Holwerda, A. M.; Boeser-Nunnink, B.; Maurer, I.; Mangas Ruiz, M. M.; Girigorie, A. F.; Villaudy, J.; Frankin, E.; Pasternak, A.; Berkhout, B.; van der Kuyl, T.; Portegies, P.; Schmand, B. A.; Geurtsen, G. J.; ter Stege, J. A.; Klein Twennaar, M.; Majoie, C. B. L. M.; Caan, M. W. A.; Su, T.; Weijer, K.; Bisschop, P. H. L. T.; Kalsbeek, A.; Wezel, M.; Visser, I.; Ruhé, H. G.; Franceschi, C.; Garagnani, P.; Pirazzini, C.; Capri, M.; Dall’Olio, F.; Chiricolo, M.; Salvioli, S.; Hoeijmakers, J.; Pothof, J.; Prins, M.; Martens, M.; Moll, S.; Berkel, J.; Totté, M.; Kovalev, S.; Gisslén, M.; Fuchs, D.; Zetterberg, H.; Winston, A.; Underwood, J.; McDonald, L.; Stott, M.; Legg, K.; Lovell, A.; Erlwein, O.; Doyle, N.; Kingsley, C.; Sharp, D. J.; Leech, R.; Cole, J. H.; Zaheri, S.; Hillebregt, M. M. J.; Ruijs, Y. M. C.; Benschop, D. P.; Burger, D.; de Graaff-Teulen, M.; Guaraldi, G.; Bürkle, A.; Sindlinger, T.; Moreno-Villanueva, M.; Keller, A.; Sabin, C.; de Francesco, D.; Libert, C.; Dewaele, S.
2017-01-01
Abstract Background. Increased monocyte activation and intestinal damage have been shown to be predictive for the increased morbidity and mortality observed in treated people living with human immunodeficiency virus (PLHIV). Methods. A cross-sectional analysis of cellular and soluble markers of monocyte activation, coagulation, intestinal damage, and inflammation in plasma and cerebrospinal fluid (CSF) of PLHIV with suppressed plasma viremia on combination antiretroviral therapy and age and demographically comparable HIV-negative individuals participating in the Comorbidity in Relation to AIDS (COBRA) cohort and, where appropriate, age-matched blood bank donors (BBD). Results. People living with HIV, HIV-negative individuals, and BBD had comparable percentages of classical, intermediate, and nonclassical monocytes. Expression of CD163, CD32, CD64, HLA-DR, CD38, CD40, CD86, CD91, CD11c, and CX3CR1 on monocytes did not differ between PLHIV and HIV-negative individuals, but it differed significantly from BBD. Principal component analysis revealed that 57.5% of PLHIV and 62.5% of HIV-negative individuals had a high monocyte activation profile compared with 2.9% of BBD. Cellular monocyte activation in the COBRA cohort was strongly associated with soluble markers of monocyte activation and inflammation in the CSF. Conclusions. People living with HIV and HIV-negative COBRA participants had high levels of cellular monocyte activation compared with age-matched BBD. High monocyte activation was predictive for inflammation in the CSF. PMID:28680905
Kamallou, Atefeh; Haji Abdolbaghi, Mahbobeh; Mohraz, Minoo; Rasolinejad, Mernaz; Karbasi, Ehsan; Ansaripour, Bita; Soltani, Samaneh; Rezaei, Arezou; Khalili, Neda; Amirzargar, Aliakbar
2014-12-01
Lymphocyte subsets enumeration is considered prominent in the management of primary and acquired immunodeficiency disorders. Because of local variations due to race, age, gender, and environmental conditions on lymphocyte subsets, and to improve the accuracy of interpretation of laboratory findings, reference intervals must be determined in every population. To establish a normal reference range for CD3+, CD4+, CD8+, CD19+ and CD56+ lymphocytes in a healthy Iranian adult population using flowcytometry. Blood samples were collected from 221 HIV seronegative individuals, including 112 females and 109 males, with ages ranging from 20 to 40 years old. The percentage of lymphocytes expressing either of CD3, CD4, CD8, CD19 and CD56 surface markers were determined by flowcytometry assay. Total mean percentage and absolute count of lymphocyte subsets were as follows: CD3+: 70.90 ± 7.54%, 1800.87 ± 471.09 cells/µl; CD4+: 41.04 ± 7.86%, 1039.99 ± 338.02 cells/µl; CD8+: 31.11 ± 6.60%, 783.95 ± 234.87 cells/µl; CD19+: 12.77 ± 4.56%, 328.37 ± 153.17 cells/µl; CD56+: 15.53 ± 6.34%, 388.62 ± 176.17 cells/µl, respectively. The ratio of CD4+/CD8+ lymphocytes for the studied population was 1.39 ± 0.48. Significant differences were observed between male and female subjects indicating that the average percentage of CD3+ cells (p=0.017) and CD4+ T cells (p=0.003) were higher in the female population, whereas the average percentage of CD19+ cells (p=0.02) tended to be higher among males. However, investigations on the CD56+ NK cell and CD8+ T cell sub-populations did not show any statistical differences between the two genders. In comparison with reports of other populations, we were confronted with different results. Establishing reference values of lymphocyte subsets for each population is helpful in achieving standard criteria for the prognosis of HIV infection. Therefore, normal ranges established by this survey can be used as a reference for decisions made in clinical practice.
CD68/macrosialin: not just a histochemical marker.
Chistiakov, Dimitry A; Killingsworth, Murry C; Myasoedova, Veronika A; Orekhov, Alexander N; Bobryshev, Yuri V
2017-01-01
CD68 is a heavily glycosylated glycoprotein that is highly expressed in macrophages and other mononuclear phagocytes. Traditionally, CD68 is exploited as a valuable cytochemical marker to immunostain monocyte/macrophages in the histochemical analysis of inflamed tissues, tumor tissues, and other immunohistopathological applications. CD68 alone or in combination with other cell markers of tumor-associated macrophages showed a good predictive value as a prognostic marker of survival in cancer patients. Lowression of CD68 was found in the lymphoid cells, non-hematopoietic cells (fibroblasts, endothelial cells, etc), and tumor cells. Cell-specific CD68 expression and differentiated expression levels are determined by the complex interplay between transcription factors, regulatory transcriptional elements, and epigenetic factors. Human CD68 and its mouse ortholog macrosialin belong to the family of LAMP proteins located in the lysosomal membrane and share many structural similarities such as the presence of the LAMP-like domain. Except for a second LAMP-like domain present in LAMPs, CD68/microsialin has a highly glycosylated mucin-like domain involved in ligand binding. CD68 has been shown to bind oxLDL, phosphatidylserine, apoptotic cells and serve as a receptor for malaria sporozoite in liver infection. CD68 is mainly located in the endosomal/lysosomal compartment but can rapidly shuttle to the cell surface. However, the role of CD68 as a scavenger receptor remains to be confirmed. It seems that CD68 is not involved in binding bacterial/viral pathogens, innate, inflammatory or humoral immune responses, although it may potentially be involved in antigen processing/presentation. CD68 could be functionally important in osteoclasts since its deletion leads to reduced bone resorption capacity. The role of CD68 in atherosclerosis is contradictory.
Hua, Hui; Du, Ying; Ma, Rui; Zhang, Bei-Bei; Yu, Qian; Li, Bo; Xu, Jiang-Tao; Li, Xiang-Yang; Tang, Ren-Xian; Yan, Chao; Zheng, Kui-Yang
2018-02-01
The roles of TLR4 in mediation of innate immune response and in regulation of adaptive immune responses triggered by Clonorchis sinensis remain unknown. In the present study, splenocytes derived from C3H/HeN (TLR4 wild ) and C3H/Hej mice (TLR4 mut ) that were infected with 45 metacercariae of C. sinensis were harvested, then stimulated by C. sinensis excretory/secretory products (ESP) or medium (control) for 48 h, respectively. Meanwhile, bone marrow-derived dendritic cells (BMDCs) from normal C3H/HeN and C3H/Hej mice were prepared and stimulated with medium, ESP, LPS, or ESP+LPS for 24 h, respectively. The supernatants were collected, and the concentrations of type 1 and type 2 relative cytokines were determined by ELISA. The maturation of BMDCs indicated by surface markers of CD80, CD86, and MHC II was evaluated by flow cytometry. The results showed that the levels of IFN-γ, IL-6, TNF-α, and IL-10 in the splenocytes from C. sinensis-infected TLR4 mut mice were significantly lower than those from TLR4 wild mice when they were further exposed to ESP. For BMDCs, the productions of the cytokines IL-12p70 and IL-10, but not IL-4, in the BMDCs from TLR4 mutation mice were predominantly decreased compared with those from TLR4 wild mice when the BMDCs were co-stimulated by ESP combined with LPS. Flow cytometry analysis showed that ESP could significantly decrease the high levels of CD80, CD86, and MHC II which were elevated by LPS. In conclusion, these data suggest that TLR4 may play a regulatory role in type 1 immune responses during C. sinensis infection.
A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins
Ryan, Anthony; Lynch, Mark; Smith, Sinead M.; Amu, Sylvie; Nel, Hendrik J.; McCoy, Claire E.; Dowling, Jennifer K.; Draper, Eve; O'Reilly, Vincent; McCarthy, Ciara; O'Brien, Julie; Ní Eidhin, Déirdre; O'Connell, Mary J.; Keogh, Brian; Morton, Charles O.; Rogers, Thomas R.; Fallon, Padraic G.; O'Neill, Luke A.
2011-01-01
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system. PMID:21738466
Patro, Sean C.; Azzoni, Livio; Joseph, Jocelin; Fair, Matthew G.; Sierra-Madero, Juan G.; Rassool, Mohammed S.; Sanne, Ian; Montaner, Luis J.
2016-01-01
Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone. In the CCR5 antagonism to decrease the incidence of immune reconstitution inflammatory syndrome study, antiretroviral therapy-naïve patients received maraviroc or placebo in addition to standard antiretroviral therapy. PBMCs and plasma from 65 patients were assessed during 24 wk of antiretroviral therapy for biomarkers of monocyte and macrophage activation. Markers of monocyte and macrophage activation were reduced significantly by 24 wk, including CD14++CD16+ intermediate monocytes (P < 0.0001), surface CD163 (P = 0.0004), CD169 (P < 0.0001), tetherin (P = 0.0153), and soluble CD163 (P < 0.0001). A change in CD38+, HLA-DR+ CD8 T cells was associated with changes in CD169 and tetherin expression. Maraviroc did not affect biomarkers of monocyte/macrophage activation but resulted in greater percentages of CCR5-positive monocytes in PBMC. HIV-1 suppression after 24 wk of antiretroviral therapy, with or without maraviroc, demonstrates robust recovery in monocyte subset activation markers, whereas soluble markers of activation demonstrate minimal decrease, qualitatively differentiating markers of monocyte/macrophage activation in advanced disease. PMID:26609048
Bizzarro, Tommaso; Martini, Maurizio; Marrocco, Carla; D’Amato, Donato; Traini, Emanuela; Lombardi, Celestino Pio; Pontecorvi, Alfredo; Fadda, Guido; Larocca, Luigi Maria; Rossi, Esther Diana
2015-01-01
Background Fine needle aspiration Cytology (FNAC) fulfills a reliable role in the evaluation of thyroid lesions. Although the majority of nodules are quite easily diagnosed as benign or malignant, 30% of them represent an indeterminate category whereby the application of ancillary techniques (i.e. immunocytochemistry-ICC and molecular testing) has been encouraged. The search for a specific immunomarker of malignancy sheds light on a huge number of ICC stains although none of them attempt to yield 100% conclusive results. Our aim was to define in a pilot study on thyroid FNAC whether CD56 might be a valid marker also in comparison with HBME-1 and Galectin-3. Materials and Methods Inasmuch as this is the largest pilot study using only liquid based cytology (LBC), we selected all the cases only in the categories of benign nodules (BN) and positive for malignancy (PM) for validation purposes. Eighty-five consecutive (including 50 PM and 35 BN) out of 950 thyroid FNACs had surgical follow-up. The ICC panel (HBME-1, Galectin-3 and CD56) was carried out on LBC and histology. Results All BNs and PMs were histological confirmed. CD56 was negative in 96% of the PM while 68.5% of the BNs showed cytoplasmic positivity for this marker, with an overall high sensitivity (96%) but lower specificity (69%). In specific, our 96% of the PMs did not show any follicular cell with CD56 expression. Different ICC combinations were evaluated showing that the panel made up of CD56 plus HBME-1 and Galectin-3 had the highest sensitivity (98%) and specificity (86%). Conclusions Our pilot study suggests that CD56 may be a good marker for ruling out PTC and its variants. The low specificity suggests that an immunopanel including also HBME-1 and Galectin-3 could obtain the highest diagnostic accuracy in thyroid lesions. Our results suggest that CD56 may be a feasible additional marker for identifying malignancies also in the FNs and SMs. PMID:26186733
Immunologic reconstitution during PEG-ADA therapy in an unusual mosaic ADA-deficient patient
Liu, Ping; Santisteban, Ines; Burroughs, Laurie M.; Ochs, Hans D.; Torgerson, Troy R.; Hershfield, Michael S.; Rawlings, David J.; Scharenberg, Andrew M.
2009-01-01
We report detailed genetic and immunologic studies in a patient diagnosed with adenosine deaminase (ADA) deficiency and combined immune deficiency at age 5 years. At the time of diagnosis, although all other lymphocyte subsets were depleted, circulating CD8+ T cells with a terminally differentiated phenotype were abundant and expressed normal ADA activity due to a reversion mutation in a CD8+ T cell or precursor. Over the first 9 months of replacement therapy with PEG-ADA, the patient steadily accumulated mature naïve CD4+ and CD8+ T cells, as well as CD4+/FOXP3+ regulatory T cells, consistent with restoration of a functional cellular immune system. While CD19+ naïve B cells also accumulated in response to PEG-ADA therapy, a high proportion of these B cells exhibited an immature surface marker phenotype even after 9 months, and immunization with neoantigen bacteriophage φX174 demonstrated a markedly subnormal humoral immune response. Our observations in this single patient have important implications for gene therapy of human ADA deficiency, as they indicate that ADA expression within even a large circulating lymphocyte population may not be sufficient to support adequate immune reconstitution. They also suggest that an immature surface marker phenotype of the peripheral B cell compartment may be a useful surrogate marker for incomplete humoral immune reconstitution during enzyme replacement, and possibly other forms of hematopoietic cell therapies. PMID:18952502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazek, Ed R.; Foutch, Jennifer L.; Maki, Guitta
2007-01-01
Purpose: Primary medulloblastoma and glioblastoma multiforme tumor cells that express the surface marker CD133 are believed to be enriched for brain tumor stem cells because of their unique ability to initiate or reconstitute tumors in immunodeficient mice. This study sought to characterize the radiobiological properties and marker expression changes of CD133+ vs. CD133- cells of an established medulloblastoma cell line. Methods and Materials: Daoy and D283 Med cell lines were stained with fluorescently labeled anti-CD133 antibody and sorted into CD133+ and CD133- populations. The effect of oxygen (2% vs. 20%) on CD133 expression was measured. Both populations were analyzed formore » marker stability, cell cycle distribution, and radiosensitivity. Results: CD133+ Daoy cells restored nearly native CD133+ and CD133- populations within 18 days, whereas CD133- cells remained overwhelmingly CD133-. Culturing Daoy cells in 2% oxygen rather than the standard 20% oxygen increased their CD133 expression 1.6-fold. CD133+ Daoy cells were radioresistant via the {beta}-parameter of the linear-quadratic model relative to CD133- Daoy cells, although their {alpha}-parameters and cell cycle distributions were identical. Conclusions: Restoration of the original CD133+ and CD133- populations from CD133+ Daoy cells in serum is further evidence that CD133+ cells are functionally distinct from CD133- cells. The radioresistance of CD133+ compared with CD133- Daoy cells is consistent with better repair of sublethal damage. Enlargement of the CD133+ sector is a new feature of the hypoxic response.« less
Itai, Shunsuke; Fujii, Yuki; Nakamura, Takuro; Chang, Yao-Wen; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Suzuki, Hiroyoshi; Harada, Hiroyuki; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari
2017-10-01
CD133, also known as prominin-1, was first described as a cell surface marker on early progenitor and hematopoietic stem cells. It is a five-domain transmembrane protein composed of an N-terminal extracellular tail, two small cytoplasmic loops, two large extracellular loops containing seven potential glycosylation sites, and a short C-terminal intracellular tail. CD133 has been used as a marker to identify cancer stem cells derived from primary solid tumors and as a prognostic marker of gliomas. Herein, we developed novel anti-CD133 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We expressed the full length of CD133 in LN229 glioblastoma cells, immunized mice with LN229/CD133 cells, and performed the first screening using flow cytometry. After limiting dilution, we established 100 anti-CD133 mAbs, reacting with LN229/CD133 cells but not with LN229 cells. Subsequently, we performed the second and third screening with Western blot and immunohistochemical analyses, respectively. Among 100 mAbs, 11 strongly reacted with CD133 in Western blot analysis. One of 11 clones, CMab-43 (IgG 2a , kappa), showed a sensitive and specific reaction against colon cancer cells, warranting the use of CMab-43 in detecting CD133 in pathological analyses of CD133-expressing cancers.
Decreased NK-Cell Cytotoxicity after Short Flights on the Space Shuttle
NASA Technical Reports Server (NTRS)
Mehta, Satish K.; Grimm, Elizabeth A.; Smid, Christine; Kaur, Indreshpal; Feeback, Daniel L.; Pierson, Duane L.
2000-01-01
Cytotoxic activity of natural killer (NK) cells and cell surface marker expression of peripheral blood mononuclear cells (PBMCs) isolated from 11 U.S. astronauts on two different missions were determined before and after 9 or 10 days of spaceflight aboard the space shuttle. Blood samples were collected 10 and 3 days before launch, within 3 hours after landing, and 3 days after landing. All PBMC preparations were cryopreserved and analyzed simultaneously in a 4-hour cytotoxicity "Cr-release assay using NK-sensitive K-562 target cells. Compared to preflight values, NK-cell cytotoxicity (corrected for lymphopenia observed on landing day) was significantly decreased at landing (P < 0.0125). It then apparently began to recover and approached preflight values by 3 days after landing. Consistent with decreased NK-cell cytotoxicity, significant increases from preflight values were found in plasma adrenocorticotropic hormone at landing. Plasma and urinary cortisol levels did not change significantly from preflight values. Expression of major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), determined by flow cytometric analysis, revealed no consistent phenotypic changes in relative percent of NK or other lymphoid cells after 10 days of spaceflight.
Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Joon-Young; Kim, Han-Jong; Hurt, Elaine M.
2007-10-12
FOXP3, a forkhead transcription factor is essential for the development and function of CD4{sup +}CD25{sup +} regulatory T cells (Tregs). In contrast to conversion of murine naive T cells to Tregs by transduction of Foxp3, it is controversial whether ectopic expression of FOXP3 in human CD4{sup +} T cells is sufficient for acquisition of suppressive activity. Here, we show that retroviral transduction of FOXP3 induces a Treg phenotype in human leukemic CD4{sup +} Jurkat-T cells, evidenced by increased expression of Treg-associated cell surface markers as well as inhibition of cytokine production. Furthermore, FOXP3-transduced Jurkat-T cells suppress the proliferation of humanmore » CD4{sup +}CD25{sup -} T cells. Additionally, DNA microarray analysis identifies Treg-related genes regulated by FOXP3. Our study demonstrates that enforced expression of FOXP3 confers Treg-like properties on Jurkat-T cells, which can be a convenient and efficient Treg-like cell model for further study to identify Treg cell surface markers and target genes regulated by FOXP3.« less
Sansone, Roberto; Baaken, Maximilian; Horn, Patrick; Schuler, Dominik; Westenfeld, Ralf; Amabile, Nicolas; Kelm, Malte; Heiss, Christian
2018-08-01
Endothelial microparticles (EMPs) are markers of endothelial injury and activation. The role of EMPs in arterial hypertension is not well understood and EMPs are increased both in arterial hypertension and coronary artery disease (CAD). The data presented here show EMPs as defined by CD31 + /41 - , CD62e + , and CD144 + surface markers and vascular hemodynamic parameters including office and central blood pressure, heart rate, aortic augmentation index, pulse wave velocity, flow-mediated dilation, nitroglycerin-mediated dilation, brachial artery diameter, hyperemic wall shear stress, and laser Doppler perfusion of the cutaneous microcirculation of normotensives and hypertensives with and without CAD.
Garcia, John; Wright, Karina; Roberts, Sally; Kuiper, Jan Herman; Mangham, Chas; Richardson, James; Mennan, Claire
2016-01-01
The infrapatellar fat pad (FP) and synovial fluid (SF) in the knee serve as reservoirs of mesenchymal stromal cells (MSCs) with potential therapeutic benefit. We determined the influence of the donor on the phenotype of donor matched FP and SF derived MSCs and examined their immunogenic and immunomodulatory properties before and after stimulation with the pro-inflammatory cytokine interferon-gamma (IFN-γ). Both cell populations were positive for MSC markers CD73, CD90 and CD105, and displayed multipotency. FP-MSCs had a significantly faster proliferation rate than SF-MSCs. CD14 positivity was seen in both FP-MSCs and SF-MSCs, and was positively correlated to donor age but only for SF-MSCs. Neither cell population was positive for the co-stimulatory markers CD40, CD80 and CD86, but both demonstrated increased levels of human leukocyte antigen-DR (HLA-DR) following IFN-γ stimulation. HLA-DR production was positively correlated with donor age for FP-MSCs but not SF-MSCs. The immunomodulatory molecule, HLA-G, was constitutively produced by both cell populations, unlike indoleamine 2, 3-dioxygenase which was only produced following IFN-γ stimulation. FP and SF are accessible cell sources which could be utilised in the treatment of cartilage injuries, either by transplantation following ex-vivo expansion or endogenous targeting and mobilisation of cells close to the site of injury. PMID:27073003
CD20-Positive nodal natural killer/T-cell lymphoma with cutaneous involvement.
Tsai, Yi-Chiun; Chen, Chi-Kuan; Wu, Yu-Hung
2015-09-01
CD20-positive natural killer (NK)/T-cell lymphoma is extremely rare. We describe a case of a CD20-positive nodal NK/T-cell lymphoma with cutaneous involvement in a 32-year-old man. The patient presented with fever, night sweats, right inguinal lymphadenopathy and multiple violaceous to erythematous nodules and plaques on the back and bilateral legs. Immunohistochemical analysis showed diffusely and strongly positive staining for CD3, CD3 epsilon, CD43, CD56, TIA-1 and CD20 but negative staining for other B-cell markers, including CD79a and PAX-5 and T-cell markers CD5 and CD7. The tumor cell nuclei were diffusely positive for Epstein-Barr virus-encoded RNA in situ hybridization. A partial clinical response was observed after chemotherapy, indicated by the decreased size of the lymph nodes and skin lesions. It is a diagnostic challenge to deal with lymphoma cells that present with the surface proteins of both T- and B-cells. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Arslan, Yavuz Emre; Sezgin Arslan, Tugba; Derkus, Burak; Emregul, Emel; Emregul, Kaan C
2017-06-01
In the present study, we aimed at fabricating an osteoinductive biocomposite scaffold using keratin obtained from human hair, jellyfish collagen and eggshell-derived nano-sized spherical hydroxyapatite (nHA) for bone tissue engineering applications. Keratin, collagen and nHA were characterized with the modified Lowry method, free-sulfhydryl groups and hydroxyproline content analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA) which confirmed the success of the extraction and/or isolation processes. Human adipose mesenchymal stem cells (hAMSCs) were isolated and the cell surface markers were characterized via flow cytometry analysis in addition to multilineage differentiation capacity. The undifferentiated hAMSCs were highly positive for CD29, CD44, CD73, CD90 and CD105, but were not seen to express hematopoietic cell surface markers such as CD14, CD34 and CD45. The cells were successfully directed towards osteogenic, chondrogenic and adipogenic lineages in vitro. The microarchitecture of the scaffolds and cell attachment were evaluated using scanning electron microscopy (SEM). The cell viability on the scaffolds was assessed by the MTT assay which revealed no evidence of cytotoxicity. The osteogenic differentiation of hAMSCs on the scaffolds was determined histologically using alizarin red S, osteopontin and osteonectin stainings. Early osteogenic differentiation markers of hAMSCs were significantly expressed on the collagen-keratin-nHA scaffolds. In conclusion, it is believed that collagen-keratin-nHA osteoinductive biocomposite scaffolds have the potential of being used in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
Garibaldi, Silvano; Barisione, Chiara; Marengo, Barbara; Ameri, Pietro; Brunelli, Claudio; Balbi, Manrico; Ghigliotti, Giorgio
2017-01-10
Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N -acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS production was assessed as DCF fluorescence by flow cytometry. HSA-AOPP induced the differentiation of RAW264.7 cells into a dendritic-like phenotype, as shown by morphological changes, by increased CD40, CD86 and MHC class II surface expression and by induction of T cell proliferation. The cell surface thiols dose dependently decreased following HSA-AOPP treatment, while ROS production increased. NAC pre-treatment enhanced the amount of cell surface thiols and prevented their reduction due to treatment with AOPP. Both ROS production and RAW264.7 differentiation into DC-like cells induced by HSA-AOPP were reduced by NAC. Our results highlight that oxidized plasma proteins modulate specific immune responses of macrophages through a process involving changes in the thiol redox equilibrium. We suggest that this mechanism may play a role in determining the rapid progression of the atherosclerotic process observed in CKD patients.
Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng
2015-01-01
Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future.
Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers
2016-01-01
In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today. PMID:27362493
Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers
2016-01-01
In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.
Petrara, Maria Raffaella; Cattelan, Anna Maria; Sasset, Lolita; Freguja, Riccardo; Carmona, Francesco; Sanavia, Silvia; Zanchetta, Marisa; Del Bianco, Paola
2017-01-01
Objectives Although monotherapy (mART) effectiveness in maintaining viral suppression and CD4 cell count has been extensively examined in HIV-1-infected patients, its impact on HIV-1 reservoir, immune activation, microbial translocation and co-infection with Epstein-Barr Virus (EBV) is unclear. Methods This retrospective study involved 32 patients who switched to mART; patients were studied at baseline, 48 and 96 weeks after mART initiation. Thirty-two patients who continued combined antiretroviral therapy (cART) over the same period of time were included in the study. Markers of HIV-1 reservoir (HIV-1 DNA and intracellular HIV-1 RNA) were quantified by real-time PCR. Markers of T-(CD3+CD8+CD38+) and B-(CD19+CD80/86+ and CD19+CD10-CD21lowCD27+) cell activation were evaluated by flow cytometry. Plasma levels of microbial translocation markers were quantified by real-time PCR (16S ribosomal DNA and mitochondrial [mt]DNA) or by ELISA (LPS and sCD14). EBV was typed and quantified by multiplex real-time PCR. Results At baseline, no differences were found between mART and cART groups. Three (10%) mART-treated patients had a virological failure vs none in the cART group. Levels of HIV-1 DNA, intracellular HIV-1 RNA and EBV-DNA remained stable in the mART group, while decreased significantly in the cART group. Percentages of T- and B-activated cells significantly increased in the mART-treated patients, while remained at low levels in the cART-treated ones (p = 0.014 and p<0.001, respectively). Notably, levels of mtDNA remained stable in the cART group, but significantly rose in the mART one (p<0.001). Conclusions Long-term mART is associated with higher levels of T- and B-cell activation and, conversely to cART, does not reduce the size of HIV-1 reservoir and EBV co-infection. PMID:28926641
Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael
2015-02-01
Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.
Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.
Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J
2016-09-09
The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.
Wieland, Eberhard; Shipkova, Maria
2016-04-01
T-cell activation is a characteristic of organ rejection. T cells, located in the draining lymph nodes of the transplant recipient, are faced with non-self-molecules presented by antigen presenting cells and become activated. Activated T cells are characterized by up-regulated surface antigens, such as costimulatory molecules, adhesion molecules, chemokine receptors, and major histocompatibility complex class II molecules. Surface antigen expression can be followed by flow cytometry using monoclonal antibodies in either cell function assays using donor-specific or nonspecific stimulation of isolated cells or whole blood and without stimulation on circulating lymphocytes. Molecules such as CD30 can be proteolytically cleaved off the surface of activated cells in vivo, and the determination of the soluble protein (sCD30) in serum or plasma is performed by immunoassays. As promising biomarkers for rejection and long-term transplant outcome, CD28 (costimulatory receptor for CD80 and CD86), CD154 (CD40 ligand), and sCD30 (tumor necrosis factor receptor superfamily, member 8) have been identified. Whereas cell function assays are time-consuming laboratory-developed tests which are difficult to standardize, commercial assays are frequently available for soluble proteins. Therefore, more data from clinical trials have been published for sCD30 compared with the surface antigens on activated T cells. This short review summarizes the association between selected surface antigens and immunosuppression, and rejection in solid organ transplantation.
Tremblay-McLean, Alexandra; Bruneau, Julie; Lebouché, Bertrand; Lisovsky, Irene; Song, Rujun; Bernard, Nicole F
2017-10-12
Natural Killer (NK) cell responses to HIV-infected CD4 T cells (iCD4) depend on the integration of signals received through inhibitory (iNKR) and activating NK receptors (aNKR). iCD4 activate NK cells to inhibit HIV replication. HIV infection-dependent changes in the human leukocyte antigen (HLA) ligands for iNKR on iCD4 are well documented. By contrast, less is known regarding the HIV infection related changes in ligands for aNKR on iCD4. We examined the aNKR ligand profiles HIV p24⁺ HIV iCD4s that maintained cell surface CD4 (iCD4⁺), did not maintain CD4 (iCD4 - ) and uninfected CD4 (unCD4) T cells for expression of unique long (UL)-16 binding proteins-1 (ULBP-1), ULBP-2/5/6, ULBP-3, major histocompatibility complex (MHC) class 1-related (MIC)-A, MIC-B, CD48, CD80, CD86, CD112, CD155, Intercellular adhesion molecule (ICAM)-1, ICAM-2, HLA-E, HLA-F, HLA-A2, HLA-C, and the ligands to NKp30, NKp44, NKp46, and killer immunoglobulin-like receptor 3DS1 (KIR3DS1) by flow cytometry on CD4 T cells from 17 HIV-1 seronegative donors activated and infected with HIV. iCD4⁺ cells had higher expression of aNKR ligands than did unCD4. However, the expression of aNKR ligands on iCD4 where CD4 was downregulated (iCD4 - ) was similar to (ULBP-1, ULBP-2/5/6, ULBP-3, MIC-A, CD48, CD80, CD86 and CD155) or significantly lower than (MIC-B, CD112 and ICAM-2) what was observed on unCD4. Thus, HIV infection can be associated with increased expression of aNKR ligands or either baseline or lower than baseline levels of aNKR ligands, concomitantly with the HIV-mediated downregulation of cell surface CD4 on infected cells.
Revollo, Javier; Pearce, Mason G; Petibone, Dayton M; Mittelstaedt, Roberta A; Dobrovolsky, Vasily N
2015-05-01
The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N-ethyl-N-nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect-gene mutation in the Pig-a gene. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Booiman, Thijs; Wit, Ferdinand W; Maurer, Irma; De Francesco, Davide; Sabin, Caroline A; Harskamp, Agnes M; Prins, Maria; Garagnani, Paolo; Pirazzini, Chiara; Franceschi, Claudio; Fuchs, Dietmar; Gisslén, Magnus; Winston, Alan; Reiss, Peter; Kootstra, Neeltje A
2017-01-01
Increased monocyte activation and intestinal damage have been shown to be predictive for the increased morbidity and mortality observed in treated people living with human immunodeficiency virus (PLHIV). A cross-sectional analysis of cellular and soluble markers of monocyte activation, coagulation, intestinal damage, and inflammation in plasma and cerebrospinal fluid (CSF) of PLHIV with suppressed plasma viremia on combination antiretroviral therapy and age and demographically comparable HIV-negative individuals participating in the Comorbidity in Relation to AIDS (COBRA) cohort and, where appropriate, age-matched blood bank donors (BBD). People living with HIV, HIV-negative individuals, and BBD had comparable percentages of classical, intermediate, and nonclassical monocytes. Expression of CD163, CD32, CD64, HLA-DR, CD38, CD40, CD86, CD91, CD11c, and CX3CR1 on monocytes did not differ between PLHIV and HIV-negative individuals, but it differed significantly from BBD. Principal component analysis revealed that 57.5% of PLHIV and 62.5% of HIV-negative individuals had a high monocyte activation profile compared with 2.9% of BBD. Cellular monocyte activation in the COBRA cohort was strongly associated with soluble markers of monocyte activation and inflammation in the CSF. People living with HIV and HIV-negative COBRA participants had high levels of cellular monocyte activation compared with age-matched BBD. High monocyte activation was predictive for inflammation in the CSF. © The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
Abdanipour, Alireza; Tiraihi, Taki; Delshad, Alireza
2011-01-01
Adult stem cells (ASC) are undifferentiated cells found throughout the body. These cells are promising tools for cell replacement therapy in neurodegenerative disease. Adipose tissue is the most abundant and accessible source of ASC. This study was conducted to evaluate effect of selegiline on differentiation of adipose-derived stem cells (ADSC) into functional neuron-like cells (NLC), and also level of the neurotrophin expression in differentiated cells. ADSC were transdifferentiated into NLC using selegiline where CD90, CD49d, CD31, CD106 and CD45 were used as markers for ADSC identification. Lipogenic and osteogenic differentiation of ADSC were used to characterize the ADSC. ADSC were treated with selegiline at different concentrations (from 10(-6) to 10(-11) mM) and time points (3, 6, 12, 24 and 48 h). Percentage of viable cells, nestin and neurofilament 68 (NF-68) immunoreactive cells were used as markers for differentiation. The optimal dose for neurotrophin expressions in differentiating cells was evaluated using reverse transcriptase-PCR. NLC function was evaluated by loading and unloading with FM1-43 dye. ADSC were immunoreactive to CD90 (95.67 ± 2.26), CD49d (71.52 ± 6.64) and CD31 (0.6 ± 0.86), but no immunoreactivity was detected for CD106 and CD45. The results of neural differentiation showed the highest percentage of nestin and NF-68 positive cells at 10(-9) mM concentration of selegiline (exposed for 24 h). The differentiated cells expressed synapsin and neurotrophin genes except brain-derived neurotrophic factor. ADSC can be an alternative source in cell-based therapy for neurodegenerative diseases using selegiline to induce ADSC differentiation to neuronal lineage.
Zhu, Longbao; Ge, Fei; Yang, Liangjun; Li, Wanzhen; Wei, Shenghua; Tao, Yugui; Du, Guocheng
2017-04-28
BACKGROUND Alginate is a natural polysaccharide obtained from brown algae and has been shown to have numerous applications in biomedical science, such as wound healing, delivery of bioactive agents, and cell transplantation. Ovalbumin (OVA) peptide 323-339 has been reported to be involved in immune response. MATERIAL AND METHODS This work investigated the use of alginate particles as a carrier and adjuvant for the immune therapy of cancer. Alginate particles loaded with OVA peptide were produced via emulsion. A tumor model was established in C57BL/6J mice via subcutaneous injection of 3×105 B16-OVA tumor cells. The effect of alginate/OVA peptide on cell viability was analyzed by use of the CCK-8 assay kit. Activation of macrophages was examined by checking cell surface makers CD40 and CD86 by FACs. RESULTS Alginate/OVA peptide inhibited tumor progression more effectively than using the peptide alone. The viability and uptake study illustrated that this particle is safe and non-toxic. The activation study demonstrated that alginate particles can promote the activation of surface markers on macrophages. ELISA assay showed that the particles with peptide can promote the secretion of inflammatory and effector cytokines from macrophages. CONCLUSIONS This study demonstrated that alginate has dual functions in immune therapy of cancer, serving both as a carrier and an adjuvant.
Recognition of Naegleriae ameba surface protein epitopes by anti-human CD45 antibodies.
Ravine, Terrence J; Polski, Jacek M; Jenkins, James
2010-04-01
Phagocytosis is a highly conserved mechanism exhibited by both free-living amebas and mammalian blood cells. Similarities demonstrated by either cell type during engulfment of the same bacterial species may imply analogous surface proteins involved in receptor-mediated endocytosis. The increased availability of anti-human leukocyte antibodies or clusters of differentiation (CD) markers used in conjunction with flow cytometric (FCM) and/or immunohistochemical (IHC) analysis provides investigators with a relatively easy method to screen different cell populations for comparable plasma membrane proteins. In this study, we incubated Naegleria and Acanthamoeba amebas with several directly conjugated anti-human leukocyte monoclonal antibodies (mAb) for similarly recognized amebic epitopes. CD marker selection was based upon a recognized role of each mAb in phagocyte activation and/or uptake of bacteria. These included CD14, CD45, and CD206. In FCM, only one CD45 antibody demonstrated strong reactivity with both Naegleria fowleri and Naegleria gruberi that was not expressed in similarly tested Acanthamoeba species. Additional testing of N. gruberi by IHC demonstrated reactivity to a different CD45 antibody. Our results suggest a possible utility of using anti-human leukocyte antibodies to screen amebic cells for similarly expressed protein epitopes. In doing so, several important items must be considered when selecting potential mAbs for testing to increase the probability of a positive result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva
2011-10-28
Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less
Sturhan, Henrik; Ungern-Sternberg, Saskia N I v; Langer, Harald; Gawaz, Meinrad; Geisler, Tobias; May, Andreas E; Seizer, Peter
2015-06-01
The role of individual monocyte subsets in inflammatory cardiovascular diseases is insufficiently understood. Although the Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) regulates important processes for inflammation such as MMP-release, its expression and regulation on monocyte subsets has not been characterized. In this clinical study, blood was obtained from 80 patients with stable coronary artery disease (CAD), 49 with acute myocardial infarction (AMI) and 34 healthy controls. Monocytes were divided into 3 subsets: CD14(++)CD16(-) (low), CD14(++)CD16(+) (intermediate), CD14(+)CD16(++) (high) according to phenotypic markers analyzed by flow cytometry. Surface expression of EMMPRIN was evaluated and compared with CD36 and CD47 expression. In all patients, EMMPRIN expression was significantly different among monocyte subsets with the highest expression on "classical" CD14(++)CD16(-) monocytes. EMMPRIN was upregulated on all monocyte subsets in patients with AMI as compared to patients with stable CAD. Notably, neither CD47 nor CD36 revealed a significant difference in patients with AMI compared to patients with stable CAD. EMMPRIN could serve as a marker for classical monocytes, which is upregulated in patients with acute myocardial infarction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Friedel, Thorsten; Jung-Klawitter, Sabine; Sebe, Attila; Schenk, Franziska; Modlich, Ute; Ivics, Zoltán; Schumann, Gerald G; Buchholz, Christian J; Schneider, Irene C
2016-05-01
Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.
Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha
2013-10-29
Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers without prior knowledge of their antigen-specificity, using a subunit vaccine for proof-of-concept. Whether, whole parasite or adjuvanted protein vaccines will also induce {CD38 and HLA-DRhi}+ CD8+ T cell populations reflective of the antigen-specific response will the subject of future investigations.
Mesenchymal stem cells reside in anterior cruciate ligament remnants in situ.
Fu, Weili; Li, Qi; Tang, Xin; Chen, Gang; Zhang, Chenghao; Li, Jian
2016-07-01
It has been reported that the anterior cruciate ligament (ACL) has certain self-healing ability after acute injury or with primary suture repair. Many studies have confirmed that a remnant preservation technique with ACL reconstruction contributes to biological augmentation for ACL healing. However, it remains unclear whether mesenchymal stem cells (MSC) reside in ACL remnants in situ. The aim of this study was to investigate the methods of culture and identification of MSC derived from the remnants of ACL rupture patients and to analyse these MSC's properties. The cells of ACL remnants from the ACL rupture patients were isolated by the methods of enzymatic digestion and cultured in vitro to the third passage under the microscope to observe their morphology and growth status. The third passage of isolated cells was analysed for the identification of immunophenotype, osteogenic, adipogenic and chondrogenic differentiation. On the third to fifth days of in vitro culture, a few cells of long fusiform shape appeared and were adherent to the plastic walls. On the sixth to ninth days, cells clustered and colonies were observed. The third passage cells showed uniform cell morphology and good proliferation, with appearance of the typical surface markers of MSC, CD29, CD44, CD90 and CD105. The surface markers of CD34 and CD45 of haematopoietic stem cells were not expressed. Under appropriate conditions of in vitro culture, isolated cells could be differentiated into osteoblasts that deposit mineralised matrix and express early osteogenic markers, adipocytes that accumulate lipid droplets in cytoplasm and chondrocytes that secrete chondrogenic-specific matrix aggrecan and collagen II. Real-time polymerase chain reaction (PCR) analysis demonstrated that the specific mRNA expression of osteogenesis, adipogenesis and chondrogenesis increased significantly compared with the control groups at day zero. Stem cells derived in situ from the human ACL stump were successfully isolated and characterised. Those isolated cells were identified as MSC according to their adherent ability, morphology, surface markers and multilineage differentiation potential. MSC derived from ACL remnants could be a potential source of seeding cells for ligament regeneration.
Li, Ying; Sheng, Kangliang; Chen, Jingyu; Wu, Yujing; Zhang, Feng; Chang, Yan; Wu, Huaxun; Fu, Jingjing; Zhang, Lingling; Wei, Wei
2015-12-15
This study was to investigate PGE2 and TNF-alpha signaling pathway involving in the maturation and activation of bone marrow dendritic cells (DCs) and the effect of CP-25. Bone marrow DCs were isolated and stimulated by PGE2 and TNF-alpha respectively. The markers of maturation and activation expressed on DCs, such as CD40, CD80, CD83, CD86, MHC-II, and the ability of antigen uptake of DCs were analyzed by flow cytometry. The proliferation of T cells co-cultured with DCs, the signaling pathways of PGE2-EP4-cAMP and TNF-alpha-TRADD-TRAF2-NF-κB in DCs were analyzed. The results showed that both PGE2 and TNF-alpha up-regulated the expressions of CD40, CD80, CD83, CD86, and MHC-II, decreased the antigen uptake of DCs, and DCs stimulated by PGE2 or TNF-alpha could increase T cell proliferation. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased significantly the expressions of CD40, CD80, CD83, CD86 and MHC-II, increased the antigen uptake of DCs, and suppressed T cell proliferation induced by DCs. PGE2 increased the expressions of EP4, NF-κB and down-regulated cAMP level of DCs. TNF-alpha could also up-regulate TNFR1, TRADD, TRAF2, and NF-κB expression of DCs. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased the expressions of EP4 and NF-κB, increased cAMP level in DCs stimulated by PGE2. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) also could down-regulate significantly TNFR1, TRADD, TRAF2, and NF-κB expression in DCs stimulated by TNF-alpha. These results demonstrate that PGE2 and TNF-alpha could enhance DCs functions by mediating PGE2-EP4-cAMP pathway, TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathway respectively. CP-25 might inhibit the function of DCs through regulating PGE2-EP4-cAMP and TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathways. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of Different Titanium Surfaces on Maturation of Murine Bone Marrow-Derived Dendritic Cells
NASA Astrophysics Data System (ADS)
Zheng, Xiaofei; Zhou, Fengjuan; Gu, Yifei; Duan, Xiaobo; Mo, Anchun
2017-02-01
Dendritic cells (DCs) play a pivotal role in the host response to implanted biomaterials. Osseointegration of titanium (Ti) implant is an immunological and inflammatory-driven process. However, the role of DCs in this complex process is largely unknown. This study aimed to investigate the effect of different Ti surfaces on DC maturation, and evaluate its subsequent potential on osteogenic differentiation of preosteoblasts. Murine bone marrow-derived DCs were seeded on Ti disks with different surface treatments, including pretreatment (PT), sandblasted/acid-etched (SLA) and modified SLA (modSLA) surface. Compared with DCs cultured on PT and SLA surfaces, the cells seeded on modSLA surface demonstrated a more round morphology with lower expression of CD86 and MHC-II, the DC maturation markers. Those cells also secreted high levels of anti-inflammatory cytokine IL-10 and TGF-β. Notably, addition of conditioned medium (CM) from modSLA-induced DCs significantly increased the mRNA expression of Runx2 and ALP as well as ALP activity by murine preosteoblast MC3T3-E1 cells. Our data demonstrated that Ti disks with different surfaces lead to differential DCs responses. PT and SLA surfaces induce DCs mature, while DCs seeded on modSLA-Ti surface maintain an immature phenotype and exhibit a potential of promoting osteogenic differentiation of MC3T3-E1 cells.
Zamparelli, Alessandra; Zini, Nicoletta; Cattini, Luca; Spaletta, Giulia; Dallatana, Davide; Bassi, Elena; Barbaro, Fulvio; Iafisco, Michele; Mosca, Salvatore; Parrilli, Annapaola; Fini, Milena; Giardino, Roberto; Sandri, Monica; Sprio, Simone; Tampieri, Anna; Maraldi, Nadir M; Toni, Roberto
2014-10-01
Few data are available on the effect of biomaterials on surface antigens of mammalian bone marrow-derived, adult mesenchymal stromal cells (MSCs). Since poly(L-lactic acid) or PLLA is largely used in tissue engineering of human bones, and we are developing a reverse engineering program to prototype with biomaterials the vascular architecture of bones for their bioartificial reconstruction, both in humans and animal models, we have studied the effect of porous, flat and smooth PLLA scaffolds on the immunophenotype of in vitro grown, rat MSCs in the absence of any coating, co-polymeric enrichment, and differentiation stimuli. Similar to controls on plastic, we show that our PLLA scaffold does not modify the distribution of some surface markers in rat MSCs. In particular, the maintained expression of CD73 and CD90 on two different subpopulations (small and large cells) is consistent with their adhesion to the PLLA scaffold through specialized appendages, and to their prominent content in actin. In addition, our PLLA scaffold favours retention of the intermediate filament desmin, believed a putative marker of undifferentiated state. Finally, it preserves all rat MSCs morphotypes, and allows for their survival, adhesion to the substrate, and replication. Remarkably, a subpopulation of rat MSCs grown on our PLLA scaffold exhibited formation of membrane protrusions of uncertain significance, although in a size range and morphology compatible with either motility blebs or shedding vesicles. In summary, our PLLA scaffold has no detrimental effect on a number of features of rat MSCs, primarily the expression of CD73 and CD90.
Hypergravity Effects on Dendritic Cells and Vascular Wall Interactions
NASA Astrophysics Data System (ADS)
Bellik, L.; Parenti, A.; Ledda, F.; Basile, V.; Romano, G.; Fusi, F.; Monici, M.
2009-01-01
Dendritic cells (DCs), the most potent antigen-presenting cells inducing specific immune responses, are involved in the pathogenesis of atherosclerosis. In this inflammatory disease, DCs increase in number, being particularly abundant in the shoulder regions of plaques. Since the exposure to altered gravitational conditions results in a significant impairment of the immune function, the aim of this study was to investigate the effects of hypergravity on both the function of DCs and their interactions with the vascular wall cells. Monocytes from peripheral blood mononuclear cells of healthy volunteers were sorted by CD14+ magnetic beads selection, cultured for 6 days in medium supplemented with GM-CSF and IL-4, followed by a further maturation stimulus. DC phenotype, assessed by flow cytometry, showed a high expression of the specific DC markers CD80, CD86, HLA-DR and CD83. The DCs obtained were then exposed to hypergravitational stimuli and their phenotype, cytoskeleton, ability to activate lymphocytes and interaction with vascular wall cells were investigated. The findings showed that the exposure to hypergravity conditions resulted in a significant impairment of DC cytoskeletal organization, without affecting the expression of DC markers. Moreover, an increase in DC adhesion to human vascular smooth muscle cells and in their ability to activate lymphocytes was observed.
Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel
2017-04-06
The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (EpCAM) identification of fibroblasts from breast and prostate tumor tissues is advised. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Liu, Chuan-Miao; Yang, Tian-Hua; Huang, Min; Zhou, Cheng; Li, Yong-Hai; Li, Zheng-Hong
2018-06-01
To investigate the effects of endomorphin-1 (EM-1) on the maturation phenotype, cytokine secretion, T cell proliferation and TLR4 expression in human peripheral blood dendritic cells (PBDCs) stimulated and induced by high glucose, and to explore the regulatory mechanism of EM-1 on DC immune function. Peripheral blood mononuclear cells (PBMNCs) were induced into immature dendritic cells (imDCs). The high glucose was used as the stimulating factor, and the EM-1 was used as the interventional factor. Then, the experiments were divided into normal glucose group (NG group), high glucose group (HG group), high glucose plus EM-1 group (EM group) and high glucose plus EM-1 and naloxone group (Nal group), respectively. The PBDC's phenotype changes were detected by flow cytometry; ELISA was used to detect the changes of cytokines secreted by PBDCs co-cultured with autologous lymphocytes; CFSE was used to detect the proliferation of T lymphocytes. TLR4 expression on PBDC surface was detected by RT-PCR. Compared with HG group, the expression of PBDC surface molecules CD86, CCR7 and CD36 was up-regulated in EM group (P<0.01), while the change of CD83 expression was not statistically significant. However, IL-12 and IL-10 secreted by PBDCs and the proliferation index of T-lymphocytes stimulated by PBDCs were both decreased in EM group. Compared with EM group, the expression of CD86, CCR7 and CD36 was decreased in Nal group (P<0.01), while the expression of CD83 was almost unchanged (P>0.05). T-lymphocyte proliferation index was increased very significantly in Nal group (P<0.01). The gray ratio of TLR4 in HG group was higher than that in NG group, while the gray ratio in EM group's was very significantly lower than that in HG group's (P<0.01). These results indicate that the high glucose can promote the expression of PBDC TLR4, while the EM-1 inhibits the expression of TLR4. EM-1 up-regulates the expression of PBDC surface molecules CD86, CCR7 and CD36 stimulated and induced by high glucose, but inhibites the induction of PBDC to maturity by high glucose. And the secreted inflammatory cytokines IL-12 and IL-10 inhibites the proliferation of T lymphocytes derived from PBDCs, while naloxone inhibites the effect of EM-1. EM-1 inhibites the expression of TLR4 on PBDC surface induced by high glucose.
Shamji, M H; Bellido, V; Scadding, G W; Layhadi, J A; Cheung, D K M; Calderon, M A; Asare, A; Gao, Z; Turka, L A; Tchao, N; Togias, A; Phippard, D; Durham, S R
2015-02-01
Several studies have demonstrated the time course of inflammatory mediators in nasal fluids following nasal allergen challenge (NAC), whereas the effects of NAC on cells in the periphery are unknown. We examined the time course of effector cell markers (for basophils, dendritic cells and T cells) in peripheral blood after nasal grass pollen allergen challenge. Twelve participants with seasonal allergic rhinitis underwent a control (diluent) challenge followed by NAC after an interval of 14 days. Nasal symptoms and peak nasal inspiratory flow (PNIF) were recorded along with peripheral basophil, T-cell and dendritic cell responses (flow cytometry), T-cell proliferative responses (thymidine incorporation), and cytokine expression (FluoroSpot assay). Robust increases in nasal symptoms and decreases in PNIF were observed during the early (0-1 h) response and modest significant changes during the late (1-24 h) response. Sequential peaks in peripheral blood basophil activation markers were observed (CD107a at 3 h, CD63 at 6 h, and CD203c(bright) at 24 h). T effector/memory cells (CD4(+) CD25(lo) ) were increased at 6 h and accompanied by increases in CD80(+) and CD86(+) plasmacytoid dendritic cells (pDCs). Ex vivo grass antigen-driven T-cell proliferative responses and the frequency of IL-4(+) CD4(+) T cells were significantly increased at 6 h after NAC when compared to the control day. Basophil, T-cell, and dendritic cell activation increased the frequency of allergen-driven IL-4(+) CD4(+) T cells, and T-cell proliferative responses are detectable in the periphery after NAC. These data confirm systemic cellular activation following a local nasal provocation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Genetic Variation Affects C-Reactive Protein Elevations in Crohn's Disease.
Moran, Christopher J; Kaplan, Jess L; Winter, Harland S
2018-04-28
C-reactive protein (CRP) is a serum marker that is used to measure disease activity in Crohn's disease (CD). However, a subset of CD patients have normal CRP during flares. In rheumatoid arthritis and lupus, genetic variants can restrict CRP elevations during flares. This study sought to determine if common CRP genetic variants affect CRP values during active CD. Subjects with CD who participated in the Partners HealthCare BioBank were genotyped for 5 common CRP genetic variants (rs2794520, rs3122012, rs3093077, rs2808635, and rs1800947). Medical records were reviewed to determine disease activity and the highest CRP value during active CD. CRP values during active infection or malignancy at the time of the test were excluded. CRP values were compared by genotype using the Mann-Whitney test. The study included 199 subjects with active CD (21 to 86 years of age). Subjects with the rs2794520 TT genotype had a lower CRP than subjects with the CC genotype (58.3 mg/L vs 28.4 mg/L, P = 0.008). Subjects with the rs1800947 CG genotype had a lower CRP than those with the CC genotype (54.3 mg/L vs 22.4 mg/L, P < 0.0001); 41.6% of TT subjects had a normal CRP compared with 24.1% of CT subjects and 16.5% of CC subjects (P = 0.041). This study demonstrates that rs2794520 and rs1800947 are associated with a restriction of CRP elevations during active CD. While CRP is typically a reliable biomarker in CD, there is a subset of CD patients with a genetically determined restriction of CRP in whom other disease markers should be utilized.
Protein and glycomic plasma markers for early detection of adenoma and colon cancer.
Rho, Jung-Hyun; Ladd, Jon J; Li, Christopher I; Potter, John D; Zhang, Yuzheng; Shelley, David; Shibata, David; Coppola, Domenico; Yamada, Hiroyuki; Toyoda, Hidenori; Tada, Toshifumi; Kumada, Takashi; Brenner, Dean E; Hanash, Samir M; Lampe, Paul D
2018-03-01
To discover and confirm blood-based colon cancer early-detection markers. We created a high-density antibody microarray to detect differences in protein levels in plasma from individuals diagnosed with colon cancer <3 years after blood was drawn (ie, prediagnostic) and cancer-free, matched controls. Potential markers were tested on plasma samples from people diagnosed with adenoma or cancer, compared with controls. Components of an optimal 5-marker panel were tested via immunoblotting using a third sample set, Luminex assay in a large fourth sample set and immunohistochemistry (IHC) on tissue microarrays. In the prediagnostic samples, we found 78 significantly (t-test) increased proteins, 32 of which were confirmed in the diagnostic samples. From these 32, optimal 4-marker panels of BAG family molecular chaperone regulator 4 (BAG4), interleukin-6 receptor subunit beta (IL6ST), von Willebrand factor (VWF) and CD44 or epidermal growth factor receptor (EGFR) were established. Each panel member and the panels also showed increases in the diagnostic adenoma and cancer samples in independent third and fourth sample sets via immunoblot and Luminex, respectively. IHC results showed increased levels of BAG4, IL6ST and CD44 in adenoma and cancer tissues. Inclusion of EGFR and CD44 sialyl Lewis-A and Lewis-X content increased the panel performance. The protein/glycoprotein panel was statistically significantly higher in colon cancer samples, characterised by a range of area under the curves from 0.90 (95% CI 0.82 to 0.98) to 0.86 (95% CI 0.83 to 0.88), for the larger second and fourth sets, respectively. A panel including BAG4, IL6ST, VWF, EGFR and CD44 protein/glycomics performed well for detection of early stages of colon cancer and should be further examined in larger studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Isolation and characterization of equine endometrial mesenchymal stromal cells.
Rink, B Elisabeth; Amilon, Karin R; Esteves, Cristina L; French, Hilari M; Watson, Elaine; Aurich, Christine; Donadeu, F Xavier
2017-07-12
Equine mesenchymal stromal/stem cells (MSCs) are most commonly harvested from bone marrow (BM) or adipose tissue, requiring the use of surgical procedures. By contrast, the uterus can be accessed nonsurgically, and may provide a more readily available cell source. While human endometrium is known to harbor mesenchymal precursor cells, MSCs have not been identified in equine endometrium. This study reports the isolation, culture, and characterization of MSCs from equine endometrium. The presence of MSC and pericyte markers in endometrial sections was determined using immunohistochemistry. Stromal cells were harvested and cultured after separation of epithelial cells from endometrial fragments using Mucin-1-bound beads. For comparison, MSCs were also harvested from BM. The expression of surface markers in endometrial and BM-derived MSCs was characterized using flow cytometry and quantitative polymerase chain reaction. MSCs were differentiated in vitro into adipogenic, chondrogenic, osteogenic, and smooth muscle lineages. Typical markers of MSCs (CD29, CD44, CD90, and CD105) and pericytes (NG2 and CD146) were localized in the equine endometrium. Both endometrial and BM MSCs grew clonally and robustly expressed MSC and pericyte markers in culture while showing greatly reduced or negligible expression of hematopoietic markers (CD45, CD34) and MHC-II. Additionally, both endometrial and BM MSCs differentiated into adipogenic, osteogenic, and chondrogenic lineages in vitro, and endometrial MSCs had a distinct ability to undergo smooth muscle differentiation. We have demonstrated for the first time the presence of cells in equine endometrium that fulfill the definition of MSCs. The equine endometrium may provide an alternative, easily accessible source of MSCs, not only for therapeutic regeneration of the uterus, but also for other tissues where MSCs from other sources are currently being used therapeutically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Yong; Mazzone, Theodore
2005-11-01
We have previously characterized a new type of stem cell from human peripheral blood, termed fibroblast-like macrophage (f-M{phi}). Here, using umbilical cord blood as a source, we identified cells with similar characteristics including expression of surface markers (CD14, CD34, CD45, CD117, and CD163), phagocytosis, and proliferative capacity. Further, thrombopoietin (TPO) significantly stimulated the proliferation of cord blood-derived f-M{phi} (CB f-M{phi}) at low dosage without inducing a megakaryocytic phenotype. Additional experiments demonstrated that TPO-expanded cord blood-derived f-M{phi} (TCB f-M{phi}) retained their surface markers and differentiation ability. Treatment with vascular endothelial cell growth factor (VEGF) gave rise to endothelial-like cells, expressing Flt-1,more » Flk-1, von Willebrand Factor (vWF), CD31, acetylated low density lipoprotein internalization, and the ability to form endothelial-like cell chains. In the presence of lipopolyssacharide (LPS) and 25 mM glucose, the TCB f-M{phi} differentiated to express insulin mRNA, C-peptide, and insulin. In vitro functional analysis demonstrated that these insulin-positive cells could release insulin in response to glucose and other secretagogues. These findings demonstrate a potential use of CB f-M{phi} and may lead to develop new therapeutic strategy for treating dominant disease.« less
Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R
2014-08-01
Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Mitsuki, Yu-ya; Tuen, Michael; Hioe, Catarina E.
2017-01-01
HIV infection leads to CD4 helper T cell (Th) loss, but not all Th cells are equally depleted. The contribution of other immune cells in the Th depletion also remains unclear. This study investigates HIV transmission from monocyte-derived dendritic cells (MDDCs) vs. monocytes to Th17 and Th1 cells using an allogeneic coculture model. The addition of HIV to MDDCs increased the expression of the negative regulatory molecule PD-L1 and decreased the expression of the activation markers HLA-DR and CD86, whereas the virus up-regulated HLA-DR and CD86, but not PD-L1, on monocytes. Coculturing of CD4+ T cells with MDDCs pretreated with HIV led to the decline of Th17, but not Th1, responses. In contrast, pretreatment of monocytes with HIV increased Th17 without affecting Th1 responses. The enhanced Th17 responses in the cocultures with HIV-treated monocytes were also accompanied by high numbers of virus-infected CD4+ T cells. The Th17 expansion arose from memory CD4+ T cells with minimal contribution from naïve CD4+ T cells. The Th17-enhancing activity was mediated by the HIV envelope and did not require productive virus infection. Comparison of MDDCs and monocytes further showed that, although HIV-treated MDDCs reduced Th proliferation and increased the activation of the apoptosis mediator caspase-3, HIV-treated monocytes enhanced Th proliferation without increasing the active caspase-3 levels. This study indicates the potential role of distinct myeloid cell populations in shaping Th17 responses during HIV infection. PMID:27531931
Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells
Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng
2015-01-01
Background: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. Methods: The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Results: Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Conclusions: Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future. PMID:26722497
Kadam, Sachin S; Tiwari, Shubha; Bhonde, Ramesh R
2009-01-01
The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child's birth; however, its importance as a "store house" of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton's jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.
Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof
2016-06-01
Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organs and Transplantation (ICAOT).
Analysis of immune activation and clinical events in acute infectious mononucleosis.
Williams, Hilary; Macsween, Karen; McAulay, Karen; Higgins, Craig; Harrison, Nadine; Swerdlow, Anthony; Britton, Kate; Crawford, Dorothy
2004-07-01
The symptoms of infectious mononucleosis (IM) are thought to be caused by T cell activation and cytokine production. Surface lymphocyte activation marker (SLAM)-associated protein (SAP) regulates lymphocyte activation via signals from cell-surface CD244 (2B4) and SLAM (CD150). We followed T cell activation via this SAP/SLAM/CD244 pathway in IM and analyzed whether the results were associated with clinical severity. At diagnosis, SAP, SLAM, and CD244 were significantly up-regulated on CD4 and CD8 T cells; expression decreased during IM, but CD244 and SLAM levels remained higher on CD8 cells 40 days later. There were significantly more lymphocytes expressing CD8 and CD244/CD8 in patients with severe sore throat. The expression of CD8 alone and CD244 on CD8 cells correlated with increased virus load. We suggest that T cells expressing CD244 and SLAM are responsible for the clinical features of IM but that the control of activation is maintained by parallel increased expression of SAP.
Schütz, C; Inselmann, S; Sausslele, S; Dietz, C T; Mu Ller, M C; Eigendorff, E; Brendel, C A; Metzelder, S K; Bru Mmendorf, T H; Waller, C; Dengler, J; Goebeler, M E; Herbst, R; Freunek, G; Hanzel, S; Illmer, T; Wang, Y; Lange, T; Finkernagel, F; Hehlmann, R; Huber, M; Neubauer, A; Hochhaus, A; Guilhot, J; Xavier Mahon, F; Pfirrmann, M; Burchert, A
2017-04-01
It is unknown, why only a minority of chronic myeloid leukemia (CML) patients sustains treatment free remission (TFR) after discontinuation of tyrosine kinase inhibitor (TKI) therapy in deep molecular remission (MR). Here we studied, whether expression of the T-cell inhibitory receptor (CTLA-4)-ligand CD86 (B7.2) on plasmacytoid dendritic cells (pDC) affects relapse risk after TKI cessation. CML patients in MR displayed significantly higher CD86 + pDC frequencies than normal donors (P<0.0024), whereas TFR patients had consistently low CD86 + pDC (n=12). This suggested that low CD86 + pDC might be predictive of TFR. Indeed, in a prospective analysis of 122 patients discontinuing their TKI within the EURO-SKI trial, the one-year relapse-free survival (RFS) was 30.1% (95% CI 15.6-47.9) for patients with >95 CD86 + pDC per 10 5 lymphocytes, but 70.0% (95% CI 59.3-78.3) for patients with <95 CD86 + pDC (hazard ratio (HR) 3.4, 95% - CI: 1.9-6.0; P<0.0001). Moreover, only patients with <95 CD86 + pDC derived a significant benefit from longer (>8 years) TKI exposure before discontinuation (HR 0.3, 95% CI 0.1-0.8; P=0.0263). High CD86 + pDC counts significantly correlated with leukemia-specific CD8 + T - cell exhaustion (Spearman correlation: 0.74, 95%-CI: 0.21-0.92; P=0.0098). Our data demonstrate that CML patients with high CD86 + pDC counts have a higher risk of relapse after TKI discontinuation.
Sandhu, Mansur A; Jurek, Sandra; Trappe, Susanne; Kolisek, Martin; Sponder, Gerhard; Aschenbach, Jörg R
2017-01-01
To establish the influence of fetal bovine serum (FBS) and bovine serum lipids (BSL) on cell differentiation marker expression, bovine adipose-derived stem cells from subcutaneous tissue were incubated for 14 days in 4 types of differentiation media containing 10% FBS and 10 µL/mL BSL (TRT-1), no FBS and 10 µL/mL of BSL (TRT-2), 10% FBS and no BSL (TRT-3), or no supplements (TRT-4). Cells were subjected to Nile red staining, immunocytochemistry (CD73, CD90, CD105, DLK1, FabP4), and quantitative real-time PCR (CD73, CD90, CD105, FabP4). The number of cells presenting FabP4 and the percentage of mature adipocytes with large lipid droplets were increased in TRT-2, accompanied by a robust increase in FabP4 mRNA abundance and a decrease in DLK1-positive cells. In preadipocytes, CD73 was present around the nucleus and translocated towards cell membranes during differentiation. Although the percentage of CD73-positive cells was not different among treatments, its mRNA abundance, immunocytochemical staining intensity, and translocation towards cell membranes were decreased when the medium contained no FBS (TRT-2 and TRT-4). All cells showed a diffuse distribution of CD90 and CD105 and remained positive for these markers irrespective of the treatment. However, the CD90 and CD105 mRNA abundance was decreased in TRT-2 and TRT-4; i.e., in media containing no FBS. The presence of FBS increased the absolute number of cell nuclei as assessed by DAPI fluorescence. Our results suggest that bovine subcutaneous preadipocytes display typical stem cell markers. The differentiation into mature adipocytes is promoted by BSL, whereas FBS endorses cell proliferation. © 2017 S. Karger AG, Basel.
Mohanty, Niharika; Gulati, Baldev R; Kumar, Rajesh; Gera, Sandeep; Kumar, Pawan; Somasundaram, Rajesh K; Kumar, Sandeep
2014-06-01
Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36 ± 1.28%, 93.40 ± 0.70%, 73.23 ± 1.29% and 46.75 ± 3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65 ± 2.15% and 96.30 ± 1.00% of differentiated cells in comparison to 11.30 ± 0.10% and 19.45 ± 0.55% cells, respect vely in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.
Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo
2015-01-15
DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.
Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C
2013-01-01
CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.
Grating coupled SPR microarray analysis of proteins and cells in blood from mice with breast cancer.
Mendoza, A; Torrisi, D M; Sell, S; Cady, N C; Lawrence, D A
2016-01-21
Biomarker discovery for early disease diagnosis is highly important. Of late, much effort has been made to analyze complex biological fluids in an effort to develop new markers specific for different cancer types. Recent advancements in label-free technologies such as surface plasmon resonance (SPR)-based biosensors have shown promise as a diagnostic tool since there is no need for labeling or separation of cells. Furthermore, SPR can provide rapid, real-time detection of antigens from biological samples since SPR is highly sensitive to changes in surface-associated molecular and cellular interactions. Herein, we report a lab-on-a-chip microarray biosensor that utilizes grating-coupled surface plasmon resonance (GCSPR) and grating-coupled surface plasmon coupled fluorescence (GCSPCF) imaging to detect circulating tumor cells (CTCs) from a mouse model (FVB-MMTV-PyVT). GCSPR and GCSPCF analysis was accomplished by spotting antibodies to surface cell markers, cytokines and stress proteins on a nanofabricated GCSPR microchip and screening blood samples from FVB control mice or FVB-MMTV-PyVT mice with developing mammary carcinomas. A transgenic MMTV-PyVT mouse derived cancer cell line was also analyzed. The analyses indicated that CD24, CD44, CD326, CD133 and CD49b were expressed in both cell lines and in blood from MMTV-PyVT mice. Furthermore, cytokines such as IL-6, IL-10 and TNF-α, along with heat shock proteins HSP60, HSP27, HSc70(HSP73), HSP90 total, HSP70/HSc70, HSP90, HSP70, HSP90 alpha, phosphotyrosine and HSF-1 were overexpressed in MMTV-PyVT mice.
Matnani, Rahul G.; Stewart, Rachel L.; Pulliam, Joseph; Jennings, Chester D.; Kesler, Melissa
2013-01-01
A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a), which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV) or Human Herpes Virus 8 (HHV-8). At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones. PMID:24066244
Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8
Fricke, Stephan; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg
2014-01-01
Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies. PMID:25546418
Ariemma, Fabiana; Cimmino, Ilaria; Bruzzese, Dario; Scerbo, Roberta; Picascia, Stefania; D’Esposito, Vittoria; Beguinot, Francesco; Formisano, Pietro
2016-01-01
Environmental pollutants, including endocrine disruptor chemicals (EDCs), interfere on human health, leading to hormonal, immune and metabolic perturbations. Bisphenol-A (BPA), a main component of polycarbonate plastics, has been receiving increased attention due to its worldwide distribution with a large exposure. In humans, BPA, for its estrogenic activity, may have a role in autoimmunity, inflammatory and allergic diseases. To this aim, we assessed the effect of low BPA doses on functionality of human peripheral blood mononuclear cells (PBMCs), and on in vitro differentiation of dendritic cells from monocytes (mDCs). Fresh peripheral blood samples were obtained from 12 healthy adult volunteers. PBMCs were left unstimulated or were activated with the mitogen phytohemagglutinin (PHA) or the anti-CD3 and anti-CD28 antibodies and incubated in presence or absence of BPA at 0.1 and 1nM concentrations. The immune-modulatory effect of BPA was assessed by evaluating the cell proliferation and the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13) secreted by PBMCs. mDCs were differentiated with IL-4 and GC-CSF with or without BPA and the expression of differentiation/maturation markers (CD11c, CD1a, CD86, HLA-DR) was evaluated by flow cytometry; furthermore, a panel of 27 different cytokines, growth factors and chemokines were assayed in the mDC culture supernatants. PBMCs proliferation significantly increased upon BPA exposure compared to BPA untreated cells. In addition, a significant decrease in IL-10 secretion was observed in PBMCs incubated with BPA, either in unstimulated or mitogen-stimulated cells, and at both 0.1 and 1nM BPA concentrations. Similarly, IL-13 was reduced, mainly in cells activated by antiCD3/CD28. By contrast, no significant changes in IFN-γ and IL-4 production were found in any condition assayed. Finally, BPA at 1nM increased the density of dendritic cells expressing CD1a and concomitantly decreased the expression of HLA-DR and CD86 activation markers. In conclusion, in humans the exposure to BPA causes on PBMCs a significant modulation of proliferative capacity and cytokine production, and on mDCs alteration in differentiation and phenotype. These immune cell alterations suggest that low dose chronic exposure to BPA could be involved in immune deregulation and possibly in the increased susceptibility to develop inflammatory and autoimmune diseases. PMID:27509021
Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells.
Raabe, Oksana; Shell, Katja; Würtz, Antonia; Reich, Christine Maria; Wenisch, Sabine; Arnhold, Stefan
2011-08-01
Adipose tissue-derived stem cells (ADSCs) represent a promising subpopulation of adult stem cells for tissue engineering applications in veterinary medicine. In this study we focused on the morphological and molecular biological properties of the ADSCs. The expression of stem cell markers Oct4, Nanog and the surface markers CD90 and CD105 were detected using RT-PCR. ADSCs showed a proliferative potential and were capable of adipogenic and osteogenic differentiation. Expression of Alkaline phosphatase (AP), phosphoprotein (SPP1), Runx2 and osteocalcin (OC) mRNA were positive in osteogenic lineages and peroxisome proliferator activated receptor (Pparγ2) mRNA was positive in adipogenic lineages. ADSCs show stem cell and surface marker profiles and differentiation characteristics that are similar to but distinct from other adult stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs). The availability of an easily accessible and reproducible cell source may greatly facilitate the development of stem cell based tissue engineering and therapies for regenerative equine medicine.
Heterogeneous expression and regulation of CD40 in human hepatocellular carcinoma.
Holub, Margareta; Zakeri, Schaker M; Lichtenberger, Cornelia; Pammer, Johannes; Paolini, Pierre; Leifeld, Ludger; Rockenschaub, Susanne; Wolschek, Markus F; Steger, Günther; Willheim, Martin; Gangl, Alfred; Reinisch, Walter
2003-02-01
CD40, a member of the tumour necrosis factor receptor family, plays a major role in adaptive immune responses and contributes to cancer surveillance. Conflicting results have been reported recently on the expression and function of CD40 in carcinomas. The aim of the present study was to investigate the role of CD40 in human hepatoma. CD40 expression was examined in hepatomas and derived cell lines by immunohistochemistry, flow cytometry and reverse transcriptase polymerase chain reaction. We investigated in hepatoma cell lines the regulation of CD40 by pro-inflammatory cytokines and the effects of its ligation with soluble CD40L on the expression of co-stimulatory and pro-apoptotic cell-surface molecules and survival. CD40 was detected with a similar frequency of about 40% in hepatoma specimens and derived cell lines but not in normal hepatocytes. Tumour necrosis factor alpha and its combination with interferon gamma upregulated CD40 only in intrinsically positive cell lines. CD40 ligation had no effect on cell viability or surface expression of CD54, CD80, CD86 or CD95. CD40 is expressed variably in human hepatoma and enhanced by distinct pro-inflammatory cytokines. The lack of detectable effects of CD40 ligation does not support a major role of this molecule in hepatocellular carcinoma biology.
Gaymalov, Zagit Z; Yang, Zhihui; Pisarev, Vladimir M; Alakhov, Valery Yu; Kabanov, Alexander V
2009-02-01
DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO(26)-PO(40)-EO(26). Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DCs) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+ CD86+, CD11c+ CD80 +, and CD11c+ CD40+. We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs.
El-Sayed, Karim M Fawzy; Paris, Sebastian; Graetz, Christian; Kassem, Neemat; Mekhemar, Mohamed; Ungefroren, Hendrick; Fändrich, Fred; Dörfer, Christof
2015-01-01
Recently, gingival margin-derived stem/progenitor cells isolated via STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal regenerative potential in vivo. As a second-stage investigation, the present study's aim was to perform in vitro characterisation and comparison of the stem/progenitor cell characteristics of sorted STRO-1-positive (MACS+) and STRO-1-negative (MACS−) cell populations from the human free gingival margin. Cells were isolated from the free gingiva using a minimally invasive technique and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the MACS+ and MACS− cell fractions were characterized by flow cytometry for expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1. Colony-forming unit (CFU) and multilineage differentiation potential were assayed for both cell fractions. Mineralisation marker expression was examined using real-time polymerase chain reaction (PCR). MACS+ and MACS− cell fractions showed plastic adherence. MACS+ cells, in contrast to MACS− cells, showed all of the predefined mesenchymal stem/progenitor cell characteristics and a significantly higher number of CFUs (P<0.01). More than 95% of MACS+ cells expressed CD105, CD90 and CD73; lacked the haematopoietic markers CD45, CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS− cells showed a different surface marker expression profile, with almost no expression of CD14 or STRO-1, and more than 95% of these cells expressed CD73, CD90 and CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105. MACS+ cells could be differentiated along osteoblastic, adipocytic and chondroblastic lineages. In contrast, MACS− cells demonstrated slight osteogenic potential. Unstimulated MACS+ cells showed significantly higher expression of collagen I (P<0.05) and collagen III (P<0.01), whereas MACS− cells demonstrated higher expression of osteonectin (P<0.05; Mann–Whitney). The present study is the first to compare gingival MACS+ and MACS− cell populations demonstrating that MACS+ cells, in contrast to MACS− cells, harbour stem/progenitor cell characteristics. This study also validates the effectiveness of the STRO-1/MACS+ technique for the isolation of gingival stem/progenitor cells. Human free gingival margin-derived STRO-1/MACS+ cells are a unique renewable source of multipotent stem/progenitor cells. PMID:25257881
Expression of CD markers' in immune thrombocytopenic purpura: prognostic approaches.
Behzad, Masumeh Maleki; Asnafi, Ali Amin; Jaseb, Kaveh; Jalali Far, Mohammad Ali; Saki, Najmaldin
2017-12-01
Immune Thrombocytopenic Purpura (ITP) is a common autoimmune bleeding disorder characterized by a reduction in peripheral blood platelet counts. In this disease, autoantibodies (Auto-Abs) are produced against platelet GPIIb/GPIIIa by B cells, which require interaction with T cells. In this review, the importance of B and T lymphocytes in ITP prognosis has been studied. Relevant literature was identified by a PubMed search (1990-2016) of English-language papers using the terms B and T lymphocyte, platelet, CD markers and immune thrombocytopenic purpura. T and B lymphocytes are the main immune cells in the body. Defective function causes disrupted balance of different subgroups of lymphocytes, and abnormal expression of surface markers of these cells results in self-tolerance dysfunction, as well as induction of Auto-Abs against platelet glycoproteins (PG). Given the role of B and T cells in production of autoantibodies against PG, it can be stated that the detection of changes in CD markers' expression in these cells can be a good approach for assessing prognosis in ITP patients. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Abumaree, M H; Al Jumah, M A; Kalionis, B; Jawdat, D; Al Khaldi, A; Abomaray, F M; Fatani, A S; Chamley, L W; Knawy, B A
2013-10-01
Mesenchymal stem cells (MSCs) have a therapeutic potential in tissue repair because of capacity for multipotent differentiation and their ability to modulate the immune response. In this study, we examined the ability of human placental MSCs (pMSCs) to modify the differentiation of human monocytes into macrophages and assessed the influence of pMSCs on important macrophage functions. We used GM-CSF to stimulate the differentiation of monocytes into the M1 macrophage pathway and then co-cultured these cells with pMSCs in the early stages of macrophage differentiation. We then evaluated the effect on differentiation by microscopic examination and by quantification of molecules important in the differentiation and immune functions of macrophages using flow cytometry and ELISA. The mechanism by which pMSCs could mediate their effects on macrophage differentiation was also studied. The co-culture of pMSCs with monocytes stimulated to follow the inflammatory M1 macrophage differentiation pathway resulted in a shift to anti-inflammatory M2-like macrophage differentiation. This transition was characterized by morphological of changes typical of M2 macrophages, and by changes in cell surface marker expression including CD14, CD36, CD163, CD204, CD206, B7-H4 and CD11b, which are distinctive of M2 macrophages. Co-culture with pMSCs reduced the expression of the costimulatory molecules (CD40, CD80 and CD86) and increased the expression of co-inhibitory molecules (CD273, CD274 and B7-H4) as well as the surface expression of major histocompatibility complex (MHC-II) molecules. Furthermore, the secretion of IL-10 was increased while the secretion of IL-1β, IL-12 (p70) and MIP-1α was decreased; a profile typical of M2 macrophages. Finally, pMSCs induced the phagocytic activity and the phagocytosis of apoptotic cells associated with M2- like macrophages; again a profile typical of M2 macrophages. We found that the immunoregulatory effect of pMSCs on macrophage differentiation was mediated by soluble molecules acting partially via glucocorticoid and progesterone receptors. We have shown that pMSCs can transition macrophages from an inflammatory M1 into an anti-inflammatory M2 phenotype. Our findings suggest a new immunosuppressive property of pMSCs that may be employed in the resolution of inflammation associated with inflammatory diseases and in tissue repair.
Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight
NASA Technical Reports Server (NTRS)
Mehta, S. K.; Kaur, I.; Grimm, E. A.; Smid, C.; Feeback, D. L.; Pierson, D. L.
2001-01-01
Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.
Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J.
2013-01-01
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5′ flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. PMID:23454429
Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J
2013-06-01
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bakhshi, Tiki; Zabriskie, Ryan C; Bodie, Shamanique; Kidd, Shannon; Ramin, Susan; Paganessi, Laura A; Gregory, Stephanie A; Fung, Henry C; Christopherson, Kent W
2008-12-01
Hematopoietic stem cells (HSCs) are routinely obtained from marrow, mobilized peripheral blood, and umbilical cord blood. Mesenchymal stem cells (MSCs) are traditionally isolated from marrow. Bone marrow-derived MSCs (BM-MSCs) have previously demonstrated their ability to act as a feeder layer in support of ex vivo cord blood expansion. However, the use of BM-MSCs to support the growth, differentiation, and engraftment of cord blood may not be ideal for transplant purposes. Therefore, the potential of MSCs from a novel source, the Wharton's jelly of umbilical cords, to act as stromal support for the long-term culture of cord blood HSC was evaluated. Umbilical cord-derived MSCs (UC-MSCs) were cultured from the Wharton's jelly of umbilical cord segments. The UC-MSCs were then profiled for expression of 12 cell surface receptors and tested for their ability to support cord blood HSCs in a long-term culture-initiating cell (LTC-IC) assay. Upon culture, UC-MSCs express a defined set of cell surface markers (CD29, CD44, CD73, CD90, CD105, CD166, and HLA-A) and lack other markers (CD45, CD34, CD38, CD117, and HLA-DR) similar to BM-MSCs. Like BM-MSCs, UC-MSCs effectively support the growth of CD34+ cord blood cells in LTC-IC assays. These data suggest the potential therapeutic application of Wharton's jelly-derived UC-MSCs to provide stromal support structure for the long-term culture of cord blood HSCs as well as the possibility of cotransplantation of genetically identical, HLA-matched, or unmatched cord blood HSCs and UC-MSCs in the setting of HSC transplantation.
Effect of bleaching agent extracts on murine macrophages.
Fernandes, Aletéia M M; Vilela, Polyana G F; Valera, Marcia C; Bolay, Carola; Hiller, Karl Anton; Schweikl, Helmut; Schmalz, Gottfried
2018-05-01
The aim of this study was to evaluate the cytotoxicity and the influence of bleaching agents on immunologically cell surface antigens of murine macrophages in vitro. RAW 264.7 cells were exposed to bleaching gel extracts (40% hydrogen peroxide or 20% carbamide peroxide) and different H 2 O 2 concentrations after 1 and 24-h exposure periods and 1-h exposure and 23-h recovery. Tests were performed with and without N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO). Cell viability was determined by MTT assay. The expression of surface markers CD14, CD40, and CD54 with and without LPS stimulation was detected by flow cytometry, while the production of TNF-α was measured by ELISA. Statistical analysis was performed using the Mann-Whitney U test (α = 0.05). Extracts of bleaching agents were cytotoxic for cells after a 1-h exposure; cells could not recover after 24 h. This effect can be mitigated by the antioxidant NAC and increased by BSO, an inhibitor of glutathione (GSH) synthesis. LPS stimulated expression of all surface markers and TNF-α production. Exposure to bleaching agent extracts and H 2 O 2 leads to a reduction of TNF-α, CD14, and CD40 expression, while the expression of CD54 was upregulated at non-cytotoxic concentrations. Whereas NAC reduced this effect, it was increased in the presence of BSO. Extracts of bleaching agents were irreversibly cytotoxic to macrophages after a 1-h exposure. Only the expression of CD54 was upregulated. The reactions are mediated by the non-enzymatic antioxidant GSH. The addition of an antioxidant can downregulate unfavorable effects of dental bleaching.
Node-pore sensing enables label-free surface-marker profiling of single cells.
Balakrishnan, Karthik R; Whang, Jeremy C; Hwang, Richard; Hack, James H; Godley, Lucy A; Sohn, Lydia L
2015-03-03
Flow cytometry is a ubiquitous, multiparametric method for characterizing cellular populations. However, this method can grow increasingly complex with the number of proteins that need to be screened simultaneously: spectral emission overlap of fluorophores and the subsequent need for compensation, lengthy sample preparation, and multiple control tests that need to be performed separately must all be considered. These factors lead to increased costs, and consequently, flow cytometry is performed in core facilities with a dedicated technician operating the instrument. Here, we describe a low-cost, label-free microfluidic method that can determine the phenotypic profiles of single cells. Our method employs Node-Pore Sensing to measure the transit times of cells as they interact with a series of different antibodies, each corresponding to a specific cell-surface antigen, that have been functionalized in a single microfluidic channel. We demonstrate the capabilities of our method not only by screening two acute promyelocytic leukemia human cells lines (NB4 and AP-1060) for myeloid antigens, CD13, CD14, CD15, and CD33, simultaneously, but also by distinguishing a mixture of cells of similar size—AP-1060 and NALM-1—based on surface markers CD13 and HLA-DR. Furthermore, we show that our method can screen complex subpopulations in clinical samples: we successfully identified the blast population in primary human bone marrow samples from patients with acute myeloid leukemia and screened these cells for CD13, CD34, and HLA-DR. We show that our label-free method is an affordable, highly sensitive, and user-friendly technology that has the potential to transform cellular screening at the benchside.
The gene coding for the B cell surface protein CD19 is localized on human chromosome 16p11.
Stapleton, P; Kozmik, Z; Weith, A; Busslinger, M
1995-02-01
The CD19 gene codes for one of the earliest markers of the human B cell lineage and is a target for the B lymphoid-specific transcription factor BSAP (Pax-5). The transmembrane protein CD19 has been implicated in controlling proliferation of mature B lymphocytes by modulating signal transduction through the antigen receptor. In this study, we have employed Southern blot and fluorescence in situ hybridization analyses to localize the CD19 gene to human chromosome 16p11.
The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.
Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T
2008-12-01
Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.
Identification of progenitor cancer stem cell in lentigo maligna melanoma.
Bongiorno, M R; Doukaki, S; Malleo, F; Aricò, M
2008-07-01
The potential role of stem cells in neoplasia has aroused considerable interest over the past few years. A number of known biologic characteristics of melanomas support the theory that they may originate in a mutated stem cell. Melanocytic stem cell markers have been described recently. Moreover, the CD133 cells that show surface markers for CD34 are stem cells primitive. These stem cells are capable of differentiating into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. The identification of cancer stem/initiating cells with a crucial role in tumor formation may open up new pharmacologic perspectives. The purpose of this study is to detect the expression of CD133 and CD34, two putative markers of cancer stem cells in the lentigo maligna melanoma. Thirty cases of lentigo maligna melanoma were analyzed using indirect immunohistochemical staining. The vast majority of the samples analyzed showed the presence of rare cells, which were clearly positive for CD133 and CD34. Strong CD133 and CD34 staining was found in the outer root sheath of the mid-lower hair follicles, intermixed with atypical melanocytes extending along layers of the hair follicles. A number of these staminal cells were adjacent and intermixed with melanoma cells. This study supports the stem cell origin of this tumor and suggests that the precursor of the melanoma in question is a stem-like cell rather than the primitive melanoblast committed to be exclusively involved in melanocytic differentiation.
Kunicki, Matthew A; Amaya Hernandez, Laura C; Davis, Kara L; Bacchetta, Rosa; Roncarolo, Maria-Grazia
2018-01-01
Human CD3 + CD4 + Th cells, FOXP3 + T regulatory (Treg) cells, and T regulatory type 1 (Tr1) cells are essential for ensuring peripheral immune response and tolerance, but the diversity of Th, Treg, and Tr1 cell subsets has not been fully characterized. Independent functional characterization of human Th1, Th2, Th17, T follicular helper (Tfh), Treg, and Tr1 cells has helped to define unique surface molecules, transcription factors, and signaling profiles for each subset. However, the adequacy of these markers to recapitulate the whole CD3 + CD4 + T cell compartment remains questionable. In this study, we examined CD3 + CD4 + T cell populations by single-cell mass cytometry. We characterize the CD3 + CD4 + Th, Treg, and Tr1 cell populations simultaneously across 23 memory T cell-associated surface and intracellular molecules. High-dimensional analysis identified several new subsets, in addition to the already defined CD3 + CD4 + Th, Treg, and Tr1 cell populations, for a total of 11 Th cell, 4 Treg, and 1 Tr1 cell subsets. Some of these subsets share markers previously thought to be selective for Treg, Th1, Th2, Th17, and Tfh cells, including CD194 (CCR4) + FOXP3 + Treg and CD183 (CXCR3) + T-bet + Th17 cell subsets. Unsupervised clustering displayed a phenotypic organization of CD3 + CD4 + T cells that confirmed their diversity but showed interrelation between the different subsets, including similarity between Th1-Th2-Tfh cell populations and Th17 cells, as well as similarity of Th2 cells with Treg cells. In conclusion, the use of single-cell mass cytometry provides a systems-level characterization of CD3 + CD4 + T cells in healthy human blood, which represents an important baseline reference to investigate abnormalities of different subsets in immune-mediated pathologies. Copyright © 2017 by The American Association of Immunologists, Inc.
Sorrentino, Maria Cristina; Capozzi, Fiore; Giordano, Simonetta; Spagnuolo, Valeria
2017-08-01
In the present work, the genotoxic effect of cadmium and lead supplied in a laboratory trial, was investigated for the first time in the moss Sphagnum palustre, by ISSR molecular markers. A total of 169 reproducible bands were obtained with 12 primers, ten of which gave polymorphisms (i.e., appearance/disappearance of bands), indicating a clear genotoxic effect induced by the metals. Both metals induced a decrease of the genome template stability in a dose dependent manner. At concentration >10 -5 Cd also induced a general toxic effect in S. palustre, leading to chlorophyll degradation and moss death. Moreover, we followed the fate of supplied heavy metals into the moss tissue by SEM-EDX to see if they entered the cells. SEM-EDX observations on moss cultures treated with equimolar concentrations of the two metals showed that most Pb precipitated in form of particles on moss surface, while Cd did not aggregate in particles and was not found on moss surface. In light of these findings, we concluded that probably Pb induced a genotoxic effect at lower intracellular concentrations than Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sabapathy, Vikram; Ravi, Saranya; Srivastava, Vivi; Srivastava, Alok; Kumar, Sanjay
2012-01-01
Mesenchymal stem cells (MSCs) are an alluring therapeutic resource because of their plasticity, immunoregulatory capacity and ease of availability. Human BM-derived MSCs have limited proliferative capability, consequently, it is challenging to use in tissue engineering and regenerative medicine applications. Hence, placental MSCs of maternal origin, which is one of richest sources of MSCs were chosen to establish long-term culture from the cotyledons of full-term human placenta. Flow analysis established bonafied MSCs phenotypic characteristics, staining positively for CD29, CD73, CD90, CD105 and negatively for CD14, CD34, CD45 markers. Pluripotency of the cultured MSCs was assessed by in vitro differentiation towards not only intralineage cells like adipocytes, osteocytes, chondrocytes, and myotubules cells but also translineage differentiated towards pancreatic progenitor cells, neural cells, and retinal cells displaying plasticity. These cells did not significantly alter cell cycle or apoptosis pattern while maintaining the normal karyotype; they also have limited expression of MHC-II antigens and are Naive for stimulatory factors CD80 and CD 86. Further soft agar assays revealed that placental MSCs do not have the ability to form invasive colonies. Taking together all these characteristics into consideration, it indicates that placental MSCs could serve as good candidates for development and progress of stem-cell based therapeutics. PMID:22550499
Markers of nonselective and specific NK cell activation.
Fogel, Leslie A; Sun, Michel M; Geurs, Theresa L; Carayannopoulos, Leonidas N; French, Anthony R
2013-06-15
NK cell activation is controlled by the integration of signals from cytokine receptors and germline-encoded activation and inhibitory receptors. NK cells undergo two distinct phases of activation during murine CMV (MCMV) infection: a nonselective phase mediated by proinflammatory cytokines and a specific phase driven by signaling through Ly49H, an NK cell activation receptor that recognizes infected cells. We sought to delineate cell surface markers that could distinguish NK cells that had been activated nonselectively from those that had been specifically activated through NK cell receptors. We demonstrated that stem cell Ag 1 (Sca-1) is highly upregulated during viral infections (to an even greater extent than CD69) and serves as a novel marker of early, nonselective NK cell activation. Indeed, a greater proportion of Sca-1(+) NK cells produced IFN-γ compared with Sca-1(-) NK cells during MCMV infection. In contrast to the universal upregulation of Sca-1 (as well as KLRG1) on NK cells early during MCMV infection, differential expression of Sca-1, as well as CD27 and KLRG1, was observed on Ly49H(+) and Ly49H(-) NK cells late during MCMV infection. Persistently elevated levels of KLRG1 in the context of downregulation of Sca-1 and CD27 were observed on NK cells that expressed Ly49H. Furthermore, the differential expression patterns of these cell surface markers were dependent on Ly49H recognition of its ligand and did not occur solely as a result of cellular proliferation. These findings demonstrate that a combination of Sca-1, CD27, and KLRG1 can distinguish NK cells nonselectively activated by cytokines from those specifically stimulated through activation receptors.
Cirelli, Kimberly M.; Dan, Jennifer M.; Morou, Antigoni; Daigneault, Audrey; Brassard, Nathalie; Silvestri, Guido; Routy, Jean-Pierre; Havenar-Daughton, Colin; Crotty, Shane
2017-01-01
The identification and study of antigen-specific CD4 T cells, both in peripheral blood and in tissues, is key for a broad range of immunological research, including vaccine responses and infectious diseases. Detection of these cells is hampered by both their rarity and their heterogeneity, in particular with regards to cytokine secretion profiles. These factors prevent the identification of the total pool of antigen-specific CD4 T cells by classical methods. We have developed assays for the highly sensitive detection of such cells by measuring the upregulation of surface activation induced markers (AIM). Here, we compare two such assays based on concurrent expression of CD69 plus CD40L (CD154) or expression of OX40 plus CD25, and we develop additional AIM assays based on OX40 plus PD-L1 or 4-1BB. We compare the relative sensitivity of these assays for detection of vaccine and natural infection-induced CD4 T cell responses and show that these assays identify distinct, but overlapping populations of antigen-specific CD4 T cells, a subpopulation of which can also be detected on the basis of cytokine synthesis. Bystander activation had minimal effect on AIM markers. However, some T regulatory cells upregulate CD25 upon antigen stimulation. We therefore validated AIM assays designed to exclude most T regulatory cells, for both human and non-human primate (NHP, Macaca mulatta) studies. Overall, through head-to-head comparisons and methodological improvements, we show that AIM assays represent a sensitive and valuable method for the detection of antigen-specific CD4 T cells. PMID:29065175
Reiss, Samantha; Baxter, Amy E; Cirelli, Kimberly M; Dan, Jennifer M; Morou, Antigoni; Daigneault, Audrey; Brassard, Nathalie; Silvestri, Guido; Routy, Jean-Pierre; Havenar-Daughton, Colin; Crotty, Shane; Kaufmann, Daniel E
2017-01-01
The identification and study of antigen-specific CD4 T cells, both in peripheral blood and in tissues, is key for a broad range of immunological research, including vaccine responses and infectious diseases. Detection of these cells is hampered by both their rarity and their heterogeneity, in particular with regards to cytokine secretion profiles. These factors prevent the identification of the total pool of antigen-specific CD4 T cells by classical methods. We have developed assays for the highly sensitive detection of such cells by measuring the upregulation of surface activation induced markers (AIM). Here, we compare two such assays based on concurrent expression of CD69 plus CD40L (CD154) or expression of OX40 plus CD25, and we develop additional AIM assays based on OX40 plus PD-L1 or 4-1BB. We compare the relative sensitivity of these assays for detection of vaccine and natural infection-induced CD4 T cell responses and show that these assays identify distinct, but overlapping populations of antigen-specific CD4 T cells, a subpopulation of which can also be detected on the basis of cytokine synthesis. Bystander activation had minimal effect on AIM markers. However, some T regulatory cells upregulate CD25 upon antigen stimulation. We therefore validated AIM assays designed to exclude most T regulatory cells, for both human and non-human primate (NHP, Macaca mulatta) studies. Overall, through head-to-head comparisons and methodological improvements, we show that AIM assays represent a sensitive and valuable method for the detection of antigen-specific CD4 T cells.
Matsumoto, Yasunori; Kano, Masayuki; Akutsu, Yasunori; Hanari, Naoyuki; Hoshino, Isamu; Murakami, Kentaro; Usui, Akihiro; Suito, Hiroshi; Takahashi, Masahiko; Otsuka, Ryota; Xin, Hu; Komatsu, Aki; Iida, Keiko; Matsubara, Hisahiro
2016-11-01
Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients.
Lin, Han-Tso; Chiou, Shih-Hwa; Kao, Chung-Lan; Shyr, Yi-Ming; Hsu, Chien-Jen; Tarng, Yih-Wen; Ho, Larry L-T; Kwok, Ching-Fai; Ku, Hung-Hai
2006-07-28
To isolate putative pancreatic stem cells (PSCs) from human adult tissues of pancreas duct using serum-free, conditioned medium. The characterization of surface phenotype of these PSCs was analyzed by flow cytometry. The potential for pancreatic lineage and the capability of beta-cell differentiation in these PSCs were evaluated as well. By using serum-free medium supplemented with essential growth factors, we attempted to isolate the putative PSCs which has been reported to express nestin and pdx-1. The Matrigel(TM) was employed to evaluate the differential capacity of isolated cells. Dithizone staining, insulin content/secretion measurement, and immunohistochemistry staining were used to monitor the differentiation. Fluorescence activated cell sorting (FACS) was used to detect the phenotypic markers of putative PSCs. A monolayer of spindle-like cells was cultivated. The putative PSCs expressed pdx-1 and nestin. They were also able to differentiate into insulin-, glucagon-, and somatostatin-positive cells. The spectrum of phenotypic markers in PSCs was investigated; a similarity was revealed when using human bone marrow-derived stem cells as the comparative experiment, such as CD29, CD44, CD49, CD50, CD51, CD62E, PDGFR-alpha, CD73 (SH2), CD81, CD105(SH3). In this study, we successfully isolated PSCs from adult human pancreatic duct by using serum-free medium. These PSCs not only expressed nestin and pdx-1 but also exhibited markers attributable to mesenchymal stem cells. Although work is needed to elucidate the role of these cells, the application of these PSCs might be therapeutic strategies for diabetes mellitus.
Bourin, Philippe; Bunnell, Bruce A; Casteilla, Louis; Dominici, Massimo; Katz, Adam J; March, Keith L; Redl, Heinz; Rubin, J Peter; Yoshimura, Kotaro; Gimble, Jeffrey M
2013-06-01
Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. Copyright © 2013 International Society for Cellular Therapy. All rights reserved.
Werthmöller, N; Frey, B; Wunderlich, R; Fietkau, R; Gaipl, U S
2015-01-01
One prerequisite that radiotherapy (RT) and chemotherapy (CT) result in anti-tumor immune responses is triggering of immunogenic cell death forms such as necroptosis. The latter is inducible by inhibition of apoptosis with the pan-caspase inhibitor zVAD-fmk. The design of multimodal therapies that overcome melanoma's resistance to apoptosis is a big challenge of oncoimmunology. As hints exist that immune stimulation by hyperthermia (HT) augments the efficacy of melanoma therapies and that tumors can be sensitized for RT with zVAD-fmk, we asked whether combinations of RT with dacarbazine (DTIC) and/or HT induce immunogenic melanoma cell death and how this is especially influenced by zVAD-fmk. Necroptosis was inducible in poorly immunogenic B16-F10 melanoma cells and zVAD-fmk generally increased melanoma cell necrosis concomitantly with the release of HMGB1. Supernatants (SNs) of melanoma cells whose cell death was modulated with zVAD-fmk induced an upregulation of the activation markers CD86 and MHCII on macrophages. The same was seen on dendritic cells (DCs), but only when zVAD-fmk was added to multimodal tumor treatments including DTIC. DCs of MyD88 KO mice and DCs incubated with SNs containing apyrase did not increase the expression of these activation markers on their surface. The in vivo experiments revealed that zVAD-fmk decreases the tumor growth significantly and results in a significantly reduced tumor infiltration of Tregs when added to multimodal treatment of the tumor with RT, DTIC and HT. Further, a significantly increased DC and CD8+ T-cell infiltration into the tumor and in the draining lymph nodes was induced, as well as an increased expression of IFNγ by CD8+ T cells. However, zVAD-fmk did not further reduce tumor growth in MyD88 KO mice, mice treated with apyrase or RAG KO mice. We conclude that HMGB1, nucleotides and CD8+ T cells mediate zVAD-fmk induced anti-melanoma immune reactions in multimodal therapy settings. PMID:25973681
2010-01-01
Background Typhoid, which is caused by Salmonella enterica serovar Typhimurium, remains a major health concern worldwide. Multidrug-resistant strains of Salmonella have emerged which exhibit increased survivability and virulence, thus leading to increased morbidity. However, little is known about the protective immune response against this microorganism. The outer membrane protein (Omp)A of bacteria plays an important role in pathogenesis. Results We purified OmpA from S. enterica serovar Typhimurium (OmpA-sal) and characterized the role of OmpA-sal in promoting adaptive and innate immune responses. OmpA-sal functionally activated bone marrow-derived dendritic cells by augmenting expression of CD80, CD86, and major histocompatibility complex classes I and II. Interestingly, OmpA-sal induced production of interferon-γ from T cells in mixed lymphocyte reactions, thus indicating Th1-polarizing capacity. The expression of surface markers and cytokine production in dendritic cells was mediated by the TLR4 signaling pathway in a TLR4 Knock-out system. Conclusions Our findings suggest that OmpA-sal modulates the adaptive immune responses to S. enterica serovar Typhimurium by activating dendritic cells and driving Th1 polarization, which are important properties to consider in the development of effective S. enterica serovar Typhimurium vaccines and immunotherapy adjuvant. PMID:20950448
CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART
Fromentin, Rémi; Bakeman, Wendy; Lawani, Mariam B.; Khoury, Gabriela; Hartogensis, Wendy; DaFonseca, Sandrina; Killian, Marisela; Epling, Lorrie; Hoh, Rebecca; Sinclair, Elizabeth; Hecht, Frederick M.; Bacchetti, Peter; Deeks, Steven G.; Lewin, Sharon R.; Sékaly, Rafick-Pierre; Chomont, Nicolas
2016-01-01
HIV persists in a small pool of latently infected cells despite antiretroviral therapy (ART). Identifying cellular markers expressed at the surface of these cells may lead to novel therapeutic strategies to reduce the size of the HIV reservoir. We hypothesized that CD4+ T cells expressing immune checkpoint molecules would be enriched in HIV-infected cells in individuals receiving suppressive ART. Expression levels of 7 immune checkpoint molecules (PD-1, CTLA-4, LAG-3, TIGIT, TIM-3, CD160 and 2B4) as well as 4 markers of HIV persistence (integrated and total HIV DNA, 2-LTR circles and cell-associated unspliced HIV RNA) were measured in PBMCs from 48 virally suppressed individuals. Using negative binomial regression models, we identified PD-1, TIGIT and LAG-3 as immune checkpoint molecules positively associated with the frequency of CD4+ T cells harboring integrated HIV DNA. The frequency of CD4+ T cells co-expressing PD-1, TIGIT and LAG-3 independently predicted the frequency of cells harboring integrated HIV DNA. Quantification of HIV genomes in highly purified cell subsets from blood further revealed that expressions of PD-1, TIGIT and LAG-3 were associated with HIV-infected cells in distinct memory CD4+ T cell subsets. CD4+ T cells co-expressing the three markers were highly enriched for integrated viral genomes (median of 8.2 fold compared to total CD4+ T cells). Importantly, most cells carrying inducible HIV genomes expressed at least one of these markers (median contribution of cells expressing LAG-3, PD-1 or TIGIT to the inducible reservoir = 76%). Our data provide evidence that CD4+ T cells expressing PD-1, TIGIT and LAG-3 alone or in combination are enriched for persistent HIV during ART and suggest that immune checkpoint blockers directed against these receptors may represent valuable tools to target latently infected cells in virally suppressed individuals. PMID:27415008
Halldén, G; Nopp, A; Ihre, E; Peterson, C; Lundahl, J
1999-11-01
Serum-ECP, EG2-epitope on intracellular ECP and surface expression of CD9 and CD11b in peripheral blood eosinophils (PBE) are considered to be markers that mirror clinical parameters in allergic inflammation. The aim was to investigate the impact of the blood sampling procedure on PBE markers and to identify optimal conditions for extended pre-analysis storage. Blood, from healthy individuals and patients with allergic rhinitis/asthma, was collected in tubes with EDTA, citrate, or without anti-coagulant. The expression of EG2-epitope, CD9, and CD11b were analyzed in eosinophils and neutrophils after 1, 5, and 24 hours of storage at +4 degrees C, according to the FOG-method and flow cytometry. In vitro stimulation with fMLP/PMA was used for metabolic activity analysis and CD11b mobilization. Following a 1-hour clotting period at +20 to 22 degrees C, samples were stored at +4 degrees C and serum-ECP levels were measured. The EG2-epitope, serum-ECP, and CD9 were stable in samples from both healthy controls and allergic patients at all storage conditions. The EG2-epitope, serum-ECP and PBE count were significantly increased in the patient group, whereas no differences were observed in the expression of CD9 or CD11b. Both granulocytes and monocytes retained their metabolic activity for 24 hours. Neutrophils in citrate-blood increased their ability to respond to fMLP, as compared with EDTA-blood. In vitro analysis of selected activity markers and functional tests could be performed on granulocytes from both healthy individuals and allergic patients after 24 hours storage at +4 degrees C. The anticoagulant citrate seems to be preferable to EDTA when monocytes or CD11b expression are analyzed.
Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro.
Del Angel-Mosqueda, Casiano; Gutiérrez-Puente, Yolanda; López-Lozano, Ada Pricila; Romero-Zavaleta, Ricardo Emmanuel; Mendiola-Jiménez, Andrés; Medina-De la Garza, Carlos Eduardo; Márquez-M, Marcela; De la Garza-Ramos, Myriam Angélica
2015-09-03
Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect. These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.
Gabusi, Elena; Manferdini, Cristina; Paolella, Francesca; Gambari, Laura; Mariani, Erminia
2017-01-01
The surgical treatment of knee articular focal lesions may offer heterogeneous clinical results. Osteochondritis dissecans (OCD) lesions showed to heal better than degenerative lesions (DL) but the underlying biological reasons are unknown. We evaluated the basal histological and immunohistochemical characteristics of these lesions analyzing a series of osteochondral fragments from young patients with similar age but presenting different etiology. Osteochondral tissue samples were stained with Safranin O and graded using a histological score. Markers of mesenchymal progenitor cells (CD146), osteoclasts (tartrate-resistant acid phosphatase, TRAP), and vessels (CD34) were evaluated. Histological score showed a higher degeneration of both cartilage and bone compartments in OCD compared to DL fragments. Only CD146-positive cells were found at the same percentage in cartilage compartment of both DL and OCD patients. By contrast, in the bone compartment a significantly higher percentage of CD146, TRAP, and CD34 markers was found in OCD compared to DL patients. These data showed distinct histological characteristics of osteochondral focal lesions located in the same anatomical region but having a different etiology. The higher percentages of these markers in OCD than in DL, mainly associated with a high bone turnover, could help to explain the higher clinical healing potential of OCD patients. PMID:28770227
Reviewing and Updating the Major Molecular Markers for Stem Cells
Calloni, Raquel; Cordero, Elvira Alicia Aparicio; Henriques, João Antonio Pêgas
2013-01-01
Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells. PMID:23336433
Vitamin D increases programmed death receptor-1 expression in Crohn’s disease
Bendix, Mia; Greisen, Stinne; Dige, Anders; Hvas, Christian L.; Bak, Nina; Jørgensen, Søren P.; Dahlerup, Jens F.; Deleuran, Bent; Agnholt, Jørgen
2017-01-01
Background: Vitamin D modulates inflammation in Crohns disease (CD). Programmed death (PD)-1 receptor contributes to the maintenance of immune tolerance. Vitamin D might modulate PD-1 signalling in CD. Aim: To investigate PD-1 expression on T cell subsets in CD patients treated with vitamin D or placebo. Methods: We included 40 CD patients who received 1200 IU vitamin D3 for 26 weeks or placebo and eight healthy controls. Peripheral blood mononuclear cells (PBMCs) and plasma were isolated at baseline and week 26. The expressions of PD-1, PD-L1, and surface activation markers were analysed by flow cytometry. Soluble PD-1 plasma levels were measured by ELISA. Results: PD-1 expression upon T cell stimulation was increased in CD4+CD25+int T cells in vitamin D treated CD patients from 19% (range 10 39%) to 29% (11 79%)(p = 0.03) compared with placebo-treated patients. Vitamin D treatment, but not placebo, decreased the expression of the T cell activation marker CD69 from 42% (31 62%) to 33% (19 - 54%)(p = 0.01). Soluble PD-1 levels were not influenced by vitamin D treatment. Conclusions: Vitamin D treatment increases CD4+CD25+int T cells ability to up-regulate PD-1 in response to activation and reduces the CD69 expression in CD patients. PMID:28412753
Assessment of the U937 cell line for the detection of contact allergens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Python, Francois; Goebel, Carsten; Aeby, Pierre
2007-04-15
The human myeloid cell line U937 was evaluated as an in vitro test system to identify contact sensitizers in order to develop alternatives to animal tests for the cosmetic industry. Specific culture conditions (i.e., presence of interleukin-4, IL-4) were applied to obtain a dendritic cell-like phenotype. In the described test protocol, these cells were exposed to test chemicals and then analyzed by flow cytometry for CD86 expression and by quantitative real-time reverse transcriptase-polymerase chain reaction for IL-1{beta} and IL-8 gene expressions. Eight sensitizers, three non-sensitizers and five oxidative hair dye precursors were examined after 24-, 48- and 72-h exposure times.more » Test item-specific modulations of the chosen activation markers (CD86, IL-1{beta} and IL-8) suggest that this U937 activation test could discriminate test items classified as contact sensitizers or non-sensitizers in the local lymph node assay in mice (LLNA). More specifically, a test item can be considered as a potential sensitizer when it significantly induced the upregulation of the expression of at least two markers. Using this approach, we could correctly evaluate the dendritic cell (DC) activation potential for 15 out of 16 tested chemicals. We conclude that the U937 activation test may represent an useful tool in a future in vitro test battery for predicting sensitizing properties of chemicals.« less
The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells
Bocian, Katarzyna; Borysowski, Jan; Zarzycki, Michał; Pacek, Magdalena; Weber-Dąbrowska, Beata; Machcińska, Maja; Korczak-Kowalska, Grażyna; Górski, Andrzej
2016-01-01
Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3/R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs. PMID:27582733
CD 10 expression intensity in various grades and stages of urothelial carcinoma of urinary bladder.
Atique, Muhammad; Abbasi, Muhammad Sajjad; Jamal, Shahid; Khadim, Muhammad Tahir; Akhtar, Farhan; Jamal, Nighat
2014-05-01
To evaluate CD10 expression in urothelial carcinoma of the urinary bladder and the association of immunohistochemical (IHC) CD10 expression intensity with grade and stage. Descriptive cross-sectional analytical study. Armed Forces Institute of Pathology, Rawalpindi, from January to December 2011. Fifty consecutive cases of urothelial bladder carcinomas, obtained through transurethral resections, were included in this study. Hematoxylin-eosin (HE) stained sections from each case were re-evaluated histopathologically according to WHO 2004 grading system. The TNM system was used for pathologic staging. On selected slides IHC CD10 marker was applied and a semiquantitative scoring for its expression based on the percentage of positive cells and intensity was performed. Data was entered and analysed on SPSS version 17. Fisher's exact test was used to compare grades, stages of urothelial carcinoma with CD 10 expression and age groups. P < 0.05 was taken as level of significance. Urothelial carcinoma was more common in males. The male to female ratio was 9:1. The older patients > 50 years had higher grade and stage as compared to the younger patients. All cases of high grade urothelial carcinoma showed higher positivity for CD 10. Twenty cases (86.95%) of high grade urothelial carcinoma were positive with +2 immunostaining while 3 cases (13.04 %) were positive with +1 staining. None of the tumors of stage pTa was positive for CD 10 expression. Of all patients with stage pT 1 tumor, 1 case (5.3%) was CD 10 negative and 17 cases (89.9%) were CD 10 positive having +1 staining with 5 - 50% staining and 1 case (5.3%) had +2 staining with more then 50% expression. Out of all patients with stage pT 2, no tumor was CD 10 negative, 3 (13.6%) patients were CD 10 positive with +1 staining and 19 (86.4%) with stage pT 2 tumor had stained positive with +2 staining. CD 10 expression was greater in high grade and invasive urothelial carcinomas; it may be associated with tumor progression in bladder cancer pathogenesis.
Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C.
2013-01-01
CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed. PMID:23437366
The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status.
Horváthová, Mira; Ilavská, Silvia; Štefíková, Kornélia; Szabová, Michaela; Krivošíková, Zora; Jahnová, Eva; Tulinská, Jana; Spustová, Viera; Gajdoš, Martin
2017-07-11
The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells ( p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause.
The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status
Horváthová, Mira; Ilavská, Silvia; Štefíková, Kornélia; Szabová, Michaela; Krivošíková, Zora; Jahnová, Eva; Tulinská, Jana; Spustová, Viera; Gajdoš, Martin
2017-01-01
The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells (p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause. PMID:28696349
Park, Jaehyung; Bryers, James D
2013-05-01
In a companion article to this study,(1) the successful programming of a JAWSII dendritic cell (DC) line's antigen uptake and processing was demonstrated based on pre-treatment of DCs with a specific 'cocktail' of select chemokines. Chemokine pre-treatment modulated cytokine production before and after DC maturation [by lipopolysaccharide (LPS)]. After DC maturation, it induced an antigen uptake and processing capacity at levels 36% and 82% higher than in immature DCs, respectively. Such programming proffers a potential new approach to enhance vaccine efficiency. Unfortunately, simply enhancing antigen uptake does not guarantee the desired activation and proliferation of lymphocytes, e.g. CD4(+) T cells. In this study, phenotype changes and antigen presentation capacity of chemokine pre-treated murine bone marrow-derived DCs were examined in long-term co-culture with antigen-specific CD4(+) T cells to quantify how chemokine pre-treatment may impact the adaptive immune response. When a model antigen, ovalbumin (OVA), was added after intentional LPS maturation of chemokine-treated DCs, OVA-biased CD4(+) T-cell proliferation was initiated from ~ 100% more undivided naive T cells as compared to DCs treated only with LPS. Secretion of the cytokines interferon-γ, interleukin-1β, interleukin-2 and interleukin-10 in the CD4(+) T cell : DC co-culture (with or without chemokine pre-treatment) were essentially the same. Chemokine programming of DCs with a 7 : 3 ratio of CCL3 : CCL19 followed by LPS treatment maintained partial immature phenotypes of DCs, as indicated by surface marker (CD80 and CD86) expression over time. Results here and in our companion paper suggest that chemokine programming of DCs may provide a novel immunotherapy strategy to obviate the natural endocytosis limit of DC antigen uptake, thus potentially increasing DC-based vaccine efficiency. © 2012 Blackwell Publishing Ltd.
Sakaguchi, Hitoshi; Ashikaga, Takao; Miyazawa, Masaaki; Kosaka, Nanae; Ito, Yuichi; Yoneyama, Katsurako; Sono, Sakiko; Itagaki, Hiroshi; Toyoda, Hidekazu; Suzuki, Hiroyuki
2009-04-01
Recent regulations for cosmetics in Europe prohibit animal testing for evaluating the sensitization potential of chemicals to improve animal welfare. Yet, there is not an acceptable Organization for Economic Co-operation and Development non-animal skin sensitization test method. Several in vitro skin sensitization methods that focus on the activation of Langerhans cells, including human cell lines, are being evaluated as possible alternatives. In our previous study, we optimized our human cell line activation test (h-CLAT) using THP-1 cells (monocytic leukemia cell line) and conducted an inter-laboratory study. We found that measuring CD86/CD54 expression may be useful for predicting skin sensitization. The aim of this study was to confirm the relationship between CD86/CD54 expression and THP-1 cell viability in the h-CLAT. In this study, 21 allergens (e.g., dinitrochlorobenzene, p-phenylenediamine, Ni) and 8 non-allergens (e.g., SLS, lactic acid) were evaluated. For each chemical, more than 10 concentrations that gave a predicted cell viability range of 20-95% were used. The data showed that expression patterns of CD86/CD54 differed depending on chemical. For most allergens, cytotoxicity (65-90% cell viability) was needed for enhancement of CD86/CD54 expression. The criteria of "CD86 > or = 150 or CD54 > or = 200" resulted in an accuracy of 93%, which confirms appropriate cut-off criteria for h-CLAT. Furthermore, a good correlation was observed between EC3 of local lymph node assay and EC150(CD86) or EC200(CD54) of h-CLAT (12 or 16 chemicals, respectively), which would provide a useful estimate of allergic potency. These findings suggest that h-CLAT would be a good robust in vitro skin sensitization test.
2011-01-01
Background Elevated numbers of regulatory T cells (Tregs) have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells. PMID:21615933
Kreuzer, Karl‐Anton; Soosapilla, Asha; Spacek, Martin; Stehlikova, Olga; Gambell, Peter; McIver‐Brown, Neil; Villamor, Neus; Psarra, Katherina; Arroz, Maria; Milani, Raffaella; de la Serna, Javier; Cedena, M. Teresa; Jaksic, Ozren; Nomdedeu, Josep; Moreno, Carol; Rigolin, Gian Matteo; Cuneo, Antonio; Johansen, Preben; Johnsen, Hans E.; Rosenquist, Richard; Niemann, Carsten Utoft; Kern, Wolfgang; Westerman, David; Trneny, Marek; Mulligan, Stephen; Doubek, Michael; Pospisilova, Sarka; Hillmen, Peter; Oscier, David; Hallek, Michael; Ghia, Paolo; Montserrat, Emili
2018-01-01
The diagnostic criteria for CLL rely on morphology and immunophenotype. Current approaches have limitations affecting reproducibility and there is no consensus on the role of new markers. The aim of this project was to identify reproducible criteria and consensus on markers recommended for the diagnosis of CLL. ERIC/ESCCA members classified 14 of 35 potential markers as “required” or “recommended” for CLL diagnosis, consensus being defined as >75% and >50% agreement, respectively. An approach to validate “required” markers using normal peripheral blood was developed. Responses were received from 150 participants with a diagnostic workload >20 CLL cases per week in 23/150 (15%), 5–20 in 82/150 (55%), and <5 cases per week in 45/150 (30%). The consensus for “required” diagnostic markers included: CD19, CD5, CD20, CD23, Kappa, and Lambda. “Recommended” markers potentially useful for differential diagnosis were: CD43, CD79b, CD81, CD200, CD10, and ROR1. Reproducible criteria for component reagents were assessed retrospectively in 14,643 cases from 13 different centers and showed >97% concordance with current approaches. A pilot study to validate staining quality was completed in 11 centers. Markers considered as “required” for the diagnosis of CLL by the participants in this study (CD19, CD5, CD20, CD23, Kappa, and Lambda) are consistent with current diagnostic criteria and practice. Importantly, a reproducible approach to validate and apply these markers in individual laboratories has been identified. Finally, a consensus “recommended” panel of markers to refine diagnosis in borderline cases (CD43, CD79b, CD81, CD200, CD10, and ROR1) has been defined and will be prospectively evaluated. © 2017 International Clinical Cytometry Society PMID:29024461
Rawstron, Andy C; Kreuzer, Karl-Anton; Soosapilla, Asha; Spacek, Martin; Stehlikova, Olga; Gambell, Peter; McIver-Brown, Neil; Villamor, Neus; Psarra, Katherina; Arroz, Maria; Milani, Raffaella; de la Serna, Javier; Cedena, M Teresa; Jaksic, Ozren; Nomdedeu, Josep; Moreno, Carol; Rigolin, Gian Matteo; Cuneo, Antonio; Johansen, Preben; Johnsen, Hans E; Rosenquist, Richard; Niemann, Carsten Utoft; Kern, Wolfgang; Westerman, David; Trneny, Marek; Mulligan, Stephen; Doubek, Michael; Pospisilova, Sarka; Hillmen, Peter; Oscier, David; Hallek, Michael; Ghia, Paolo; Montserrat, Emili
2018-01-01
The diagnostic criteria for CLL rely on morphology and immunophenotype. Current approaches have limitations affecting reproducibility and there is no consensus on the role of new markers. The aim of this project was to identify reproducible criteria and consensus on markers recommended for the diagnosis of CLL. ERIC/ESCCA members classified 14 of 35 potential markers as "required" or "recommended" for CLL diagnosis, consensus being defined as >75% and >50% agreement, respectively. An approach to validate "required" markers using normal peripheral blood was developed. Responses were received from 150 participants with a diagnostic workload >20 CLL cases per week in 23/150 (15%), 5-20 in 82/150 (55%), and <5 cases per week in 45/150 (30%). The consensus for "required" diagnostic markers included: CD19, CD5, CD20, CD23, Kappa, and Lambda. "Recommended" markers potentially useful for differential diagnosis were: CD43, CD79b, CD81, CD200, CD10, and ROR1. Reproducible criteria for component reagents were assessed retrospectively in 14,643 cases from 13 different centers and showed >97% concordance with current approaches. A pilot study to validate staining quality was completed in 11 centers. Markers considered as "required" for the diagnosis of CLL by the participants in this study (CD19, CD5, CD20, CD23, Kappa, and Lambda) are consistent with current diagnostic criteria and practice. Importantly, a reproducible approach to validate and apply these markers in individual laboratories has been identified. Finally, a consensus "recommended" panel of markers to refine diagnosis in borderline cases (CD43, CD79b, CD81, CD200, CD10, and ROR1) has been defined and will be prospectively evaluated. © 2017 International Clinical Cytometry Society. © 2017 The Authors. Cytometry Part B: Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society.
CD45RO enriches for activated, highly mutated human germinal center B cells
Jackson, Stephen M.; Harp, Natessa; Patel, Darshna; Zhang, Jeffrey; Willson, Savannah; Kim, Yoon J.; Clanton, Christian
2007-01-01
To date, there is no consensus regarding the influence of different CD45 isoforms during peripheral B-cell development. Examining correlations between surface CD45RO expression and various physiologic processes ongoing during the germinal center (GC) reaction, we hypothesized that GC B cells, like T cells, that up-regulate surface RO should progressively acquire phenotypes commonly associated with activated, differentiating lymphocytes. GC B cells (IgD−CD38+) were subdivided into 3 surface CD45RO fractions: RO−, RO+/−, and RO+. We show here that the average number of mutations per IgVH transcript increased in direct correlation with surface RO levels. Conjunctional use of RO and CD69 further delineated low/moderately and highly mutated fractions. Activation-induced cytidine deaminase (AID) mRNA was slightly reduced among RO+ GC B cells, suggesting that higher mutation averages are unlikely due to elevated somatic mutation activity. Instead, RO+ GC B cells were negative for Annexin V, comprised mostly (93%) of CD77− centrocytes, and were enriched for CD69+ cells. Collectively, RO+ GC B cells occupy what seems to be a specialized niche comprised mostly of centrocytes that may be in transition between activation states. These findings are among the first to sort GC B cells into populations enriched for live mutated cells solely using a single extracellular marker. PMID:17644737
Hsieh, Feng-Jen; Chen, Yen-Wei; Huang, Yao-Kuan; Lee, Hsien-Ming; Lin, Chun-Hung; Chang, Huan-Cheng
2018-02-06
Containing an ensemble of nitrogen-vacancy centers in crystal matrices, fluorescent nanodiamonds (FNDs) are a new type of photostable markers that have found wide applications in light microscopy. The nanomaterial also has a dense carbon core, making it visible to electron microscopy. Here, we show that FNDs encapsulated in biotinylated lipids (bLs) are useful for subdiffraction imaging of antigens on cell surface with correlative light-electron microscopy (CLEM). The lipid encapsulation enables not only good dispersion of the particles in biological buffers but also high specific labeling of live cells. By employing the bL-encapsulated FNDs to target CD44 on HeLa cell surface through biotin-mediated immunostaining, we obtained the spatial distribution of these antigens by CLEM with a localization accuracy of ∼50 nm in routine operations. A comparative study with dual-color imaging, in which CD44 was labeled with FND and MICA/MICB was labeled with Alexa Fluor 488, demonstrated the superior performance of FNDs as fluorescent fiducial markers for CLEM of cell surface antigens.
Granzyme B mediated function of Parvovirus B19-specific CD4+ T cells
Kumar, Arun; Perdomo, Maria F; Kantele, Anu; Hedman, Lea; Hedman, Klaus; Franssila, Rauli
2015-01-01
A novel conception of CD4+ T cells with cytolytic potential (CD4+ CTL) is emerging. These cells appear to have a part in controlling malignancies and chronic infections. Human parvovirus B19 can cause a persistent infection, yet no data exist on the presence of B19-specific CD4+ CTLs. Such cells could have a role in the pathogenesis of some autoimmune disorders reported to be associated with B19. We explored the cytolytic potential of human parvovirus B19-specific T cells by stimulating peripheral blood mononuclear cell (PBMC) with recombinant B19-VP2 virus-like particles. The cytolytic potential was determined by enzyme immunoassay-based quantitation of granzyme B (GrB) and perforin from the tissue culture supernatants, by intracellular cytokine staining (ICS) and by detecting direct cytotoxicity. GrB and perforin responses with the B19 antigen were readily detectable in B19-seropositive individuals. T-cell depletion, HLA blocking and ICS experiments showed GrB and perforin to be secreted by CD4+ T cells. CD4+ T cells with strong GrB responses were found to exhibit direct cytotoxicity. As anticipated, ICS of B19-specific CD4+ T cells showed expected co-expression of GrB, perforin and interferon gamma (IFN-γ). Unexpectedly, also a strong co-expression of GrB and interleukin 17 (IL-17) was detected. These cells expressed natural killer (NK) cell surface marker CD56, together with the CD4 surface marker. To our knowledge, this is the first report on virus-specific CD4+ CTLs co-expressing CD56 antigen. Our results suggest a role for CD4+ CTL in B19 immunity. Such cells could function within both immune regulation and triggering of autoimmune phenomena such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. PMID:26246896
Sultana, Farhath; Neog, Manoj Kumar; Rasool, MahaboobKhan
2017-07-01
In order to develop a better therapeutic approach for the treatment of rheumatoid arthritis (RA), withaferin-A; a steroidal lactone incorporated with mannosylated liposomes (ML-WA) was administered to adjuvant induced arthritic rats in intent to target the synovial macrophages. The confocal microscopy studies showed a successful internalization of ML-WA in the primarily isolated synovial macrophages. Consequently, targeting synovial macrophages via ML-WA reduced the oxidative stress (ROS and NO), and paw edema, however, a progressive gain in the body weight was observed in AIA rats. ML-WA treatment upregulated the production of osteoprotegerin (OPG) and downregulated the release of receptor activator of nuclear factor-κB ligand (RANKL), favoring osteoclastogenesis negatively. Correspondingly, the ankle joints were found intact with no bone erosion and cartilage degradation in ML-WA treated AIA rats as evidenced by histopathological analysis. Also, synovial macrophage assessment showed that the concentration and the gene amplification of M1 macrophage mediated pro-inflammatory mediators (TNF-α, IL-1β, IL-6, MCP-1 and VEGF) were curtailed in ML-WA treated AIA rats. In contrast, anti-inflammatory cytokine (IL-10) was found abundantly released. Furthermore, the mRNA expression of the M1 surface marker (CD86) was found down regulated, whereas, M2 marker (CD163) was highly amplified in ML-WA treated synovial macrophages of arthritic rats. Cumulatively, our result signified that targeted delivery of ML-WA ameliorated the severity of inflammation and bone resorption in AIA rats via M1 to M2 macrophage repolarization. Copyright © 2017 Elsevier B.V. All rights reserved.
Dendritic Cell Migration Toward CCL21 Gradient Requires Functional Cx43
Ruez, Richard; Dubrot, Juan; Zoso, Alice; Bacchetta, Marc; Molica, Filippo; Hugues, Stéphanie; Kwak, Brenda R.; Chanson, Marc
2018-01-01
Dendritic cells (DCs) travel through lymphatic vessels to transport antigens and present them to T cells in lymph nodes. DCs move directionally toward lymphatics by virtue of their CCR7 and a CCL21 chemotactic gradient. We evaluated in vivo and in bone marrow-derived dendritic cells (BMDCs) whether the gap junction protein Cx43 contributes to CCL21/CCR7-dependent DC migration in wild-type (WT) mice, heterozygous (Cx43+/−) mice and mice expressing a truncated form of Cx43 lacking its regulatory C-terminus (Cx43K258/−). In a model of flank skin inflammation, we found that the recruitment of myeloid DCs (mDCs) to skin draining lymph nodes was reduced in Cx43K258/− mice as compared to WT and Cx43+/− mice. In addition, the migration of Cx43K258/− BMDCs toward CCL21 was abolished in an in vitro chemotactic assay while it was only reduced in Cx43+/− cells. Both mutant genotypes showed defects in the directionality of BMDC migration as compared to WT BMDCs. No difference was found between the three populations of BMDCs in terms of expression of surface markers (CD11c, CD86, CD80, CD40, MHC-II, and CCR7) after differentiation and TLR activation. Finally, examination of the CCR7-induced signaling pathways in BMDCs revealed normal receptor-induced mobilization of intracellular Ca2+. These results demonstrate that full expression of an intact Cx43 is critical to the directionality and rate of DC migration, which may be amenable to regulation of the immune response. PMID:29636699
B Cell Activation by Outer Membrane Vesicles—A Novel Virulence Mechanism
Perez Vidakovics, Maria Laura A.; Jendholm, Johan; Mörgelin, Matthias; Månsson, Anne; Larsson, Christer; Cardell, Lars-Olaf; Riesbeck, Kristian
2010-01-01
Secretion of outer membrane vesicles (OMV) is an intriguing phenomenon of Gram-negative bacteria and has been suggested to play a role as virulence factors. The respiratory pathogens Moraxella catarrhalis reside in tonsils adjacent to B cells, and we have previously shown that M. catarrhalis induce a T cell independent B cell response by the immunoglobulin (Ig) D-binding superantigen MID. Here we demonstrate that Moraxella are endocytosed and killed by human tonsillar B cells, whereas OMV have the potential to interact and activate B cells leading to bacterial rescue. The B cell response induced by OMV begins with IgD B cell receptor (BCR) clustering and Ca2+ mobilization followed by BCR internalization. In addition to IgD BCR, TLR9 and TLR2 were found to colocalize in lipid raft motifs after exposure to OMV. Two components of the OMV, i.e., MID and unmethylated CpG-DNA motifs, were found to be critical for B cell activation. OMV containing MID bound to and activated tonsillar CD19+ IgD+ lymphocytes resulting in IL-6 and IgM production in addition to increased surface marker density (HLA-DR, CD45, CD64, and CD86), whereas MID-deficient OMV failed to induce B cell activation. DNA associated with OMV induced full B cell activation by signaling through TLR9. Importantly, this concept was verified in vivo, as OMV equipped with MID and DNA were found in a 9-year old patient suffering from Moraxella sinusitis. In conclusion, Moraxella avoid direct interaction with host B cells by redirecting the adaptive humoral immune response using its superantigen-bearing OMV as decoys. PMID:20090836
Petters, Oliver; Schmidt, Christian; Henkelmann, Ralf; Pieroh, Philipp; Hütter, Gero; Marquass, Bastian; Aust, Gabriela; Schulz, Ronny M
2018-04-15
Due to the limited self-healing capacity of articular cartilage, innovative, regenerative approaches are of particular interest. The use of two-stage procedures utilizing in vitro-expanded mesenchymal stromal cells (MSCs) from various cell sources requires good manufacturing practice-compliant production, a process with high demands on time, staffing, and financial resources. In contrast, one- stage procedures are directly available, but need a safe enrichment of potent MSCs. CD271 is a surface marker known to marking the majority of native MSCs in bone marrow (BM). In this study, the feasibility of generating a single-stage cartilage graft of enriched CD271 + BM-derived mononuclear cells (MNCs) without in vitro monolayer expansion from eight healthy donors was investigated. Cartilage grafts were generated by magnetic-activated cell sorting and separated cells were directly transferred into collagen type I hydrogels, followed by 3D proliferation and differentiation period of CD271 + , CD271 - , or unseparated MNCs. CD271 + MNCs showed the highest proliferation rate, cell viability, sulfated glycosaminoglycan deposition, and cartilage marker expression compared to the CD271 - or unseparated MNC fractions in 3D culture. Analysis according to the minimal criteria of the International Society for Cellular Therapy highlighted a 66.8-fold enrichment of fibroblast colony-forming units in CD271 + MNCs and the only fulfillment of the MSC marker profile compared to unseparated MNCs. In summary, CD271 + MNCs are capable of generating adequate articular cartilage grafts presenting high cell viability and notable chondrogenic matrix deposition in a CE-marked collagen type I hydrogel, which can obviate the need for an initial monolayer expansion.
Pachón-Peña, Gisela; Serena, Carolina; Ejarque, Miriam; Petriz, Jordi; Duran, Xevi; Oliva-Olivera, W.; Simó, Rafael; Tinahones, Francisco J.
2016-01-01
Adipose tissue is a major source of mesenchymal stem cells (MSCs), which possess a variety of properties that make them ideal candidates for regenerative and immunomodulatory therapies. Here, we compared the immunophenotypic profile of human adipose-derived stem cells (hASCs) from lean and obese individuals, and explored its relationship with the apparent altered plasticity of hASCs. We also hypothesized that persistent hypoxia treatment of cultured hASCs may be necessary but not sufficient to drive significant changes in mature adipocytes. hASCs were obtained from subcutaneous adipose tissue of healthy, adult, female donors undergoing abdominal plastic surgery: lean (n = 8; body mass index [BMI]: 23 ± 1 kg/m2) and obese (n = 8; BMI: 35 ± 5 kg/m2). Cell surface marker expression, proliferation and migration capacity, and adipogenic differentiation potential of cultured hASCs at two different oxygen conditions were studied. Compared with lean-derived hASCs, obese-derived hASCs demonstrated increased proliferation and migration capacity but decreased lipid droplet accumulation, correlating with a higher expression of human leukocyte antigen (HLA)-II and cluster of differentiation (CD) 106 and lower expression of CD29. Of interest, adipogenic differentiation modified CD106, CD49b, HLA-ABC surface protein expression, which was dependent on the donor’s BMI. Additionally, low oxygen tension increased proliferation and migration of lean but not obese hASCs, which correlated with an altered CD36 and CD49b immunophenotypic profile. In summary, the differences observed in proliferation, migration, and differentiation capacity in obese hASCs occurred in parallel with changes in cell surface markers, both under basal conditions and during differentiation. Therefore, obesity is an important determinant of stem cell function independent of oxygen tension. Significance The obesity-related hypoxic environment may have latent effects on human adipose tissue-derived mesenchymal stem cells (hASCs) with potential consequences in mature cells. This study explores the immunophenotypic profile of hASCs obtained from lean and obese individuals and its potential relationship with the altered plasticity of hASCs observed in obesity. In this context, an altered pattern of cell surface marker expression in obese-derived hASCs in both undifferentiated and differentiated stages is demonstrated. Differences in proliferation, migration, and differentiation capacity of hASCs from obese adipose tissue correlated with alterations in cell surface expression. Remarkably, altered plasticity observed in obese-derived hASCs was maintained in the absence of hypoxia, suggesting that these cells might be obesity conditioned. PMID:26956208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Hiroto; Naito, Motohiko; Ghani, Farhana Ishrat
2012-03-16
Highlights: Black-Right-Pointing-Pointer We focused on CD24 and CD26 for further analysis of CSC properties in MM. Black-Right-Pointing-Pointer Their expressions were correlated with chemoresistance, cell growth, and invasion. Black-Right-Pointing-Pointer Their expressions were also correlated with several cancer related genes. Black-Right-Pointing-Pointer The expression of each marker was correlated with different CSC property in Meso1. Black-Right-Pointing-Pointer Phosphorylation of ERK by EGF was regulated by expression of CD26, but not CD24. -- Abstract: Malignant mesothelioma (MM) is an asbestos-related malignancy characterized by rapid growth and poor prognosis. In our previous study, we have demonstrated that several cancer stem cell (CSC) markers correlated with CSCmore » properties in MM cells. Among these markers, we focused on two: CD24, the common CSC marker, and CD26, the additional CSC marker. We further analyzed the CSC properties of CD24 and CD26-positve MM cells. We established RNAi-knockdown cells and found that these markers were significantly correlated with chemoresistance, proliferation, and invasion potentials in vitro. Interestingly, while Meso-1 cells expressed both CD24 and CD26, the presence of each of these two markers was correlated with different CSC property. In addition, downstream signaling of these markers was explored by microarray analysis, which revealed that their expressions were correlated with several cancer-related genes. Furthermore, phosphorylation of ERK by EGF stimulation was significantly affected by the expression of CD26, but not CD24. These results suggest that CD24 and CD26 differentially regulate the CSC potentials of MM and could be promising targets for CSC-oriented therapy.« less
Agrawal, Sonali; Parkash, Om; Palaniappan, Alangudi Natarajan; Bhatia, Ashok Kumar; Kumar, Santosh; Chauhan, Devendra Singh; Madhan Kumar, M.
2018-01-01
Treatment monitoring is an essential aspect for tuberculosis (TB) disease management. Sputum smear microscopy is the only available tool for monitoring, but it suffers from demerits. Therefore, we sought to evaluate markers and cellular subsets of T regulatory (Treg) cells and T helper (Th) 17 cells in pulmonary TB patients (PTB) for TB treatment monitoring. Peripheral blood mononuclear cells (PBMCs) were stimulated in vitro (with purified protein derivative (PPD)) overnight which was followed by a polychromatic flow cytometry approach to study Treg and Th17 markers and cellular subsets in PTB (n = 12) undergoing antituberculous treatment (ATT). The baseline levels of these markers and cellular subsets were evaluated in normal healthy subjects (NHS). We observed a significant decrease in the expression of CD25 (p<0.01) marker and percentage of T-cell subsets like CD4+CD25+ (p<0.001) and CD4+CD25+CD39+ (p<0.05) at the end of intensive phase (IP) as well as in the continuation phase (CP) of ATT. A decrease in CD25 marker expression and percentage of CD4+CD25+ T cell subset showed a positive correlation to sputum conversion both in high and low sputum positive PTB. In eight PTB with cavitary lesions, only CD4+CD25+FoxP3 Treg subset manifested a significant decrease at the end of CP. Thus, results of this study show that CD25 marker and CD4+CD25+ T cells can serve as better markers for monitoring TB treatment efficacy. The Treg subset CD4+CD25+FoxP3 may be useful for prediction of favorable response in PTB with extensive lung lesions. However, these findings have to be evaluated in a larger patient cohort. PMID:29472922
Girard, Tanya; Gaucher, Denis; El-Far, Mohamed; Breton, Gaëlle; Sékaly, Rafick-Pierre
2014-09-01
CD86 and CD80, the ligands for the co-stimulatory molecules CD28 and CTLA-4, are members of the Ig superfamily. Their structure includes Ig variable-like (IgV) domains, Ig constant-like (IgC) domains and intracellular domains. Although crystallographic studies have clearly identified the IgV domain to be responsible for receptor interactions, earlier studies suggested that both Ig domains are required for full co-signaling function. Herein, we have used deletion and chimeric human CD80 and CD86 molecules in co-stimulation assays to study the impact of the multimeric state of IgV and IgC domains on receptor binding properties and on co-stimulatory function in a peptide-specific T cell activation model. We report for the first time the presence of CD80 dimers and CD86 monomers in living cells. Moreover, we show that the IgC domain of both molecules inhibits multimer formation and greatly affects binding to the co-receptors CD28 and CTLA-4. Finally, both IgC and intracellular domains are required for full co-signaling function. These findings reveal the distinct but complementary roles of CD80 and CD86 IgV and IgC domains in T cell activation. Copyright © 2014 Elsevier B.V. All rights reserved.
David, Robert; Groebner, Michael; Franz, Wolfgang-Michael
2005-04-01
Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.
CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia.
Kersten, Bas; Valkering, Matthijs; Wouters, Rolf; van Amerongen, Rosa; Hanekamp, Diana; Kwidama, Zinia; Valk, Peter; Ossenkoppele, Gert; Zeijlemaker, Wendelien; Kaspers, Gertjan; Cloos, Jacqueline; Schuurhuis, Gerrit J
2016-04-01
Chemotherapy resistant leukaemic stem cells (LSC) are thought to be responsible for relapses after therapy in acute myeloid leukaemia (AML). Flow cytometry can discriminate CD34(+) CD38(-) LSC and normal haematopoietic stem cells (HSC) by using aberrant expression of markers and scatter properties. However, not all LSC can be identified using currently available markers, so new markers are needed. CD45RA is expressed on leukaemic cells in the majority of AML patients. We investigated the potency of CD45RA to specifically identify LSC and HSC and improve LSC quantification. Compared to our best other markers (CLL-1, also termed CLEC12A, CD33 and CD123), CD45RA was the most reliable marker. Patients with high percentages (>90%) of CD45RA on CD34(+) CD38(-) LSC have 1·69-fold higher scatter values compared to HSC (P < 0·001), indicating a more mature CD34(+) CD38(-) phenotype. Patients with low (<10%) or intermediate (10-90%) CD45RA expression on LSC showed no significant differences to HSC (1·12- and 1·15-fold higher, P = 0·31 and P = 0·44, respectively). CD45RA-positive LSC tended to represent more favourable cytogenetic/molecular markers. In conclusion, CD45RA contributes to more accurate LSC detection and is recommended for inclusion in stem cell tracking panels. CD45RA may contribute to define new LSC-specific therapies and to monitor effects of anti-LSC treatment. © 2016 John Wiley & Sons Ltd.
Human mesenchymal stem cells - current trends and future prospective
Ullah, Imran; Subbarao, Raghavendra Baregundi; Rho, Gyu Jin
2015-01-01
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials. PMID:25797907
Chekhun, S V; Zadvorny, T V; Tymovska, Yu O; Anikusko, M F; Novak, O E; Polishchuk, L Z
2015-03-01
To determine frequency of tumors with immunohistochemical markers of cancer stem cells (CSC) CD44+/CD24- in patients with breast cancer (BC) of different molecular subtype and to evaluate their prognostic value. Surgical material of 132 patients with BC stage I-II, age from 23 to 75 years, mean age - 50.2 ± 3.1 years was studied. Clinical, immunohistochemical (expression CD44+/CD24-), morphological, statistical. BC is characterized by heterogeneity of molecular subtypes and expression of markers (CD44+/CD24-). Immunohistochemical study of expression of CSC markers in surgical material has detected their expression in 34 (25.4%) patients with BC of different molecular subtypes. The highest frequency of cells with expression of CSC marker was observed in patients with basal molecular subtype (44.8% patients). Most of BC patients with phenotype CD44+/CD24 had stage I of tumor process (34.3%). Statistical processing of data has showen that Yule colligation coefficient equaled 0.28 (р > 0.05) that argues poor correlation between stage of tumor process and number of tumors with positive expression of CSC markers. Statistical processing of data has showen high correlation between presence of cells with expression of CSC markers and metastases of BC in regional lymph nodes (Yule colligation coefficient equals 0.943; р < 0.5). Difference in overall survival of patients with BC of basal molecular subtype depending on expression of CSC CD44+/CD24- markers was detected. Survival of patients with basal BC was reliably higher at lack in tumors of cells with CSC markers CD44+/CD24- and, correspondingly, lower at presence of such cells (р < 0.05). In patients with BC of luminal (A and B), HER-2-positive subtypes, significant change in survival of patients depending on expression of CSC markers was not determined (р > 0.05). Significance of tumor cells with markers CD44+/CD24- within the limits of molecular subtype of BC may be additional criterion for advanced biological characteristic of BC, and in patients with BC of basal molecular subtype - for predictive evaluation of individual potential of tumor to aggressive clinical course.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, Daisuke; Kato, Kazunori, E-mail: kzkatou@juntendo.ac.jp; Department of Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421
2013-05-17
Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present inmore » esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression was enhanced, suggesting that hypoxia had been induced. Comparison of cancer drug resistance using cisplatin and doxorubicin in 3-D-cultured esophageal cancer cells showed that cancer drug resistance had increased. These results indicate that 3-D culture of esophageal squamous cell carcinoma lines is a useful method for inducing cancer stem cells.« less
The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.
Nabatov, Alexey A; Raginov, Ivan S
2015-01-01
This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.
Immunophenotyping does not improve predictivity of the local lymph node assay in mice.
Strauss, Volker; Kolle, Susanne N; Honarvar, Naveed; Dammann, Martina; Groeters, Sibylle; Faulhammer, Frank; Landsiedel, Robert; van Ravenzwaay, Bennard
2015-04-01
The local lymph node assay (LLNA) is a regulatory accepted test for the identification of skin sensitizing substances by measuring radioactive thymidine incorporation into the lymph node. However, there is evidence that LLNA is overestimating the sensitization potential of certain substance classes in particular those exerting skin irritation. Some reports describe the additional use of flow cytometry-based immunophenotyping to better discriminate irritants from sensitizing irritants in LLNA. In the present study, the 22 performance standards plus 8 surfactants were assessed using the radioactive LLNA method. In addition, lymph node cells were immunophenotyped to evaluate the specificity of the lymph node response using cell surface markers such as B220 or CD19, CD3, CD4, CD8, I-A(κ) and CD69 with the aim to allow a better discrimination above all between irritants and sensitizers, but also non-irritating sensitizers and non-sensitizers. However, the markers assessed in this study do not sufficiently differentiate between irritants and irritant sensitizers and therefore did not improve the predictive capacity of the LLNA. Copyright © 2014 John Wiley & Sons, Ltd.
Bakhshi, Tiki; Zabriskie, Ryan C.; Bodie, Shamanique; Kidd, Shannon; Ramin, Susan; Paganessi, Laura A.; Gregory, Stephanie A.; Fung, Henry C.; Christopherson, Kent W.
2012-01-01
BACKGROUND Hematopoietic stem cells (HSCs) are routinely obtained from marrow, mobilized peripheral blood, and umbilical cord blood. Mesenchymal stem cells (MSCs) are traditionally isolated from marrow. Bone marrow–derived MSCs (BM-MSCs) have previously demonstrated their ability to act as a feeder layer in support of ex vivo cord blood expansion. However, the use of BM-MSCs to support the growth, differentiation, and engraftment of cord blood may not be ideal for transplant purposes. Therefore, the potential of MSCs from a novel source, the Wharton’s jelly of umbilical cords, to act as stromal support for the long-term culture of cord blood HSC was evaluated. STUDY DESIGN AND METHODS Umbilical cord–derived MSCs (UC-MSCs) were cultured from the Wharton’s jelly of umbilical cord segments. The UC-MSCs were then profiled for expression of 12 cell surface receptors and tested for their ability to support cord blood HSCs in a long-term culture-initiating cell (LTC-IC) assay. RESULTS Upon culture, UC-MSCs express a defined set of cell surface markers (CD29, CD44, CD73, CD90, CD105, CD166, and HLA-A) and lack other markers (CD45, CD34, CD38, CD117, and HLA-DR) similar to BM-MSCs. Like BM-MSCs, UC-MSCs effectively support the growth of CD34+ cord blood cells in LTC-IC assays. CONCLUSION These data suggest the potential therapeutic application of Wharton’s jelly–derived UC-MSCs to provide stromal support structure for the long-term culture of cord blood HSCs as well as the possibility of cotransplantation of genetically identical, HLA-matched, or unmatched cord blood HSCs and UC-MSCs in the setting of HSC transplantation. PMID:18798803
Corneau, Aurélien; Cosma, Antonio; Even, Sophie; Katlama, Christine; Le Grand, Roger; Frachet, Véronique; Blanc, Catherine; Autran, Brigitte
2017-01-01
Mass cytometry allows large multiplex analysis of cell cycle stages together with differentiation, activation, and exhaustion markers, allowing further assessment of the quiescence status of resting CD4 T cells. Peripheral blood CD4 T lymphocytes from 8 individuals, 4 healthy donors, and 4 HIV-infected on antiretroviral treatment (T) were stained with the same 26 monoclonal antibodies and dyes targeting surface and intracellular markers of differentiation, activation, exhaustion, and cell cycle stages. Samples were run on a CYTOF-2. Patterns of naïve [TN] CD4 T cells strongly differed from all other memory subsets central-memory (CM), transitional-memory (TM), effector-memory (EM), and terminally differentiated RA-expressing (TEMRA) subsets, while stem-cell memory (SCM) and T follicular-helper cells (TfH) were close to CM and TM cells with the highest percentages in cell cycle. EM and TEMRA were the most altered by HIV infection, with an increased frequency of activated and cycling cells. Activation markers and coinhibitory receptor expression differed among cell cycle stages, with HLA-DR fitting better than CD25 or CD38 with cycle, and opposite PD-1 gradients along differentiation and cell cycle. "Resting" DR-CD25- CD4+ T cells contained similar amounts of cells in G1 than the activated DR ± CD25± ones but three fold lower cells in S-G2-M. This broad multiplex mass cytometry analysis demonstrates some subsets of the so-called "resting" CD25-DR- CD4+ T cells contain noticeable amounts of cells into cycle or expressing coinhibitory receptors, opening new avenues for a redefinition of resting peripheral blood CD4 T cells harboring the HIV reservoirs. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.
Behavior of Human Bone Marrow-Derived Mesenchymal Stem Cells on Various Titanium-Based Coatings
Qu, Chengjuan; Kaitainen, Salla; Kröger, Heikki; Lappalainen, Reijo; Lammi, Mikko J.
2016-01-01
The chemical composition and texture of titanium coatings can influence the growth characteristics of the adhered cells. An enhanced proliferation of the human mesenchymal stem cells (hMSCs) would be beneficial. The present study was aimed to investigate whether titanium deposited at different atmospheres would affect the cell growth properties, cellular morphology, and expression of surface markers of hMSCs. Titanium-based coatings were deposited on silicon wafers under oxygen, nitrogen, or argon atmospheres by ultra-short pulsed laser deposition using two different gas pressures followed by heating at 400 °C for 2 h. The characteristics of the coated surfaces were determined via contact angle, zeta potential, and scanning electron microscopy (SEM) techniques. Human MSCs were cultivated on differently coated silicon wafers for 48 h. Subsequently, the cell proliferation rates were analyzed with an MTT assay. The phenotype of hMSCs was checked via immunocytochemical stainings of MSC-associated markers CD73, CD90, and CD105, and the adhesion, spreading, and morphology of hMSCs on coated materials via SEM. The cell proliferation rates of the hMSCs were similar on all coated silicon wafers. The hMSCs retained the MSC phenotype by expressing MSC-associated markers and fibroblast-like morphology with cellular projections. Furthermore, no significant differences could be found in the size of the cells when cultured on all various coated surfaces. In conclusion, despite certain differences in the contact angles and the zeta potentials of various titanium-based coatings, no single coating markedly improved the growth characteristics of hMSCs. PMID:28773947
Casaravilla, Cecilia; Pittini, Álvaro; Rückerl, Dominik; Seoane, Paula I.; Jenkins, Stephen J.; MacDonald, Andrew S.; Ferreira, Ana M.; Allen, Judith E.
2014-01-01
The larval stage of the cestode parasite Echinococcus granulosus causes hydatid disease in humans and livestock. This infection is characterized by the growth in internal organ parenchymae of fluid-filled structures (hydatids) that elicit surprisingly little inflammation in spite of their massive size and persistence. Hydatids are protected by a millimeter-thick layer of mucin-based extracellular matrix, termed the laminated layer (LL), which is thought to be a major factor determining the host response to the infection. Host cells can interact both with the LL surface and with materials that are shed from it to allow parasite growth. In this work, we analyzed the response of dendritic cells (DCs) to microscopic pieces of the native mucin-based gel of the LL (pLL). In vitro, this material induced an unusual activation state characterized by upregulation of CD86 without concomitant upregulation of CD40 or secretion of cytokines (interleukin 12 [IL-12], IL-10, tumor necrosis factor alpha [TNF-α], and IL-6). When added to Toll-like receptor (TLR) agonists, pLL-potentiated CD86 upregulation and IL-10 secretion while inhibiting CD40 upregulation and IL-12 secretion. In vivo, pLL also caused upregulation of CD86 and inhibited CD40 upregulation in DCs. Contrary to expectations, oxidation of the mucin glycans in pLL with periodate did not abrogate the effects on cells. Reduction of disulfide bonds, which are known to be important for LL structure, strongly diminished the impact of pLL on DCs without altering the particulate nature of the material. In summary, DCs respond to the LL mucin meshwork with a “semimature” activation phenotype, both in vitro and in vivo. PMID:24842926
Biomarkers for evaluation of mast cell and basophil activation.
Kabashima, Kenji; Nakashima, Chisa; Nonomura, Yumi; Otsuka, Atsushi; Cardamone, Chiara; Parente, Roberta; De Feo, Giulia; Triggiani, Massimo
2018-03-01
Mast cells and basophils play a pathogenetic role in allergic, inflammatory, and autoimmune disorders. These cells have different development, anatomical location and life span but share many similarities in mechanisms of activation and type of mediators. Mediators secreted by mast cells and basophils correlate with clinical severity in asthma, chronic urticaria, anaphylaxis, and other diseases. Therefore, effective biomarkers to measure mast cell and basophil activation in vivo could potentially have high diagnostic and prognostic values. An ideal biomarker should be specific for mast cells or basophils, easily and reproducibly detectable in blood or biological fluids and should be metabolically stable. Markers of mast cell and basophil include molecules secreted by stimulated cells and surface molecules expressed upon activation. Some markers, such as histamine and lipid mediators are common to mast cells and basophils whereas others, such as tryptase and other proteases, are relatively specific for mast cells. The best surface markers of activation expressed on mast cells and basophils are CD63 and CD203. While these mediators and surface molecules have been associated to a variety of diseases, none of them fulfills requirements for an optimal biomarker and search for better indicators of mast cell/basophil activation in vivo is ongoing. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Babamiri, Bahareh; Hallaj, Rahman; Salimi, Abdollah
2018-06-20
In the present study, we constructed an ultrasensitive solid surface fluorescence-immunosensor based on highly luminescent CdTe@CdS-PAMAM structures as nanoprobe for determination of HBsAg by monitoring fluorescence intensity. This strategy was achieved by using PAMAM as a signal amplifier; the PAMAM dendrimer with the many functional amine groups can amplify the fluorescence signal of QDs by covalent attachment of CdTe@CdS on PAMAM and hence, improve the sensitivity of the proposed method significantly. A sandwich type immunosensor was formed after the addition of HBsAg and the PAMAM-QD-Ab 2 , respectively. Under optimal conditions, the designed immunosensor demonstrates a good analytical performance for the HBsAg detection in an excellent linear range from 5 fg ml -1 to 0.15 ng ml -1 with the detection limit (LOD) of 0.6 fg ml -1 at a S/N ratio of 3. In addition, the analysis of human serum samples shows that the fluorescent immunoassay has the great potential for early diagnosis of hepatitis B and can be used for the detection of other tumor markers in clinical applications.
Gul, Nahid; Ganesan, Raji; Luesley, David M
2004-07-01
The objective of our study was to compare immunocyte infiltrates in vulval epithelium from low-grade and high-grade vulval intraepithelial neoplasia (VIN) lesions to determine if difference in T-cell presence reflected the grade of VIN. Thirty-six vulval specimens were obtained from 24 patients who had previously undergone vulval biopsies for VIN, 14 high-grade diseases (VIN 3 with or without HPV) and 14 low-grade diseases (VIN 1 and VIN 2 with or without HPV). Eight samples of normal vulval tissue were selected from the excision margins of resected vulval biopsies. The lymphocyte surface markers included CD3 (Pan T-cell marker), CD4 (T helper cells), and CD8 (T cytotoxic cells). Each tissue section was visualized under high power magnification and cells were counted in 10 random areas at the dermo-epidermal junction. A significantly higher number of total mean T lymphocytes were detected in VIN specimens compared to normal vulval tissue (P = 0.002). In low-grade VIN, there were significantly more CD8 cells than CD4 when compared to high-grade VIN. This difference in CD4/CD8 ratio was significant (P = 0.001). This study suggests that increased CD8 response in VIN is a feature of low-grade disease and we speculate that this may be a protective mechanism. In high-grade disease, both CD4 cells and CD8 cells are equally present with preservation of normal CD4/CD8 ratio.
Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P
2013-09-06
The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.
Hwang, Yun-Ho; Lee, Sung-Ju; Kang, Kyung-Yun; Hur, Jae-Seoun; Yee, Sung-Tae
2017-06-28
Lichen-forming fungi are known to have various biological activities, such as antioxidant, antimicrobial, antitumor, antiviral, anti-inflammation, and anti proliferative effects. However, the immunosuppressive effects of Bryoria sp. extract (BSE) have not previously been investigated. In this study, the inhibitory activity of BSE on the proliferation of CD8 + T cells and the mixed lymphocytes reaction (MLR) was evaluated in vitro. BSE was non-toxic in spleen cells and suppressed the growth of splenocytes induced by anti-CD3. The suppressed cell population in spleen cells consisted of CD8 + T cells and their proliferation was inhibited by the treatment with BSE. This extract significantly suppressed the IL-2 associated with T cell growth and IFN-γ as the CD8 + T cell marker. Furthermore, BSE reduced the expression of the IL-2 receptor alpha chain (IL-2Rα) on CD8 + T cells and CD86 on dendritic cells by acting as antigen-presenting cells. Finally, the MLR produced by the co-culture of C57BL/6 and MMC-treated BALB/c was suppressed by BSE. IL-2, IFN-γ, and CD69 on CD8 + T cells in MLR condition were inhibited by BSE. These results indicate that BSE inhibits the MLR via the suppression of IL-2Rα expression in CD8 + T cells. BSE has the potential to be developed as an anti-immunosuppression agent for organ transplants.
Chen, Da-Chung; Chen, Li-Yu; Ling, Qing-Dong; Wu, Meng-Hsueh; Wang, Ching-Tang; Suresh Kumar, S; Chang, Yung; Munusamy, Murugan A; Alarfajj, Abdullah A; Wang, Han-Chow; Hsu, Shih-Tien; Higuchi, Akon
2014-05-01
The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Soto, Lilian; Ferrier, Ashley; Aravena, Octavio; Fonseca, Elianet; Berendsen, Jorge; Biere, Andrea; Bueno, Daniel; Ramos, Verónica; Aguillón, Juan Carlos; Catalán, Diego
2015-01-01
The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcγRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naive B cells related to memory B cells compared with healthy controls. Transitional and naive B cells from patients express higher levels of CD86 and FcγRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, whereas memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate with different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B-cell regulation. These abnormalities may be determinant in the B-cell hyperactivation observed in systemic sclerosis. PMID:26483788
Garnache-Ottou, Francine; Chaperot, Laurence; Biichle, Sabeha; Ferrand, Christophe; Remy-Martin, Jean-Paul; Deconinck, Eric; de Tailly, Patrick Darodes; Bulabois, Bénédicte; Poulet, Jacqueline; Kuhlein, Emilienne; Jacob, Marie-Christine; Salaun, Véronique; Arock, Michel; Drenou, Bernard; Schillinger, Françoise; Seilles, Estelle; Tiberghien, Pierre; Bensa, Jean-Claude; Plumas, Joel; Saas, Philippe
2005-02-01
A new entity of acute leukemia coexpressing CD4(+)CD56(+) markers without any other lineage-specific markers has been identified recently as arising from lymphoid-related plasmacytoid dendritic cells (pDCs). In our laboratory, cells from a patient with such CD4(+)CD56(+) lineage-negative leukemia were unexpectedly found to also express the myeloid marker CD33. To confirm the diagnosis of pDC leukemia despite the CD33 expression, we demonstrated that the leukemic cells indeed exhibited pDC phenotypic and functional properties. In 7 of 8 other patients with CD4(+)CD56(+) pDC malignancies, we were able to confirm that the tumor cells expressed CD33 although with variable expression levels. CD33 expression was shown by flow cytometry, reverse transcriptase-polymerase chain reaction, and immunoblot analysis. Furthermore, CD33 monoclonal antibody stimulation of purified CD4(+)CD56(+) leukemic cells led to cytokine secretion, thus confirming the presence of a functional CD33 on these leukemic cells. Moreover, we found that circulating pDCs in healthy individuals also weakly express CD33. Overall, our results demonstrate that the expression of CD33 on CD4(+)CD56(+) lineage-negative cells should not exclude the diagnosis of pDC leukemia and underline that pDC-specific markers should be used at diagnosis for CD4(+)CD56(+) malignancies.
Lv, Minghua; Miao, Jinlin; Zhao, Peng; Luo, Xing; Han, Qing; Wu, Zhenbiao; Zhang, Kui; Zhu, Ping
2018-01-01
CD161 is used as a surrogate marker for Th17 cells, which are implicated in the pathogenesis of rheumatoid arthritis (RA). In this study, we evaluated the percentage, clinical significance, and CD98 and CD147 expression of CD4 + CD161 + T cells. The potential role of CD147 and CD98 in cyclophilin A-induced chemotaxis of CD4 + CD161 + T cells was analyzed. Thirty-seven RA patients, 15 paired synovial fluid (SF) of RA, and 22 healthy controls were recruited. The cell populations and surface expression of CD98 and CD147 were analyzed by flow cytometry. Spearman's rank correlation coefficient and multiple linear regression were applied to calculate the correlations. Chemotaxis assay was used to investigate CD4 + CD161 + T cell migration. We found that the percentage of CD4 + CD161 + T cells and their expression of CD147 and CD98 in SF were higher than in the peripheral blood of RA patients. Percentage of SF CD4 + CD161 + T cells was positively correlated with 28-Joint Disease Activity Score (DAS28). CD147 monoclonal antibody (HAb18) attenuated the chemotactic ability of CD4 + CD161 + T cells. An increased CD4 + CD161 + T cell percentage and expression of CD147 and CD98 were shown in RA SF. Percentage of SF CD4 + CD161 + T cells can be used as a predictive marker of disease activity in RA. CD147 block significantly decreased the chemotactic index of CD4 + CD161 + cells induced by cyclophilin A (CypA). These results imply that the accumulation of CD4 + CD161 + T cells in SF and their high expression of CD147 may be associated with CypA-mediated chemotaxis and contribute to local inflammation in RA.
Bahnassy, Abeer A; Fawzy, Mohamed; El-Wakil, Mohamed; Zekri, Abdel-Rahman N; Abdel-Sayed, Ahmed; Sheta, Marwa
2015-03-01
Hepatoblastoma (HB) is an embryonal tumor of the liver in children. Prognosis and response to treatment in HB are highly variable. Cancer stem cells (CSCs) constitute a population of cells, which contribute to the development and progression of many tumors. However, their role in HB is not well defined yet. We assessed the prognostic and predictive values of some CSC markers in HB patients. Protein and messenger RNA expressions of the CSC markers CD133, CD90, and CD44 were assessed in 43 HB patients and 20 normal hepatic tissues using immunohistochemistry and quantitative real-time polymerase chain reaction. The expression levels of these markers were correlated to standard prognostic factors, patients' response to treatment, overall survival (OS), and disease-free survival (DFS). CD44, CD90, and CD133 proteins were detected in 48.8%, 32.6%, and 48.8% compared with 46.5%, 41.7%, and 58.1% RNA, respectively (concordance, 77.8%-96%). None of the normal tissue samples was positive for any of the markers. Significant correlations were reported between α-fetoprotein and both CD44 and CD133 (P = 0.02) as well as between tumor types CD90 and CD133 (P = 0.009). Reduced OS correlated with CD44, CD90, and CD133 expressions (P < 0.001), advanced stage (P < 0.001), response to treatment (P < 0.001), and total excision of the tumor. Reduced DFS correlated with CD44 and CD133 expressions (P < 0.001) only. In conclusion, CD133, CD44, and CD90 could be used as prognostic and predictive markers in HB. High expression of these markers is significantly associated with poor response to treatment and reduced survival. Moreover, complete surgical resection and systemic chemotherapy are essential to achieve good response and prolonged survival, especially in early stage patients. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Miyamoto, Yuko J.; Mitchell, Jason S.; McIntyre, Bradley W.
2003-01-01
CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.
Kadić, Elma; Moniz, Raymond J; Huo, Ying; Chi, An; Kariv, Ilona
2017-02-02
Comprehensive understanding of cellular immune subsets involved in regulation of tumor progression is central to the development of cancer immunotherapies. Single cell immunophenotyping has historically been accomplished by flow cytometry (FC) analysis, enabling the analysis of up to 18 markers. Recent advancements in mass cytometry (MC) have facilitated detection of over 50 markers, utilizing high resolving power of mass spectrometry (MS). This study examined an analytical and operational feasibility of MC for an in-depth immunophenotyping analysis of the tumor microenvironment, using the commercial CyTOF™ instrument, and further interrogated challenges in managing the integrity of tumor specimens. Initial longitudinal studies with frozen peripheral blood mononuclear cells (PBMCs) showed minimal MC inter-assay variability over nine independent runs. In addition, detection of common leukocyte lineage markers using MC and FC detection confirmed that these methodologies are comparable in cell subset identification. An advanced multiparametric MC analysis of 39 total markers enabled a comprehensive evaluation of cell surface marker expression in fresh and cryopreserved tumor samples. This comparative analysis revealed significant reduction of expression levels of multiple markers upon cryopreservation. Most notably myeloid derived suppressor cells (MDSC), defined by co-expression of CD66b + and CD15 + , HLA-DR dim and CD14 - phenotype, were undetectable in frozen samples. These results suggest that optimization and evaluation of cryopreservation protocols is necessary for accurate biomarker discovery in frozen tumor specimens.
CD146(+) cells are essential for kidney vasculature development.
Halt, Kimmo J; Pärssinen, Heikki E; Junttila, Sanna M; Saarela, Ulla; Sims-Lucas, Sunder; Koivunen, Peppi; Myllyharju, Johanna; Quaggin, Susan; Skovorodkin, Ilya N; Vainio, Seppo J
2016-08-01
The kidney vasculature is critical for renal function, but its developmental assembly mechanisms remain poorly understood and models for studying its assembly dynamics are limited. Here, we tested whether the embryonic kidney contains endothelial cells (ECs) that are heterogeneous with respect to VEGFR2/Flk1/KDR, CD31/PECAM, and CD146/MCAM markers. Tie1Cre;R26R(YFP)-based fate mapping with a time-lapse in embryonic kidney organ culture successfully depicted the dynamics of kidney vasculature development and the correlation of the process with the CD31(+) EC network. Depletion of Tie1(+) or CD31(+) ECs from embryonic kidneys, with either Tie1Cre-induced diphtheria toxin susceptibility or cell surface marker-based sorting in a novel dissociation and reaggregation technology, illustrated substantial EC network regeneration. Depletion of the CD146(+) cells abolished this EC regeneration. Fate mapping of green fluorescent protein (GFP)-marked CD146(+)/CD31(-) cells indicated that they became CD31(+) cells, which took part in EC structures with CD31(+) wild-type ECs. EC network development depends on VEGF signaling, and VEGF and erythropoietin are expressed in the embryonic kidney even in the absence of any external hypoxic stimulus. Thus, the ex vivo embryonic kidney culture models adopted here provided novel ways for targeting renal EC development and demonstrated that CD146(+) cells are critical for kidney vasculature development. Copyright © 2016 International Society of Nephrology. All rights reserved.
Wang, Shunyou; Tran, Linh M.; Goldstein, Andrew S.; Lawson, Devon; Chen, Donghui; Li, Yunfeng; Guo, Changyong; Zhang, Baohui; Fazli, Ladan; Gleave, Martin; Witte, Owen N.; Garraway, Isla P.; Wu, Hong
2012-01-01
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics. PMID:22880034
Simons, K H; Aref, Z; Peters, H A B; Welten, S P; Nossent, A Y; Jukema, J W; Hamming, J F; Arens, R; de Vries, M R; Quax, P H A
2018-06-01
T cells have a distinctive role in neovascularization, which consists of arteriogenesis and angiogenesis under pathological conditions and vasculogenesis under physiological conditions. However, the role of co-stimulation in T cell activation in neovascularization has yet to be established. The aim of this study was to investigate the role T cell co-stimulation and inhibition in angiogenesis, arteriogenesis and vasculogenesis. Hind limb ischemia was induced by double ligation of the left femoral artery in mice and blood flow recovery was measured with Laser Doppler Perfusion Imaging in control, CD70 -/- , CD80/86 -/- , CD70/80/86 -/- and CTLA4 +/- mice. Blood flow recovery was significantly impaired in mice lacking CD70 compared to control mice, but was similar in CD80/86 -/- , CTLA4 +/- and control mice. Mice lacking CD70 showed impaired vasculogenesis, since the number of pre-existing collaterals was reduced as observed in the pia mater compared to control mice. In vitro an impaired capability of vascular smooth muscle cells (VSMC) to activate T cells was observed in VSMC lacking CD70. Furthermore, CD70 -/- , CD80/86 -/- and CD70/80/86 -/- mice showed reduced angiogenesis in the soleus muscle 10 days after ligation. Arteriogenesis was also decreased in CD70 -/- compared to control mice 10 and 28 days after surgery. The present study is the first to describe an important role for T cell activation via co-stimulation in angiogenesis, arteriogenesis and vasculogenesis, where the CD27-CD70 T cell co-stimulation pathway appears to be the most important co-stimulation pathway in pre-existing collateral formation and post-ischemic blood flow recovery, by arteriogenesis and angiogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells
Sun, Xun; Chen, Simu; Han, Jianfeng; Zhang, Zhirong
2012-01-01
Background To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs) more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG) and a series of its mannosylated derivatives. Methods PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs) using flow cytometry. Results PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation. Conclusion These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system. PMID:22745554
Classification of sensitizing and irritative potential in a combined in-vitro assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanner, Reinhard, E-mail: reinhard.wanner@charite.d; Sonnenburg, Anna; Quatchadze, Maria
2010-06-01
We have developed a coculture system which in parallel indicates the sensitizing and irritative potential of xenobiotics. The assay is named loose-fit coculture-based sensitization assay (LCSA) and may be performed within 5 days. The system is composed of human monocytes that differentiate to a kind of dendritic cells by 2-day culturing in the presence of allogenic keratinocytes. The culture medium is enriched by a cocktail of recombinant cytokines. On day 3, concentration series of probes are added. On day 5, cells are harvested and analyzed for expression range of CD86 as a marker of sensitizing potential and for uptake ofmore » the viability stain 7-AAD as a marker of irritative potential. Estimation of the concentration required to cause a half-maximal increase in CD86 expression allowed quantification of sensitizing potential, and estimation of the concentration required to reduce viability to 50% allowed quantification of irritative potential. Examination of substances with known potential resulted in categorization of test scores. To evaluate our data, we have compared results with those of the validated animal-based sensitization test, the murine local lymph node assay (LLNA, OECD TG 429). To a large extent, results from LCSA and from LLNA achieved analogous grouping of allergens into categories like weak-moderate-strong. However, the new assay showed an improved capacity to distinguish sensitizers from non-sensitizers and irritants. In conclusion, the LCSA contains potential to fulfil the requirements of the EU's programme for the safety of chemicals 'Registration, Evaluation, Authorisation and Restriction of chemical substances' (REACH, 2006) to replace animal models.« less
Coexpression of CD14 and CD326 discriminate hepatic precursors in the human fetal liver.
Fomin, Marina E; Tai, Lung-Kuo; Bárcena, Alicia; Muench, Marcus O
2011-07-01
The molecular and cellular profile of liver cells during early human development is incomplete, complicating the isolation and study of hepatocytes, cholangiocytes, and hepatic stem cells from the complex amalgam of hepatic and hematopoietic cells, that is, the fetal liver. Epithelial cell adhesion molecule, CD326, has emerged as a marker of hepatic stem cells, and lipopolysaccharide receptor CD14 is known to be expressed on adult hepatocytes. Using flow cytometry, we studied the breadth of CD326 and CD14 expression in midgestation liver. Both CD45(+) hematopoietic and CD45(-) nonhematopoietic cells expressed CD326. Moreover, diverse cell types expressing CD326 were revealed among CD45(-) cells by costaining for CD14. Fluorescence-activated cell sorting was used to isolate nonhematopoietic cells distinguished by expression of high levels of CD326 and low CD14 (CD326(++)CD14(lo)), which were characterized for gene expression associated with liver development. CD326(++)CD14(lo) cells expressed the genes albumin, α-fetoprotein, hepatic nuclear factor 3α, prospero-related homeobox 1, cytochrome P450 3A7, α(1)-antitrypsin, and transferrin. Proteins expressed included cell-surface CD24, CD26, CD29, CD34, CD49f, CD243, and CD324 and, in the cytoplasm, cytokeratins-7/8 (CAM 5.2 antigen) and some cytokeratin-19. Cultured CD326(++)CD14(lo) cells yielded albumin(+) hepatocytes, cytokeratin-19(+) cholangiocytes, and hepatoblasts expressing both markers. Using epifluorescence microscopy we observed CD326 and CD14 expression on fetal hepatocytes comprising the liver parenchyma, as well as on cells associated with ductal plates and surrounding large vessels. These findings indicate that expression of CD14 and CD326 can be used to identify functionally distinct subsets of fetal liver cells, including CD326(++)CD14(lo) cells, representing a mixture of parenchymal cells, cholangiocytes, and hepatoblasts.
Kim, Yong-Man; Jung, Min-Hyung; Song, Ha-Young; Yang, Hyun Ok; Lee, Sung-Tae; Kim, Jong-Hyeok; Kim, Young-Tak; Nam, Joo-Hyun; Mok, Jung-Eun
2005-02-01
This study was designed to establish a more effective and safe culture system for adoptive immunotherapy by investigating the use of homologous cord blood plasma (HCBP) instead of fetal bovine serum (FBS), which has various limitations including ethical problems for the ex vivo expansion of human umbilical T lymphocytes. Fresh human umbilical mononuclear cell fractions were isolated by Ficoll-Hypaque density centrifugation. Nonadherent mononuclear cell fractions were cultured with anti-CD3 antibody (5 microg/ml), IL-2 (175 U/ml), and either 10% FBS or 10% HCBP. On day 8, the cellular proliferation rate and cell surface markers were assessed. There was no significant difference in proliferation when human umbilical cord blood T lymphocytes were grown in medium supplemented with FBS or HCBP (p > 0.05). In medium containing FBS, the proportion of CD3(+)CD4(+) (markers for helper T cell), CD3(+)CD8(+) (cytotoxic T cell), CD3(+)CD25(+) (activated T cell), CD3(+)CD38(+) (immature T cell), and CD3(+)CD45RO(+) (memory T cell) cells was significantly increased (p < 0.05), whereas proportion of CD3(+)CD45RA(+) (naive T cell) and CD16(+)CD56(+) (NK cell) cells was significantly decreased (p < 0.05). In HCBP supplemented medium, the proportion of CD3(+)CD8(+), CD3(+)CD25(+), CD3(+)CD45RA(+), and CD3(+)CD45RO(+) cells was significantly increased (p < 0.05). The proportion of CD3(+)CD4(+), CD3(+)CD45RO(+) and CD3(+)CD38(+) cells was significantly higher, but proportion of CD3(+)CD45RA(+) and CD3(+)CD8(+) cells was significantly lower in FBS compared with HCBP supplemented medium (p < 0.05). Our results support the feasibility of ex vivo expansion of human umbilical cord blood T lymphocytes in medium supplemented with HCBP for future adoptive cellular immunotherapy.
Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model.
Hopper, Niina; Wardale, John; Brooks, Roger; Power, Jonathan; Rushton, Neil; Henson, Frances
2015-01-01
This study characterized peripheral blood mononuclear cells (PBMC) in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC's were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC) of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1) MSC alone; (2) MSCs and PBMCs at a ratio of 20:1; (3) MSCs and PBMC at a ratio of 2:1 and (4) PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006). However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%). This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007), BMP6 10.7-fold (p = 0.0004), GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p = 0.046). The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key effect on the derivation of a novel adherent cell population with an MSC-like phenotype. This study presents a novel and easily attainable point-of-care cell therapy with PBMCs to treat osteochondral defects in the knee avoiding any cell manipulations outside the surgical room.
Tanimura, Natsuko; Saitoh, Shin-Ichiroh; Ohto, Umeharu; Akashi-Takamura, Sachiko; Fujimoto, Yukari; Fukase, Koichi; Shimizu, Toshiyuki; Miyake, Kensuke
2014-06-01
TLR4/MD-2 senses lipid A, activating the MyD88-signaling pathway on the plasma membrane and the TRIF-signaling pathway after CD14-mediated TLR4/MD-2 internalization into endosomes. Monophosphoryl lipid A (MPL), a detoxified derivative of lipid A, is weaker than lipid A in activating the MyD88-dependent pathway. Little is known, however, about mechanisms underlying the attenuated activation of MyD88-dependent pathways. We here show that MPL was impaired in induction of CD14-dependent TLR4/MD-2 dimerization compared with lipid A. Impaired TLR4/MD-2 dimerization decreased CD14-mediated TNFα production. In contrast, MPL was comparable to lipid A in CD14-independent MyD88-dependent TNFα production and TRIF-dependent responses including cell surface CD86 up-regulation and IFNβ induction. Although CD86 up-regulation is dependent on TRIF signaling, it was induced by TLR4/MD-2 at the plasma membrane. These results revealed that the attenuated MPL responses were due to CD14-initiated responses at the plasma membrane, but not just to responses initiated by MyD88, that is, MPL was specifically unable to induce CD14-dependent TLR4/MD-2 dimerization that selectively enhances MyD88-mediated responses at the plasma membrane. © The Japanese Society for Immunology. 2013. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mihaylova, Ivana; DeRuyter, Marcel; Rummens, Jean-Luc; Bosmans, Eugene; Maes, Michael
2007-08-01
There is some evidence that patients with chronic fatigue syndrome (CFS) suffer from immune abnormalities, such as immune activation and decreased immune cell responsivity upon polyclonal stimili. This study was designed to evaluate lymphocyte activation in CFS by using a CD69 expression assay. CD69 acts as a costimulatory molecule for T- and natural killer (NK) cell activation. We collected whole blood from CFS patients, who met CDC criteria, and healthy volunteers. The blood samples were stimulated with mitogens during 18 h and the levels of activated T and NK cells expressing CD69 were measured on a Coulter Epics flow cytometer using a three color immunofluorescence staining protocol. The expression of the CD69 activation marker on T cells (CD3+, CD3+CD4+, and CD3+CD8+) and on NK cells (CD45+CD56+) was significantly lower in CFS patients than in healthy subjects. These differences were significant to the extent that a significant diagnostic performance was obtained, i.e. the area under the ROC curve was around 89%. No differences either in the number of leukocytes or in the number or percentage of lymphocytes, i.e. CD3, CD4, CD8 and CD19, could be found between CFS patients and the controls. Patients with CFS show defects in T- and NK cell activation. Since induction of CD69 surface expression is dependent on the activation of the protein kinase C (PKC) activation pathway, it is suggested that in CFS there is a disorder in the early activation of the immune system involving PKC.
Ge, Chiyu; Xing, Yun; Wang, Qi; Xiao, Wen; Lu, Yong; Hu, Xiangbing; Gao, Zhenqiu; Xu, Maolei; Ma, Yanjun; Cao, Rongyue; Liu, Jingjing
2011-12-01
Therapeutic vaccination with dendritic cells (DCs) pulsed with tumor cell lysate vaccine (H-D) represents an attractive approach for hepatocellular carcinoma (HCC) treatment. However, the efficacy of this approach is not most satisfactory for the low levels of T helper 1 (Th1)-type cytokines secretion and weak T cell responses. In this study, in order to increase the potency of H-D, two tandem repeats of microbial HSP70 peptide epitope 407-426 (2mHSP70(407-426), M2) which has been demonstrated to be effective in enhancing DC maturation were applied. The DC vaccine (HM-D) which was HCC tumor cell lysate pulsed with M2 was developed. Nevertheless, the immunotherapeutic effect was still not satisfactory enough even some promotion was obtained. Therefore, OK-432 (OK), which is a useful anti-cancer agent and effectively in stimulating DC maturation, was introduced to HM-D. Our results demonstrated that treatment with the improved DC vaccine which was tumor cell lysate pulsed with M2 and OK (HMO-D), compared with H-D and HM-D, significantly increased cell surface markers (MHC-I and II, CD40, CD80, CD86 and CD11c) expression on DCs, enhanced Th1-type cytokines (IL-12, TNF-α and IFN-γ) production but not Th2-type cytokine (IL-5) production, induced remarkable high levels of lymphocytes proliferation and CD8(+) cytotoxic T-lymphocyte (CTL). Furthermore, immunization with HMO-D effectively reduced tumor progression and enhanced the survival of mice with H22 tumors. Besides, we also found that the capability of M2 in inducing the Th1 cytokines was stronger than OK. In view of these results, HMO-D vaccination provided a novel immunotherapeutic approach for the treatment of HCC. Copyright © 2011 Elsevier B.V. All rights reserved.
[Cellular immunophenotypes in 97 adults with acute leukemia].
Piedras, J; López-Karpovitch, X; Cárdenas, M R
1997-01-01
To analyze hematopoietic cell surface antigen reactivity in acute leukemia (AL) by flow cytometry and identify acute mixed-lineage leukemias (AMLL) employing the most widely accepted criteria. Ninety seven patients with de novo AL were studied. Cell surface antigens were investigated with monoclonal antibodies directed to: B lymphoid (CD10, CD19, CD20, CD21, CD22); T lymphoid (CD2, CD3, CD5, CD7); and myeloid (CD13, CD14, CD15, CD33, CD41) cell lineages. Maturation cell-associated antigens (CD34, HLA-DR and TdT) were also studied. Twelve patients unclassified by cytomorphology could be classified by immunophenotype. Using cytomorphologic, cytochemical and immunophenotypic data, 54 cases corresponded to acute lymphoblastic leukemia (ALL) and 43 were acute myeloblastic leukemia (AML). In All there were 63% B lineage, 15% T, 7% T/B, 6% undifferentiated and 9% mixed-lineage (coexpression of two or more myeloid-associated antigens). In AML, myeloid immunophenotype was observed in 86% undifferentiated in 2%, and mixed-lineage in 12% (coexpression of two or more lymphoid-associated antigens). In addition, 26% of ALL cases and 12% of AML cases expressed a single myeloid and lymphoid antigen respectively. The most common aberrant antigens in ALL and AML were CD13 and CD7 respectively. The highest frequency of CD34 antigen expression (90%) was detected in patients with AMLL. Flow cytometric immunophenotypic analysis allowed to: a) establish diagnosis in cytomorphologically unclassified cases; b) identify AMLL with a frequency similar to that reported in other series; and c) confirm the heterogeneity of AL.
Lu, Lina; McCaslin, Delbert; Starzl, Thomas E.; Thomson, Angus W.
2010-01-01
The functional maturation of dendritic cells (DC) and other antigen-presenting cells is believed to reflect the upregulation of cell surface major histocompatibility complex (MHC) class II and other T cell co-stimulatory molecules, especially the CD28 ligands B7–1 (CD80) and B7–2 (CD86). In this study, we propagated cells exhibiting characteristics of DC precursors from the bone marrow (BM) of BIO mice (H-2b; I-A1) in response to granulocyte-macrophage colony stimulating factor (GM-CSF). The methods used were similar to those employed previously to propagate DC progenitors from normal mouse liver. Cells expressing DC lineage markers (NLDC 145+, 33D1+ N418+) harvested from 8–10-day GM-CSF stimulated BM cell cultures were CD45+, heat-stable antigen+, CD54+, CD44+, MHC class II+, B7–1dim but B7–2− (costimulatory molecule-deficient). Supplementation of cultures with interleukin-4 (IL-4) in addition to GM-CSF however, resulted in marked upregulation of MHC class II and B7–2 expression. These latter cells exhibited potent allostimulatory activity in primary mixed leukocyte cultures. In contrast, the cells stimulated with GM-CSF alone were relatively weak stimulators and induced alloantigen-specific hyporesponsiveness in allogeneic T cells (C3H; H-2k; I-E+) detected upon re-stimulation in secondary MLR. This was associated with blockade of IL-2 production. Reactivity to third-party stimulators was intact. The hyporesponsiveness induced by the GM-CSF stimulated, costimulatory molecule-deficient cells was prevented by incorporation of anti-CD28 monoclonal antibody in the primary MLR and was reversed by addition of IL-2 to restimulated T cells. The findings show that MHC class II+ B7–2− cells with a DC precursor phenotype can induce alloantigen-specific hyporesponsiveness in vitro. Under the appropriate conditions, such costimulatory molecule-deficient cells could contribute to the induction of donor-specific unresponsiveness in vivo. PMID:8545887
Chen, Lin; Xie, Xiaoyan; Xi, Jiafei; Lyu, Yang; Tian, Yu; Liu, Daqing; Yue, Wen; Li, Yanhua; Nan, Xue; Li, Siting; Fan, Zeng; Pei, Xuetao
2016-01-01
To discover the techniques for ex vivo generation and cryopreservation of erythroid progenitor cells (EPCs)derived from umbilical cord blood (UCB)mononuclear cells (MNCs). UCB was chosen as the source of EPCs. Erythrocytes were precipitated by hydroxyethyl starch (HES). MNCs were separated by Ficoll density gradient centrifugation. Erythroid progenitor cell were generated from MNC ex vivo in suspension culture supplemented with stem cell growth factor, insulin growth factor, erythropoietin, Fms- liketyrosinekinase ligand, transferrin and dexamethasone. Cell maturation was evaluated by morphologic analysis and CD71/CD235a expression profiling. In vitro induced cells were cryopreserved using different cryopreservation media. The cell survival rate, phenotype and proliferation curves were detected after cell thawing. With the extension of culture time, the total number of cells increased significantly accompanied with the elevation of CD71 and CD235 positive populations. After 14- day inducing, the cells reached to approximately 110 times of the starting number with the cell viability as (88.92±0.95)%. The percentages of cell surface markers were (86.77±9.11)% for CD71 and (64.47±16.67)% for CD71/CD235, respectively. With the extension of inducing time, wright- Giemsa staining showed that the middle erythroblasts appeared mostly at day 10, and the late erythroblasts were seen at day 14. The red pellets were present at day 14, which indicated the more production of hemoglobin. Colony forming assay showed that erythroid colonies at induction day 7 were higher than that for non-induced cells (326.00±97.96vs 61.60±20.03 per 2 000 cells). With the extension of culture time, the number of erythroid colonies decreased. Induced EPCs were preserved with different cryopreservation solutions, in which 10% DMSO were better than 5% DMSO. Additionally, 10% DMSO + 2% HSA showed no different with 10% DMSO + 5% HSA. Combined 50% plasma with 2% HSA was more effective. This non- serum culture media could effectively induced and expanded EPCs, and 10% DMSO + 2% HSA + 50% plasma appeared to be a desirable cryopreservation solution for EPCs from UCB.
Zhou, Yan; Ruan, Zheng; Zhou, Xiaoli; Huang, Xiaoliu; Li, Hua; Wang, Ling; Zhang, Cui; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong
2015-01-01
Some oligosaccharides have immunoregulatory and anti-inflammatory functions in the intestine. This study investigated the immunoregulatory effect of lactosucrose (LS) on 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitic rats. Alkaline phosphatase activity was increased but myeloperoxidase activity was decreased in the LS-TNBS group, as compared with the TNBS group (colitis rats without receiving LS). LS supplementation stimulated IL-4 and IL-10 production, while up-regulating CD86 expression in dendritic cells. LS supplementation reduced the ratio of CD80/CD86 and the ratio of IFN-γ/IL-4 compared to the TNBS group. Moreover, IFN-γ was significantly correlated with CD80 (r = 0.764, p < 0.01), whereas IL-4 was significantly correlated with CD86 (r = 0.489, p < 0.05). These results indicated that LS attenuated colitis by promoting the production of Th2-type cytokines and rebalancing the ratio of Th1/Th2 and that enhanced IL-4 production is correlated with enhanced CD86 expression in the gut. Therefore, LS is a functional food for patients with inflammatory bowel disease.
Riecken, B; Gutfleisch, J; Schlesier, M; Peter, H H
1994-01-01
Neutrophils are the target of autoantibodies in Wegener's granulomatosis (WG). In this study, granulocyte function and surface marker expression were investigated in patients with WG. The oxidative burst in response to phorbol myristate acetate (PMA) was tested with granulocytes of 25 patients with histologically proven WG. A significantly diminished percentage of oxygen radical-producing cells was found in patients with active disease. Surface antigen expression of CD11b and LAM-1 was analysed on granulocytes of 20 patients with WG. Whereas the expression of CD11b was normal, surface expression of LAM-1 was decreased in nine cases with WG. The decrease of LAM-1 correlated with disease activity. Phagocytosis of Escherichia coli was tested in 10 patients with WG, and normal values were found in all cases. We conclude that down-regulation of LAM-1 may be a marker of disease activity in WG. The altered response to PMA may indicate functional changes in granulocyte reactivity due to autoantibody-induced damage of the granulocyte membrane. PMID:7512009
Trogocytosis of multiple B-cell surface markers by CD22 targeting with epratuzumab.
Rossi, Edmund A; Goldenberg, David M; Michel, Rosana; Rossi, Diane L; Wallace, Daniel J; Chang, Chien-Hsing
2013-10-24
Epratuzumab, a humanized anti-CD22 antibody, is currently in clinical trials of B-cell lymphomas and autoimmune diseases, demonstrating therapeutic activity in non-Hodgkin lymphoma (NHL) and systemic lupus erythematosus (SLE). Thus, epratuzumab offers a promising option for CD22-targeted immunotherapy, yet its mechanism of action remains poorly understood. Here we report for the first time that epratuzumab promptly induces a marked decrease of CD22 (>80%), CD19 (>50%), CD21 (>50%), and CD79b (>30%) on the surface of B cells in peripheral blood mononuclear cells (PBMCs) obtained from normal donors or SLE patients, and of NHL cells (Daudi and Raji) spiked into normal PBMCs. Although some Fc-independent loss of CD22 is expected from internalization by epratuzumab, the concurrent and prominent reduction of CD19, CD21, and CD79b is Fc dependent and results from their transfer from epratuzumab-opsonized B cells to FcγR-expressing monocytes, natural killer cells, and granulocytes via trogocytosis. The findings of reduced levels of CD19 are implicative for the efficacy of epratuzumab in autoimmune diseases because elevated CD19 has been correlated with susceptibility to SLE in animal models as well as in patients. This was confirmed herein by the finding that SLE patients receiving epratuzumab immunotherapy had significantly reduced CD19 compared with treatment-naïve patients.
Roche, Sylvain; El Garch, Hanane; Brunet, Sylvie; Poulet, Hervé; Iwaz, Jean; Ecochard, René; Vanhems, Philippe
2013-01-01
The early events of human immunodeficiency virus infection seem critical for progression toward disease and antiretroviral therapy initiation. We wanted to clarify some still unknown prognostic relationships between inoculum size and changes in various immunological and virological markers. Feline immunodeficiency virus infection could be a helpful model. Viremia and T-cell markers (number of CD4, CD8, CD8β(low)CD62L(neg) T-cells, CD4/CD8 ratio, and percentage of CD8β(low)CD62L(neg) cells among CD8 T-cells) were measured over 12 weeks in 102 cats infected with different feline immunodeficiency virus strains and doses. Viremia and T-cell markers trajectory groups were determined and the dose-response relationships between inoculum titres and trajectory groups investigated. Cats given the same inoculum showed different patterns of changes in viremia and T-cell markers. A statistically significant positive dose-response relationship was observed between inoculum titre and i) viremia trajectory-groups (r = 0.80, p<0.01), ii) CD8β(low)CD62L(neg) cell-fraction trajectory-groups (r = 0.56, p<0.01). Significant correlations were also found between viremia and the CD4/CD8 ratio and between seven out of ten T-cell markers. In cats, the infectious dose determines early kinetics of viremia and initial CD8+ T-cell activation. An expansion of the CD8β(low)CD62L(neg) T-cells might be an early predictor of progression toward disease. The same might be expected in humans but needs confirmation.
Tamaki, Tetsuro; Akatsuka, Akira; Ando, Kiyoshi; Nakamura, Yoshihiko; Matsuzawa, Hideyuki; Hotta, Tomomitsu; Roy, Roland R; Edgerton, V Reggie
2002-05-13
Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45- fraction. Cells in this fraction were approximately 94% positive for Sca-1, and mostly negative (<3% positive) for CD14, 31, 49, 144, c-kit, and FLK-1. The CD34+/45- cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes, endothelial, and myogenic cells. The CD34+/45- cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting, CD34+/45- cells expressed only c-met mRNA, and did not express any other myogenic cell-related markers such as MyoD, myf-5, myf-6, myogenin, M-cadherin, Pax-3, and Pax-7. However, after 3 d of culture, these cells expressed mRNA for all myogenic markers. CD34+/45- cells were distinct from satellite cells, as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al., 2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles, and that they can potentially contribute to postnatal skeletal muscle growth.
Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R
2016-04-01
The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas.
Kalantari, Elham; Asgari, Mojgan; Nikpanah, Seyedehmoozhan; Salarieh, Naghme; Asadi Lari, Mohammad Hossein; Madjd, Zahra
2017-10-01
Cancer stem cells (CSCs) are the main players of prostate tumorigenesis thus; characterization of CSCs can pave the way for understanding the early detection, drug resistance, metastasis and relapse. The current study was conducted to evaluate the expression level and clinical significance of the potential CSC markers CD44 and CD133 in a series of prostate tissues. One hundred and forty eight prostate tissues composed of prostate cancer (PCa), high-grade prostatic intraepithelial neoplasia (HGPIN), and benign prostate hyperplasia (BPH) were immunostained for the putative CSC markers CD44 and CD133. Subsequently, the correlation between the expression of these markers and the clinicopathological variables was examined. A higher level of CD44 expression was observed in 42% of PCa, 57% of HGPIN, and 42% BPH tissues. In the case of CD133 expression PCa, HGPIN, and BPH samples demonstrated high immunoreactivity in 46%, 43%, and 42% of cells, respectively. Statistical analysis showed an inverse significant correlation between CD44 expression with Gleason score of PCa (P = 0.02), while no significant correlation was observed between CD133 expression and clinicopathological parameters. A significant reciprocal correlation was observed between the expression of two putative CSC markers CD44 and CD133 in PCa specimens while not indicating clinical significance. Further clinical investigation is required to consider these markers as targets of new therapeutic strategies for PCa.
21 CFR 500.86 - Marker residue and target tissue.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Marker residue and target tissue. 500.86 Section...-Producing Animals § 500.86 Marker residue and target tissue. (a) For each edible tissue, the sponsor shall...) From these data, FDA will select a target tissue and a marker residue and designate the concentration...
21 CFR 500.86 - Marker residue and target tissue.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Marker residue and target tissue. 500.86 Section...-Producing Animals § 500.86 Marker residue and target tissue. (a) For each edible tissue, the sponsor shall...) From these data, FDA will select a target tissue and a marker residue and designate the concentration...
Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation
Li, Bobby W. S.; Stadhouders, Ralph; de Bruijn, Marjolein J. W.; Lukkes, Melanie; Beerens, Dior M. J. M.; Brem, Maarten D.; KleinJan, Alex; Bergen, Ingrid; Vroman, Heleen; Kool, Mirjam; van IJcken, Wilfred F. J.; Rao, Tata Nageswara; Fehling, Hans Jörg; Hendriks, Rudi W.
2017-01-01
Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought, whereby their surface marker and gene expression profile are highly dynamic. PMID:29250067
Suppressive role of hepatic dendritic cells in concanavalin A-induced hepatitis
Tomiyama, C; Watanabe, H; Izutsu, Y; Watanabe, M; Abo, T
2011-01-01
Concanavalin A (Con A)-induced hepatitis is a mouse model of acute autoimmune hepatitis. The aim of this study was to investigate the role of hepatic dendritic cells (DC) in the immune modulation of tissue damage. Almost all hepatic DC were plasmacytoid DC (CD11c+ I-Alow B220+); however, conventional DC were CD11c+ I-Ahigh B220–. At an early stage (3–6 h) after Con A administration, the number of DC in both the liver and spleen decreased, increasing thereafter (12–24 h) in parallel with hepatic failure. The hepatic CD11c+ DC population contained many CD11b- cells, while the majority of splenic CD11c+ DC were CD11b+. After Con A administration, the proportion of I-A+ and CD11b+ cells within the CD11c+ DC population tended to increase in the liver, but not in the spleen. Similarly, expression of the activation markers CD80, CD86 and CD40 by CD11c+ DC increased in the liver, but not in the spleen. Next, adoptive transfer of DC isolated from the liver and spleen was performed 3 h after Con A administration to examine the immunomodulatory function of DC. Only hepatic DC had the ability to suppress hepatic failure. Analysis of cytokine production and subsequent identification of the effector cells showed that hepatic DC achieved this by suppressing the production of interleukin (IL)-12 and IL-2, rather than modulating effector cell function. PMID:21985372
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells
Xiong, Jimin; Menicanin, Danijela; Marino, Victor
2016-01-01
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.
Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan
2016-01-01
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.
Cells Isolated from Human Periapical Cysts Express Mesenchymal Stem Cell-like Properties
Marrelli, Massimo; Paduano, Francesco; Tatullo, Marco
2013-01-01
We provide a detailed description of mesenchymal stem cells (MSCs) isolated from human periapical cysts, which we have termed hPCy-MSCs. These cells have a fibroblast-like shape and adhere to tissue culture plastic surfaces. hPCy-MSCs possess high proliferative potential and self-renewal capacity properties. We characterised the immunophenotype of hPCy-MSCs (CD73+, CD90+, CD105+, CD13+, CD29+, CD44+, CD45-, STRO-1+, CD146+) by flow cytometry and immunofluorescence. hPCy-MSCs possess the potential to differentiate into osteoblast- and adipocyte-like cells in vitro. Multi-potentiality was evaluated with culture-specific staining and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis for osteo/odontogenic and adipogenic markers. This is the first report to indicate that human periapical cysts contain cells with MSC-like properties. Taken together, our findings indicate that human periapical cysts could be a rich source of MSCs. PMID:24250252
Cells isolated from human periapical cysts express mesenchymal stem cell-like properties.
Marrelli, Massimo; Paduano, Francesco; Tatullo, Marco
2013-01-01
We provide a detailed description of mesenchymal stem cells (MSCs) isolated from human periapical cysts, which we have termed hPCy-MSCs. These cells have a fibroblast-like shape and adhere to tissue culture plastic surfaces. hPCy-MSCs possess high proliferative potential and self-renewal capacity properties. We characterised the immunophenotype of hPCy-MSCs (CD73(+), CD90(+), CD105(+), CD13(+), CD29(+), CD44(+), CD45(-), STRO-1(+), CD146(+)) by flow cytometry and immunofluorescence. hPCy-MSCs possess the potential to differentiate into osteoblast- and adipocyte-like cells in vitro. Multi-potentiality was evaluated with culture-specific staining and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis for osteo/odontogenic and adipogenic markers. This is the first report to indicate that human periapical cysts contain cells with MSC-like properties. Taken together, our findings indicate that human periapical cysts could be a rich source of MSCs.
Gössl, Mario; Mödder, Ulrike I; Atkinson, Elizabeth J; Lerman, Amir; Khosla, Sundeep
2008-10-14
This study was designed to test whether patients with coronary atherosclerosis have increases in circulating endothelial progenitor cells (EPCs) expressing an osteogenic phenotype. Increasing evidence indicates a link between bone and the vasculature, and bone marrow and circulating osteogenic cells have been identified by staining for the osteoblastic marker, osteocalcin (OCN). Endothelial progenitor cells contribute to vascular repair, but repair of vascular injury may result in calcification. Using cell surface markers (CD34, CD133, kinase insert domain receptor [KDR]) to identify EPCs, we examined whether patients with coronary atherosclerosis had increases in the percentage of EPCs expressing OCN. We studied 72 patients undergoing invasive coronary assessment: control patients (normal coronary arteries and no endothelial dysfunction, n = 21) versus 2 groups with coronary atherosclerosis-early coronary atherosclerosis (normal coronary arteries but with endothelial dysfunction, n = 22) and late coronary atherosclerosis (severe, multivessel coronary artery disease, n = 29). Peripheral blood mononuclear cells were analyzed using flow cytometry. Compared with control patients, patients with early or late coronary atherosclerosis had significant increases (approximately 2-fold) in the percentage of CD34+/KDR+ and CD34+/CD133+/KDR+ cells costaining for OCN. Even larger increases were noted in the early and late coronary atherosclerosis patients in the percentage of CD34+/CD133-/KDR+ cells costaining for OCN (5- and 2-fold, p < 0.001 and 0.05, respectively). A higher percentage of EPCs express OCN in patients with coronary atherosclerosis compared with subjects with normal endothelial function and no structural coronary artery disease. These findings have potential implications for the mechanisms of vascular calcification and for the development of novel markers for coronary atherosclerosis.
Engineering antigens for in situ erythrocyte binding induces T-cell deletion.
Kontos, Stephan; Kourtis, Iraklis C; Dane, Karen Y; Hubbell, Jeffrey A
2013-01-02
Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.
Madera-Sandoval, Ruth L; Reyes-Maldonado, Elba; Dzul-Caamal, Ricardo; Gallegos-Rangel, Esperanza; Domínguez-López, María Lilia; García-Latorre, Ethel; Vega-López, Armando
2015-06-01
FALC cells are natural helper cells producing Th2-type cytokines, which express c-kit, Sca-1, IL7R and CD45 in mouse and human. These cells are involved in allergic responses and contribute to the inflammatory reactions of adipose tissue; however, a lack of information prevails about the presence of these cells in other species. The aim of the study was to identify and characterise FALC cells in the common carp (Cyprinus carpio) using immunohistochemistry and molecular biology techniques as well as to explore their relationships with their microenvironment. Histological description of the FALC was performed using H&E and polyclonal antibodies were used against cell-surface markers such as c-kit, Sca-1 and CD45. Furthermore, gene expression of c-kit, Sca-1 and IL7R was assessed. C. carpio FALC cells express the same surface markers reported in FALC of the mouse at both the pre- and post-transcriptional level. By exposure to the soluble fraction of helminths, FALC cells produce abundant Th2 cytokines (IL-5, IL-6 and IL-13) but do not synthesise IL-1α. Additionally, FALC cells probably participate in vascular remodelling of the intestine vessels, inducing tumours because a malignant haemangiosarcoma in the peritoneal cavity was found. In this tumour, abundant FALC with their characteristic cell-surface markers were detected. The findings of this study suggest the involvement of some proto-oncogenes such as c-kit and Sca-1, and the deregulation of Src kinases modulated by CD45 present in C. carpio FALC with the ontogeny of peritoneal haemangiosarcoma in this fish species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robinson, Philip C; Lau, Eugene; Keith, Patricia; Lau, Max C; Thomas, Gethin P; Bradbury, Linda A; Brown, Matthew A; Kenna, Tony J
2015-11-01
Single nucleotide polymorphisms in ERAP2 are strongly associated with ankylosing spondylitis (AS). One AS-associated single nucleotide polymorphism, rs2248374, causes a truncated ERAP2 protein that is degraded by nonsense-mediated decay. Approximately 25% of the populations of European ancestry are therefore natural ERAP2 knockouts. We investigated the effect of this associated variant on HLA class I allele presentation, surface heavy chains, endoplasmic reticulum (ER) stress markers and cytokine gene transcription in AS. Patients with AS and healthy controls with either AA or GG homozygous status for rs2248374 were studied. Antibodies to CD14, CD19-ECD, HLA-A-B-C, Valpha7.2, CD161, anti-HC10 and anti-HLA-B27 were used to analyse peripheral blood mononuclear cells. Expression levels of ER stress markers (GRP78 and CHOP) and proinflammatory genes (tumour necrosis factor (TNF), IL6, IL17 and IL22) were assessed by qPCR. There was no significant difference in HLA-class I allele presentation or major histocompatibility class I heavy chains or ER stress markers GRP78 and CHOP or proinflammatory gene expression between genotypes for rs2248374 either between cases, between cases and controls, and between controls. Large differences were not seen in HLA-B27 expression or cytokine levels between subjects with and without ERAP2 in AS cases and controls. This suggests that ERAP2 is more likely to influence AS risk through other mechanisms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Chan, Derek V; Somani, Ally-Khan; Young, Andrew B; Massari, Jessica V; Ohtola, Jennifer; Sugiyama, Hideaki; Garaczi, Edina; Babineau, Denise; Cooper, Kevin D; McCormick, Thomas S
2011-05-26
Elevated numbers of regulatory T cells (T(regs)) have been implicated in certain cancers. Depletion of T(regs) has been shown to increase anti-tumor immunity. T(regs) also play a critical role in the suppression of autoimmune responses. The study of T(regs) has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated T(regs). However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of T(regs) expressing LRRC32. Using naturally-occurring freshly isolated T(regs), we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ T(regs) are distinct from LRRC32- T(regs) with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ T(regs) are more potent suppressors than LRRC32- T(regs). A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent T(reg) populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of T(regs) and the refinement of immunotherapeutic strategies aimed at targeting these cells.
A novel multiplex bead-based platform highlights the diversity of extracellular vesicles
Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C. D.; Bosio, Andreas; Schauss, Astrid; Wild, Stefan
2016-01-01
The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions. PMID:26901056
Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.
2013-01-01
The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049
Lechner, Melissa G; Megiel, Carolina; Church, Connor H; Angell, Trevor E; Russell, Sarah M; Sevell, Rikki B; Jang, Julie K; Brody, Garry S; Epstein, Alan L
2012-09-01
Anaplastic lymphoma kinase (ALK)-negative, T-cell, anaplastic, non-Hodgkin lymphoma (T-ALCL) in patients with textured saline and silicone breast implants is a recently recognized clinical entity for which the etiology and optimal treatment remain unknown. Using three newly established model cell lines from patient biopsy specimens, designated T-cell breast lymphoma (TLBR)-1 to -3, we characterized the phenotype and function of these tumors to identify mechanisms of cell survival and potential therapeutic targets. Cytogenetics revealed chromosomal atypia with partial or complete trisomy and absence of the NPM-ALK (2;5) translocation. Phenotypic characterization showed strong positivity for CD30, CD71, T-cell CD2/5/7, and antigen presentation (HLA-DR, CD80, CD86) markers, and interleukin (IL)-2 (CD25, CD122) and IL-6 receptors. Studies of these model cell lines showed strong activation of STAT3 signaling, likely related to autocrine production of IL-6 and decreased SHP-1. STAT3 inhibition, directly or by recovery of SHP-1, and cyclophosphamide-Adriamycin-vincristine-prednisone (CHOP) chemotherapy reagents, effectively kill cells of all three TLBR models in vitro and may be pursued as therapies for patients with breast implant-associated T-ALCLs. The TLBR cell lines closely resemble the primary breast implant-associated lymphomas from which they were derived and as such provide valuable preclinical models to study their unique biology. ©2012 AACR.
Ko, Hyun-Jeong; Lee, Jung-Mi; Kim, Yeon-Jeong; Kim, Yun-Sun; Lee, Kyoo-A; Kang, Chang-Yuil
2009-02-15
Myeloid-derived suppressor cells (MDSCs), which are known to be accumulated in the blood, spleen, and bone marrow of tumor-bearing mice and cancer patients, were tested as APCs for a cellular vaccine because they have phenotypical similarity with inflammatory monocytes and may be differentiated from the same precursors as monocytes. Although MDSCs have immunosuppressive properties, in vivo transferred MDSCs, which present tumor Ag and NKT cell ligand (alpha-galactosylceramide), significantly prolonged survival time in metastatic tumor-bearing mice in a CD8(+) cell-, NK cell-, and NKT cell-dependent manner vs a CD4(+) T cell- and host dendritic cell-independent manner. Major concerns about using MDSCs as APCs in a vaccine are their suppression of CTLs and their induction of Foxp3(+) regulatory T cells. However, alpha-galactosylceramide-loaded MDSCs did not suppress CD4(+) and CD8(+) T cells and allowed for the generation of Ag-specific CTL immunity without increasing the generation of regulatory T cells. Furthermore, stimulation with activated NKT cells induced changes on MDSCs in phenotypical or maturation markers, including CD11b, CD11c, and CD86. Taken together, these findings suggest that NKT cells facilitate the conversion of immunosuppressive MDSCs into immunogenic APCs, eliciting successful antitumor immunity and providing the basis for alternative cell-based vaccines.
Schievenbusch, Stephanie; Sauer, Elisabeth; Curth, Harald-Morten; Schulte, Sigrid; Demir, Münevver; Toex, Ulrich; Goeser, Tobias; Nierhoff, Dirk
2012-09-20
We have previously identified Neighbor of Punc E 11 (Nope) as a specific cell surface marker of stem/progenitor cells in the murine fetal liver that is also expressed in hepatocellular carcinoma. Here, we focus on the differential expression pattern of Nope during murine fetal and postnatal liver development as well as in a normal and regenerating adult liver including oval cell activation. In the fetal liver, Nope shows a constantly high expression level and is a useful surface marker for the identification of Dlk, E-cadherin, and CD133-positive hepatoblasts by flow cytometry. Postnatally, Nope expression declines rapidly and remains barely detectable in the adult liver as shown by quantitative real-time reverse-transcriptase polymerase chain reaction and western blot analyses. Immunohistochemically, costainings for Nope- and epithelial-specific markers (E-cadherin), markers of early hepatoblasts (alpha-fetoprotein), and biliary marker proteins (CK19) demonstrate that Nope is initially expressed on bipotent hepatoblasts and persists thereafter on commited hepatocytic as well as cholangiocytic progenitor cells during late fetal liver development. Postnatally, Nope loses its circular expression pattern and is specifically directed to the sinusoidal membrane of early hepatocytes. While Nope is only weakly expressed on cholangiocytes in the normal adult liver, activated stem/progenitor (oval) cells clearly coexpress Nope together with the common markers A6, EpCAM, and CD24 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model. In conclusion, Nope should be most useful in future research to define the differentiation stage of hepatic-specified cells of various sources and is a promising candidate to identify and isolate hepatic stem cells from the adult liver.
Balz, Ellen; Herzog, Susann; Plantera, Laura; Vogelgesang, Silke; Seifert, Carolin; Bialke, Angela; Venugopal, Chitra; Singh, Sheila K.; Hoffmann, Wolfgang; Schroeder, Henry W. S.
2018-01-01
Patients with glioblastoma multiforme (GBM) are at high risk to develop a relapse despite multimodal therapy. Assumedly, glioma stem cells (GSCs) are responsible for treatment resistance of GBM. Identification of specific GSC markers may help to develop targeted therapies. Here, we performed expression analyses of stem cell (ABCG2, CD44, CD95, CD133, ELF4, Nanog, and Nestin) as well as differentiation and microglia markers (GFAP, Iba1, and Sparc) in GBM compared to nonmalignant brain. Furthermore, the role of these proteins for patient survival and their expression in LN18 stem-like neurospheres was analyzed. At mRNA level, ABCG2 and CD95 were reduced, GFAP was unchanged; all other investigated markers were increased in GBM. At protein level, CD44, ELF4, Nanog, Nestin, and Sparc were elevated in GBM, but only CD133 and Nestin were strongly associated with survival time. In addition, ABCG2 and GFAP expression was decreased in LN18 neurospheres whereas CD44, CD95, CD133, ELF4, Nanog, Nestin, and Sparc were upregulated. Altogether only CD133 and Nestin were associated with survival rates. This raises concerns regarding the suitability of the other target structures as prognostic markers, but makes both CD133 and Nestin candidates for GBM therapy. Nevertheless, a search for more specific marker proteins is urgently needed. PMID:29535786
Kim, Hyunsoo; Yu, Su Jong; Yeo, Injun; Cho, Young Youn; Lee, Dong Hyeon; Cho, Yuri; Cho, Eun Ju; Lee, Jeong-Hoon; Kim, Yoon Jun; Lee, Sungyoung; Jun, Jongsoo; Park, Taesung; Yoon, Jung-Hwan; Kim, Youngsoo
2017-07-01
Sorafenib is the only standard treatment for unresectable hepatocellular carcinoma (HCC), but it provides modest survival benefits over placebo, necessitating predictive biomarkers of the response to sorafenib. Serum samples were obtained from 115 consecutive patients with HCC before sorafenib treatment and analyzed by multiple reaction monitoring-mass spectrometry (MRM-MS) and ELISA to quantify candidate biomarkers. We verified a triple-marker panel to be predictive of the response to sorafenib by MRM-MS, comprising CD5 antigen-like (CD5L), immunoglobulin J (IGJ), and galectin-3-binding protein (LGALS3BP), in HCC patients. This panel was a significant predictor (AUROC > 0.950) of the response to sorafenib treatment, having the best cut-off value (0.4) by multivariate analysis. In the training set, patients who exceeded this cut-off value had significantly better overall survival (median, 21.4 months) than those with lower values (median, 8.6 months; p = 0.001). Further, a value that was lower than this cutoff was an independent predictor of poor overall survival [hazard ratio (HR), 2.728; 95% confidence interval (CI), 1.312-5.672; p = 0.007] and remained an independent predictive factor of rapid progression (HR, 2.631; 95% CI, 1.448-4.780; p = 0.002). When applied to the independent validation set, levels of the cut-off value for triple-marker panel maintained their prognostic value for poor clinical outcomes. On the contrast, the triple-marker panel was not a prognostic factor for patients who were treated with transarterial chemoembolization (TACE). The discriminatory signature of a triple-marker panel provides new insights into targeted proteomic biomarkers for individualized sorafenib therapy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Intravenous anesthetic propofol suppresses prostaglandin E2 production in murine dendritic cells.
Inada, Takefumi; Kubo, Kozue; Ueshima, Hironobu; Shingu, Koh
2011-01-01
Propofol is an intravenous anesthetic that is widely used for anesthesia and sedation. Dendritic cells (DC) are one of the crucial immune cells that bridge innate and adaptive immunity, in which DC process antigens during innate immune responses to present them to naïve T-cells, leading to an establishment of adaptive immunity. Prostaglandin (PG)-E(2) may be secreted by DC into the microenvironment, considerably influencing DC phenotype and function, and thus determining the fate of adaptive immunity. Since propofol suppresses PGE(2) production in murine macrophages, the primary purpose of the present study was to determine whether propofol also suppresses PGE(2) production in DC. Assuming a positive finding of such suppression, we tested whether this also leads to alterations of interleukin (IL)-12 and IL-10 production and DC surface marker expression, both of which can be modulated by PGE(2). In bone marrow-derived DC, propofol significantly suppressed the PGE(2) production after lipopolysaccharide stimulation. Cyclo-oxygenase (COX) protein expression and arachidonic acid release were unaffected, while COX enzyme activity was significantly inhibited by propofol. The propofol-induced COX inhibition did not lead to the increased production of cysteinyl leukotrienes and leukotriene-B(4). Endogenous COX inhibition with propofol, as well as with the selective COX-2 inhibitor, NS-398, did not affect IL-12 and IL-10 production from DC. The surface expression of I-A(b) and CD40 on DC was not changed, while that of CD86 slightly increased, with both propofol and NS-398; expression of CD80 was not affected with propofol, but increased slightly with NS-398. Finally, endogenous COX inhibition with either propofol or NS-398 did not significantly affect the ability of DC to induce allogeneic T-cell proliferation. It is concluded that the intravenous anesthetic propofol suppresses COX enzyme activity in DC, with no consequences with respect to IL-12/IL-10 production and allogeneic T-cell proliferation, while minimal consequences were observed in surface molecule expression.
Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F
2017-03-01
Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.
Multiplexed BioCD for prostate specific antigen detection
NASA Astrophysics Data System (ADS)
Wang, Xuefeng; Zhao, Ming; Nolte, David D.
2008-02-01
Specific protein concentrations in human body fluid can serve as diagnostic markers for some diseases, and a quantitative and high-throughput technique for multiplexed protein detection would speed up diagnosis and facilitate medical research. For this purpose, our group developed the BioCD, a spinning-disc interferometric biosensor on which antibody is immobilized. The detection system adopts a common-path scheme making it ultra stable. The scaling mass sensitivity is below 10 pg/mm for protein surface density. A 25000-spot antibody BioCD was fabricated to measure the concentration of prostate specific antigen (PSA), a protein indicating prostate cancer if its level is high. Statistical analysis of our immunoassay results projects that the detection limit of PSA would reach 20 pg/ml in a 2 mg/ml background solution. For future prospects, a multiplexed BioCD can be produced for simultaneous diagnosis of diverse diseases. For instance, 100 markers above 200 pg/ml could be measured on a single disc given that the detection limit is inversely proportional to square root of the number of spots.
Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J
2012-12-01
The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.
2013-01-01
Background Solitary Fibrous Tumours (SFT) and haemangiopericytomas (HPC) are rare meningeal tumours that have to be distinguished from meningiomas and more rarely from synovial sarcomas. We recently found that ALDH1A1 was overexpressed in SFT and HPC as compared to soft tissue sarcomas. Using whole-genome DNA microarrays, we defined the gene expression profiles of 16 SFT/HPC (9 HPC and 7 SFT). Expression profiles were compared to publicly available expression profiles of additional SFT or HPC, meningiomas and synovial sarcomas. We also performed an immunohistochemical (IHC) study with anti-ALDH1 and anti-CD34 antibodies on Tissue Micro-Arrays including 38 SFT (25 meningeal and 13 extrameningeal), 55 meningeal haemangiopericytomas (24 grade II, 31 grade III), 163 meningiomas (86 grade I, 62 grade II, 15 grade III) and 98 genetically confirmed synovial sarcomas. Results ALDH1A1 gene was overexpressed in SFT/HPC, as compared to meningiomas and synovial sarcomas. These findings were confirmed at the protein level. 84% of the SFT and 85.4% of the HPC were positive with anti-ALDH1 antibody, while only 7.1% of synovial sarcomas and 1.2% of meningiomas showed consistent expression. Positivity was usually more diffuse in SFT/HPC compared to other tumours with more than 50% of tumour cells immunostained in 32% of SFT and 50.8% of HPC. ALDH1 was a sensitive and specific marker for the diagnosis of SFT (SE = 84%, SP = 98.8%) and HPC (SE = 84.5%, SP = 98.7%) of the meninges. In association with CD34, ALDH1 expression had a specificity and positive predictive value of 100%. Conclusion We show that ALDH1, a stem cell marker, is an accurate diagnostic marker for SFT and HPC, which improves the diagnostic value of CD34. ALDH1 could also be a new therapeutic target for these tumours which are not sensitive to conventional chemotherapy. PMID:24252471
CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells.
Deaglio, Silvia; Capobianco, Andrea; Bergui, Luciana; Dürig, Jan; Morabito, Fortunato; Dührsen, Ulrich; Malavasi, Fabio
2003-09-15
The prognosis for patients with B-cell chronic lymphocytic leukemia (B-CLL) is generally less favorable for those expressing CD38. Our working hypothesis is that CD38 is not merely a marker in B-CLL, but that it plays a receptor role with pathogenetic potential ruling the proliferation of the malignant clone. CD38 levels were generally low in the patients examined and monoclonal antibody (mAb) ligation was inefficient in signaling. Other cellular models indicated that molecular density and surface organization are critical for CD38 functionality. Interleukin 2 (IL-2) induced a marked up-modulation and surface rearrangement of CD38 in all the patients studied. On reaching a specific expression threshold, CD38 becomes an efficient receptor in purified B-CLL cells. Indeed, mAb ligation is followed by Ca2+ fluxes and by a markedly increased proliferation. The unsuitability of CD38 to perform as a receptor is obviated through close interaction with the B-cell-receptor (BCR) complex and CD19. On mAb binding, CD38 translocates to the membrane lipid microdomains, as shown by a colocalization with the GM1 ganglioside and with CD81, a raft-resident protein. Finally, CD38 signaling in IL-2-treated B-CLL cells prolonged survival and induced the appearance of plasmablasts, providing a pathogenetic hypothesis for the occurrence of Richter syndrome.
Urinary Cadmium Threshold to Prevent Kidney Disease Development.
Satarug, Soisungwan; Ruangyuttikarn, Werawan; Nishijo, Muneko; Ruiz, Patricia
2018-05-01
The frequently observed association between kidney toxicity and long-term cadmium (Cd) exposure has long been dismissed and deemed not to be of clinical relevance. However, Cd exposure has now been associated with increased risk of developing chronic kidney disease (CKD). We investigated the link that may exist between kidney Cd toxicity markers and clinical kidney function measure such as estimated glomerular filtration rates (eGFR). We analyzed data from 193 men to 202 women, aged 16−87 years [mean age 48.8 years], who lived in a low- and high-Cd exposure areas in Thailand. The mean (range) urinary Cd level was 5.93 (0.05⁻57) μg/g creatinine. The mean (range) for estimated GFR was 86.9 (19.6−137.8) mL/min/1.73 m². Kidney pathology reflected by urinary β2-microglobulin (β2-MG) levels ≥ 300 μg/g creatinine showed an association with 5.32-fold increase in prevalence odds of CKD ( p = 0.001), while urinary Cd levels showed an association with a 2.98-fold greater odds of CKD prevalence ( p = 0.037). In non-smoking women, Cd in the highest urinary Cd quartile was associated with 18.3 mL/min/1.73 m² lower eGFR value, compared to the lowest quartile ( p < 0.001). Evidence for Cd-induced kidney pathology could thus be linked to GFR reduction, and CKD development in Cd-exposed people. These findings may help prioritize efforts to reassess Cd exposure and its impact on population health, given the rising prevalence of CKD globally.
NASA Astrophysics Data System (ADS)
Effendi, Hefni; Wardiatno, Yusli; Kawaroe, Mujizat; Mursalin; Fauzia Lestari, Dea
2017-01-01
The surface sediments were identified from west part of Java Sea to evaluate spatial distribution and ecological risk potential of heavy metals (Hg, As, Cd, Cr, Cu, Pb, Zn and Ni). The samples were taken from surface sediment (<0.5 m) in 26 m up to 80 m water depth with Eikman grab. The average material composition on sediment samples were clay (9.86%), sand (8.57%) and mud sand (81.57%). The analysis showed that Pb (11.2%), Cd (49.7%), and Ni (59.5%) exceeded of Probably Effect Level (PEL). Base on ecological risk analysis, {{Cd }}≤ft( {E_r^i:300.64} \\right) and {{Cr }}≤ft( {E_r^i:0.02} \\right) were categorized to high risk and low risk criteria. The ecological risk potential sequences of this study were Cd>Hg>Pb>Ni>Cu>As>Zn>Cr. Furthermore, the result of multivariate statistical analysis shows that correlation among heavy metals (As/Ni, Cd/Ni, and Cu/Zn) and heavy metals with Risk Index (Cd/Ri and Ni/Ri) had positive correlation in significance level p<0.05. Total variance of analysis factor was 80.04% and developed into 3 factors (eigenvalues >1). On the cluster analysis, Cd, Ni, Pb were identified as fairly high contaminations level (cluster 1), Hg as moderate contamination level (cluster 2) and Cu, Zn, Cr with lower contamination level (cluster 3).
He, Jintang; Liu, Yashu; Xie, Xiaolei; Zhu, Thant; Soules, Mary; DiMeco, Francesco; Vescovi, Angelo L.; Fan, Xing; Lubman, David M.
2010-01-01
Despite progress in the treatment of glioblastoma, more than 95% of patients suffering from this disease still die within two years. Recent findings support the belief that cancer stem-like cells are responsible for tumor formation and ongoing growth. Here a method combining lectin microarray and LC-MS/MS was used to discover the cell surface glycoprotein markers of a glioblastoma-derived stem-like cell line. Lectin microarray analysis of cell surface glycans showed that two galactose-specific lectins Trichosanthes kirilowii agglutinin (TKA) and Peanut agglutinin (PNA) could distinguish the stem-like glioblastoma neurosphere culture from a traditional adherent glioblastoma cell line. Agarose-bound TKA and PNA were used to capture the glycoproteins from the two cell cultures, which were analyzed by LC-MS/MS. The glycoproteins were quantified by spectral counting, resulting in the identification of 12 and 11 potential glycoprotein markers from the TKA and PNA captured fractions respectively. Almost all of these proteins were membrane proteins. Differential expression was verified by Western blotting analysis of 6 interesting proteins, including the up-regulated Receptor-type tyrosine-protein phosphatase zeta, Tenascin-C, Chondroitin sulfate proteoglycan NG2, Podocalyxin-like protein 1 and CD90, and the down-regulated CD44. An improved understanding of these proteins may be important for earlier diagnosis and better therapeutic targeting of glioblastoma. PMID:20235609
Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William
2005-01-01
Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.
Lingblom, Christine; Bergquist, Henrik; Johnsson, Marianne; Sundström, Patrik; Quiding-Järbrink, Marianne; Bove, Mogens; Wennerås, Christine
2014-12-01
Swallowed topical corticosteroids are the standard therapy for eosinophilic esophagitis (EoE) in adults. Eosinophils in the blood of untreated EoE patients have an activated phenotype. Our aim was to determine if corticosteroids restore the phenotype of eosinophils to a healthy phenotype and if certain cell-surface molecules on blood eosinophils correlate with eosinophilic infiltration of the esophagus. Levels of eight surface markers on eosinophils from treated and untreated EoE patients were determined by flow cytometry and analyzed using multivariate methods of pattern recognition. Corticosteroid-treated EoE patients' eosinophils had decreased levels of CD18 compared to both untreated patients and healthy controls, but maintained their activated phenotype. CD18 expression correlated positively with eosinophil numbers in the esophagus and promoted the adherence of eosinophils to ICAM-1, ICAM-2, and to endothelial cells. The diminished expression of CD18 may be one mechanism behind the reduced entry of eosinophils into the esophagus in corticosteroid-treated EoE patients.
Equine Mesenchymal Stromal Cells Retain a Pericyte-Like Phenotype
Sheldrake, Tara A.; Dawson, Lucy; Menghini, Timothy; Rink, Burgunde Elisabeth; Amilon, Karin; Khan, Nusrat; Péault, Bruno; Donadeu, Francesc Xavier
2017-01-01
Mesenchymal stem/stromal cells (MSCs) have been used in human and equine regenerative medicine, and interest in exploiting their potential has increased dramatically over the years. Despite significant effort to characterize equine MSCs, the actual origin of these cells and how much of their native phenotype is maintained in culture have not been determined. In this study, we investigated the relationship between MSCs, derived from adipose tissue (AT) and bone marrow (BM), and pericytes in the horse. Both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD90, and CD73) markers were detected in equine AT and colocalized around blood vessels. Importantly, as assessed by flow cytometry, both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD44, CD90, and CD105) markers were present in a majority (≥90%) of cells in cultures of AT-MSCs and BM-MSCs; however, levels of pericyte markers were variable within each of those populations. Moreover, the expression of pericyte markers was maintained for at least eight passages in both AT-MSCs and BM-MSCs. Hematopoietic (CD45) and endothelial (CD144) markers were also detected at low levels in MSCs by quantitative polymerase chain reaction (qPCR). Finally, in coculture experiments, AT-MSCs closely associated with networks produced by endothelial cells, resembling the natural perivascular location of pericytes in vivo. Our results indicate that equine MSCs originate from perivascular cells and moreover maintain a pericyte-like phenotype in culture. Therefore, we suggest that, in addition to classical MSC markers, pericyte markers such as CD146 could be used when assessing and characterizing equine MSCs. PMID:28376684
Equine Mesenchymal Stromal Cells Retain a Pericyte-Like Phenotype.
Esteves, Cristina L; Sheldrake, Tara A; Dawson, Lucy; Menghini, Timothy; Rink, Burgunde Elisabeth; Amilon, Karin; Khan, Nusrat; Péault, Bruno; Donadeu, Francesc Xavier
2017-07-01
Mesenchymal stem/stromal cells (MSCs) have been used in human and equine regenerative medicine, and interest in exploiting their potential has increased dramatically over the years. Despite significant effort to characterize equine MSCs, the actual origin of these cells and how much of their native phenotype is maintained in culture have not been determined. In this study, we investigated the relationship between MSCs, derived from adipose tissue (AT) and bone marrow (BM), and pericytes in the horse. Both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD90, and CD73) markers were detected in equine AT and colocalized around blood vessels. Importantly, as assessed by flow cytometry, both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD44, CD90, and CD105) markers were present in a majority (≥90%) of cells in cultures of AT-MSCs and BM-MSCs; however, levels of pericyte markers were variable within each of those populations. Moreover, the expression of pericyte markers was maintained for at least eight passages in both AT-MSCs and BM-MSCs. Hematopoietic (CD45) and endothelial (CD144) markers were also detected at low levels in MSCs by quantitative polymerase chain reaction (qPCR). Finally, in coculture experiments, AT-MSCs closely associated with networks produced by endothelial cells, resembling the natural perivascular location of pericytes in vivo. Our results indicate that equine MSCs originate from perivascular cells and moreover maintain a pericyte-like phenotype in culture. Therefore, we suggest that, in addition to classical MSC markers, pericyte markers such as CD146 could be used when assessing and characterizing equine MSCs.
Zhang, Jianhong; Shynlova, Oksana; Sabra, Sally; Bang, Annie; Briollais, Laurent; Lye, Stephen J
2017-10-01
The onset of labour in rodents and in humans is associated with physiological inflammation which is manifested by infiltration of activated maternal peripheral leukocytes (mPLs) into uterine tissues. Here, we used flow cytometry to immunophenotype mPLs throughout gestation and labour, both term and preterm. Peripheral blood was collected from non-pregnant women and pregnant women in the 1st, 2nd and 3rd trimesters. Samples were also collected from women in active labour at term (TL) or preterm (PTL) and compared with women term not-in-labour (TNIL) and preterm not-in-labour (PTNIL). Different leukocyte populations were identified by surface markers such as CD45, CD14, CD15, CD3, CD4, CD8, CD19 and CD56. Their activation status was measured by the expression levels of CD11b, CD44, CD55, CD181 and CD192 proteins. Of all circulating CD45+ leukocytes, we detected significant increases in CD15+ granulocytes (i) in pregnant women versus non-pregnant; (ii) in TL women versus TNIL and versus pregnant women in the 1st/2nd/3rd trimester; (iii) in PTL women versus PTNIL. TL was characterized by (iv) increased expressions of CD11b, CD55 and CD192 on granulocytes; (v) increased mean fluorescent intensity (MFI) of CD55 and CD192 on monocytes; (vi) increased CD44 MFI on CD3+ lymphocytes as compared to late gestation. In summary, we have identified sub-populations of mPLs that are specifically activated in association with gestation (granulocytes) or with the onset of labour (granulocytes, monocytes and lymphocytes). Additionally, beta regression analysis created a set of reference values to rank this association between immune markers of pregnancy and to identify activation status with potential prognostic and diagnostic capability. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
CD24 can be used to isolate Lgr5+ putative colonic epithelial stem cells in mice
King, Jeffrey B.; von Furstenberg, Richard J.; Smith, Brian J.; McNaughton, Kirk K.; Galanko, Joseph A.
2012-01-01
A growing body of evidence has implicated CD24, a cell-surface protein, as a marker of colorectal cancer stem cells and target for antitumor therapy, although its presence in normal colonic epithelium has not been fully characterized. Previously, our group showed that CD24-based cell sorting can be used to isolate a fraction of murine small intestinal epithelial cells enriched in actively cycling stem cells. Similarly, we hypothesized that CD24-based isolation of colonic epithelial cells would generate a fraction enriched in actively cycling colonic epithelial stem cells (CESCs). Immunohistochemistry performed on mouse colonic tissue showed CD24 expression in the bottom half of proximal colon crypts and the crypt base in the distal colon. This pattern of distribution was similar to enhanced green fluorescent protein (EGFP) expression in Lgr5-EGFP mice. Areas expressing CD24 contained actively proliferating cells as determined by ethynyl deoxyuridine (EdU) incorporation, with a distinct difference between the proximal colon, where EdU-labeled cells were most frequent in the midcrypt, and the distal colon, where they were primarily at the crypt base. Flow cytometric analyses of single epithelial cells, identified by epithelial cell adhesion molecule (EpCAM) positivity, from mouse colon revealed an actively cycling CD24+ fraction that contained the majority of Lgr5-EGFP+ putative CESCs. Transcript analysis by quantitative RT-PCR confirmed enrichment of active CESC markers [leucine-rich-repeat-containing G protein-coupled receptor 5 (Lgr5), ephrin type B receptor 2 (EphB2), and CD166] in the CD24+EpCAM+ fraction but also showed enrichment of quiescent CESC markers [leucine-rich repeats and immunoglobin domains (Lrig), doublecortin and calmodulin kinase-like 1 (DCAMKL-1), and murine telomerase reverse transcriptase (mTert)]. We conclude that CD24-based sorting in wild-type mice isolates a colonic epithelial fraction highly enriched in actively cycling and quiescent putative CESCs. Furthermore, the presence of CD24 expression in normal colonic epithelium may have important implications for the use of anti-CD24-based colorectal cancer therapies. PMID:22723265
Spelt, Lidewij; Sasor, Agata; Ansari, Daniel; Hilmersson, Katarzyna Said; Andersson, Roland
2018-01-01
To assess the expression of cancer stem cell (CSC) markers CD44, CD133 and CD24 in colon cancer liver metastases and analyse their predictive value for overall survival (OS) and disease-free survival (DFS) after liver resection. Patients operated on for colon cancer liver metastases were included. CSC marker expression was determined through immunohistochemistry analysis. OS and DFS were compared between marker-positive and marker-negative patients. Multivariate analysis was performed to select predictive variables for OS and DFS. CD133-positive patients had a worse DFS than CD133-negative patients, with a median DFS of 12 and 25 months (p=0.051). Multivariate analysis selected CD133 expression as a significant predictor for DFS. CD44 and CD24 were not found to predict OS or DFS. CD133 expression in colonic liver metastases is a negative prognostic factor for DFS after liver resection. In the future, CD133 could be used as a biomarker for risk stratification, and possibly for developing novel targeted therapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Engel, Pablo; Boumsell, Laurence; Balderas, Robert; Bensussan, Armand; Gattei, Valter; Horejsi, Vaclav; Jin, Bo-Quan; Malavasi, Fabio; Mortari, Frank; Schwartz-Albiez, Reinhard; Stockinger, Hannes; van Zelm, Menno C; Zola, Heddy; Clark, Georgina
2015-11-15
CD (cluster of differentiation) Ags are cell surface molecules expressed on leukocytes and other cells relevant for the immune system. CD nomenclature has been universally adopted by the scientific community and is officially approved by the International Union of Immunological Societies and sanctioned by the World Health Organization. It provides a unified designation system for mAbs, as well as for the cell surface molecules that they recognize. This nomenclature was established by the Human Leukocyte Differentiation Antigens Workshops. In addition to defining the CD nomenclature, these workshops have been instrumental in identifying and determining the expression and function of cell surface molecules. Over the past 30 y, the data generated by the 10 Human Leukocyte Differentiation Antigens Workshops have led to the characterization and formal designation of more than 400 molecules. CD molecules are commonly used as cell markers, allowing the identification and isolation of leukocyte populations, subsets, and differentiation stages. mAbs against these molecules have proven to be essential for biomedical research and diagnosis, as well as in biotechnology. More recently, they have been recognized as invaluable tools for the treatment of several malignancies and autoimmune diseases. In this article, we describe how the CD nomenclature was established, present the official updated list of CD molecules, and provide a rationale for their usefulness in the 21st century. Copyright © 2015 by The American Association of Immunologists, Inc.
Durbin, Anna P.; Vargas, Maria José; Wanionek, Kimberli; Hammond, Samantha N.; Gordon, Aubree; Rocha, Crisanta; Balmaseda, Angel; Harris, Eva
2008-01-01
In vitro studies have attempted to identify dengue virus (DEN) target cells in peripheral blood; however, extensive phenotyping of peripheral blood mononuclear cells (PBMCs) from dengue patients has not been reported. PBMCs collected from hospitalized children suspected of acute dengue were analyzed for DEN prM, CD32, CD86, CD14, CD11c, CD16, CD209, CCR7, CD4, and CD8 by flow cytometry to detect DEN antigen in PBMCs and to phenotype DEN-positive cells. DEN prM was detected primarily in activated monocytes (CD14+, CD32+, CD86+, CD11c+). A subset of samples analyzed for DEN nonstructural protein 3 (NS3) confirmed that approximately half of DEN antigen-positive cells contained replicating virus. A higher percentage of PBMCs from DHF patients expressed prM, CD86, CD32, and CD11c than did those from DF patients. Increased activation of monocytes and greater numbers of DEN-infected cells were associated with more severe dengue, implicating a role for monocyte activation in dengue immunopathogenesis. PMID:18452966
Immunohistochemistry of the lymphoid tissues of the tammar wallaby, Macropus eugenii
Old, Julie M; Deane, Elizabeth M
2002-01-01
The lymphoid tissues of the metatherian mammal, the adult tammar wallaby, Macropus eugenii, were investigated using immunohistochemical techniques. Five cross-reactive antibodies previously shown to recognize surface markers in marsupial tissues and five previously untested antibodies were used. The distribution of T-cells in the tissue beds of spleen, lymph node, thymus, gut-associated lymphoid tissue (GALT) and bronchus-associated lymphoid tissue (BALT) was documented using antibodies to CD3 and CD5. Similarly, B-cells were identified in the same tissues using anti-CD79b. Antibodies to CD8, CD31, CD79a and CD68 failed to recognize cells in these tissue beds. In general the pattern of cellular distribution identified using these antibodies was similar to that observed in other marsupial and eutherian lymphoid tissues. This study provides further information on the commonality of lymphoid tissue structure in the two major groups of extant mammals, metatherians and eutherians. PMID:12363276
2014-01-01
Background As a surface glycoprotein, CD147 is capable of stimulating the production of matrix metalloproteinases (MMPs) from neighboring fibroblasts. The aim of the present study is to explore the role of soluble CD147 on MMPs secretion from hepatocellular carcinoma (HCC) cells, and to investigate the diagnostic value of serum soluble CD147 in the HCC detection. Methods We identified the form of soluble CD147 in cell culture supernate of HCC cells and serum of patients with HCC, and explored the role of soluble CD147 on MMPs secretion. Serum CD147 levels were detected by the enzyme-linked immunosorbent assay, and the value of soluble CD147 as a marker in HCC detection was analyzed. Results Full length soluble CD147 was presented in the culture medium of HCC cells and serum of patients with HCC. The extracellular domain of soluble CD147 promoted the expression of CD147 and MMP-2 from HCC cells. Knockdown of CD147 markedly diminished the up-regulation of CD147 and MMP-2 which induced by soluble CD147. Soluble CD147 activated ERK, FAK, and PI3K/Akt pathways, leading to the up-regulation of MMP-2. The level of soluble CD147 in serum of patients with HCC was significantly elevated compared with healthy individuals (P < 0.001). Soluble CD147 levels were found to be associated with HCC tumor size (P = 0.007) and Child-Pugh grade (P = 0.007). Moreover, soluble CD147 showed a better performance in distinguishing HCC compared with alpha-fetoprotein. Conclusions The extracellular domain of soluble CD147 enhances the secretion of MMP-2 from HCC cells, requiring the cooperation of membrane CD147 and activation of ERK, FAK, and PI3K/Akt signaling. The measurement of soluble CD147 may offer a useful approach in diagnosis of HCC. PMID:24996644
Wu, Jiao; Hao, Zhi-Wei; Zhao, You-Xu; Yang, Xiang-Min; Tang, Hao; Zhang, Xin; Song, Fei; Sun, Xiu-Xuan; Wang, Bin; Nan, Gang; Chen, Zhi-Nan; Bian, Huijie
2014-07-04
As a surface glycoprotein, CD147 is capable of stimulating the production of matrix metalloproteinases (MMPs) from neighboring fibroblasts. The aim of the present study is to explore the role of soluble CD147 on MMPs secretion from hepatocellular carcinoma (HCC) cells, and to investigate the diagnostic value of serum soluble CD147 in the HCC detection. We identified the form of soluble CD147 in cell culture supernate of HCC cells and serum of patients with HCC, and explored the role of soluble CD147 on MMPs secretion. Serum CD147 levels were detected by the enzyme-linked immunosorbent assay, and the value of soluble CD147 as a marker in HCC detection was analyzed. Full length soluble CD147 was presented in the culture medium of HCC cells and serum of patients with HCC. The extracellular domain of soluble CD147 promoted the expression of CD147 and MMP-2 from HCC cells. Knockdown of CD147 markedly diminished the up-regulation of CD147 and MMP-2 which induced by soluble CD147. Soluble CD147 activated ERK, FAK, and PI3K/Akt pathways, leading to the up-regulation of MMP-2. The level of soluble CD147 in serum of patients with HCC was significantly elevated compared with healthy individuals (P < 0.001). Soluble CD147 levels were found to be associated with HCC tumor size (P = 0.007) and Child-Pugh grade (P = 0.007). Moreover, soluble CD147 showed a better performance in distinguishing HCC compared with alpha-fetoprotein. The extracellular domain of soluble CD147 enhances the secretion of MMP-2 from HCC cells, requiring the cooperation of membrane CD147 and activation of ERK, FAK, and PI3K/Akt signaling. The measurement of soluble CD147 may offer a useful approach in diagnosis of HCC.
The influence of prostatic anatomy and neurotrophins on basal prostate epithelial progenitor cells.
Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Trumpp, Andreas; Sprick, Martin R
2016-01-01
Based on findings of surface marker, protein screens as well as the postulated near-urethral location of the prostate stem cell niche, we were interested whether androgen ablation, distinct anatomic regions within the prostate or neurotrophins have an influence on basal prostate epithelial progenitor cells (PESCs). Microdissection of the prostate, enzymatic digestion, and preparation of single cells was performed from murine and human prostates. Adult PESC marker expressions were compared between a group of C57BL/6 mice and a separate group of castrated C57BL/6 mice. Surface markers CD13/CD271 on human prostate epithelial progenitor cells were evaluated by FACS analyses in cells cultured under novel stem cell conditions. The effect of neurotrophins NGF, NT3, and BDNF were evaluated with respect to their influence on proliferation and activation of human basal PESCs in vitro. We demonstrate the highest percentage of CD49f+ and Trop2+ expressing cells in the urethra near prostatic regions of WT mice (Trop2+ proximal: 10% vs. distal to the urethra: 3%, P < 0.001). While a marked increase of Trop2 expressing cells can be measured both in the proximal and distal prostatic regions after castration, the most prominent increase in Trop2+ cells can be measured in the prostatic tissue distant to the urethra. Furthermore, we demonstrate that the proportion of syndecan-1 expressing cells greatly increases in the regions proximal to the urethra after castration (WT: 5% vs. castrated: 40%). We identified heterogeneous CD13 and nerve growth factor receptor (p75(NGFR), CD271) expression on CD49f(+)/TROP2(high) human basal PESCs. Addition of the neurotrophins NT3, BDNF, and NGF to the stem cell media led to a marked temporary increase in the proliferation of human basal PESCs. Our results in mice support the model, in which the proximal urethral region contains the prostate stem cell niche while a stronger androgen-dependent regulation of adult prostate stem cells can be found in the peripheral prostatic tissue. Neutrophin signaling via nerve growth factor receptor is possibly involved in human prostate stem cell homeostasis. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Salicru, A. N.; Crucian, B.; Sams, Clarence; Actor, J. K.; Marshall, G. D., Jr.
2006-01-01
Catecholamines have been associated with immunomodulation of the adaptive immune system towards a Th2 response in vitro. We therefore examined the role of in vitro epinephrine (EPI) and norepinephrine (NE) exposure on the B7 costimulatory expression of antigen presenting cells (APC) from human monocytic cell lines and human peripheral blood mononuclear cells (PBMC). THP1 monocytic cells and CD14+ cells from normal human PBMC were stimulated with lipopolysaccharide (LPS) and incubated with physiologic stress levels (10(exp -6) - 10(exp -8)M) of EPI or NE for 24 hours. Cells were subsequently stained with CD80 FITC, CD86 PE, and CD14 PC5 antibodies and analyzed by flow cytometry for changes in fluorescence and mean fluorescence intensity (MFI). Exposure of THP1 to EPI in vitro at concentrations of 10(exp -6), 10(exp -7) and 10(exp -8)M significantly decreased mean CD80 from 42 plus or minus 0.7% to 11 plus or minus 0.44%, 19.1 plus or minus 2.0%, and 30.7 plus or minus 2.1% expression, respectively (p less than 0.01). In addition, CD86 expression increased with EPI at 10(exp -6), 10(exp -7) and 10(exp -8) M from 9.2 plus or minus 0.52% to 41 plus or minus 3.8%, 26.4 plus or minus 1.9%, and 15.74 plus or minus 1.8% expression, respectively (p less than 0.01). Similar results for mean CD80 and CD86 percent expression were observed for CD14+ cells from PBMC with a sample size of N = 6 and for NE when substituted for EPI. The data show that in vitro exposure to catecholamines significantly decreases %CD86 expression and significantly increases %CD86 expression in THP1 cells and human CD14+ APC. Previous studies have suggested an association between increased CD86 expression and TH2 activity. Thus, these data suggest that immunomodulation by catecholamines results in part by the variable effects of the B7 costimulatory pathway in APC.
Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells
Janjanin, Sasa; Djouad, Farida; Shanti, Rabie M; Baksh, Dolores; Gollapudi, Kiran; Prgomet, Drago; Rackwitz, Lars; Joshi, Arjun S; Tuan, Rocky S
2008-01-01
Introduction Mesenchymal progenitor cells (MPCs) are multipotent progenitor cells in adult tissues, for example, bone marrow (BM). Current challenges of clinical application of BM-derived MPCs include donor site morbidity and pain as well as low cell yields associated with an age-related decrease in cell number and differentiation potential, underscoring the need to identify alternative sources of MPCs. Recently, MPC sources have diversified; examples include adipose, placenta, umbilicus, trabecular bone, cartilage, and synovial tissue. In the present work, we report the presence of MPCs in human tonsillar tissue. Methods We performed comparative and quantitative analyses of BM-MPCs with a subpopulation of adherent cells isolated from this lymphoid tissue, termed tonsil-derived MPCs (T-MPCs). The expression of surface markers was assessed by fluorescent-activated cell sorting analysis. Differentiation potential of T-MPCs was analyzed histochemically and by reverse transcription-polymerase chain reaction for the expression of lineage-related marker genes. The immunosuppressive properties of MPCs were determined in vitro in mixed lymphocyte reactions. Results Surface epitope analysis revealed that T-MPCs were negative for CD14, CD31, CD34, and CD45 expression and positive for CD29, CD44, CD90, and CD105 expression, a characteristic phenotype of BM-MPCs. Similar to BM-MPCs, T-MPCs could be induced to undergo adipogenic differentiation and, to a lesser extent, osteogenic and chondrogenic differentiation. T-MPCs did not express class II major histocompatibility (MHC) antigens, and in a similar but less pronounced manner compared with BM-MPCs, T-MPCs were immunosuppressive, inhibiting the proliferation of T cells stimulated by allogeneic T cells or by non-specific mitogenic stimuli via an indoleamine 2,3-dioxygenase-dependent mechanism. Conclusion Human palatine T-MPCs represent a new source of progenitor cells, potentially applicable for cell-based therapies. PMID:18662393
Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.
Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori
2015-02-01
Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Unravelling the mystery of stem/progenitor cells in human breast milk.
Fan, Yiping; Chong, Yap Seng; Choolani, Mahesh A; Cregan, Mark D; Chan, Jerry K Y
2010-12-28
Mammary stem cells have been extensively studied as a system to delineate the pathogenesis and treatment of breast cancer. However, research on mammary stem cells requires tissue biopsies which limit the quantity of samples available. We have previously identified putative mammary stem cells in human breast milk, and here, we further characterised the cellular component of human breast milk. We identified markers associated with haemopoietic, mesenchymal and neuro-epithelial lineages in the cellular component of human breast milk. We found 2.6 ± 0.8% (mean ± SEM) and 0.7 ± 0.2% of the whole cell population (WCP) were found to be CD133+ and CD34+ respectively, 27.8 ± 9.1% of the WCP to be positive for Stro-1 through flow-cytometry. Expressions of neuro-ectodermal stem cell markers such as nestin and cytokeratin 5 were found through reverse-transcription polymerase chain reaction (RT-PCR), and in 4.17 ± 0.2% and 0.9 ± 0.2% of the WCP on flow-cytometry. We also established the presence of a side-population (SP) (1.8 ± 0.4% of WCP) as well as CD133+ cells (1.7 ± 0.5% of the WCP). Characterisation of the sorted SP and non-SP, CD133+ and CD133- cells carried out showed enrichment of CD326 (EPCAM) in the SP cells (50.6 ± 8.6 vs 18.1 ± 6.0, P-value = 0.02). However, culture in a wide range of in vitro conditions revealed the atypical behaviour of stem/progenitor cells in human breast milk; in that if they are present, they do not respond to established culture protocols of stem/progenitor cells. The identification of primitive cell types within human breast milk may provide a non-invasive source of relevant mammary cells for a wide-range of applications; even the possibility of banking one's own stem cell for every breastfeeding woman.
Unravelling the Mystery of Stem/Progenitor Cells in Human Breast Milk
Fan, Yiping; Chong, Yap Seng; Choolani, Mahesh A.; Cregan, Mark D.; Chan, Jerry K. Y.
2010-01-01
Background Mammary stem cells have been extensively studied as a system to delineate the pathogenesis and treatment of breast cancer. However, research on mammary stem cells requires tissue biopsies which limit the quantity of samples available. We have previously identified putative mammary stem cells in human breast milk, and here, we further characterised the cellular component of human breast milk. Methodology/Principal Findings We identified markers associated with haemopoietic, mesenchymal and neuro-epithelial lineages in the cellular component of human breast milk. We found 2.6±0.8% (mean±SEM) and 0.7±0.2% of the whole cell population (WCP) were found to be CD133+ and CD34+ respectively, 27.8±9.1% of the WCP to be positive for Stro-1 through flow-cytometry. Expressions of neuro-ectodermal stem cell markers such as nestin and cytokeratin 5 were found through reverse-transcription polymerase chain reaction (RT-PCR), and in 4.17±0.2% and 0.9±0.2% of the WCP on flow-cytometry. We also established the presence of a side-population (SP) (1.8±0.4% of WCP) as well as CD133+ cells (1.7±0.5% of the WCP). Characterisation of the sorted SP and non-SP, CD133+ and CD133- cells carried out showed enrichment of CD326 (EPCAM) in the SP cells (50.6±8.6 vs 18.1±6.0, P-value = 0.02). However, culture in a wide range of in vitro conditions revealed the atypical behaviour of stem/progenitor cells in human breast milk; in that if they are present, they do not respond to established culture protocols of stem/progenitor cells. Conclusions/Significance The identification of primitive cell types within human breast milk may provide a non-invasive source of relevant mammary cells for a wide-range of applications; even the possibility of banking one's own stem cell for every breastfeeding woman. PMID:21203434
Cysteine-rich Domain 1 of CD40 Mediates Receptor Self-assembly*
Smulski, Cristian R.; Beyrath, Julien; Decossas, Marion; Chekkat, Neila; Wolff, Philippe; Estieu-Gionnet, Karine; Guichard, Gilles; Speiser, Daniel; Schneider, Pascal; Fournel, Sylvie
2013-01-01
The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell surface-expressed and soluble CD40 self-assemble, most probably as noncovalent dimers. The cysteine-rich domain 1 (CRD1) of CD40 participated to dimerization and was also required for efficient receptor expression. Modelization of a CD40 dimer allowed the identification of lysine 29 in CRD1, whose mutation decreased CD40 self-interaction without affecting expression or response to ligand. When expressed alone, recombinant CD40-CRD1 bound CD40 with a KD of 0.6 μm. This molecule triggered expression of maturation markers on human dendritic cells and potentiated CD40L activity. These results suggest that CD40 self-assembly modulates signaling, possibly by maintaining the receptor in a quiescent state. PMID:23463508
A Reproducible Immunopotency Assay to Measure Mesenchymal Stromal Cell Mediated T cell Suppression
Bloom, Debra D.; Centanni, John M.; Bhatia, Neehar; Emler, Carol A.; Drier, Diana; Leverson, Glen E.; McKenna, David H.; Gee, Adrian P.; Lindblad, Robert; Hei, Derek J.; Hematti, Peiman
2014-01-01
Background The T cell suppressive property of bone marrow derived mesenchymal stromal cells (MSCs) has been considered a major mode of action and basis for their utilization in a number of human clinical trials. However, there is no well-established reproducible assay to measure MSC-mediated T cell suppression. Methods At the University of Wisconsin-Madison Production Assistance for Cellular Therapy (PACT) Center we developed an in vitro quality control T cell suppression immunopotency assay (IPA) which utilizes anti-CD3 and anti-CD28 antibodies to stimulate T cell proliferation. We measured MSC-induced suppression of CD4+ T cell proliferation at various effector to target cell ratios using defined peripheral blood mononuclear cells and in parallel compared to a reference standard MSC product. We calculated an IPA value for suppression of CD4+ T cells for each MSC product. Results Eleven MSC products generated at three independent PACT centers were evaluated for cell surface phenotypic markers and T cell suppressive properties. Flow cytometry results demonstrated typical MSC cell surface marker profiles. There was significant variability in the level of suppression of T cell proliferation with IPA values ranging from 27% to 88%. However, MSC suppression did not correlate with HLA-DR expression. Discussion We have developed a reproducible immunopotency assay to measure allogeneic MSC-mediated suppression of CD4+ T cells. Additional studies may be warranted to determine how these in vitro assay results may correlate with other immunomodulatory properties of MSCs, in addition to evaluating the ability of this assay to predict in vivo efficacy. PMID:25455739
Scala, Enrico; Abeni, Damiano; Pomponi, Debora; Narducci, Maria Grazia; Lombardo, Giuseppe Alfonso; Mari, Adriano; Frontani, Marina; Picchio, Maria Cristina; Pilla, Maria Antonietta; Caprini, Elisabetta; Russo, Giandomenico
2010-01-01
Background Sézary syndrome is a rare and very aggressive leukemic variant of cutaneous T-cell lymphoma characterized by extensive skin involvement and a malignant circulating CD4+ T-cell clone which homes to the skin, over-expresses CD60, and lacks CD7, CD26 and CD49d. So far prognostic markers in this disease are limited to treatment with systemic steroids, age, serum lactate dehydrogenase, and a white blood cell count of 20×109/L or higher: no other biological marker with prognostic value, especially related to malignant cells, has been described. Design and Methods We used flow activated cell sorting analysis to compare the distribution of the T-cell receptor-Vβ repertoire and several surface molecules (CD7, CD26, CD49d and CD60) within the circulating CD4+ T-cell population in 62 patients with Sézary syndrome, 180 with mycosis fungoides, 6 with B-cell lymphomas, and 19 with chronic eczema. We calculated the 5-year overall survival of patients with Sézary syndrome after first hospital admission using Kaplan–Meier product–limit estimates and hazard ratios from the Cox proportional hazards model. Results We found that both higher number of CD60+ and lower number of CD49d+ cells within circulating CD4+ T cells at disease presentation were significantly associated with a lower probability of survival. An exceedingly high risk of death was observed for patients with a combination of a high proportion of CD4+CD60+ cells (≥ 0.5×109/L) and low proportion of CD4+CD49d+ cells (<0.5×109/L) (hazard ratio = 12.303, 95% confidence interval 1.5–95.9; P<0.02). In addition, a skewed usage of T-cell receptor-Vβ subfamilies was observed in the circulating T-cell clone for 61.9% of all patients with Sézary syndrome, T-cell receptor-Vβ 2 and 5.1 subfamilies being the most frequently represented (42.8%), followed by T-cell receptor-Vβ 12 and 13.1. Conclusions In this study we showed that up-regulation of CD60 and down-regulation of CD49d on circulating CD4+ T cells are two useful markers for predicting a very poor outcome in patients with Sézary syndrome. PMID:20663947
Aberrant lymphoid antigen expression in acute myeloid leukemia in Saudi Arabia.
El-Sissy, Azza H; El-Mashari, May A; Bassuni, Wafaa Y; El-Swaayed, Aziza F
2006-09-01
Immunophenotyping improves both accuracy and reproducibility of acute leukemia classification and is considered particularly useful for identifying aberrant lineage association of acute leukemia, biphenotypic and bilineal acute leukemia, as well as monitoring minimal residual disease. Some immunophenotypes correlate with cytogenetic abnormalities and prognosis. Is to determine aberrant lymphoid antigen expression in Saudi acute myeloid leukemia (AML), correlate them with FAB subtypes, evaluate early surface markers CD7 and CD56, and to investigate the role of cytoplasmic CD79a (a B cell marker that is assigned a high score of 2.0 in the WHO classification). Thirty four newly diagnosed AML cases were included in this study, 47% showed aberrant lymphoid antigen expression. CD9 was the most frequently expressed lymphoid antigen (29.4%) followed by CD7 & CD19 (11.8%), CD4 (8.8%) and CD22 (2.9%). CD9 was expressed in 3/6 (50%) of M3 cases, CD7 was expressed in 11.8% and was mostly confined to FAB M1 and M2 and associated with immature antigens CD34, HLA-DR and TdT. CD56 was expressed in 7/34 (20.6%) cases, three of these cases (42.9%) belonged to the monocytic group. CD56 was also detected in 2 cases with 11q23 rearrangement. CD56 was expressed in 2/7 (28.6%) M2 cases, and was associated with t (8;21) (q22;q22) together with CD19. Co-expression of CD56 and CD7 was detected in 2.9% of the cases. CD79a was expressed in one case together with CD19, diagnosed as acute biphenotypic leukemia, and was associated with t(8;21) (q22;q22). Minimal residual disease in AML is very difficult to trace, detection of aberrant expression of lymphoid antigens will make it easier. The high score given to CD79a by EGIL is questionable based on cytogenetic classification.
Porcine cluster of differentiation (CD) markers 2018 update.
Dawson, Harry D; Lunney, Joan K
2018-06-01
Pigs are a major source of food worldwide; preventing and treating their infectious diseases is essential, requiring a thorough understanding of porcine immunity. The use of pigs as models for human physiology is a growing area; progress in this area has been limited because the immune toolkit is not robust. The international community has established cluster of differentiation (CD) markers for assessing cells involved in immunity as well as characterizing numerous other cells like stem cells. Overall, for humans 419 proteins have been designated as CD markers, each reacting with a defined set of antibodies (Abs). This paper summarizes current knowledge of swine CD markers and identifies 359 corresponding CD proteins in pigs. A broad-based literature and vendor search was conducted to identify defined sets of monoclonal (mAbs) and polyclonal Abs (pAbs) reacting with porcine CD markers along with other reagents (fusion proteins, ELISAs, PCR assays, and gene edited cell and pig models). This process identified over 800 reagents that are reportedly reactive with 266 pig CD markers. Despite this number, there is a great need to develop and characterize additional CD marker reagents, particularly mAbs, for pig research. There are numerous high priority targets: reagents for the characterization of porcine innate lymphoid cells, polarized macrophages and T regulatory cells and for the detection of porcine CD45 isoforms. Overall, improved technologies and genomics have contributed to dramatic increases in our knowledge of the pig, its immune system, disease and vaccine responses, and utility as a biomedical model. The development of more CD reagents will clearly advance these initiatives. Published by Elsevier Ltd.
Successful vitrification of human amnion-derived mesenchymal stem cells.
Moon, Jeong Hee; Lee, Jung Ryeol; Jee, Byung Chul; Suh, Chang Suk; Kim, Seok Hyun; Lim, Hyun Jung; Kim, Hae Kwon
2008-08-01
A cryopreservation protocol for human amnion-derived mesenchymal stem cells (HAMs) is required because these cells cannot survive for long periods in culture. The aim of this study was to determine whether vitrification is a useful freezing method for storage of HAMs. HAMs were cryopreserved using vitrification method. The morphology and viability of thawed HAMs was evaluated by Trypan Blue staining. The expression of several embryonic stem cell (ESC) markers was evaluated using flow cytometry, RT-PCR and immunocytochemistry. Von Kossa, Oil Red O and Alcian Blue staining were used to asses the differentiation potential of thawed HAMs. The post-thawing viability of HAMs was 84.3 +/- 3.2% (Mean +/- SD, n = 10). The thawed HAMs showed morphological characteristics indistinguishable from the non-vitrified fresh HAMs. The expression of surface antigens (strong positive for CD44, CD49d, CD59, CD90, CD105 and HLA-ABC; weak positive for HLA-G; negative for CD31, CD34, CD45, CD106, CD117 and HLA-DR) and the expression of ESC markers [CK18, fibroblast growth factor-5, GATA-4, neural cell adhesion molecule, Nestin, Oct-4, stem cell factor, HLA-ABC, Vimentin, bone morphogenetic protein (BMP) 4, hepatocyte nuclear factor 4 alpha (HNF-4 alpha), Pax-6, alpha-fetoprotein, Brachyury, BMP-2, TRA-1-60, stage-specific embryonic antigen (SSEA-3, SSEA-4)] were maintained in the vitrified-thawed HAMs. The thawed HAMs retained ability to differentiate into osteoblasts, adipocytes and chondrocytes under appropriate culture conditions. Our results suggest that vitrification is a reliable and effective method for cryopreservation of HAMs.
Sakaguchi, Hitoshi; Ryan, Cindy; Ovigne, Jean-Marc; Schroeder, Klaus R; Ashikaga, Takao
2010-09-01
Regulatory policies in Europe prohibited the testing of cosmetic ingredients in animals for a number of toxicological endpoints. Currently no validated non-animal test methods exist for skin sensitization. Evaluation of changes in cell surface marker expression in dendritic cell (DC)-surrogate cell lines represents one non-animal approach. The human Cell Line Activation Test (h-CLAT) examines the level of CD86 and CD54 expression on the surface of THP-1 cells, a human monocytic leukemia cell line, following 24h of chemical exposure. To examine protocol transferability, between-lab reproducibility, and predictive capacity, the h-CLAT has been evaluated by five independent laboratories in several ring trials (RTs) coordinated by the European Cosmetics Association (COLIPA). The results of the first and second RTs demonstrated that the protocol was transferable and basically had good between-lab reproducibility and predictivity, but there were some false negative data. To improve performance, protocol and prediction model were modified. Using the modified prediction model in the first and second RT, accuracy was improved. However, about 15% of the outcomes were not correctly identified, which exposes some of the limitations of the assay. For the chemicals evaluated, the limitation may due to chemical being a weak allergen or having low solubility (ex. alpha-hexylcinnamaldehyde). The third RT evaluated the modified prediction model and satisfactory results were obtained. From the RT data, the feasibility of utilizing cell lines as surrogate DC in development of in vitro skin sensitization methods shows promise. The data also support initiating formal pre-validation of the h-CLAT in order to fully understand the capabilities and limitations of the assay. Copyright 2010 Elsevier Ltd. All rights reserved.
Immune receptors CD40 and CD86 in oral keratinocytes and implications for oral lichen planus.
Marshall, Alison; Celentano, Antonio; Cirillo, Nicola; Mirams, Michiko; McCullough, Michael; Porter, Stephen
2017-01-01
Lichen planus (LP) is a chronic T-cell-mediated mucocutaneous inflammatory disease that targets stratified epithelia, including those lining the oral cavity. The intraoral variant of LP (OLP) is associated with interferon (IFN)-γ production by infiltrating T lymphocytes; however, the role of epithelial cells in the etiopathogenesis OLP is not completely understood. There is however a growing body of evidence regarding the involvement of epithelial-derived cytokines, immune receptors, and costimulatory molecules in the pathobiological processes that promote and sustain OLP. In the present study, we used a reverse transcriptase-polymerase chain reaction assay to assess whether CD40-a receptor found mainly on antigen presenting cells-and the costimulatory molecule CD86 were expressed in oral keratinocytes (three strains of primary normal oral keratinocytes and the H357 cell line) in the presence or absence of IFN-γ. To further characterize the involvement of CD40 in OLP, expression and distribution of receptor and ligand (CD40/CD154) in tissues from OLP were evaluated by immunohistochemistry. The present results are the first to show that both CD40 and CD86 are constitutively expressed at low levels in oral keratinocytes and that their expression was enhanced by IFN-γ stimulation. The intensity of CD40 staining in OLP tissues was strong. Taken together, the results strongly suggest that CD40 and CD86 play a role in the pathophysiology of oral inflammatory diseases such as OLP.
21 CFR 500.86 - Marker residue and target tissue.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS GENERAL Regulation of Carcinogenic Compounds Used in Food-Producing Animals § 500.86 Marker residue and target tissue. (a) For each edible tissue, the sponsor shall... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Marker residue and target tissue. 500.86 Section...
21 CFR 500.86 - Marker residue and target tissue.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS GENERAL Regulation of Carcinogenic Compounds Used in Food-Producing Animals § 500.86 Marker residue and target tissue. (a) For each edible tissue, the sponsor shall... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Marker residue and target tissue. 500.86 Section...
21 CFR 500.86 - Marker residue and target tissue.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS GENERAL Regulation of Carcinogenic Compounds Used in Food-Producing Animals § 500.86 Marker residue and target tissue. (a) For each edible tissue, the sponsor shall... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Marker residue and target tissue. 500.86 Section...
Povsic, Thomas J; Sloane, Richard; Zhou, Jiying; Pieper, Carl F; Pearson, Megan P; Peterson, Eric D; Green, Jennifer B; Cohen, Harvey J; Morey, Miriam C
2013-12-01
Aging is marked by a decline in physical function. Although the biological underpinnings for this remain unclear, loss of regenerative capacity has been proposed as one cause of the loss of physical function that occurs over time. The quantity of circulating progenitor cells (CPCs) may be one reflection of regenerative capability. We sought to determine whether certain specific CPC subpopulations were associated with physical function. Baseline CPCs were measured in 129 randomized participants in the Enhanced Fitness clinical trial based on the cell surface markers CD34, CD133, CD146, and CD14 and aldehyde dehydrogenase (ALDH) activity. Physical function was assessed using usual and rapid gait speed, 6-minute walk distance, chair stand time, and balance time. Low counts of early angiogenic CPCs identified as CD34(+), CD34(+)CD133(+), and ALDH-bright (ALDH(br)) cells were associated with low usual gait speed (p < .005, p < .001, and p < .007), rapid gait speed (p < .001, p < .003, and p < .001), and 6-minute walking distance (all comparisons p < .001), and longer time required to complete five chair stands (p < .006, p < .002, and p < .004). CPC counts of mature endothelial or monocytic markers were not associated with physical function. The numbers of CD34(+) and ALDH(br) CPCs are significantly lower in patients with impaired physical function. Further studies are needed to determine the underlying causes for this association.
T-lymphocyte populations following a period of high volume training in female soccer players.
Brown, F F; Bigley, A B; Ross, J C; LaVoy, E C; Simpson, R J; Galloway, S D R
2015-12-01
To investigate the T-lymphocyte response to a period of increased training volume in trained females compared to habitual activity in female controls. Thirteen trained female (19.8 ± 1.9 yrs) soccer players were monitored during a two-week long high volume training period (increased by 39%) and thirteen female untrained (20.5 ± 2.2 yrs) controls were monitored during two-weeks of habitual activity. Blood lymphocytes, collected at rest, were isolated before and after the two-week period. Isolated lymphocytes were assessed for the cell surface expression of the co-receptor CD28, a marker of T-lymphocyte naivety, and CD57 a marker used to identify highly-differentiated T-lymphocytes. Co-expression of these markers was identified on helper CD4(+) and cytotoxic CD8(+) T-lymphocytes. In addition a further population of γδ(+) T-lymphocytes were identified. Plasma was used to determine Cytomegalovirus (CMV) serostatus. No difference was observed in the T-lymphocyte populations following the two-week period of increased volume training. At baseline the number of total CD3(+), cytotoxic CD8(+), naïve (CD8(+) CD28(+) CD57(-)), intermediate (CD8(+) CD28(+) CD57(+)) T-lymphocytes and the number and proportion of γδ(+) T-lymphocytes were greater in the trained compared to the untrained females (p<0.05). The proportion of CD4(+)T-lymphocytes was greater in the untrained compared to the trained (p<0.05), in turn the CD4(+):CD8(+) ratio was also greater in the untrained females (p<0.05). Inclusion of percentage body fat as a covariate removed the main effect of training status in all T-lymphocyte sub-populations, with the exception of the γδ(+) T-lymphocyte population. 8% of the untrained group was defined as positive for CMV whereas 23% of the trained group was positive for CMV. However, CMV was not a significant covariate in the analysis of T-lymphocyte proportions. The period of high volume training had no effect on T-lymphocyte populations in trained females. However, baseline training status differences were evident between groups. This indicates that long-term exercise training, as opposed to short-term changes in exercise volume, appears to elicit discernible changes in the composition of the blood T-lymphocyte pool. Copyright © 2015 Elsevier Inc. All rights reserved.
Koide, J; Takada, K; Sugiura, M; Sekine, H; Ito, T; Saito, K; Mori, S; Takeuchi, T; Uchida, S; Abe, T
1997-01-01
An Epstein-Barr virus (EBV)-infected fibroblast line, designated DSEK, was spontaneously established from synovial tissue of a patient with rheumatoid arthritis (RA). DSEK cells expressed EBV nuclear antigens EBNA-1 and EBNA-2 and latent membrane protein LMP-1. Cell surface markers of DSEK cells were similar to those of EBV-negative fibroblast clones derived from synoviocytes and were negative for lymphocyte and macrophage markers. DSEK cells expressed CD44, CD58, and HLA-DR antigens and spontaneously produced interleukin-10 basic fibroblast growth factor and transforming growth factor beta1. These results indicate that rheumatoid synoviocytes can be a target for EBV infection and suggest that EBV may play a role in the pathogenesis of RA. PMID:9032386
Identification of cancer stem cell markers in human malignant mesothelioma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi
2011-01-14
Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors containmore » cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.« less
Gago-Lopez, Nuria; Awaji, Obinna; Zhang, Yiqiang; Ko, Christopher; Nsair, Ali; Liem, David; Stempien-Otero, April; MacLellan, W. Robb
2014-01-01
Summary Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation. PMID:24936447
Geng, Yijie; Feng, Bradley
2016-07-01
The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin(+)CD31(+)CD34(+)KDR(+)CD43(-) putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL(+) multi-cellular modules and a VEGFR3(+) sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.
Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor
NASA Astrophysics Data System (ADS)
Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao
2017-09-01
The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaseb, Hatem O.; Department of Clinical Pathology, National Cancer Institute; Fohrer-Ting, Helene
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumormore » cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66− is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance. - Highlights: • Spheroid enrichment selects cancer stem cells (CSC) from head & neck tumors (HNSCC). • Compared to normal epithelial cells, isolated CSC express increased SC/CSC markers. • Isolated CSC display enhanced radioresistance, clonogenicity and tumorigenicity. • HNSCC CSC express chromosomal instability. • CD44+/CD66− is a promising, consistent biomarker for HNSCC CSC.« less
Micropost microenvironments for studying luminal-basal lineage commitment of breast cancer cells
NASA Astrophysics Data System (ADS)
Kesavaraju, Anand; Qing, Bo; Jabart, Eric; Labarge, Mark; Sohn, Lydia
2013-03-01
MCF-7 breast cancer cells were plated onto polydimethylsiloxane (PDMS) microposts in order to examine the effects of the microenvironment on cell lineage. Different stiffnesses and sizes of the microposts are postulated to impact cell surface marker expression levels. We will provide preliminary results analyzing CD271 and focal adhesion markers such as vinculin. 3D shear flow will also be applied to the microposts to study how external mechanical stimuli affect cancer cells within their microenvironment.
Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M
2004-05-28
Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.
In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line.
Nair, Rohini M; Balla, Murali Ms; Khan, Imran; Kalathur, Ravi Kiran Reddy; Kondaiah, Paturu; Vemuganti, Geeta K
2017-11-21
Retinoblastoma (Rb), the most common childhood intraocular malignant tumor, is reported to have cancer stem cells (CSCs) similar to other tumors. Our previous investigation in primary tumors identified the small sized cells with low CD133 (Prominin-1) and high CD44 (Hyaluronic acid receptor) expression to be putative Rb CSCs using flow cytometry (FSC lo /SSC lo /CD133 lo /CD44 hi ). With this preliminary data, we have now utilized a comprehensive approach of in vitro characterization of Y79 Rb cell line following CSC enrichment using CD133 surface marker and subsequent validation to confirm the functional properties of CSCs. The cultured Rb Y79 cells were evaluated for surface markers by flow cytometry and CD133 sorted cells (CD133 lo /CD133 hi ) were compared for CSC characteristics by size/percentage, cell cycle assay, colony formation assay, differentiation, Matrigel transwell invasion assay, cytotoxicity assay, gene expression using microarray and validation by semi-quantitative PCR. Rb Y79 cell line shared the profile (CD133, CD90, CXCR4 and ABCB1) of primary tumors except for CD44 expression. The CD133 lo cells (16.1 ± 0.2%) were FSC lo /SSC lo , predominantly within the G0/G1 phase, formed larger and higher number of colonies with ability to differentiate to CD133 hi cells, exhibited increased invasive potential in a matrigel transwell assay (p < 0.05) and were resistant to Carboplatin treatment (p < 0.001) as compared to CD133 hi cells. The CD133 lo cells showed higher expression of several embryonic stem cell genes (HOXB2, HOXA9, SALL1, NANOG, OCT4, LEFTY), stem cells/progenitor genes (MSI2, BMI1, PROX1, ABCB1, ABCB5, ABCG2), and metastasis related gene- MACC1, when compared to the CD133 hi cells. This study validates the observation from our earlier primary tumor study that CSC properties in Rb Y79 cell line are endowed within the CD133 lo population, evident by their characteristics- i.e. small sized, dormant in nature, increased colony forming ability, differentiation to CD133 hi cells, higher invasiveness potential, drug resistance and primitive gene expression pattern. These findings provide a proof of concept for methodological characterization of the retinoblastoma CSCs with future implications for improved diagnostic and treatment strategies.
Lee, Chen-Chen; Wang, Chien-Neng; Lai, Yu-Ting; Kang, Jaw-Jou; Liao, Jiunn-Wang; Chiang, Bor-Luen; Chen, Hui-Chen; Cheng, Yu-Wen
2010-01-01
BACKGROUND AND PURPOSE Shikonin exhibits a wide range of anti-inflammatory actions. Here, we assessed its effects on maturation of murine bone marrow-derived dendritic cells (BM-DCs) and on allergic reactions in a murine model of asthma. EXPERIMENTAL APPROACH Cultured murine BM-DCs were used to investigate the effects of shikonin on expression of cell surface markers and their stimulation of T-cell proliferation and cytokine production. The therapeutic potential of shikonin was evaluated in a model of allergic airway disease. KEY RESULTS Shikonin dose-dependently inhibited expression of major histocompatibility complex class II, CD80, CD86, CCR7 and OX40L on BM-DCs, induced by a mixture of ovalbumin (OVA; 100 µg·mL−1) and thymic stromal lymphopoietin (TSLP; 20 ng·mL−1). Shikonin-treated BM-DCs were poor stimulators of CD4+ T lymphocyte and induced lower levels of interleukin (IL)-4, IL-5, IL-13 and tumour necrosis factor (TNF)-α release by responding T-cells. After intratracheal instillation of shikonin in OVA-immunized mice, OVA challenge induced lower IL-4, IL-5, IL-13, TNF-α and eotaxin release in bronchial alveolar lavage fluid, lower IL-4 and IL-5 production in lung cells and mediastinal lymph node cells and attenuated OVA-induced lung eosinophilia and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Shikonin effectively suppressed OVA + TSLP-induced BM-DC maturation in vitro and inhibited allergic inflammation and airway hyperresponsiveness in a murine model of asthma, showing good potential as a treatment for allergic asthma. Also, our model provides a novel platform for screening drugs for allergic diseases. PMID:20735407
Curcumin reduces lung inflammation via Wnt/β-catenin signaling in mouse model of asthma.
Yang, Xia; Lv, Jian-Ning; Li, Hui; Jiao, Bo; Zhang, Qiu-Hong; Zhang, Yong; Zhang, Jie; Liu, Yan-Qin; Zhang, Ming; Shan, Hu; Zhang, Jin-Zhao; Wu, Run-Miao; Li, Ya-Li
2017-05-01
Asthma is a chronic inflammatory, heterogeneous airway disease affecting millions of people around the world. Curcumin has been found to have anti-inflammatory and antifibrosis effects. Researchers reported that curcumin regulated Wnt/β-catenin signaling in lots of cells. However, whether curcumin regulates the levels of Wnt/β-Catenin signaling in lung tissues and DCs (dendritic cells) remains unclear. In this study, we assessed the effects of curcumin on DCs and asthma. C57BL/6 mice immunized with OVA (ovalbumin) were challenged thrice with an aerosol of OVA every second day for 8 days. Dexamethasone or curcumin was administered intraperitoneally to OVA-immunized C57BL/6 mice on day 24 once a day for 9 days. Mice were analyzed for effects of curcumin on asthma, inflammatory cell infiltration and cytokine levels in lung tissue. DCs were isolated from mouse bone morrow. The surface markers CD40, CD86 and CD11c of DCs was detected by FACS (fluorescence activated cell sorting) and the function of DCs was detected by mixed lymphocyte reaction. The expression of GSK-3β and β-catenin was detected by Western Blot. Results showed that OVA increased the number of inflammatory factors in BALF (bronchoalveolar lavage fluid), elevated lung inflammation scores in mice. Curcumin dose-dependently reversed the alterations induced by OVA in the asthmatic mice. Curcumin activated Wnt/β-catenin signaling pathway in DCs and asthmatic mouse lungs. Curcumin could influence the morphology and function of DCs, ease asthma symptom and inflammatory reaction through the activation of Wnt/β-catenin signaling. These results provide new evidence new evidence for application of curcumin on asthma.
Cario, Gunnar; Rhein, Peter; Mitlöhner, Rita; Zimmermann, Martin; Bandapalli, Obul R.; Romey, Renja; Moericke, Anja; Ludwig, Wolf-Dieter; Ratei, Richard; Muckenthaler, Martina U.; Kulozik, Andreas E.; Schrappe, Martin; Stanulla, Martin; Karawajew, Leonid
2014-01-01
Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75th percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72±3% versus 86±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60±8% versus 78±4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22±3% versus 11±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31±8% versus 11±3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1, MLL/AF4 and BCR/ABL1 rearrangements in B-cell-precursor acute lymphoblastic leukemia (P=0.002 and P=0.025, respectively). Consideration of CD45 expression may serve as an additional stratification tool in BFM-based protocols. (ClinicalTrials.gov identifier: NCT00430118) PMID:23911702
Cario, Gunnar; Rhein, Peter; Mitlöhner, Rita; Zimmermann, Martin; Bandapalli, Obul R; Romey, Renja; Moericke, Anja; Ludwig, Wolf-Dieter; Ratei, Richard; Muckenthaler, Martina U; Kulozik, Andreas E; Schrappe, Martin; Stanulla, Martin; Karawajew, Leonid
2014-01-01
Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75(th) percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72 ± 3% versus 86 ± 1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60 ± 8% versus 78 ± 4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22 ± 3% versus 11 ± 1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31 ± 8% versus 11 ± 3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1, MLL/AF4 and BCR/ABL1 rearrangements in B-cell-precursor acute lymphoblastic leukemia (P=0.002 and P=0.025, respectively). Consideration of CD45 expression may serve as an additional stratification tool in BFM-based protocols. (ClinicalTrials.gov identifier: NCT00430118).
Dietel, Barbara; Muench, Rabea; Kuehn, Constanze; Kerek, Franz; Steinkasserer, Alexander; Achenbach, Stephan; Garlichs, Christoph D; Zinser, Elisabeth
2014-08-01
Inflammation accelerates both plaque progression and instability in the pathogenesis of atherosclerosis. The inhibition of dendritic cell (DC) maturation is a promising approach to suppress excessive inflammatory immune responses and has been shown to be protective in several autoimmune models. The aim of this study was to investigate the immune modulatory effects of the natural substance MCS-18, an inhibitor of DC maturation, regarding the progression of atherosclerosis in ApoE-deficient mice. ApoE-deficient mice were fed for twelve weeks with a Western-type diet (n = 32) or normal chow (control group; n = 16). Animals receiving high-fat diet were treated with MCS-18 (500 μg/kg body weight, n = 16) or saline (n = 16) twice a week. After 12 weeks, animals were transcardially perfused and sacrificed. The percentage of mature DCs (CD3(-)/CD19(-)/CD14(-)/NK1.1(-)/CD11c(+)/MHCII(+)/CD83(+)/CD86(+)) and T cell subpopulations (CD4(+)/CD25(+)/Foxp3(+), CD3/CD4/CD8) was analyzed in peripheral blood and in the spleen using flow cytometry. Plaque size was determined in the aortic root and the thoracoabdominal aorta using en-face staining. Immunohistochemical stainings served to detect inflammatory cells in the aortic root. Several cytokines and chemokines were determined in serum using multiplex assays. In splenic cells derived from saline-treated atherosclerotic mice an increased DC maturation, reflected by the upregulation of CD83 and CD86 expression, was observed. The enhanced expression of both maturation markers was absent in MCS-18 treated atherosclerotic mice. While the percentage of splenic Foxp3 expressing Treg was increased in animals receiving MCS-18 compared to saline-treated atherosclerotic mice, cytotoxic T cells were reduced in the spleen and in atherosclerotic lesions of the aortic root. Furthermore, proatherogenic cytokines (e.g. IL-6 and IFN-γ) and chemokines (e.g. MIP-1β) were decreased in serum of MCS-18-treated animals when compared to saline-treated atherosclerotic mice. Also plaque size in the aortic root and the thoracoabdominal aorta was significantly lower following administration of MCS-18. This study provides for the first time evidence that MCS-18 is able to prevent the onset of atherosclerosis in ApoE-deficient mice. The observed anti-atherogenic effect is associated with the suppression of DC maturation and an inhibited migration and proliferation of cytotoxic T cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zarkoob, Hadi; Taube, Joseph H.; Singh, Sheila K.; Mani, Sendurai A.; Kohandel, Mohammad
2013-01-01
In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme. PMID:23734191
Effectiveness of Vascular Markers (Immunohistochemical Stains) in Soft Tissue Sarcomas.
Naeem, Namra; Mushtaq, Sajid; Akhter, Noreen; Hussain, Mudassar; Hassan, Usman
2018-05-01
To ascertain the effectiveness of IHC markers of vascular origin like CD31, CD34, FLI1 and ERG in vascular soft tissue sarcomas including angiosarcomas, Kaposi sarcomas, epithelioid hemangioendothelioma and a non-vascular soft tissue sarcoma (Epithelioid sarcoma). Descriptive study. Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, from 2011 to 2017. Diagnosed cases of angiosarcomas (n=48), epithelioid hemangioendothelioma (n=9), Kaposi sarcoma (n=9) and epithelioid sarcoma (n=20) were selected. Immunohistochemical staining as performed on formalin fixed paraffin embedded sections. The sections were stained for the following markers: CD34 (VENTANA clone Q Bend 10), CD31 (Leica clone 1 A 10), FLI1 (CELL MARQUE clone MRQ-1) and ERG (CELL MARQUE clone EP111). A complete panel of CD34, CD31 and ERG was applied on 8/48 cases of angiosarcomas with triple positivity in 6 cases. Eight cases showed positivity for only CD31 and ERG and 2 cases showed positivity for only ERG. A complete panel of CD34, CD31 and ERG was applied on 3/9 cases of epithelioid hemangioendothelioma with positivity for all markers in 2 cases. Combined positivity for ERG and CD34 was seen in 2 cases and on 4 cases only CD31 immunohistochemical was solely applied with 100% positivity. FLI1 was not applied on any case. Among 9 cases of Kaposi sarcoma, ERG, CD34 and CD31 in combination were applied on only 1 case with triple positivity. Remaining cases show positivity for either CD34, CD31 or FLI1. Majority of cases of epithelioid sarcomas were diagnosed on the basis of cytokeratin and CD34 positivity with loss of INI1. The other vascular markers showed negativity in all cases. Among these four markers, ERG immunohistochemical stain is highly effective for endothelial differentiation due to its specific nuclear staining pattern in normal blood vessel endothelial cells (internal control) as well as neoplastic cells of vascular tumors and lack of background staining.
The melanocortin receptor agonist NDP-MSH impairs the allostimulatory function of dendritic cells.
Rennalls, La'Verne P; Seidl, Thomas; Larkin, James M G; Wellbrock, Claudia; Gore, Martin E; Eisen, Tim; Bruno, Ludovica
2010-04-01
As alpha-melanocyte-stimulating hormone (alpha-MSH) is released by immunocompetent cells and has potent immunosuppressive properties, it was determined whether human dendritic cells (DCs) express the receptor for this hormone. Reverse transcription-polymerase chain reaction detected messenger RNA specific for all of the known melanocortin receptors in DCs. Mixed lymphocyte reactions also revealed that treatment with [Nle(4), DPhe(7)]-alpha-MSH (NDP-MSH), a potent alpha-MSH analogue, significantly reduced the ability of DCs to stimulate allogeneic T cells. The expression of various cell surface adhesion, maturation and costimulatory molecules on DCs was also investigated. Although treatment with NDP-MSH did not alter the expression of CD83 and major histocompatibility complex class I and II, the surface expression of CD86 (B7.2), intercellular adhesion molecule (ICAM-1/CD54) and CD1a was reduced. In summary, our data indicate that NDP-MSH inhibits the functional activity of DCs, possibly by down-regulating antigen-presenting and adhesion molecules and that these events may be mediated via the extracellular signal-regulated kinase 1 and 2 pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, K.; Frey, B.; Munoz, L.E.
2009-08-14
Background: Extracorporeal photopheresis is a therapy for treatment of autoimmune diseases, cutaneous T-cell lymphoma, organ graft rejection as well as graft-versus-host diseases. The exact mechanism how the combination of 8-methoxypsoralen plus UV-A irradiation (PUVA) acts is still unclear. We investigated the cell death of activated and non-activated lymphocytes after PUVA treatment as well as the rate of released blebs and their antigen composition. Results: In presence of 8-MOP, UV-A light highly significantly increased the cell death of activated lymphocytes. The same was observed to a lesser extent in non-activated cells. Blebs derived from activated lymphocytes after PUVA treatment showed themore » highest surface exposition of phosphatidylserine. These blebs also displayed a high exposure of the antigens CD5 and CD8 as well as a low exposure of CD28 and CD86. Conclusion: PUVA treatment exerts anti-inflammatory effects by inducing apoptosis and apoptotic cell-derived blebs with immune suppressive surface composition.« less
Large granular lymphocytosis in a patient infected with HTLV-II.
Martin, M P; Biggar, R J; Hamlin-Green, G; Staal, S; Mann, D
1993-08-01
HTLV-II has been associated with a variety of lymphoproliferative disorders, including atypical hairy cell leukemia, chronic T cell leukemia, T prolymphocytic leukemia, and large granular lymphocytic leukemia. However, a direct or indirect role for HTLV-II in these disorders is not yet firmly established. We studied a patient diagnosed as having leukemia of the large granular lymphocyte (LGL) type who was HTLV-II seropositive, to determine if the expanded cell population was infected. Two populations of CD3-CD16+ LGL were identified; one was CD8+, the other CD8-. Populations of cells with these surface markers as well as normal CD3+CD4+ and CD3+CD8+ cells were separated by flow cytometric methods, DNA extracted, and gene regions of HTLV-II pol and tax amplified, using the polymerase chain reaction, and probed after Southern blotting. HTLV-II was detected in the CD3+CD8+ population, and not in the CD3-CD16+ large granular lymphocyte population. This finding indicates that the role of HTLV-II, if any, in LGL proliferation is indirect.
Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella
2017-01-16
Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24- cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.
Tchou, Isabelle; Sabido, Odile; Lambert, Claude; Misery, Laurent; Garraud, Olivier; Genin, Christian
2003-03-03
Epidermis and surface epithelium-dendritic cells comprise of immature cells termed Langerhans cells (LCs), which express characteristically the Birbeck granules, along with surface markers such as CD1a. These cells can capture a pathogen and then migrate and differentiate to a more mature stage. During this maturation process, dentritic cells express surface markers differentially. In physio-pathological models of infection where LCs are involved, it is critically important to ensure that the LCs tested in vitro are still immature and are not artefactually matured-dentritic cells. For experimental purposes, LCs were isolated from skin epidermis obtained from patients undergoing plastic surgery. This work thus aimed at collecting fresh LCs ex vivo and at testing the cells for phenotypic and functional characteristics of the immature stage. After mechanic disruption of the epidermis and proceeding for single cell suspension obtaining, two methods for purification were tested in parallel: (a) a positive immuno-magnetic separation by anti-CD1a-coated beads and (b) a purely mechanic purification system based on a three-step Ficoll floatation process. Both systems were equally efficient in terms of purification and yield. By using flow cytometry phenotyping, we have demonstrated that the use of magnetic beads led to some degree of maturation of CD1a(+) LCs, contrary to the repeated Ficoll floatation. This work calls attention for the use of certain monoclonal antibodies such as anti-CD1a to purify immature dendritic cells as they pre-activate these cells. Pre-activation would render a number of assays on the early events of LC physiology invalid, contrary to the purification of fresh skin epidermis LCs by means of a repeated Ficoll floatation.
Zanjani, Leili Saeednejad; Madjd, Zahra; Abolhasani, Maryam; Rasti, Arezoo; Fodstad, Oystein; Andersson, Yvonne; Asgari, Mojgan
2018-01-01
Although CD44 has been suggested as a prognostic marker in renal cell carcinoma (RCC), the prognostic significance of this marker in three main subtypes of RCC is still unclear. Thus, the present study was conducted to evaluate the expression and prognostic significance of CD44 as a cancer stem cell marker in different histological subtypes of RCC. Methodology & results: CD44 expression was evaluated in 206 well-defined renal tumor samples using immunohistochemistry on tissue microarrays. Higher CD44 expression was associated with more aggressive behavior, tumor progression and worse prognosis in clear cell RCC (ccRCC) but not in papillary and chromophobe RCC subtypes. Cancer stem cell marker CD44 may be a promising target for cancer treatment only in ccRCC.
Effective antigen presentation to helper T cells by human eosinophils.
Farhan, Ruhaifah K; Vickers, Mark A; Ghaemmaghami, Amir M; Hall, Andrew M; Barker, Robert N; Walsh, Garry M
2016-12-01
Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4 + T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4 + Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease. © 2016 John Wiley & Sons Ltd.
CD34 Expression by Hair Follicle Stem Cells Is Required for Skin Tumor Development in Mice
Trempus, Carol S.; Morris, Rebecca J.; Ehinger, Matthew; Elmore, Amy; Bortner, Carl D.; Ito, Mayumi; Cotsarelis, George; Nijhof, Joanne G.W.; Peckham, John; Flagler, Norris; Kissling, Grace; Humble, Margaret M.; King, Leon C.; Adams, Linda D.; Desai, Dhimant; Amin, Shantu; Tennant, Raymond W.
2007-01-01
The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice. PMID:17483328
Habara, P; Marečková, H; Malíčková, K; Potyšová, Z; Hrušková, Z; Zima, T; Tesař, V
2012-01-01
Glomerulonephritides together create a heterogenic group of supposedly immunologically mediated diseases of glomeruli. They still belong among the most frequent causes of chronic renal failure. Detection of podocytes in urine might serve as an important marker of glomerulonephritides activity. The aim of this study was to develop a novel flow cytometric method for the detection of podocyte fragments and podocytes in urine and assess its possible use in clinical practice. We placed emphasis on the improvement of pre-analytic phase. To suppress the autofluorescence of the background, blocking solutions and magnetic separation were used. An additional surface marker CD10 (nephrilysin) was used together with routinely used podocalyxin (PCX) in order to achieve better identification of podocytes. Based on the surface marker expression, three different element types were identified in the urine samples: PCX+/CD10+ elements (EL) (supposedly podocytes), PCX-/CD10+ EL (supposedly parietal epithelial cells) and PCX+ EL. We examined a total of 36 patients who underwent renal biopsy (non-glomerular nephropathy, MGN, FSGS, IgAN, AAV and MPGN) and 27 healthy controls. Negative results were found in non-glomerular nephropathy and in MGN. In patients with FSGS and IgAN, the levels of urine elements were slightly increased. The highest levels of all elements were found in AAV and MPGN. Our first results suggest that flow cytometric detection may distinguish between glomerular and nonglomerular diseases and that the levels of urine elements might correlate with the degree of glomerular destruction.
FcγRIIb expression in early stage chronic lymphocytic leukemia.
Bosch, Rosa; Mora, Alba; Vicente, Eva Puy; Ferrer, Gerardo; Jansà, Sonia; Damle, Rajendra; Gorlatov, Sergey; Rai, Kanti; Montserrat, Emili; Nomdedeu, Josep; Pratcorona, Marta; Blanco, Laura; Saavedra, Silvana; Garrido, Ana; Esquirol, Albert; Garcia, Irene; Granell, Miquel; Martino, Rodrigo; Delgado, Julio; Sierra, Jorge; Chiorazzi, Nicholas; Moreno, Carol
2017-11-01
In normal B-cells, B-cell antigen receptor (BCR) signaling can be negatively regulated by the low-affinity receptor FcγRIIb (CD32b). To better understand the role of FcγRIIb in chronic lymphocytic leukemia (CLL), we correlated its expression on 155 samples from newly-diagnosed Binet A patients with clinical characteristics and outcome. FcγRIIb expression was similar in normal B-cells and leukemic cells, this being heterogenous among patients and within CLL clones. FcγRIIb expression did not correlate with well known prognostic markers [disease stage, serum beta-2 microglobulin (B2M), IGHV mutational status, expression of ZAP-70 and CD38, and cytogenetics] except for a weak concordance with CD49d. Moreover, patients with low FcγRIIb expression (69/155, 44.5%) required therapy earlier than those with high FcγRIIb expression (86/155, 55.5%) (median 151.4 months vs. not reached; p=.071). These results encourage further investigation on the role of FcγRIIb in CLL biology and prognostic significance in larger series of patients.
MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains.
Akuthota, Praveen; Melo, Rossana C N; Spencer, Lisa A; Weller, Peter F
2012-02-01
Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor-stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR-containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4(+) T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils.
MHC Class II and CD9 in Human Eosinophils Localize to Detergent-Resistant Membrane Microdomains
Akuthota, Praveen; Melo, Rossana C. N.; Spencer, Lisa A.
2012-01-01
Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor–stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR–containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4+ T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils. PMID:21885678
Patel, Jatin; Seppanen, Elke; Chong, Mark S.K.; Yeo, Julie S.L.; Teo, Erin Y.L.; Chan, Jerry K.Y.; Fisk, Nicholas M.
2013-01-01
The term placenta is a highly vascularized tissue and is usually discarded upon birth. Our objective was to isolate clinically relevant quantities of fetal endothelial colony-forming cells (ECFCs) from human term placenta and to compare them to the well-established donor-matched umbilical cord blood (UCB)-derived ECFCs. A sorting strategy was devised to enrich for CD45−CD34+CD31Lo cells prior to primary plating to obtain pure placental ECFCs (PL-ECFCs) upon culture. UCB-ECFCs were derived using a well-described assay. PL-ECFCs were fetal in origin and expressed the same cell surface markers as UCB-ECFCs. Most importantly, a single term placenta could yield as many ECFCs as 27 UCB donors. PL-ECFCs and UCB-ECFCs had similar in vitro and in vivo vessel forming capacities and restored mouse hind limb ischemia in similar proportions. Gene expression profiles were only minimally divergent between PL-ECFCs and UCB-ECFCs, probably reflecting a vascular source versus a circulating source. Finally, PL-ECFCs and UCB-ECFCs displayed similar hierarchies between high and low proliferative colonies. We report a robust strategy to isolate ECFCs from human term placentas based on their cell surface expression. This yielded much larger quantities of ECFCs than UCB, but the cells were comparable in immunophenotype, gene expression, and in vivo functional ability. We conclude that PL-ECFCs have significant bio-banking and clinical translatability potential. PMID:24106336
Postthymic maturation influences the CD8 T cell response to antigen.
Makaroff, Lydia E; Hendricks, Deborah W; Niec, Rachel E; Fink, Pamela J
2009-03-24
Complete T cell development requires postthymic maturation, and we investigated the influence of this ontological period on the CD8 T cell response to infection by comparing responses of mature CD8 T cells with those of recent thymic emigrants (RTEs). When activated with a noninflammatory stimulus or a bacterial or viral pathogen, CD8 RTEs generated a lower proportion of cytokine-producing effector cells and long-lived memory precursors compared with their mature counterparts. Although peripheral T cell maturation is complete within several weeks after thymic egress, RTE-derived memory cells continued to express inappropriate levels of memory cell markers and display an altered pattern of cytokine production, even 8 weeks after infection. When rechallenged, RTE-derived memory cells generated secondary effector cells that were phenotypically and functionally equivalent to those generated by their mature counterparts. The defects at the effector and memory stages were not associated with differences in the expression of T cell receptor-, costimulation-, or activation-associated cell surface markers yet were associated with lower Ly6C expression levels at the effector stage. This work demonstrates that the stage of postthymic maturation influences cell fate decisions and cytokine profiles of stimulated CD8 T cells, with repercussions that are apparent long after cells have progressed from the RTE compartment.
Effects of Space Flight on Neutrophil Functions in Astronauts
NASA Technical Reports Server (NTRS)
Kaur, Indreshpal; Valadez, Victoria A.; Simons, Elizabeth R.; Pierson, Duane L.
2000-01-01
Neutrophil phagocytosis, oxidative burst, degranulation, and the expression of selected surface markers were studied in 25 astronauts following 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch, immediately after landing, and again at 3 days after landing. The number of neutrophils increased at landing by 85%. Phagocytosis of Escherichia coli (E. coli) and oxidative burst following the medium length (9 to 11 days) missions were lower than the control mean values. Whereas, following the short-duration (5 days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 were measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst. Mission duration appears to be a factor in phagocytic and oxidative functions.
Wang, Xiaohong; Hu, Qingsong; Nakamura, Yasuhiro; Lee, Joseph; Zhang, Ge; From, Arthur H L; Zhang, Jianyi
2006-07-01
Cardiac stem cell-like populations exist in adult hearts, and their roles in cardiac repair remain to be defined. Sca-1 is an important surface marker for cardiac and other somatic stem cells. We hypothesized that heart-derived Sca-1(+)/CD31(-) cells may play a role in myocardial infarction-induced cardiac repair/remodeling. Mouse heart-derived Sca-1(+)/CD31(-) cells cultured in vitro could be induced to express both endothelial cell and cardiomyocyte markers. Immunofluorescence staining and fluorescence-activated cell sorting analysis indicated that endogenous Sca-1(+)/CD31(-) cells were significantly increased in the mouse heart 7 days after myocardial infarction (MI). Western blotting confirmed elevated Sca-1 protein expression in myocardium 7 days after MI. Transplantation of Sca-1(+)/CD31(-) cells into the acutely infarcted mouse heart attenuated the functional decline and adverse structural remodeling initiated by MI as evidenced by an increased left ventricular (LV) ejection fraction, a decreased LV end-diastolic dimension, a decreased LV end-systolic dimension, a significant increase of myocardial neovascularization, and modest cardiomyocyte regeneration. Attenuation of LV remodeling was accompanied by remarkably improved myocardial bioenergetic characteristics. The beneficial effects of cell transplantation appear to primarily depend on paracrine effects of the transplanted cells on new vessel formation and native cardiomyocyte function. Sca-1(+)/CD31(-) cells may hold therapeutic possibilities with regard to the treatment of ischemic heart disease.
DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki Hyung; Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan; Kang, Yun-Jeong
Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondarymore » structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.« less
MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1.
Jingjing, Zhang; Nan, Zhang; Wei, Wu; Qinghe, Guo; Weijuan, Wang; Peng, Wang; Xiangpeng, Wang
2017-06-01
Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.
Groselj-Grenc, Mojca; Ihan, Alojz; Pavcnik-Arnol, Maja; Kopitar, Andreja Natasa; Gmeiner-Stopar, Tanja; Derganc, Metka
2009-11-01
To compare the diagnostic accuracy of neutrophil and monocyte CD64 indexes (CD64in and CD64im) for sepsis in critically ill neonates and children with that of lipopolysaccharide-binding protein (LBP), procalcitonin (PCT) and C-reactive protein (CRP). Prospective, observational study in a level III multidisciplinary neonatal and pediatric intensive care unit (ICU). Forty-six neonates and 36 children with systemic inflammatory response syndrome (SIRS) and suspected infection, classified into two groups: those with bacterial sepsis (microbiologically proven or clinical sepsis) and those without bacterial sepsis (infection not supported by subsequent clinical course, laboratory data and microbiological tests). Flow cytometric CD64in and CD64im, serum LBP, PCT and CRP measurement on 2 consecutive days from admission to the ICU. There were 17 cases of bacterial sepsis in neonates and 24 cases of bacterial sepsis in children. All neonates and the majority of children were mechanically ventilated, and more than two-thirds of neonates with sepsis and one-third of children with sepsis needed inotropic/vasopressor drugs. The highest diagnostic accuracy for sepsis on the 1st day of suspected sepsis was achieved by LBP in neonates (0.86) and by CD64in in children (0.88) and 24 h later by CD64in in neonates (0.96) and children (0.98). Neutrophil CD64 index (CD64in) is the best individual marker for bacterial sepsis in children, while in neonates the highest diagnostic accuracy at the time of suspected sepsis was achieved by LBP and 24 h later by CD64in.
Plasma Soluble CD163 Level Independently Predicts All-Cause Mortality in HIV-1-Infected Individuals.
Knudsen, Troels Bygum; Ertner, Gideon; Petersen, Janne; Møller, Holger Jon; Moestrup, Søren K; Eugen-Olsen, Jesper; Kronborg, Gitte; Benfield, Thomas
2016-10-15
CD163, a monocyte- and macrophage-specific scavenger receptor, is shed as soluble CD163 (sCD163) during the proinflammatory response. Here, we assessed the association between plasma sCD163 levels and progression to AIDS and all-cause mortality among individuals infected with human immunodeficiency virus type 1 (HIV). Plasma sCD163 levels were measured in 933 HIV-infected individuals. Hazard ratios (HRs) with 95% confidence intervals (CIs) associated with mortality were computed by Cox proportional hazards regression. At baseline, 86% were receiving antiretroviral treatment, 73% had plasma a HIV RNA level of <50 copies/mL, and the median CD4(+) T-cell count was 503 cells/µL. During 10.5 years of follow-up, 167 (17.9%) died. Plasma sCD163 levels were higher in nonsurvivors than in survivors (4.92 mg/L [interquartile range {IQR}, 3.29-8.65 mg/L] vs 3.16 mg/L [IQR, 2.16-4.64 mg/L]; P = .0001). The cumulative incidence of death increased with increasing plasma sCD163 levels, corresponding to a 6% or 35% increased risk of death for each milligram per liter or quartile increase, respectively, in baseline plasma sCD163 level (adjusted HR, 1.06 [95% CI, 1.03-1.09] and 1.35 [95% CI, 1.13-1.63], respectively). Plasma sCD163 was an independent marker of all-cause mortality in a cohort of HIV-infected individuals, suggesting that monocyte/macrophage activation may play a role in HIV pathogenesis and be a target of intervention. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Horowitz, Amir; Guethlein, Lisbeth A.; Nemat-Gorgani, Neda; Norman, Paul J.; Cooley, Sarah; Miller, Jeffrey S.; Parham, Peter
2015-01-01
Mass cytometry was used to investigate the effect of CMV reactivation on lymphocyte reconstitution in hematopoietic cell transplant patients. For eight transplant recipients, four CMV negative and four CMV positive, we studied peripheral blood mononuclear cells (PBMC) obtained six months after unrelated donor hematopoietic cell transplantation (HCT). Forty cell-surface markers, distinguishing all major leukocyte populations in PBMC, were analyzed by mass cytometry. These included 34 NK cell markers. Compared to healthy controls, transplant recipients had higher HLA-C expression on CD56−CD16+ NK cells, B cells, CD33bright myeloid cells and CD4CD8 T cells. The increase in HLA-C expression was greater for CMV-positive HCT recipients than CMV negative recipients. Present in CMV-positive HCT recipients, but not in CMV-negative HCT recipients or controls, is a population of KIR-expressing CD8 T cells not previously described. These CD8 T cells co-express CD56, CD57 and NKG2C. The HCT recipients also have a population of CD57+NKG2A+ NK cells that preferentially express KIR2DL1. An inverse correlation was observed between the frequencies of CD57+NKG2C+ NK cells and CD57+NKG2A+ NK cells. Although CD57+NKG2A+ NK cells are less abundant in CMV-positive recipients, their phenotype is of a more activated cell than the CD57+NKG2A+ NK cells of controls and CMV-negative HCT recipients. These data demonstrate that HCT and CMV reactivation are associated with an increased expression of HLA-C. This could influence NK cell education during lymphocyte reconstitution. The increased inhibitory KIR expression by proliferating CMV-specific CD8 T cells suggests regulatory interactions between HLA-C and KIR might promote GVL effects following transplantation. PMID:26416275
Belatacept: a novel biologic for maintenance immunosuppression after renal transplantation.
Martin, Spencer T; Tichy, Eric M; Gabardi, Steven
2011-04-01
In the past decade, the availability of new immunosuppressive maintenance therapies for use in solid organ transplantation has remained limited. Patients and clinicians have relied on immunosuppressive drugs that require a significant amount of therapeutic monitoring and are associated with a variety of adverse effects that affect both quality of life and allograft function. Belatacept is an investigational intravenous biologic agent for long-term use in renal transplant recipients. The costimulatory pathway (signal 2) of T-cell activation and proliferation is produced by stimulation of the T-cell surface marker, CD28, and is essential to the immune system's cellular response and ability to recognize an allograft as foreign. Belatacept is a potent antagonist of B7-1 (CD80) and B7-2 (CD86) ligands present on antigen-presenting cells that are responsible for activation of CD28. Recent phase III trials describe various dosing strategies of belatacept versus a standard cyclosporine protocol in recipients of both living- and deceased-donor renal transplants, as well as in patients receiving kidneys transplanted from extended-criteria donors. Compared with cyclosporine, belatacept has been shown to be noninferior in both patient and allograft survival rates. However, the rate of biopsy-proven acute cellular rejection occurred more frequently in the belatacept groups. Also, compared with standard calcineurin-based regimens, the risk of posttransplant lymphoproliferative disorder is increased in patients receiving belatacept, with the greatest risk in transplant recipients who are Epstein-Barr virus seronegative before transplantation. However, this investigational immunosuppressive agent may avert common adverse effects experienced with standard immunosuppressive protocols including renal dysfunction, metabolic disorders, neurotoxicities, glucose abnormalities, and cosmetic effects. More data on the long-term risks of belatacept are needed to better define its role as immunosuppressive maintenance therapy. Aside from an increased risk of malignancy, belatacept's limited adverse-effect profile and convenient dosing strategy may make it an attractive option for immuno-suppressive maintenance for both the patient and clinician.
Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.
2015-01-01
Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869
Khamechian, Tahereh; Irandoust, Behnaz; Mohammadi, Hanieh; Nikoueinejad, Hassan; Akbari, Hossein
2018-04-01
In recent years, it has been recognized that regulatory T cells (Tregs) play a critical role in maintaining immune tolerance. Moreover, the expression of two markers named Helios and neurophilin-1 (NRP-1) has been highlighted in such cells. Helios, an intracellular transcription marker, largely differentiates twomost operative sub group of Tregs, namely naturally occurring (nTreg) and induced (iTreg) Tregs, and NRP-1 is reckoned as a membranous activity marker of Tregs. We aimed to count peripheral mononuclear cells expressing such markers in a group of type 1 diabetes patients to elucidate the possible role of Tregs in the pathogenesis of such disease and its complications. Blood samples from 61 adult patients with type 1 diabetes and 61 sex and age-matched healthy controls were tested to count two types of Tregs, namely naturally occurring and inducible types, according to the expression of cell surface markers of CD4/CD25/CD47-FITC/PE/APC and intracellular markers of FoxP3/Helios-PE-CY5/eFlour450 by flow cytometry, respectively.We also investigated the relation between expression of such markers with HbA1c, urine albumin/creatinine ratio (UACR), and common carotid intima thickness (CIMT). The circulatory frequency of both Helios+ and Helios- T-cells were significantly decreased in patients compared to those in healthy controls (p<0.001). There was also a significant decrease in circulatory frequency of Helios+ NRP-1+ and Helios- NRP-1+ cells in the patients compared to controls (p=0.029). According to expression of Helios and NRP-1 markers, the number and function of both Tregs were decreased in diabetic patients. Moreover, the neurophilin expression was inversely associated with complications of type 1 diabetes.
Hsueh, Pei-Tan; Liu, Chiu-Lin; Wang, Hsuan-Han; Ni, Wei-Fen; Chen, Ya-Lei; Liu, Jong-Kang
2016-11-01
Lipopolysaccharide is one of the virulence factors of the soil-borne pathogens Burkholderia pseudomallei, B. thailandensis, B. cenocepacia and B. multivorans, which cause septic melioidosis (often in B. pseudomallei infections but rarely in B. thailandensis infections) or cepacia syndromes (commonly in B. cenocepacia infections but rarely in B. multivorans infections). The inflammatory responses in Burkholderia LPS-induced endotoxemia were evaluated in this study. Prior to induction, the conserved structures and functions of each purified LPS were determined using electrophoretic phenotypes, the ratios of 3-hydroxytetradecanoic to 3-hydroxyhexadecanoic acid and endotoxin units. In an in vitro assay, cytokine expression of myeloid differentiation primary response gene 88 and Toll/IL-1 receptor domain containing adapter-inducing INF-β-dependent signaling-dependent signaling differed when stimulated by different LPS. Endotoxemia was induced in mice by s.c. injection as evidenced by increasing serum concentrations of 3-hydroxytetradecanoic acid and the septic prognostic markers CD62E and ICAM-1. During endotoxemia, splenic CD11b + I-A + , CD11b + CD80 + , CD11b + CD86 + and CD11b + CD11c + subpopulations increased. After induction with B. pseudomallei LPS, there were significant increases in splenic CD49b NK cells and CD14 macrophages. The inflamed CD11b + CCR2 + , CD11b + CD31 + , CD11b + CD14 + , resident CD11b + CX 3 CR1 + and progenitor CD11b + CD34 + cells showed delayed increases in bone marrow. B. multivorans LPS was the most potent inducer of serum cytokines and chemokines, whereas B. cenocepacia LPS induced relatively low concentrations of the chemokines MIP-1α and MIP-1β. Endotoxin activities did not correlate with the virulence of Burkholderia strains. Thus factors other than LPS and/or other mechanisms of low activity LPS must mediate the pathogenicity of highly virulent Burkholderia strains. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection
Hickling, Stephen; Hurst, Jacob; Meyerowitz, Jodi; Willberg, Christian B.; Robinson, Nicola; Brown, Helen; Kinloch, Sabine; Babiker, Abdel; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Phillips, Rodney; Frater, John
2016-01-01
The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of ‘exhaustion’ or ‘immune checkpoint’ markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches. PMID:27415828
CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line.
Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis
2016-01-01
Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133(+), CD133(-) and spheroid cells. Significant differences of the two experimental groups were compared using student's t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133(+) cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Although CD133(+) derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells.
CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line
Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis
2016-01-01
Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115
Marinho, Fabio V; Benmerzoug, Sulayman; Rose, Stephanie; Campos, Priscila C; Marques, João T; Báfica, André; Barber, Glen; Ryffel, Bernhard; Oliveira, Sergio C; Quesniaux, Valerie F J
2018-05-23
Mycobacterium tuberculosis (Mtb) infection remains a major public health concern. The STING (stimulator of interferon genes) pathway contributes to the cytosolic surveillance of host cells. Most studies on the role of STING activation in Mtb infection have focused on macrophages. Moreover, a detailed investigation of the role of STING during Mtb infection in vivo is required. Here, we deciphered the involvement of STING in the activation of dendritic cells (DCs) and the host response to Mtb infection in vivo. In DCs, this adaptor molecule was important for Ifn-β expression and IL-12 production as well as for the surface expression of the activation markers CD40 and CD86. We also documented that Mtb DNA induces STING activation in murine fibroblasts. In vivo Mtb aerogenic infection induced the upregulation of the STING and cGAS (cyclic GMP-AMP synthase) genes, and Ifn-β pulmonary expression was dependent on both sensors. However, mice deficient for STING or cGAS presented a similar outcome to wild-type controls, with no major alterations in body weight gain, bacterial burden, or survival. Lung inflammation, proinflammatory cytokine production, and inflammatory cell recruitment were similar in STING- and cGAS-deficient mice compared to wild-type controls. In summary, although the STING pathway seems to be crucial for DC activation during Mtb infection, it is dispensable for host protection in vivo. © 2018 S. Karger AG, Basel.
Characterization of hepatic progenitors from human fetal liver during second trimester.
Rao, Mekala-Subba; Khan, Aleem-Ahmed; Parveen, Nyamath; Habeeb, Mohammed-Aejaz; Habibullah, Chittoor-Mohammed; Pande, Gopal
2008-10-07
To enrich hepatic progenitors using epithelial cell adhesion molecule (EpCAM) as a marker from human fetal liver and investigate the expression of human leukocyte antigen (HLA) and their markers associated with hepatic progenitor cells. EpCAM +ve cells were isolated using magnetic cell sorting (MACS) from human fetuses (n = 10) at 15-25 wk gestation. Expression of markers for hepatic progenitors such as albumin, alpha-fetoprotein (AFP), CD29 (integrin beta1), CD49f (integrin alpha6) and CD90 (Thy 1) was studied by using flow cytometry, immunocytochemistry and RT-PCR; HLA class I (A, B, C) and class II (DR) expression was studied by flow cytometry only. FACS analysis indicated that EpCAM +ve cells were positive for CD29, CD49f, CD90, CD34, HLA class I, albumin and AFP but negative for HLA class II (DR) and CD45. RT PCR showed that EpCAM +ve cells expressed liver epithelial markers (CK18), biliary specific marker (CK19) and hepatic markers (albumin, AFP). On immunocytochemical staining, EpCAM +ve cells were shown positive signals for CK18 and albumin. Our study suggests that these EpCAM +ve cells can be used as hepatic progenitors for cell transplantation with a minimum risk of alloreactivity and these cells may serve as a potential source for enrichment of hepatic progenitor.
Boisset, Jean-Charles; Clapes, Thomas; Van Der Linden, Reinier; Dzierzak, Elaine; Robin, Catherine
2013-01-01
Summary Integrins are transmembrane receptors that play important roles as modulators of cell behaviour through their adhesion properties and the initiation of signaling cascades. The αIIb integrin subunit (CD41) is one of the first cell surface markers indicative of hematopoietic commitment. αIIb pairs exclusively with β3 to form the αIIbβ3 integrin. β3 (CD61) also pairs with αv (CD51) to form the αvβ3 integrin. The expression and putative role of these integrins during mouse hematopoietic development is as yet unknown. We show here that hematopoietic stem cells (HSCs) differentially express αIIbβ3 and αvβ3 integrins throughout development. Whereas the first HSCs generated in the aorta at mid-gestation express both integrins, HSCs from the placenta only express αvβ3, and most fetal liver HSCs do not express either integrin. By using αIIb deficient embryos, we show that αIIb is not only a reliable HSC marker but it also plays an important and specific function in maintaining the HSC activity in the mouse embryonic aorta. PMID:23789102
Bauer, S R; Kubagawa, H; Maclennan, I; Melchers, F
1991-09-15
We show here that analysis of VpreB gene transcription can be a specific way to identify acute leukemias of cells at very early stages of B-cell development. Northern blot analysis of RNAs from 63 leukemia samples showed that VpreB RNA was present in malignancies of precursor B cells, the expression being a feature of both common acute lymphoblastic leukemia (ALL) (CD10+) and null ALL (CD10-). It was absent from malignancies of mature B cells (surface Ig positive), from acute leukemias of the T-cell lineage and granulocyte-macrophage lineages, and from normal tonsil B and T lymphocytes. Chronic myeloid leukemia blast crises of the B-precursor-cell type expressed the VpreB gene while myeloid blast crises did not. VpreB RNA was also expressed in the neoplastic cells of one of three patients with acute undifferentiated leukemias. These data show that VpreB RNA expression is a marker of the malignant forms of precursor B cells, and that it appears at least as early as cytoplasmic CD22 and CD19 in tumors of the B-cell lineage.
Costimulatory molecule expression following exposure to orthopaedic implants wear debris.
Bainbridge, J A; Revell, P A; Al-Saffar, N
2001-03-05
Patients with long-term orthopedic implants may develop inflammatory reactions due to the accumulation of biomaterial particles both around the implant and in distant organs. The exact impact of these particles on the normal immune cell function still remain relatively unclear. Activation of T-cells following exposure to biomaterial particles is driven by macrophages and requires synergistic signals primed by both antigen presentation and costimulation. The pattern of costimulatory molecule expression (CD80,CD86) was primarily examined using immunohistochemistry on tissue specimens of bone/implant interface membranes taken from sites of bone erosion. Additionally, costimulatory molecule expression was also assessed in the monocytic leukemia cell line U937 following exposure to clinically relevant titanium aluminum vanadium (TiAlV) and stainless steel particles (FeCrNi) cultured in vitro. This study demonstrates the induction and prominent expression of CD86 on almost all macrophage subsets at the bone/implant interface, including fused forms and large multinucleated giant cells (MNGC). In vitro analysis also indicated phagocytosis of metal particles by differentiated U937 caused significant induction of both CD80 and CD86 (p < 0.01), although the expression of CD86 dominated following prolonged exposure. The data presented highlights that CD86 is the predominant costimulatory molecule ligating to the complementary CD28 molecule at the inflammatory lesion of the interface. We propose that the intracellular presence of indigestible implant material, in addition to elevated costimulatory molecule expression, may promote T-cell inflammatory reactions at sites close to and distant from the orthopedic implant.
Zaborsky, Nadja; Gassner, Franz Josef; Asslaber, Daniela; Reinthaler, Petra; Denk, Ursula; Flenady, Sabine; Hofbauer, Josefina Piñón; Danner, Barbara; Rebhandl, Stefan; Harrer, Andrea; Geisberger, Roland; Greil, Richard; Egle, Alexander
2016-08-02
Chronic lymphocytic leukemia develops within a complex network driven by genetic mutations and microenvironmental interactions. Among the latter a complex interplay with the immune system is established by the clone. Next to a proposed recruitment of support from T and myeloid cells, potential anti-CLL immune reactions need to be subverted. By using TCL1 mice as a CLL model, we show that TCR-Vβ7+ NK1.1+ T cells are overrepresented in this disease model and constitute a main subset of peripheral CD3+ cells with biased TCR usage, showing that these cells account for a major part for T cell skewing in TCL1 mice. Moreover, we show that overrepresentation is dependent on CD1d expression in TCL1 mice, implicating that these cells belong to a NKT-like cell fraction which are restricted to antigen presented by the MHC-like surface marker CD1d. Accordingly, we observed a high fraction of CD161+ cells within overrepresented T cells in CLL patients and we found downregulation of CD1d on the surface of CLL cells, both in TCL1 mice and patients. Finally, we show that in TCL1 mice, CD1d deficiency resulted in shortened overall survival. Our results point to an interaction between CLL and CD161+ T cells that may represent a novel therapeutic target for immune modulation.
[Analysis of expression of cancer stem cell-related markers in orbital adenoid cystic carcinoma].
Lin, Ting-ting; Zhu, Li-min; He, Yan-jin; Zhang, Hong
2011-08-01
To observe the expression and distribution of CD44, CD133, and ABCG2 in orbital adenoid cystic carcinoma (ACC) and investigate their correlations with pathological type and prognosis. Two steps method of immunohistochemical staining was employed in 33 cases of paraffin embedded surgical specimens of human orbital ACC, 5 cases of recurrence samples, 3 cases of an excised lacrimal gland caused by neither inflammation nor tumor diseases, and 6 cases of xenograft tumors in nude mice. A retrospective analysis was performed on the clinical material of these patients, which were collected from Jan. 1991 to Mar. 2009. The positive rate of CD44 was 54.5% (18/33), with 76.9% (10/13) in solid type and 40.0% (8/20) in adeno-tubiform type. There was no statistically significant difference between them (P = 0.072). In solid type the positive expression cells were often located at the marginal part of the cancer nest. In the adeno-tubiform type, positive cells were often located at the outer layer of the tubiform structure (myoepithelial cells). CD44 was also expressed in normal tissues. The positive rate of CD133 was 57.6% (19/33), with 76.9% (10/13) in solid type and 45.0% (9/20) in adeno-tubiform type. There was no significant difference between them (P = 0.087). CD133 antigen was expressed in either the cytoplasm or nucleus, or expressed in both the cytoplasm and nucleus. The positive rate of ABCG2 was 21.2% (7/33), with 30.77% (4/13) in solid type and 15.0% (3/20) in adeno-tubiform type. There was no significant difference between them (P = 0.393). Many positive cells surrounded the vessels in tumor tissues. There were no significant differences between different prognosis groups of these surface phenotypes. The correlative analysis results of three surface phenotypes showed that CD44(+) cells have positive correlation with CD133(+) cells (Spearman, r(s) = 0.416, P = 0.016). In six transplanted tumors of nude mice, the number of positive cases for CD44(+), CD133(+) and ABCG2(+) was 1, 1 and 4 cases, respectively. The expression of CD44, CD133 and ABCG2 in ACC may influence the progress of ACC. However, they cannot be used as the markers for the evaluation of the prognosis of this tumor.
The effects of cryopreservation on the expression of canine regulatory T-cell markers.
Tarpataki, Noemi; Wawrzyniak, Marcin; Akdis, Cezmi A; Rückert, Beate; Meli, Marina L; Fischer, Nina M; Favrot, Claude; Rostaher, Ana
2017-08-01
Regulatory T (Treg) cells have been described as key regulators in various immunological processes and are of growing interest in veterinary allergy. Cryopreservation of immune cells is performed routinely in human basic science research and in clinical studies. As such, it allows batch testing of collected samples at a single time point, resulting in a significant reduction in sample variability. Data which describe the effects of cryopreservation on Treg cell frequency and functionality in the canine species are important to inform future research. The purpose of this study was to establish a robust freeze/thaw procedure and flow cytometric staining protocol for canine Treg cells, and to compare the frequencies of different canine Treg cell phenotypes before and after cryopreservation. Nine privately owned dogs. Peripheral blood mononuclear cells were isolated and Treg cells stained and analysed by flow cytometry, before and after three months of cryopreservation. The recovery percentages and the corresponding correlations (fresh versus cryopreserved) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations were calculated. A high recovery rate of 97.2 (r = 0.94, P < 0.0001), 93.9 (r = 0.77, P < 0.01) and 101.7% (r = 0.99, P < 0.0001) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations, respectively, was observed. This study demonstrates an optimized protocol for freezing, thawing and quantifying canine Treg cells. These results indicate that cryopreservation does not substantially affect the expression of surface and intracellular markers of canine Treg cells; however, additional studies will be necessary to assess whether functionality of the cells is also maintained. © 2017 ESVD and ACVD.
CD146/MCAM defines functionality of human bone marrow stromal stem cell populations.
Harkness, Linda; Zaher, Walid; Ditzel, Nicholas; Isa, Adiba; Kassem, Moustapha
2016-01-11
Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC population. Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone marrow elements enriched in implants containing hMSC-CD146(+) cells (0.5 % versus 0.05 %). hMSC-CD146(+) cells exhibited greater chemotactic attraction in a transwell migration assay and, when injected intravenously into immune-deficient mice following closed femoral fracture, exhibited wider tissue distribution and significantly increased migration ability as demonstrated by bioluminescence imaging. Our studies demonstrate that CD146 defines a subpopulation of hMSCs capable of bone formation and in vivo trans-endothelial migration and thus represents a population of hMSCs suitable for use in clinical protocols of bone tissue regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takei, Masao; Nakagawa, Hideyuki
The sea urchin Toxopneustes pileolus belonging to the family Toxopneustidae, they have well-developed globiferous pedicellariae with pharmacologically active substances. We have purified a novel sea urchin lectin-1 (SUL-1) from the large globiferous pedicellariae of T. pileolus. Dendritic cells (DC) are professional APC and play a pivotal role in controlling immune responses. This study investigated whether SUL-1 can drive DC maturation from human immature monocyte-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days followed by another 1 day in the presence of SUL-1 or LPS. DC harvested on day 7 were examined using functional assays.more » The expression levels of CD1a, CD80, CD83, CD86 and HLA-DR as expressed by mean fluorescence intensity (MFI) on DC differentiated from immature DC after culture with 1.0 {mu}g/ml of SUL-1 for 1 day were enhanced and decreased endocytic activity. SUL-1-treated DC also displayed enhanced T cell stimulatory capacity in an MLR, as measured by T cell proliferation. Cell surface expression of CD80, CD83 and CD86 on SUL-1-treated DC was inhibited by anti-DC-SIGN mAb, while anti-DC-SIGN mAb had no influence on allogeneic T cell proliferation by SUL-1-treated DC. DC differentiated with SUL-1 induced the differentiation of naive T cell towards a helper T cell type 1 (Th1) response at DC/T (1:5) cells ratio depending on IL-12 secretion. In CTL assay, the production of IFN-{gamma} and {sup 51}Cr release on SUL-1-treated DC were more augmented than of immature DC or LPS-treated DC. SUL-1-treated DC expressed CCR7 and had a high migration to MIP-3{beta}. Intracellular Ca{sup 2+} mobilization in SUL-1-treated DC was also induced by MIP-3{beta}. These results suggest that SUL-1 bindings to DC-SIGN on surface of immature DC may lead to differentiate DC from immature DC. Moreover, it suggests that SUL-1 may be used on DC-based vaccines for cancer immunotherapy.« less
Role of CD137 signaling in dengue virus-mediated apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagila, Amar; Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok; Netsawang, Janjuree
Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. Amore » double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.« less
Identification of active and quiescent adipose vascular stromal cells.
Lin, Guiting; Xin, Zhongcheng; Zhang, Haiyang; Banie, Lia; Wang, Guifang; Qiu, Xuefeng; Ning, Hongxiu; Lue, Tom F; Lin, Ching-Shwun
2012-02-01
Recent studies have demonstrated the existence of both active and quiescent stem cells in bone marrow, hair follicle and intestine. We attempted to identify active and quiescent vascular stromal cells (VSC) in adipose tissue. For identification of active VSC, adult rats were injected intraperitoneally with thymidine analog 5-ethynyl-2-deoxyuridine (EdU) and their subcutaneous tissue harvested 3 days later. For identification of quiescent VSC, newborn rats were injected intraperitoneally with EdU and their subcutaneous tissue harvested 9 weeks later. The harvested adipose tissues were examined for the co-localization of EdU with VSC marker CD34, smooth muscle marker SMA, endothelial marker RECA and pericyte marker CD140b. In adult rat adipose tissues harvested 3 days after EdU injection, there were 28.80 ± 8.70 (mean ± SD) EdU+ cells/100 × microscopic field, and approximately 6.2% of cell nuclei were labeled with EdU. The percentages of EdU+ cells expressing the following markers were approximately: 84 for CD34, 5.6 for RECA (rat endothelial marker), 3.7 for SMA and 14.8 for CD140b. In the adipose tissues of newborn rats that were harvested 9 weeks after EdU injection, the percentages of EdU+ cells expressing the following markers were approximately: 76 for CD34, 1.8 for RECA, 0 for SMA and 12.9 for CD140b. In both the short-term (active) and long-term (quiescent) EdU-labeled adipose tissues, the EdU label was consistently co-localized with CD34 and in the proximity of CD140b stain or in the adventitia. Both active and quiescent VSC expressed CD34 and localized to capillaries and the adventitia of larger blood vessels.
Progenitor Cells from Cartilage: Grade Specific Differences in Stem Cell Marker Expression
Mazor, Marija; Cesaro, Annabelle; Ali, Mazen; Best, Thomas M.; Lespessaille, Eric; Toumi, Hechmi
2017-01-01
Recent research has confirmed the presence of Mesenchymal stem cell (MSC)-like progenitors (MPC) in both normal and osteoarthritic cartilage. However, there is only limited information concerning how MPC markers are expressed with osteoarthritis (OA) progression. The purpose of this study was to compare the prevalence of various MPC markers in different OA grades. Human osteoarthritic tibial plateaus were obtained from ten patients undergoing total knee replacement. Each sample had been classified into a mild or severe group according to OARSI scoring. Tissue was taken from each specimen and mRNA expression levels of CD105, CD166, Notch 1, Sox9, Acan and Col II A1 were measured at day 0 and day 14 (2 weeks in vitro). Furthermore, MSC markers: Nucleostemin, CD90, CD73, CD166, CD105 and Notch 1 were studied by immunofluorescence. mRNA levels of MSC markers did not differ between mild and severe OA at day 0. At day 14, protein analysis showed that proliferated cells from both sources expressed all 6 MSC markers. Only cells from the mild OA subjects resulted in a significant increase of mRNA CD105 and CD166 after in vitro expansion. Moreover, cells from the mild OA subjects showed significantly higher levels of CD105, Sox9 and Acan compared with those from severe OA specimens. Results confirmed the presence of MSC markers in mild and severe OA tissue at both mRNA and protein levels. We found significant differences between cells obtained from mild compared to severe OA specimens suggests that mild OA derived cells may have a greater MSC potential. PMID:28805694
Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C
2000-05-01
CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B-CLL patients.
D'Antoni, Michelle L; Paul, Robert H; Mitchell, Brooks I; Kohorn, Lindsay; Fischer, Laurent; Lefebvre, Eric; Seyedkazemi, Star; Nakamoto, Beau K; Walker, Maegen; Kallianpur, Kalpana J; Ogata-Arakaki, Debra; Ndhlovu, Lishomwa C; Shikuma, Cecilia
2018-05-16
To evaluate changes in neuropsychological (NP) performance and in plasma and cell surface markers of peripheral monocyte activation/migration following treatment with cenicriviroc (CVC), a dual C-C chemokine receptor type 2 (CCR2) and type 5 (CCR5) antagonist, in treatment-experienced, HIV-infected individuals. Single-arm, 24-week, open-label clinical trial. HIV-infected individuals on antiretroviral therapy (ART) >1 year with plasma HIV RNA <50 copies/ml and below-normal cognitive performance [defined as age, gender and education-adjusted NP performance (NPZ) <-0.5 in a single cognitive domain or in global performance] were enrolled. Changes over 24 weeks were assessed for global and domain-specific NPZ scores, plasma markers of monocyte/macrophage activation [neopterin, soluble (s)CD14 and sCD163] quantified by ELISA, and CCR2 and CCR5 expression on monocytes and T cells measured by flow cytometry. Seventeen of 20 enrolled participants completed the study. Improvements over 24 weeks were observed in global NPZ [median change (Δ)=0.24; p=0.008], and in cognitive domains of attention (Δ0.23; p=0.011) and working memory (Δ0.44; p=0.017). Plasma levels of sCD163, sCD14, and neopterin decreased significantly (p's<0.01). CCR2 and CCR5 monocyte expression remained unchanged; however, CCR5 levels on CD4 and CD8 T cells and CCR2 expression on CD4 T cells increased (p's<0.01). CVC given over 24 weeks was associated with improved NP test performance and decreased plasma markers of monocyte immune activation in virally-suppressed, HIV-infected participants. These data potentially link changes in monocyte activation to cognitive performance. Further study of CVC for HIV cognitive impairment in a randomized controlled study is warranted.
[The cultivation and identification of lacrimal gland adenoid cystic cancer stem cells].
Lyu, Jianmei; He, Yanjin; Xie, Lianfeng; Liu, Xun; Zhu, Limin
2015-10-01
To isolate and cultivate the Lacrimal gland Adenoid Cystic Carcinoma cells line, study Cancer Stem Cells properties. Experimental study. Lacrimal gland adenoid cystic carcinoma cancer stem cells were cultivated in serum-free suspension culture and the morphological changes were observed. Cells were divided into two groups, the LACC-CSC experimental group and the LACC control group. The flow cytometry instrument was used to detect the expression of classical stem cell markers CD133 and ABCG2. Transwell chamber was used to detect the cancer stem cell aggressivity and differentiated into the vascular endothelial cells. The tumorigenic force in vitro xenotransplantation were applied. LACC cells can grow suspensively after vaccinated in serum free medium and form tumor microspheres after 10-12 days. Flow cytometry experiments showed that the expression ratio of stem cell markers CD133 in LACC-CSC was (35.67 ± 6.86)%, significantly different to LACC with (0.46 ± 0.48)%, (t = 8.867, P < 0.05). Similarly, the expression ratio of stem cell marker ABCG2 in LACC-CSC was (39.99 ± 4.54)%, significantly different to LACC with (6.75 ± 1.34)%, (t = -9.932, P < 0.05). In vitro experiment of Matrigel invasion, LACC-CSC went through the matrigel basement membrane averagely (32.60 ± 8.79)/HP contrary to LACC with average (10.20 ± 2.77)/HP after 24 hours, showing statistically significance (t = 5.433, P < 0.05) between the two groups. After training for 48 hours, the difference between two groups was still obvious (t = 5.779, P < 0.05) with LACC-CSC average (62.60 ± 4.83)/HP to LACC (44.00 ± 5.34)/HP. When induced by serum medium containing VEGF and bFGF, LACC-CSC grew adherent gradually and cell morphological changes occurred after continuous induction to long spindle cells. When cultured into three-dimensional matrix structure they formed vessel samples and expressed vascular endothelial marker CD31 and CD34. Transplanted tumor in vitro experiment, mice of LACC-CSC group grew tumors in 9 days with 100% tumorigenic rate, whereas LACC group 12 days with 100% tumorigenic rate. LACC-CSC can be obtained through serum-free culture method. LACC-CSC grew suspensively and expressed classical stem cell markers. LACC-CSC were identified as cancer stem cells with stronger migration and invasion. LACC-CSC have tumorigenic force and multi-directional differentiation potential with general characteristics of the stem cell.
Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon
2011-10-23
To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.
CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide.
Banerjee, Sulagna; Nomura, Alice; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Vickers, Selwyn M; Saluja, Ashok
2014-05-01
Pancreatic adenocarcinoma is the fourth leading cause for cancer-related mortality with a survival rate of less than 5%. Late diagnosis and lack of effective chemotherapeutic regimen contribute to these grim survival statistics. Relapse of any tumor is largely attributed to the presence of tumor-initiating cells (TIC) or cancer stem cells (CSC). These cells are considered as hurdles to cancer therapy as no known chemotherapeutic compound is reported to target them. Thus, there is an urgent need to develop a TIC-targeted therapy for pancreatic cancer. We isolated CD133(+) cells from a spontaneous pancreatic ductal adenocarcinoma mouse model and studied both surface expression, molecular markers of pancreatic TICs. We also studied tumor initiation properties by implanting low numbers of CD133(+) cells in immune competent mice. Effect of Minnelide, a drug currently under phase I clinical trial, was studied on the tumors derived from the CD133(+) cells. Our study showed for the first time that CD133(+) population demonstrated all the molecular markers for pancreatic TIC. These cells initiated tumors in immunocompetent mouse models and showed increased expression of prosurvival and proinvasive proteins compared to the CD133(-) non-TIC population. Our study further showed that Minnelide was very efficient in downregulating both CD133(-) and CD133(+) population in the tumors, resulting in a 60% decrease in tumor volume compared with the untreated ones. As Minnelide is currently under phase I clinical trial, its evaluation in reducing tumor burden by decreasing TIC as well as non-TIC population suggests its potential as an effective therapy. ©2014 AACR.
Zupančič, Eva; Curato, Caterina; Paisana, Maria; Rodrigues, Catarina; Porat, Ziv; Viana, Ana S; Afonso, Carlos A M; Pinto, João; Gaspar, Rogério; Moreira, João N; Satchi-Fainaro, Ronit; Jung, Steffen; Florindo, Helena F
2017-07-28
Vaccination is a promising strategy to trigger and boost immune responses against cancer or infectious disease. We have designed, synthesized and characterized aliphatic-polyester (poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to investigate how the nature of protein association (adsorbed versus entrapped) and polymer/surfactant concentrations impact on the generation and modulation of antigen-specific immune responses. The ability of the NP formulations to target dendritic cells (DC), be internalized and activate the T cells was characterized and optimized in vitro and in vivo using markers of DC activation and co-stimulatory molecules. Ovalbumin (OVA) was used as a model antigen in combination with the engraftment of CD4 + and CD8 + T cells, carrying a transgenic OVA-responding T cell receptor (TCR), to trace and characterize the activation of antigen-specific CD4 + and CD8 + lymph node T cells upon NP vaccination. Accordingly, the phenotype and frequency of immune cell stimulation induced by the NP loaded with OVA, isolated or in combination with synthetic unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) motifs, were characterized. DC-NP interactions increased with incubation time, presenting internalization values between 50 and 60% and 30-40%, in vitro and in vivo, respectively. Interestingly, animal immunization with antigen-adsorbed NP up-regulated major histocompatibility complex (MHC) class II (MHCII), while NP entrapping the antigen up-regulated MHCI, suggesting a more efficient cross-presentation. On the other hand, rather surprisingly, the surfactant used in the NP formulation had a major impact on the activation of antigen presenting cells (APC). In fact, DC collected from lymph nodes of animals immunized with NP prepared using poly(vinil alcohol) (PVA), as a surfactant, expressed significantly higher levels of CD86, MHCI and MHCII. In addition, those NP prepared with PVA and co-entrapping OVA and the toll-like receptor (TLR) ligand CpG, induced the most profound antigen-specific T cell response, by both CD4 + and CD8 + T cells, in vivo. Overall, our data reveal the impact of NP composition and surface properties on the type and extension of induced immune responses. Deeper understanding on the NP-immune cell crosstalk can guide the rational development of nano-immunotherapeutic systems with improved and specific therapeutic efficacy and avoiding off-target effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Soluble CD30 serum level--an adequate marker for allograft rejection of solid organs?
Schlaf, G; Altermann, W W; Rothhoff, A; Seliger, B
2007-11-01
The CD30 molecule, a 120 kDa cell surface glycoprotein, is a member of the tumor necrosis factor receptor (TNF-R) superfamily and was originally identified on the surface of Reed-Sternberg cells and anaplastic large cell lymphomas in Hodgkin's disease patients. In addition to lymphoproliferative disorders the expression of CD30 was found in both activated CD8+ and CD4+ Th2 cells which lead to the activation of B-cells and consequently to the inhibition of the Th1-type cellular immunity. The membrane-bound CD30 molecule can be proteolytically cleaved, thereby generating a soluble form (sCD30) of about 85 kDa. Low serum levels of soluble CD30 were found in healthy humans, whereas increased sCD30 serum concentrations were detected under pathophysiological situations such as systemic lupus erythematosus, rheumatoid arthritis, certain viral infections and adult T cell leukaemia/lymphoma. In addition, it has recently been suggested that pre- or post-transplant levels of sCD30 represent a biomarker for graft rejection associated with an impaired outcome for transplanted patients. We here review (i) the current knowledge of the clinical significance of sCD30 serum levels for solid organ transplantations and (ii) our own novel data regarding inter- and intra-individual variations as well as time-dependent alterations of sCD30 levels in patients. (iii) Based on this information the implementation of sCD30 as predictive pre-transplant or post-transplant parameter for solid organ transplantation is critically discussed.
Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S
2012-12-01
In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.
Jørgensen, Malene; Bæk, Rikke; Pedersen, Shona; Søndergaard, Evo K L; Kristensen, Søren R; Varming, Kim
2013-01-01
Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define their phenotype and determine their concentration in biological fluids. To identify circulating as well as cell culture-derived vesicles, the current standard is immunoblotting or a flow cytometrical analysis for specific proteins, both of which requires large amounts of purified vesicles. Based on the technology of protein microarray, we hereby present a highly sensitive Extracellular Vesicle (EV) Array capable of detecting and phenotyping exosomes and other extracellular vesicles from unpurified starting material in a high-throughput manner. To only detect the exosomes captured on the EV Array, a cocktail of antibodies against the tetraspanins CD9, CD63 and CD81 was used. These antibodies were selected to ensure that all exosomes captured are detected, and concomitantly excluding the detection of other types of microvesicles. The limit of detection (LOD) was determined on exosomes derived from the colon cancer cell line LS180. It clarified that supernatant from only approximately 10(4) cells was needed to obtain signals or that only 2.5×10(4) exosomes were required for each microarray spot (~1 nL). Phenotyping was performed on plasma (1-10 µL) from 7 healthy donors, which were applied to the EV Array with a panel of antibodies against 21 different cellular surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the expression levels of individual markers. The protein profiles of the exosomes (defined as positive for CD9, CD63 and CD81) revealed that only the expression level of CD9 and CD81 was approximately equal in the 7 donors. This implies questioning the use of CD63 as a standard exosomal marker since the expression level of this tetraspanin was considerably lower.
Zhang, Rong-Li; Jiang, Er-Lie; Wang, Mei; Zhou, Zheng; Zhai, Wen-Jing; Zhai, Wei-Hua; Wang, Hua; Wang, Zhi-Yong; Bao, Yu-Shi; DU, Hong; Han, Ming-Zhe
2008-10-01
The study was purposed to investigate the differentiation ability of mesenchymal stem cells (MSCs) into myocardial cells in vitro. Rat bone marrow-derived MSCs were labeled and co-cultured with neonatal rat cardiomyocytes (CM) for 5 - 7 days. The expression of cell surface antigens was detected by flow cytometry, and the expression of muscle-specific marker myosin and troponin T in labeled cells was detected by immunofluorescence. The results showed that in vitro cultured MSCs expressed CD90, CD44, CD105, CD54, not expressed CD34, CD45, CD31. After co-cultured with neonatal rat CM, labeled MSCs differentiated into cardiomyocyte-like cells expressing myosin and troponin T. It is concluded that MSCs can differentiate into cardiomyocyte-like cells when co-cultured with neonatal myocardial cells in vitro. In co-culture of two kind of cells in ratio of four to one showed obvious efficacy differentiating MSCs into CMs.
NASA Astrophysics Data System (ADS)
Yang, Yang; Liu, Qinghua; Ma, Daoyuan; Song, Zongchen; Li, Jun
2018-04-01
Some germ cell marker genes, such as vasa, nanos, and dead end (dnd), have been identified in fish. Recently, lymphocyte antigen 75 (Ly75/CD205) has been identified as a mitotic germ cell-specific cell-surface marker in several fish species. In this study, the Japanese flounder ly75 homolog (ly75) was cloned and its expression pattern in gonads was analyzed. The full-length cDNA of ly75 was 7 346 bp, with an open reading frame (ORF) of 5 229 bp. The ORF encoded a protein containing 1 742 amino acids with a predicted molecular mass of 196.89 kDa. In adult tissues, ly75 transcripts were detected in all analyzed tissues but abundantly in the testis. In in-situ hybridization analyses, ly75 mRNA was predominantly localized in oocytes in the ovary and spermatogonia in the testis, but ly75 mRNA was not detected in oogonia, spermatocytes, spermatids, or spermatozoa. These results indicated that ly75 could be a potential germ cell-specific marker in P. olivaceus, as in other fishes.
Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer
2015-08-01
The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.
Zhang, Suxin; Zhang, Xin; Yin, Ke; Li, Tianke; Bao, Yang; Chen, Zhong
2017-04-01
The present study aimed to determine changes in the concentration of secretory immunoglobulin A (SIgA) and interleukin 6 (IL-6) in the saliva of patients with oral cancer, to evaluate the abnormal expression of cluster of differentiation (CD) 1a, CD83, CD80 and CD86 on dendritic cells (DCs) of oral cancer tissues and to discuss the interaction between SIgA, IL-6 and DCs in oral cancer. A total of 40 patients between 27 and 70 years of age, median age 52 years, with primary oral cancer were enrolled in the present study, and a group of 20 healthy male and female volunteers was used as the control group. The concentration of SIgA and IL-6 in the saliva of the preoperative patients was determined by ELISA. The expression levels of CD1a, CD83, CD80 and CD86 were detected by immunohistochemistry and flow cytometry, which was performed on histopathological sections from paraffin-embedded tumor and corresponding adjacent control tissues. The specimens were assessed using the semi-quantitative immunoreactive score (IRS). The concentration of SIgA in the saliva from patients with oral cancer decreased, whereas the IL-6 level significantly increased compared with the control subjects (P<0.05). In addition, the decrease of SIgA level and increase of IL-6 level exhibited a negative correlation (r=-0.543, P<0.05). According to the IRS score, the expression levels of CD1a, CD83, CD80 and CD86 in the cancer tissue were lower than the expression levels of the control group (P<0.05). Furthermore, the expression of CD80 and CD86 exhibited no correlation with histological grade or pathological type (P>0.05), but exhibited a negative correlation with clinical stage and lymph node metastasis (P<0.05). The concentration of SIgA and IL-6 in saliva may be used as an auxiliary diagnostic indicator for oral cancer. The detection of CD80 and CD86 expressed on DCs in oral cancer tissue may be useful for the diagnosis and evaluation of the prognosis of tumors. The present study hypothesized that the use of SIgA vaccines or IL-6 inhibitors may be useful for reversing the immune deficiency associated with DCs in oral cancer.
Jing, Guang-Chan; Zhang, Meng-Ren; Ji, Chao; Zuo, Ping-Ping; Liu, Yu-Qin; Gu, Bei
2016-11-01
To determine the effect of medicated serum of Chinese herbal compound Naofucong (, NFC) on the microglia BV-2 cells viability and the transcription and expression of interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) in microglia BV-2 cells to further explore the mechanisms underlying the protective effect of NFC on inflammatory process induced by high glucose. The microglia BV-2 cells incubated in vitro were divided into different groups: the control group (25 mmol/L glucose), the model group (75 mmol/L glucose), high glucose media containing different dose medicated serum of NFC. After being cultured for 24 h, changes in IL-6 and TNF-α were measured by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The expression of surface marker CD11b of activated microglia was measured by confocal laser scanning microscope and Western blot. Nuclear factor-κB (NF-κB) p-p65 expression was analyzed by Western blot. The model group obviously increased the expression of microglial surface marker CD11b and NF-κB p-p65 (all P<0.01), induced a signifificant up-regulation of release and the mRNA expression of IL-6 and TNF-α (P<0.01 or P<0.05). The medicated serum of NFC could obviously down-regulate the transcription and expression of surface marker CD11 b and NF-κB p-p65 (all P<0.01), and inhibit the mRNA and protein expression (P<0.01 or P<0.05) of inflflammatory cytokines, such as IL-6 and TNF-α, in microglia BV-2 cells cultured with high glucose for 24 h. The inhibition of microglial activation and IL-6 and TNF-α expression induced by high glucose may at least partly explain NFC therapeutic effects on diabetes-associated cognitive decline diseases. Its underlying mechanism could probably be related to the inhibition of NFC on NF-κB phosphorylation.
Mueller, Henrik; Faé, Kellen C.; Magdorf, Klaus; Ganoza, Christian A.; Wahn, Ulrich; Guhlich, Ute; Feiterna-Sperling, Cornelia; Kaufmann, Stefan H. E.
2011-01-01
Background Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB. Methods Peripheral blood mononuclear cells (PBMC) from children and adolescents (1–17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4+ CD45RO+ memory T cells. Results CD4+ CD45RO+ T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSElowCD4+CD45RO+) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4+ T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells. Conclusions Our data suggest granulysin expression by CD4+ memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence. PMID:22216262
Prognostic value of CD44 expression in penile squamous cell carcinoma: a pilot study.
Minardi, Daniele; Lucarini, Guendalina; Filosa, Alessandra; Zizzi, Antonio; Simonetti, Oriana; Offidani, Anna Maria; d'Anzeo, Gianluca; Di Primio, Roberto; Montironi, Rodolfo; Muzzonigro, Giovanni
2012-10-01
Several studies have reported on the prognostic value of molecular markers for metastasis risk and survival in penile squamous cell carcinoma (SCC) patients. The usefulness of CD44 expression as such a marker has been studied in different tumors, but not in penile SCC. Our aim was to determine whether CD44 expression may serve as a prognostic marker for lymph node metastasis and survival in penile SCC patients. CD44 immunoistochemical expression was investigated in tissue specimens from 39 patients with penile SCC. CD44 cell positivity, staining intensity and distribution were analyzed and correlated with tumor stage, grade, lymph node status and disease-specific survival. CD44 expression was detected in epithelial cells of both intratumoral and normal tissues with different intensities and staining distributions. In normal tissues CD44 protein was mainly detected in cell membranes, whereas in the tumor compartments it was found in both the cell membranes and the cytoplasm. The intensities and percentages of CD44 expressing cells did not correlate with tumor stage and/or grade. Seventy-three percent of the patients with lymph node metastasis showed high intensities of CD44 staining, as compared to 44% of the patients without lymph node metastasis (P = 0.03). Lymph node-positive patients showed both cytoplasmic and membranous CD44 expression. High CD44 expression was found to be significantly correlated with a decreased 5 year overall survival (P = 0.01). CD44 levels and patterns of expression can be considered as markers for penile SCC aggressiveness and, in addition, may serve as predictive markers for lymph node metastasis, also in patients with clinically negative lymph nodes. CD44 expression may provide prognostic information for penile SCC patients, next to classical clinical-pathological factors.
Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid
2015-01-01
Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221
IL‐12 and IL‐15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells
Hydes, Theresa; Noll, Angela; Salinas‐Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz
2017-01-01
Abstract Introduction Murine hepatic NK cells exhibit adaptive features, with liver‐specific adhesion molecules CXCR6 and CD49a acting as surface markers. Methods We investigated human liver‐resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Results Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver‐resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver‐resident double‐positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single‐positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL‐12 and IL‐15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver‐resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. Conclusion IL‐12 and IL‐15 may be key for generating NK cells with a tissue‐homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue‐homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. PMID:28952190
IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells.
Hydes, Theresa; Noll, Angela; Salinas-Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz; Khakoo, Salim I
2018-03-01
Murine hepatic NK cells exhibit adaptive features, with liver-specific adhesion molecules CXCR6 and CD49a acting as surface markers. We investigated human liver-resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver-resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver-resident double-positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single-positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL-12 and IL-15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver-resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. IL-12 and IL-15 may be key for generating NK cells with a tissue-homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue-homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
de Haar, Colin; Kool, Mirjam; Hassing, Ine; Bol, Marianne; Lambrecht, Bart N; Pieters, Raymond
2008-05-01
The adjuvant activity of air pollution particles on allergic airway sensitization is well known, but the cellular mechanisms underlying this adjuvant potential are not clear. We sough to study the role of dendritic cells and the costimulatory molecules CD80 and CD86 in the adjuvant activity of ultrafine carbon black particles (CBP). The proliferation of CFSE-labeled DO11.10 CD4 cells was studied after intranasal exposure to particles and ovalbumin (OVA). Next the frequency of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells and their expression of CD80 and CD86 were studied in the peribronchial lymph nodes (PBLNs). The expression of costimulatory molecules was also studied on bone marrow-derived mDCs after exposure to CBPs in vitro, and the importance of costimulation in CBP adjuvant activity was assessed by using CD80/CD86-deficient mice or cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-Ig in vivo. Our data show that CBPs plus OVA caused proliferation of DO11.10 CD4 cells and high levels of cytokine production in the PBLNs. Furthermore, the combined CBP plus OVA exposure increased the number of mDCs and expression of costimulatory molecules in the PBLNs. In addition, CBPs upregulated the expression of CD80/CD86 molecules on dendritic cells in vitro, which are necessary for the particle adjuvant effects in vivo. Together this study shows the importance of dendritic cells and costimulation in particle adjuvant activity. Furthermore, we show for the first time that CBPs can also directly induce maturation of dendritic cells.
Blok, Erik J.; van den Bulk, Jitske; Dekker-Ensink, N. Geeske; Derr, Remco; Kanters, Corné; Bastiaannet, Esther; Kroep, Judith R.; van de Velde, Cornelis J.H.; Kuppen, Peter J.K.
2017-01-01
Multiple studies showed the prognostic capacities of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC), but not in other subtypes. We evaluated tumor expression of FAS, a key receptor in T-cell mediated apoptosis, as possible explanation for this differential prognostic value of TILs. Furthermore, we evaluated the prognostic relevance of FAS, both as an independent biomarker and in relation to CD8-positive T-cell presence. The study cohort consisted of 667 breast cancer patients treated in the LUMC between 1997 and 2009. FAS expression was determined using immunohistochemistry and the percentage of FAS-positive tumor cells was quantified. Furthermore, the number of CD8-positive infiltrating cells was determined, and its prognostic relevance was associated to FAS-expression using stratified survival analysis. In TNBC, FAS was averagely expressed in 49% of tumor cells, whereas ER-positive subtypes showed an average Fas expression of 16-20%. In the entire cohort, FAS was identified as significant prognostic marker for recurrence (adjusted HR 0.53, 95% CI 0.36-0.77) and borderline significant marker for overall survival (adjusted HR 0.72, 95% CI 0.52-1.01). Upon stratification for FAS-expression, CD8+ TILs were only prognostic at high levels (above median) of FAS expression in ER-negative disease. In summary, FAS was identified as an independent prognostic marker for recurrence free survival in breast cancer, with large variation in expression by receptor subtypes. Interestingly, the prognostic effect of CD8+ TILs in ER-negative disease was only valid for tumors with a high FAS expression. PMID:28121628
Blok, Erik J; van den Bulk, Jitske; Dekker-Ensink, N Geeske; Derr, Remco; Kanters, Corné; Bastiaannet, Esther; Kroep, Judith R; van de Velde, Cornelis J H; Kuppen, Peter J K
2017-02-28
Multiple studies showed the prognostic capacities of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC), but not in other subtypes. We evaluated tumor expression of FAS, a key receptor in T-cell mediated apoptosis, as possible explanation for this differential prognostic value of TILs. Furthermore, we evaluated the prognostic relevance of FAS, both as an independent biomarker and in relation to CD8-positive T-cell presence. The study cohort consisted of 667 breast cancer patients treated in the LUMC between 1997 and 2009. FAS expression was determined using immunohistochemistry and the percentage of FAS-positive tumor cells was quantified. Furthermore, the number of CD8-positive infiltrating cells was determined, and its prognostic relevance was associated to FAS-expression using stratified survival analysis. In TNBC, FAS was averagely expressed in 49% of tumor cells, whereas ER-positive subtypes showed an average Fas expression of 16-20%. In the entire cohort, FAS was identified as significant prognostic marker for recurrence (adjusted HR 0.53, 95% CI 0.36-0.77) and borderline significant marker for overall survival (adjusted HR 0.72, 95% CI 0.52-1.01). Upon stratification for FAS-expression, CD8+ TILs were only prognostic at high levels (above median) of FAS expression in ER-negative disease. In summary, FAS was identified as an independent prognostic marker for recurrence free survival in breast cancer, with large variation in expression by receptor subtypes. Interestingly, the prognostic effect of CD8+ TILs in ER-negative disease was only valid for tumors with a high FAS expression.
Jankowska, Olga; Krawczyk, Paweł; Wojas-Krawczyk, Kamila; Sagan, Dariusz; Milanowski, Janusz; Roliński, Jacek
2008-01-01
Therapeutic outcomes of definitively treated non-small-cell lung cancer (NSCLC) are unacceptably poor. It has been proposed that the manipulation of dendritic cells (DCs) as a "natural" vaccine adjuvant may prove to be a particularly effective way to stimulate antitumor immunity. Presently, there is no standardized methodology for preparing vaccines and many questions concerning the optimal source and type of antigens as well as maturation state and activity of DCs are still unsolved. The study population comprised of ten patients with histologically confirmed NSCLC (mean age: 67.63 +/- 6.15 years). Resected small tumor pieces were placed in tissue culture dishes containing different growth factors in order to obtain pure cancer cells. Seven days after the operation, the PBMC were collected and monocytes were purified by the adherence to culture dishes. Monocytes were cultured in RPMI 1640 medium supplemented with 10% of autologous plasma in the presence of rhIL-4 and rhGM-CSF to generate immature autologous (DCs). TNF-alpha with or without tumor cells' lysate were added to maturation of DCs. After 7 days of culture, DCs were harvested and the expression of CD1a, CD83, CD80, CD86 and HLA-DR antigens were analyzed by flow cytometry. We discovered higher (p=0.07) percentage of semimature DCs in tumor cell lysate culture in comparison with TNF-alpha culture (21.22 +/- 16.82% versus 11.27 +/- 11.64%). The expression of co-stimulatory and maturation markers (CD86, CD83 and HLA-DR) was higher on DCs from the culture with tumor cell lysate compared with TNF-alpha culture as a control. Specimen of NSCLC's culture prepared in this way could generate differences in DCs phenotype, which may have an influence on the therapeutic and protective antitumor immunity of the vaccine. Our research seems to be the next step in the development of DC-based vaccine. We are going to continue the investigation to start the preparation of a pattern of immunological vaccine against lung cancer.
Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A
2018-04-01
Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.
Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella
2017-01-01
Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24− cell surface marker profile. Here, we report that human CD44+/CD24− cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24− cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24− state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24− cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness. DOI: http://dx.doi.org/10.7554/eLife.21615.001 PMID:28092266
Meng, Yiming; Wang, Qiushi; Zhang, Zhenjie; Wang, Enhua; Plotnikoff, Nicollas P.; Shan, Fengping
2013-01-01
To gain new insight into the functional interaction between dendritic cells and methionine encephalin (MENK) combined with pidotimod (PTD), we have analyzed the effect of MENK plus PTD on the morphology, phenotype and functions of murine bone-marrow derived dendritic cells (BMDCs) in vitro. The maturation of BMDCs cultured in the presence of either MENK or PTD alone, or MENK in combination with PTD, was detected. The cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt/phenazinemethosulphate (MTS/PMS). The changes of BMDCs morphology were confirmed with light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The BMDCs treated with MENK combined with PTD displayed a higher expression of typical maturation markers of CD40, CD80, CD83, CD86 and MHC-IIidentified by fluorescence activated cell sorting (FACS), and stronger ability to drive T cells. The decrease of the endocytic ability was assayed by DAB kit, FITC-dextran and cellular immunohistochemistry. Finally upregulation of cytokines production of IL-12 and TNF-α was determined by ELISA. These data indicate that MENK combined with PTD could exert synergistic action on BMDC maturation. PMID:23470544
NASA Astrophysics Data System (ADS)
Huang, Xiaoyan; Yan, Yan; Wang, Sha; Wang, Qinying; Shi, Jian; Shao, Zhanshe; Dai, Jiejie
2017-11-01
CD28 is one of the most important co-stimulatory molecules expressed by naive and primed T cells. The tree shrews (Tupaia belangeri), as an ideal animal model for analyzing mechanism of human diseases receiving extensive attentions, demands essential research tools, in particular in the study of cellular markers and monoclonal antibodies for immunological studies. However, little is known about tree shrew CD28 (tsCD28) until now. In this study, a 663 bp of the full-length CD28 cDNA, encoding a polypeptide of 220 amino acids was cloned from tree shrew spleen lymphocytes. The nucleotide sequence of the tsCD28 showed 85%, 76%, and 75% similarities with human, rat, and mouse, respectively, which showed the affinity relationship between tree shrew and human is much closer than between human and rodents. The open reading frame (ORF) sequence of tsCD28 gene was predicted to be in correspondence with the signal sequence, immunoglobulin variable-like (IgV) domain, transmembrane domain and cytoplasmic tail, respectively.We also analyzed its molecular characteristics with other mammals by using biology software such as Clustal W 2.0 and so forth. Our results showed that tsCD28 contained many features conserved in CD28 genes from other mammals, including conserved signal peptide and glycosylation sites, and several residues responsible for binding to the CD28R, and the tsCD28 amino acid sequence were found a close genetic relationship with human and monkey. The crystal structure and surface charge revealed most regions of tree shrew CD28 molecule surface charges are similar as human. However, compared with human CD28 (hCD28) regions, in some areas, the surface positive charge of tsCD28 was less than hCD28, which may affect antibody binding. The present study is the first report of cloning and characterization of CD28 in tree shrew. This study provides a theoretical basis for the further study the structure and function of tree shrew CD28 and utilize tree shrew as an effective animal model of human disease.
Zhang, Hengwei; Sun, Wen; Li, Xing; Wang, Mengmeng; Boyce, Brendan F; Hilton, Matthew J; Xing, Lianping
2016-01-01
Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45−/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45−/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45−/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells. PMID:27269414
Zhang, Hengwei; Sun, Wen; Li, Xing; Wang, Mengmeng; Boyce, Brendan F; Hilton, Matthew J; Xing, Lianping
2016-09-01
Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45-/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45-/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45-/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Bamoulid, Jamal; Courivaud, Cécile; Crepin, Thomas; Carron, Clémence; Gaiffe, Emilie; Roubiou, Caroline; Laheurte, Caroline; Moulin, Bruno; Frimat, Luc; Rieu, Philippe; Mousson, Christiane; Durrbach, Antoine; Heng, Anne-Elisabeth; Rebibou, Jean-Michel; Saas, Philippe; Ducloux, Didier
2016-05-01
Lack of clear identification of patients at high risk of acute rejection hampers the ability to individualize immunosuppressive therapy. Here we studied whether thymic function may predict acute rejection in antithymocyte globulin (ATG)-treated renal transplant recipients in 482 patients prospectively studied during the first year post-transplant of which 86 patients experienced acute rejection. Only CD45RA(+)CD31(+)CD4(+) T cell (recent thymic emigrant [RTE]) frequency (RTE%) was marginally associated with acute rejection in the whole population. This T-cell subset accounts for 26% of CD4(+) T cells. Pretransplant RTE% was significantly associated with acute rejection in ATG-treated patients (hazard ratio, 1.04; 95% confidence interval, 1.01-1.08) for each increased percent in RTE/CD4(+) T cells), but not in anti-CD25 monoclonal (αCD25 mAb)-treated patients. Acute rejection was significantly more frequent in ATG-treated patients with high pretransplant RTE% (31.2% vs. 16.4%) or absolute number of RTE/mm(3) (31.7 vs. 16.1). This difference was not found in αCD25 monclonal antibody-treated patients. Highest values of both RTE% (>31%, hazard ratio, 2.50; 95% confidence interval, 1.09-5.74) and RTE/mm(3) (>200/mm(3), hazard ratio, 3.71; 95% confidence interval, 1.59-8.70) were predictive of acute rejection in ATG-treated patients but not in patients having received αCD25 monoclonal antibody). Results were confirmed in a retrospective cohort using T-cell receptor excision circle levels as a marker of thymic function. Thus, pretransplant thymic function predicts acute rejection in ATG-treated patients. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Papasavvas, Emmanouil; Surrey, Lea F.; Glencross, Deborah K.; Azzoni, Livio; Joseph, Jocelin; Omar, Tanvier; Feldman, Michael D.; Williamson, Anna-Lise; Siminya, Maureen; Swarts, Avril; Yin, Xiangfan; Liu, Qin; Firnhaber, Cynthia; Montaner, Luis J.
2016-01-01
ABSTRACT Persistence of human papillomavirus (HPV) and cervical disease in the context of HIV co-infection can be influenced by introduction of antiretroviral therapy (ART) and sustained immune activation despite ART. We conducted a cross-sectional study in order to evaluate immune activation/exhaustion in ART-suppressed HIV+ women with or without high-risk (HR) HPV-related cervical intraepithelial neoplasia (CIN). 55 South African women were recruited in three groups: HR (-) (n = 16) and HR (+) (n = 15) HPV with negative cervical histopathology, and HR (+) HPV with CIN grade 1/2/3 (n = 24). Sampling included endocervical brushing (HPV DNA genotyping), Pap smear (cytology), colposcopic punch biopsy (histopathology, histochemical evaluation of immune cells), and peripheral blood (clinical assessment, flow cytometry-based immune subset characterization). Statistics were done using R2.5.1. Irrespective of the presence of CIN, HR (+) HPV women had higher circulating levels of T cells expressing markers of activation/exhaustion (CD38, PD1, CTLA-4, BTLA, CD160), Tregs, and myeloid subsets expressing corresponding ligands (PDL1, PDL2, CD86, CD40, HVEM) than HR (-) HPV women. A decrease in circulating NK cells was associated with CIN grade. CD4+ T cell count associated negatively with T cell exhaustion and expression of negative regulators on myeloid cells. Women with CIN when compared to HR (-) HPV women, had higher cervical cell density in stroma and epithelium for CD4+, CD68+, and CD11c+ cells, and only in stroma for CD8+ cells. We conclude that in ART-suppressed HIV-infected women with HPV co-infection the levels of T and myeloid cell activation/exhaustion are associated with the presence of HR HPV genotypes. PMID:27467943
Normal T-cell activation in elite controllers with preserved CD4+ T-cell counts.
Bansal, Anju; Sterrett, Sarah; Erdmann, Nathan; Westfall, Andrew O; Dionne-Odom, Jodie; Overton, Edgar T; Goepfert, Paul A
2015-11-01
HIV elite controllers suppress HIV viremia without antiretroviral therapy (ART), yet previous studies demonstrated that elite controllers maintain an activated T-cell phenotype. Chronic immune activation has detrimental consequences and thus ART has been advocated for all elite controllers. However, elite controllers are not a clinically homogenous group. Since CD4% is among the best predictors of AIDS-related events, in the current study, we assessed whether this marker can be used to stratify elite controllers needing ART. Sixteen elite controllers were divided into two groups based on CD4% (EC > 40% and EC ≤40%), and T-cell subsets were analyzed for markers of memory/differentiation (CD45RA, CCR7, CD28), activation (CD38/HLA-DR), immunosenescence (CD57), costimulation (CD73, CD28) and exhaustion (PD-1, CD160, Tim-3). Monocyte subsets (CD14, CD16) were also analyzed and sCD14 levels were quantified using ELISA. In the EC group, expression of activation, exhaustion, and immunosensescence markers on T cells were significantly reduced compared with the EC group and similar to the seronegative controls. The EC group expressed higher levels of costimulatory molecules CD28 and CD73 and had lower levels of monocyte activation (HLA-DR expression) with a reduced frequency of inflammatory monocyte (CD14 CD16) subset. Furthermore, the EC group maintained a stable CD4% during a median follow-up of 6 years. Elite controllers with preserved CD4T cells (EC) have normal T-cell and monocyte phenotypes and therefore may have limited benefit from ART. CD4% can be an important marker for evaluating future studies aimed at determining the need for ART in this group of individuals.
Camacho, Frank; Huggett, Jim; Kim, Louise; Infante, Juan F; Lepore, Marco; Perez, Viviana; Sarmiento, María E; Rook, Graham; Acosta, Armando
2013-01-01
The development of molecules specific for M. tuberculosis-infected cells has important implications, as these tools may facilitate understanding of the mechanisms regulating host pathogen interactions in vivo. In addition, development of new tools capable to targeting M. tuberculosis-infected cells may have potential applications to diagnosis, treatment, and prevention of tuberculosis (TB). Due to the lack of CD1b polymorphism, M. tuberculosis lipid-CD1b complexes could be considered as universal tuberculosis infection markers. The aim of the present study was to display on the PIII surface protein of m13 phage, a human αβ single-chain T-cell receptor molecule specific for CD1b:2-stearoyl-3-hydroxyphthioceranoyl-2´-sulfate-α-α´-D-trehalose (Ac₂SGL) which is a complex presented by human cells infected with M. tuberculosis. The results showed the pIII fusion particle was successfully displayed on the phage surface. The study of the recognition of the recombinant phage in ELISA and immunohistochemistry showed the recognition of CD1b:Ac₂SGL complexes and cells in human lung tissue from a tuberculosis patient respectively, suggesting the specific recognition of the lipid-CD1b complex.
Optimizing of the basophil activation test: Comparison of different basophil identification markers.
Eberlein, Bernadette; Hann, Rebekka; Eyerich, Stefanie; Pennino, Davide; Ring, Johannes; Schmidt-Weber, Carsten B; Buters, Jeroen
2015-01-01
Flowcytometric identification of basophils is a prerequisite for measuring activation of basophils with IgE-dependent or IgE-independent stimuli. Aim of this study was to compare different marker combinations in a simultaneous multicolor flowcytometric measurement. Ten patients with a grass pollen allergy and three controls were included in the study. Basophilic cells were gated by using anti-CCR3, anti-IgE, anti-CRTH2, anti-CD203c, and anti-CD3. Cells were activated by a monoclonal anti-FcεRI antibody, N-formyl-methionyl-leucyl-phenylalanine (fMLP), and the allergen extract Phleum pratense. The activation marker anti-CD63 was used. The highest relative number of basophils was found with anti-CCR3+ cells, anti-IgE+ and anti-IgE+ /anti-CD203c+ cells, the lowest with CRTH2+/CD203c+/CD3- cells. A very good and good concordance of CCR3+ cells was seen with CCR3+/CD3- cells and CRTH2+/CD203c+/CD3- cells in all experiments. The contamination of the CCR3+ population with CD3+ cells and the contamination of the IgE+-population with CCR3- cells and CD203- cells were the lowest compared to all other marker combinations. As the highest relative number of basophils was identified by anti-CCR3 followed by the anti-IgE and anti-IgE/antiCD203c positive population in most cases, these markers can generally be recommended for identification of basophils. If a basophil population with very high purity is needed, anti-IgE should be chosen. © 2014 International Clinical Cytometry Society.
An essential role for the association of CD47 to SHPS-1 in skeletal remodeling.
Maile, Laura A; DeMambro, Victoria E; Wai, Christine; Lotinun, Sutada; Aday, Ariel W; Capps, Byron E; Beamer, Wesley G; Rosen, Clifford J; Clemmons, David R
2011-09-01
Integrin-associated protein (IAP/CD47) has been implicated in macrophage-macrophage fusion. To understand the actions of CD47 on skeletal remodeling, we compared Cd47(-/-) mice with Cd47(+/+) controls. Cd47(-/-) mice weighed less and had decreased areal bone mineral density compared with controls. Cd47(-/-) femurs were shorter in length with thinner cortices and exhibited lower trabecular bone volume owing to decreased trabecular number and thickness. Histomorphometry revealed reduced bone-formation and mineral apposition rates, accompanied by decreased osteoblast numbers. No differences in osteoclast number were observed despite a nonsignificant but 40% decrease in eroded surface/bone surface in Cd47(-/-) mice. In vitro, the number of functional osteoclasts formed by differentiating Cd47(-/-) bone marrow cells was significantly decreased compared with wild-type cultures and was associated with a decrease in bone-resorption capacity. Furthermore, by disrupting the CD47-SHPS-1 association, we found that osteoclastogenesis was markedly impaired. Assays for markers of osteoclast maturation suggested that the defect was at the point of fusion and not differentiation and was associated with a lack of SHPS-1 phosphorylation, SHP-1 phosphatase recruitment, and subsequent dephosphorylation of non-muscle cell myosin IIA. We also demonstrated a significant decrease in osteoblastogenesis in bone marrow stromal cells derived from Cd47(-/-) mice. Our finding of cell-autonomous defects in Cd47(-/-) osteoblast and osteoclast differentiation coupled with the pronounced skeletal phenotype of Cd47(-/-) mice support the conclusion that CD47 plays an important role in regulating skeletal acquisition and maintenance through its actions on both bone formation and bone resorption. Copyright © 2011 American Society for Bone and Mineral Research.
NASA Astrophysics Data System (ADS)
Tarnok, Attila; Pipek, Michal; Valet, Guenter; Richter, Jacqueline; Hambsch, Joerg; Schneider, Peter
1999-04-01
Our initial studies indicate that children who develop post- operative capillary leak syndrome (CLS) following cardiac surgery with cardiopulmonary bypass (CPB) can be distinguished based on their pre-operative level of circulating cytokines an adhesion molecules. We tested flow cytometric analysis of surface antigen expression as a potential assay for risk assessment of CLS. 24th preoperative blood samples were stained with monoclonal antibodies for the adhesion molecules ICAM-1, LFA1, MAC1, (beta) -integrin, activation markers CD25, CD54, CD69, HLA- DR, CD14 or CD4. Cells were measured on a dual-laser flow cytometer calibrated with microbeads. Antigen expression was detected as mean fluorescence intensity. The data indicate, that neutrophils of CLS patients express preoperatively higher levels of LFA1 and monocytes higher levels of HLA-DR and activation markers thus are in a state of activation. This could in combination with surgical trauma and CPB lead to their additional stimulation and migration into sites of inflammation and induce postoperative CLS. It is planned to set up a Flow-Classification program for individual risk assessment. By discriminate analysis over 80 percent of the patients were correctly classified. Our preliminary study indicates that flow cytometry with its low samples requirements and rapid access of the results could be a powerful tool to perform risk assessment prior to pediatric open heart surgery.
Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J
2015-01-01
Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824
Hirsch, Christina S; Baseke, Joy; Kafuluma, John Lusiba; Nserko, Mary; Mayanja-Kizza, Harriet; Toossi, Zahra
2016-01-01
Background CD4 T-cells expressing Foxp3 are expanded systemically during active tuberculosis (TB) regardless of HIV-1 co-infection. Foxp3+ CD4 T cells are targets of HIV-1 infection. However, expansion of HIV-1 infected Foxp3+ CD4 T cells at sites of HIV/TB co-infection, and whether they contribute to promotion of HIV-1 viral activity is not known. Methods Pleural fluid mononuclear cells (PFMC) from HIV/TB co-infected patients with pleural TB were characterized by immune-staining and FACS analysis for surface markers CD4, CD127, CCR5, CXCR4, HLA-DR and intracellular expression of Foxp3, HIVp24, IFN-γ and Bcl-2. Whole PFMC and bead separated CD4+CD25+CD127− T cells were assessed for HIV-1 LTR strong stop (SS) DNA by real-time PCR, which represents viral DNA post cell entry and initiation of reverse transcription. Results High numbers of HIV-1 p24 positive Foxp3+ and Foxp3+CD127− CD4 T cells were identified in PFMC from HIV/TB co-infected subjects. CD4+Foxp3+CD127− T cells displayed high expression of the cellular activation marker, HLA-DR. Further, expression of the HIV-1 co-receptors, CCR5 and CXCR4, were higher on CD4+Foxp3+T cells compared to CD4+Foxp3− T cells. Purified CD4+CD25+CD127− T cells isolated from PFMC of HIV/TB co-infected patients, were over 90% CD4+Foxp3+T cells, and exhibited higher HIV-1 SS DNA as compared to whole PFMC, and as compared to CD4+CD25+CD127− T cells from an HIV-infected subject with pleural mesothelioma. HIV-1 p24+ Foxp3+ CD4+T cells from HIV/TB patients higher in Bcl-2 expression as compared to both HIV-1 p24+ Foxp3− CD4 T cells, and Foxp3+ CD4+T cells without HIV-p24 expression. Conclusion Foxp3+ CD4 T cells in PFMC from HIV/TB co-infected subjects are predisposed to productive HIV-1 infection and have survival advantage as compared to Foxp3 negative CD4 T cells. PMID:28124031
Pessa-Morikawa, Tiina; Niku, Mikael; Iivanainen, Antti
2012-03-01
The CD34 glycoprotein is an important marker of hematopoietic stem cells. We used a polyclonal rabbit anti-bovine CD34 antibody to stain fetal and adult bovine bone marrow cells. Flow cytometry revealed a low side scatter (SSC(low)) population of cells that were CD34(+) but negative for leukocyte lineage markers CD11b, CD14 or CD2. Hematopoietic colony assays with CD34(+) and CD34(-) bone marrow cells suggested that the colony-forming potential in SSC(low) bone marrow cells was confined to the CD34(+) fraction. In contrast, this population was not enriched for cells expressing high aldehyde dehydrogenase activity, a metabolic marker that has been used to characterize hematopoietic stem cells. Thus, the CD34 antigen can be used to identify and isolate bovine bone marrow cells exhibiting clonogenic potential in vitro. Moreover, the proportion of CD34(+) cells is very high in fetal bovine bone marrow, indicating it as a rich source of hematopoietic progenitors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Quantification of regenerative potential in primary human mammary epithelial cells
Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.
2015-01-01
We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498
Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.
2015-01-01
Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195
Grau, Morgan; Valsesia, Séverine; Mafille, Julien; Djebali, Sophia; Tomkowiak, Martine; Mathieu, Anne-Laure; Laubreton, Daphné; de Bernard, Simon; Jouve, Pierre-Emmanuel; Ventre, Erwan; Buffat, Laurent; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline
2018-05-15
The pool of memory-phenotype CD8 T cells is composed of Ag-induced (AI) and cytokine-induced innate (IN) cells. IN cells have been described as having properties similar to those of AI memory cells. However, we found that pathogen-induced AI memory cells can be distinguished in mice from naturally generated IN memory cells by surface expression of NKG2D. Using this marker, we described the increased functionalities of AI and IN memory CD8 T cells compared with naive cells, as shown by comprehensive analysis of cytokine secretion and gene expression. However, AI differed from IN memory CD8 T cells by their capacity to migrate to the lung parenchyma upon inflammation or infection, a process dependent on their expression of ITGA1/CD49a and ITGA4/CD49d integrins. Copyright © 2018 by The American Association of Immunologists, Inc.
Miller, Michelle M.; Fogle, Jonathan E.; Ross, Peter
2013-01-01
Abstract Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP+TGFb+ Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP+ Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb+ Treg-mediated T cell immune suppression during lentivirus infection. PMID:23373523
Miller, Michelle M; Fogle, Jonathan E; Ross, Peter; Tompkins, Mary B
2013-04-01
Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.
CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages.
Gleissner, Christian A; Shaked, Iftach; Erbel, Christian; Böckler, Dittmar; Katus, Hugo A; Ley, Klaus
2010-01-08
CXCL4 is a platelet-derived chemokine that promotes macrophage differentiation from monocytes. Deletion of the PF4 gene that encodes CXCL4 reduces atherosclerotic lesions in ApoE(-/-) mice. We sought to study effects of CXCL4 on macrophage differentiation with possible relevance for atherogenesis. Flow cytometry for expression of surface markers in macrophage colony-stimulating factor (M-CSF)- and CXCL4-induced macrophages demonstrated virtually complete absence of the hemoglobin scavenger receptor CD163 in CXCL4-induced macrophages. mRNA for CD163 was downregulated as early as 2 hours after CXCL4. CD163 protein reached a minimum after 3 days, which was not reversed by treatment of cells with M-CSF. The CXCL4 effect was entirely neutralized by heparin, which bound CXCL4 and prevented CXCL4 surface binding to monocytes. Pretreatment of cells with chlorate, which inhibits glycosaminoglycan synthesis, strongly inhibited CXCL4-dependent downregulation of CD163. Similar to recombinant CXCL4, releasate from human platelets also reduced CD163 expression. CXCL4-differentiated macrophages were unable to upregulate the atheroprotective enzyme heme oxygenase-1 at the RNA and protein level in response to hemoglobin-haptoglobin complexes. Immunofluorescence of human atherosclerotic plaques demonstrated presence of both CD68+CD163+ and CD68+CD163- macrophages. PF4 and CD163 gene expression within human atherosclerotic lesions were inversely correlated, supporting the in vivo relevance of CXCL4-induced downregulation of CD163. CXCL4 may promote atherogenesis by suppressing CD163 in macrophages, which are then unable to upregulate the atheroprotective enzyme heme oxygenase-1 in response to hemoglobin.
CXCL4 Downregulates the Atheroprotective Hemoglobin Receptor CD163 in Human Macrophages
Gleissner, Christian A.; Shaked, Iftach; Erbel, Christian; Böckler, Dittmar; Katus, Hugo A.; Ley, Klaus
2010-01-01
Rationale CXCL4 is a platelet-derived chemokine that promotes macrophage differentiation from monocytes. Deletion of the PF4 gene that encodes CXCL4 reduces atherosclerotic lesions in ApoE−/− mice. Objective We sought to study effects of CXCL4 on macrophage differentiation with possible relevance for atherogenesis. Methods and Results Flow cytometry for expression of surface markers in macrophage colony–stimulating factor (M-CSF)– and CXCL4-induced macrophages demonstrated virtually complete absence of the hemoglobin scavenger receptor CD163 in CXCL4-induced macrophages. mRNA for CD163 was downregulated as early as 2 hours after CXCL4. CD163 protein reached a minimum after 3 days, which was not reversed by treatment of cells with M-CSF. The CXCL4 effect was entirely neutralized by heparin, which bound CXCL4 and prevented CXCL4 surface binding to monocytes. Pretreatment of cells with chlorate, which inhibits glycosaminoglycan synthesis, strongly inhibited CXCL4-dependent downregulation of CD163. Similar to recombinant CXCL4, releasate from human platelets also reduced CD163 expression. CXCL4-differentiated macrophages were unable to upregulate the atheroprotective enzyme heme oxygenase-1 at the RNA and protein level in response to hemoglobin–haptoglobin complexes. Immunofluorescence of human atherosclerotic plaques demonstrated presence of both CD68+CD163+ and CD68+CD163− macrophages. PF4 and CD163 gene expression within human atherosclerotic lesions were inversely correlated, supporting the in vivo relevance of CXCL4-induced downregulation of CD163. Conclusions CXCL4 may promote atherogenesis by suppressing CD163 in macrophages, which are then unable to upregulate the atheroprotective enzyme heme oxygenase-1 in response to hemoglobin. PMID:19910578
Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing.
Sfanos, Karen Sandell; Bruno, Tullia C; Maris, Charles H; Xu, Lauren; Thoburn, Christopher J; DeMarzo, Angelo M; Meeker, Alan K; Isaacs, William B; Drake, Charles G
2008-06-01
Pathologic examination of prostate glands removed from patients with prostate cancer commonly reveals infiltrating CD4+ and CD8+ T cells. Little is known about the phenotype of these cells, despite accumulating evidence suggesting a potential role for chronic inflammation in the etiology of prostate cancer. We developed a technique that samples the majority of the peripheral prostate through serial needle aspirates. CD4+ prostate-infiltrating lymphocytes (PIL) were isolated using magnetic beads and analyzed for subset skewing using both flow cytometry and quantitative reverse transcription-PCR. The transcriptional profile of fluorescence-activated cell sorted prostate-infiltrating regulatory T cells (CD4+, CD25+, GITR+) was compared with naïve, peripheral blood T cells using microarray analysis. CD4+ PIL showed a paucity of TH2 (interleukin-4-secreting) cells, a surprising finding given the generally accepted association of these cells with chronic, smoldering inflammation. Instead, CD4+ PIL seemed to be skewed towards a regulatory Treg phenotype (FoxP3+) as well as towards the TH17 phenotype (interleukin-17+). We also found that a preponderance of TH17-mediated inflammation was associated with a lower pathologic Gleason score. These protein level data were reflected at the message level, as analyzed by quantitative reverse transcription-PCR. Microarray analysis of pooled prostate-infiltrating T(reg) revealed expected Treg-associated transcripts (FoxP3, CTLA-4, GITR, LAG-3) as well as a number of unique cell surface markers that may serve as additional Treg markers. Taken together, these data suggest that TH17 and/or Treg CD4+ T cells (rather than TH2 T cells) may be involved in the development or progression of prostate cancer.
Phenotypic Analysis of Prostate-Infiltrating Lymphocytes Reveals TH17 and Treg Skewing
Sfanos, Karen Sandell; Bruno, Tullia C.; Maris, Charles H.; Xu, Lauren; Thoburn, Christopher J.; DeMarzo, Angelo M.; Meeker, Alan K.; Isaacs, William B.; Drake, Charles G.
2011-01-01
Purpose Pathologic examination of prostate glands removed from patients with prostate cancer commonly reveals infiltrating CD4+ and CD8+ T cells. Little is known about the phenotype of these cells, despite accumulating evidence suggesting a potential role for chronic inflammation in the etiology of prostate cancer. Experimental Design We developed a technique that samples the majority of the peripheral prostate through serial needle aspirates. CD4+ prostate-infiltrating lymphocytes (PIL) were isolated using magnetic beads and analyzed for subset skewing using both flow cytometry and quantitative reverse transcription-PCR. The transcriptional profile of fluorescence-activated cell sorted prostate-infiltrating regulatory T cells (CD4+, CD25+, GITR+) was compared with naïve, peripheral blood T cells using microarray analysis. Results CD4+ PIL showed a paucity of TH2 (interleukin-4– secreting) cells, a surprising finding given the generally accepted association of these cells with chronic, smoldering inflammation. Instead, CD4+ PIL seemed to be skewed towards a regulatory Treg phenotype (FoxP3+) as well as towards the TH17 phenotype (interleukin-17+). We also found that a preponderance of TH17-mediated inflammation was associated with a lower pathologic Gleason score. These protein level data were reflected at the message level, as analyzed by quantitative reverse transcription-PCR. Microarray analysis of pooled prostate-infiltrating Treg revealed expected Treg-associated transcripts (FoxP3, CTLA-4, GITR, LAG-3) as well as a number of unique cell surface markers that may serve as additional Treg markers. Conclusion Taken together, these data suggest that TH17 and/or Treg CD4+ T cells (rather than TH2 T cells) may be involved in the development or progression of prostate cancer. PMID:18519750
Russell, Katie C.; Tucker, H. Alan; Bunnell, Bruce A.; Andreeff, Michael; Schober, Wendy; Gaynor, Andrew S.; Strickler, Karen L.; Lin, Shuwen; Lacey, Michelle R.
2013-01-01
Cellular heterogeneity of mesenchymal stem cells (MSCs) impedes their use in regenerative medicine. The objective of this research is to identify potential biomarkers for the enrichment of progenitors from heterogeneous MSC cultures. To this end, the present study examines variation in expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) on the surface of MSCs derived from human bone marrow in response to culture conditions and among cell populations. Multipotent cells isolated from heterogeneous MSC cultures exhibit a greater than three-fold increase in surface expression for NG2 and greater than two-fold increase for CD146 as compared with parental and lineage-committed MSCs. For both antigens, surface expression is downregulated by greater than or equal to six-fold when MSCs become confluent. During serial passage, maximum surface expression of NG2 and CD146 is associated with minimum doubling time. Upregulation of NG2 and CD146 during loss of adipogenic potential at early passage suggests some limits to their utility as potency markers. A potential relationship between proliferation and antigen expression was explored by sorting heterogeneous MSCs into rapidly and slowly dividing groups. Fluorescence-activated cell sorting revealed that rapidly dividing MSCs display lower scatter and 50% higher NG2 surface expression than slowly dividing cells, but CD146 expression is comparable in both groups. Heterogeneous MSCs were sorted based on scatter properties and surface expression of NG2 and CD146 into high (HI) and low (LO) groups. ScLONG2HI and ScLONG2HICD146HI MSCs have the highest proliferative potential of the sorted groups, with colony-forming efficiencies that are 1.5–2.2 times the value for the parental controls. The ScLO gate enriches for rapidly dividing cells. Addition of the NG2HI gate increases cell survival to 1.5 times the parental control. Further addition of the CD146HI gate does not significantly improve cell division or survival. The combination of low scatter and high NG2 surface expression is a promising selection criterion to enrich a proliferative phenotype from heterogeneous MSCs during ex vivo expansion, with potentially numerous applications. PMID:23611563
Fadini, Gian Paolo; Coracina, Anna; Baesso, Ilenia; Agostini, Carlo; Tiengo, Antonio; Avogaro, Angelo; de Kreutzenberg, Saula Vigili
2006-09-01
Disruption of the endothelial layer is the first step in the atherogenic process. Experimental studies have shown that endothelial progenitor cells (EPCs) are involved in endothelial homeostasis and repair. Conversely, EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether variations in the number of EPCs are associated with subclinical atherosclerosis in healthy subjects. Carotid intima-media thickness (IMT), high-sensitive C-reactive protein (hsCRP), levels of circulating EPCs, and cardiovascular risk were compared in 137 healthy subjects. Six subpopulations of progenitor cells were determined by flow cytometry on the basis of the surface expression of CD34, CD133, and KDR antigens: CD34(+), CD133(+), CD34(+)CD133(+), CD34(+)KDR(+), CD133(+)KDR(+), and CD34(+)CD133(+)KDR(+). Among different antigenic profiles of EPCs, only CD34(+)KDR(+) cells were significantly reduced in subjects with increased IMT. Specifically, CD34(+)KDR(+) cells were inversely correlated with IMT, even after adjustment for hsCRP and 10-year Framingham risk and independently of other cardiovascular parameters. Depletion of CD34(+)KDR(+) EPCs is an independent predictor of early subclinical atherosclerosis in healthy subjects and may provide additional information beyond classic risk factors and inflammatory markers.
Gomez-Lopez, Nardhy; Olson, David M; Robertson, Sarah A
2016-01-01
Interleukin-6 (IL6) is a determinant of the timing of parturition and birth in mice. We previously demonstrated that genetic IL6 deficiency delays parturition by ~24 h, and this is restored by administration of exogenous IL6. In this study, we have investigated whether IL6 influences the number or phenotypes of T cells or other leukocytes in uterine decidual tissue at the maternal-fetal interface. In late gestation, decidual leukocytes in Il6 null mutant (Il6(-/-)) mice exhibit an altered profile, characterized by reduced numbers of cells expressing the monocyte/macrophage marker F4/80 or the T-cell marker CD4, increased cells expressing the natural killer (NK) cell marker CD49b or the dendritic cell marker CD11c, but no change in cells expressing the neutrophil marker Ly6G. These changes are specific to late pregnancy, as similar differences in decidual leukocytes were not evident in mid-gestation Il6(-/-) mice. The IL6-regulated changes in decidual NK and dendritic cells appear secondary to local recruitment, as no comparable changes occurred in peripheral blood of Il6(-/-) mice. When exogenous IL6 was administered to restore normal timing of parturition, a partial reversal of the altered leukocyte profile was observed, with a 10% increase in the proportion of decidual CD4(+) T cells, a notable 60% increase in CD8(+) T cells including CD8(+)CD25(+)Foxp3(+) regulatory T cells and a 60% reduction in CD4(+)IL9(+) Th9 cells. Together these findings suggest that IL6-controlled accumulation of decidual CD4(+) T cells and CD8(+) regulatory T cells, with an associated decline in decidual Th9 cells, is instrumental for progressing parturition in mice.
Prominin‐1/CD133: Lipid Raft Association, Detergent Resistance, and Immunodetection
Karbanová, Jana; Lorico, Aurelio; Bornhäuser, Martin; Fargeas, Christine A.
2017-01-01
Summary The cell surface antigen prominin‐1 (alias CD133) has gained enormous interest in the past 2 decades and given rise to debates as to its utility as a biological stem and cancer stem cell marker. Important and yet often overlooked knowledge that is pertinent to its physiological function has been generated in other systems given its more general expression beyond primitive cells. This article briefly discusses the importance of particular biochemical features of CD133 with relation to its association with membrane microdomains (lipid rafts) and proper immunodetection. It also draws attention toward the adequate use of detergents and caveats that may apply to the interpretation of the results generated. Stem Cells Translational Medicine 2018;7:155–160 PMID:29271118
CD271 Defines a Stem Cell-Like Population in Hypopharyngeal Cancer
Imai, Takayuki; Tamai, Keiichi; Oizumi, Sayuri; Oyama, Kyoko; Yamaguchi, Kazunori; Sato, Ikuro; Satoh, Kennichi; Matsuura, Kazuto; Saijo, Shigeru; Sugamura, Kazuo; Tanaka, Nobuyuki
2013-01-01
Cancer stem cells contribute to the malignant phenotypes of a variety of cancers, but markers to identify human hypopharyngeal cancer (HPC) stem cells remain poorly understood. Here, we report that the CD271+ population sorted from xenotransplanted HPCs possesses an enhanced tumor-initiating capability in immunodeficient mice. Tumors generated from the CD271+ cells contained both CD271+ and CD271− cells, indicating that the population could undergo differentiation. Immunohistological analyses of the tumors revealed that the CD271+ cells localized to a perivascular niche near CD34+ vasculature, to invasive fronts, and to the basal layer. In accordance with these characteristics, a stemness marker, Nanog, and matrix metalloproteinases (MMPs), which are implicated in cancer invasion, were significantly up-regulated in the CD271+ compared to the CD271− cell population. Furthermore, using primary HPC specimens, we demonstrated that high CD271 expression was correlated with a poor prognosis for patients. Taken together, our findings indicate that CD271 is a novel marker for HPC stem-like cells and for HPC prognosis. PMID:23626764
A Low Peripheral Blood CD4/CD8 Ratio Is Associated with Pulmonary Emphysema in HIV.
Triplette, Matthew; Attia, Engi F; Akgün, Kathleen M; Soo Hoo, Guy W; Freiberg, Matthew S; Butt, Adeel A; Wongtrakool, Cherry; Goetz, Matthew Bidwell; Brown, Sheldon T; Graber, Christopher J; Huang, Laurence; Crothers, Kristina
2017-01-01
The prevalence of emphysema is higher among HIV-infected (HIV+) individuals compared to HIV-uninfected persons. While greater tobacco use contributes, HIV-related effects on immunity likely confer additional risk. Low peripheral blood CD4+ to CD8+ T-lymphocyte (CD4/CD8) ratio may reflect chronic inflammation in HIV and may be a marker of chronic lung disease in this population. Therefore, we sought to determine whether the CD4/CD8 ratio was associated with chronic obstructive pulmonary disease (COPD), particularly the emphysema subtype, in a cohort of HIV+ subjects. We performed a cross-sectional analysis of 190 HIV+ subjects enrolled in the Examinations of HIV Associated Lung Emphysema (EXHALE) study. Subjects underwent baseline laboratory assessments, pulmonary function testing and chest computed tomography (CT) analyzed for emphysema severity and distribution. We determined the association between CD4/CD8 ratio and emphysema, and the association between CD4/CD8 ratio and pulmonary function markers of COPD. Mild or greater emphysema (>10% lung involvement) was present in 31% of subjects. Low CD4/CD8 ratio was associated with >10% emphysema in multivariable models, adjusting for risk factors including smoking, current and nadir CD4 count and HIV RNA level. Those with CD4/CD8 ratio <0.4 had 6.3 (1.1-39) times the odds of >10% emphysema compared to those with a ratio >1.0 in fully adjusted models. A low CD4/CD8 ratio was also associated with reduced diffusion capacity (DLCO). A low CD4/CD8 ratio was associated with emphysema and low DLCO in HIV+ subjects, independent of other risk factors and clinical markers of HIV. The CD4/CD8 ratio may be a useful, clinically available, marker for risk of emphysema in HIV+ subjects in the antiretroviral therapy (ART) era.
A Low Peripheral Blood CD4/CD8 Ratio Is Associated with Pulmonary Emphysema in HIV
Attia, Engi F.; Akgün, Kathleen M.; Soo Hoo, Guy W.; Freiberg, Matthew S.; Butt, Adeel A.; Wongtrakool, Cherry; Goetz, Matthew Bidwell; Brown, Sheldon T.; Graber, Christopher J.; Huang, Laurence; Crothers, Kristina
2017-01-01
Objectives The prevalence of emphysema is higher among HIV-infected (HIV+) individuals compared to HIV-uninfected persons. While greater tobacco use contributes, HIV-related effects on immunity likely confer additional risk. Low peripheral blood CD4+ to CD8+ T-lymphocyte (CD4/CD8) ratio may reflect chronic inflammation in HIV and may be a marker of chronic lung disease in this population. Therefore, we sought to determine whether the CD4/CD8 ratio was associated with chronic obstructive pulmonary disease (COPD), particularly the emphysema subtype, in a cohort of HIV+ subjects. Methods We performed a cross-sectional analysis of 190 HIV+ subjects enrolled in the Examinations of HIV Associated Lung Emphysema (EXHALE) study. Subjects underwent baseline laboratory assessments, pulmonary function testing and chest computed tomography (CT) analyzed for emphysema severity and distribution. We determined the association between CD4/CD8 ratio and emphysema, and the association between CD4/CD8 ratio and pulmonary function markers of COPD. Results Mild or greater emphysema (>10% lung involvement) was present in 31% of subjects. Low CD4/CD8 ratio was associated with >10% emphysema in multivariable models, adjusting for risk factors including smoking, current and nadir CD4 count and HIV RNA level. Those with CD4/CD8 ratio <0.4 had 6.3 (1.1–39) times the odds of >10% emphysema compared to those with a ratio >1.0 in fully adjusted models. A low CD4/CD8 ratio was also associated with reduced diffusion capacity (DLCO). Conclusions A low CD4/CD8 ratio was associated with emphysema and low DLCO in HIV+ subjects, independent of other risk factors and clinical markers of HIV. The CD4/CD8 ratio may be a useful, clinically available, marker for risk of emphysema in HIV+ subjects in the antiretroviral therapy (ART) era. PMID:28122034
Sass, F Andrea; Schmidt-Bleek, Katharina; Ellinghaus, Agnes; Filter, Sebastian; Rose, Alexander; Preininger, Bernd; Reinke, Simon; Geissler, Sven; Volk, Hans-Dieter; Duda, Georg N; Dienelt, Anke
2017-05-01
Controlled revascularization and inflammation are key elements regulating endogenous regeneration after (bone) tissue trauma. Peripheral blood-derived cell subsets, such as regulatory T-helper cells and circulating (endothelial) progenitor cells, respectively, can support endogenous tissue healing, whereas effector T cells that are associated with an aged immune system can hinder bone regeneration. CD31 is expressed by diverse leukocytes and is well recognized as a marker of circulating endothelial (precursor) cells; however, CD31 is absent from the surface of differentiated effector T cells. Thus, we hypothesized that by separating the inhibitory fractions from the supportive fractions of circulating cells within the peripheral blood (PB) using the CD31 marker, bone regeneration in biologically compromised conditions, such as those observed in aged patients, could be improved. In support of our hypothesis, we detected an inverse correlation between CD31+ cells and effector T cells in the hematomas of human fracture patients, dependent on the age of the patient. Furthermore, we demonstrated the regenerative capacity of human PB-CD31+ cells in vitro. These findings were translated to a clinically relevant rat model of impaired bone healing. The transplantation of rat PB-CD31+ cells advanced bone tissue restoration in vivo and was associated with an early anti-inflammatory response, the stimulation of (re)vascularization, and reduced fibrosis. Interestingly, the depletion or enrichment of the highly abundant CD31+/14+ monocytes from the mixed CD31+ cell population diminished tissue regeneration at different levels, suggesting combined effects within the PB-CD31+ subsets. In summary, an intraoperative enrichment of PB-CD31+ cells might be a novel option to facilitate endogenous regeneration under biologically impaired situations by supporting immunomodulation and vascularization. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Dobbelaere, D A; Prospero, T D; Roditi, I J; Kelke, C; Baumann, I; Eichhorn, M; Williams, R O; Ahmed, J S; Baldwin, C L; Clevers, H
1990-01-01
The Tac antigen component of the bovine interleukin-2 receptor was expressed as a Cro-beta-galactosidase fusion protein in Escherichia coli and used to raise antibodies in rabbits. These antibodies were used for flow cytofluorimetric analysis to investigate the expression of Tac antigen in a variety of Theileria parva-infected cell lines and also in three Theileria annulata-infected cell lines. Cells expressing Tac antigen on their surface were found in all T. parva-infected cell lines tested whether these were of T- or B-cell origin. T cells expressing Tac antigen could be CD4- CD8-, CD4+ CD8-, CD4- CD8+, or CD4+ CD8+. Tac antigen expression was observed both in cultures which had been maintained in the laboratory for several years and in transformed cell lines which had recently been established by infection of lymphocytes in vitro with T. parva. Northern (RNA) blot analysis demonstrated Tac antigen transcripts in RNA isolated from all T. parva-infected cell lines. Three T. annulata-infected cell lines which were not of T-cell origin were also tested. Two of them expressed Tac antigen on their surface. Abundant Tac antigen mRNA was detected in these T. annulata-infected cell lines, but only trace amounts were demonstrated in the third cell line, which contained very few Tac antigen-expressing cells. In all cell lines tested, whether cloned or uncloned, a proportion of the cells did not express detectable levels of Tac antigen on their surface. This was also the case for a number of other leukocyte surface markers. In addition, we showed that the interleukin-2 receptors were biologically functional, because addition of recombinant interleukin-2 to cultures stimulated cell proliferation. Recombinant interleukin-2 treatment also resulted in increased amounts of steady-state Tac antigen mRNA. The relevance of interleukin-2 receptor expression on Theileria-infected cells is discussed. Images PMID:1979317
Yang, Dong-Hoon; Yang, Suk-Kyun; Park, Sang Hyoung; Lee, Ho-Su; Boo, Sun-Jin; Park, Jae-Ho; Na, Soo Young; Jung, Kee Wook; Kim, Kyung-Jo; Ye, Byong Duk; Byeon, Jeong-Sik; Myung, Seung-Jae; Kim, Jin-Ho
2015-01-01
Background/Aims C-reactive protein (CRP) is a serologic activity marker in Crohn’s disease (CD), but it may be less useful in evaluating CD activity in ileal CD patients. We aimed to investigate the usefulness of CRP as a disease activity marker in CD according to disease location. Methods Korean CD patients in a single hospital were evaluated. Factors associated with elevated CRP concentration at the time of diagnosis of CD and the association between the physician’s prediction regarding upcoming surgery and the sites of the lesions directly related to surgery were analyzed. Results Of 435 CD patients, 25.7%, 6.9%, and 67.4% had ileal, colonic, and ileocolonic CD, respectively. Multivariate analysis revealed that an elevated erythrocyte sedimentation rate, reduced serum albumin, CD activity index (CDAI) >220, and ileocolonic/colonic location were associated with an elevated CRP level and that the CRP level was significantly correlated with the CDAI in all CD patients (γ=0.466, p<0.01). However, the correlation coefficient was dependent on the location, with values of 0.395, 0.456, and 0.527 in patients with an ileal, ileocolonic, and colonic disease location, respectively. Surgery for ileal lesions was less predictable than surgery for ileocolonic or colonic lesions during follow-up. Conclusions CRP is less useful as a disease activity marker in patients with ileal CD than those with ileocolonic or colonic CD. PMID:25170056
Srivastava, Raghvendra M; Trivedi, Sumita; Concha-Benavente, Fernando; Gibson, Sandra P; Reeder, Carly; Ferrone, Soldano; Ferris, Robert L
2017-02-01
Cetuximab, an EGFR-specific antibody (mAb), modestly improves clinical outcome in patients with head and neck cancer (HNC). Cetuximab mediates natural killer (NK) cell:dendritic cell (DC) cross-talk by cross-linking FcγRIIIa, which is important for inducing antitumor cellular immunity. Cetuximab-activated NK cells upregulate the costimulatory receptor CD137 (4-1BB), which, when triggered by agonistic mAb urelumab, might enhance NK-cell functions, to promote T-cell-based immunity. CD137 expression on tumor-infiltrating lymphocytes was evaluated in a prospective cetuximab neoadjuvant trial, and CD137 stimulation was evaluated in a phase Ib trial, in combining agonistic urelumab with cetuximab. Flow cytometry and cytokine release assays using NK cells and DC were used in vitro, testing the addition of urelumab to cetuximab-activated NK, DC, and cross presentation to T cells. CD137 agonist mAb urelumab enhanced cetuximab-activated NK-cell survival, DC maturation, and tumor antigen cross-presentation. Urelumab boosted DC maturation markers, CD86 and HLA DR, and antigen-processing machinery (APM) components TAP1/2, leading to increased tumor antigen cross-presentation. In neoadjuvant cetuximab-treated patients with HNC, upregulation of CD137 by intratumoral, cetuximab-activated NK cells correlated with FcγRIIIa V/F polymorphism and predicted clinical response. Moreover, immune biomarker modulation was observed in an open label, phase Ib clinical trial, of patients with HNC treated with cetuximab plus urelumab. These results suggest a beneficial effect of combination immunotherapy using cetuximab and CD137 agonist in HNC. Clin Cancer Res; 23(3); 707-16. ©2016 AACR. ©2016 American Association for Cancer Research.
Rutkowski, Jacek; Cyman, Marta; Ślebioda, Tomasz; Bemben, Kamila; Rutkowska, Aleksandra; Gruchała, Marcin; Kmieć, Zbigniew; Pliszka, Agnieszka; Zaucha, Renata
2017-12-01
Lung cancer cells harboring multiple mutations as a consequence of long-term damage by different etiologic factors are responsible for high immunogenicity. Immune checkpoint inhibitors significantly improve treatment results in non-small cell lung cancer (NSCLC). Unfortunately, the role of T-lymphocytes in early NSCLC has not been sufficiently elucidated. The aim of this study was to characterize peripheral blood T cells expressing several selected surface antigens (CD4, CD8, CD25, CD28, PD-1, CTLA-4) and transcription factors (T-bet, ROR-yt, Fox-P3, GATA-3) in this patient population. The study group (LC) consisted of 80 treatment-naïve patients with T1/2aN0M0 NSCLC and was compared with 40 cancer-free patients matched for non-oncological diseases and demographic parameters (CG). Significantly higher counts of CTLA-4+cells (in both CD4+and CD8+subtypes), a lower proportion of PD-1 expressing cells and a significantly higher percentage of Fox-P3+CD4+cells were found in the LC group. The high proportion of CD4+PD-1+cells significantly correlated with poor outcomes in LC group, while low CD4/CD8 ratio predicted a better prognosis. Based on our results it seems that NSCLC even at early stages of development initiate changes in the proportions of T cells that may have a significant impact on the clinical outcome. Copyright © 2017 Elsevier Inc. All rights reserved.
MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes.
Comabella, Manuel; Cantó, Ester; Nurtdinov, Ramil; Río, Jordi; Villar, Luisa M; Picón, Carmen; Castilló, Joaquín; Fissolo, Nicolás; Aymerich, Xavier; Auger, Cristina; Rovira, Alex; Montalban, Xavier
2016-01-15
Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction. Gene expression profiling was determined in PBMC using microarrays, and validation of selected genes was performed by polymerase chain reaction (PCR). B-cell immunophenotyping was conducted by flow cytometry. Microarray analysis revealed the B-cell specific genes FCRL1, FCRL2, FCRL5 (Fc receptor-like 1, 2 and 5 respectively), and CD22 as the top differentially expressed genes between patients with high and low neurodegeneration. Levels for these genes were significantly down-regulated in PBMC from patients with MRI phenotypes characterized by high neurodegeneration and microarray findings were validated by PCR. In patients with high neurodegeneration, immunophenotyping showed a significant increase in the expression of the B-cell activation markers CD80 in naïve B cells (CD45+/CD19+/CD27-/IgD+), unswitched memory B cells (CD45+/CD19+/CD27+/IgD+), and switched memory B cells (CD45+/CD19+/CD27+/IgD-), and CD86 in naïve and switched memory B cells. These results suggest that RRMS patients with radiological phenotypes showing high neurodegeneration have changes in B cells characterized by down-regulation of B-cell-specific genes and increased activation status. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kwak, Yoonjin; Koh, Jiwon; Kim, Duck-Woo; Kang, Sung-Bum; Kim, Woo Ho; Lee, Hye Seung
2016-01-01
Background The immunoscore (IS), an index based on the density of CD3+ and CD8+ tumor-infiltrating lymphocytes (TILs) in the tumor center (CT) and invasive margin (IM), has gained considerable attention as a prognostic marker. Tumor-associated macrophages (TAMs) have also been reported to have prognostic value. However, its clinical significance has not been fully clarified in patients with advanced CRC who present with distant metastases. Methods The density of CD3+, CD4+, CD8+, FOXP3+, CD68+, and CD163+ immune cells within CRC tissue procured from three sites–the primary CT, IM, and distant metastasis (DM)–was determined using immunohistochemistry and digital image analyzer (n=196). The IS was obtained by quantifying the densities of CD3+ and CD8+ TILs in the CT and IM. IS-metastatic and IS-macrophage–additional IS models designed in this study–were obtained by adding the score of CD3 and CD8 in DM and the score of CD163 in primary tumors (CT and IM), respectively, to the IS. Result Higher IS, IS-metastatic, and IS-macrophage values were significantly correlated with better prognosis (p=0.020, p≤0.001, and p=0.005, respectively). Multivariate analysis revealed that only IS-metastatic was an independent prognostic marker (p=0.012). No significant correlation was observed between KRAS mutation and three IS models. However, in the subgroup analysis, IS-metastatic showed a prognostic association regardless of the KRAS mutational status. Conclusion IS is a reproducible method for predicting the survival of patients with advanced CRC. Additionally, an IS including the CD3+ and CD8+ TIL densities at DM could be a strong prognostic marker for advanced CRC. PMID:27835889
Wang, Li; Sun, Xiguang; Qiu, Jinpeng; Cai, Yanjun; Ma, Liang; Zhao, Pingwei; Jiang, Yanfang
2015-02-01
Aberrant activation of follicular helper T (TFH) and B cells is associated with the development of autoimmune diseases. However, little is known about the potential role of these cells in the development of primary biliary cirrhosis (PBC). This study aimed at characterizing the numbers of different subsets of circulating Tfh and B cells as well as evaluating their potential association with the levels of immunoglobulins and autoantibodies in newly diagnosed PBC patients. The numbers of circulating CD27(+), CD38(+), CD86(+) and CD95(+) B cells as well as inducible T cell costimulator (ICOS)(+) and programmed death-1 (PD-1)(+), IL-21(+) TFH cells were examined in 58 patients with newly diagnosed PBC and 30 matched healthy controls (HCs). The numbers of circulating CD38(+)CD19(+), CD86(+)CD19(+), and CD95(+)CD19(+) B cells; CD3(+)CD4(+)CXCR5(+)ICOS(+) and CD3(+)CD4(+)CXCR5(+)PD-1(+) Tfh cells; and the levels of serum IL-21 in the PBC patients were significantly greater, but the numbers of CD27(+)CD19(+) B cells were significantly less than those in the HCs (p < 0.05). The numbers of CD3(+)CD4(+)CXCR5(+)ICOS(+) Tfh cells were positively correlated with the numbers of CD38(+)CD19(+) and CD86(+)CD38(+)CD19(+) B cells and the levels of serum anti-mitochondrial antibodies against M2 antigen (AMA-M2), AMA and immunolgubin M (IgM) in the PBC patients. The levels of serum IL-21 were positively correlated with the levels of serum AMA-M2, AMA, IgG and IgM, but negatively with the numbers of CD27(+)CD19(+) B cells in the PBC patients. Increased numbers of circulating ICOS(+) and IL-21(+) Tfh and CD38(+) plasma cells may be exhibited by patients with recent diagnoses of PBC.
Shi, Jun; Ge, Meili; Li, Xingxin; Shao, Yingqi; Yao, Jianfeng; Zheng, Yizhou
2014-01-01
Idiopathic aplastic anemia (AA) is an immune-mediated bone marrow failure syndrome. Immune abnormalities such as decreased lymphocyte counts, inverted CD4/CD8 T-cell ratio and increased IFN-γ-producing T cells have been found in AA. CD30, a surface protein belonging to the tumor necrosis factor receptor family and releasing from cell surface as a soluble form (sCD30) after activation, marks a subset of activated T cells secreting IFN-γ when exposed to allogeneic antigens. Our study found elevated BM plasma levels of sCD30 in patients with SAA, which were closely correlated with disease severity, including absolute lymphocyte count (ALC) and absolute netrophil count (ANC). We also noted that sCD30 levels were positively correlated with plasma IFN-γ levels and CD4/CD8 T-cell ratio in patients with SAA. In order to explain these phenomena, we stimulated T cells with alloantigen in vitro and found that CD30+ T cells were the major source of IFN-γ, and induced CD30+ T cells from patients with SAA produced significantly more IFN-γ than that from healthy individuals. In addition, increased proportion of CD8+ T cells in AA showed enhanced allogeneic response by the fact that they expressed more CD30 during allogeneic stimulation. sCD30 levels decreased in patients responded to immunosuppressive therapy. In conclusion, elevated BM plasma levels of sCD30 reflected the enhanced CD30+ T cell-mediated immune response in SAA. CD30 as a molecular marker that transiently expresses on IFN-γ-producing T cells, may participate in mediating bone marrow failure in AA, which also can facilitate our understanding of AA pathogenesis to identify new therapeutic targets. PMID:25383872
Shin, Jin-Young; Yoon, Il-Hee; Lim, Jong-Hyung; Shin, Jun-Seop; Nam, Hye-Young; Kim, Yong-Hee; Cho, Hyoung-Soo; Hong, So-Hee; Kim, Jung-Sik; Lee, Won-Woo; Park, Chung-Gyu
2015-09-01
Regulatory T cells (Tregs) are a specialized subpopulation of T cells that control the immune response and thereby maintain immune system homeostasis and tolerance to self-antigens. Many subsets of CD4(+) Tregs have been identified, including Foxp3(+), Tr1, Th3, and Foxp3neg iT(R)35 cells. In this study, we identified a new subset of CD4(+)VEGFR1(high) Tregs that have immunosuppressive capacity. CD4(+)VEGFR1high T cells, which constitute approximately 1.0% of CD4(+) T cells, are hyporesponsive to T-cell antigen receptor stimulation. Surface marker and FoxP3 expression analysis revealed that CD4(+)VEGFR1(high) T cells are distinct from known Tregs. CD4(+)VEGFR1(high) T cells suppressed the proliferation of CD4(+)CD25(-) T cell as efficiently as CD4(+)CD25(high) natural Tregs in a contact-independent manner. Furthermore, adoptive transfer of CD4(+)VEGFR1(+) T cells from wild type to RAG-2-deficient C57BL/6 mice inhibited effector T-cell-mediated inflammatory bowel disease. Thus, we report CD4(+) VEGFR1(high) T cells as a novel subset of Tregs that regulate the inflammatory response in the intestinal tract.
A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.
Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K
2015-08-20
Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. © 2015 by The American Society of Hematology.
A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies
Mamonkin, Maksim; Rouce, Rayne H.; Tashiro, Haruko
2015-01-01
Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. PMID:26056165
Bugeon, L; Hargreaves, R E; Crompton, T; Outram, S; Rahemtulla, A; Porter, A C; Dallman, M J
2001-01-01
Co-stimulation provided by the B7 family of proteins underpins the development of protective immunity. There are three identified members of this family: CD80, its splice variant IgV-CD80 and CD86. It has hitherto been difficult to analyze the expression and function of IgV-CD80 since there are no appropriate reagents capable of distinguishing it from CD80. We have generated mice, by gene targeting, the lack CD80 whilst maintaining expression of IgV-CD80. Mutant animals did not delete T cells bearing mammary tumor virus-reactive TCR as efficiently as wild-type animals. We also demonstrate the importance of IgV-CD80 in the responses of recently activated cells and reveal a role for CD80 in sustaining T cell responses. CD86, whilst critical to primary T cell activation, made only a minor contribution to re-activation of normal cells.
Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity?
Garnache-Ottou, Francine; Feuillard, Jean; Saas, Philippe
2007-02-01
CD4(+)/CD56(+) haematodermic neoplasm or 'early' plasmacytoid dendritic cell leukaemia/lymphoma (pDCL) was described as a disease entity in the last World Health Organisation/European Organisation for Research and Treatment of Cancer classification for cutaneous lymphomas. These leukaemia/lymphomas co-express CD4 and CD56 without any other lineage-specific markers and have been identified as arising from plasmacytoid dendritic cells. Despite a fairly homogeneous pattern of markers expressed by most pDCL, numerous distinctive features (e.g. cytological aspects and aberrant marker expression) have been reported. This may be related to the 'lineage-independent developmental' programme of dendritic cells, which may be able to develop from either immature or already committed haematopoietic progenitors. This highlights the need for specific validated markers to diagnose such aggressive leukaemia. Here, we propose--among others (e.g. T-cell leukaemia 1)--blood dendritic cell antigen-2 and high levels of CD123 expression as potential markers. In addition, we propose a multidisciplinary approach including several fields of haematology to improve pDCL diagnosis.
Julia, Fanny; Dalle, Stephane; Duru, Gerard; Balme, Brigitte; Vergier, Béatrice; Ortonne, Nicolas; Vignon-Pennamen, Marie D; Costes-Martineau, Valérie; Lamant, Laurence; Dalac, Sophie; Delattre, Claire; Déchelotte, Pierre; Courville, Philippe; Carlotti, Agnès; De Muret, Anne; Fraitag, Sylvie; Levy, Annie; Mitchell, Andrew; Petrella, Tony
2014-05-01
Blastic plasmacytoid dendritic cell neoplasm is a rare clinicopathologic entity, characterized by strong skin tropism and a poor prognosis. The diagnosis is generally made by skin biopsy with appropriate immunohistochemical studies. To identify potential biological prognostic factors for blastic plasmacytoid dendritic cell neoplasm, we performed an extended clinico-immunohistochemical study on a series of 91 well-documented cases collected since 1995 by the French Study Group on Cutaneous Lymphomas. Skin biopsies were analyzed using a panel of 12 immunohistochemical markers (CD4, CD56, CD123, CD303, TCL1, CD68, CD2, CD7, TdT, Ki-67, S100, and MX-1). The results were correlated with survival. The 5 most characteristic markers of this entity (CD4, CD56, CD123, CD303, and TCL1) were expressed simultaneously in only 46% of patients. However, when 4 markers were expressed the diagnosis could still be reliably made without resorting to any additional stains. Expression of TdT and/or S100 correlated with varying degrees of maturation. Statistical survival analyses showed that CD303 expression and high proliferative index (Ki-67) were significantly associated with longer survival.
Iwata, Tomomi Nakayama; Ishii, Chiaki; Ishida, Saori; Ogitani, Yusuke; Wada, Teiji; Agatsuma, Toshinori
2018-04-27
Trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate with a topoisomerase I inhibitor exatecan derivative (DX-8951 derivative, DXd), has been reported to exert potent antitumor effects in xenograft mouse models and clinical trials. In this study, the immune system-activating ability of DS-8201a was assessed. DS-8201a significantly suppressed tumor growth in an immunocompetent mouse model with human HER2-expressing CT26.WT (CT26.WT-hHER2) cells. Cured immunocompetent mice rejected not only re-challenged CT26.WT-hHER2 cells, but also CT26.WT-mock cells. Splenocytes from the cured mice responded to both CT26.WT-hHER2 and CT26.WT-mock cells. Further analyses revealed that DXd up-regulated CD86 expression on bone marrow-derived DCs in vitro, and that DS-8201a increased tumor-infiltrating DCs and up-regulated their CD86 expression in vivo. DS-8201a also increased tumor-infiltrating CD8+ T cells and enhanced PD-L1 and MHC class I expression on tumor cells. Furthermore, combination therapy with DS-8201a and anti-PD-1 antibody was more effective than either monotherapy. In conclusion, DS-8201a enhanced antitumor immunity, as evidenced by the increased expression of DC markers, augmented expression of MHC class I in tumor cells, and rejection of re-challenged tumor cells by adaptive immune cells, suggesting that DS-8201a enhanced tumor recognition by T cells. Furthermore, DS-8201a treatment benefited from combination with anti-PD-1 antibody, possibly due to increased T cell activity and up-regulated PD-L1 expression induced by DS-8201a. Copyright ©2018, American Association for Cancer Research.
Role of p38 MAPK in the selective release of IL-8 induced by chemical allergen in naive THp-1 cells.
Mitjans, Montserrat; Viviani, Barbara; Lucchi, Laura; Galli, Corrado L; Marinovich, Marina; Corsini, Emanuela
2008-03-01
At present, the assessment of the allergenic potential of chemicals is carried out using animal models. Over the last decade, several in vitro methods mainly using primary dendritic cells have been proposed to identify the potential of chemicals to induce skin sensitization to meet current animal welfare and public opinions. The major limitations of such tests are the donor-to-donor variability, the low levels in the source, and a possible shortage of human sources. The aim of the present investigation was to establish an in vitro test to identify chemical allergens using the human promyelocytic cell line THP-1 in order to avoid some of these difficulties. We investigated whether the chemokine interleukin-8 or CXCL8 (IL-8) production could provide a methodology for the detection of both respiratory and contact allergens. THP-1 cells were exposed to contact allergens (cinnamaldehyde, dinitrochlorobenzene, nickel sulfate, penicillin G, p-phenylenediamine, tetramethylthiuram disulfide), to respiratory allergens (ammonium hexachloroplatinate, diphenylmethane diisocyanate, trimellitic anhydride) and to irritants (salicylic acid, phenol, sodium lauryl sulphate). Following 48 h of incubation, the release of IL-8 was evaluated by sandwich ELISA. IL-8 production was significantly increased after stimulation with all allergens tested, with the exception of trimellitic anhydride, whereas irritants exposure failed to induce IL-8 release. The lack of IL-8 production by trimellitic anhydride can be explained by the rapid hydrolysis of this chemical in water to trimellitic acid, which is not an allergen. In contrast to IL-8 release, CD54 and CD86 expression did not provide a sensitive method failing to correctly identify approximately 30% of the tested compounds. Although CD86 appears to be a more sensitive marker than CD54 when discriminating allergens from irritants neither of these markers provided robust methodology. We also investigated if a common activation pathway in allergen-induced IL-8 production involving p38 mitogen-activated protein kinase could be identified. By Western blot analysis we could indeed demonstrate p38 activation by all chemical allergens tested and, using the selective p38 MAPK inhibitor SB203580, a significant modulation of allergen-induced IL-8 release could be achieved in all cases. Our data suggests that production of IL-8 by naïve THP-1 cells may represent a promising in vitro model for the screening of potential chemical allergens and activation of p38 MAPK represents a common pathway triggered by allergens.
Verstrepen, B E; Nieuwenhuis, I G; Mooij, P; Bogers, W M; Boonstra, A; Koopman, G
2016-07-01
In humans, CD16 and CD56 are used to identify functionally distinct natural killer (NK) subsets. Due to ubiquitous CD56 expression, this marker cannot be used to distinguish between NK cell subsets in chimpanzees. Therefore, functional analysis of distinct NK subsets during hepatitis C virus (HCV) infection has never been performed in these animals. In the present study an alternative strategy was used to identify four distinct NK subsets on the basis of the expression of CD16 and CD94. The expression of activating and inhibiting surface receptors showed that these subsets resemble human NK subsets. CD107 expression was used to determine degranulation of the different subsets in naive and HCV-infected chimpanzees. In HCV-infected chimpanzees increased spontaneous cytotoxicity was observed in CD94(high/dim) CD16(pos) and CD94(low) CD16(pos) subsets. By contrast, increased natural cytotoxicity receptor (NCR)- mediated degranulation after NKp30 and NKp44 triggering was demonstrated in the CD94(dim) CD16(neg) subset. Our findings suggest that spontaneous and NCR-mediated cytotoxicity are effector functions of distinct NK subsets in HCV-infected chimpanzees. © 2016 British Society for Immunology.
Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers
Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A.; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya
2016-01-01
B-cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL+ MHC class-IHi CD86Hi B cells of unknown origin. Here we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. The 4BL cells induce expression of 4-1BBL and IFNγR1 on B1a cells resulting in subsequent up regulation of membrane TNFα (mTNFα) and CD86. As a result, B1a cells induce expression of granzyme B in CD8+T cells by targeting TNFR2 via mTNFα while providing co-stimulation with CD86. Thus, for the first time, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8+T cells. PMID:26983789
Characterization of antibodies against ferret immunoglobulins, cytokines and CD markers.
Martel, Cyril Jean-Marie; Aasted, Bent
2009-12-15
Ferret IgG and IgM were purified from normal serum, while ferret IgA was purified from bile. The estimated molecular weights of the immunoglobulin gamma, alpha and mu heavy chains were found to be 54kDa, 69kDa and 83kDa, respectively. For immunological (ELISA) quantification of ferret immunoglobulins, we identified and characterized polyclonal antibodies towards ferret IgG, IgM and IgA. We also identified 22 monoclonal antibodies (mAbs) raised mostly against human CD markers which cross-reacted with ferret leukocytes. These antibodies were originally specific against human CD8, CD9, CD14, CD18, CD25, CD29, CD32, CD44, CD61, CD71, CD79b, CD88, CD104, CD172a and mink CD3. Finally, we identified 4 cross-reacting mAbs with specificities against ferret interferon-gamma, TNF-alpha, interleukin-4 and interleukin-8.
Ishikawa, Satoru; Ishimaru, Yasuhiro; Igura, Masato; Kuramata, Masato; Abe, Tadashi; Senoura, Takeshi; Hase, Yoshihiro; Arao, Tomohito; Nishizawa, Naoko K; Nakanishi, Hiromi
2012-11-20
Rice (Oryza sativa L.) grain is a major dietary source of cadmium (Cd), which is toxic to humans, but no practical technique exists to substantially reduce Cd contamination. Carbon ion-beam irradiation produced three rice mutants with <0.05 mg Cd⋅kg(-1) in the grain compared with a mean of 1.73 mg Cd⋅kg(-1) in the parent, Koshihikari. We identified the gene responsible for reduced Cd uptake and developed a strategy for marker-assisted selection of low-Cd cultivars. Sequence analysis revealed that these mutants have different mutations of the same gene (OsNRAMP5), which encodes a natural resistance-associated macrophage protein. Functional analysis revealed that the defective transporter protein encoded by the mutant osnramp5 greatly decreases Cd uptake by roots, resulting in decreased Cd in the straw and grain. In addition, we developed DNA markers to facilitate marker-assisted selection of cultivars carrying osnramp5. When grown in Cd-contaminated paddy fields, the mutants have nearly undetectable Cd in their grains and exhibit no agriculturally or economically adverse traits. Because mutants produced by ion-beam radiation are not transgenic plants, they are likely to be accepted by consumers and thus represent a practical choice for rice production worldwide.
The Impact of Sex Work Interruption on Blood-Derived T Cells in Sex Workers from Nairobi, Kenya.
Omollo, Kenneth; Boily-Larouche, Geneviève; Lajoie, Julie; Kimani, Makobu; Cheruiyot, Julianna; Kimani, Joshua; Oyugi, Julius; Fowke, Keith Raymond
Unprotected sexual intercourse exposes the female genital tract (FGT) to semen-derived antigens, which leads to a proinflammatory response. Studies have shown that this postcoital inflammatory response can lead to recruitment of activated T cells to the FGT, thereby increasing risk of HIV infection. The purpose of this study was to evaluate the impact of sex work on activation and memory phenotypes of peripheral T cells among female sex workers (FSW) from Nairobi, Kenya. Thirty FSW were recruited from the Pumwani Sex Workers Cohort, 10 in each of the following groups: HIV-exposed seronegative (at least 7 years in active sex work), HIV positive, and New Negative (HIV negative, less than 3 years in active sex work). Blood was obtained at three different phases (active sex work, abstinence from sex work-sex break, and following resumption of sex work). Peripheral blood mononuclear cells were isolated and stained for phenotypic markers (CD3, CD4, CD8, and CD161), memory phenotype markers (CD45RA and CCR7), activation markers (CD69, HLA-DR, and CD95), and the HIV coreceptor (CCR5). T-cell populations were compared between groups. In HIV-positive women, CD8+CCR5+ T cells declined at the sex break period, while CD4+CD161+ T cells increased when returning to sex work. All groups showed no significant changes in systemic T-cell activation markers following the interruption of sex work, however, significant reductions in naive CD8+ T cells were noted. For each of the study points, HIV positives had higher effector memory and CD8+CD95+ T cells and lower naive CD8+ T cells than the HIV-uninfected groups. Interruption of sex work had subtle effects on systemic T-cell memory phenotypes.
Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells
Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio
2016-01-01
Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897
Yu, Tony; Wang, Wenbo; Nassiri, Sina; Kwan, Thomas; Dang, Chau; Liu, Wei; Spiller, Kara L
2016-01-01
Currently, it is not well understood how changes in biomaterial properties affect the foreign body response (FBR) or macrophage behavior. Because failed attempts at biomaterial degradation by macrophages have been linked to frustrated phagocytosis, a defining feature of the FBR, we hypothesized that increased hydrogel crosslinking density (and decreased degradability) would exacerbate the FBR. Gelatin hydrogels were crosslinked with glutaraldehyde (0.05, 0.1, and 0.3%) and implanted subcutaneously in C57BL/6 mice over the course of 3 weeks. Interestingly, changes in hydrogel crosslinking did not affect the thickness of the fibrous capsule surrounding the hydrogels, expression of the pan-macrophage marker F480, expression of three macrophage phenotype markers (iNOS, Arg1, CD163), or expression of the myofibroblast marker aSMA, determined using semi-quantitative immunohistochemical analysis. With respect to temporal changes, the level of expression of the M1 marker (iNOS) remained relatively constant throughout the study, while the M2 markers Arg1 and CD163 increased over time. Expression of these M2 markers was highly correlated with fibrous capsule thickness. Differences in spatial distribution of staining also were noted, with the strongest staining for iNOS at the hydrogel surface and increasing expression of the myofibroblast marker aSMA toward the outer edge of the fibrous capsule. These results confirm previous reports that macrophages in the FBR exhibit characteristics of both M1 and M2 phenotypes. Understanding the effects (or lack of effects) of biomaterial properties on the FBR and macrophage phenotype may aid in the rational design of biomaterials to integrate with surrounding tissue.
Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord.
Wang, Hwai-Shi; Hung, Shih-Chieh; Peng, Shu-Tine; Huang, Chun-Chieh; Wei, Hung-Mu; Guo, Yi-Jhih; Fu, Yu-Show; Lai, Mei-Chun; Chen, Chin-Chang
2004-01-01
The Wharton's jelly of the umbilical cord contains mucoid connective tissue and fibroblast-like cells. Using flow cytometric analysis, we found that mesenchymal cells isolated from the umbilical cord express matrix receptors (CD44, CD105) and integrin markers (CD29, CD51) but not hematopoietic lineage markers (CD34, CD45). Interestingly, these cells also express significant amounts of mesenchymal stem cell markers (SH2, SH3). We therefore investigated the potential of these cells to differentiate into cardiomyocytes by treating them with 5-azacytidine or by culturing them in cardiomyocyte-conditioned medium and found that both sets of conditions resulted in the expression of cardiomyocyte markers, namely N-cadherin and cardiac troponin I. We also showed that these cells have multilineage potential and that, under suitable culture conditions, are able to differentiate into cells of the adipogenic and osteogenic lineages. These findings may have a significant impact on studies of early human cardiac differentiation, functional genomics, pharmacological testing, cell therapy, and tissue engineering by helping to eliminate worrying ethical and technical issues.
Topical pimecrolimus versus betamethasone for oral lichen planus: a randomized clinical trial.
Ezzatt, Ola M; Helmy, Iman M
2018-06-16
Oral lichen plans (OLP) is a potentially malignant inflammatory mucocutaneous disease. CD133 is an investigated surface marker for cancer stem-like cells (CSCs) that may be involved in tumor initiation in head and neck carcinomas. We compared short-term clinical effectiveness of topical pimecrolimus as selective inflammatory cytokine release inhibitor with betamethasone cream for erosive/atrophic OLP and investigated the influence of this therapy on CD133 expression. Thirty patients were randomly assigned into two equal groups to receive topical pimecrolimus (group I) or betamethasone (group II) four times daily for 4 weeks. A marker lesion in each patient were assessed at baseline using clinical score (CS) and visual analog scale (VAS) then at 1, 2, and 4 weeks and after 4 weeks of treatment-free period. CD133 expression was detected in pre- and post-treatment immunostained sections. Both drugs showed a reduction in CS, VAS, and CD133 expressions after treatment termination (p < 0.001). Pimecrolimus-treated lesions showed significant higher 1st week reduction in severity (33.1% (22.2)), pain score (57.53% (14.27)), less recurrence in follow-up period and less CD133 expression by the end of the 1st 4 weeks compared with betamethasone. Pimecrolimus showed earlier clinical response and less recurrence rate compared with standard topical corticosteroid in symptomatic OLP lesions, and both treatment reduced CD133-positive CSC population. The study proved the benefits of topical pimecrolimus in early management of painful lesions of OLP and its ability to inhibit CSCs, suggesting a possible role in reducing risk of malignant transformation.
Zang, Zhi Jun; Wang, Jiancheng; Chen, Zhihong; Zhang, Yan; Gao, Yong; Su, Zhijian; Tuo, Ying; Liao, Yan; Zhang, Min; Yuan, Qunfang; Deng, Chunhua; Jiang, Mei Hua; Xiang, Andy Peng
2017-05-01
Stem Leydig cell (SLC) transplantation could provide a new strategy for treating the testosterone deficiency. Our previous study demonstrated that CD51 (also called integrin αv) might be a putative cell surface marker for SLCs, but the physiological function and efficacy of CD51 + SLCs treatment remain unclear. Here, we explore the potential therapeutic benefits of CD51 + SLCs transplantation and whether these transplanted cells can be regulated by the hypothalamic-pituitary-gonadal (HPG) axis. CD51 + cells were isolated from the testes of 12-weeks-old C57BL/6 mice, and we showed that such cells expressed SLC markers and that they were capable of self-renewal, extensive proliferation, and differentiation into multiple mesenchymal cell lineages and LCs in vitro. As a specific cytotoxin that eliminates Leydig cells (LCs) in adult rats, ethane dimethanesulfonate (EDS) was used to ablate LCs before the SLC transplantation. After being transplanted into the testes of EDS-treated rats, the CD51 + cells differentiated into mature LCs, and the recipient rats showed a partial recovery of testosterone production and spermatogenesis. Notably, a testosterone analysis revealed a circadian rhythm of testosterone secretion in cell-transplanted rats, and these testosterone secretions could be suppressed by decapeptyl (a luteinizing hormone-releasing hormone agonist), suggesting that the transplanted cells might be regulated by the HPG axis. This study is the first to demonstrate that CD51 + SLCs can restore the neuroendocrine regulation of testicular function by physiologically recovering the expected episodic changes in diurnal testosterone serum levels and that SLC transplantation may provide a new tool for the studies of testosterone deficiency treatment. Stem Cells 2017;35:1222-1232. © 2017 AlphaMed Press.
Brückner, S; Tautenhahn, H-M; Winkler, S; Stock, P; Jonas, S; Dollinger, M; Christ, B
2013-06-01
Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.
Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.
Strickland, D H; Judd, S; Thomas, J A; Larcombe, A N; Sly, P D; Holt, P G
2011-01-01
The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR.