Science.gov

Sample records for cdse colloidal quantum

  1. Optics of colloidal quantum-confined CdSe nanoscrolls

    SciTech Connect

    Vasiliev, R B; Sokolikova, M S; Vitukhnovskii, A G; Ambrozevich, S A; Selyukov, A S; Lebedev, V S

    2015-09-30

    Nanostructures in the form of 1.2-nm-thick colloidal CdSe nanoplatelets rolled into scrolls are investigated. The morphology of these scrolls is analysed and their basic geometric parameters are determined (diameter 29 nm, longitudinal size 100 – 150 nm) by TEM microscopy. Absorption and photoluminescence spectra of these objects are recorded, and the luminescence decay kinetics is studied. It is shown that the optical properties of CdSe nanoscrolls differ significantly from the properties of CdSe quantum dots and that these nanoscrolls are attractive for nanophotonic devices due to large oscillator strengths of the transition, small widths of excitonic peaks and short luminescence decay times. Nanoscrolls can be used to design hybrid organic–inorganic pure-color LEDs with a high luminescence quantum yield and low operating voltages. (optics and technology of nanostructures)

  2. The study of CdSe colloidal quantum dots synthesized in aqueous and organic media

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. I.; Tarasov, S. A.; Solomonov, A. V.; Aleksandrova, O. A.; Matyushkin, L. B.; Mazing, D. S.

    2014-12-01

    The samples of CdSe colloidal quantum dots (CQDs) synthesized in aqueous and organic media are studied. The possibility of luminescence peak position control depending on nanoparticle growth process is demonstrated. The samples synthesized in organic medium revealed the luminescence color variation effect with nanoparticle growth. The relation of this effect with processes of nucleation and defect formation in nanoparticles is considered. The CQDs of CdSe coated with CdS shell are fabricated. The use of inorganic shell can provide a double increase of the luminescence quantum yield.

  3. Enhanced random lasing from a colloidal CdSe quantum dot-Rh6G system

    NASA Astrophysics Data System (ADS)

    Augustine, Anju K.; Radhakrishnan, P.; Nampoori, V. P. N.; Kailasnath, M.

    2015-02-01

    In this letter, we report random laser action in a system where optical amplification is provided by colloidal CdSe quantum dots (CQDs) triggered by the emission from Rhodamine 6G. The laser emission from CdSe QDs is optically excited by Rh-6G which in turn is photo-pumped by a frequency-doubled Q-switched Nd : YAG laser system at an excitation wavelength of 532 nm. At intensities greater than the threshold value, laser emission is characterized by narrowing peaks.

  4. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    PubMed

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  5. Selenium Redox Reactivity on Colloidal CdSe Quantum Dot Surfaces

    PubMed Central

    2016-01-01

    Understanding the structural and compositional origins of midgap states in semiconductor nanocrystals is a longstanding challenge in nanoscience. Here, we report a broad variety of reagents useful for photochemical reduction of colloidal CdSe quantum dots, and we establish that these reactions proceed via a dark surface prereduction step prior to photoexcitation. Mechanistic studies relying on the specific properties of various reductants lead to the proposal that this surface prereduction occurs at oxidized surface selenium sites. These results demonstrate the use of small-molecule inorganic chemistries to control the physical properties of colloidal QDs and provide microscopic insights into the identities and reactivities of their localized surface species. PMID:27518320

  6. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-01

    We present the enhanced photoluminescence (PL) of a corrugated Al2O3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al2O3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al2O3, the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al2O3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al2O3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al2O3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al2O3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  7. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.

    PubMed

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-19

    We present the enhanced photoluminescence (PL) of a corrugated Al2O3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al2O3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al2O3, the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al2O3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al2O3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al2O3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al2O3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  8. Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells.

    PubMed

    Baghani, Erfan; O'Leary, Stephen K; Fedin, Igor; Talapin, Dmitri V; Pelton, Matthew

    2015-03-19

    Using time-resolved photoluminescence spectroscopy, we show that two-exciton Auger recombination dominates carrier recombination and cooling dynamics in CdSe nanoplatelets, or colloidal quantum wells. The electron-hole recombination rate depends only on the number of electron-hole pairs present in each nanoplatelet, and is consistent with a two-exciton recombination process over a wide range of exciton densities. The carrier relaxation rate within the conduction and valence bands also depends only on the number of electron-hole pairs present, apart from an initial rapid decay, and is consistent with the cooling rate being limited by reheating due to Auger recombination processes. These Auger-limited recombination and relaxation dynamics are qualitatively different from the carrier dynamics in either colloidal quantum dots or epitaxial quantum wells.

  9. Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells

    SciTech Connect

    Baghani, Erfan; O'Leary, Stephen K.; Fedin, Igor; Talapin, Dimitri V.; Pelton, Matthew

    2015-03-19

    Using time-resolved photoluminescence spectroscopy, we show that two-exciton Auger recombination dominates carrier recombination and cooling dynamics in CdSe nanoplatelets, or colloidal quantum wells. The electron-hole recombination rate depends only on the number of electron-hole pairs present in each nanoplatelet, and is consistent with a twoexciton recombination process over a wide range of exciton densities. The carrier relaxation rate within the conduction and valence bands also depends only on the number of electron-hole pairs present, apart from an initial rapid decay, and is consistent with the cooling rate being limited by reheating due to Auger recombination processes. These Auger-limited recombination and relaxation dynamics are qualitatively different from the carrier dynamics in either colloidal quantum dots or epitaxial quantum wells. TOC FIGURE:

  10. Preparation and characterization of CdSe colloidal quantum dots by pptical spectroscopy and 2D DOSY NMR

    NASA Astrophysics Data System (ADS)

    Geru, I.; Bordian, O.; Culeac, I.; Turta, C.; Verlan, V.; Barba, A.

    2015-02-01

    We present experimental results on preparation and characterization of colloidal CdSe quantum dots (QD) in organic solvent. CdSe QDs were synthesized following a modified literature method and have been characterized by UV-Vis absorption and photoluminescent (PL) spectroscopy, as well as by 2D Diffusion Ordered Spectroscopy (DOSY) NMR. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28 - 2.92 nm, which correlates very well with the results obtained from NMR measurements. The PL spectrum for CdSe nanodots can be characterized by a narrow emission band with the peak maximum shifting from 508 to 566 nm in dependence of the CdSe nanoparticle size. The PL is dominated by a near-band-edge emission, accompanied by a weak broad band in the near IR, related to the surface shallow trap emission.

  11. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    PubMed

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  12. Photon echo studies of biexcitons and coherences in colloidal CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Colonna, Anne E.; Yang, Xiujuan; Scholes, Gregory D.

    2005-04-01

    The cover picture shows the size-dependent photoluminescence from CdSe colloidal quantum dots that were investigated in the work [1]. Ultrafast photon echo experiments were undertaken in conjunction with simulations based on a realistic many-body theory, shown in the picture, to ascertain the significance of many-body contributions to the third-order nonlinear response.The first author Anne E. Colonna undertook this research during a summer internship in the Department of Chemistry, University of Toronto. She is currently pursuing graduate studies at École Polytechnique, Saclay, in the Laboratoire d'Optique et Biosciences.The author Gregory D. Scholes is an Assistant Professor in the Department of Chemistry, University of Toronto. His research interests include synthesis and shape control of quantum dots, as well as the application of ultrafast laser spectroscopy to investigate the electronic structure of inorganic and organic semiconductors.

  13. Mid-Infrared Photoluminescence of CdS and CdSe Colloidal Quantum Dots.

    PubMed

    Jeong, Kwang Seob; Guyot-Sionnest, Philippe

    2016-02-23

    Mid-infrared intraband photoluminescence is observed from CdSe and CdS colloidal quantum dots (CQDs) and core/shell systems when excited by a visible laser. The CQDs show more intraband photoluminescence with dodecanethiol than with other ligands. Core/shells show an increase of the intraband photoluminescence with increasing shell thickness. The detected emission is restricted to below 2900 cm(-1), bounded by the C-H vibrational modes of the organic ligands. Upon photoexcitation in air for all dodecanethiol ligands capped CQD systems studied, the intraband photoluminescence is quenched over time, and emission at lower frequency is observed, which is assigned to laser heating and thermal emission from oxides.

  14. Measuring photoluminescence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Qin, Shuijie

    2016-05-01

    A novel periodic array CdSe nanowire is prepared on a substrate of the porous titanium dioxide by using a self-assembly method of the colloidal CdSe quantum dots (QDs). The experimental results show that the colloidal CdSe QDs have renewedly assembled on its space scale and direction in process of losing background solvent and form the periodic array nanowire. The main peak wavelength of Photoluminescence (PL) spectra, which is measured by using a 100-nm aperture laser beam spot on a scanning near-field optics microscopy, has shifted 60 nm with compared to the colloidal CdSe QDs. Furthermore, we have measured smaller ordered nanometer structure in thin QDs area as well, a 343-nm periodic nanowire in thick QDs area and the colloidal QDs in edge of well-ordered nanowire.

  15. A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states.

    PubMed

    Guyot-Sionnest, Philippe; Lhuillier, Emmanuel; Liu, Heng

    2012-10-21

    Thermal deflection spectroscopy allows to measure very small absorption and uncovers absorption tails extending well below the bulk bandgap energy for CdSe quantum dots films after ligand exchange by sulfide. In this monodispersed system, the redshift, the broadening, and the absorption tails cannot be solely attributed to electronic coupling between the dots. Instead, mixing of hole states from the quantum dot and surface is proposed to dominate the changes of the interband spectra at the absorption edge.

  16. A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states

    NASA Astrophysics Data System (ADS)

    Guyot-Sionnest, Philippe; Lhuillier, Emmanuel; Liu, Heng

    2012-10-01

    Thermal deflection spectroscopy allows to measure very small absorption and uncovers absorption tails extending well below the bulk bandgap energy for CdSe quantum dots films after ligand exchange by sulfide. In this monodispersed system, the redshift, the broadening, and the absorption tails cannot be solely attributed to electronic coupling between the dots. Instead, mixing of hole states from the quantum dot and surface is proposed to dominate the changes of the interband spectra at the absorption edge.

  17. Shell-dependent electroluminescence from colloidal CdSe quantum dots in multilayer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jing, Pengtao; Zheng, Jinju; Zeng, Qinghui; Zhang, Youlin; Liu, Xiaomin; Liu, Xueyan; Kong, Xianggui; Zhao, Jialong

    2009-02-01

    We report electroluminescence (EL) of colloidal CdSe/CdS, CdSe/ZnS, and CdSe/CdS/CdZnS/ZnS core/shell quantum dots (QDs) in multilayer light-emitting diodes (LEDs) fabricated by spin coating a near monolayer of the core/shell QDs on cross-linkable hole transporting layers. It is found that CdSe/CdS QD-LEDs exhibit a faster decrease in EL quantum efficiency (˜2% at a brightness of 100 cd/m2) with increasing current density and lower maximum brightness than those of CdSe/ZnS QD-LEDs. A more significant redshift and spectral broadening of the EL observed in CdSe core/shell QDs with a CdS or CdS/CdZnS/ZnS shell than with a ZnS shell indicate that the electron wave function can penetrate into the shell under electric field. The difference in device performance and EL spectra results from conduction band offsets between the CdSe cores and CdS or ZnS shells, suggesting the existence of the exciton ionization in the QD-LEDs.

  18. Investigating the influence of ligands on the surface-state emission of colloidal CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Mack, Timothy G.; Jethi, Lakshay; Krause, Michael M.; Kambhampati, Patanjali

    2017-02-01

    Semiconductor based light generation is of enormous contemporary interest, given that a large fraction of global energy is used for lighting. White-light semiconductor colloidal quantum dots may find application in future solid state lighting technologies. These dots possess two inherent emission bands, a narrow emissive band attributed to a quantum confined exciton, and a broad emission associated with surface trapping. White light CdSe colloidal semiconductor nanocrystals passivated with phosphonic acids were synthesized by a hot-injection method. Aliquots of this sample are then ligand exchanged with amine and thiol ligands. These samples are embedded in polystyrene films, and a series of temperature dependent photoluminescence measurements are performed. The spectral width as a function of temperature is plotted for all samples. These data are then analyzed in terms of three models. The results suggest that surface line shape broadness may be tied to strong electron-phonon coupling and is largely ligand dependent. The amine and phosphonic acid passivated samples showed large temperature dependence over the range studied, whereas the thiol passivated sample had a lower dependence. This is tentatively explained in terms of hole delocalization in the case of thiol passivation.

  19. Direct Observation of sp-d Exchange Interactions in Colloidal Mn2+- and Co2+-Doped CdSe Quantum Dots

    SciTech Connect

    Archer, Paul I.; Santangelo, Steven A.; Gamelin, Daniel R.

    2007-03-23

    The defining attribute of a diluted magnetic semiconductor (DMS) is the existence of dopant-carrier magnetic exchange interactions. In this letter, we report the first direct observation of such exchange interactions in colloidal doped CdSe nanocrystals. Doped CdSe quantum dots were synthesized by thermal decomposition of (Me4N)2[Cd4(SePh)10] in the presence of TMCl2 (TM2+ ) Mn2+ or Co2+) in hexadecylamine and were characterized by several analytical and spectroscopic techniques. Using magnetic circular dichroism spectroscopy, successful doping and the existence of giant excitonic Zeeman splittings in both Mn2+- and Co2+-doped wurtzite CdSe quantum dots are demonstrated unambiguously.

  20. Quantum Yield Enhancement of Cd/Se Colloidal Quantum Dots by Variation of Surface Ligands

    DTIC Science & Technology

    2013-01-01

    a solvent and a ligand, and oleic acid , which also serves as a ligand. The second used more complex ligands, octadecylphosphonic acid , and oleyamine...outgassed for another 30 min. To prepare the Cd precursor 26 mg of cadmium oxide (CdO) powder was mixed with 1.2 ml of oleic acid (OA) and 9.0 ml ODE...Acronyms Ar argon Cd cadmium CdO cadmium oxide OA oleic acid ODE octadecene QD quantum dots QY quantum yield Rh6G rhodamine 6G Se selenium NO. OF

  1. Spin Dynamics and Optical Nonlinearities in Layered GaSe and Colloidal CdSe Nanocrystal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tang, Yanhao

    In this thesis, we studied spin dynamics, optical nonlinearity and the optical Stark effect in bulk GaSe, mono- and few-layer GaSe, and colloidal CdSe nanocrystal quantum dots (NQDs), respectively. Control of the spin has been a long-term goal due to its potential applications in quantum information processing. Candidates for spintronics should have a long spin lifetime and allow for generation of a high initial spin polarization. GaSe caught our attention due to its orbitally nondegenerate valence bands, which are in contrast to the degenerate heavy and light hole valence bands in conventional III-V and II-VI semiconductors, like GaAs and CdSe. With time- and polarization-resolved photoluminescence, we demonstrated the generation of initial spin polarization as high as 0.9 followed by bi-exponential spin relaxation at 10 K (˜30 ps and ≥300 ps), owing to such orbitally nondegenerate valence bands in GaSe. We also directly revealed the initial spin and population relaxation as transitions from triplet excitons to singlet excitions via spin-flip of the electron or hole. Contrary to semiconductor transition metal dichalcogenides, MX2 (M=Mo,W; X=S,Se,Te), GaSe is a direct band gap semiconductor in bulk, but transforms to an indirect band gap semiconductor in a monolayer as the maximum of the valence band is shifted away from the Gamma point. Associated with such a valence band in monolayer GaSe, ferromagnetism has been predicted upon hole doping due to a strong electronic exchange field. To study the electronic structure of GaSe in mono- and few-layer GaSe, we measured layer- and frequency-dependent second-harmonic generation (SHG) in GaSe from monolayer to ≥100 layers and determined a second-order optical nonlinearity chi(2) in the multi-slab system. We found reduced a chi(2) in GaSe with thickness < 7 layers, tentatively attributed to the predicted increase in the band gap. How quantum confinement affects the light-matter interaction in colloidal CdSe

  2. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    NASA Astrophysics Data System (ADS)

    Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao

    2016-10-01

    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.

  3. Giant Excitonic Exchange Splittings at Zero Field in Single Colloidal CdSe Quantum Dots Doped with Individual Mn(2+) Impurities.

    PubMed

    Fainblat, Rachel; Barrows, Charles J; Hopmann, Eric; Siebeneicher, Simon; Vlaskin, Vladmir A; Gamelin, Daniel R; Bacher, Gerd

    2016-09-28

    Replacing a single atom of a host semiconductor nanocrystal with a functional dopant can introduce completely new properties potentially valuable for "solotronic" information-processing applications. Here, we report successful doping of colloidal CdSe quantum dots with a very small number of manganese ions-down to the ultimate limit of one. Single-particle spectroscopy reveals spectral fingerprints of the spin-spin interactions between individual dopants and quantum-dot excitons. Spectrally well-resolved emission peaks are observed that can be related to the discrete spin projections of individual Mn(2+) ions. In agreement with theoretical predictions, the exchange splittings are enhanced by more than an order of magnitude in these quantum dots compared to their epitaxial counterparts, opening a path for solotronic applications at elevated temperatures.

  4. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures.

    PubMed

    Shieh, Felice; Saunders, Aaron E; Korgel, Brian A

    2005-05-12

    We report a general synthetic method for the formation of shape-controlled CdS, CdSe and CdTe nanocrystals and mixed-semiconductor heterostructures. The crystal growth kinetics can be manipulated by changing the injection rate of the chalcogen precursor, allowing the particle shape-spherical or rodlike-to be tuned without changing the underlying chemistry. A single injection of precursor leads to isotropic spherical growth, whereas multiple injections promote epitaxial growth along the length of the c-axis. This method was extended to produce linear type I and type II semiconductor nanocrystal heterostructures.

  5. Nonradiative energy transfer in colloidal CdSe nanoplatelet films

    NASA Astrophysics Data System (ADS)

    Guzelturk, Burak; Olutas, Murat; Delikanli, Savas; Kelestemur, Yusuf; Erdem, Onur; Demir, Hilmi Volkan

    2015-01-01

    Nonradiative energy transfer (NRET) has been extensively studied in colloidal nanocrystal (quantum dots) and nanorod (quantum wires) assemblies. In this work, we present the first account of spectroscopic evidence of NRET in solid thin films of CdSe based colloidal nanoplatelets (NPLs), also known as colloidal quantum wells. The NRET was investigated as a function of the concentration of two NPL populations with different vertical thicknesses via steady state and time resolved spectroscopy. NRET takes place from the NPLs with smaller vertical thickness (i.e., larger band gap) to the ones with a larger vertical thickness (i.e., smaller band gap) with efficiency up to ~60%. Here, we reveal that the NRET efficiency is limited in these NPL solid film assemblies due to the self-stacking of NPLs within their own population causing an increased distance between the donor-acceptor pairs, which is significantly different to previously studied colloidal quantum dot based architectures for nonradiative energy transfer.Nonradiative energy transfer (NRET) has been extensively studied in colloidal nanocrystal (quantum dots) and nanorod (quantum wires) assemblies. In this work, we present the first account of spectroscopic evidence of NRET in solid thin films of CdSe based colloidal nanoplatelets (NPLs), also known as colloidal quantum wells. The NRET was investigated as a function of the concentration of two NPL populations with different vertical thicknesses via steady state and time resolved spectroscopy. NRET takes place from the NPLs with smaller vertical thickness (i.e., larger band gap) to the ones with a larger vertical thickness (i.e., smaller band gap) with efficiency up to ~60%. Here, we reveal that the NRET efficiency is limited in these NPL solid film assemblies due to the self-stacking of NPLs within their own population causing an increased distance between the donor-acceptor pairs, which is significantly different to previously studied colloidal quantum dot based

  6. Self-assembly of CdSe quantum dots and colloidal titanium dioxide on copolymer microspheres (PS) for CdSe/PS and TiO2/CdSe/PS sub-microspheres with yolk-shell structure

    NASA Astrophysics Data System (ADS)

    Zhao, Qingchun

    2015-07-01

    Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, chemical/biological sensors, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in nanostructures. In this paper, relying on the interaction including van der Waals forces and hydrogen bond, CdSe/PS sub-microspheres composite and TiO2/CdSe/PS sub-microspheres with yolk-shell structure were prepared via self-assembly of CdSe quantum dots and colloidal titanium dioxide on modified PS surface. The morphology, structure and composition obtained products were investigated by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy disperse X-ray spectroscopy (EDX). Transmission electron microscopy (TEM) investigations show the CdSe quantum dots and colloidal titanate were assembled on the surface of PS sub-microspheres. CdSe QD-polymer sub-microspheres composites in which the QDs retain their original emission efficiency can be obtained. TiO2/CdSe/PS sub-microspheres with yolk-shell structure can improve the efficiency of charge separation.

  7. Optical properties and effect of carrier tunnelling in CdSe colloidal quantum dots: A comparative study with different ligands

    NASA Astrophysics Data System (ADS)

    Goswami, Syamanta Kumar; Kim, Tae Soo; Oh, Eunsoon; Challa, Kiran Kumar; Kim, Eui-Tae

    2012-09-01

    We studied both cw and time-resolved photoluminescence of colloidal CdSe/ZnS core-shell quantum dots capped with chemical ligands. For the trioctylphosphine oxide capped CdSe/ZnS QDs, both the luminescence intensity and lifetime were found to be increased with increasing temperatures, which can be explained by the thermal activation of the carriers trapped at shallow trapping centers. After the ligand exchange into 3-mercaptopropionic acid, the non-radiative recombination rate was increased and the luminescence efficiency was decreased at room temperature. When the QDs were employed in photovoltaic devices, photocurrent was found to be increased after the ligand exchange. The improved photocurrents observed in photovoltaic devices can be explained by the improved tunnelling probability between the neighbouring QDs.

  8. Resonant and Nonresonant Nonlinear Optical Spectroscopy of CDSE Quantum Dots for Nonlinear Photonic Applications

    DTIC Science & Technology

    2006-11-01

    excitations. 1. INTRODUCTION Colloidal semiconductor nanocrystals have drawn significant attention because of their distinct roles in nonlinear... colloidal semiconductor nanoscale materials significantly changes with resonant and nonresonant excitation processes. The processes leading to non...2. EXPERIMENT CdSe colloidal quantum-dot nanocrystals for Z- scan and DFWM spectroscopy were prepared by injecting Se solution (a mixture of

  9. Low-temperature synthesis of CdSe nanocrystal quantum dots.

    PubMed

    Siy, Jacqueline T; Brauser, Eric M; Bartl, Michael H

    2011-01-07

    A method for fabricating colloidal CdSe nanocrystals at low reaction temperatures was developed. The transition from CdSe clusters to continuously-growing nanocrystals was found to be crucial in the formation of high-quality quantum dots with narrow size distribution and efficient, tunable optical properties.

  10. Spontaneous emission enhancement of colloidal CdSe nanoplatelets

    NASA Astrophysics Data System (ADS)

    Yang, Zhili; Pelton, Matthew; Waks, Edo

    Colloidal CdS /CdSe/CdS nanoplatelets synthesized recently are high efficient nano-emitters and gain media for nanoscale lasers and other nonlinear optical devices. They are characterized as quantum well structure due to energy gap difference between core CdSe and shell CdS, of which the luminescent wavelength could be tuned precisely by their thickness of growth. However, the influence of environment on the material's optical properties and further enhancement of the emission to implement nanoscale systems remains to be investigated. Here we demonstrate spontaneous emission rate enhancement of these CdSe nanoplatelets coupled to a photonic crystal cavity. We show clearly the photoluminescent spectrum modification of the nanoplatelets emission and an averaged Purcell enhancement factor of 3.1 is achieved when they are coupled to carefully-designed nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our experiment of lifetime measurement. Also the phenomenon of cavity quality factor increasing is observed when increasing intensity of pumping, which attributes to saturable absorption of the nanoplatelets. Our success in enhancement of emission from these nanoplatelets here paves the road to realize actual nanoscale integrated systems such as ultra-low threshold micro-cavity lasers.

  11. Compressive and Tensile Stress in CdSe Semiconductor Quantum Dots

    SciTech Connect

    Meulenberg, R W; Jennings, T; Strouse, G F

    2004-06-02

    Compressive and tensile stress in colloidal CdSe quantum dots (QDs) is examined using resonance Raman spectroscopy. We find that the dispersion of the longitudinal optical phonon mode with size does not follow theoretical calculations based on phonon confinement models. To account for these deviations, the presence of compressive or tensile stress in the QDs was proposed. We find that CdSe QDs prepared via a single source precursor (SSP) method exhibit compressive stress, while CdSe QDs prepared via high temperature lyothermal methods exhibit tensile stress. Evidence is provided that the SSP CdSe QDs stress is directly related to a surface effect.

  12. Valence-band mixing effects in the upper-excited-state magneto-optical responses of colloidal Mn2+-doped CdSe quantum dots.

    PubMed

    Fainblat, Rachel; Muckel, Franziska; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R; Bacher, Gerd

    2014-12-23

    We present an experimental study of the magneto-optical activity of multiple excited excitonic states of manganese-doped CdSe quantum dots chemically prepared by the diffusion doping method. Giant excitonic Zeeman splittings of each of these excited states can be extracted for a series of quantum dot sizes and are found to depend on the radial quantum number of the hole envelope function involved in each transition. As seven out of eight transitions involve the same electron energy state, 1Se, the dominant hole character of each excitonic transition can be identified, making use of the fact that the g-factor of the pure heavy-hole component has a different sign compared to pure light hole or split-off components. Because the magnetic exchange interactions are sensitive to hole state mixing, the giant Zeeman splittings reported here provide clear experimental evidence of quantum-size-induced mixing among valence-band states in nanocrystals.

  13. Amphoteric CdSe nanocrystalline quantum dots.

    PubMed

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  14. Experimental study of the effect of addition of gold nanoparticles on CdSe quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Indayani, Wahyu; Huda, Ichsanul; Herliansyah, Khuzaimah, Fasya; Musyaro'ah, Gunawan, Bodi; Endarko

    2017-01-01

    The effect of the gold nanoparticles on the quantum dots sensitized solar cells has been investigated. Gold nanoparticles were added in quantum dot CdSe before used as a sensitizer. The result showed that addition of colloidal gold nanoparticles could be enhanced the absorbance of quantum dot CdSe sensitizer. In this research, the QDSCs were arranged in the sandwich structure consecutively TiO2 as photoelectrode, gold nanoparticle, and quantum dot CdSe as a sensitizer, KI as electrolyte and black carbon as counter-electrode. The use of gold nanoparticles and quantum dot improved the average efficiency of the QDSC by about 104%.

  15. Spin Dynamics of Charged Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stern, N. P.

    2005-03-01

    Colloidal semiconductor quantum dots are promising structures for controlling spin phenomena because of their highly size- tunable physical properties, ease of manufacture, and nanosecond-scale spin lifetimes at room temperature. Recent experiments have succeeded in controlling the charging of the lowest electronic state of colloidal quantum dots ootnotetextC. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem B 108, 9027 (2004).. Here we use time-resolved Faraday rotation measurements in the Voigt geometry to investigate the spin dynamics of colloidal CdSe quantum dot films in both a charged and uncharged state at room temperature. The charging of the film is controlled by applying a voltage in an electrochemical cell and is confirmed by absorbance measurements. Significant changes in the spin precession are observed upon charging, reflecting the voltage- controlled electron occupation of the quantum dot states and filling of surface states.

  16. Ab Initio Study on Atomic Structures and Physical Properties of CdSe Quantum Nanodots

    DTIC Science & Technology

    2009-11-25

    CdSe quantum dots , with magic number (( CdSe )13, ( CdSe )19, ( CdSe )33 and ( CdSe )34 ). Effects of organic ligand binding on the stability of CdSe as well...calculations of optical absorption spectra for CdSe quantum dots , with magic number (( CdSe )13, ( CdSe )19, ( CdSe )33 and ( CdSe )34 ), have been calculated in...1 AOARD-08-4037 Title of Proposed Project: Ab initio study on atomic structures and physical

  17. Persistent Inter-Excitonic Quantum Coherence in CdSe Quantum Dots

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Fidler, Andrew F.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    The creation and manipulation of quantum superpositions is a fundamental goal for the development of materials with novel optoelectronic properties. In this letter, we report persistent (~80 fs lifetime) quantum coherence between the 1S and 1P excitonic states in zinc-blende colloidal CdSe quantum dots at room temperature, measured using Two-Dimensional Electronic Spectroscopy. We demonstrate that this quantum coherence manifests as an intradot phenomenon, the frequency of which depends on the size of the dot excited within the ensemble of QDs. We model the lifetime of the coherence and demonstrate that correlated interexcitonic fluctuations preserve relative phase between excitonic states. These observations suggest an avenue for engineering long-lived interexcitonic quantum coherence in colloidal quantum dots. PMID:24719679

  18. Persistent Inter-Excitonic Quantum Coherence in CdSe Quantum Dots.

    PubMed

    Caram, Justin R; Zheng, Haibin; Dahlberg, Peter D; Rolczynski, Brian S; Griffin, Graham B; Fidler, Andrew F; Dolzhnikov, Dmitriy S; Talapin, Dmitri V; Engel, Gregory S

    2014-01-02

    The creation and manipulation of quantum superpositions is a fundamental goal for the development of materials with novel optoelectronic properties. In this letter, we report persistent (~80 fs lifetime) quantum coherence between the 1S and 1P excitonic states in zinc-blende colloidal CdSe quantum dots at room temperature, measured using Two-Dimensional Electronic Spectroscopy. We demonstrate that this quantum coherence manifests as an intradot phenomenon, the frequency of which depends on the size of the dot excited within the ensemble of QDs. We model the lifetime of the coherence and demonstrate that correlated interexcitonic fluctuations preserve relative phase between excitonic states. These observations suggest an avenue for engineering long-lived interexcitonic quantum coherence in colloidal quantum dots.

  19. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition.

    PubMed

    Im, Sang Hyuk; Lee, Yong Hui; Seok, Sang Il; Kim, Sung Woo; Kim, Sang-Wook

    2010-12-07

    We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.

  20. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  1. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    SciTech Connect

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-11

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  2. Slow Electron Cooling in Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pandey, Anshu; Guyot-Sionnest, Philippe

    2008-11-01

    Hot electrons in semiconductors lose their energy very quickly (within picoseconds) to lattice vibrations. Slowing this energy loss could prove useful for more efficient photovoltaic or infrared devices. With their well-separated electronic states, quantum dots should display slow relaxation, but other mechanisms have made it difficult to observe. We report slow intraband relaxation (>1 nanosecond) in colloidal quantum dots. The small cadmium selenide (CdSe) dots, with an intraband energy separation of ~0.25 electron volts, are capped by an epitaxial zinc selenide (ZnSe) shell. The shell is terminated by a CdSe passivating layer to remove electron traps and is covered by ligands of low infrared absorbance (alkane thiols) at the intraband energy. We found that relaxation is markedly slowed with increasing ZnSe shell thickness.

  3. Quantum Dots Sensitized Solar Cell: Effect of CdSe Nanoparticles Purification Procedure of QD Sensitized Photoanodes

    NASA Astrophysics Data System (ADS)

    Yaacob, K. A.; Ishak, M. N.; Alias, N. N.

    2013-04-01

    In this research the effect of purification of CdSe nanoparticles for application in quantum dots sensitized solar cells (QDSSC) photoanodes are studied. The CdSe nanoparticles are attached to the titanium dioxide surface using a linker based approached (CdSe nanoparticles disperse in toluene) and direct mode attachment (CdSe re-disperse in dichloromethane (DCM)). Colloidal CdSe nanoparticles with estimated size of 3.0 nm were synthesized by hot injection method in trioctylphosphine oxide (TOPO) as stabilizing solvent. Prior to the sensitization, the CdSe nanoparticles were purified using a common purification step involving the alternate cycles of precipitation / redispersion in non-polar solvent and polar solvent. With increasing the number of purification, the concentrations of CdSe nanoparticles attached to the titanium dioxide were also increased; from 2.47 × 1015 dots/cc for 3 × wash CdSe nanoparticles to 3.70 × 1015 dots/cc for 4 × wash CdSe nanoparticles. Polysulfide electrolyte and Cu2S counterelectrodes were used to assemble a complete QDSSC. The highest efficiency of 0.05% was obtained from 4 × wash CdSe nanoparticles; Voc = 0.2V, Jsc = 0.34 mA/cm2 and FF = 0.07).

  4. Detection of CdSe quantum dot photoluminescence for security label on paper

    SciTech Connect

    Isnaeni, Sugiarto, Iyon Titok; Bilqis, Ratu; Suseno, Jatmiko Endro

    2016-02-08

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  5. Detection of CdSe quantum dot photoluminescence for security label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Sugiarto, Iyon Titok; Bilqis, Ratu; Suseno, Jatmiko Endro

    2016-02-01

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word 'RAHASIA'. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  6. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum.

    PubMed

    Yamaguchi, Takaaki; Tsuruda, Yoshijiro; Furukawa, Tomohiro; Negishi, Lumi; Imura, Yuki; Sakuda, Shohei; Yoshimura, Etsuro; Suzuki, Michio

    2016-10-20

    CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum) were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were precipitated in the intracellular space, indicating that cadmium and selenium ions were incorporated into the cell and that the quantum dots were synthesized with intracellular metabolites. To reveal differences in F. oxysporum metabolism, cell extracts of F. oxysporum, before and after CdSe synthesis, were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results suggested that the amount of superoxide dismutase (SOD) decreased after CdSe synthesis. Fluorescence microscopy revealed that cytoplasmic superoxide increased significantly after CdSe synthesis. The accumulation of superoxide may increase the expression of various metabolites that play a role in reducing Se(4+) to Se(2-) and inhibit the aggregation of CdSe to make nanoparticles.

  7. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    SciTech Connect

    Xu, Xingsheng

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  8. Study of the Spectral Properties of Nanocomposites with CdSe Quantum Dots in a Wide Range of Low Temperatures

    NASA Astrophysics Data System (ADS)

    Magaryan, K. A.; Eremchev, I. Y.; Karimullin, K. R.; Knyazev, M. V.; Mikhailov, M. A.; Vasilieva, I. A.; Klimusheva, G. V.

    2015-09-01

    Luminescence spectra of the colloidal solution of CdSe quantum dots (in toluene) were studied in a wide range of low temperatures. Samples were synthesized in the liquid crystal matrix of cadmium octanoate (CdC8). A comparative analysis of the obtained data with previous results was performed.

  9. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  10. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  11. Laser cooling of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2014-05-01

    We present a theoretical scheme for laser cooling of the colloidal cadmium selenide (CbSe) QDs. The laser cooling process is based on the anti-Stokes fluorescence observed in QDs. We have considered laser cooling in the system of identical CdSe QDs laser pumped with energy of photons less than mean fluorescence energy. The dependences of all parameters of the system on the temperature have been taken into account. Following to our simulation the laser cooling with temperature drop ~100K can be realised with well technologically developed today passivated CdSe QDs.

  12. Femtosecond studies of photoinduced electron dynamics in colloidal quantum-confined II-VI semiconductor nanoparticles: CdS, CdSe and CdZnS

    NASA Astrophysics Data System (ADS)

    Roberti, Trevor

    A variety of synthetic and spectroscopic techniques have been applied to elucidate photoinduced charge carrier processes in II-VI semiconductor quantum dots. These semiconductor nanoparticles exhibit both size-dependent optical tuning due to the quantum-confinement effect and power-dependent absorption, bleach and emission characteristics. Although the tunable-absorption has been well characterized, the subsequent trapping and recombination processes are still under much investigation and are the subject of this dissertation. Particles with vastly differing surfaces, sizes, energetics and solvents have been characterized using various spectroscopic techniques in unison. The primary technique was transient femtosecond near-IR absorption, which was used to characterize charge carrier processes on the subpicosecond and picosecond time scales. UV-visible spectroscopy was used to characterize the size of the particles. Static fluorescence measurements were used to characterize the surface of the particles and the relative amount of radiative recombination. Nanosecond fluorescence measurements were also used to assist in the assignment of the fast, power-dependent near-IR absorption decay. The research reported here makes two fundamental contributions to the photophysics of semiconductor nanoparticles. First, the power-dependent, few picosecond decay process has primarily been assigned to electron-hole recombination via exciton-exciton annihilation. As the power increases, higher order, Auger processes may also arise. The exciton-exciton annihilation mechanism was primarily deduced based on power-dependent fluorescence measurements which exhibited the formation of short-lived exciton fluorescence at high powers. Secondly, many nanoparticle properties and environments were varied in order to better understand the observed picosecond processes and the effect of variations on these processes. The systems studied ranged from aqueous acidic and basic quantum dots of differing

  13. Quantum chemistry of the minimal CdSe clusters

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Tretiak, Sergei; Masunov, Artëm E.; Ivanov, Sergei

    2008-08-01

    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding

  14. Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion.

    PubMed

    Lightcap, Ian V; Kamat, Prashant V

    2012-04-25

    Graphene based 2-D carbon nanostructures provide new opportunities to fortify semiconductor based light harvesting assemblies. Electron and energy transfer rates from photoexcited CdSe colloidal quantum dots (QDs) to graphene oxide (GO) and reduced graphene oxide (RGO) were isolated by analysis of excited state deactivation lifetimes as a function of degree of oxidation and charging in (R)GO. Apparent rate constants for energy and electron transfer determined for CdSe-GO composites were 5.5 × 10(8) and 6.7 × 10(8) s(-1), respectively. Additionally, incorporation of GO in colloidal CdSe QD films deposited on conducting glass electrodes was found to enhance the charge separation and electron conduction through the QD film, thus allowing three-dimensional sensitization. Photoanodes assembled from CdSe-graphene composites in quantum dot sensitized solar cells display improved photocurrent response (~150%) over those prepared without GO.

  15. Synthesis of CdSe quantum dots using various long-chain fatty acids and their phase transfer.

    PubMed

    Zhang, Qiang; Zhang, Aiyu; Yang, Ping; Shen, Jianxing

    2013-06-01

    Monodispersed colloidal photoluminescent CdSe quantum dots (QDs) were synthesized via an organic approach by using cadmium oxide and elemental selenium as precursors, and long-chain fatty acids as surface ligands. The hydrocarbon chain length of the fatty acid was adjusted to investigate the effect on CdSe QDs. The fatty acid ligands with different hydrocarbon chain lengths showed an apparent effect on the nanocrystal nucleation and growth which is the key controlling the size, size distribution and crystal structure of resulting CdSe QDs. This effect was attributable to the steric hindrance of different hydrocarbon length of the fatty acids, which affected the reactivity of the monomers and nanocrystals during the nanocrystal nucleation and growth. The water-soluble CdSe QDs were obtained by encapsulating the CdSe ODs in oil phase with amphiphilic poly(styrene-co-maleic anhydride) (PSMA)-ethanolamine (EA) polymers, which made it possible for further applications of the CdSe QDs in aqueous environment such as surface functionalization for biological labeling and application in photocatalysis and photosensitization.

  16. Deformation potentials of CdSe quantum dots

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2004-06-02

    The size dependent deformation potentials of CdSe quantum dots are studied by first principle and semi-empirical pseudopotentials calculations. They find that the amplitude of the quantum dot deformation potential is only slightly larger than the bulk value, and this increase is mostly caused by the off {Lambda} point deformation potentials in the bulk, which are larger in amplitude than the {Lambda} point deformation potential.

  17. Anisotropy in CdSe quantum rods

    SciTech Connect

    Li, Liang-shi

    2003-01-01

    The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough

  18. Femtosecond cooling of hot electrons in CdSe quantum-well platelets.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C; Van Dijk-Moes, Relinde J A; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    2015-04-08

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface.

  19. Photoinduced Surface Oxidation and Its Effect on the Exciton Dynamics of CdSe Quantum Dots

    SciTech Connect

    Hines, Douglas A.; Becker, Matthew A.; Kamat, Prashant V.

    2012-11-14

    With increased interest in semiconductor nanoparticles for use in quantum dot solar cells there comes a need to understand the long-term photostability of such materials. Colloidal CdSe quantum dots (QDs) were suspended in toluene and stored in combinations of light/dark and N{sub 2}/O{sub 2} to simulate four possible benchtop storage environments. CdSe QDs stored in a dark, oxygen-free environment were observed to better retain their optical properties over the course of 90 days. The excited state lifetimes, determined through femtosecond transient absorption spectroscopy, of air-equilibrated samples exposed to light exhibit a decrease in average lifetime (0.81 ns) when compared to samples stored in a nitrogen/dark environment (8.3 ns). A photoetching technique commonly used for controlled reduction of QD size was found to induce energetic trap states to CdSe QDs and accelerate the rate of electron-hole recombination. X-ray absorption near edge structure (XANES) analysis confirms surface oxidation, the extent of which is shown to be dependent on the thickness of the ligand shell.

  20. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    SciTech Connect

    Singh, Neetu Kapoor, Avinashi; Kumar, Vinod; Mehra, R. M.

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  1. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    PubMed

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  2. AgCl-doped CdSe quantum dots with near-IR photoluminescence

    PubMed Central

    Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found. PMID:28685116

  3. Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots

    SciTech Connect

    Lee, J I; Meulenberg, R W; Hanif, K M; Mattoussi, H; Klepeis, J E; Terminello, L J; van Buuren, T

    2006-12-15

    Recent theoretical descriptions as to the magnitude of effect that quantum confinement has on he conduction band (CB) of CdSe quantum dots (QD) have been conflicting. In this manuscript, we experimentally identify quantum confinement effects in the CB of CdSe QDs for the first time. Using X-ray absorption spectroscopy, we have unambiguously witnessed the CB minimum shift to higher energy with decreasing particle size and have been able to compare these results to recent theories. Our experiments have been able to identify which theories correctly describe the CB states in CdSe QDs. In particular, our experiments suggest that multiple theories describe the shifts in the CB of CdSe QDs and are not mutually exclusive.

  4. LETTER TO THE EDITOR: Photoluminescence properties of single CdSe quantum dots in ZnSe obtained by self-organized growth

    NASA Astrophysics Data System (ADS)

    Shen, M. Y.; Goto, T.; Kurtz, E.; Zhu, Z.; Yao, T.

    1998-03-01

    The photoluminescence of single CdSe quantum dots in ZnSe grown by molecular beam epitaxy and that of the same system grown by atomic layer epitaxy were investigated. The spectral diffusion and on/off behaviour of single CdSe quantum dots were observed, and the spectral diffusion range was only about 1 meV. The spectral peak shifting became quicker as the temperature rose. The spectral change from blue-shift to red-shift (or vice versa) was much quicker than that found in CdSe quantum dots synthesized as colloids. The phenomena are qualitatively explained by a Stark effect which originated from an Auger ionization process. The spectral diffusion may be a common property among single quantum dots.

  5. New transient absorption observed in the spectrum of colloidal CdSe nanoparticles pumped with high-power femtosecond pulses

    SciTech Connect

    Burda, C.; Link, S.; Green, T.C.; El-Sayed, M.A.

    1999-12-09

    The power dependence of the transient absorption spectrum of CdSe nanoparticle colloids with size distribution of 4.0 {+-} 0.4 nm diameter is studied with femtosecond pump-probe techniques. At the lowest pump laser power, the absorption bleaching (negative spectrum) characteristic of the exciton spectrum is observed with maxima at 560 and 480 nm. As the pump laser power increases, two new transient absorptions at 510 and 590 nm with unresolved fast rise (<100 fs) and long decay times ({much{underscore}gt}150 ps) are observed. The energy of each of the positive absorption is red shifted from that of the bleach bands by {approximately}120 MeV. The origin of this shift is discussed in terms of the effect of the internal electric field of the many electron-hole pairs formed within the quantum dot at the high pump intensity, absorption from a metastable excited state or the formation of biexcitons.

  6. Chemically synthesized CdSe quantum dots inhibit growth of human lung carcinoma cells via ROS generation

    PubMed Central

    Jigyasu, Aditya Kumar; Siddiqui, Sahabjada; Lohani, Mohatashim; Khan, Irfan Ali; Arshad, Md

    2016-01-01

    Quantum dots (QDs), semiconducting materials have potential applications in the field of electronic and biomedical applications including cancer therapy. In present study, cadmium selenide (CdSe) QDs were synthesized by chemical method. Octadecene was used as non-coordinating solvent which facilitated the formation of colloidal solutions of nanoparticles. CdSe QDs were characterized by UV-vis spectrometer and transmission electron microscope (TEM). The size measured by TEM was varied between 2-5 nm depending upon temperature. The cytotoxic activity of QDs was monitored by MTT assay, nuclear condensation, ROS activity and DNA fragmentation assay on human lung epithelial A549 cell line. Cells were treated with different concentrations of varying size of CdSe QDs for 24 h. CdSe QDs induced significant (p < 0.05) dose dependent cytotoxicity and this was comparable to the sizes of particles. Smaller particles were more cytotoxic to the large particles. Fluorescence microscopic analysis revealed that QDs induced oxidative stress generating significant ROS level and consequently, induced nuclear condensation and DNA fragmentation. Study suggested the cytotoxicity of CdSe QDs via ROS generation and DNA fragmentation depending upon particles size. PMID:27047318

  7. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    PubMed Central

    Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

  8. Optical characterization of CdSe quantum dots with metal chalcogenide ligands in solutions and solids

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Cao, X. A.

    2011-07-01

    The exchange of the original organic ligands of colloidal CdSe core and CdSe/CdS/ZnS core/multishell quantum dots (QDs) with inorganic metal chalcogenide ligands (SnS44-) resulted in carrier delocalization in solutions and enhanced inter-QD electronic coupling in solids, as inferred from peak redshift and broadening of the absorption and photoluminescence (PL) spectra. The SnS4-capped QDs retained strong excitonic absorption but suffered significant PL quenching. Mild thermal treatment below 350 °C transformed the SnS4 ligands into a more conductive phase, leading to stronger coupling yet complete PL quenching. These findings suggest that QD solids with metal chalcogenide ligands may have high quantum yields of photocurrent generation and can be used as functional blocks in thin-film solar cells for efficient solar energy conversion.

  9. Optical enhancement of photoluminescence with colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Abraham, Gabrielle; French, David A.; Bajwa, Pooja; Heyes, Colin D.; Herzog, Joseph B.

    2015-08-01

    This work investigates colloidal, semiconductor Cadmium Selenide (CdSe) QDs with optical spectroscopy measurements. A custom-built microscope has been used for photoluminescence spectroscopy and has collected images, videos, and spectra of samples to study the effects of substrates, sample density, uniformity, and QD aging with time. This set up will be used to detect single to a few molecules, shown by fluorescent intermittency, or QD blinking. Differences in the spectrum will be noted as related to the age of samples, the density of the quantum dots, and the concentration of samples. Further experiments include the potential plasmonic enhancement of QD photoluminescence by gold nanoparticles or nanostructures.

  10. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals

    ERIC Educational Resources Information Center

    Boatman, Elizabeth M.; Lisensky, George C.; Nordell, Karen J.

    2005-01-01

    The synthesis for CdSe quantum dot nanocrystals that vary in color and are a visually engaging way to demonstrate quantum effects in chemistry is presented. CdSe nanocrystals are synthesized from CdO and elemental Se using a kinetic growth method where particle size depends on reaction time.

  11. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Technical Reports Server (NTRS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-01-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria.

  12. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals

    ERIC Educational Resources Information Center

    Boatman, Elizabeth M.; Lisensky, George C.; Nordell, Karen J.

    2005-01-01

    The synthesis for CdSe quantum dot nanocrystals that vary in color and are a visually engaging way to demonstrate quantum effects in chemistry is presented. CdSe nanocrystals are synthesized from CdO and elemental Se using a kinetic growth method where particle size depends on reaction time.

  13. Influence of Surfactants and Charges on CdSe Quantum Dots

    SciTech Connect

    Yang, Ping; Tretiak, Sergei; Ivanov, Sergei

    2011-07-11

    The chemistry between CdSe quantum dots and common surface capping ligands is invested using density functional theory. We will discuss the electronic structures and optical properties of CdSe QDs controlled by the size of particle, self-organization, capping ligands, and positive charges. Charges on quantum dots have profound effects on their structures, binding energies, and optical properties.

  14. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Technical Reports Server (NTRS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-01-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria.

  15. Colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Sargent, Edward H.

    2012-03-01

    Solar cells based on solution-processed semiconductor nanoparticles -- colloidal quantum dots -- have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

  16. Radial Electron Momentum Densities of Colloidal CdSe Nanocrystals Determined by Positron Beam Analysis

    SciTech Connect

    Denison, A B; Meulenberg, R; Eijt, S W H; Van Veen, A; Mijnarends, P E; Barbiellini, B; Bansil, A; Fischer, C; Weber, M H; Lynn, K G

    2003-07-31

    We present depth-resolved positron 2D angular correlation of annihilation radiation (2DACAR) experiments on CdSe quantum dots in the diameter range from 2.5 to 6 nm, deposited as micrometer thin layers. The average radial distribution of the valence electron momentum density (EMD) of CdSe quantum dots has been extracted, which reveals a systematic dependence upon particle size. The quantum confinement related changes and their size scaling observable at the Jones zone momentum of {approx}0.8 a.u. seem to agree with the previous coincidence Doppler study. In addition, the average radial EMD shows an increase in the low-momentum range (<0.6 a.u.) and a reduction in the high-momentum range (>1.6 a.u.) with respect to that measured on a bulk CdSe single crystal. Possible origins of these are described. First-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method were performed to gain a better insight.

  17. Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals.

    PubMed

    Biadala, Louis; Shornikova, Elena V; Rodina, Anna V; Yakovlev, Dmitri R; Siebers, Benjamin; Aubert, Tangi; Nasilowski, Michel; Hens, Zeger; Dubertret, Benoit; Efros, Alexander L; Bayer, Manfred

    2017-03-13

    Non-magnetic colloidal nanostructures can demonstrate magnetic properties typical for diluted magnetic semiconductors because the spins of dangling bonds at their surface can act as the localized spins of magnetic ions. Here we report the observation of dangling-bond magnetic polarons (DBMPs) in 2.8-nm diameter CdSe colloidal nanocrystals (NCs). The DBMP binding energy of 7 meV is measured from the spectral shift of the emission lines under selective laser excitation. The polaron formation at low temperatures occurs by optical orientation of the dangling-bond spins (DBSs) that result from dangling-bond-assisted radiative recombination of spin-forbidden dark excitons. Modelling of the temperature dependence of the DBMP-binding energy and emission intensity shows that the DBMP is composed of a dark exciton and about 60 DBSs. The exchange integral of one DBS with the electron confined in the NC is ∼0.12 meV.

  18. Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Biadala, Louis; Shornikova, Elena V.; Rodina, Anna V.; Yakovlev, Dmitri R.; Siebers, Benjamin; Aubert, Tangi; Nasilowski, Michel; Hens, Zeger; Dubertret, Benoit; Efros, Alexander L.; Bayer, Manfred

    2017-07-01

    Non-magnetic colloidal nanostructures can demonstrate magnetic properties typical for diluted magnetic semiconductors because the spins of dangling bonds at their surface can act as the localized spins of magnetic ions. Here we report the observation of dangling-bond magnetic polarons (DBMPs) in 2.8-nm diameter CdSe colloidal nanocrystals (NCs). The DBMP binding energy of 7 meV is measured from the spectral shift of the emission lines under selective laser excitation. The polaron formation at low temperatures occurs by optical orientation of the dangling-bond spins (DBSs) that result from dangling-bond-assisted radiative recombination of spin-forbidden dark excitons. Modelling of the temperature dependence of the DBMP-binding energy and emission intensity shows that the DBMP is composed of a dark exciton and about 60 DBSs. The exchange integral of one DBS with the electron confined in the NC is ∼0.12 meV.

  19. Direct Patterning of CdSe Quantum Dots into Sub-100 nm Structures

    SciTech Connect

    Hampton, Meredith J.; Templeton, Joseph L.; DeSimone, Joseph M.

    2010-03-02

    Ordered, two-dimensional cadmium selenide (CdSe) arrays have been fabricated on indium-doped tin oxide (ITO) electrodes using the pattern replication in nonwetting templates (PRINT) process. CdSe quantum dots (QDs) with an average diameter of 2.7 nm and a pyridine surface ligand were used for patterning. The PRINT technique utilizes a perfluoropolyether (PFPE) elastomeric mold that is tolerant of most organic solvents, thus allowing solutions of CdSe QDs in 4-picoline to be used for patterning without significant deformation of the mold. Nanometer-scale diffraction gratings have been successfully replicated with CdSe QDs.

  20. Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong

    2017-10-01

    In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn–CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.

  1. Ultrafast carrier dynamics of CdSe quantum dots prepared by pulse laser deposition for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mahat, Meg; Yakami, Baichhabi; Qilin Dai, Qilin; Tang, Jinke; Pikal, Jon

    2013-03-01

    Quantum-dot sensitized solar cells are a promising alternative to existing photovoltaic technology. Over the last decade solution based colloidal quantum dots (QDs) have been extensively studied. Here we have carried out ultrafast transient absorption measurements on CdSe QDs fabricated using pulse laser deposition (PLD) in order to understand the carrier relaxation dynamics in these nanostructures. The differential transmission measurements show that the PLD QDs have a very fast decay process resulting in a recovery time of less than 10 picoseconds. This is in stark contrast to the colloidal QDs that show a decay process of more than 4 nanoseconds. We also find that the fast decay process observed in the PLD QDs is a function of the carriers density generated in CdSe QDs. To understand these carrier relaxation processes and improve the optical properties of the QDs we perform transient absorption measurements on PLD QDs prepared in different media (e.g. water, methanol, ethanol), under different growth conditions, and with and without ligand. We present a comparison study of the carrier relaxation dynamics in these PLD grown QDs to provide insight into the competing relaxation effects and guide their use in Quantum-dot sensitized solar cells. DOE

  2. Characterization and polymerization of thienylphenyl and selenylphenyl amines and their interaction with CdSe quantum dots.

    PubMed

    Lana-Villarreal, Teresa; Font-Sanchis, Enrique; Sastre-Santos, Angela; Fernández-Lázaro, Fernando; Gómez, Roberto

    2011-04-18

    Hybrid quantum-dot-sensitized solar cells show promising novel optoelectronic properties. An adequate design of such cells requires a deep understanding of the characteristics of each component, including their interactions. In this context, the electrochemical properties of two different hole-transporting materials (HTMs) and their chemical interactions with trioctylphosphine-capped CdSe quantum dots are investigated to evaluate their potential use in hybrid quantum-dot-sensitized solar cells. Tris[4-(thien-2-yl)phenyl]amine (TTPA) and tris[4-(selen-2-yl)phenyl]amine (TSePA) are studied in the solid state as thin films deposited on a conducting substrate. Spectroelectrochemical studies evidence both solid-state electropolymerization and doping. Upon addition of TSePA or partially polymerized TTPA to a colloidal solution of trioctylphosphine-capped CdSe quantum dots, the steady-state photoluminescence is quenched. This suggests that the quantum dots and the HTM strongly interact, probably through an excited-state charge-transfer mechanism. The combination of all these pieces of information indicates that polymerized TTPA and TSePA are potential candidates as HTMs for hybrid quantum-dot-sensitized solar cells.

  3. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  4. Fluorescence quenching of CdSe quantum dots on graphene

    SciTech Connect

    Guo, Xi Tao; Hua Ni, Zhen Yan Nan, Hai; Hui Wang, Wen; Yan Liao, Chun; Zhang, Yan; Wei Zhao, Wei

    2013-11-11

    We studied systematically the fluorescence quenching of CdSe quantum dots (QDs) on graphene and its multilayers, as well as graphene oxide (GO) and reduced graphene oxide (rGO). Raman intensity of QDs was used as a quantitatively measurement of its concentration in order to achieve a reliable quenching factor (QF). It was found that the QF of graphene (∼13.1) and its multilayers is much larger than rGO (∼4.4), while GO (∼1.5) has the lowest quenching efficiency, which suggests that the graphitic structure is an important factor for quenching the fluorescence of QDs. It was also revealed that the QF of graphene is not strongly dependent on its thicknesses.

  5. Intraband relaxation in CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Guyot-Sionnest, Philippe; Shim, Moonsub; Matranga, Chris; Hines, Margaret

    1999-07-01

    The relaxation of the 1P to 1S electronic states of CdSe semiconductor nanocrystals is followed by infrared pump-probe spectroscopy. Fast (1 ps) and slow (>200 ps) components are observed. Using different capping molecules to control the hole states, we show how the intraband relaxation slows down as the hole is in a shallow trap, a deep trap, or a charge-separated complex, providing strong support for an electron-hole Auger coupling. The slow component corresponds to an energy relaxation rate orders of magnitude slower than in bulk systems. It may be the first indication of the phonon bottleneck effect long expected in strongly confined quantum dots.

  6. CdSe colloidal nanocrystals monolithically integrated in a pseudomorphic semiconductor epilayer

    SciTech Connect

    Larramendi, Erick M.; Schoeps, Oliver; Woggon, Ulrike; Artemyev, Mikhail V.; Schikora, Detlef; Lischka, Klaus

    2013-01-14

    As optically active emitters in a semiconductor matrix, core/shell and bare CdSe colloidal nanocrystals (CNCs) were monolithically incorporated in ZnSe pseudomorphic epilayers by molecular beam epitaxy (MBE). A suspension of wet chemically synthesized CNCs was sprayed ex-situ over a pseudomorphic ZnSe/GaAs(001) heterostructure using a nebulizer. Subsequently, the matrix material growth was resumed to form a capping layer by a slow MBE growth mode. Structural investigations show high crystalline quality and pseudomorphic epitaxial character of the whole hybrid CNC-matrix structure. The core/shell CNCs remain optically active following the embedding process. Their emission is blue shifted without a significant change on the spectral shape, and shows the same temperature dependence as that of the free exciton peak energy in zinc-blende CdSe at temperatures above 80 K. Our optical characterization of the samples showed that the embedded CNCs were stable and that the structure of the host was preserved. These results are encouraging for the fabrication of more complex optoelectronic devices based on CNCs.

  7. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics.

    PubMed

    Spinicelli, Piernicola; Mahler, Benoit; Buil, Stéphanie; Quélin, Xavier; Dubertret, Benoit; Hermier, Jean-Pierre

    2009-04-14

    Twinkle, twinkle: The blinking of semiconductor colloidal nanocrystals is the main inconvenience of these bright nanoemitters. There are various approaches for obtaining non-blinking nanocrystals, one of which is to grow a thick coat of CdS on the CdSe core (see picture). Applications of this method in the fields of optoelectronic devices, biologic labelling and quantum information processing are discussed.The blinking of semiconductor colloidal nanocrystals is the main inconvenience of these bright nanoemitters. For some years, research on this phenomenon has demonstrated the possibility to progress beyond this problem by suppressing this fluorescence intermittency in various ways. After a brief overview on the microscopic mechanism of blinking, we review the various approaches used to obtain non-blinking nanocrystals and discuss the commitment of this crucial improvement to applications in the fields of optoelectronic devices, biologic labelling and quantum information processing.

  8. Characterization of defects in colloidal CdSe nanocrystals by the modified thermostimulated luminescence technique

    SciTech Connect

    Katsaba, A. V. Fedyanin, V. V.; Ambrozevich, S. A.; Vitukhnovsky, A. G.; Lobanov, A. N.; Selyukov, A. S.; Vasiliev, R. B.; Samatov, I. G.; Brunkov, P. N.

    2013-10-15

    The temperature dependencies of the luminescence spectra of 5-nm-diameter CdSe semiconductor nanocrystals synthesized by colloidal-chemistry methods are investigated. The two bands observed in these spectra around 2.01 and 1.37 eV correspond to band-to-band transitions and luminescence of defect states, respectively. A model explaining the temperature behavior of the luminescence band intensities both upon cooling and heating is put forward. A new modification of spectrally resolved thermostimulated luminescence technique making it possible to determine the activation energies and the character of traps responsible for the temperature dependence of the luminescence intensities is suggested. This technique is used to obtain the activation energies of the emission and capture of electrons at traps (190 and 205 meV, respectively) and to determine the depth of the electron level (57 meV) responsible for luminescence in the 1.37-eV region.

  9. Probing the size and environment induced phase transformation in CdSe quantum dots

    SciTech Connect

    Karakoti, Ajay S.; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Yang, Ping; Thevuthasan, Suntharampillai

    2011-11-17

    The structural and electronic properties of CdSe quantum dots in toluene and drop-casted on Si wafer were investigated by in-situ micro X-ray diffraction, X-ray photoelectron spectroscopy and UV-Vis absorption and emission spectroscopy. The in-situ micro diffraction data show that the CdSe quantum dots capped with TOPO or hexadecylamine (HDA) in toluene exhibit predominantly wurtzite crystal structure, which undergoes a phase transformation to zinc blende crystal structure following drop casting on Si and this phase transition increases with decreasing the size of the CdSe quantum dots. Decreasing the size of quantum dots also increases the Se vacancies that facilitate the phase transformation. The X-ray photoelectron spectra show a systematic increase in the core level binding energies of Cd 3d and Se 3d, the band gap and the Cd/Se ratio as the size of the quantum dots decreases from 6.6nm to 2.1nm. This is attributed to the quantum confinement of CdSe crystallites by the capping ligands in toluene which increases with decreasing the size of the quantum dots. However, drop-casting quantum dots on Si alter the density and arrangement of capping ligands and solvent molecules on the quantum dots which causes significant phase transformation.

  10. Tuning the emission of CdSe quantum dots by controlled trap enhancement.

    PubMed

    Baker, David R; Kamat, Prashant V

    2010-07-06

    Ligand exchange with 3-mercaptopropionic acid (MPA) has been successfully used to tune the emission intensity of trioctylphosphineoxide/dodecylamine-capped CdSe quantum dots. Addition of 3-mercaptopropionic acid (MPA) to CdSe quantum dot suspension enhances the deep trap emission with concurrent quenching of the band edge emission. The smaller sized quantum dots, because of larger surface/volume ratio, create a brighter trap emission and are more easily tuned. An important observation is that the deep trap emission which is minimal after synthesis is brightened to have a quantum yield of 1-5% and can be tuned based on the concentration of MPA in solution with the quantum dots. Photoluminescence decay and transient absorption measurements reveal the role of surface bound MPA in altering the photophysical properties of CdSe quantum dots.

  11. Photophysical Properties of Colloidal Mn(II)-Doped CdSe Nanoparticles: Exchange Fields, Exciton Storage, and Light-Induced Spontaneous Magnetization

    NASA Astrophysics Data System (ADS)

    Beaulac, Remi

    2010-03-01

    An attractive approach to controlling spin effects in semiconductor nanostructures for applications in electronics is to use light to generate, manipulate, or read out spins. The main focus of this presentation will be on the recent demonstration of spontaneous photoinduced polarization of Mn(II) spins in doped colloidal CdSe quantum dots, an effect due to the formation of excitonic magnetic polarons. Photoexcitation generates large dopant-carrier exchange fields, enhanced by strong spatial confinement, that lead to giant Zeeman splittings of the semiconductor band structure in the absence of applied magnetic fields. These internal exchange fields allow spontaneous magnetic saturation of the Mn(II) spins to be achieved at zero external magnetic field up to ca. 50 K, and photomagnetic effects are observed all the way up to room temperature. The factors that allow this fascinating effect to be observed in colloidal Mn(II)-doped CdSe nanoparticles will be discussed. Relevant Publications: 1) Beaulac, Schneider, Archer, Bacher, and Gamelin. Science, 325, 973 (2009) 2) Beaulac, Archer, Ochsenbein, and Gamelin, Adv. Funct. Mat., 18, 3873 (2008)

  12. High-conjugation-efficiency aqueous CdSe quantum dots.

    PubMed

    Au, Giang H T; Shih, Wan Y; Shih, Wei-Heng

    2013-11-12

    Quantum dots (QDs) are photoluminescent nanoparticles that can be directly or indirectly coupled with a receptor such as an antibody to specifically image a target biomolecule such as an antigen. Recent studies have shown that QDs can be directly made at room temperature and in an aqueous environment (AQDs) with 3-mercaptopropionic acid (MPA) as the capping ligand without solvent and ligand exchange typically required by QDs made by the organic solvent routes (OQDs). In this study, we have synthesized CdSe AQDs and compared their conjugation efficiency and imaging efficacy with commercial carboxylated OQDs in HT29 colon cancer cells using a primary antibody-biotinylated secondary antibody-streptavidin (SA) sandwich. We showed that the best imaging condition for AQDs occurred when one AQD was bound with 3 ± 0.3 SA with a nominal SA/AQD ratio of 4 corresponding to an SA conjugation efficiency of 75 ± 7.5%. In comparison, for commercial CdSe-ZnS OQDs to achieve 2.7 ± 0.4 bound SAs per OQD for comparable imaging efficacy a nominal SA/OQD ratio of 80 was needed corresponding to an SA conjugation efficiency of 3.4 ± 0.5% for CdSe-ZnS OQDs. The more than 10 times better SA conjugation efficiency of the CdSe AQDs as compared to that of the CdSe-ZnS OQDs was attributed to more capping molecules on the AQD surface as a result of the direct aqueous synthesis. More capping molecules on the AQD surface also allowed the SA-AQD conjugate to be stable in cell culture medium for more than three days without losing their staining capability in a flowing cell culture medium. In contrast, SA-OQD conjugates aggregated in cell culture medium and in phosphate buffer saline solution over time.

  13. Quantum oscillations in magnetically doped colloidal nanocrystals.

    PubMed

    Ochsenbein, Stefan T; Gamelin, Daniel R

    2011-02-01

    Progress in the synthesis of colloidal quantum dots has recently provided access to entirely new forms of diluted magnetic semiconductors, some of which may find use in quantum computation. The usefulness of a spin qubit is defined by its Rabi frequency, which determines the operation time, and its coherence time, which sets the error correction window. However, the spin dynamics of magnetic impurity ions in colloidal doped quantum dots remain entirely unexplored. Here, we use pulsed electron paramagnetic resonance spectroscopy to demonstrate long spin coherence times of ∼0.9 µs in colloidal ZnO quantum dots containing the paramagnetic dopant Mn(2+), as well as Rabi oscillations with frequencies ranging between 2 and 20 MHz depending on microwave power. We also observe electron spin echo envelope modulations of the Mn(2+) signal due to hyperfine coupling with protons outside the quantum dots, a situation unique to the colloidal form of quantum dots, and not observed to date.

  14. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    PubMed Central

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  15. CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions.

    PubMed

    Robin, I C; Aichele, T; Bougerol, C; André, R; Tatarenko, S; Bellet-Amalric, E; Van Daele, B; Van Tendeloo, G

    2007-07-04

    CdSe/ZnSe quantum dot formation is investigated by studying different steps of the growth. To precisely control the critical thickness of CdSe grown on a ZnSe buffer layer, the CdSe self-regulated growth rate in atomic layer epitaxy growth mode is determined by reflection high-energy electron diffraction (RHEED) measurements for a temperature range between 180 and 280 °C. Then, the two-dimensional-three-dimensional (2D-3D) transition of a strained CdSe layer on (001)-ZnSe induced by the use of amorphous selenium is studied. The formation of CdSe islands is found when 3 monolayers (ML) of CdSe are deposited. When only 2.5 ML of CdSe are deposited, another relaxation mechanism is observed, leading to the appearance of strong undulations on the surface. We also studied the evolution of the surface morphology when 2.7 ML are deposited, to study the boundary between those two phenomena. The influence of capping on quantum dot morphology is investigated. It is found that cadmium is redistributed within the layer during capping. Our results show that the cadmium distribution after capping depends on the capping temperature and on the strain of the CdSe layer. Cadmium incorporation after capping is also studied. It is found that the amount of incorporated cadmium depends on the strain of the CdSe layer before capping.

  16. CdSe quantum dots synthesized by laser ablation in water and their photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Horoz, Sabit; Lu, Liyou; Dai, Qilin; Chen, Jiajun; Yakami, Baichhabi; Pikal, J. M.; Wang, Wenyong; Tang, Jinke

    2012-11-01

    CdSe quantum dots (QDs) have been prepared by a facile and clean synthesis method--laser ablation in water. The structural and luminescent properties of the CdSe QDs have been investigated. The CdSe QDs of wurtzite crystal structure have an average particle size of about 5 nm. The QDs can be attached to ZnO nanowires making them ideal for applications in QD-sensitized nanowire solar cells. A uniqueness of the QDs attached to the ZnO nanowires by this laser ablation method is that they do not contain ligands, and the preparation avoids the complicated process of ligand exchange.

  17. Multiple Exciton Generation Solar Cells Using CdSe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Gebreselassie, Haftom Mesfin; Sharma, R. B.; Chander, Nikhil

    2011-10-01

    Experimental and Simulation works of Nanostructured Solar Cells Using CdSe Quantum Dots have been analyzed and investigated. CdSe quantum dots have been synthesized from non coordinating and high boiling solvent Octadecene and a series of increasing CdSe particle sizes are produced. The synthesized CdSe quantum dots are highly examined under a Transmission Electron Microscope and four images of different sizes of CdSe quantum dots (5.8 nm, 6.4 nm, 7.0 nm and 7.7 nm) have been obtained. A 1.1×1.1 cm2 TiO2 electrode is prepared using indium tin oxide conducting glass and TiO2 nanoparticles. The Oleic acid terminated CdSe quantum dots are separated from the octadecene by using 100% ethanol and centrifuge machine of spin about 4000 rpm until the shaking gave no longer suspension. The CdSe quantum dot (5.8 nm) was adsorbed on TiO2 photoelectrode and used as sensitizer. The relationship of Bandgap energy, Emission wavelength with respect to quantum dot size have been simulated and investigated. In this paper work, a sandwich type cell configuration which is made up of TiO2 photoelectrode, graphite coated counter electrode, an electrolyte of iodine and potassium iodide have been used. This sandwich type cell has been exposed to sun light and we have achieved 0.32 V and 0.2 mA cm-2 of potential difference and current respectively.

  18. Growth and Excitonic Emission of CdSe Ultra-Thin Quantum Wells Without Thickness Fluctuations

    NASA Astrophysics Data System (ADS)

    Alfaro-Martínez, Adrián; Hernández-Calderón, Isaac

    2007-04-01

    Due to the cation and anion surface reconstruction properties, one Cd-Se atomic layer epitaxy (ALE) cycle produces a coverage of 0.5 CdSe monolayers. In this work we demonstrate that even when an odd number of cycles are deposited to produce ultra-thin quantum wells, under the appropriate growth conditions, the photoluminescence spectrum indicates the absence of thickness fluctuations. A single excitonic peak is detected in the whole sample.

  19. White emission using mixtures of CdSe quantum dots and PMMA as a phosphor

    NASA Astrophysics Data System (ADS)

    Chung, Wonkeun; Park, Kwanhwi; Yu, Hong Jeong; Kim, Jihyun; Chun, Byung-Hee; Kim, Sung Hyun

    2010-02-01

    White light emitting diodes (LEDs) were fabricated using an InGaN 460 nm blue emission LED chip as the excitation source and CdSe quantum dots dispersed in PMMA as the phosphor. CdSe quantum dots were synthesized by the wet chemical method using CdO and Selenium powder as precursors. The three different size, 2.9, 3.4 and 4.3 nm in diameter, of CdSe quantum dots obtained using this method exhibited emission peaks at 555, 580 and 625 nm, respectively with a quantum yield of 10-30%. Mixed phosphors containing different weight ratio of CdSe and PMMA (1:0.1, 1:1, 1:5 and 1:10 wt%) were deposited on the LED chip to investigate the effects of different weight ratios of CdSe and PMMA on the performance of the white LEDs. The fabricated white LEDs that contained CdSe and PMMA weight ratio at 1:10 showed the best performance and the CIE color coordinates varied less with different applied currents. The luminous efficiency of single phosphor (580 nm CdSe) white LEDs was 5.62 lm/W with a CRI of 15.7, whereas the luminous efficiency of dual phosphors (555, 625 nm CdSe) white LEDs was 3.79 lm/W with a CRI of 61.4 at 20 mA. The CIE coordinates of single and dual phosphors white LEDs varied from (0.33, 0.28) to (0.29, 0.26) and from (0.39, 0.33) to (0.39, 0.32), respectively, when the working current ranged from 5 to 80 mA.

  20. Aqueous synthesis and characterization of TGA-capped CdSe quantum dots at freezing temperature.

    PubMed

    Sun, Qizhuang; Fu, Shasha; Dong, Tingmei; Liu, Shuxian; Huang, Chaobiao

    2012-07-11

    CdSe quantum dots (QDs) have traditionally been synthesized in organic phase and then transferred to aqueous solution by functionalizing their surface with silica, polymers, short-chain thiol ligands, or phospholipid micelles. However, a drastic increase in the hydrodynamic size and biotoxicity of QDs may hinder their biomedical applications. In this paper, the TGA-capped CdSe QDs are directly synthesized in aqueous phase at freezing temperature, and they prove to possess high QY (up to 14%).

  1. Continuous-flow synthesis of CdSe quantum dots: a size-tunable and scalable approach.

    PubMed

    Mirhosseini Moghaddam, Mojtaba; Baghbanzadeh, Mostafa; Sadeghpour, Amin; Glatter, Otto; Kappe, C Oliver

    2013-08-26

    In recent years, continuous-flow/microreactor processing for the preparation of colloidal nanocrystals has received considerable attention. The intrinsic advantages of microfluidic reactors have opened new opportunities for the size-controlled synthesis of nanocrystals either in the laboratory or on a large scale. Herein, an experimentally simple protocol for the size-tunable continuous-flow synthesis of rather monodisperse CdSe quantum dots (QDs) is presented. CdSe QDs are manufactured by using cadmium oleate as cadmium source, selenium dioxide as selenium precursor, and 1-octadecene as solvent. Exploiting selenium dioxide as selenium source and 1-octadecene as solvent allows execution of the complete process in open air without any requirement for air-free manipulations using a glove box or Schlenk line. Continuous-flow processing is performed with a stainless steel coil of 1.0 mm inner diameter pumping the combined precursor solution through the reactor by applying a standard HPLC pump. The effect of different reaction parameters, such as temperature, residence time, and flow rate, on the properties of the resulting CdSe QDs was investigated. A temperature increase from 240 to 260 °C or an extension of the residence time from 2 to 20 min affords larger nanocrystals (range 3-6 nm) whereas the size distribution does not change significantly. Longer reaction times and higher temperatures result in QDs with lower quantum yields (range 11-28 %). The quality of the synthesized CdSe QDs was confirmed by UV/Vis and photoluminescence spectroscopy, small-angle X-ray scattering, and high-resolution transmission electron microscopy. Finally, the potential of this protocol for large-scale manufacturing was evaluated and by operating the continuous-flow process for 87 min it was possible to produce 167 mg of CdSe QDs (with a mean diameter of 4 nm) with a quantum yield of 28 %.

  2. Enchanced methods of hydrophilized CdSe quantum dots synthesis

    NASA Astrophysics Data System (ADS)

    Potapkin, D. V.; Zharkova, I. S.; Goryacheva, I. Y.

    2015-03-01

    Quantum dots are bright and stable fluorescence signal sources, but for most of applications they need an additional hydrophilization step. Unfortunately, most of existing approaches lead to QD's fluorescence quenching, so there is a need for additional enhancing of hydrophilized QD's brightness like UV irradiation, which can be used both on water insoluble QD's with oleic acid ligands (in toluene) and on hydrophilized QD's covered with UV-stable polymer (in aqueous solution). For synthesis of bright water-soluble fluorescent labels CdSe/CdS/ZnS colloidal quantum dots were covered with PAMAM dendrimer and irradiated with UV lamp in quartz cuvettes for 3 hours at the room temperature and then compared with control sample.

  3. Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications

    PubMed Central

    2011-01-01

    Vertically aligned single crystalline ZnO nanorod arrays, approximately 3 μm in length and 50-450 nm in diameter are grown by a simple solution approach on a Zn foil substrate. CdS and CdSe colloidal quantum dots are assembled onto ZnO nanorods array using water-soluble nanocrystals capped as-synthesized with a short-chain bifuncional linker thioglycolic acid. The solar cells co-sensitized with both CdS and CdSe quantum dots demonstrate superior efficiency compared with the cells using only one type of quantum dots. A thin Al2O3 layer deposited prior to quantum dot anchoring successfully acts as a barrier inhibiting electron recombination at the Zn/ZnO/electrolyte interface, resulting in power conversion efficiency of approximately 1% with an improved fill factor of 0.55. The in situ growth of ZnO nanorod arrays in a solution containing CdSe quantum dots provides better contact between two materials resulting in enhanced open circuit voltage. PMID:21711865

  4. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity

    PubMed Central

    Wang, Wei; He, Yan; Yu, Guodong; Li, Baolong; Sexton, Darren W.; Wileman, Thomas; Roberts, Alexandra A.; Hamilton, Chris J.; Liu, Ruoxi; Chao, Yimin; Shan, Yujuan; Bao, Yongping

    2015-01-01

    The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy. PMID:26402917

  5. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity.

    PubMed

    Wang, Wei; He, Yan; Yu, Guodong; Li, Baolong; Sexton, Darren W; Wileman, Thomas; Roberts, Alexandra A; Hamilton, Chris J; Liu, Ruoxi; Chao, Yimin; Shan, Yujuan; Bao, Yongping

    2015-01-01

    The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.

  6. Tuning luminescence and reducing reabsorption of CdSe quantum disks forluminescent solar concentrators.

    PubMed

    Lin, Huichuan; Xie, Peng; Liu, Yong; Zhou, Xiang; Li, Baojun

    2015-08-21

    Cadmium selenide (CdSe) quantum disks (QDs) have been synthesized for application in luminescent solar concentrators (LSCs). Luminescence tuning and reabsorption reduction of the QDs were achieved by controlling their size using a hot injection method. The overlap of the absorption and photoluminescence spectra of the as-prepared CdSe QDs was negligible. The as-prepared CdSe QDs were incorporated into polymethylmethacrylate without aggregation and luminescence quenching. The obtained highly transparent composites with non-affecting light-emitting properties were used as LSCs. The placement of a CdSe QDs doped LSC prototype (10 × 1 × 0.1 cm) on a Si-cell resulted in a 201% increase in the electrical power output of the Si-cell compared with that of the bare Si-cell.

  7. Tuning luminescence and reducing reabsorption of CdSe quantum disks for luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Lin, Huichuan; Xie, Peng; Liu, Yong; Zhou, Xiang; Li, Baojun

    2015-08-01

    Cadmium selenide (CdSe) quantum disks (QDs) have been synthesized for application in luminescent solar concentrators (LSCs). Luminescence tuning and reabsorption reduction of the QDs were achieved by controlling their size using a hot injection method. The overlap of the absorption and photoluminescence spectra of the as-prepared CdSe QDs was negligible. The as-prepared CdSe QDs were incorporated into polymethylmethacrylate without aggregation and luminescence quenching. The obtained highly transparent composites with non-affecting light-emitting properties were used as LSCs. The placement of a CdSe QDs doped LSC prototype (10 × 1 × 0.1 cm) on a Si-cell resulted in a 201% increase in the electrical power output of the Si-cell compared with that of the bare Si-cell.

  8. Colloidal quantum dots as optoelectronic elements

    NASA Astrophysics Data System (ADS)

    Vasudev, Milana; Yamanaka, Takayuki; Sun, Ke; Li, Yang; Yang, Jianyong; Ramadurai, Dinakar; Stroscio, Michael A.; Dutta, Mitra

    2007-02-01

    Novel optoelectronic systems based on ensembles of semiconductor nanocrystals are addressed in this paper. Colloidal semiconductor quantum dots and related quantum-wire structures have been characterized optically; these optical measurements include those made on self-assembled monolayers of DNA molecules terminated on one end with a common substrate and on the other end with TiO II quantum dots. The electronic properties of these structures are modeled and compared with experiment. The characterization and application of ensembles of colloidal quantum dots with molecular interconnects are considered. The chemically-directed assembly of ensembles of colloidal quantum dots with biomolecular interconnects is demonstrated with quantum dot densities in excess of 10 +17 cm -3. A number of novel photodetectors have been designed based on the combined use of double-barrier quantum-well injectors, colloidal quantum dots, and conductive polymers. Optoelectronic devices including photodetectors and solar cells based on threedimensional ensembles of quantum dots are considered along with underlying phenomena such as miniband formation and the robustness of minibands to displacements of quantum dots in the ensemble.

  9. Functional Si and CdSe quantum dots: synthesis, conjugate formation, and photoluminescence quenching by surface interactions.

    PubMed

    Sudeep, P K; Emrick, Todd

    2009-12-22

    Silicon quantum dots (QDs) were prepared with a corona of di-n-octyl phosphine oxides, by performing hydrosilylation chemistry on the surface of hydrogen-terminated Si QDs. These novel Si QDs proved well-suited to serve as "ligands" for other semiconductor QDs, such as CdSe, by interaction of the phosphine oxide corona with the CdSe surface. A pronounced photoluminescence quenching of CdSe quantum dots was observed upon introduction of the phosphine oxide functionalized Si QDs to a CdSe QD solution. Surface functionalization of the Si QDs proved critically important to observing these effects, as conventional (alkane-covered) Si QD samples gave no evidence of electronic interactions with TOPO-covered CdSe. In a comparative system, phosphine oxide terminated oligo(phenylene vinylene) molecules acting as CdSe QD ligands provide a similar fluorescence quenching, with exciton decay kinetics supporting the formation of an electronically interacting hybrid materials system.

  10. Encapsulation of highly confined CdSe quantum dots for defect free luminescence and improved stability

    NASA Astrophysics Data System (ADS)

    Kumari, Asha; Singh, Ragini Raj

    2017-05-01

    This is the first report on the generation of trap states and their effective elimination in highly confined CdSe quantum dots in order to obtain enhanced and stable optical properties prepared by aqueous route. Surface plays an important role in optical properties of quantum dots (QDs) and surface modification of quantum dots can improve optical properties. In present work luminescent CdSe QDs were prepared using 2-Mercaptoethanol (2-ME) as stabilizing agent and encapsulated by polymer. Different concentrations of 2-ME were used to tune the emission spectra with respect to their reduced size. Addition of 2-ME to CdSe QDs enhances the trap emission and quenching band edge emission due to (i) increased surface to volume ratio and; (ii) presence of high concentration of sulfide ions as confirmed from EDX analysis as sulfide ions possesses the hole scavenging characteristics. Polymer encapsulation of QDs was carried out to make them stable and to improve their optical properties. Even though there are previous reports addressing the improved optical properties by polymer encapsulation and silica encapsulation but experimentally it has not been reported yet experimentally. In this work we have synthesized and characterized water soluble polymer encapsulated QDs and proved the facts experimentally. Photoluminescence spectroscopy clearly reveals the role of polymer encapsulation in boosting the optical properties of CdSe QDs. FTIR spectra validate the presence of biocompatible functional groups on CdSe4/PEG (Polymer encapsulated QDs).

  11. In-situ material state monitoring using embedded CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Brubaker, Cole D.; Frecker, Talitha M.; Njoroge, Ian; Shane, Dylan O.; Smudde, Christine M.; Rosenthal, Sandra J.; Jennings, G. Kane; Adams, Douglas E.

    2016-04-01

    The development of new, smart materials capable of intrinsically detecting and communicating the occurrence of external loads and resultant damage present in a material will be crucial in the advancement of future structural health monitoring (SHM) and nondestructive evaluation (NDE) technologies. Traditionally, many SHM and NDE approaches have relied on the use of physical sensors to monitor a structure for damage, but are often hindered by their requirements for power consumption and large-scale data collection. In this work, we seek to evaluate the effectiveness of ultrasmall, white-light emitting Cadmium Selenide quantum dots (CdSe QDs) as an alternative to providing in-situ material state monitoring capabilities, while also aiming to reduce reliance on data collection and power consumption to effectively monitor a material and structure for damage. To achieve this goal, CdSe QDs are embedded in an optically clear epoxy composite matrix and exposed to external mechanical loadings. Initial results show a corresponding relationship between the shifts in observed emission spectra and external load for samples containing CdSe QDs. The effectiveness of CdSe QDs as a surface strain gauge on aluminum and fiberglass are also investigated in this paper. By monitoring changes in the emission spectra for materials containing CdSe QDs before, during and after the application of external loads, the effectiveness of CdSe QDs for communicating the occurrence of external loads acting on a material and detecting changes in material state is evaluated.

  12. Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?

    PubMed

    Moghaddam, Mojtaba Mirhosseini; Baghbanzadeh, Mostafa; Keilbach, Andreas; Kappe, C Oliver

    2012-12-07

    Microwave-assisted syntheses of colloidal nanocrystals (NCs), in particular CdSe quantum dots (QDs), have gained considerable attention due to unique opportunities provided by microwave dielectric heating. The extensive use of microwave heating and the frequently suggested specific microwave effects, however, pose questions about the role of the electromagnetic field in both the formation and quality of the produced QDs. In this work a one-pot protocol for the tunable synthesis of monodisperse colloidal CdSe NCs using microwave dielectric heating under carefully controlled conditions is introduced. CdSe QDs are fabricated using selenium dioxide as a selenium precursor, 1-octadecene as a solvent and reducing agent, cadmium alkyl carboxylates or alkyl phosphonates as cadmium sources, 1,2-hexadecanediol to stabilize the cadmium complex and oleic acid to stabilize the resulting CdSe QDs. Utilizing the possibilities of microwave heating technology in combination with accurate online temperature control the influence of different reaction parameters such as reaction temperature, ramp and hold times, and the timing and duration of oleic acid addition have been carefully investigated. Optimum results were obtained by performing the reaction at 240 °C applying a 5 min ramp time, 2 min hold time before oleic acid addition, 90 s for oleic acid addition, and a 5 min hold time after oleic acid addition (8.5 min overall holding at 240 °C). By using different cadmium complexes in the microwave protocol CdSe QDs with a narrow size distribution can be obtained in different sizes ranging from 0.5-4 nm by simply changing the cadmium source. The QDs were characterized by TEM, HRTEM, UV-Vis, and photoluminescence methods and the size distribution was monitored by SAXS. Control experiments involving conventional conductive heating under otherwise identical conditions ensuring the same heating and cooling profiles, stirring rates, and reactor geometries demonstrate that the

  13. Direct observation of electron-to-hole energy transfer in CdSe quantum dots.

    PubMed

    Hendry, E; Koeberg, M; Wang, F; Zhang, H; de Mello Donegá, C; Vanmaekelbergh, D; Bonn, M

    2006-02-10

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This constitutes the first direct, quantitative measurement of electron-to-hole energy transfer, the hypothesis behind the Auger cooling mechanism proposed in quantum dots, which is found to occur on a 1 +/- 0.15 ps time scale.

  14. Cytotoxicity testing of bare CdSe quantum dots and their encapsulated structure

    NASA Astrophysics Data System (ADS)

    Kumari, Asha; Singh, Ragini Raj

    2017-07-01

    In this work we have synthesized CdSe quantum dots (QDs) and their polymer encapsulated structures by wet chemical method for cytotoxicity testing. These QDs were synthesized by using aqueous solvent to make them hydrophilic because we want to use these for bioimaging purpose. The cytotoxicity is major concern to use these quantum dots in bio application because these are made up of heavy metal ions so to make these QDs nontoxic and to improve their optical properties we encapsulated these QDs by polymers. Thereafter we have studied the cytotoxicity of CdSe QDs and their polymer encapsulated structure.MTT method (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide method) was used to study toxicity of QDs toward MDCK epithelial cell line. Effect of encapsulation on optical properties was analyzed by Photoluminescence spectroscopy. QDs encapsulated with polymer possess improved optical properties with greater fluorescence intensity and lesser cytotoxicity as compare to bare CdSe.

  15. Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance

    SciTech Connect

    Dai, Qilin; Wang, Wenyong E-mail: jtang2@uwyo.edu; Tang, Jinke E-mail: jtang2@uwyo.edu; Sabio, Erwin M.

    2014-05-05

    In this work, we demonstrate (1) a facile method to prepare Mn doped CdSe quantum dots (QDs) on Zn{sub 2}SnO{sub 4} photoanodes by pulsed laser deposition and (2) improved device performance of quantum dot sensitized solar cells of the Mn doped QDs (CdSe:Mn) compared to the undoped QDs (CdSe). The band diagram of photoanode Zn{sub 2}SnO{sub 4} and sensitizer CdSe:Mn QD is proposed based on the incident-photon-to-electron conversion efficiency (IPCE) data. Mn-modified band structure leads to absorption at longer wavelengths than the undoped CdSe QDs, which is due to the exchange splitting of the CdSe:Mn conduction band by the Mn dopant. Three-fold increase in the IPCE efficiency has also been observed for the Mn doped samples.

  16. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    SciTech Connect

    Lu, Y. F.; Cao, X. A.

    2014-11-17

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions.

  17. Improved solar cell based on ZnO nanowires and CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Nadarajah, Athavan; Word, Robert C.; Konenkamp, Rolf

    2010-03-01

    We report a solar cell nanostructure that incorporates CdSe quantum dots embedded in a ZnO nanowire film and a hole-conducting polymer layer. This arrangement allows for enhanced light absorption and efficient collection of the carriers. Microscopic studies show the conversion of CdSe quantum dots into an inter-connected and continuous polycrystalline thin film upon annealing in cadmium chloride ambient. This structural change of the quantum dot layer destroys the quantum confinement and improves the charge transport in the layer significantly. It also provides for improved charge transfer to the adjacent contacting layers. The optimized solar cell exhibits an external quantum efficiency of 65 percent and an energy conversion efficiency above 2 percent.

  18. Application of CdSe quantum dots for the direct detection of TNT.

    PubMed

    Yi, Kui-Yu

    2016-02-01

    CdSe quantum dots were synthesized through a simple, green organic-phase method. Paraffin was used as the reaction solvent and a reducing agent, oleic acid was the reaction ligand, and oleyl amine was the stabilizer. Based on the phenomenon of TNT quenched oil-soluble CdSe quantum dot fluorescence, a simple, fast, and direct method of TNT detection was established. Under optimum conditions, the degree of fluorescence quenching of oil-soluble CdSe quantum dots had a good linear correlation with TNT concentration in the 1.0×10(-7)-5.0×10(-5) mol/L range, and the correlation coefficient was 0.9990. TNT detection limit was 2.1×10(-8)mol/L. The method was successfully used to determine TNT-explosion dust samples, results were satisfactory. The fluorescence quenching mechanism of oil-soluble CdSe quantum dots by TNT was also discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    PubMed Central

    Sveshnikova, Larisa L; Duda, Tatyana A; Rodyakina, Ekaterina E; Dzhagan, Volodymyr M; Gordan, Ovidiu D; Veber, Sergey L; Himcinschi, Cameliu; Latyshev, Alexander V; Zahn, Dietrich R T

    2015-01-01

    Summary We present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR) energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm), confirming the formation of SERS “hot spots”. PMID:26734529

  20. Luminescence blue-shift of CdSe nanowires beyond the quantum confinement regime

    NASA Astrophysics Data System (ADS)

    Yan, Yuan; Liao, Zhi-Min; Bie, Ya-Qing; Wu, Han-Chun; Zhou, Yang-Bo; Fu, Xue-Wen; Yu, Da-Peng

    2011-09-01

    Photoluminescence (PL) properties of individual CdSe nanowires with diameters beyond the quantum confinement regime have been studied. A blue-shift in the PL spectra was observed with decreasing nanowire diameter. We attribute the blue-shift to band-filling effect. Carrier density induced by surface vacancy doping and laser excitation is found to be high enough to meet the criterion of the band-filling effect and increases with decreasing nanowire diameter. Temperature dependent PL analysis and characterizations of a single CdSe nanowire based field-effect transistor were also performed.

  1. An oleic acid-capped CdSe quantum-dot sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Song, J. L.; Sun, X. W.; Deng, W. Q.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S.

    2009-04-01

    In this letter, we report an oleic acid (OA)-capped CdSe quantum-dot sensitized solar cell (QDSSC) with an improved performance. The TiO2/OA-CdSe photoanode in a two-electrode device exhibited a photon-to-current conversion efficiency of 17.5% at 400 nm. At AM1.5G irradiation with 100 mW/cm2 light intensity, the QDSSCs based on OA-capped CdSe showed a power conversion efficiency of about 1%. The function of OA was to increase QD loading, extend the absorption range and possibly suppress the surface recombination.

  2. An oleic acid-capped CdSe quantum-dot sensitized solar cell

    SciTech Connect

    Chen Jing; Song, J. L.; Deng, W. Q.; Sun, X. W.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S.

    2009-04-13

    In this letter, we report an oleic acid (OA)-capped CdSe quantum-dot sensitized solar cell (QDSSC) with an improved performance. The TiO{sub 2}/OA-CdSe photoanode in a two-electrode device exhibited a photon-to-current conversion efficiency of 17.5% at 400 nm. At AM1.5G irradiation with 100 mW/cm{sup 2} light intensity, the QDSSCs based on OA-capped CdSe showed a power conversion efficiency of about 1%. The function of OA was to increase QD loading, extend the absorption range and possibly suppress the surface recombination.

  3. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.

    PubMed

    Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S

    2007-06-01

    We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.

  4. Effect of environment on the preparation of CdSe quantum dots capped with mercaptoacetic acid.

    PubMed

    Wageh, S; Higazy, Anwer A; Al-Ghamdi, Ahmed A; Hassouna, Ahmed S

    2014-08-01

    We report a preparation of CdSe quantum dots in the presence of capping molecules under ambient air and argon atmospheres. The growth of the quantum dots with applying an equimolar ratio of precursor of Cd2+ and Se2- in the presence of a high percentage of the mercaptoacetic acid as capping molecules is studied. Quantum dots are characterized via EDX, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis (TGA), UV-Vis optical absorption, Raman and infrared spectroscopy. Combination of EDX and Raman spectroscopy showed a graded diffusion of sulfur on the surface of CdSe quantum dots for the sample prepared under argon atmosphere, while the sample prepared under ambient air atmosphere the sulfur isn't diffused into the CdSe core. In addition, the sample prepared under air revealed a formation of oxides on the surface of the quantum dots. On the other hand, we have studied the nature of capping and how the surface of the quantum dots core is terminated for the prepared samples. In addition, we have studied the acoustic and optical phonons of the quantum dots cores.

  5. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-06-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria. These quantum dots were solubilized with mercaptoacetic acid and conjugated to adenine. Significant evidence for the internal staining of Bacillus subtilis (Gram positive) and Escherichia coli (Gram negative) using these structures is presented via steady-state emission, epifluorescence microscopy, transmission electron microscopy, and energy dispersive spectroscopy. In particular, the E. coli adenine auxotroph, and not the wild type, took up adenine coated quantum dots, and this only occurred in adenine deficient growth media. Labeling strength was enhanced by performing the incubation under room light. This process was examined with steady-state emission spectra and time-resolved luminescence profiles obtained from time-correlated-single-photon counting.

  6. The direct observation of charge separation dynamics in CdSe quantum dots/cobaloxime hybrids

    SciTech Connect

    Huang, J.; Tang, Y.; Mulfort, Karen L.; Zhang, Xiaoyi

    2016-02-14

    In this work, we investigated photoinduced charge separation dynamics in a CdSe quantum dot/cobaloxime molecular catalyst hybrid using the combination of transient optical (OTA) and X-ray absorption (XTA) spectroscopy. We show that ultrafast charge separation occurs through electron transfer (ET) from CdSe QDs to cobaloxime. In addition to the enhanced 1S exciton bleach recovery in CdSe QDs due to the presence of cobaloxime, the direct evidence for ET process, i.e. the formation of the transient charge separated state, is captured by XTA. These results not only demonstrate the capability of XTA to capture the transient species during the photoinduced reactions in hybrid nanostructures but also enhance our understanding of charge separation dynamics in semiconductor nanocrystal/molecular catalyst hybrid

  7. Surface states and photovoltaic effects in CdSe quantum dot films

    SciTech Connect

    Kronik, L.; Ashkenasy, N.; Leibovitch, M.; Fefer, E.; Shapira, Y.; Gorer, S.; Hodes, G.

    1998-05-01

    Photovoltaic effects in CdSe quantum dot (QD) films have been studied using surface photovoltage spectroscopy and complementary methods. The results show that, contrary to previous studies, nonnegligible electric fields can exist in QD films. As a result, driftlike currents must be considered, in addition to the well-known diffusion like currents. However, it is found that the specific case of photovoltage sign reversal, observed after etching highly quantized CdSe QD films, is governed by diffusion like transport. The latter is highly influenced by preferential trapping of one type of charge carrier. The preferential trapping is shown to be surface localized and is strongly ambient dependent. It is shown that the photovoltaic properties of these CdSe QD films are dominated by their surface state distribution.

  8. Simple synthesis of luminescent CdSe quantum dots from ascorbic acid and selenium dioxide.

    PubMed

    Wang, Yilin; Yu, Meihua; Yang, Kun; Lu, Jianping; Chen, Linqing

    2015-12-01

    A simple, low-cost and convenient method was developed for the synthesis of highly luminescent CdSe quantum dots (QDs) in an aqueous medium. Compared with previous methods, this synthesis was carried out in one pot using ascorbic acid (C6H8O6) to replace NaBH4 or N2H4·H2O as a reductant, and selenium dioxide to replace selenium or its other hazardous, expensive and unstable compounds as a precursor. The mechanism of CdSe QDs formation was elucidated. The influence of various experimental variables, including refluxing time, Cd/MSA and Cd/Se molar ratios, on the luminescent properties of the QDs were systematically investigated. X-Ray powder diffraction and transmission electron microscopy characterization indicated that the QDs had a pure cubic zinc-blended structure with a spherical shape.

  9. Excitation enhancement of CdSe quantum dots by single metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yeechi; Munechika, Keiko; Jen-La Plante, Ilan; Munro, Andrea M.; Skrabalak, Sara E.; Xia, Younan; Ginger, David S.

    2008-08-01

    We study plasmon-enhanced fluorescence from CdSe /CdS/CdZnS/ZnS core/shell quantum dots near a variety of Ag and Au nanoparticles. The photoluminescence excitation (PLE) spectrum of quantum dots closely follows the localized surface plasmon resonance (LSPR) scattering spectrum of the nanoparticles. We measure excitation enhancement factors of ˜3 to 10 for different shapes of single metal nanoparticles.

  10. The Optical Properties of CdSe Quantum Dots by Using Spray-Atomization Method

    NASA Astrophysics Data System (ADS)

    Rosmani, C. H.; Abdullah, S.; Rusop, M.

    2013-06-01

    Cadmium Selenide (CdSe) quantum dots (QDs) is inorganic material by using spray-atomization method which is the novelty to find out the optical properties for the CdSe QDs. The Selenium (Se) precursor and Cadmium (Cd) precursor were prepared first. Se precursor by using sodium sulfite aqueous was mixed with selenium (Se) powder. For Cd precursor was used cadmium chloride (CdCI) as the Cd precursor. From previous research, CdSe QDs was obtained by using capping agent such as tri-n-octylphosphine oxide (TOPO) and trioctylphosphine (TOP). These capping agent are hazardous to environment and human. By using spray-atomization method it is more safe and economically. The photoluminescence (PL) was used to investigate the optical properties and to investigate the energy band gap from PL result. The field emission scanning electron microscopy (FESEM) was used to know the surface morphology of CdSe QDs. By PL result, the energy band gap was calculate and the comparison was investigate between the size of particle and the energy band gap. This important in this paper is to investigate the optical properties of CdSe QDs by using sprays-atomization method and to relate with the particle size.

  11. Van der Waals materials for the passivation of monolayer closed-packed films of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Dennis Zi-Ren; Zhang, Datong; Creswell, Richard; Lu, Chenguang; Hu, Jiayang; Herman, Irving P.

    2015-03-01

    Van der Waals (vdW) materials are shown to protect CdSe quantum dots (QDs) from oxidization. Few-layer vdW materials, e.g. graphene and MoS2, were transferred onto a monolayer closed-packed CdSe quantum dots and were examined by photoluminescence (PL) after different time periods. By comparing the PL of CdSe QDs in uncovered areas and those covered by different numbers of layers of graphene and MoS2, we saw that vdW encapsulation slows down the aging of CdSe QDs dramatically. PL mapping results clearly showed better protection of the CdSe QDs under the central part of the vdW material compared to that at the edge; this can be explained by the diffusion of oxygen and water vapor from the edge of the vdW materials.

  12. Investigation of size dependent structural and optical properties of thin films of CdSe quantum dots

    SciTech Connect

    Sharma, Madhulika; Sharma, A.B.; Mishra, N.; Pandey, R.K.

    2011-03-15

    Research highlights: {yields} CdSe q-dots have been synthesized using simple chemical synthesis route. {yields} Thin film of CdSe quantum dots exhibited self-organized growth. {yields} Size dependent blue shift observed in the absorption edge of CdSe nanocrystallites. {yields} PL emission band corresponds to band edge luminescence and defect luminescence. {yields} Organized growth led to enhancement in luminescence yield of smaller size Q-dots. -- Abstract: Cadmium selenide (CdSe) quantum dots were grown on indium tin oxide substrate using wet chemical technique for possible application as light emitting devices. The structural, morphological and luminescence properties of the as deposited thin films of CdSe Q-dot have been investigated, using X-ray diffraction, transmission electron microscopy, atomic force microscopy and optical and luminescence spectroscopy. The quantum dots have been shown to deposit in an organized array on ITO/glass substrate. The as grown Q-dots exhibited size dependent blue shift in the absorption edge. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the nanocrystalline CdSe exhibits intense photoluminescence as compared to the large grained polycrystalline CdSe films.

  13. Quantum confinement effect of CdSe induced by nanoscale solvothermal reaction.

    PubMed

    Lee, Jin-Wook; Im, Jeong-Hyuk; Park, Nam-Gyu

    2012-10-21

    We report a novel method, nanoscale solvothermal reaction (NSR), to induce the quantum confinement effect of CdSe on nanostructured TiO(2) by solvothermal route. The time-dependent growth of CdSe is observed in solution at room temperature, which is found to be accomplished instantly by heat-treatment in the presence of solvent at 1 atm. However, no crystal growth occurs upon heat-treatment in the absence of solvent. The nanoscale solvothermal growth of CdSe quantum dot is realized on the nanocrystalline oxide surface, where Cd(NO(3))(2)·4H(2)O and Na(2)SeSO(3) solutions are sequentially spun on nanostructured TiO(2), followed by heat-treatment at temperatures ranging from 100 °C to 250 °C. Size of CdSe increases from 4.4 nm to 5.3 nm, 8.7 nm and 14.8 nm, which results in decrease in optical band gap from 2.19 eV to, 1.95 eV, 1.74 eV and 1.75 eV with increasing the NSR temperature from 100 °C to 150 °C, 200 °C and 250 °C, respectively, which is indicative of the quantum confinement effect. Thermodynamic studies reveal that increase in the size of CdSe is related to increase in enthalpy, for instance, from 3.77 J mg(-1) for 100 °C to 8.66 J mg(-1) for 200 °C. Quantum confinement effect is further confirmed from the CdSe-sensitized solar cell, where onset wavelength in external quantum efficiency spectra is progressively shifted from 600 nm to 800 nm as the NSR temperature increases, which leads to a significant improvement of power conversion efficiency by a factor of more than four. A high photocurrent density of 13.7 mA cm(-2) is obtained based on CdSe quantum dot grown by NSR at 200 °C.

  14. Quantum confinement effect of CdSe induced by nanoscale solvothermal reaction

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Wook; Im, Jeong-Hyuk; Park, Nam-Gyu

    2012-09-01

    We report a novel method, nanoscale solvothermal reaction (NSR), to induce the quantum confinement effect of CdSe on nanostructured TiO2 by solvothermal route. The time-dependent growth of CdSe is observed in solution at room temperature, which is found to be accomplished instantly by heat-treatment in the presence of solvent at 1 atm. However, no crystal growth occurs upon heat-treatment in the absence of solvent. The nanoscale solvothermal growth of CdSe quantum dot is realized on the nanocrystalline oxide surface, where Cd(NO3)2.4H2O and Na2SeSO3 solutions are sequentially spun on nanostructured TiO2, followed by heat-treatment at temperatures ranging from 100 °C to 250 °C. Size of CdSe increases from 4.4 nm to 5.3 nm, 8.7 nm and 14.8 nm, which results in decrease in optical band gap from 2.19 eV to, 1.95 eV, 1.74 eV and 1.75 eV with increasing the NSR temperature from 100 °C to 150 °C, 200 °C and 250 °C, respectively, which is indicative of the quantum confinement effect. Thermodynamic studies reveal that increase in the size of CdSe is related to increase in enthalpy, for instance, from 3.77 J mg-1 for 100 °C to 8.66 J mg-1 for 200 °C. Quantum confinement effect is further confirmed from the CdSe-sensitized solar cell, where onset wavelength in external quantum efficiency spectra is progressively shifted from 600 nm to 800 nm as the NSR temperature increases, which leads to a significant improvement of power conversion efficiency by a factor of more than four. A high photocurrent density of 13.7 mA cm-2 is obtained based on CdSe quantum dot grown by NSR at 200 °C.

  15. Wavefunction engineering: From quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy

    PubMed Central

    Li, J. Jack; Tsay, James M.; Michalet, Xavier; Weiss, Shimon

    2012-01-01

    We review the concept and the evolution of bandgap and wavefunction engineering, the seminal contributions of Dr. Chemla to the understanding of the rich phenomena displayed in epitaxially grown quantum confined systems, and demonstrate the application of these concepts to the colloidal synthesis of high quality type-II CdTe/CdSe quantum dots using successive ion layer adsorption and reaction chemistry. Transmission electron microscopy reveals that CdTe/CdSe can be synthesized layer by layer, yielding particles of narrow size distribution. Photoluminescence emission and excitation spectra reveal discrete type-II transitions, which correspond to energy lower than the type-I bandgap. The increase in the spatial separation between photoexcited electrons and holes as a function of successive addition of CdSe monolayers was monitored by photoluminescence lifetime measurements. Systematic increase in lifetimes demonstrates the high level of wavefunction engineering and control in these systems. PMID:22865949

  16. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode

    NASA Astrophysics Data System (ADS)

    Mora-Seró, Iván; Giménez, Sixto; Moehl, Thomas; Fabregat-Santiago, Francisco; Lana-Villareal, Teresa; Gómez, Roberto; Bisquert, Juan

    2008-10-01

    Colloidal CdSe quantum dots (QDs) of different sizes, prepared by a solvothermal route, have been employed as sensitizers of nanostructured TiO2 electrode based solar cells. Three different bifunctional linker molecules have been used to attach colloidal QDs to the TiO2 surface: mercaptopropionic acid (MPA), thioglycolic acid (TGA), and cysteine. The linker molecule plays a determinant role in the solar cell performance, as illustrated by the fact that the incident photon to charge carrier generation efficiency (IPCE) could be improved by a factor of 5-6 by using cysteine with respect to MPA. The photovoltaic properties of QD sensitized electrodes have been characterized for both three-electrode and closed two-electrode solar cell configurations. For three-electrode measurement a maximum power conversion efficiency near 1% can be deduced, but this efficiency is halved in the closed cell configuration mainly due to the decrease of the fill factor (FF).

  17. Morphology of ultrathin CdSe quantum confinement layers in ZnSe matrices

    NASA Astrophysics Data System (ADS)

    Chinyama, K. G.; O'Donnell, K. P.; Rosenauer, A.; Gerthsen, D.

    1999-06-01

    Using a combination of transmission electron microscopy (TEM), high resolution TEM (HRTEM), digital analysis of lattice images (DALI), and correspondence analysis (CA) we present at near-atomic resolution the morphology of a nominal 2 monolayer (ML) cadmium selenide (CdSe) quantum well (QW) between ZnSe barriers. We reveal the presence of ˜10 ML zinc cadmium selenide (Zn xCd 1- xSe) alloy insertion layer of varying composition in a ZnSe matrix. A spotty pattern in the plane of the layer indicates the presence of self-assembled clusters or islands similar to the structures commonly referred to as quantum dots. Further analysis indicates that these clusters, of less than 10 nm in lateral extent, themselves contain sites highly saturated with CdSe. Analysis of photoluminescence (PL) spectra suggests that the emission originates predominantly from excitons trapped in these islands.

  18. Direct growth of CdSe semiconductor quantum dots in glass matrix by femtosecond laser beam

    NASA Astrophysics Data System (ADS)

    Bell, G.; Filin, A. I.; Romanov, D. A.; Levis, R. J.

    2016-02-01

    Controllable, spatially inhomogeneous distributions of CdSe nanocrystals smaller than the exciton Bohr radius are grown in a glass matrix under combined action of sample heating (below the transformation temperature) and focused high-repetition femtosecond (fs) laser beam. Selective quantum dot precipitation is evidenced by position-dependent absorption and Raman spectra. The particle size is estimated as r = 2.1 ± 0.3 nm by comparing the measured absorption and Raman spectra with those obtained from the samples grown in glass by traditional heat-treatment procedure. Direct growth of CdSe quantum dots in glass is enabled by nonlinear excitation using a focused fs duration laser beam (as differentiated from other methods), and this opens an avenue for adjustable selective growth patterns.

  19. Flexible Colloidal Quantum Dot Photodetection with Cellulose Structures

    NASA Astrophysics Data System (ADS)

    Wu, Jingda

    This thesis will outline a new way of fabricating flexible photodetectors. Solution-processable colloidal quantum dots (QDs, or nanocrystals(NCs)) are incorporated into cellulose structures to form a composite structure that can be used for photodetection. This enables new ways of device fabrication and also makes ultrathin, ultraflexible and even transparent optoelectronic devices possible. Inkjet printing with an office inkjet printer is introduced and applied towards PEDOT:PSS transparent electrode deposition. This offers a low cost method for material deposition. Flexible photoconductors are fabricated with these electrodes and CdSe quantum dot embedded tracing paper by utilizing the porous cellulose structure. Consistent photoresponse is achieved with such a structure under 550nm light illumination. After further realizing the shortcomings of tracing paper for its large thickness and low porosity, which both deteriorate the performance of these devices, natural plant-membranes are chosen as an alternative and offer superb properties for optoelectronic device fabrication. Visible-blind self-powered ultra-violet detectors are designed and fabricated with the incorporation of ZnO NCs on reed membrane. Schottky junction devices are fabricated with the use of gold and aluminum as the electrodes. Sub-second responses are observed at a bias of zero, which is superior than most of the flexible photoconductors in the literature. An external quantum efficiency of over 3% is discovered with the device at 350nm light illumination under zero bias. A great performance enhancement is also observed on the devices fabricated on reed membrane comparing to the ones on tracing paper. Nanofibrillated cellulose (NFC) can be readily used to fabricate transparent papers. ZnO NC-NFC composite structure is prepared and fabricated into ultrathin transparent papers with a thickness less than 1 micrometer. Self-powered Schottky photodiodes are fabricated on such papers and relatively fast

  20. Electrochemiluminescent detection of Pb2+ by graphene/gold nanoparticles and CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan

    2016-12-01

    A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold-sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb2+. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10-10 to 10-8 mol/L (R = 0.9819) with a detection limit of 10-10 mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.

  1. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ˜500 and 700 nm with the luminescence quantum yield (LQY) of 30-85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml-1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3-50 ng μl-1 with a detection limit of 3 ng μL-1 has been performed based on the antibody-antigen recognition.

  2. Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells

    SciTech Connect

    Gao, Bing; Shen, Chao; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia E-mail: grchen@ecust.edu.cn; Chen, Guorong E-mail: grchen@ecust.edu.cn; Zhang, Bo

    2014-05-21

    Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30 nm, and absorption peak from 475 nm to 510 nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO{sub 2} electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO{sub 2}'s to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO{sub 2}. The resulting green synthesized CdSe QDSCs with Cu{sub 2}S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

  3. Templating growth of gold nanostructures with a CdSe quantum dot array.

    PubMed

    Paul, Neelima; Metwalli, Ezzeldin; Yao, Yuan; Schwartzkopf, Matthias; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter; Paul, Amitesh

    2015-06-07

    In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of ≈7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage.

  4. Optical properties of water soluble CdSe quantum dots modified by a novel biopolymer based on sodium alginate

    NASA Astrophysics Data System (ADS)

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2013-10-01

    Water soluble CdSe quantum dots (QDs) were modified using a novel biopolymer based on the graft copolymerization of poly (acrylic acid) as a monomer onto sodium alginate as a backbone at room temperature. The obtained CdSe QDs were characterized by Fourier transform infrared spectrometer, thermo-gravimetry analysis, transmission electron microscopy, and dynamic light scattering. Optical properties of the prepared CdSe QDs were investigated by absorption and fluorescence spectra. It was found that the resultant QDs incredibly exhibited high fluorescence intensity and quantum yields. Lastly, the influence of the aging time on the fluorescence intensity of the modified CdSe QDs was studied by their fluorescence spectra. Due to the optical behavior of this modified QDs; it could be of potential interest in biological systems.

  5. Size control by rate control in colloidal PbSe quantum dot synthesis

    NASA Astrophysics Data System (ADS)

    Čapek, Richard Karel; Yanover, Dianna; Lifshitz, Efrat

    2015-03-01

    A recently demonstrated approach to control the size of colloidal nanoparticles, ``size control by rate control'', which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The ``size control by rate control'' concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses.A recently demonstrated approach to control the size of colloidal nanoparticles, ``size control by rate control'', which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The ``size control by rate control'' concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses. Electronic supplementary information (ESI) available: Additional data about the reaction and growth kinetics, NMR-data and exemplary TEM images of PbSe-CQDs prepared by the procedure described in this publication. See DOI: 10.1039/c5nr00028a

  6. Understanding the isothermal growth kinetics of cdse quantum dots through microfluidic reactor assisted combinatorial synthesis

    NASA Astrophysics Data System (ADS)

    Swain, Basudev; Hong, Myung Hwan; Kang, Lee-Seung; Lee, Chan Gi

    2016-11-01

    With the use of a microfluidic-assisted combinatorial reactor, the synthesis of CdSe quantum dots was optimized by varying one parameter at a time, and the isothermal growth kinetics of CdSe quantum dots using various models was analyzed. To understand precisely the nucleation and growth characteristics of CdSe quantum dots (QDs), we synthesized the CdSe QDs using various experimental conditions. Different model equations, like acceleratory growth-time curves, sigmoidal growth-time curves or Johnson-Mehl-Avrami-Kolmogorov (JMAK), acceleratory growthtime curves based on diffusion, geometric model growth-time curves, and nth order growth-time curves were fitted. Among all growth models, the JMAK model with α = 1 - {e^{ - {{(kt)}^n}}}, and n = 1 was the best fitting model with the MATLAB interactive curve-fitting procedure were used. Errors associated with the best-fitting model and statistics for the goodness of fit were analyzed. Most of the models were not as good as the other than the proposed model. The errors associated with the proposed model were minimal, and the growth kinetics and other associated statistical factors are very similar, for all the variables investigated. The minimal error associated with the reproducibility and the similar data for growth kinetics for all studied parameters indicated that microfluidic-assisted combinatorial synthesis can be used in the industrial production of QDs. By using the proposed model to obtain an understanding of growth of QDs, their size and properties can be managed and simulated.

  7. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185

  8. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy

    SciTech Connect

    Caram, Justin R.; Zheng, Haibin; Rolczynski, Brian S.; Griffin, Graham B.; Engel, Gregory S.; Dahlberg, Peter D.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.

    2014-02-28

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques.

  9. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy.

    PubMed

    Caram, Justin R; Zheng, Haibin; Dahlberg, Peter D; Rolczynski, Brian S; Griffin, Graham B; Dolzhnikov, Dmitriy S; Talapin, Dmitri V; Engel, Gregory S

    2014-02-28

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques.

  10. Facile and green synthesis of CdSe quantum dots in protein matrix: tuning of morphology and optical properties.

    PubMed

    Ahmed, M; Guleria, A; Rath, M C; Singh, A K; Adhikari, S; Sarkar, S K

    2014-08-01

    Herein, we have demonstrated a facile and green approach for the synthesis of Cadmium selenide (CdSe) quantum dots (QDs). The process was mediated by bovine serum albumin (BSA) and it was found that BSA plays the dual role of reducing agent as well as a stabilizing agent. The QDs exhibited sharp excitonic absorption features at ~500 nm and subsequently showed reasonably good photoluminescence (PL) at room temperature. The PL is seen to be strongly dependent on the concentration of the precursors and hence, the luminescence of these QDs could be conveniently tuned across the visible spectrum simply by varying molar ratio of the precursors. It can be envisaged from the fact that a red-shift of about 100 nm in the PL peak position was observed when the molar ratio of the precursors ([Cd2+]:[Se2-], in mM) was varied from 10:5 to 10:40. Subsequently, the charge carrier relaxation dynamics associated with the different molar ratio of precursors has been investigated and very interesting information regarding the energy level structures of these QDs were revealed. Most importantly, in conjunction with the optical tuning, the nanomorphology of these nanoparticles was found to vary with the change in molar ratios of Se and Cd precursors. This aspect can provide a new direction of controlling the shape of CdSe nanoparticles. The possible mechanism of the formation as well as for the shape variation of these nanoparticles with the molar ratios of precursors has been proposed, taking into account the role of amino acid residues (present in BSA). Moreover, the QDs were water soluble and possessed fairly good colloidal stability therefore, can have potential applications in catalysis and bio-labeling. On the whole, the present methodology of protein assisted synthesis is relatively new especially for semiconducting nanomaterials and may provide some unique and interesting aspects to control and fine tune the morphology vis-à-vis, their optical properties.

  11. CdSe quantum-dot-sensitized solar cell with ∼100% internal quantum efficiency.

    PubMed

    Fuke, Nobuhiro; Hoch, Laura B; Koposov, Alexey Y; Manner, Virginia W; Werder, Donald J; Fukui, Atsushi; Koide, Naoki; Katayama, Hiroyuki; Sykora, Milan

    2010-11-23

    We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO(2) film (NQD/TiO(2)), aqueous Na(2)S or Li(2)S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO(2) photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO(2) interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. We show that by utilizing BA-capped NQDs and aqueous Li(2)S as an electrolyte, it is possible to achieve ∼100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye-sensitized solar cells.

  12. Multicolored silica coated CdSe core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Goftman, Valentina V.; Markin, Alexey V.; De Saeger, Sarah; Goryacheva, Irina Y.

    2016-04-01

    Silanization is a convenient route to provide water-solubility to the quantum dots (QDs) with different structure. Green, orange and red emitting CdSe-based QDs were synthesized by varying of number and material of wider-band gap shells and fluorescent properties of QDs were characterized before and after silanization. It was shown that structure of the QD influences on the quantum yield of the silanized QDs: the better CdSe core is protected with wider-band gap semiconductor shells, the more fluorescence properties remain after silica coated QD possess. Hence silica coated QDs have a great perspectives for the multiplex analysis.

  13. Atomistic Analysis of Room Temperature Quantum Coherence in Two-Dimensional CdSe Nanostructures.

    PubMed

    Pal, Sougata; Nijjar, Parmeet; Frauenheim, Thomas; Prezhdo, Oleg V

    2017-03-02

    Recent experiments on CdSe nanoplatelets synthesized with precisely controlled thickness that eliminates ensemble disorder have allowed accurate measurement of quantum coherence at room temperature. Matching exactly the CdSe cores of the experimentally studied particles and considering several defects, we establish the atomistic origins of the loss of coherence between heavy and light hole excitations in two-dimensional CdSe and CdSe/CdZnS core/shell structures. The coherence times obtained using molecular dynamics based on tight-binding density functional theory are in excellent agreement with the measured values. We show that a long coherence time is a consequence of both small fluctuations in the energy gap between the excited state pair, which is much less than thermal energy, and a slow decay of correlation between the energies of the two states. Anionic defects at the core/shell interface have little effect on the coherence lifetime, while cationic defects strongly perturb the electronic structure, destroying the experimentally observed coherence. By coupling to the same phonon modes, the heavy and light holes synchronize their energy fluctuations, facilitating long-lived coherence. We further demonstrate that the electronic excitations are localized close to the surface of these narrow nanoscale systems, and therefore, they couple most strongly to surface acoustic phonons. The established features of electron-phonon coupling and the influence of defects, surfaces, and core/shell interfaces provide important insights into quantum coherence in nanoscale materials in general.

  14. Electrochemical Charging of CdSe Quantum Dots: Effects of Adsorption versus Intercalation.

    PubMed

    Puntambekar, Ajinkya; Wang, Qi; Miller, Lauren; Smieszek, Nicholas; Chakrapani, Vidhya

    2016-12-27

    Effects of electrochemical charging of quantum dots (QDs) have been reported previously, wherein optical and electrical properties could be modulated through cation adsorption and electron injection into the quantum-confined 1Se states. In this work, we report two different modes of electrochemical double-layer charging in CdSe QDs and their effects on the electronic and optical properties. We show that the charging mechanism at the interface involves cation intercalation for smaller ions, such as Li(+), Na(+), or K(+), and cation adsorption for larger bulky ions, such as tetrabutylammonium ions, where steric hindrance precludes intercalation. As a result, while cation adsorption leads to an increase in the absorbance in the mid-infrared spectral range, cation intercalation into the CdSe core results in an absorbance increase from the visible to infrared spectral range, an enhancement in radiative lifetime of e(-), an increase of 158% in the intensity of band-edge photoluminescence, and strong emission in the near-infrared spectral range as a result of the formation of Se vacancies. The nature of charging mechanisms is discussed using the results of combined photoluminescence, radiative lifetime, and X-ray photoemission studies. The cation-coupled electronic and optical modulation reported here in CdSe QDs have important implications for electrochromic smart windows, photovoltaics, and other devices.

  15. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS

    NASA Astrophysics Data System (ADS)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2017-05-01

    The size and shape dependent semiconductor quantum dots (0D nanoparticles) with color tunability demonstrating significant influence in a biological system and considered as ideal probes. Here, a non-coordinated colloidal approach was used for the synthesis of CdSe, CdSe/ZnS and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm. The synthesized nanocrystals show a high crystallinity, examined by X-ray diffraction (XRD) and high-resolution electron microscopy (HRTEM). The core-shell semiconductor QDs exhibit stronger photoluminescence (PL) as compared to the core QDs. The strong PL with small full-width half maximum (FWHM) indicates that the prepared QDs have a nearly uniform size distribution and well dispersibility. The quantum yield (QY) of core-shell QDs increases due to the surface passivation. Further, the PL of BSA is quenched strongly by the presence of core-shell QDs and follows the well-known Stern-Volmer (S-V) relation, whereas the PL lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among CdSe core, CdSe/ZnS and CdSe/CdS core-shell QDs, the CdSe/ZnS QDs shows the least cytotoxicity and most biocompatibility. Thus, the prepared core-shell QDs are biocompatible and exhibit strong sensing ability.

  16. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS.

    PubMed

    Ratnesh, R K; Mehata, Mohan Singh

    2017-02-16

    The size and shape dependent semiconductor quantum dots (0D nanoparticles) with color tunability demonstrating significant influence in a biological system and considered as ideal probes. Here, a non-coordinated colloidal approach was used for the synthesis of CdSe, CdSe/ZnS and CdSe/CdS core-shell quantum dots (QDs) of 3-4nm. The synthesized nanocrystals show a high crystallinity, examined by X-ray diffraction (XRD) and high-resolution electron microscopy (HRTEM). The core-shell semiconductor QDs exhibit stronger photoluminescence (PL) as compared to the core QDs. The strong PL with small full-width half maximum (FWHM) indicates that the prepared QDs have a nearly uniform size distribution and well dispersibility. The quantum yield (QY) of core-shell QDs increases due to the surface passivation. Further, the PL of BSA is quenched strongly by the presence of core-shell QDs and follows the well-known Stern-Volmer (S-V) relation, whereas the PL lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among CdSe core, CdSe/ZnS and CdSe/CdS core-shell QDs, the CdSe/ZnS QDs shows the least cytotoxicity and most biocompatibility. Thus, the prepared core-shell QDs are biocompatible and exhibit strong sensing ability.

  17. Combining ligand-induced quantum-confined stark effect with type II heterojunction bilayer structure in CdTe and CdSe nanocrystal-based solar cells.

    PubMed

    Yaacobi-Gross, Nir; Garphunkin, Natalia; Solomeshch, Olga; Vaneski, Aleksandar; Susha, Andrei S; Rogach, Andrey L; Tessler, Nir

    2012-04-24

    We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.

  18. Ultrafast spectroscopy of quantum confined states in a single CdSe nanowire.

    PubMed

    Schumacher, Thorsten; Giessen, Harald; Lippitz, Markus

    2013-04-10

    We measure for the first time transient absorption spectra of individual CdSe nanowires with about 10 nm diameter. Confinement of the carrier wave functions leads to discrete states which can be described by a six-band effective mass model. Combining transient absorption and luminescence spectroscopy allows us to track the excitation dynamics in the visible and near-infrared spectral range. About 10% of all absorbed photons lead to an excitation of the lowest energy state. Of these excitations, less than 1% lead to a photon in the optical far-field. Almost all emission is reabsorbed by other parts of the nanowire. These findings might explain the low overall quantum efficiency of CdSe nanowires.

  19. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling.

    PubMed

    Wang, Qisui; Ye, Fangyun; Fang, Tingting; Niu, Wenhan; Liu, Peng; Min, Xinmin; Li, Xi

    2011-03-01

    A simple method was developed for preparing CdSe quantum dots (QDs) using a common protein (bovine serum albumin (BSA)) to sequester QD precursors (Cd(2+)) in situ. Fluorescence (FL) and absorption spectra showed that the chelating time between BSA and Cd(2+), the molar ratio of BSA/Cd(2+), temperature, and pH are the crucial factors for the quality of QDs. The average QD particle size was estimated to be about 5 nm, determined by high-resolution transmission electron microscopy. With FL spectra, Fourier transform infrared spectra, and thermogravimetric analysis, an interesting mechanism was discussed for the formation of the BSA-CdSe QDs. The results indicate that there might be conjugated bonds between CdSe QDs and -OH, -NH, and -SH groups in BSA. In addition, fluorescence imaging suggests that the QDs we designed can successfully label Escherichia coli cells, which gives us a great opportunity to develop biocompatible tools to label bacteria cells.

  20. Film formation of CdSe quantum dot embedded phosphate glass on an FTO glass substrate

    NASA Astrophysics Data System (ADS)

    Han, Karam; Kim, Yoon Hwa; Im, Won Bin; Chung, Woon Jin

    2015-07-01

    A thick film with CdSe quantum dot (QD) embedded glass was formed on a fluorine-doped tin oxide (FTO) glass substrate. Phosphate glasses with different CdO and ZnSe concentrations were synthesized, and the heat treatment conditions were varied to determine the appropriate QD and film formation conditions. Phosphate glass with 1 mol. % CdO and 1.5 mol. % ZnSe showed controlled crystallization of CdSe QDs when they were heat treated at 550℃ for 1 hr. Absorption spectra and Raman spectroscopy identified the QD formation. Precursor glass was ground into powder and pasted onto FTO only and TiO2/FTO glass substrates via the screen printing method. Glass film embedded with QDs was successfully formed after sintering, thus demonstrating its potential for film applications. [Figure not available: see fulltext.

  1. The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods.

    PubMed

    Asokan, Subashini; Krueger, Karl M; Alkhawaldeh, Ammar; Carreon, Alessandra R; Mu, Zuze; Colvin, Vicki L; Mantzaris, Nikos V; Wong, Michael S

    2005-10-01

    Fluorescent semiconductor nanoparticles, or quantum dots, have potential uses as an optical material, in which the optoelectronic properties can be tuned precisely by particle size. Advances in chemical synthesis have led to improvements in size and shape control, cost, and safety. A limiting step in large-scale production is identified to be the raw materials cost, in which a common synthesis solvent, octadecene, accounts for most of the materials cost for a batch of CdSe quantum dots. Thus, less expensive solvents are needed. In this paper, we identify heat transfer fluids, a class of organic liquids commonly used in chemical process industries to transport heat between unit operations, as alternative solvents for quantum dot synthesis. We specifically show that two heat transfer fluids can be used successfully in the synthesis of CdSe quantum dots with uniform particle sizes. We show that the synthesis chemistry for CdSe/CdS core/shell quantum dots and CdSe quantum rods can also be performed in heat transfer fluids. With the aid of a population balance model, we interpret the effect of different HT fluids on QD growth kinetics in terms of solvent effects, i.e., solvent viscosity, CdSe bulk solubility in the solvent, and surface free energy.

  2. Optoelectronic Applications of Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Zhang, Nanzhu; Brenneman, Kimber; Wu, Tsai Chin; Jung, Hyeson; Biswas, Sushmita; Sen, Banani; Reinhardt, Kitt; Liao, Sicheng; Stroscio, Michael A.; Dutta, Mitra

    This chapter highlights recent optoelectronic applications of colloidal quantum dots (QDs). In recent years, many colloidal QD-based optoelectronic devices, and device concepts have been proposed and studied. Many of these device concepts build on traditional optoelectronic device concepts. Increasingly, many new optoelectronic device concepts have been based on the use of biomolecule QD complexes. In this chapter, both types of structures are discussed. Special emphasis is placed on new optoelectronic device concepts that incorporate DNA-based aptamers in biomolecule QD complexes. Not only are the extensions of traditional devices and concepts realizable, such as QD-based photo detectors, displays, photoluminescent and photovoltaic devices, light-emitting diodes (LEDs), photovoltaic devices, and solar cells, but new devices concepts such a biomolecule-based molecular sensors possible. This chapter highlights a number of such novel QD-based devices and device concepts.

  3. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes

    PubMed Central

    Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio

    2015-01-01

    Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the ‘reversed oxygen-sensing’ capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses. PMID:25910499

  4. Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking.

    PubMed

    Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki

    2016-10-02

    Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY  60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.

  5. Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots.

    PubMed

    Bloom, Brian P; Kiran, Vankayala; Varade, Vaibhav; Naaman, Ron; Waldeck, David H

    2016-07-13

    This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current-voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices.

  6. Purcell effect for CdSe /ZnSe quantum dots placed into hybrid micropillars

    NASA Astrophysics Data System (ADS)

    Robin, I. C.; André, R.; Balocchi, A.; Carayon, S.; Moehl, S.; Gérard, J. M.; Ferlazzo, L.

    2005-12-01

    This letter reports the observation of the Purcell effect for CdSe /ZnSe quantum dots located in a hybrid micropillar. The sample consist of a λ /2-ZnSe cavity sandwiched between two SiO2/TiO2 Bragg reflectors. Time-resolved photoluminescence (PL) measurements on a series of single-quantum dots were used to probe the Purcell effect in a 1.1μm diameter pillar. A three-fold enhancement of quantum-dot spontaneous emission rate is observed for quantum dots in resonance with excited degenerated modes of the pillar. The variation of the PL decay shortening from dot to dot is interpreted calculating the theoretical maximal Purcell factor for the different modes resonant with the dots.

  7. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    SciTech Connect

    Bera, Susnata; Singh, Shashi B.; Ray, S.K.

    2012-05-15

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage ({approx}2.2 V) .The EL peak intensity was found to increase by increasing the operating current. - Graphical abstract: Light emitting diode was fabricated using CdSe quantum dots using olive oil as the capping agent, instead of toxic phosphine. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting device shows strong electroluminescence in the range 630-661 nm. Highlights: Black-Right-Pointing-Pointer CdSe Quantum dots were synthesized using olive oil as the capping agent. Black-Right-Pointing-Pointer Light emitting device was fabricated using CdSe QDs/P3HT polymer heterojunction. Black-Right-Pointing-Pointer The I-V characteristics study showed low turn on voltage at {approx}2.2 V. Black-Right-Pointing-Pointer The EL peak intensity increases with increasing the operating current.

  8. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe.

    PubMed

    Bang, Jin Ho; Kamat, Prashant V

    2009-06-23

    CdSe and CdTe nanocrystals are linked to nanostructured TiO2 films using 3-mercaptopropionic acid as a linker molecule for establishing the mechanistic aspects of interfacial charge transfer processes. Both these quantum dots are energetically capable of sensitizing TiO2 films and generating photocurrents in quantum dot solar cells. These two semiconductor nanocrystals exhibit markedly different external quantum efficiencies ( approximately 70% for CdSe and approximately 0.1% for CdTe at 555 nm). Although CdTe with a more favorable conduction band energy (E(CB) = -1.0 V vs NHE) is capable of injecting electrons into TiO2 faster than CdSe (E(CB) = -0.6 V vs NHE), hole scavenging by a sulfide redox couple remains a major bottleneck. The sulfide ions dissolved in aqueous solutions are capable of scavenging photogenerated holes in photoirradiated CdSe system but not in CdTe. The anodic corrosion and exchange of Te with S dominate the charge transfer at the CdTe interface. Factors that dictate the efficiency and photostability of CdSe and CdTe quantum dots are discussed.

  9. Trion decay in colloidal quantum dots.

    PubMed

    Jha, Praket P; Guyot-Sionnest, Philippe

    2009-04-28

    Using charged films of colloidal CdSe/CdS core/shell quantum dots of approximately 3.5 to 4.5 nm core diameters and 0.6 to 1.2 nm thick CdS shells, the radiative and nonradiative decay of the negatively charged exciton, the trion T-, are measured. The T- radiative rate is faster than the exciton by a factor of 2.2 +/- 0.4 and estimated at approximately 10 ns. The T- lifetime is approximately 0.7-1.5 ns for the samples measured and is longer than the biexciton lifetime by a factor or 7.5 +/- 1.7.

  10. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    SciTech Connect

    Selyukov, A. S. Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.

    2015-04-15

    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.

  11. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Vibin, Muthunayagam; Vinayakan, Ramachandran; John, Annie; Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie

    2011-06-01

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0-72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  12. Interaction of the CdSe quantum dots with plant cell walls.

    PubMed

    Djikanović, Daniela; Kalauzi, Aleksandar; Jeremić, Milorad; Xu, Jianmin; Mićić, Miodrag; Whyte, Jeffrey D; Leblanc, Roger M; Radotić, Ksenija

    2012-03-01

    There is an increasing application of quantum dots (QDs) in plant science, as markers for the cells or their cell walls (CWs). In a plant cell the CW is a first target place for external agents. We studied interaction of CdSe QDs with CWs isolated from a conifer -Picea omorika (Panč) Purkynĕ branch. Binding of CdSe QDs was followed by using fluorescence microscopy, fluorescence and FT-IR spectroscopy. The aim of the study was to see whether the QDs induce structural changes in the CW, as well as to find out which kind of interactions between QDs and CWs occur and to which particular constituent polymers QDs preferably bind. The isolated CW is an appropriate object for study of the interactions with nanoparticles. The results show that in the CW, CdSe predominantly binds to cellulose, via OH groups and to lignin, via the conjugated CC/C-C chains. The differences in interaction of wet and dry CWs with QDs/chloroform were also studied. In the reaction of the dry CW sample with QDs/chloroform, hydrophobic interactions are dominant. When water was added after QDs/chloroform, hydrophilic interactions enable a partial reconstruction of the CC chains. The results have an implication on the use of the QDs in plant bio-imaging.

  13. Large stokes shift of Ag doped CdSe quantum dots via aqueous route.

    PubMed

    Huang, Jian; Jiang, Yang; Duan, Hongyan; Liu, Chao; Mi, Longfei; Lan, Xinzheng; Zhou, Hongyang; Zhong, Honghai

    2013-10-01

    Monodispersed and luminescent Ag-doped CdSe semiconductor quantum dots (d-dots) were synthesized by an aqueous route assisted with electrochemical preparation of Se source with 3-mercaptopropionic acid as stabilizer. The silver dopants were incorporated into the host crystals via cation-exchange mechanism. X-ray diffraction patterns revealed that the as-synthesized CdSe:Ag d-dots were well retained in the zinc blende structure. The CdSe:Ag d-dots that exhibited uniform size distribution and good crystallnity could be observed by High-resolution transmission electron microscopy (HRTEM), with average diameter of 2.7 nm. Successful doping was confirmed by X-ray photoelectron spectroscopy survey spectra. The peculiar Ag-related photoluminescence showed strong intensity, and at the same time, intrinsic band-edge exciton emission of CdSe QDs was suppressed. The dopant emission exhibited larger Stockes shift of - 0.51 eV than that of the band-gap emission, and varied from 546 to 583 nm by changing electrolytic time. Possible radiative recombination mechanism of the aqueous Ag-doped CdSe d-dots was discussed. The results demonstrated that doping can be an effective way to manipulate the optical properties of semiconductor nanocrystals.

  14. Synthesis and properties of CdSe Quantum Dot sensitized ZnO nanocomposites

    NASA Astrophysics Data System (ADS)

    Jain, Shefali; Sharma, Shailesh N.; Kumar, Mahesh

    2011-12-01

    In this work, zinc oxide nanocrystals with an average particle size of 13-22 nm are readily synthesized in aqueous medium by the wet synthesis method. Different sized nanocrystals obtained with change in calcination temperature are characterized by PL photoluminescence (PL) and UV-vis absorption spectroscopies, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The average crystal size of the as prepared ZnO nanopowder is determined by XRD and was found to be in good agreement with the UV-vis absorption analysis. The quality of different ZnO nanopowders is confirmed by XRD spectra. On the basis of different characterizations, ZnO calcined for 1 h (due to its large size and less agglomeration) is chosen for synthesis of ZnO-CdSe nanocomposites with variable sized CdSe QD's (Quantum Dots). Nano-composites are synthesized using bifunctional linker molecule Mercaptopropionic Acid (MPA), and by directly adsorbing CdSe QD's over the surface of ZnO nanocrystals. The difference in charge transfer mechanism in ZnO-CdSe nanocomposites due to different crystallite size of CdSe QD's is studied. Higher crystallinity of ZnO-CdSe nanocomposites can be determined from XRD characterization. Size and mode of attachment in various ZnO-CdSe nanocomposites are determined by SEM studies.

  15. Hybrid passivated colloidal quantum dot solids

    NASA Astrophysics Data System (ADS)

    Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H.

    2012-09-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.

  16. Hybrid passivated colloidal quantum dot solids.

    PubMed

    Ip, Alexander H; Thon, Susanna M; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R; Carey, Graham H; Fischer, Armin; Kemp, Kyle W; Kramer, Illan J; Ning, Zhijun; Labelle, André J; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H

    2012-09-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.

  17. Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods.

    PubMed

    Mukhina, Maria V; Maslov, Vladimir G; Baranov, Alexander V; Artemyev, Mikhail V; Orlova, Anna O; Fedorov, Anatoly V

    2013-09-01

    We report on the observation of spectral dependence of absorption anisotropy in a CdSe quantum rod (QR) ensemble, which is aligned in a polymer film with a nanocrystal concentration of 2×10(-5) M. The experimental data on the polarization direction and anisotropy factor were obtained for the lowest excitonic transition and the second group of transitions in the QR. The nonzero constant value of anisotropy was investigated for the high-energy transitions, and is evidence of the one-dimensional confinement in the QR.

  18. Determination of the Exciton Binding Energy in CdSe Quantum Dots

    SciTech Connect

    Meulenberg, R; Lee, J; Wolcott, A; Zhang, J; Terminello, L; van Buuren, T

    2009-10-27

    The exciton binding energy (EBE) in CdSe quantum dots (QDs) has been determined using x-ray spectroscopy. Using x-ray absorption and photoemission spectroscopy, the conduction band (CB) and valence band (VB) edge shifts as a function of particle size have been determined and combined to obtain the true band gap of the QDs (i.e. without and exciton). These values can be compared to the excitonic gap obtained using optical spectroscopy to determine the EBE. The experimental EBE results are compared with theoretical calculations on the EBE and show excellent agreement.

  19. Synthesis and Characterizations of Pb-modified CdSe Aqueous Quantum Dots and Their Applications in Quantum Dot-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Hsin

    Quantum Dots (QDs) are semiconductor nanocrystals with typical size ranges around 1-20 nm. They exhibit distinctive size-dependent photoluminescence (PL) properties due to the quantum confinement effect. QDs have great potentials in display, lighting, lasing, bioimaging, fluorescent label, sensor, photodetector, and photovoltaic applications, and have been widely studied in the past decades. Cadmium selenide (CdSe) QDs have been synthesized using an environmentally friendly, aqueous method under low temperature. While traditional QDs synthesized by hot injection method using organic solvent generally exhibit edge-state emission with narrow peaks, aqueous quantum dots (AQDs) tend to have trap-state emissions with broad peaks. The objective of this thesis is to investigate how Pb modifications in CdSe AQDs synthesis can affect the optoelectronic properties of the QDs and how these modifications affect their corresponding photovoltaic performance in quantum dot-sensitized solar cell (QDSSC) applications. Lead (Pb) precursor has been introduced either during the synthesis or after the synthesis of CdSe AQDs forming either Pb-doped or Pb-coated CdSe QDs, respectively. Pb-doped CdSe QDs exhibit red-shift in both absorption and emission spectra while Pb-coated CdSe QDs exhibit blue-shift in both absorption and emission spectra along with the generation of more surface defects. Although blue-shifted absorption indicating a narrower absorption range and the surface defects providing undesired recombination pathways are detrimental to solar cell performance, however surprisingly, we found that QDSSCs made from Pb-coated CdSe QDs actually had better solar cell performance than that made from Pb-doped CdSe QDs. We attributed this finding to a protection/passivation layer formed in-situ when the coated Pb react with the iodide/triiodide electrolyte during solar cell operation resulting in QDSSCs with better charge injection and stability.

  20. Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin

    NASA Astrophysics Data System (ADS)

    Wang, Yilin; Mo, Yunchuan; Zhou, Liya

    2011-09-01

    A novel method has been developed for the synthesis of thioglycolic acid (TGA)-capped CdSe quantum dots (QDs) in an aqueous medium when selenium dioxide worked as a selenium source and sodium borohydride acted as a reductant. The interaction between CdSe QDs and pepsin was investigated by fluorescence spectroscopy. It was proved that the fluorescence quenching of pepsin by CdSe QDs was mainly a result of the formation of CdSe-pepsin complex. Based on the fluorescence quenching results, the Stern-Volmer quenching constant ( Ksv), binding constant ( KA) and binding sites ( n) were calculated. According to the Foster's non-radiative energy transfer theory, the binding distance ( r) between pepsin and CdSe QDs was obtained. The influence of CdSe QDs on the conformation of pepsin has been analyzed by synchronous fluorescence spectra, which provided that the secondary structure of pepsin has been changed by the interaction of CdSe QDs with pepsin.

  1. Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin.

    PubMed

    Wang, Yilin; Mo, Yunchuan; Zhou, Liya

    2011-09-01

    A novel method has been developed for the synthesis of thioglycolic acid (TGA)-capped CdSe quantum dots (QDs) in an aqueous medium when selenium dioxide worked as a selenium source and sodium borohydride acted as a reductant. The interaction between CdSe QDs and pepsin was investigated by fluorescence spectroscopy. It was proved that the fluorescence quenching of pepsin by CdSe QDs was mainly a result of the formation of CdSe-pepsin complex. Based on the fluorescence quenching results, the Stern-Volmer quenching constant (Ksv), binding constant (KA) and binding sites (n) were calculated. According to the Foster's non-radiative energy transfer theory, the binding distance (r) between pepsin and CdSe QDs was obtained. The influence of CdSe QDs on the conformation of pepsin has been analyzed by synchronous fluorescence spectra, which provided that the secondary structure of pepsin has been changed by the interaction of CdSe QDs with pepsin.

  2. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.

    PubMed

    Bang, Jin Ho; Kamat, Prashant V

    2011-12-27

    The development of organic/inorganic hybrid nanocomposite systems that enable efficient solar energy conversion has been important for applications in solar cell research. Nanostructured carbon-based systems, in particular C(60), offer attractive strategies to collect and transport electrons generated in a light harvesting assembly. We have assembled CdSe-C(60) nanocomposites by chemically linking CdSe quantum dots (QDs) with thiol-functionalized C(60). The photoinduced charge separation and collection of electrons in CdSe QD-C(60) nanocomposites have been evaluated using transient absorption spectroscopy and photoelectrochemical measurements. The rate constant for electron transfer between excited CdSe QD and C(60) increased with the decreasing size of the CdSe QD (7.9 × 10(9) s(-1) (4.5 nm), 1.7 × 10(10) s(-1) (3.2 nm), and 9.0 × 10(10) s(-1) (2.6 nm)). Slower hole transfer and faster charge recombination and transport events were found to dominate over the forward electron injection process, thus limiting the deliverance of maximum power in CdSe QD-C(60)-based solar cells. The photoinduced charge separation between CdSe QDs and C(60) opens up new design strategies for developing light harvesting assemblies.

  3. Charge-extraction strategies for colloidal quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Lan, Xinzheng; Masala, Silvia; Sargent, Edward H.

    2014-03-01

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p- and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction.

  4. A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material.

    PubMed

    Barceló, Irene; Campiña, José M; Lana-Villarreal, Teresa; Gómez, Roberto

    2012-04-28

    A hybrid quantum dot sensitized solar cell (QDSC) composed of CdSe quantum dots (QDs) as light harvesters and TiO(2) and 3,3'''-didodecyl-quaterthiophene (QT12) as electron and hole conductors, respectively, has been fully processed in air. The sensitizer has been introduced into the TiO(2) nanoporous layer either by the successive ionic layer adsorption and reaction method or by attaching colloidal QDs either directly or through molecular cables (linkers). As previously observed for QDSCs based on liquid electrolytes, the efficiency depends on the way of QD attachment, the direct adsorption of QDs being the procedure yielding the best results. Thermal annealing was applied in order to enhance the device response under illumination. Remarkable open circuit potentials are attained (close to 1 V), leading to an efficiency of 0.34% (AM 1.5G) in initial tests. Although low, it ranks as one of the highest values reported for solid state QDSCs based on titanium dioxide and colloidal quantum dots. This journal is © the Owner Societies 2012

  5. Pulsed laser deposition of CdSe Quantum dots on Zn2SnO4 nanowires and their photovoltaic applications.

    PubMed

    Dai, Qilin; Chen, Jiajun; Lu, Liyou; Tang, Jinke; Wang, Wenyong

    2012-08-08

    In this work we report a physical deposition-based, one-step quantum dot (QD) synthesis and assembly on ternary metal oxide nanowires for photovoltaic applications. Typical solution-based synthesis of colloidal QDs for QD sensitized solar cells involves nontrivial ligand exchange processing and toxic wet chemicals, and the effect of the ligands on carrier transport has not been fully understood. In this research using pulsed laser deposition, CdSe QDs were coated on Zn(2)SnO(4) nanowires without ligand molecules, and the coverage could be controlled by adjusting the laser fluence. Growth of QDs in dense nanowire network structures was also achieved, and photovoltaic cells fabricated using this method exhibited promising device performance. This approach could be further applied for the assembly of QDs where ligand exchange is difficult and could possibly lead to reduced fabrication cost and improved device performance.

  6. Controlling the cytotoxicity of CdSe magic-sized quantum dots as a function of surface defect density.

    PubMed

    Silva, Anielle Christine Almeida; Silva, Marcelo José Barbosa; da Luz, Felipe Andrés Cordero; Silva, Danielle Pereira; de Deus, Samantha Luara Vieira; Dantas, Noelio Oliveira

    2014-09-10

    Quantum dots are potentially very useful as fluorescent probes in biological systems. However, they are inherently cytotoxic because of their constituents. We controlled the cytotoxicity of CdSe magic-sized quantum dots (MSQDs) as a function of surface defect density by altering selenium (Se) concentration during synthesis. Higher Se concentrations reduced the cytotoxicity of the CdSe MSQDs and diminished mRNA expression of methallothionein because of the low cadmium ions (Cd(2+)) concentration adsorbed on the surface of the MSQDs. These results agree with luminescence spectra, which show that higher Se concentrations decrease the density of surface defects. Therefore, our results describe for the first time a simple way of controlling the cytotoxicity of CdSe MSQDs and making them safer to use as fluorescence probes in biological systems.

  7. Assemblies of Colloidal CdSe Tetrapod Nanocrystals with Lengthy Arms for Flexible Thin-Film Transistors.

    PubMed

    Heo, Hyeonjun; Lee, Moo Hyung; Yang, Jeehye; Wee, Han Sol; Lim, Jaehoon; Hahm, Donghyo; Yu, Ji Woong; Bae, Wan Ki; Lee, Won Bo; Kang, Moon Sung; Char, Kookheon

    2017-04-12

    Herein, we report unique features of the assemblies of tetrapod-shaped colloidal nanocrystals (TpNCs) with lengthy arms applicable to flexible thin-film transistors. Due to the extended nature of tetrapod geometry, films made of the TpNC assemblies require reduced numbers of inter-NC hopping for the transport of charge carriers along a given channel length; thus, enhanced conductivity can be achieved compared to those made of typical spherical NCs without arms. Moreover, electrical conduction through the assemblies is tolerant against mechanical bending because interconnections between TpNCs can be well-preserved under bending. Interestingly, both the conductivity of the assemblies and their mechanical tolerance against bending are improved with an increase in the length of tetrapod arms. The arm length-dependency was demonstrated in a series of CdSe TpNC assemblies with different arm lengths (l = 0-90 nm), whose electrical conduction was modulated through electrolyte gating. From the TpNCs with the longest arm length included in the study (l = 90 nm), the film conductivity as high as 20 S/cm was attained at 3 V of gate voltage, corresponding to electron mobility of >10 cm(2)/(V s) even when evaluated conservatively. The high channel conductivity was retained (∼90% of the value obtained from the flat geometry) even under high bending (bending radius = 5 mm). The results of the present study provide new insights and guidelines for the use of colloidal nanocrystals in solution-processed flexible electronic device applications.

  8. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Au, Giang H. T.; Y Shih, Wan; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control.

  9. Effect of Ligands on Characteristics of (CdSe)13 Quantum Dot

    SciTech Connect

    Gao, Yang; Zhou, Bo; Kang, Seung-gu; Xin, Minsi; Yang, Ping; Dai, Xing; Wang, Zhigang; Zhou, Ruhong

    2014-01-01

    The widespread applications of quantum dots (QDs) have spurred an increasing interest in the study of their coating ligands, which can not only protect the electronic structures of the central QDs, but also control their permeability through biological membranes with both size and shape. In this work, we have used density functional theory (DFT) to investigate the electronic structures of (CdSe)13 passivated by OPMe2(CH2)nMe ligands with different lengths and various numbers of branches (Me=methyl group, n = 0, 1-3). Our results show that the absorption peak in the ultraviolet-visible (UV-vis) spectra displays a clear blue-shift, on the scale of ~100 nm, upon the binding of ligands. Once the total number of ligands bound with (CdSe)13 reached a saturated number (9 or 10), no more blue-shift occurred in the absorption peak in the UV-vis spectra. On the other hand, the aliphatic chain length of ligands has a negligible effect on the optical properties of the QD core. Analyses of the bonding characteristics confirm that optical transitions are dominantly governed by the central QD core rather than the organic passivation. Interestingly, the density of states (DOS) share similar characteristics as vibrational spectra, even though there is no coordination vibration mode between the ligands and the central QD. These findings might provide insights on the material design for the passivation of quantum dots for biomedical applications.

  10. Role of the polymer matrix on the photoluminescence of embedded CdSe quantum dots.

    PubMed

    Tselikov, Gleb I; Timoshenko, Victor Yu; Golovan, Leonid A; Plenge, Jürgen; Shatalova, Alina M; Shandryuk, Georgiy A; Kutergina, Irina Yu; Merekalov, Alexey S; Rühl, Eckart; Talroze, Raisa V

    2015-04-07

    The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen-bonded homopolymers from a family of poly[4-(n-acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol-containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix. The PL lifetimes and quantum yield in cholesteric nanocomposites are higher than those in smectic ones. This is interpreted in terms of a higher order of the smectic matrix in comparison to the cholesteric one. CdSe QDs in the ordered smectic matrix demonstrate a splitting of the exciton PL band and an enhancement of the photoinduced differential transmission. These results reveal the effects of the structure of polymer LC matrices on the optical properties of embedded QDs, which offer new possibilities for photonic applications of QD-LC polymer nanocomposites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photoluminescence enhancement of CdSe quantum dots: a case of organogel-nanoparticle symbiosis.

    PubMed

    Wadhavane, Prashant D; Galian, Raquel E; Izquierdo, M Angeles; Aguilera-Sigalat, Jordi; Galindo, Francisco; Schmidt, Luciana; Burguete, M Isabel; Pérez-Prieto, Julia; Luis, Santiago V

    2012-12-19

    Highly fluorescent organogels (QD-organogel), prepared by combining a pseudopeptidic macrocycle and different types of CdSe quantum dots (QDs), have been characterized using a battery of optical and microscopic techniques. The results indicate that the presence of the QDs not only does not disrupt the supramolecular organization of the internal fibrillar network of the organogel to a significant extent, but it also decreases the critical concentration of gelator needed to form stable and thermoreversible organogels. Regarding the photophysical properties of the QDs, different trends were observed depending on the presence of a ZnS inorganic shell around the CdSe core. Thus, while the core-shell QDs preserve their photophysical properties in the organogel medium, a high to moderate increase of the fluorescence intensity (up to 528%) and the average lifetime (up to 1.7), respectively, was observed for the core QDs embedded in the organogel. The results are relevant for the development of luminescent organogels based on quantum dots, which have potential applications as advanced hybrid materials in different fields.

  12. Improving the performance of colloidal quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Giménez, Sixto; Mora-Seró, Iván; Macor, Lorena; Guijarro, Nestor; Lana-Villarreal, Teresa; Gómez, Roberto; Diguna, Lina J.; Shen, Qing; Toyoda, Taro; Bisquert, Juan

    2009-07-01

    Solar cells based on a mesoporous structure of TiO2 and the polysulfide redox electrolyte were prepared by direct adsorption of colloidal CdSe quantum dot light absorbers onto the oxide without any particular linker. Several factors cooperate to improve the performance of quantum-dot-sensitized solar cells: an open structure of the wide bandgap electron collector, which facilitates a higher covering of the internal surface with the sensitizer, a surface passivation of TiO2 to reduce recombination and improved counter electrode materials. As a result, solar cells of 1.83% efficiency under full 1 sun illumination intensity have been obtained. Despite a relatively large short circuit current (Jsc = 7.13 mA cm-2) and open circuit voltage (Voc = 0.53 V), the colloidal quantum dot solar cell performance is still limited by a low fill factor of 0.50, which is believed to arise from charge transfer of photogenerated electrons to the aqueous electrolyte.

  13. The Effect of Roughened Metallic Films on Colloidal Quantum Dot Energy Transfer

    NASA Astrophysics Data System (ADS)

    Ferri, Christopher; Ghosh, Somnath; Rich, Brent; Khine, Michelle; Ghosh, Sayantani

    2009-03-01

    We investigate self-organized, roughened metallic surfaces as a platform for enhanced energy transfer between colloidal Cadmium Selenide (CdSe) quantum dots (QD). Pre-stressed thermoplastic substrates are sputter coated with gold palladium (AuPd) to create thin films. When heated, due to differing coefficients of thermal expansion of the plastic and metal, the AuPd film buckles to form micro- to nano-meter sized structures. QDs deposited on these self-organized metallic structures exhibit changes in their static and dynamic optical characteristics, which include spectral red-shift and multiple recombination decay rates. These observations can be attributed to a combination of enhanced electronic coupling between close-packed QDs and plasmonic coupling between the QD and metallic structures. We then leverage these properties to fabricate controlled, directional structures using this self-organized method which can be utilized as biochemical sensors.

  14. Controlled placement of colloidal quantum dots in sub-15 nm clusters

    NASA Astrophysics Data System (ADS)

    Manfrinato, Vitor R.; Wanger, Darcy D.; Strasfeld, David B.; Han, Hee-Sun; Marsili, Francesco; Arrieta, Jose P.; Mentzel, Tamar S.; Bawendi, Moungi G.; Berggren, Karl K.

    2013-03-01

    We demonstrated a technique to control the placement of 6 nm-diameter CdSe and 5 nm-diameter CdSe/CdZnS colloidal quantum dots (QDs) through electron-beam lithography. This QD-placement technique resulted in an average of three QDs in each cluster, and 87% of the templated sites were occupied by at least one QD. These QD clusters could be in close proximity to one another, with a minimum separation of 12 nm. Photoluminescence measurements of the fabricated QD clusters showed intermittent photoluminescence, which indicates that the QDs were optically active after the fabrication process. This optimized top-down lithographic process is a step towards the integration of individual QDs in optoelectronic and nano-optical systems.

  15. Controlled placement of colloidal quantum dots in sub-15 nm clusters.

    PubMed

    Manfrinato, Vitor R; Wanger, Darcy D; Strasfeld, David B; Han, Hee-Sun; Marsili, Francesco; Arrieta, Jose P; Mentzel, Tamar S; Bawendi, Moungi G; Berggren, Karl K

    2013-03-29

    We demonstrated a technique to control the placement of 6 nm-diameter CdSe and 5 nm-diameter CdSe/CdZnS colloidal quantum dots (QDs) through electron-beam lithography. This QD-placement technique resulted in an average of three QDs in each cluster, and 87% of the templated sites were occupied by at least one QD. These QD clusters could be in close proximity to one another, with a minimum separation of 12 nm. Photoluminescence measurements of the fabricated QD clusters showed intermittent photoluminescence, which indicates that the QDs were optically active after the fabrication process. This optimized top-down lithographic process is a step towards the integration of individual QDs in optoelectronic and nano-optical systems.

  16. Nanosecond colloidal quantum dot lasers for sensing.

    PubMed

    Guilhabert, B; Foucher, C; Haughey, A-M; Mutlugun, E; Gao, Y; Herrnsdorf, J; Sun, H D; Demir, H V; Dawson, M D; Laurand, N

    2014-03-24

    Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors' knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting lasers is as low as 0.5 mJ/cm² for a 610 nm emission and the typical linewidth is below 0.3 nm. The emission wavelength of the lasers can be set at the design stage and laser operation between 605 nm and 616 nm, while using the exact same CQD gain material, is shown. In addition, the potential of such CQD lasers for refractive index sensing in solution is demonstrated by immersion in water.

  17. Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots.

    PubMed

    Hosseini, Morteza; Ganjali, Mohammad R; Vaezi, Zahra; Faridbod, Farnoush; Arabsorkhi, Batool; Sheikhha, Mohammad H

    2014-01-01

    The intensity of emitted light from CdSe quantum dots (QDs)-H2O2 is described as a novel chemiluminescence (CL) reaction for determination of dysprosium. This reaction is based on the catalytic effect of Dy(3+) ions, causing a significant increase in the light emission, as a result of the reaction of quantum dots (QDs) with hydrogen peroxide. In the optimum conditions, this method was satisfactorily described by linear calibration curve in the range of 8.3×10(-7)-5.0×10(-6)M, the detection limit of 6.0×10(-8)M, and the relative standard deviation for five determinations of 2.5×10(-6)M Dy(3+) 3.2%. The main experimental advantage of the proposed method is its selective to Dy(3+) ions compared with common coexisting cations, therefore, it was successfully applied for the determination of dysprosium ions in water samples.

  18. Quantum-confined emission and fluorescence blinking of individual exciton complexes in CdSe nanowires.

    PubMed

    Franz, Dennis; Reich, Aina; Strelow, Christian; Wang, Zhe; Kornowski, Andreas; Kipp, Tobias; Mews, Alf

    2014-11-12

    One-dimensional semiconductor nanostructures combine electron mobility in length direction with the possibility of tailoring the physical properties by confinement effects in radial direction. Here we show that thin CdSe quantum nanowires exhibit low-temperature fluorescence spectra with a specific universal structure of several sharp lines. The structure strongly resembles the pattern of bulk spectra but show a diameter-dependent shift due to confinement effects. Also the fluorescence shows a pronounced complex blinking behavior with very different blinking dynamics of different emission lines in one and the same spectrum. Time- and space-resolved optical spectroscopy are combined with high-resolution transmission electron microscopy of the very same quantum nanowires to establish a detailed structure-property relationship. Extensive numerical simulations strongly suggest that excitonic complexes involving donor and acceptor sites are the origin of the feature-rich spectra.

  19. Interaction of Globular Plasma Proteins with Water-Soluble CdSe Quantum Dots.

    PubMed

    Pathak, Jyotsana; Rawat, Kamla; Sanwlani, Shilpa; Bohidar, H B

    2015-06-08

    The interactions between water-soluble semiconductor quantum dots [hydrophilic 3-mercaptopropionic acid (MPA)-coated CdSe] and three globular plasma proteins, namely, bovine serum albumin (BSA), β-lactoglobulin (β-Lg) and human serum albumin (HSA), are investigated. Acidic residues of protein molecules form electrostatic interactions with these quantum dots (QDs). To determine the stoichiometry of proteins bound to QDs, we used dynamic light scattering (DLS) and zeta potential techniques. Fluorescence resonance energy transfer (FRET) experiments revealed energy transfer from tryptophan residues in the proteins to the QD particles. Quenching of the intrinsic fluorescence of protein molecules was noticed during this binding process (hierarchy HSA<β-Lg

  20. Room-temperature processing of CdSe quantum dots with tunable sizes

    NASA Astrophysics Data System (ADS)

    Joo, So-Yeong; Jeong, Da-Woon; Lee, Chan-Gi; Kim, Bum-Sung; Park, Hyun-Su; Kim, Woo-Byoung

    2017-06-01

    In this work, CdSe quantum dots (QDs) with tunable sizes have been fabricated via photo-induced chemical etching at room temperature, and the related reaction mechanism was investigated. The surface of QDs was oxidized by the holes generated through photon irradiation of oxygen species, and the obtained oxide layer was dissolved in an aqueous solution of 3-amino-1-propanol (APOL) with an APOL:H2O volume ratio of 5:1. The generated electrons promoted QD surface interactions with amino groups, which ultimately passivated surface defects. The absorption and photoluminescence emission peaks of the produced QDs were clearly blue-shifted about 26 nm with increasing time, and the resulting quantum yield for an 8 h etched sample was increased from 20% to 26%, as compared to the initial sample.

  1. Synthesis and optical characterisation of triphenylamine-based hole extractor materials for CdSe quantum dots.

    PubMed

    Planells, Miquel; Reynolds, Luke X; Bansode, Umesh; Chhatre, Shraddha; Ogale, Satishchandra; Robertson, Neil; Haque, Saif A

    2013-05-28

    We report the synthesis and optical characterisation of different triphenylamine-based hole capture materials able to anchor to CdSe quantum dots (QDs). Cyclic voltammetry studies indicate that these materials exhibit reversible electrochemical behaviour. Photoluminescence and transient absorption spectroscopy techniques are used to study interfacial charge transfer properties of the triphenylamine functionalized CdSe QDs. Specifically, we show that the functionalized QDs based on the most easily oxidised triphenylamine display efficient hole-extraction and long-lived charge separation. The present findings should help identify new strategies to control charge transfer QD-based optoelectronic devices.

  2. Fundamental and applied aspects of luminescence of colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Razumov, V. F.

    2017-03-01

    The spectral luminescent characteristics of colloidal quantum dots as a new class of luminophores are discussed and state-of-the-art investigations, problems, and prospects for their applications are considered.

  3. Comparative behavior of CdS and CdSe quantum dots in poly(3-hexylthiophene) based nanocomposites

    SciTech Connect

    Sonar, Prashant . E-mail: sonar@mat.ethz.ch; Sreenivasan, K.P.; Madddanimath, Trupti; Vijayamohanan, K. . E-mail: viji@ems.ncl.res.in

    2006-01-05

    CdS and CdSe nanoparticles have been prepared using conducting poly(3-hexylthiophene) (P3HT) matrix with an objective to understand the effect of nanoparticles on the polymer matrix using electrochemical and spectroscopic techniques. The spectroscopic results reveal that the electronic structure of polymer is strongly influenced by the characteristics of embedded semiconducting nanoparticles. SEM and TEM images show the ordered morphology of the CdS and CdSe nanoparticles in presence of the polymer matrix. Cyclic voltammetry performed both in the presence and absence of light enables us to understand the redox changes in P3HT due to CdS and CdSe quantum dots such as the generation of free radical in the excited state and their electrochemical band gaps.

  4. Colloidal quantum dot materials for infrared optoelectronics

    NASA Astrophysics Data System (ADS)

    Arinze, Ebuka S.; Nyirjesy, Gabrielle; Cheng, Yan; Palmquist, Nathan; Thon, Susanna M.

    2015-09-01

    Colloidal quantum dots (CQDs) are an attractive material for optoelectronic applications because they combine flexible, low-cost solution-phase synthesis and processing with the potential for novel functionality arising from their nanostructure. Specifically, the bandgap of films composed of arrays of CQDs can be tuned via the quantum confinement effect for tailored spectral utilization. PbS-based CQDs can be tuned throughout the near and mid-infrared wavelengths and are a promising materials system for photovoltaic devices that harvest non-visible solar radiation. The performance of CQD solar cells is currently limited by an absorption-extraction compromise, whereby photon absorption lengths in the near infrared spectral regime exceed minority carrier diffusion lengths in the bulk films. Several light trapping strategies for overcoming this compromise and increasing the efficiency of infrared energy harvesting will be reviewed. A thin-film interference technique for creating multi-colored and transparent solar cells will be presented, and a discussion of designing plasmonic nanomaterials based on earth-abundant materials for integration into CQD solar cells is developed. The results indicate that it should be possible to achieve high absorption and color-tunability in a scalable nanomaterials system.

  5. Colloidal quantum dot light-emitting devices.

    PubMed

    Wood, Vanessa; Bulović, Vladimir

    2010-01-01

    Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Förster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  6. Effect of surface passivating ligand on structural and optoelectronic properties of polymer : CdSe quantum dot composites

    NASA Astrophysics Data System (ADS)

    Kumari, Kusum; Kumar, Umesh; Sharma, Shailesh N.; Chand, Suresh; Kakkar, Rita; Vankar, V. D.; Kumar, Vikram

    2008-12-01

    We demonstrate the effect of surface passivation of cadmium selenide quantum dots (CdSe QDs) (~5-7 nm) by tri-n-octylphosphene-oxide (TOPO) and oleic acid (OA) on the structural and optoelectronic properties of their respective polymer : CdSe composites by dispersing them in poly(2-methoxy-5(2-ethylhexyloxy)-1,4-phenylinevinylene) and poly(3-hexylthiophene) polymers. It has been found that OA passivated-QDs (~7 nm), as compared with TOPO passivated CdSe QDs (~5 nm), are of (i) high quality that provide better steric stability against coagulation, homogeneity and photostability to their respective polymer : CdSe composites, (ii) show low value of Stern-Volmer quenching constant (KSV) calculated from photoluminescence quenching measurements. These effects have been attributed to (i) CdSe(OA) (~7 nm) particles having relatively smaller surface energies compared with CdSe(TOPO) (~5 nm) particles thus showing lesser quenching capabilities (ii) dominance of respective processes of photoinduced Förster energy transfer between host polymer (donors) and guest CdSe nanocrystals (acceptors) in polymer : CdSe(OA) composites and charge transfer in polymer : CdSe(TOPO) composites.

  7. Cellular uptake induced biotoxicity of surface-modified CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Sanwlani, Shilpa; Rawat, Kamla; Pal, Meena; Bohidar, Himadri B.; Verma, Anita Kamra

    2014-05-01

    Cellular uptake of quantum dots (QDs) by cells is of utmost importance for establishing QDs as biostable fluorescent markers that facilitate early diagnosis and detection of cancer. The surface states of QDs are critical to enhance the cellular uptake. Biocompatible CDSe QDs were synthesized using mercaptopropionic acid, amino-ethanethiol HCl, cyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetrabutylammonium iodide (TBAI), and sodium dodecyl sulfate were functionalized using ligand-exchange method. Cytocompatibility and cellular uptake of QDs were evaluated in human embryonic kidney cells (HEK-29), and breast cancer cells (MCF-7) as reduced cytotoxicity is desirable for biological applications. Approximately, 60 % cytotoxicity was observed in all surface-coated QDs and QD100 in 72 h in both the cell lines, except TBAI that indicated 30 % cytotoxicity in 72 h, and only 10 % in 24 h. Glutathione, the detoxifying molecule, is detrimental for understanding the oxidative stress of the cell. The QDs showed enhanced Glutathione- S-transferase (GST) activity in the MCF-7 cell line. In HEK, CdSe per se was also able to induce a high level of GST. QDs toxicity may either be related to the induction of reactive oxygen species or the direct release of metal ions. Optimization of QDs in terms of quantification and DNA damage is imperative for realistic biological applications.

  8. Yeast Populations Evolve to Resist CdSe Quantum Dot Toxicity.

    PubMed

    Strtak, Alexandra; Sathiamoorthy, Sarmitha; Tang, Peter S; Tsoi, Kim M; Song, Fayi; Anderson, James B; Chan, Warren C W; Shin, Jumi A

    2017-04-19

    Engineered nanomaterials are used globally in biomedical, electronic, and optical devices, and are often discarded into the environment. Cell culture experiments have shown that many inorganic nanoparticles are toxic to eukaryotic cells. Here, we show that populations of eukaryotic cells can evolve to survive chronic exposure to toxic CdSe semiconductor quantum dots (QDs). We grew yeast Saccharomyces cerevisiae for 24 days in liquid medium containing QDs prepared daily at half the minimum inhibitory concentration (MIC50) of the progenitor yeast cells. After 24 days, the cells grew normally under constant exposure to QDs. We concluded that these cells evolved to resist QD toxicity. Surprisingly, when we removed QDs from the growth medium, some of the evolved cells grew poorly, i.e., they grew better in the presence of QDs. Finally, genetic analysis confirmed that the ubiquitin ligase gene bul1 was mutated in the evolved cells, which suggests that this gene may be implicated in increased CdSe QD tolerance. This study shows that chronic exposure to QDs can exert selective pressure causing irreversible genetic changes leading to adaptation.

  9. CdSe white quantum dots-based white light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru

    2016-09-01

    A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.

  10. Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Moh, Sang Hyun; Kulkarni, Atul; San, Boi Hoa; Lee, Jeong Hun; Kim, Doyoun; Park, Kwang Su; Lee, Min Ho; Kim, Taesung; Kim, Kyeong Kyu

    2016-01-01

    We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range.We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range. Electronic supplementary information (ESI) available: Materials and methods. See DOI: 10.1039/c5nr07901b

  11. A strategy to boost the cell performance of CdSexTe1-x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer

    NASA Astrophysics Data System (ADS)

    Wang, Guoshuai; Wei, Huiyun; Luo, Yanhong; Wu, Huijue; Li, Dongmei; Zhong, Xinhua; Meng, Qingbo

    2016-01-01

    CdSexTe1-x alloyed colloidal quantum dots show great potential application on quantum dot-sensitized solar cells (QDSCs) due to its relatively wide light absorption range and high chemical stability. In this respect, a thin Mn modified CdSe layer is introduced into TiO2/CdSexTe1-x alloyed QDs surface via a simple chemical bath deposition method (CBD) in order to further improve the cell performance. The power conversion efficiency of CdSexTe1-x QDSCs has been improved to 8.14%. Detailed investigation on the influence of this modification toward the TiO2/CdSexTe1-x interface on the cell performance reveals that introduction of Mn into CdSe QDs is found to facilitate the Mn-doped CdSe deposition and improve the light absorption of the device. In the meantime, the existence of the (Mn-)CdSe layer can also work as a passivation layer to reduce charge recombination.

  12. A Quantitative Description of the Binding Equilibria of para-Substituted Aniline Ligands and CdSe Quantum Dots

    SciTech Connect

    Donakowski, Martin D.; Godbe, Jacqueline M.; Sknepnek, Rastko; Knowles, Kathryn E.; Olvera de la Cruz, Monica; Weiss, Emily A.

    2010-01-01

    This paper describes the use of ¹H NMR spectroscopy to measure the equilibrium constants for the solution-phase binding of two para-substituted aniline molecules (R-An), p-methoxyaniline (MeO-An) and p-bromoaniline (Br-An), to colloidal 4.1 nm CdSe quantum dots (QDs). Changes in the chemical shifts of the aromatic protons located ortho to the amine group on R-An were used to construct a binding isotherm for each R-An/QD system. These isotherms fit to a Langmuir function to yield K{sub a}, the equilibrium constant for binding of the R-An ligands to the QDs; Ka ≈ 150 M-1 and ΔGads ≈ -19 kJ/mol for both R = MeO and R = Br. ³¹P NMR indicates that the native octylphosphonate ligands, which, by inductively coupled plasma atomic emission spectroscopy, cover 90% of the QD surface, are not displaced upon binding of R-An. The MeO-An ligand quenches the photoluminescence of the QDs at much lower concentrations than does Br-An; the observation, therefore, that Ka,MeO-An ≈ Ka,Br-An shows that this difference in quenching efficiencies is due solely to differences in the nature of the electronic interactions of the bound R-An with the excitonic state of the QD.

  13. Mn2+-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions

    NASA Astrophysics Data System (ADS)

    Delikanli, Savas; Scrace, Thomas; Murphy, Joseph; Barman, Biblop; Tsai, Yutsung; Zhang, Peiyao; Hernandez-Martinez, Pedro Ludwig; Christodoulides, Joseph; Cartwright, Alexander N.; Petrou, Athos; Demir, Hilmi Volkan

    We report the manifestations of carrier-dopant exchange interactions in colloidal Mn2+-doped CdSe/CdS core/multishell quantum wells. In our solution-processed quantum well heterostructures, Mn2+ was incorporated by growing a Cd0.985Mn0:015S monolayer shell on undoped CdSe nanoplatelets using the colloidal atomic layer deposition technique. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. This is realized by controlling the spatial overlap between the carrier wave functions with the manganese ions through adjusting the location, composition, and number of the CdSe, Cd1-xMnxS, and CdS layers. Our colloidal quantum wells, which exhibit magneto-optical properties analogous to those of epitaxially grown quantum wells, offer new opportunities for solution-processed spin-based semiconductor devices. H.V.D. acknowledges support from EU-FP7 Nanophotonics4Energy NoE, TUBITAK, NRF-CRP-6-2010-02 and A*STAR of Singapore. Work at the University at Buffalo was supported by NSF DMR 1305770.

  14. Evanescent wave excited luminescence from levitated quantum dot modified colloids.

    PubMed

    Everett, W Neil; Beckham, Richard E; Meissner, Kenith; Bevan, Michael A

    2007-08-14

    Evanescent wave excited luminescence of quantum dot modified polystyrene (QDPS) colloids is investigated to measure potential energy profiles of QDPS colloids electrostatically levitated above a planar glass surface. Luminescence is characterized for three different-sized PS colloids modified with three different-sized QDs using confocal microscopy, emission spectra, flow cytometry, and temporal measurements of levitated and deposited colloids. Colloid-surface potential energy profiles constructed from scattering and luminescence intensity data display excellent agreement with each other, theoretical predictions, and independently measured parameters. QDPS luminescence intensity is indirectly confirmed to have an exponential dependence on height similar to conventional colloidal evanescent wave scattering. Our findings indicate that evanescent wave excited QDPS luminescence could enable total internal reflection microscopy measurements of index-matched hard spheres, multiple specific biomolecular interactions via spectral multiplexing, enhanced morphology-dependent resonance modes, and integrated evanescent wave-video-confocal microscopy experiments not possible with scattering.

  15. Nanoscale patterning of colloidal quantum dots for surface plasmon generation

    NASA Astrophysics Data System (ADS)

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2013-03-01

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing, and microcontact printing of quantum dots, have limits in fabrication resolution, positioning and the variation of structural shapes. Herein, we present an adaptation of a conventional liftoff method for patterning colloidal quantum dots. This simple method is easy and requires no complicated processes. Using this method, we formed straight lines, rings, and dot patterns of colloidal quantum dots on metallic substrates. Notably, patterned lines approximately 10 nm wide were fabricated. The patterned structures display high resolution, accurate positioning, and well-defined sidewall profiles. To demonstrate the applicability of our method, we present a surface plasmon generator elaborated from quantum dots.

  16. Temperature dependence of excitonic radiative decay in CdSe quantum dots: the role of surface hole traps.

    PubMed

    Califano, Marco; Franceschetti, Alberto; Zunger, Alex

    2005-12-01

    Using atomistic, semiempirical pseudopotential calculations, we show that if one assumes the simplest form of a surface state in a CdSe nanocrystal--an unpassivated surface anion site--one can explain theoretically several puzzling aspects regarding the observed temperature dependence of the radiative decay of excitons. In particular, our calculations show that the presence of surface states leads to a mixing of the dark and bright exciton states, resulting in a decrease of 3 orders of magnitude of the dark-exciton radiative lifetime. This result explains the persistence of the zero-phonon emission line at low temperature, for which thermal population of higher-energy bright-exciton states is negligible. Thus, we suggest that surface states are the controlling factor of dark-exciton radiative recombination in currently synthesized colloidal CdSe nanocrystals.

  17. Radiative rate modification in CdSe quantum dot-coated microcavity

    SciTech Connect

    Veluthandath, Aneesh V.; Bisht, Prem B.

    2015-12-21

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  18. Photoinduced fluorescence enhancement in CdSe /ZnS quantum dot monolayers: Influence of substrate

    NASA Astrophysics Data System (ADS)

    Uematsu, Takafumi; Maenosono, Shinya; Yamaguchi, Yukio

    2006-07-01

    Photoinduced fluorescence enhancement (PFE) of CdSe /ZnS core/shell quantum dot (QD) films on SiOx substrates was investigated. The fluorescence intensity of the QD film on SiO1.9 was greatly enhanced by continuous irradiation in vacuum, while the same QD film on SiO0.6 showed a small enhancement of the fluorescence intensity. After irradiation, the rate of fluorescence decay of the QD film on SiO0.6 was smaller than that of the QD film on SiO1.9. Our results suggest that the origin of PFE derives from the photoejection of electrons into the substrate, and that the oxygen-excess-related defects work as trap sites for the electrons.

  19. All-optical modulation by plasmonic excitation of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Pacifici, Domenico; Lezec, Henri J.; Atwater, Harry A.

    2007-07-01

    Photonics is a promising candidate technology for information processing, communication and data storage. Essential building blocks, such as logic elements and modulators, have been demonstrated. However, because of weak nonlinear light-matter interactions, these components typically require high power densities and large interaction volumes, limiting their application in dense chip-based integration. A solution may be found in surface plasmon polaritons (SPPs), guided electromagnetic waves that propagate with high field confinement along a metal-dielectric interface. We demonstrate an all-optical modulator in which efficient interaction between two light beams at different wavelengths is achieved by converting them into co-propagating SPPs interacting by means of a thin layer of CdSe quantum dots (QDs). The high SPP field confinement and high QD-absorption cross-section enable optical modulation at low power densities (~102 W cm-2) in micrometre-scale planar devices.

  20. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang

    2016-12-01

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  1. Silver nanowires-based signal amplification for CdSe quantum dots electrochemiluminescence immunoassay.

    PubMed

    Huang, Tingyu; Meng, Qingmin; Jie, Guifen

    2015-04-15

    A novel silver-cysteine hybrid nanowires (SCNWs) with many reactive carboxyl and amine groups were prepared, which enable them to be used as idea signal amplifying labels in bioassays. A large number of CdSe quantum dots (QDs) were loaded on the SCNWs to develop amplified SCNWs-QDs electrochemiluminescence (ECL) signal probe. The PAMAM dendrimer-SCNWs nanohybrids covered on the electrode constructed an effective antibody immobilization matrix and made the immobilized biomolecules hold high stability and bioactivity. Based on the specific sandwich immunoreaction strategy, the detection antibody (Ab2)-SCNWs-QDs ECL signal probe was applied to the sensitive signal-on ECL immunoassay of human IgG. The SCNWs-QDs ECL not only opens promising new ECL emitting species, but also promotes the development of novel ECL signal-transition platforms for biosensing devices.

  2. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    SciTech Connect

    Joshua T. Wright; Su, Dong; van Buuren, Tony; Meulenberg, Robert W.

    2014-08-21

    The electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Moreover, the electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and an octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.

  3. Optical and Phonon Characterization of Ternary CdSe x S1- x Alloy Quantum Dots

    NASA Astrophysics Data System (ADS)

    Thi, L. A.; Cong, N. D.; Dang, N. T.; Nghia, N. X.; Quang, V. X.

    2016-05-01

    Ternary CdSe x S1- x alloy quantum dots (QDs) were synthesized using a wet chemical method. Their morphology, particle size, structural, optical, and vibrational properties were investigated using transmission electron microscopy, x-ray diffraction, UV-Vis, fluorescence and Raman spectroscopy, respectively. The optical and vibrational properties of the QDs can be controlled by adjusting the Se/S molar ratio. The absorption and emission peaks shift to a longer wavelength range when increasing the Se content. The presence of two CdSe-like and CdS-like longitudinal optical phonon modes was observed. The dependencies of the optical and phonon modes on the Se content are discussed in detail.

  4. Radiative rate modification in CdSe quantum dot-coated microcavity

    NASA Astrophysics Data System (ADS)

    Veluthandath, Aneesh V.; Bisht, Prem B.

    2015-12-01

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  5. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.

    PubMed

    Sun, Xiao Wei; Chen, Jing; Song, Jun Ling; Zhao, De Wei; Deng, Wei Qiao; Lei, Wei

    2010-01-18

    We report a quantum dot sensitized solar cell (QDSSC) with a thioglycolic acid (TGA) capped CdSe quantum dot (QD) sensitized ZnO nanorod photoanode. As revealed by UV-Vis absorption spectrum and transmission electron microscopy, the quantum dots can be effectively adsorbed onto ZnO nanorods. By studying the emission decay, the quenching of the CdSe QDs by ZnO nanorod was verified, and an electron transfer (from QD to ZnO) rate constant of 1 x 10(8) s(-1) was obtained. The efficiency of the as-prepared QDSSC was 0.66% and an incident power conversion efficiency of 22% at 400 nm was achieved.

  6. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  7. Colloidal quantum dot photodetectors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Adinolfi, Valerio; Sargent, Edward H.

    2015-08-01

    Colloidal quantum dots (CQDs) are emerging solution processed materials combining low cost, easy deposition on large and flexible substrates, and bandgap tunability. The latter feature, which allows spectral tuning of the absorption profile of the semiconductor, makes these materials particularly attractive for light detection applications. Lead sulfide (PbS) CQDs, in particular, have shown astonishing performance as a light sensitive material operating at visible and infrared (IR) wavelengths. Early studies of PbS CQDs used as a photosensitive resistor (photoconductor) showed an impressive responsivity - exceeding 1000 A/W - and a detectivity (D*) higher then 10^13 Jones. This impressive D* was preserved in the successive development of the first PbS CQD photodiode, showing the possibility to realize fast - f_3db > 1Mhz - and sensitive IR detectors. Currently, the field is moving toward the development of hybrid devices and phototransitors. PbS CQDs have been combined in field effect transistors (FETs) with graphene and MoS2 channels, showing ultra-high gain (exceeding 10^8 electrons/photons) and high D*. Recently a photo-junction FET (photo-JFET) has been reported that breaks the inherent dark current/gain/bandwidth compromise affecting photoconductive light detectors. With this presentation we offer a broad overview on CQD photodetection highlighting the past achievements, the benefits, the challenges and the prospects for the future research on this field.

  8. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    SciTech Connect

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Husain, M.; Zulfequar, M.; Khan, Shamshad A.

    2016-05-23

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  9. Time-resolved emission spectroscopy of CdSe quantum dots in polar and nonpolar solvents

    NASA Astrophysics Data System (ADS)

    Kloepfer, Jeremiah; Bradforth, Stephen; Nadeau, Jay

    2004-03-01

    Nanocrystal quantum dots (QD) offer the opportunity to study semiconductors in liquid environments. QD biological labels in water are often protected from emission quenching and surface oxidation. We wish to exploit these processes to construct novel "on/off" sensors based on energy and electron transfer. These systems offer the chance to probe the semiconductor surface-solvent interface. Time-correlated-single-photon-counting was used to measure the emission lifetimes of several QD-solvent systems. Typical lifetimes could be divided into fast single exponential ( 100 ps) and slow stretched exponential ( 10 ns) decays. CdSe and ZnS(CdSe) were prepared in non-polar solvents with high quantum yields. QD were solubilized in water with thiol-compounds, polymer/protein coats, and micelles/vesicles. Large changes in the emission profiles of the different systems were observed. Systems in water experienced a reduction in quantum yield and loss of the longtime emission decay. Surface oxidation lead to a recovery of the longtime decay which matched that of the ZnS-capped counterpart in non-polar solvents. Lifetimes of QD in the presence of energy/electron transfer donors/acceptors was measured to test the viability of constructing nanocrystal sensors that exploit these processes.

  10. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    NASA Astrophysics Data System (ADS)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Khan, Shamshad A.; Husain, M.; Zulfequar, M.

    2016-05-01

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  11. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode.

    PubMed

    Mora-Seró, Iván; Giménez, Sixto; Moehl, Thomas; Fabregat-Santiago, Francisco; Lana-Villareal, Teresa; Gómez, Roberto; Bisquert, Juan

    2008-10-22

    Colloidal CdSe quantum dots (QDs) of different sizes, prepared by a solvothermal route, have been employed as sensitizers of nanostructured TiO(2) electrode based solar cells. Three different bifunctional linker molecules have been used to attach colloidal QDs to the TiO(2) surface: mercaptopropionic acid (MPA), thioglycolic acid (TGA), and cysteine. The linker molecule plays a determinant role in the solar cell performance, as illustrated by the fact that the incident photon to charge carrier generation efficiency (IPCE) could be improved by a factor of 5-6 by using cysteine with respect to MPA. The photovoltaic properties of QD sensitized electrodes have been characterized for both three-electrode and closed two-electrode solar cell configurations. For three-electrode measurement a maximum power conversion efficiency near 1% can be deduced, but this efficiency is halved in the closed cell configuration mainly due to the decrease of the fill factor (FF).

  12. Luminescence of CdSe quantum dots near a layer of silver nanoparticles ion-synthesized in sapphire

    NASA Astrophysics Data System (ADS)

    Galyametdinov, Yu. G.; Shamilov, R. R.; Nuzhdin, V. I.; Valeev, V. F.; Stepanov, A. L.

    2016-11-01

    We study the characteristics of the luminescence of composite films based on polymethyl methacrylate with CdSe quantum dots deposited from solution onto the surface of a sapphire substrate containing a preliminarily formed layer with ion-synthesized silver nanoparticles. The sapphire layer with silver nanoparticles exhibits selective plasmon absorption in the visible spectral range with a peak at 463 nm. Enhancement in the exciton luminescence intensity of quantum dots with a peak at 590 nm is observed upon excitation at wavelengths lying in the region of plasmon resonance of metal nanoparticles, as well as luminescence quenching for quantum dots located in the vicinity of silver nanoparticles.

  13. Study of binary and ternary organic hybrid CdSe quantum dot photodetector

    NASA Astrophysics Data System (ADS)

    Ramar, M.; Kajal, S.; Pal, Prabir; Srivastava, R.; Suman, C. K.

    2015-09-01

    The hybrid binary and ternary photodetectors (PDs) were fabricated from P3HT-PC71BM with CdSe quantum dot (QD) materials. The absorption spectra of P3HT:PC71BM (named as B1), P3HT:CdSe (B2) and P3HT:CdSe:PC71BM (T) active blended material were analyzed in the wavelength range from 350 to 800 nm. The current density-voltage characteristics of the device were measured in dark and under illumination for study of detector detectivities and the contact with electrode. The ratio at -0.5 V for PDs B1, B2 and T is 1.1 × 102, 1.9 × 102 and 1.8 × 103, respectively. The values of detectivity for B1, B2 and T are 1 × 1010, 2 × 1010 and 7 × 1011 Jones, respectively. The for PD T is ten times in comparison with B1 and B2 PDs. The linear dynamic range (LDR) value for ternary device is more than double to both binary PDs. The absorption by CdSe QD increases the photon efficiency in the ternary detector, and at the same time the ternary detectors have high detectivity in broad spectral range. The responsivity of current to the light intensity exponent θ for detector B1, B2 and T is ~0.55, 0.55 and 0.62, respectively, which represents a complex process of electron hole generation, recombination and trapping within active material.

  14. Sonocatalytic degradation of methylene blue by a novel graphene quantum dots anchored CdSe nanocatalyst.

    PubMed

    Sajjadi, Saeed; Khataee, Alireza; Kamali, Mehdi

    2017-11-01

    Cadmium selenide/graphene quantum dots (CdSe/GQDs) nanocatalyst with small band gap energy and a large specific surface area was produced via a facile three-step sonochemical-hydrothermal process. The features of the as-prepared CdSe, GQDs and CdSe/GQDs samples were characterized by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), diffuse-reflectance spectrophotometer (DRS), and Brunauer-Emmett-Teller (BET) analysis. The sonocatalytic activity of the synthesized CdSe/GQDs was effectively accelerated compared with that of pure CdSe nanoparticles in degradation of methylene blue (MB). The influence of the CdSe/GQDs dosage (0.25-1.25g/L), initial MB concentration (20-30mg/L), initial solution pH (3-12), and ultrasonic output power (200-600W/L) were examined on the sonocatalytic treatment of MB aqueous solutions. The degradation efficiency (DE%) of 99% attained at 1g/L of CdSe/GQDs, 20mg/L of MB, pH of 9, and an output power of 200W/L at 90min of ultrasonic irradiation. Furthermore, DE% increased with addition of K2S2O8 and H2O2 as the enhancers via producing more free radicals. However, addition of sulfate, carbonate, and chloride as radical sweeper decreased DE%. Furthermore, well-reusability of the CdSe/GQDs sonocatalyst was demonstrated for 5 successive runs and some of the sonocatalytic generated intermediates were indicated by GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Computational insights into CdSe quantum dots' interactions with acetate ligands.

    PubMed

    Tamukong, Patrick K; Peiris, Wadumesthrige D N; Kilina, Svetlana

    2016-07-27

    Using density functional theory (DFT) and time-dependent DFT (TDDFT), we investigate the effects of carboxylate groups on the electronic and optical properties of CdSe quantum dots (QDs). We specifically focus on the mechanisms of the binding of the acetate anion to the QD surface with and without excess of Cd(2+) cations. Our calculations show that the most stable ligated conformations are those where an acetate is attached to extra Cd(2+) ion forming a [Cd(2+)(CH3COO(-))] at the QD's surface, while also accompanied by an acetate attached nearby at the surface balancing the overall neutral charge of the system. In contrast, formation of a neutral metal-acetate complex [Cd(2+)(CH3COO(-))2] at the QD surface is found to be the least energetically preferable. A strength of the QD-ligand interaction depends on the solvent, the facet of the QD to which the ligands are attached, and the binding mode - with the bridging mode found to be the most stable conformation for both acetate and cadmium acetate ligands. The cadmium acetate ligands introduce electron trap states at the edge of the conduction band - unoccupied orbitals predominately localized on Cd(2+) ion - that are extremely sensitive to the ligand position and the solvent polarity. Polar solvents like acetonitrile delocalize the electronic density over the entire system and, thus, eliminate trap states. As a result, mixed passivation of the CdSe QDs by pairs of cadmium acetate and acetate ligands provides optimal optical properties with minimal contributions of the ligand-related trap states and optically bright lowest energy transitions.

  16. Spectroscopic properties of colloidal indium phosphide quantum wires

    SciTech Connect

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  17. Decay and Dissociation of Excitons in Colloidal Semiconductor Quantum Dots in the Presence of Small Molecules

    NASA Astrophysics Data System (ADS)

    Knowles, Kathryn Eileen

    This dissertation describes interactions between colloidal semiconductor quantum dots (QDs) and small organic molecules that affect the electronic structure of the surfaces of the QDs and influence the decay and dissociation pathways available to excitonic charge carriers (electrons and holes) in the QDs. Pathways by which electrons and holes in QDs leave conduction and valence band-edge states, respectively, include charge trapping to a state localized in the QD core or on the surface, charge transfer to a redox partner, and radiative recombination. Analysis of transient absorption and time-resolved photoluminescence (PL) spectroscopies enabled the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of colloidal CdSe QDs. This map reveals three different populations of CdSe QDs that differ in the timescales of available hole and electron-trapping processes. The mechanism by which a p-substituted aniline quenches the PL of CdSe QDs upon displacing native hexadecylamine ligands depends on the electronic nature of its para substituent. Anilines with electron withdrawing substituents quench PL through incomplete passivation of Cd2+ surface sites, and anilines with electron donating substituents quench PL through photoinduced hole transfer. Transient absorption measurements on both the picosecond and microsecond timescales reveal that a series of alkyl-substituted p-benzoquinone (s-BQ) molecules participate in both static and collisional photoinduced electron transfer (PET) with PbS QDs. The efficiencies of both static and collisional PET are limited by the presence of the oleate ligand shell, and depend on the size and shape of the (s-BQ) molecule. A model for the dependence of the collisional quenching efficiency on the volume of the s-BQ molecule produces a parameter that provides a quantitative measure of the permeability of the organic ligand shell of the QDs. Thermodynamically spontaneous electron transfer occurs

  18. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH

    SciTech Connect

    Ratnesh, R. K.; Mehata, Mohan Singh

    2015-09-15

    Cadmium selenide (CdSe) quantum dots (Q-dots) were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO). Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL). The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM). Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

  19. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH

    NASA Astrophysics Data System (ADS)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2015-09-01

    Cadmium selenide (CdSe) quantum dots (Q-dots) were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO). Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL). The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM). Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

  20. Controlled synthesis of CdSe quantum dots by a microwave-enhanced process: a green approach for mass production.

    PubMed

    Ayele, Delele Worku; Chen, Hung-Ming; Su, Wei-Nien; Pan, Chun-Jern; Chen, Liang-Yih; Chou, Hung-Lung; Cheng, Ju-Hsiang; Hwang, Bing-Joe; Lee, Jyh-Fu

    2011-05-09

    A method that does not employ hot-injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with zinc blende structure. In this environmentally benign synthetic route, which uses less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and thus their optical properties can be manipulated by changing the microwave reaction conditions. The QDs were characterized by XRD, TEM, UV/Vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot-injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. Possible applications of the CdSe QDs were assessed by deposition on TiO(2) films.

  1. Phosphine-free synthesis of CdSe quantum dots in a new co-capping ligand system.

    PubMed

    Wang, Chun; Jiang, Yang; Zhang, Zhongping; Li, Guohua; Chen, Lanlan; Jie, Jiansheng

    2009-08-01

    High-quality CdSe quantum dots with zinc blende structure were successfully synthesized via a new cheaper, greener phosphine-free route, using environmentally friendly N,N-dimethyl-oleoyl amide as the solvent of Se. The process eliminates trioctylphoshine from the synthesis, using oleic acid (OA) as a primary capping ligand and benzophenone (BP) as a secondary ligand in the noncoordinating solvent. It has been found that the addition of BP can improve the size distribution (below 10%) of as-synthesized CdSe quantum dots greatly, and the nucleation and growth process can also be well-separated. Moreover, a comprehensive examination on the control of particle size and size distribution was performed by systematically varying the BP/OA molar ratio. The phosphine-free route enables us to obtain high-quality CdSe quantum dots with sharp UV-vis absorption peak, size ranging from 2.8 to 6.8 nm, and narrow full width of half-maximum between 27 and 35 nm with purely band-edge luminescence, and without any post-synthesis processing.

  2. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  3. The Magic-Size Nanocluster (CdSe)34 as a Low-Temperature Nucleant for Cadmium Selenide Nanocrystals; Room-Temperature Growth of Crystalline Quantum Platelets.

    PubMed

    Wang, Yuanyuan; Zhang, Ying; Wang, Fudong; Giblin, Daryl E; Hoy, Jessica; Rohrs, Henry W; Loomis, Richard A; Buhro, William E

    2014-04-08

    Reaction of Cd(OAc)2·2H2O and selenourea in primary-amine/secondary-amine cosolvent mixtures affords crystalline CdSe quantum platelets at room temperature. Their crystallinity is established by X-ray diffraction analysis (XRD), high-resolution transmission electron microscopy (TEM), and their sharp extinction and photoluminescence spectra. Reaction monitoring establishes the magic-size nanocluster (CdSe)34 to be a key intermediate in the growth process, which converts to CdSe quantum platelets by first-order kinetics with no induction period. The results are interpreted to indicate that the critical crystal-nucleus size for CdSe under these conditions is in the range of (CdSe)34 to (CdSe)68. The nanocluster is obtained in isolated form as [(CdSe)34(n-octylamine)16(di-n-pentylamine)2], which is proposed to function as crystal nuclei that may be stored in a bottle.

  4. Electron hopping between Wurtzite CdSe Quantum Dots Linked by Molecules

    NASA Astrophysics Data System (ADS)

    Chu, Iek-Heng; Radulaski, Marina; Vukmirovic, Nenad; Cheng, Hai-Ping; Wang, Lin-Wang

    2011-03-01

    Recent experimental results show that the transport properties of quantum dot (QD) arrays will be tremendously improved after attached by cross-linking molecules. Here, we present an ab initio study on the electron hopping rates between wurtzite CdSe QDs connected by Sn 2 S6 molecules. The conduction band minima (CBM) transports among connected QDs are calculated. The charge patching method (CPM) is used to construct the charge density of the QDs and the connected systems. The folded spectrum method (FSM) was applied to find the band edge states and the electronic coupling between the neighboring QDs. Electron-phonon couplings are calculated to yield the reorganization energy. The electron hopping rate is then calculated by Marcus theory and its corresponding quantum treatments. Hopping rates for three different sizes of QDs, and two different types of molecular attachments are also presented here for comparison. Supported by DOE/BES-DE-FG02-02ER45995, DOE/BES-DE-AC02-05CH11231 and NSF/DMR-0804407, and computers from NERSC.

  5. Gradient-Doped Thermophotovoltaic Devices based on Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Fayaz Movahed, Hamidreza

    Electromagnetic radiation emitted from hot objects represents a sizeable supply of energy; however, even for relatively hot bodies, its flux peaks in the short-wavelength infrared between 1 and 3 mum, standing in the way of its photovoltaic harvest using the most widely-available optoelectronic materials such as Si and CdTe. Colloidal quantum dots combine low-cost solution-processing with bandgap tunability in this spectral region, thereby offering a route to harnessing thermal power photovoltaically. Here we report thermophotovoltaic devices constructed using colloidal quantum dots that harvest infrared radiation from an 800°C blackbody source. Only by constructing a gradient-doped colloidal quantum dot thermophotovoltaic device were we able to achieve thermophotovoltaic power generation with a power conversion efficiency of 0.39%. The device showed stable operation at ambient temperatures above 100°C.

  6. CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: monomer effects on nucleation and growth.

    PubMed

    Yu, Kui

    2012-02-21

    Colloidal semiconductor quantum dots (QDs) have been well appreciated for their potential in nanophotonics with an unprecedented impact in various areas, including light emitting diodes (LEDs) and solar cells. There is an outstanding demand on the control of size and size distribution for the various applications, with rational design supported by fundamental understanding of nucleation and growth. This Research News introduces recent advances in the synthesis of colloidal CdSe magic-sized nuclei (MSN) exhibiting sharp bandgap emission, with a model proposed to illustrate the nature of monomers and their degree of supersaturation (DS) affecting the formation of various CdSe MSN, magic-sized nanoclusters (MSCs), and regular nanocrystals (RNCs). Also, this model addresses tuning the CdSe RNCs into the CdSe MSN with the presence of cadmium acetate (Cd(OAc)2) affecting the nature of the monomers.

  7. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel

    2013-04-10

    Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface.

  8. Angle and Polarization Dependent Characteristics of Colloidal Quantum Dot Absorption in Fano Filters on Flexible Substrates

    DTIC Science & Technology

    2009-01-25

    infrared absorption characteristics for PbSe colloidal quantum dots ...TERMS colloidal quantum dots ,Fano resonances,Photonic crystals, Infrared photodetectors Li Chen, Hongjun Yang, Zexuan Qiang, Huiqing Pang, Zhenqiang...experimental investigations of infrared absorption characteristics for PbSe colloidal quantum dots in defect-free photonic crystal (PC) cavities, via

  9. Optical and Surface Characterization Studies of CdSe Quantum Dots Undergoing Photooxidation

    NASA Astrophysics Data System (ADS)

    Powell, Lauren C. J.

    Realization of the potential of Quantum Dots (QDs) for biological, energy-efficient lighting and energy harvesting applications requires that their long-term photostability be improved, especially with regards to protection from photooxidation. The overarching objective of this project was the determination of the chemical and physical mechanisms of photooxidation of CdSe QDs. Pittsburgh-based Crystalplex, Inc. provided CdSe QDs with different organic ligands for this research. Three integrated in situ and ex situ characterization techniques were used to observe changes in optical behavior, QD morphology, and surface chemistry during photooxidation conditions. Single-molecule fluorescence microscopy experiments were used to observe real-time changes in the photoluminescence (PL) behavior of single QDs with oleic and lauric acid ligands. The QDs are exposed to 1 atm of pure O2, dry Ar, Ar bubbled through DI water, or air in an environmental chamber and excited with a 488 nm light. Changes in PL intensities were analyzed with respect to the periods of exposure to controlled atmospheres and light. Samples illuminated continuously exhibited strong photoenhancement effects, while those kept in the dark showed atmospheric-dependent PL loss. Microstructural and chemical identification was performed with aberration-corrected transmission electron microscopy (TEM). Ex situ exposures of QD samples to air, dry O2, and dry Ar revealed changes in surface oxide growth with respect to exposure length, illumination, and column vacuum pressure. Samples exposed to air and light exhibited the most extensive photooxidation. Quantum dots with oleic acid ligands were treated with UV/ozone plasma, and extensive degradation of QDs was observed. X-ray photoemission spectroscopy (XPS) measurements at CMU were used to identify the chemical and bonding states of the surface species before and after photooxidation. Analysis of the acquired spectra showed that exposure to below-bandgap light

  10. Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with D- or L-cysteine.

    PubMed

    Tohgha, Urice; Varga, Krisztina; Balaz, Milan

    2013-03-04

    Semiconductor cadmium selenide (CdSe) quantum dots (QDs) exhibited mirror-image circular dichroism (CD) spectra in the visible region (350-570 nm) after replacing the trioctylphosphine oxide/oleic acid ligands on achiral nanocrystals with D- and L-cysteines. Chiroptical properties of cysteine-capped CdSe QDs depend on their size and can be fine-tuned by changing the radius of QDs.

  11. Improved efficiency of bulk heterojunction hybrid solar cells by utilizing CdSe quantum dot-graphene nanocomposites.

    PubMed

    Eck, Michael; Pham, Chuyen Van; Züfle, Simon; Neukom, Martin; Sessler, Martin; Scheunemann, Dorothea; Erdem, Emre; Weber, Stefan; Borchert, Holger; Ruhstaller, Beat; Krüger, Michael

    2014-06-28

    We present a significant efficiency enhancement of hybrid bulk heterojunction solar cells by utilizing CdSe quantum dots attached to reduced graphene oxide (rGO) as the electron accepting phase, blended with the PCPDTBT polymer. The quantum dot attachment to rGO was achieved following a self-assembly approach, recently developed, using thiolated reduced graphene oxide (TrGO) to form a TrGO-CdSe nanocomposite. Therefore, we are able to obtain TrGO-CdSe quantum dot/PCPDTBT bulk-heterojunction hybrid solar cells with power conversion efficiencies of up to 4.2%, compared with up to 3% for CdSe quantum dot/PCPDTBT devices. The improvement is mainly due to an increase of the open-circuit voltage from 0.55 V to 0.72 V. We found evidence for a significant change in the heterojunction donor-acceptor blend nanomorphology, observable by a more vertical alignment of the TrGO-quantum dot nanocomposites in the z-direction and a different nanophase separation in the x-y direction compared to the quantum dot only containing device. Moreover, an improved charge extraction and trap state reduction were observed for TrGO containing hybrid solar cells.

  12. Photonic Enhancement of Colloidal Quantum Dot Photovoltaics

    NASA Astrophysics Data System (ADS)

    Labelle, Andre Jean-Romeo Richard

    Colloidal quantum dots, nanocrystal semiconductors that can be cross-linked and assembled into absorbing thin films, are an attractive material for third-generation photovoltaic applications due to low-cost fabrication and bandgap tunability. As a result of their limited charge transport, these solution-processed thin films suffer from a mismatch in absorption length and charge extraction length. Concepts based on the interdigitation of n- and p-doped layers, approaches that reduce the distance photogenerated carriers must travel before extraction, offer promise on overcoming this limitation. In this thesis, I explore and develop techniques to address the absorption-extraction compromise in CQD materials by implementing nano- and micro-structuring techniques to enhance light absorption in the active film. First, I focus on the development of nanomaterials for light guiding/scattering enhancement in CQD films. For this, I develop a nanostructured gold reflector that, when suitably designed, guides light and traps it within the active film. I show that this yields enhanced broadband absorption with more than 4-fold improvement at the most improved wavelength, which translated into a 34% improvement in photocurrent in a working solar cell. I also show that periodic nanostructures employed for absorption enhancement can lead to improvements in solar cell performance. Limitations in device architecture and film formation, however, prevented significant performance advances for these nano-scale approaches. Regardless, these early results pointed me to a new and more impactful strategy. I focus in on realizing micron-scale structured electrodes to enhance absorption, which I show to be considerably more useful in view of the need to extract charge carriers with high efficiency. I discover that conformal film formation atop these structured electrodes is an absolute prerequisite to enhancing performance. These devices, which I term micro-pyramid CQD cells, provide a 24

  13. Synthesis of CdSe quantum dots with luminescence in the violet region of the solar spectrum.

    PubMed

    Shukla, Nisha; Nigra, Michael M

    2010-01-01

    We have designed a simple, one-step synthesis of CdSe quantum dots with photoluminescence frequencies ranging from the red through to the violet region of the solar spectrum. The photoluminescence peaks have FWHM of 30 nm indicating absorption over a narrow range of wavelengths. The effect of solvent type and solvent boiling point on the physical and photoluminescence properties of the quantum dots has been studied. High boiling point, non-polar solvents shift the photoluminescence peak to longer wavelengths and low boiling point, polar solvents shift the photoluminescence peak to shorter wavelengths.

  14. Increased carrier mobility and lifetime in CdSe quantum dot thin films through surface trap passivation and doping.

    PubMed

    Straus, Daniel B; Goodwin, E D; Gaulding, E Ashley; Muramoto, Shin; Murray, Christopher B; Kagan, Cherie R

    2015-11-19

    Passivating surface defects and controlling the carrier concentration and mobility in quantum dot (QD) thin films is prerequisite to designing electronic and optoelectronic devices. We investigate the effect of introducing indium in CdSe QD thin films on the dark mobility and the photogenerated carrier mobility and lifetime using field-effect transistor (FET) and time-resolved microwave conductivity (TRMC) measurements. We evaporate indium films ranging from 1 to 11 nm in thickness on top of approximately 40 nm thick thiocyanate-capped CdSe QD thin films and anneal the QD films at 300 °C to densify and drive diffusion of indium through the films. As the amount of indium increases, the FET and TRMC mobilities and the TRMC lifetime increase. The increase in mobility and lifetime is consistent with increased indium passivating midgap and band-tail trap states and doping the films, shifting the Fermi energy closer to and into the conduction band.

  15. Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing.

    PubMed

    Algarra, M; Campos, B B; Alonso, B; Miranda, M S; Martínez, A M; Casado, C M; Esteves da Silva, J C G

    2012-01-15

    Four different generation of thiol-DAB dendrimers were synthesized, S-DAB-G(x) (x=1, 2, 3 and 5), and coupled with CdSe quantum dots, to obtain fluorescent nanocomposites as metal ions sensing. Cd(II) and Pb(II) showed the higher enhancement and quenching effects respectively towards the fluorescence of S-DAB-G(5)-CdSe nanocomposite. The fluorescence enhancement provoked by Cd(II) can be linearized using a Henderson-Hasselbalch type equation and the quenching provoked by Pb(II) can be linearized by a Stern-Volmer equation. The sensor responds to Cd(II) ion in the 0.05-0.7μM concentration range and to Pb(II) ion in the 0.01-0.15mM concentration range with a LOD of 0.06mM. The sensor has selectivity limitations but its dendrimer configuration has analytical advantages.

  16. Folded-Light-Path Colloidal Quantum Dot Solar Cells

    PubMed Central

    Koleilat, Ghada I.; Kramer, Illan J.; Wong, Chris T. O.; Thon, Susanna M.; Labelle, André J.; Hoogland, Sjoerd; Sargent, Edward H.

    2013-01-01

    Colloidal quantum dot photovoltaics combine low-cost solution processing with quantum size-effect tuning to match absorption to the solar spectrum. Rapid advances have led to certified solar power conversion efficiencies of over 7%. Nevertheless, these devices remain held back by a compromise in the choice of quantum dot film thickness, balancing on the one hand the need to maximize photon absorption, mandating a thicker film, and, on the other, the need for efficient carrier extraction, a consideration that limits film thickness. Here we report an architecture that breaks this compromise by folding the path of light propagating in the colloidal quantum dot solid. Using this method, we achieve a substantial increase in short-circuit current, ultimately leading to improved power conversion efficiency. PMID:23835564

  17. Enhancement in the photorefractive performance of organic composites photosensitized with functionalized CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Liang, Yichen; Wang, Wei; Moon, Jong-Sik; Winiarz, Jeffrey G.

    2016-08-01

    Enhancement in the photorefractive (PR) performance of organic composites photosensitized by CdSe quantum dots (QCdSe) passivated with the charge-transport ligands, sulfonated triphenyldiamine (STPD), is reported. This enhancement is primarily attributed to the ability of the passivating ligand, STPD, to facilitate the charge-transfer process between the QCdSe and the triphenyldiamine (TPD) charge-transport matrix. The PR composites exhibited a maximum photocharge-generation efficiency of 0.9% and two-beam coupling gain coefficient of 110 cm-1. These figures of merit represent a significant improvement over similar composites photosensitized with more conventional trioctylphosphine oxide-passivated QCdSe (TQCdSe). Moreover, composites photosensitized with SQCdSe had a faster response time of τ = 128 ms at an electric field of 60 V/μm compared with τ = 982 ms for those containing TQCdSe. Because of the molecular similarity between the STPD passivating groups and the TPD-based charge-transport matrix, concentrations of up to 1.4 wt% of SQCdSe are achieved in PR composites without any detectable phase separation, a considerable improvement over the 0.7 wt% for TQCdSe.

  18. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    SciTech Connect

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.

  19. Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation.

    PubMed

    Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Zhu, Nan; Chábera, Pavel; Lenngren, Nils; Chi, Qijin; Pullerits, Tõnu

    2014-04-30

    Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of QDs, so that the simple point-dipole approximation, widely used in the conventional approach, can no longer offer quantitative description of the FRET dynamics in such systems. Here, we report the investigations of the FRET dynamics in densely packed films composed of multisized CdSe QDs using ultrafast transient absorption spectroscopy and theoretical modeling. Pairwise interdot transfer time was determined in the range of 1.5 to 2 ns by spectral analyses which enable separation of the FRET contribution from intrinsic exciton decay. A rational model is suggested by taking into account the distribution of the electronic transition densities in the dots and using the film morphology revealed by AFM images. The FRET dynamics predicted by the model are in good quantitative agreement with experimental observations without adjustable parameters. Finally, we use our theoretical model to calculate dynamics of directed energy transfer in ordered multilayer QD films, which we also observe experimentally. The Monte Carlo simulations reveal that three ideal QD monolayers can provide exciton funneling efficiency above 80% from the most distant layer. Thereby, utilization of directed energy transfer can significantly improve light harvesting efficiency of QD devices.

  20. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGES

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  1. Interaction of β-cyclodextrin-capped CdSe quantum dots with inorganic anions and cations.

    PubMed

    Shang, Zhuo Bin; Hu, Shuang; Wang, Yu; Jin, Wei Jun

    2011-01-01

    A facile method was developed for the preparation of water soluble β-Cyclodextrin (β-CD)-modified CdSe quantum dots (QDs) (β-CD-QDs) by directly replacing the oleic acid ligands on the QDs surface with β-CD in an alkaline aqueous solution. The as-prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β-CD-QDs. Among them, H(2)PO(4)(-) exhibited the largest quenching effect. For the polyprotic acids (HO)(3)AO, the effect of acidic anions on the fluorescence of β-CD-QDs was in the order: monoanion (HO)(2)AO(2)(-) > dianion (HO)AO(3)(2-) > trianion AO(4)(3-). After photoactivation for several days in the presence of anions at alkaline pH, the β-CD-QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β-CD-QDs was investigated further. It was found that Ag(+), Hg(2+) and Co(2+) have significant quenching effect on the fluorescence of the β-CD-QDs. The Stern-Volmer quenching constants increased in the order: Hg(2+) < Co(2+)

  2. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1−xZnxSe Shell

    PubMed Central

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-01-01

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd1−xZnxSe shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd1−xZnxSe core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials. PMID:28169376

  3. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices.

    PubMed

    Jung, Mi-Hee; Chu, Moo-Jung

    2014-08-07

    In this research, we prepared composite films via covalent coupling of CdSe quantum dots (QDs) to graphene through the direct binding of aryl radicals to the graphene surface. To compare the carrier transport with the CdSe aryl binding graphene film, we prepared CdSe pyridine capping graphene films through the pi-pi interactions of noncovalent bonds between the graphene and pyridine molecules. The photovoltaic devices were fabricated from the two hybrid films using the electrophoretic deposition method on flexible substrates. Even though the two hybrid films have the same amount of QDs and graphene, time-resolved fluorescence emission decay results show that the emission lifetime of the CdSe aryl group binding graphene film is significantly shorter than that of the pyridine capping CdSe-graphene. The quantum efficiency and photocurrent density of the device fabricated from CdSe aryl binding graphene were also higher than those of the device fabricated from pyridine capping CdSe-graphene. These results indicated that the carrier transport of the QD-graphene system is not related to the additive effect from the CdSe and graphene components but rather is a result of the unique interactions between the graphene and QDs. We could expect that these results can be useful in designing QD-graphene composite materials, which are applied in photovoltaic devices.

  4. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell

    NASA Astrophysics Data System (ADS)

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-01

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd1-xZnxSe shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd1-xZnxSe core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  5. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots

    SciTech Connect

    Kortschot, R. J.; Bakelaar, I. A.; Erné, B. H.; Kuipers, B. W. M.

    2014-03-15

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10{sup −2} to 10{sup 7} Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  6. Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa.

    PubMed

    Priester, John H; Stoimenov, Peter K; Mielke, Randall E; Webb, Samuel M; Ehrhardt, Christopher; Zhang, Jin Ping; Stucky, Galen D; Holden, Patricia A

    2009-04-01

    With their increased use, engineered nanomaterials (ENMs) will enterthe environment where they may be altered by bacteria and affect bacterial processes. Metallic ENMs, such as CdSe quantum dots (QDs), are toxic due to the release of dissolved heavy metals, but the effects of cadmium ions versus intact QDs are mostly unknown. Here, planktonic Pseudomonas aeruginosa PG201 bacteria were cultured with similar total cadmium concentrations as either fully dissolved cadmium acetate (Cd(CH3COO)2) or ligand capped CdSe QDs, and cellular morphology, growth parameters, intracellular reactive oxygen species (ROS), along with the metal and metalloid fates were measured. QDs dissolved partially in growth media, but dissolution was less in biotic cultures compared to sterile controls. Dose-dependent growth effects were similar for low concentrations of either cadmium salts or QDs, but effects differed above a concentration threshold of 50 mg/L(total cadmium basis) where (1) the growth of QD-treated cells was more impaired, (2) the membranes of QD-grown cells were damaged, and (3) QD-grown cells contained QD-sized CdSe cytoplasmic inclusions in addition to Se0 and dissolved cadmium. For most concentrations, intracellular ROS were higher for QD-versus cadmium salts-grown bacteria. Taken together, QDs were more toxic to this opportunistic pathogen than cadmium ions, and were affected by cells through QD extracellular stabilization, intracellular enrichment and cell-associated decay.

  7. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  8. Improving the sensitivity of indirect-type organic X-ray detector by blending with CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, B.; Lee, J.; Kang, J.

    2017-01-01

    In this study, The blending effect of CdSe quantum dots (QDs) dispersed in a poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) active layer was investigated to improve the sensitivity of indirect-type X-ray detectors. 3 different sizes of CdSe QDs (5, 7, and 9 nm) were blended in P3HT:PCBM (weight ratio of 1:1) layers. The 5 nm-QD blended condition showed relatively high short circuit current density (Jsc), power conversion efficiency (PCE), and sensitivity. The optimal amount of 5nm-QDs in the P3HT:PCBM layer was also investigated in the range of 0 to 4 mg. As the final outcome, the detector fabricated with 3 mg of 5 nm-QDs in the active layer showed the highest sensitivity of 220.08 nC/mR·cm2, which was 28% higher than the sensitivity of the pristine P3HT:PCBM detector. Through the addition of the optimal amount of CdSe QDs to the P3HT:PCBM layer, the sensitivity of the X-ray detector was enhanced due to the increment of photon-absorption and charge transport.

  9. Understanding the electronic structure of CdSe quantum dot-fullerene (C60) hybrid nanostructure for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab

    2014-09-01

    By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C60) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C60 systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD. With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C60-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C60 hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.

  10. Bioinspired, direct synthesis of aqueous CdSe quantum dots for high-sensitive copper(II) ion detection.

    PubMed

    Bu, Xiaohai; Zhou, Yuming; He, Man; Chen, Zhenjie; Zhang, Tao

    2013-11-21

    Luminescent CdSe semiconductor quantum dots (QDs), which are coated with a denatured bovine serum albumin (dBSA) shell, have been directly synthesized via a bioinspired approach. The dBSA coated CdSe QDs are ultrasmall (d < 2.0 nm) with a narrow size distribution and exhibit a strong green fluorescent emission at about 525 nm. They can be stored for months at room temperature and possess excellent stability against ultraviolet irradiation, high salt concentration, and a wide physiological range of pH. Systematic experimental investigations have shown the contribution of dBSA with free cysteine residues for both their effective ion chelating and surface passivating interactions during the formation and stabilization of CdSe QDs. The luminescent QDs are used for copper(II) ion detection due to their highly sensitive and selective fluorescence quenching response to Cu(2+). The concentration dependence of the quenching effect can be best described by the typical Stern-Volmer equation in a linearly proportional concentration of Cu(2+) ranging from 10 nM to 7.5 μM with a detection limit of 5 nM. As confirmed by various characterization results, a possible quenching mechanism is given: Cu(2+) ions are first reduced to Cu(+) by the dBSA shell and then chemical displacement between Cu(+) and Cd(2+) is performed at the surface of the ultrasmall metallic core to impact the fluorescence performance.

  11. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-09

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  12. Colloidal quantum dot solids for solution-processed solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Mingjian; Liu, Mengxia; Sargent, Edward H.

    2016-03-01

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  13. Nanoscale and Single-Dot Patterning of Colloidal Quantum Dots.

    PubMed

    Xie, Weiqiang; Gomes, Raquel; Aubert, Tangi; Bisschop, Suzanne; Zhu, Yunpeng; Hens, Zeger; Brainis, Edouard; Van Thourhout, Dries

    2015-11-11

    Using an optimized lift-off process we develop a technique for both nanoscale and single-dot patterning of colloidal quantum dot films, demonstrating feature sizes down to ~30 nm for uniform films and a yield of 40% for single-dot positioning, which is in good agreement with a newly developed theoretical model. While first of all presenting a unique tool for studying physics of single quantum dots, the process also provides a pathway toward practical quantum dot-based optoelectronic devices.

  14. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy.

    PubMed

    McArthur, Eric A; Morris-Cohen, Adam J; Knowles, Kathryn E; Weiss, Emily A

    2010-11-18

    This manuscript describes a global regression analysis of near-infrared (NIR, 900-1300 nm) transient absorptions (TA) of colloidal CdSe quantum dots (QDs) photoexcited to their first (1S(e)1S(3/2)) excitonic state. Near-IR TA spectroscopy facilitates charge carrier-resolved analysis of excitonic decay of QDs because signals in the NIR are due exclusively to absorptions of photoexcited electrons and holes, as probe energies in this region are not high enough to induce absorptions across the optical bandgap that crowd the visible TA spectra. The response of each observed component of the excitonic decay to the presence of a hole-trapping ligand (1-octanethiol) and an electron-accepting ligand (1,4-benzoquinone), and comparison of time constants to those for recovery of the ground state bleaching feature in the visible TA spectrum, allow for the assignment of the components to (i) a 1.6 ps hole trapping process, (ii) 19 ps and 274 ps surface-mediated electron trapping processes, and (iii) a ∼5 ns recombination of untrapped electrons.

  15. The influence of surface coating on the properties of water-soluble CdSe and CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Coto-García, Ana María; Fernández-Argüelles, María T.; Costa-Fernández, José M.; Sanz-Medel, Alfredo; Valledor, Marta; Campo, Juan C.; Ferrero, Francisco J.

    2013-01-01

    It is well-known that ligands coating the surface of luminescent semiconductor nanocrystals (quantum dots [QDs]) play an important role in the preparation, stability and physical properties of the colloidal QDs in both organic and aqueous media. Here we report on the synthesis and characterization of core (CdSe QDs) and core-shell structured QDs (CdSe/ZnS QDs), both of them stabilized in aqueous medium through different mechanisms of modification of their surface chemistry. The approaches evaluated for QDs transfer to aqueous media were ligand exchange and polymer coating. Experiments were performed using two typical thioalkyl acids as ligands, namely mercaptoacetic acid (QDs-MAA) and 2-mercaptoethanesulphonic acid (QDs-MES), and an amphiphilic polymer (PQDs) based on poly(maleic anhydride) functional groups. The effects of pH (buffer solution), illumination and the presence of ions in the QD environment on the spectroscopic properties of the different synthesized QDs are reported. The stability of the prepared QDs has been comparatively evaluated aimed to elucidate which surface chemistry provides the suitable properties to be employed as fluorescence labels in distinct types of applications. The experimental results and conclusions will be useful for the development of sensitive sensors or assays adopting QDs as fluorescence labels.

  16. Preparation of colloidal CdSe and CdS/CdSe nanoparticles from sodium selenosulfate in aqueous polymers solutions.

    PubMed

    Raevskaya, Alexandra E; Stroyuk, Alexander L; Kuchmiy, Stephan Ya

    2006-10-01

    Cadmium selenide nanoparticles formation at the interaction between CdCl2 and Na2SeSO3 in aqueous solutions of sodium polyphosphate and gelatin has been studied. Structural and optical properties of CdSe nanoparticles have been characterized. It has been shown that the temperature and the ratio of reagents concentrations are the basic parameters, controlling the size of CdSe nanoparticles. Photocatalytic activity of CdS nanoparticles in Na2SeSO3 reduction has been found and investigated; structural and optical properties of binary CdS/CdSe nanoparticles have been characterized. This photoreaction, when carried out in the presence of CdCl2, results in the formation of composite CdS/CdSe nanoparticles. It has been shown that slow interaction of adsorbed selenosulfate with surface-trapped CdS conduction band electrons is the limiting stage of the photocatalytic reaction.

  17. Scanning near-field optical microscope working with a CdSe /ZnS quantum dot based optical detector

    NASA Astrophysics Data System (ADS)

    Aigouy, L.; Samson, B.; Julié, G.; Mathet, V.; Lequeux, N.; Nı. Allen, C.; Diaf, H.; Dubertret, B.

    2006-06-01

    We have developed a scanning near-field optical microscope that uses a subwavelength-sized silica sphere covered with CdSe /ZnS quantum dots as a fluorescent optical detector. Due to the good photostability of these semiconducting particles, we are routinely able to perform several successive scans without a noticeable decrease of fluorescence signals. As an example, we will show some images of the light immediately transmitted through 300nm wide slits made in a thin gold film. We will also discuss the advantages of such fluorescent probes compared to other near-field optical techniques.

  18. Raman analysis of chemical substitution of Cd atoms by Hg in CdSe quantum dots and rods

    NASA Astrophysics Data System (ADS)

    Cherevkov, Sergei A.; Baranov, Alexander V.; Ushakova, Elena V.; Litvin, Alexander P.; Fedorov, Anatoly V.; Prudnikau, Anatol V.; Artemyev, Mikhail V.

    2016-01-01

    We investigate nanocrystals of ternary compounds CdXHg1-XSe with 0CdSe NCs used for Cd/Hg substitution, either zinc blende or wurtzite, strongly affects the structural properties of the resultant CdXHg1-XSe quantum dots and rods.

  19. Temperature and Wavelength Dependence of Energy Transfer Process Between Quantized States and Surface States in CdSe Quantum Dots.

    PubMed

    Zhang, Lei; Xu, Qinfeng; Liu, Mingliang; Kong, Lingbin; Jiao, Mengmeng; Mu, Haifeng; Wang, Dehua; Wang, Honggang; Chen, Jiannong; Yang, Chuanlu

    2017-12-01

    Temperature and wavelength dependence of energy transfer (ET) process between quantized states and surface trap states of CdSe quantum dots was investigated, respectively. The experimental results demonstrate that the photoluminescence (PL) intensity of the quantized states decreases with respect to the trap state emission, especially at lower temperatures. The observed ET process between quantized states and trap states which is influenced by the thermal population behavior. At the same temperature, the silver films can greatly enhance the energy transfer (ET) rate from the quantized states to trap states due to surface plasmonic coupling effect.

  20. Sonochemical synthesis of CdS and CdSe nanowires.

    PubMed

    Jiang, Li-Ping; Xu, Shu; Miao, Jian-Jun; Wang, Hui; Zhu, Jun-Jie

    2006-08-01

    A convenient sonochemical route was developed to fabricate one-dimensional (1D) CdS or CdSe assemblies via a simple template method with two-steps: Firstly, the colloid one dimensional cadmium hydroxide particles were prepared as templates under sonication; then, the colloid particles were converted into 1D CdS or CdSe assemblies via a replacement reaction after the surface nucleation and crystal growth processes. The as-prepared CdS and CdSe nanowires were characterized by XRD, TEM, XPS, and UV-visible Spectroscopy. The effects of the ultrasonic irradiation were discussed. It is believed that the ultrasound irradiation played a positive role in both the assembly of the colloid cadmium hydroxide particles into the 1D structure and the growth of CdSe and CdS nanowires. The effects of pH on the morphologies of the cadmium hydroxide template were also discussed. The band gaps of the as-prepared 1D CdSe and CdS assemblies were calculated to be 3.1 eV and 4.9 eV, respectively, indicating the quantum size effect. The as-prepared products might have potential applications in nanodevices in future.

  1. Photoluminescence characteristics of CdSe quantum dots: role of exciton-phonon coupling and defect/trap states

    NASA Astrophysics Data System (ADS)

    Kushavah, Dushyant; Mohapatra, P. K.; Ghosh, Pintu; Singh, Mamraj; Vasa, P.; Bahadur, D.; Singh, B. P.

    2017-07-01

    In this paper, we report temperature dependent photoluminescence (PL) characteristics of CdSe colloidal QDs with average diameter ~2.8 nm. Temperature dependence of strongly confined exciton PL peak position, linewidth and intensity were investigated in 30 K to 300 K temperature range. Our studies reveal nearly four times weaker exciton-LO phonon coupling than bulk CdSe crystal. Theoretically, it should be vanishingly small due to near identical electron and hole charge distributions in strongly confined QDs. On the other hand, exciton-acoustic phonon coupling is an order of magnitude larger than its bulk counterpart. Observed finite value of exciton-LO phonon coupling and enhanced exciton-acoustic phonon coupling are due to piezoelectric strain fields. PL intensity exhibits anomalous behavior in the temperature range 100-230 K. This has been explained by thermally activated detrapping of the charge carriers trapped in the potential wells formed at the interface adjoining dislocations/stacking faults developed during the synthesis process. Above 230 K, PL is partially quenched by thermal escape of charge carriers from luminescing exciton state to higher lying nonluminescing states.

  2. Hybrid solar cells of micro/mesoporous Zn( and its graphite composites sensitized by CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Islam, SM Z.; Gayen, Taposh; Tint, Naing; Shi, Lingyan; Ebrahim, Amani M.; Seredych, Mykola; Bandosz, Teresa J.; Alfano, Robert

    2014-01-01

    Quantum efficiencies (QEs) of innovative hybrid solar cells fabricated using micro/mesoporous zinc (hydr)oxide and its graphite-based composites sensitized by semiconductor quantum dots (SQDs) are reported. High absorption coefficient of CdSe SQDs and the wide band gap of zinc (hydr)oxide and its composites with graphite oxide (GO) are essential to achieve solar cells of higher QEs. Hybrid solar cells are fabricated from zinc (hydr)oxide and its composites (with 2 and 5 wt.% of graphite oxides, termed as, ZnGO-2 and ZnGO-5, respectively) while using potassium iodide or perovskite as an electrolyte. A two-photon fluorescence (TPF) imaging technique was used to determine the internal structure of the solar cell device. The photocurrent and current-voltage measurements were used to measure short-circuit current and open-circuit voltage to calculate the fill factor and QE of these solar cells. The highest QE (up to ˜10.62%) is realized for a ZnGO-2-based solar cell using potassium iodide as its electrolyte and the CdSe quantum dot as its sensitizer.

  3. CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compounds.

    PubMed

    Algarra, M; Campos, B B; Miranda, M S; da Silva, Joaquim C G Esteves

    2011-02-15

    The detection of nitroaromatic compounds, best known as raw materials in explosives preparations, is important in many fields including environmental science, public security and forensics. CdSe quantum dots capped with PAMAM-G(4) dendrimer were synthetized in water and used for the detection of trace amounts of three nitroaromatic compounds: 4-methoxy-2-nitrophenol (MNP), 2-amine-5-chloro-1,3-dinitrobenzene (ACNB) and 3-methoxy-4-nitrobenzoic acid (MNB). To increase the apparent water solubility of these compounds α-cyclodextrin (α-CD) was used to promote the formation of inclusion complexes. The studied nitroaromatic compounds (plus α-CD) significantly quenched the fluorescence intensity of the nanocomposite with linear Stern-Volmer plots. The Stern-Volmer constants (standard deviation in parenthesis) were: MNB, K(SV)=65(5)×10(4) M(-1); ACNB, K(SV)=19(2)×10(4) M(-1); and, MNP, K(SV)=33(1)×10(2) M(-1). These constants suggest the formation of a ground state complex between the nitroaromatric compounds and the sensor which confers a relatively high analytical sensitivity. The detection sensibilities are about 0.01 mg L(-1) for MNB and ACNB and about 0.1 mg L(-1) for MNP. No interferences or small interferences are observed for trinitrotoluene [K(SV)=10(2)×10(2)×M(-1)], 2,4-dinitrotoluene [K(SV)=20(3)×10 M(-1)], 2,6-dinitrotoluene [K(SV)=11(4)×10 M(-1)] and nitrobenzene [K(SV)=2(1)×10(3)×M(-1)]. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Microsecond-sustained lasing from colloidal quantum dot solids.

    PubMed

    Adachi, Michael M; Fan, Fengjia; Sellan, Daniel P; Hoogland, Sjoerd; Voznyy, Oleksandr; Houtepen, Arjan J; Parrish, Kevin D; Kanjanaboos, Pongsakorn; Malen, Jonathan A; Sargent, Edward H

    2015-10-23

    Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we find that the chief cause of nanosecond-only operation has been thermal runaway: the combination of rapid heat injection from the pump source, poor heat removal and a highly temperature-dependent threshold. We show microsecond-sustained lasing, achieved by placing ultra-compact colloidal quantum dot films on a thermally conductive substrate, the combination of which minimizes heat accumulation. Specifically, we employ inorganic-halide-capped quantum dots that exhibit high modal gain (1,200 cm(-1)) and an ultralow amplified spontaneous emission threshold (average peak power of ∼50 kW cm(-2)) and rely on an optical structure that dissipates heat while offering minimal modal loss.

  5. Microsecond-sustained lasing from colloidal quantum dot solids

    PubMed Central

    Adachi, Michael M.; Fan, Fengjia; Sellan, Daniel P.; Hoogland, Sjoerd; Voznyy, Oleksandr; Houtepen, Arjan J.; Parrish, Kevin D.; Kanjanaboos, Pongsakorn; Malen, Jonathan A.; Sargent, Edward H.

    2015-01-01

    Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we find that the chief cause of nanosecond-only operation has been thermal runaway: the combination of rapid heat injection from the pump source, poor heat removal and a highly temperature-dependent threshold. We show microsecond-sustained lasing, achieved by placing ultra-compact colloidal quantum dot films on a thermally conductive substrate, the combination of which minimizes heat accumulation. Specifically, we employ inorganic-halide-capped quantum dots that exhibit high modal gain (1,200 cm−1) and an ultralow amplified spontaneous emission threshold (average peak power of ∼50 kW cm−2) and rely on an optical structure that dissipates heat while offering minimal modal loss. PMID:26493282

  6. Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires.

    PubMed

    Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Torbjörnsson, Magne; Chábera, Pavel; Shao, Shuyan; Zhang, Fengling; Pullerits, Tõnu

    2013-07-25

    A method for CdSe quantum dot (QD) sensitization of ZnO nanowires (NW) with fast adsorption rate is applied. Photoinduced excited state dynamics of the quantum dots in the case of more than monolayer coverage of the nanowires is studied. Transient absorption kinetics reveals an excitation depopulation process of indirectly attached quantum dots with a lifetime of ~4 ns. Photoluminescence and incident photon-to-electron conversion efficiency show that this process consists of both radiative e-h recombination and nonradiative excitation-to-charge conversion. We argue that the latter occurs via interdot energy transfer from the indirectly attached QDs to the dots with direct contact to the nanowires. From the latter, fast electron injection into ZnO occurs. The energy transfer time constant is found to be around 5 ns.

  7. Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties

    NASA Technical Reports Server (NTRS)

    Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher

    1995-01-01

    One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.

  8. Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties

    NASA Technical Reports Server (NTRS)

    Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher

    1995-01-01

    One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.

  9. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V

    2015-11-04

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.

  10. Subtle Chemistry of Colloidal, Quantum-Confined Semiconductor Nanostructures

    SciTech Connect

    Hughes, B. K.; Luther, J. M.; Beard, M. C.

    2012-06-26

    Nanoscale colloidal semiconductor structures with at least one dimension small enough to experience quantum confinement effects have captured the imagination and attention of scientists interested in controlling various chemical and photophysical processes. Aside from having desirable quantum confinement properties, colloidal nanocrystals are attractive because they are often synthesized in low-temperature, low-cost, and potentially scalable manners using simple benchtop reaction baths. Considerable progress in producing a variety of shapes, compositions, and complex structures has been achieved. However, there are challenges to overcome in order for these novel materials to reach their full potential and become new drivers for commercial applications. The final shape, composition, nanocrystal-ligand structure, and size can depend on a delicate interplay of precursors, surface ligands, and other compounds that may or may not participate in the reaction. In this Perspective, we discuss current efforts toward better understanding how the reactivity of the reagents can be used to produce unique and complex nanostructures.

  11. Momentum Transfer Studies and Studies of Linear and Nonlinear Optical Properties of Metal Colloids and Semiconductor Quantum Dots

    NASA Technical Reports Server (NTRS)

    Collins, W. E.; Burger, A.; Dyer, K.; George, M.; Henderson, D.; Morgan, S.; Mu, R.; Shi, D.; Conner, D; Thompson, E.; hide

    1996-01-01

    Phase 1 of this work involved design work on a momentum transfer device. The progress on design and testing will be presented. Phase 2 involved the systematic study of the MPD thruster for dual uses. Though it was designed as a thruster for space vehicles, the characteristics of the plasma make it an excellent candidate for industrial applications. This project sought to characterize the system for use in materials processing and characterization. The surface modification on ZnCdTe, CdTe, and ZnTe will be presented. Phase 3 involved metal colloids and semiconductor quantum dots. One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantation for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga, and As. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb, and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. The results of some of this work will also be reported.

  12. Momentum Transfer Studies and Studies of Linear and Nonlinear Optical Properties of Metal Colloids and Semiconductor Quantum Dots

    NASA Technical Reports Server (NTRS)

    Collins, W. E.; Burger, A.; Dyer, K.; George, M.; Henderson, D.; Morgan, S.; Mu, R.; Shi, D.; Conner, D; Thompson, E.; Collins, L.; Curry, L.; Mattox, S.; Williams, G.

    1996-01-01

    Phase 1 of this work involved design work on a momentum transfer device. The progress on design and testing will be presented. Phase 2 involved the systematic study of the MPD thruster for dual uses. Though it was designed as a thruster for space vehicles, the characteristics of the plasma make it an excellent candidate for industrial applications. This project sought to characterize the system for use in materials processing and characterization. The surface modification on ZnCdTe, CdTe, and ZnTe will be presented. Phase 3 involved metal colloids and semiconductor quantum dots. One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantation for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga, and As. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb, and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. The results of some of this work will also be reported.

  13. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots.

    PubMed

    Zhu, Huiguang; Prakash, Arjun; Benoit, Denise N; Jones, Christopher J; Colvin, Vicki L

    2010-06-25

    Methods for synthesizing quantum dots generally rely on very high temperatures to both nucleate and grow core and core-shell semiconductor nanocrystals. In this work, we generate highly monodisperse ZnS and CdZnS shells on CdSe semiconductor nanocrystals at temperatures as low as 65 degrees C by enhancing the precursor solubility. Relatively small amounts of trioctylphosphine and trioctylphosphine oxide have marked effects on the solubility of the metal salts used to form shells; their inclusion in the precursor solutions, which use thiourea as a sulfur source, can lead to homogeneous and fully dissolved solutions. Upon addition to suspensions of quantum dot cores, these precursors deposit as uniform shells; the lowest temperature for shell growth (65 degrees C) yields the thinnest shells (d < 1 nm) while the same process at higher temperatures (180 degrees C) forms thicker shells (d approximately 1-2 nm). The growth of the shell structures, average particle size, size distribution, and shape were examined using optical spectroscopy, transmission electron microscopy, x-ray diffraction, and transmittance small angle x-ray scattering. The photoluminescence quantum yield (QY) of the as-prepared CdSe/ZnS quantum dots ranged from 26% to 46% as compared to 10% for the CdSe cores. This method was further generalized to CdZnS shells by mixing cadmium and zinc acetate precursors. The CdSe/CdZnS nanocrystals have a thicker shell and higher QY (40% versus 36%) as compared to the CdSe/ZnS prepared under similar conditions. These low temperature methods for shell growth are readily amenable to scale-up and can provide a route for economical and less energy intensive production of quantum dots.

  14. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhu, Huiguang; Prakash, Arjun; Benoit, Denise N.; Jones, Christopher J.; Colvin, Vicki L.

    2010-06-01

    Methods for synthesizing quantum dots generally rely on very high temperatures to both nucleate and grow core and core-shell semiconductor nanocrystals. In this work, we generate highly monodisperse ZnS and CdZnS shells on CdSe semiconductor nanocrystals at temperatures as low as 65 °C by enhancing the precursor solubility. Relatively small amounts of trioctylphosphine and trioctylphosphine oxide have marked effects on the solubility of the metal salts used to form shells; their inclusion in the precursor solutions, which use thiourea as a sulfur source, can lead to homogeneous and fully dissolved solutions. Upon addition to suspensions of quantum dot cores, these precursors deposit as uniform shells; the lowest temperature for shell growth (65 °C) yields the thinnest shells (d < 1 nm) while the same process at higher temperatures (180 °C) forms thicker shells (d ~ 1-2 nm). The growth of the shell structures, average particle size, size distribution, and shape were examined using optical spectroscopy, transmission electron microscopy, x-ray diffraction, and transmittance small angle x-ray scattering. The photoluminescence quantum yield (QY) of the as-prepared CdSe/ZnS quantum dots ranged from 26% to 46% as compared to 10% for the CdSe cores. This method was further generalized to CdZnS shells by mixing cadmium and zinc acetate precursors. The CdSe/CdZnS nanocrystals have a thicker shell and higher QY (40% versus 36%) as compared to the CdSe/ZnS prepared under similar conditions. These low temperature methods for shell growth are readily amenable to scale-up and can provide a route for economical and less energy intensive production of quantum dots.

  15. Photoluminescence limiting of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Xi, H.; Wang, J. S.

    2016-02-01

    The exposure of colloidal 2 nm PbS quantum dots to growing continuous wave laser excitation at 532 nm increases the photoluminescence intensity with the square root of the optical stimulus. The results herein in conjunction with previous findings [B. Ullrich and H. Xi, Opt. Lett. 38, 4698 (2013)] advocate the square root trend to be the general limiting function for photo-carrier transport and emission of optically excited nano-sized materials. We further show that the excitation of one electron-hole pair per quantum dot defines the saturation threshold for photoluminescence intensity and dynamic band filling.

  16. Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Voznyy, O.; Sargent, E. H.

    2014-04-01

    Optoelectronic applications of colloidal quantum dots demand a high emission efficiency, stability in time, and narrow spectral bandwidth. Electronic trap states interfere with the above properties but understanding of their origin remains lacking, inhibiting the development of robust passivation techniques. Here we show that surface vacancies improve the fluorescence yield compared to vacancy-free surfaces, while dynamic vacancy aggregation can temporarily turn fluorescence off. We find that infilling with foreign cations can stabilize the vacancies, inhibiting intermittency and improving quantum yield, providing an explanation of recent experimental observations.

  17. Study of optical nonlinearity of CdSe and CdSe@ZnO core-shell quantum dots in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Deepika; Dhar, Rakesh; Mohan, Devendra

    2015-12-01

    Thioglycolic acid capped cadmium selenide (CdSe) and CdSe@ZnO core-shell quantum dots have been synthesized in aqueous phase. The sample was characterized by UV-vis spectrophotometer, TEM and Z-scan technique. The nonlinear optical parameters viz. nonlinear absorption coefficient (β), nonlinear refractive index (n2) and third-order nonlinear susceptibilities (χ3) of quantum dots have been estimated using second harmonic of Nd:YAG laser. The study predicts that CdSe@ZnO quantum dots exhibits strong nonlinearity as compared to core CdSe quantum dots. The nonlinearity in quantum dots is attributed to the presence of resonant excitation and free optical processes. The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.

  18. Carrier cooling in colloidal quantum wells.

    PubMed

    Pelton, Matthew; Ithurria, Sandrine; Schaller, Richard D; Dolzhnikov, Dmitriy S; Talapin, Dmitri V

    2012-12-12

    It has recently become possible to chemically synthesize atomically flat semiconductor nanoplatelets with monolayer-precision control over the platelet thickness. It has been suggested that these platelets are quantum wells; that is, carriers in these platelets are confined in one dimension but are free to move in the other two dimensions. Here, we report time-resolved photoluminescence and transient-absorption measurements of carrier relaxation that confirm the quantum-well nature of these nanomaterials. Excitation of the nanoplatelets by an intense laser pulse results in the formation of a high-temperature carrier population that cools back down to ambient temperature on the time scale of several picoseconds. The rapid carrier cooling indicates that the platelets are well-suited for optoelectronic applications such as lasers and modulators.

  19. Electrochemical charging of CdSe quantum dot films: dependence on void size and counterion proximity.

    PubMed

    Boehme, Simon C; Wang, Hai; Siebbeles, Laurens D A; Vanmaekelbergh, Daniel; Houtepen, Arjan J

    2013-03-26

    Films of colloidal quantum dots (QDs) show great promise for application in optoelectronic devices. Great advances have been made in recent years in designing efficient QD solar cells and LEDs. A very important aspect in the design of devices based on QD films is the knowledge of their absolute energy levels. Unfortunately, reported energy levels vary markedly depending on the employed measurement technique and the environment of the sample. In this report, we determine absolute energy levels of QD films by electrochemical charge injection. The concomitant change in optical absorption of the film allows quantification of the number of charges in quantum-confined levels and thereby their energetic position. We show here that the size of voids in the QD films (i.e., the space between the quantum dots) determines the amount of charges that may be injected into the films. This effect is attributed to size exclusion of countercharges from the electrolyte solution. Further, the energy of the QD levels depends on subtle changes in the QD film and the supporting electrolyte: the size of the cation and the QD ligand length. These nontrivial effects can be explained by the proximity of the cation to the QD surface and a concomitant lowering of the electrochemical potential. Our findings help explain the wide range of reported values for QD energy levels and redefine the limit of applicability of electrochemical measurements on QD films. Finally, the finding that the energy of QD levels depends on ligand length and counterion size may be exploited in optimized designs of QD sensitized solar cells.

  20. Quantum effect on parametric dispersion in presence of nonuniform size colloids in semiconductors

    NASA Astrophysics Data System (ADS)

    Vanshpal, R.; Dubey, S.; Ghosh, S.

    2012-05-01

    Quantum effect on parametric dispersion characteristics in ion implanted semiconductors in presence of nonuniform size colloids is analytically investigated in the present report. Nonuniform size colloids are managed through polynomial distribution function in the analysis. Here the used quantum hydrodynamic model is described by a set of hydrodynamic equations (typically continuity and momentum transfer) that include quantum effects via Bohm potential. Bohm potential modified second order optical susceptibility is obtained through nonlinear induced current density in presence of electrons and negatively charged nonuniform size colloids. It is found that parametric dispersion characteristics are greatly influenced by the quantum modifications. The parametric dispersion of the generated signal mode reduces due to the presence of Bohm potential. The required pump intensity at which one achieves maximum dispersion shifts towards higher value in presence of quantum term. Moreover present study also establishes that quantum effect on colloids is inversely proportional to their size; smaller colloids induce more quantum modifications.

  1. Parametric interactions in presence of different size colloids in semiconductor quantum plasmas

    SciTech Connect

    Vanshpal, R. Sharma, Uttam; Dubey, Swati

    2015-07-31

    Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal.

  2. Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode.

    PubMed

    Lee, Ya-Ju; Lee, Chia-Jung; Cheng, Chun-Mao

    2010-11-08

    A hybrid structure of CdSe quantum dots (QDs) (λ = 640 nm) spin-coated on the indium gallium nitride (InGaN) nanorod light-emitting diode (LED, λ = 525 nm) is successfully fabricated. Experimental results indicate that the randomness and the minuteness of nanorods scatter the upcoming green light into the surrounding CdSe QDs efficiently, subsequently alleviating the likelihood of the emitted photons of red emission being recaptured by the CdSe QDs (self-absorption effect), and that increases the coupling probability of emission lights and the overall conversion efficiency. Moreover, the revealed structure with high color stability provides an alternative solution for general lighting applications of next generation.

  3. The influence of sequential ligand exchange and elimination on the performance of P3HT: CdSe quantum dot hybrid solar cells.

    PubMed

    Lee, Donggu; Lim, Jaehoon; Park, Myeongjin; Kim, Jun Young; Song, Jiyun; Kwak, Jeonghun; Lee, Seonghoon; Char, Kookheon; Lee, Changhee

    2015-11-20

    We report on a sequential ligand exchange and elimination process for the fast and easy surface modification of CdSe quantum dots (QDs) in order to improve the electronic interaction between poly(3-hexylthiophene) (P3HT) and CdSe QDs in P3HT:CdSe hybrid solar cells. We systematically investigated the influence of surface treatment on the insulating ligand shell of CdSe QDs using (1)H-NMR analysis, and correlated their influence on the photovoltaic properties of P3HT:CdSe hybrid solar cells. A decrease in the average thickness of the ligand shells directly improved carrier transport properties. Moreover, the presence of remnant 1-hexylamine ligands provided efficient surface trap passivation. As a result, overall solar cell performance (especially fill factor and power conversion efficiency) was enhanced and the recombination mechanism was dominated by monomolecular recombination due to enhanced carrier collection length (l(C0)).

  4. Colloidal quantum dots for fluorescent labels of proteins

    NASA Astrophysics Data System (ADS)

    Gladyshev, P.; Kouznetsov, V.; Martinez Bonilla, C.; Dezhurov, S.; Krilsky, D.; Vasiliev, A.; Morenkov, O.; Vrublevskaya, V.; Tsygankov, P.; Ibragimova, S.; Rybakova, A.

    2016-10-01

    The work is devoted to the synthesis of colloidal quantum dots (QDs) and their bioconjugates with proteins. Various QDs were obtained as well with synthesis method in an organic solvent followed by hydrophilization and functionalization or synthesis in aqueous phase provides obtaining hydrophilic QDs directly. Particular attention is paid to the synthesis of QDs as fluorescent tags in the near infrared where minimum absorption occurs and the fluorescence of biological tissue and synthetic materials used in analytical systems. A method for the QDs synthesis of type fluorescent core/shell CdTeSe/CdS/CdZnS-PolyT with mixed telluride, selenide cadmium core with a high quantum yield and high resistance to photoaging. It is shown that these quantum dots may be effectively used in the immunoassay.

  5. Synthesis and Characterization of PbS Quantum Sheets Through Lamellar Assembly, and Updates to the CdSe Quantum Wire Synthesis

    NASA Astrophysics Data System (ADS)

    Morrison, Paul J.

    This dissertation reports the novel synthesis of PbS quantum plates (QPs) via a reaction executed at low temperatures. The PbS QPs are grown in a template-assisted mechanism, with the first excitonic peak observed in the visible region of light at ~620 nm (2.0 eV), at an energy radically different than the band gap of bulk PbS (~3000 nm, 0.42eV). The large energy shift is due to the extremely thin dimension of these nanoplates, which is determined to be ~1 nm in thickness. Thickness measurements are made in a powder X-ray diffractometer (XRD) at low angles (between 2-15º 2θ). These measurements show a series of reflections in highly lamellar structures and give a spacing easily calculated using a modified version of the Bragg diffraction equation and applied to a straight line. During experimentation, a discrepancy was noticed while observing the lamellar template under various conditions. The TEM consistently showed an expanded d spacing of lamellar templates that does not fit with data from the XRD. The high vacuum atmosphere of the electron microscope induces a consistent expansion of template systems, as shown here for the first time, and proven from multiple previously published results. An improvement on CdSe quantum wire (QW) growth using alternate synthetic procedures and shell growth avenues is also reported. Also presented here are the underlying fundamentals for a new shell growth opportunity with a previously overlooked material: MgSe. Quantum wires made from CdSe are uniquely accommodating to MgSe as a shell material due to its intrinsic properties: much closer lattice parameters versus CdSe's current widely used shell (CdS), a highly insulating band gap (4.0 eV), and the ability to be grown in many of the common semiconductor crystal structures (rock salt, zinc blende, and wurtzite).

  6. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  7. Size-controlled CdSe quantum dots to boost light harvesting capability and stability of perovskite photovoltaic cells.

    PubMed

    Lintangpradipto, Muhammad Naufal; Tsevtkov, Nikolai; Moon, Byeong Cheul; Kang, Jeung Ku

    2017-07-20

    Here, we report that incorporation of size-controlled CdSe quantum dots (QDs) into perovskite photovoltaic cells (PSCs) boosts their light harvesting capability. X-ray photoemission and optical absorption spectroscopy analyses also show that the electronic structure of CdSe QDs makes them efficient charge transfer mediators between perovskite and Spiro-MeOTAD layers. In addition, electrochemical impedance spectroscopy experiments demonstrate that QDs help to decrease charge transfer resistance at the interfaces. Additionally, time-correlated single photon counting measurements show that small (2 nm) QDs enhance visible light collection of PSCs in the short wavelength region via Förster resonance energy transfer while large (4 nm) QDs improve light collection of PSCs in the long wavelength region via enhanced light backscattering at the perovskite/QD interface. Moreover, the photocurrent density in the PSCs with QDs retained over 95% of the initial value in a 100 h stability test, thus supporting that the perovskite layer that has been encapsulated with QDs acts to prevent penetration of water molecules through the perovskite layer. Consequently, these results support that utilization of size-controlled hybrid QDs could open up a new route to realize high-performance PSCs even under humid conditions.

  8. Magnetic-field-dependent spin decoherence and dephasing in room-temperature CdSe nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Fumani, A. Khastehdel; Berezovsky, J.

    2013-10-01

    We perform and analyze a series of time-resolved Faraday rotation measurements of coherent spin dynamics in a room-temperature ensemble of CdSe nanocrystal quantum dots (NCQDs) to study the decoherence and dephasing mechanisms that limit the transverse spin lifetime. Coherent spin lifetimes on the order of nanoseconds have been previously observed in CdSe NCQDs, but the presence of multiple components with distinct dynamics and strong inhomogeneous dephasing have made it difficult to study the relevant spin decay mechanisms quantitatively. Here, we obtain reliable fitting results by ensuring that cross-correlations between model parameters are minimized for the parameters of interest. Furthermore, we characterize the morphological inhomogeneity of the NCQD ensemble using transmission electron microscopy to constrain the model parameters that specify inhomogeneous dephasing. We find that g-factor inhomogeneity-induced dephasing (gID) is not sufficient to explain the magnetic-field-dependent decay of the spin signal. We propose an additional decoherence mechanism arising from rapid transitions between the fine structure states of the exciton referred to as fine-structure decoherence (FSD). By including both gID and FSD in the model, excellent fits are obtained to the data, including a prominent short-time-scale feature, which has typically been excluded from the fits in previous work.

  9. Asymmetric tunneling rates for electrons and holes at CdSe quantum dot/carbon nanotube interfaces

    NASA Astrophysics Data System (ADS)

    Ismail-Beigi, Sohrab; Jiang, Jie

    2014-03-01

    Decorating carbon nanotubes with CdSe quantum dots (QDs) is one potential approach for creating high efficiency photovoltaics. Our collaborators at Yale recently produced a ligand-free covalent attachment of CdSe QDs to carbon nanotubes through an organic ligand exchange mechanism. Our prior first principles work described the energetics of the various binding processes and rationalized the experimental growth methodology. After a brief review of the system, we will describe our intriguing finding that excited electrons and holes tunnel with different rates out of the QD and into the carbon nanotubes. The asymmetric tunneling rate itself can, in principle, boost the separation of photo-excited charge at the interface even if there are insufficient band energy differences across the interface. We describe our results for the tunneling rates computed using (i) a brute force approach with increasing simulation cell size to remove periodic effects, and (ii) a Green's function method that directly connects the QD to a thermodynamically large electron reservoir (e.g., a very long pristine nanotube). Supported by NSF SOLAR DMR 0934520.

  10. Mechanism for strong binding of CdSe quantum dots to multiwall carbon nanotubes for solar energy harvesting.

    PubMed

    Azoz, Seyla; Jiang, Jie; Keskar, Gayatri; McEnally, Charles; Alkas, Alp; Ren, Fang; Marinkovic, Nebojsa; Haller, Gary L; Ismail-Beigi, Sohrab; Pfefferle, Lisa D

    2013-08-07

    As hybrid nanomaterials have myriad of applications in modern technology, different functionalization strategies are being intensely sought for preparing nanocomposites with tunable properties and structures. Multi-Walled Carbon Nanotube (MWNT)/CdSe Quantum Dot (QD) heterostructures serve as an important example for an active component of solar cells. The attachment mechanism of CdSe QDs and MWNTs is known to affect the charge transfer between them and consequently to alter the efficiency of solar cell devices. In this study, we present a novel method that enables the exchange of some of the organic capping agents on the QDs with carboxyl functionalized MWNTs upon ultrasonication. This produces a ligand-free covalent attachment of the QDs to the MWNTs. EXAFS characterization reveals direct bond formation between the CdSe QDs and the MWNTs. The amount of oleic acid exchanged is quantified by temperature-programmed decomposition; the results indicate that roughly half of the oleic acid is removed from the QDs upon functionalized MWNT addition. Additionally, we characterize the optical and structural properties of the QD-MWNT heterostructures and investigate how these properties are affected by the attachment. The steady state photoluminescence response of QDs is completely quenched. The lifetime of the PL of the QDs measured with time resolved photoluminescence shows a significant decrease after they are covalently bonded to functionalized MWNTs, suggesting a fast charge transfer between QDs and MWNTs. Our theoretical calculations are consistent with and support these experimental findings and provide microscopic models for the QD binding mechanisms.

  11. The effect of differential temperatures on the latent heat in the nucleation of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Hao, Licai; Bai, Zhongchen; Qin, Shuijie; Zhang, Zhengping

    2017-04-01

    This work studied the effect of differential temperatures on the latent heat in the nucleation of CdSe quantum dots (QDs). The result showed that, by the formula of phase change, with increasing the reaction temperature, the latent heat in the nucleation of QDs reduced. CdSe QDs with the size-dispersion from 2.7 to 3.6 nm were synthesized via oleic acid-paraffin liquid system by controlling the reaction temperature from 180 to 220 °C. Synthesized QDs were characterized by UV-vis absorption spectra and X-ray diffraction (XRD). The result of UV-vis absorption spectra showed that with increasing of reaction temperature, the first absorption peak was red-shifted and the size of QD increased. The result of XRD showed that the synthesized QDs were zinc-blende structure. Project supported by the National Natural Science Fund of China (No. 11204046), the International Science and Technology Cooperation Project of China (No. 2014DFA00670) and the Guizhou Province International Science and Technology Cooperation Project of China (No. QKHG[2011]7001)

  12. Linear and nonlinear optical properties of functionalized CdSe quantum dots prepared by plasma sputtering and wet chemistry.

    PubMed

    Humbert, Christophe; Dahi, Abdellatif; Dalstein, Laetitia; Busson, Bertrand; Lismont, Marjorie; Colson, Pierre; Dreesen, Laurent

    2015-05-01

    We develop an innovative manufacturing process, based on radio-frequency magnetron sputtering (RFMS), to prepare neat CdSe quantum dots (QDs) on glass and silicon substrates and further chemically functionalize them. In order to validate the fabrication protocol, their optical properties are compared with those of QDs obtained from commercial solutions and deposited by wet chemistry on the substrates. Firstly, AFM measurements attest that nano-objects with a mean diameter around 13 nm are located on the substrate after RFMS treatment. Secondly, the UV-Vis absorption study of this deposited layer shows a specific optical absorption band, located at 550 nm, which is related to a discrete energy level of QDs. Thirdly, by using two-color sum-frequency generation (2C-SFG) nonlinear optical spectroscopy, we show experimentally the functionalization efficiency of the RFMS CdSe QDs layer with thiol derived molecules, which is not possible on the QDs layer prepared by wet chemistry due to the surfactant molecules from the native solution. Finally, 2C-SFG spectroscopy, performed at different visible wavelengths, highlights modifications of the vibration mode shape whatever the QDs deposition method, which is correlated to the discrete energy level of the QDs. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Photoinduced electron donor/acceptor processes in colloidal II-VI semiconductor quantum dots and nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Dutta, Poulami

    Electron transfer (ET) processes are one of the most researched topics for applications ranging from energy conversion to catalysis. An exciting variation is utilizing colloidal semiconductor nanostructures to explore such processes. Semiconductor quantum dots (QDs) are emerging as a novel class of light harvesting, emitting and charge-separation materials for applications such as solar energy conversion. Detailed knowledge of the quantitative dissociation of the photogenerated excitons and the interfacial charge- (electron/hole) transfer is essential for optimization of the overall efficiency of many such applications. Organic free radicals are the attractive counterparts for studying ET to/from QDs because these undergo single-electron transfer steps in reversible fashion. Nitroxides are an exciting class of stable organic free radicals, which have recently been demonstrated to be efficient as redox mediators in dye-sensitized solar cells, making them even more interesting for the aforementioned studies. This dissertation investigates the interaction between nitroxide free radicals TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 4-amino-TEMPO (4-amino- 2,2,6,6-tetramethylpiperidine-1-oxyl) and II-VI semiconductor (CdSe and CdTe) QDs. The nature of interaction in these hybrids has been examined through ground-state UV-Vis absorbance, steady state and time-resolved photoluminescence (PL) spectroscopy, transient absorbance, upconversion photoluminescence spectroscopy and electron paramagnetic resonance (EPR). The detailed analysis of the PL quenching indicates that the intrinsic charge transfer is ultrafast however, the overall quenching is still limited by the lower binding capacities and slower diffusion related kinetics. Careful analysis of the time resolved PL decay kinetics reveal that the decay rate constants are distributed and that the trap states are involved in the overall quenching process. The ultrafast hole transfer from CdSe QDs to 4-Amino TEMPO observed

  14. Quantum confinement controlled solar hydrogen production from hydrogen sulfide using a highly stable CdS(0.5)Se(0.5)/CdSe quantum dot-glass nanosystem.

    PubMed

    Apte, Sanjay K; Garaje, Sunil N; Naik, Sonali D; Waichal, Rupali P; Baeg, Jin-Ook; Kale, Bharat B

    2014-01-21

    We have demonstrated unique CdS0.5Se0.5 and CdSe quantum dot-glass nanosystems with quantum confinement effect. The stable, monodispersed CdS0.5Se0.5 and CdSe quantum dots (QDs) of size 2 to 12 nm have been grown in a germanate glass matrix by a simple melt quench technique at moderate temperature. XRD and Raman studies show formation of hexagonal CdS0.5Se0.5 and CdSe in the glass matrix. The quantum confinement of CdS0.5Se0.5 and CdSe was studied using TEM and UV-Vis spectroscopy. The band gap of the glass nanosystem was tuned from 3.6 to 1.8 eV by controlling the CdS0.5Se0.5 quantum dot size in the glass matrix. It can be further tuned to 1.68 eV using growth of CdSe quantum dots in the glass matrix. Considering the tuneable band gap of the CdS0.5Se0.5 and CdSe quantum dot-glass nanosystem for the visible light absorption, a study of size tuneable photocatalytic activity for hydrogen generation from hydrogen sulfide splitting was performed under visible light irradiation for the first time. The utmost hydrogen evolution, i.e. 8164.53 and 7257.36 μmol h(-1) g(-1) was obtained for the CdS0.5Se0.5 and CdSe quantum dot-glass nanosystems, respectively. The apparent quantum yield (AQY) was observed to be 26% and 21% for the CdS0.5Se0.5 and CdSe quantum dot-glass nanosystems, respectively. It is noteworthy that the present glass nanosystem as a photocatalyst was found to be very stable as compared to naked powder photocatalysts.

  15. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  16. Enhanced photoluminescence of CdSe quantum dots by the coupling of Ag nanocube and Ag film

    NASA Astrophysics Data System (ADS)

    Jiang, Tong-Tong; Shao, Wei-Jia; Yin, Nai-Qiang; Liu, Ling; Song, Jiang-Lu-Qi; Zhu, Li-Xin; Xu, Xiao-Liang

    2014-08-01

    The coupling of local surface plasmon (LSP) of nanoparticle and surface plasmon (SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots (QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its corner. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.

  17. Characterization and 2D self-assembly of CdSe quantum dots at the air-water interface.

    PubMed

    Gattás-Asfura, Kerim M; Constantine, Celeste A; Lynn, Matthew J; Thimann, Daniel A; Ji, Xiaojun; Leblanc, Roger M

    2005-10-26

    Langmuir film properties, UV-vis spectroscopy, epifluorescence microscopy, and transmission electron microscopy were used to study CdSe quantum dots (QDs) in 2D. By combining these results, it was possible to determine the molar absorptivity, limiting nanoparticle area, luminescence property, and arrangement of the QDs in the monolayer films at the air-water interface. Either trioctylphosphine oxide (TOPO) or 1-octadecanethiol (ODT) stabilized the QDs. The data collected reveal that TOPO forms close-packed monolayers on the surface of the QDs and that ODT-stabilized QDs undergo alkyl chains interdigitation. It was also found that varying the nanoparticle size, nature of surfactant, surface pressure, and mixed monolayers could help engineer the 2D self-assembly of the QDs at the air-water interface. Of practical importance is the transfer of these monolayer films onto hydrophilic or hydrophobic solid substrates, which could be successfully accomplished via the Langmuir-Blodgett film deposition technique.

  18. Insertion of CdSe quantum dots in ZnSe nanowires: MBE growth and microstructure analysis

    NASA Astrophysics Data System (ADS)

    den Hertog, M.; Elouneg-Jamroz, M.; Bellet-Amalric, E.; Bounouar, S.; Bougerol, C.; André, R.; Genuist, Y.; Poizat, J. P.; Kheng, K.; Tatarenko, S.

    2011-05-01

    ZnSe nanowire growth has been successfully achieved on ZnSe (1 0 0) and (1 1 1)B buffer layers deposited on GaAs substrates. Cubic [1 0 0] oriented ZnSe nanowires or [0 0 0 1] oriented hexagonal NWs are obtained on (1 0 0) substrates while [1 1 1] oriented cubic mixed with [0 0 0 1] oriented hexagonal regions are obtained on (1 1 1)B substrates. Most of the NWs are perpendicular to the surface in the last case. CdSe quantum dots were successfully incorporated in the ZnSe NWs as demonstrated by transmission electron microscopy, energy filtered TEM and high angle annular dark field scanning TEM measurements.

  19. Exciton-phonon coupling efficiency in CdSe quantum dots embedded in ZnSe nanowires

    NASA Astrophysics Data System (ADS)

    Bounouar, S.; Morchutt, C.; Elouneg-Jamroz, M.; Besombes, L.; André, R.; Bellet-Amalric, E.; Bougerol, C.; den Hertog, M.; Kheng, K.; Tatarenko, S.; Poizat, J. Ph.

    2012-01-01

    Exciton luminescence of a CdSe quantum dot (QD) inserted in a ZnSe nanowire is strongly influenced by the dark exciton states. Because of the small size of these QDs (2-5 nm), exchange interaction between hole and electron is highly enhanced and we measured large energy splitting between bright and dark exciton states (ΔE∈[4,9.2] meV) and large spin-flip rates between these states. Statistics on many QDs showed that this splitting depends on the QD size. Moreover, we measured an increase of the spin-flip rate to the dark states with increasing energy splitting. We explain this observation with a model, taking into account the fact that the exciton-phonon interaction depends on the bright to dark exciton energy splitting, as well as on the size and shape of the exciton wave function. It also has consequences on the exciton line intensity at high temperature.

  20. Non-volatile resistive memory device fabricated from CdSe quantum dot embedded in thermally grown In2O3 nanostructure by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Kim, Hyun-Seok; Park, Hyun-Chang

    2016-11-01

    In this paper we report In2O3/CdSe quantum dot based non-volatile resistive memory device with ON/OFF ratio ∼1000. Indium nanostructures were grown by oblique angle deposition technique in a thermal evaporator. Indium oxide nanostructures had size ranging from 20 nm to 100 nm as observed from TEM and AFM methods. The facile device fabricated with a layer of CdSe quantum dot on indium oxide film exhibited excellent endurance characteristics over 100,000 switching cycles. Retention tests showed good stability for over 4000 s. Memory operating mechanism is proposed based on charge trapping/de-trapping in quantum dots with indium oxide acting as barrier leading to Coulomb blockade. The mechanism is supported by negative differential resistance (NDR) observed exclusively in the ON state.

  1. High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Hou, Juan; Zhao, Haifeng; Huang, Fei; Jing, Qun; Cao, Haibin; Wu, Qiang; Peng, Shanglong; Cao, Guozhong

    2016-09-01

    Doping transition metal ions Mn2+ to semiconductor quantum dots (QDs) are extremely interesting for the development of photovoltaic devices. Quantum dot sensitized solar cells (QDSCs) are able to show promising power conversion efficiencies (PCE) by employing Mn2+ doped QDs. Herein we achieve effective CdS/Mnsbnd CdSe/ZnS QDs co-sensitized vertical ZnO nanorod arrays film that provides an appreciable enhancement in photovoltaic performance. The measured PCE of the solar cells with Mn2+ doped CdSe QDs is 4.14%, which is higher than the efficiency of 2.91% for the solar cells without Mn2+ or a ∼42% increase. The improvement in PCE is ascribed to a higher open-circuit voltage (Voc = 0.74 V) and a superior short-circuit current density (Jsc = 12.6 mA cm-2) with the introduction of Mn2+ into CdSe QDs. The enhancement seen with Mn2+ doped CdSe QDs are investigated and explained by the fact that the enhanced light absorption and reduced charge recombination by the formation of Mnsbnd CdSe passivation layer covering the QDs.

  2. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy

    NASA Astrophysics Data System (ADS)

    Fan, Fengjia; Voznyy, Oleksandr; Sabatini, Randy P.; Bicanic, Kristopher T.; Adachi, Michael M.; McBride, James R.; Reid, Kemar R.; Park, Young-Shin; Li, Xiyan; Jain, Ankit; Quintero-Bermudez, Rafael; Saravanapavanantham, Mayuran; Liu, Min; Korkusinski, Marek; Hawrylak, Pawel; Klimov, Victor I.; Rosenthal, Sandra J.; Hoogland, Sjoerd; Sargent, Edward H.

    2017-03-01

    Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states—the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.

  3. Colloidal quantum dot solar cells on curved and flexible substrates

    SciTech Connect

    Kramer, Illan J.; Moreno-Bautista, Gabriel; Minor, James C.; Kopilovic, Damir; Sargent, Edward H.

    2014-10-20

    Colloidal quantum dots (CQDs) are semiconductor nanocrystals synthesized with, processed in, and deposited from the solution phase, potentially enabling low-cost, facile manufacture of solar cells. Unfortunately, CQD solar cell reports, until now, have only explored batch-processing methods—such as spin-coating—that offer limited capacity for scaling. Spray-coating could offer a means of producing uniform colloidal quantum dot films that yield high-quality devices. Here, we explore the versatility of the spray-coating method by producing CQD solar cells in a variety of previously unexplored substrate arrangements. The potential transferability of the spray-coating method to a roll-to-roll manufacturing process was tested by spray-coating the CQD active layer onto six substrates mounted on a rapidly rotating drum, yielding devices with an average power conversion efficiency of 6.7%. We further tested the manufacturability of the process by endeavoring to spray onto flexible substrates, only to find that spraying while the substrate was flexed was crucial to achieving champion performance of 7.2% without compromise to open-circuit voltage. Having deposited onto a substrate with one axis of curvature, we then built our CQD solar cells onto a spherical lens substrate having two axes of curvature resulting in a 5% efficient device. These results show that CQDs deposited using our spraying method can be integrated to large-area manufacturing processes and can be used to make solar cells on unconventional shapes.

  4. Colloidal quantum dot solar cells on curved and flexible substrates

    NASA Astrophysics Data System (ADS)

    Kramer, Illan J.; Moreno-Bautista, Gabriel; Minor, James C.; Kopilovic, Damir; Sargent, Edward H.

    2014-10-01

    Colloidal quantum dots (CQDs) are semiconductor nanocrystals synthesized with, processed in, and deposited from the solution phase, potentially enabling low-cost, facile manufacture of solar cells. Unfortunately, CQD solar cell reports, until now, have only explored batch-processing methods—such as spin-coating—that offer limited capacity for scaling. Spray-coating could offer a means of producing uniform colloidal quantum dot films that yield high-quality devices. Here, we explore the versatility of the spray-coating method by producing CQD solar cells in a variety of previously unexplored substrate arrangements. The potential transferability of the spray-coating method to a roll-to-roll manufacturing process was tested by spray-coating the CQD active layer onto six substrates mounted on a rapidly rotating drum, yielding devices with an average power conversion efficiency of 6.7%. We further tested the manufacturability of the process by endeavoring to spray onto flexible substrates, only to find that spraying while the substrate was flexed was crucial to achieving champion performance of 7.2% without compromise to open-circuit voltage. Having deposited onto a substrate with one axis of curvature, we then built our CQD solar cells onto a spherical lens substrate having two axes of curvature resulting in a 5% efficient device. These results show that CQDs deposited using our spraying method can be integrated to large-area manufacturing processes and can be used to make solar cells on unconventional shapes.

  5. Emergence of colloidal quantum-dot light-emitting technologies

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yasuhiro; Supran, Geoffrey J.; Bawendi, Moungi G.; Bulović, Vladimir

    2013-01-01

    Since their inception 18 years ago, electrically driven colloidal quantum-dot light-emitting devices (QD-LEDs) have increased in external quantum efficiency from less than 0.01% to around 18%. The high luminescence efficiency and uniquely size-tunable colour of solution-processable semiconducting colloidal QDs highlight the potential of QD-LEDs for use in energy-efficient, high-colour-quality thin-film display and solid-state lighting applications. Indeed, last year saw the first demonstrations of electrically driven full-colour QD-LED displays, which foreshadow QD technologies that will transcend the optically excited QD-enhanced lighting products already available today. We here discuss the key advantages of using QDs as luminophores in LEDs and outline the operating mechanisms of four types of QD-LED. State-of-the-art visible-wavelength LEDs and the promise of near-infrared and heavy-metal-free devices are also highlighted. As QD-LED efficiencies approach those of molecular organic LEDs, we identify the key scientific and technological challenges facing QD-LED commercialization and offer our outlook for on-going strategies to overcome these challenges.

  6. Hot spot assisted blinking suppression of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Lu, Liu; Tong, Xuan; Zhang, Xu; Ren, Naifei; Jiang, Bo; Lu, Haifei

    2016-05-01

    This work compares the blinking of CdSe QDs on glass, single silver nanowire, and double aligned nanowires. The corresponding on-time fractions of these three cases are 50%, 70% and 85% respectively, which indicates that aligned double nanowires shows more efficient suppression than that of single nanowire. This phenomenon is attributed to the higher concentration of hot electron from hot spot between nanowires. Occupation of the non-radiative recombination centers by hot electrons from silver nanowires can be explained for the suppressed blinking behavior. The result has provided a novel pathway of suppressing the blinking behavior of QDs through plasmonic hot spot.

  7. Colloidal GaAs quantum wires: solution-liquid-solid synthesis and quantum-confinement studies.

    PubMed

    Dong, Angang; Yu, Heng; Wang, Fudong; Buhro, William E

    2008-05-07

    Colloidal GaAs quantum wires with diameters of 5-11 nm and narrow diameter distributions (standard deviation = 12-21% of the mean diameter) are grown by two methods based on the solution-liquid-solid (SLS) mechanism. Resolved excitonic absorption features arising from GaAs quantum wires are detected, allowing extraction of the size-dependent effective band gaps of the wires. The results allow the first systematic comparison of the size dependences of the effective band gaps in corresponding sets of semiconductor quantum wires and quantum wells. The GaAs quantum wire and well band gaps scale according to the prediction of a simple effective-mass-approximation, particle-in-a-box (EMA-PIB) model, which estimates the kinetic confinement energies of electron-hole pairs in quantum nanostructures of different shapes and confinement dimensionalities.

  8. Fluorescence lifetime modification of single CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Brokmann, Xavier; Coolen, Laurent; Desbiolles, Pierre; Dahan, Maxime; Hermier, Jean-Pierre

    2004-03-01

    Narrow spectral emission, high brightness, and photon antibunching make colloidal semiconductor CdSe quantum dots promising systems both as biological probes or as single photon sources for quantum information processing. However, their fluorescence properties exhibit surprisingly rich behaviour as non-ergodic on/off fluorescence intermittency [1] or lifetime fluctuation [2] that deserve further studies. Here, we study the fluorescence lifetime and the total emission intensity from a single CdSe nanocrystal successively placed close and far from a dielectric interface. Correlated to an independent measurement of the nanocrystal orientation, we demonstrate the ability of this procedure to measure both radiative and non-radiative lifetime on these single emitters. Our results are found to be intimately related to the 2D nature of the emitting dipole [3], and demonstrate that the emitting state quantum efficiency of CdSe nanocrystals is routinely higher than 95 %. [1] X.Brokmann et al., PRL 90, 120601 (2003) [2] G. Schlegel et al., PRL 88, 137401 (2002) [3] S.A. Empedocles et al., Nature 399, 126 (1999)

  9. Solution-processed colloidal lead sulfide quantum dots for near-infrared quantum information processing applications

    NASA Astrophysics Data System (ADS)

    Bose, Ranojoy

    In this thesis, we study solution-processed lead sulfide quantum dots for near-infrared quantum information and communication applications. Quantum dots processed through synthetic routes and colloidally suspended in solution offer far-reaching device application possibilities that are unparalelled in traditional self-assembled quantum dots. Lead sulfide quantum dots are especially promising for near-infrared quantum optics due to their optical emission at the wavelengths of fiber-optic communications (1.3--1.5 microm). The broad absorption spectrum of these quantum dots can be used for solar light-harvesting applications, to which end the results of Chapter 2---where we study Forster resonance energy transfer in quantum dot solids---provide remarkable insights into photon emission from quantum-dot based solar cells. In subsequent chapters, we explore quantum-dot photonic crystal applications, where exciton-photon interactions in the cavity environment remarkably allow for the emission of indistinguishable single photons that are important for distribution of high-security quantum keys---being highly sensitive to 'eavesdropping'. Particularly, the suggestion of the solution-processed QED system is novel compared to traditional self-assembled systems, and as we will discuss, offer integration and processing capabilities that are unprecedented, and perform well at wavelength ranges where standard QED systems scale poorly. The results of chapters 3--6 are therefore significant in the general field of cavity quantum electrodynamics.

  10. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.

    PubMed

    Lee, Hyojoong; Wang, Mingkui; Chen, Peter; Gamelin, Daniel R; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Md K

    2009-12-01

    In pursuit of efficient quantum dot (QD)-sensitized solar cells based on mesoporous TiO(2) photoanodes, a new procedure for preparing selenide (Se(2-)) was developed and used for depositing CdSe QDs in situ over TiO(2) mesopores by the successive ionic layer adsorption and reaction (SILAR) process in ethanol. The sizes and density of CdSe QDs over TiO(2) were controlled by the number of SILAR cycles applied. After some optimization of these QD-sensitized TiO(2) films in regenerative photoelectrochemical cells using a cobalt redox couple [Co(o-phen)(3)(2+/3+)], including addition of a final layer of CdTe, over 4% overall efficiencies were achieved at 100 W/m(2) with about 50% IPCE at its maximum. Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding CdSe QD cells. In a preliminary study, a CdSe(Te) QD-sensitized TiO(2) film was combined with an organic hole conductor, spiro-OMeTAD, and shown to exhibit a promising efficiency of 1.6% at 100 W/m(2) in inorganic/organic hybrid all-solid-state cells.

  11. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.

    PubMed

    Kim, Jeongho; Wong, Cathy Y; Scholes, Gregory D

    2009-08-18

    Quantum dots (QDs) have discrete quantum states isolated from the environment, making QDs well suited for quantum information processing. In semiconductor QDs, the electron spins can be coherently oriented by photoexcitation using circularly polarized light, creating optical orientation. The optically induced spin orientation could serve as a unit for data storage and processing. Carrier spin orientation is also envisioned to be a key component in a related, though parallel, field of semiconductor spintronics. However, the oriented spin population rapidly loses its coherence by interaction with the environment, thereby erasing the prepared information. Since long-lasting spin orientation is desirable in both areas of investigation, spin relaxation is the central focus of investigation for optimization of device performance. In this Account, we discuss a topic peripherally related to these emerging areas of investigation: exciton fine structure relaxation (EFSR). The radiationless transition occurring in the exciton fine structure not only highlights a novel aspect of QD exciton relaxation but also has implications for carrier spin relaxation in QDs. We focus on examining the EFSR in connection with optical spin orientation and subsequent ultrafast relaxation of electron and hole spin densities in the framework of the exciton fine structure basis. Despite its significance, the study of exciton fine structure in colloidal QDs has been hampered by the experimental challenge arising from inhomogeneous line broadening that obscures the details of closely spaced fine structure states in the frequency domain. In this Account, we show that spin relaxation occurring in the fine structure of CdSe QDs can be probed by a time-domain nonlinear polarization spectroscopy, circumventing the obstacles confronted in the frequency-domain spectroscopy. In particular, by combining polarization sequences of multiple optical pulses with the unique optical selection rules of

  12. Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Paik, Young Hun

    As the global concern for the financial and environmental costs of traditional energy resources increases, research on renewable energy, most notably solar energy, has taken center stage. Many alternative photovoltaic (PV) technologies for 'the next generation solar cell' have been extensively studied to overcome the Shockley-Queisser 31% efficiency limit as well as tackle the efficiency vs. cost issues. This dissertation focuses on the novel photovoltaic mechanism for the next generation solar cells using two inorganic nanomaterials, nanocrystal quantum dots and ferroelectric nanoparticles. Lead zirconate titanate (PZT) materials are widely studied and easy to synthesize using solution based chemistry. One of the fascinating properties of the PZT material is a Bulk Photovoltaic effect (BPVE). This property has been spotlighted because it can produce very high open circuit voltage regardless of the electrical bandgap of the materials. However, the poor optical absorption of the PZT materials and the required high temperature to form the ferroelectric crystalline structure have been obstacles to fabricate efficient photovoltaic devices. Colloidal quantum dots also have fascinating optical and electrical properties such as tailored absorption spectrum, capability of the bandgap engineering due to the wide range of material selection and quantum confinement, and very efficient carrier dynamics called multiple exciton generations. In order to utilize these properties, many researchers have put numerous efforts in colloidal quantum dot photovoltaic research and there has been remarkable progress in the past decade. However, several drawbacks are still remaining to achieve highly efficient photovoltaic device. Traps created on the large surface area, low carrier mobility, and lower open circuit voltage while increasing the absorption of the solar spectrum is main issues of the nanocrystal based photovoltaic effect. To address these issues and to take the advantages of

  13. Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods

    NASA Astrophysics Data System (ADS)

    Shen, Qing; Toyoda, Taro

    2004-05-01

    Two types of nanostructured titanium dioxide (TiO2) electrodes were prepared with anatase TiO2 nanoparticles of different sizes (average diameters of 15 and 27 nm). CdSe quantum dots were adsorbed onto each of the two types of TiO2 electrodes, by a chemical deposition (CD) technique, the average sizes of which increased to 7 nm on increasing the deposition time. Optical absorption and photoelectrochemical properties were characterized by using photoacoustic (PA) and photoelectrochemical (PEC) current methods. Redshift of the PA and PEC current spectra with increasing CdSe sizes was clearly observed, which indicates quantum confinement effects and photosensitization by the CdSe quantum dots. It was found that the PEC current spectra in the visible region were quite different for the two types of TiO2 electrodes for the same deposition time, although the PA spectra were very similar to each other. The correlation of the PEC current spectra with the microstructures of the two types of TiO2 electrodes was discussed, which provided information that could lead to the optimization of dye-sensitized solar cells (DSSC).

  14. Electronic structures in a CdSe spherical quantum dot in a magnetic field: Diagonalization method and variational method

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Wan, Li

    2012-03-01

    The electronic structures of a CdSe spherical quantum dot in a magnetic field are obtained by using an exact diagonalization method and a variational method within the effective-mass approximation. The dependences of the energies and wave functions of electron states, exciton binding energy, exciton transition energy, and exciton diamagnetic shift on the applied magnetic field are investigated theoretically in detail. It is observed that the degeneracy of magnetic quantum number m is removed due to the Zeeman effect when the magnetic field is present. For the states with m ≥ 0, the electron energies increase as the magnetic field increases. However, for the states with m < 0, the electron energies decrease to a minimum, and then increase with increasing the magnetic field. The energies and wave functions of electron states obtained from the variational method based on the variational functions we proposed are in excellent agreement with the results obtained from the exact diagonalization method we presented. A comparison between the results obtained from the variational functions proposed by us and Xiao is also verified.

  15. Chirality Inversion of CdSe and CdS Quantum Dots without Changing the Stereochemistry of the Capping Ligand.

    PubMed

    Choi, Jung Kyu; Haynie, Benjamin E; Tohgha, Urice; Pap, Levente; Elliott, K Wade; Leonard, Brian M; Dzyuba, Sergei V; Varga, Krisztina; Kubelka, Jan; Balaz, Milan

    2016-03-22

    L-cysteine derivatives induce and modulate the optical activity of achiral cadmium selenide (CdSe) and cadmium sulfide (CdS) quantum dots (QDs). Remarkably, N-acetyl-L-cysteine-CdSe and L-homocysteine-CdSe as well as N-acetyl-L-cysteine-CdS and L-cysteine-CdS showed "mirror-image" circular dichroism (CD) spectra regardless of the diameter of the QDs. This is an example of the inversion of the CD signal of QDs by alteration of the ligand's structure, rather than inversion of the ligand's absolute configuration. Non-empirical quantum chemical simulations of the CD spectra were able to reproduce the experimentally observed sign patterns and demonstrate that the inversion of chirality originated from different binding arrangements of N-acetyl-L-cysteine and L-homocysteine-CdSe to the QD surface. These efforts may allow the prediction of the ligand-induced chiroptical activity of QDs by calculating the specific binding modes of the chiral capping ligands. Combined with the large pool of available chiral ligands, our work opens a robust approach to the rational design of chiral semiconducting nanomaterials.

  16. Colloidal quantum dot solar cells exploiting hierarchical structuring.

    PubMed

    Labelle, André J; Thon, Susanna M; Masala, Silvia; Adachi, Michael M; Dong, Haopeng; Farahani, Maryam; Ip, Alexander H; Fratalocchi, Andrea; Sargent, Edward H

    2015-02-11

    Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.

  17. Air-stable n-type colloidal quantum dot solids.

    PubMed

    Ning, Zhijun; Voznyy, Oleksandr; Pan, Jun; Hoogland, Sjoerd; Adinolfi, Valerio; Xu, Jixian; Li, Min; Kirmani, Ahmad R; Sun, Jon-Paul; Minor, James; Kemp, Kyle W; Dong, Haopeng; Rollny, Lisa; Labelle, André; Carey, Graham; Sutherland, Brandon; Hill, Ian; Amassian, Aram; Liu, Huan; Tang, Jiang; Bakr, Osman M; Sargent, Edward H

    2014-08-01

    Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials.

  18. Air-stable n-type colloidal quantum dot solids

    NASA Astrophysics Data System (ADS)

    Ning, Zhijun; Voznyy, Oleksandr; Pan, Jun; Hoogland, Sjoerd; Adinolfi, Valerio; Xu, Jixian; Li, Min; Kirmani, Ahmad R.; Sun, Jon-Paul; Minor, James; Kemp, Kyle W.; Dong, Haopeng; Rollny, Lisa; Labelle, André; Carey, Graham; Sutherland, Brandon; Hill, Ian; Amassian, Aram; Liu, Huan; Tang, Jiang; Bakr, Osman M.; Sargent, Edward H.

    2014-08-01

    Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials.

  19. Dead zones in colloidal quantum dot photovoltaics: evidence and implications.

    PubMed

    Barkhouse, D Aaron R; Kramer, Illan J; Wang, Xihua; Sargent, Edward H

    2010-09-13

    In order to fabricate photovoltaic (PV) cells incorporating light-trapping electrodes, flexible foil substrates, or more than one junction, illumination through the top-contact (i.e.: non-substrate) side of a photovoltaic device is desirable. We investigate the relative collection efficiency for illumination through the top vs. bottom of PbS colloidal quantum dot (CQD) PV devices. The external quantum efficiency spectra of FTO/TiO₂/PbS CQD/ITO PV devices with various PbS layer thicknesses were measured for illumination through either the top (ITO) or bottom (FTO) contacts. By comparing the relative shapes and intensities of these spectra with those calculated from an estimation of the carrier generation profile and the internal quantum efficiency as a function of distance from the TiO₂ interface in the devices, a substantial dead zone, where carrier extraction is dramatically reduced, is identified near the ITO top contact. The implications for device design, and possible means of avoiding the formation of such a dead zone, are discussed.

  20. Colloidal quantum dot based solar cells: from materials to devices.

    PubMed

    Song, Jung Hoon; Jeong, Sohee

    2017-01-01

    Colloidal quantum dots (CQDs) have attracted attention as a next-generation of photovoltaics (PVs) capable of a tunable band gap and low-cost solution process. Understanding and controlling the surface of CQDs lead to the significant development in the performance of CQD PVs. Here we review recent progress in the realization of low-cost, efficient lead chalcogenide CQD PVs based on the surface investigation of CQDs. We focus on improving the electrical properties and air stability of the CQD achieved by material approaches and growing the power conversion efficiency (PCE) of the CQD PV obtained by structural approaches. Finally, we summarize the manners to improve the PCE of CQD PVs through optical design. The various issues mentioned in this review may provide insight into the commercialization of CQD PVs in the near future.

  1. Colloidal quantum dot based solar cells: from materials to devices

    NASA Astrophysics Data System (ADS)

    Song, Jung Hoon; Jeong, Sohee

    2017-08-01

    Colloidal quantum dots (CQDs) have attracted attention as a next-generation of photovoltaics (PVs) capable of a tunable band gap and low-cost solution process. Understanding and controlling the surface of CQDs lead to the significant development in the performance of CQD PVs. Here we review recent progress in the realization of low-cost, efficient lead chalcogenide CQD PVs based on the surface investigation of CQDs. We focus on improving the electrical properties and air stability of the CQD achieved by material approaches and growing the power conversion efficiency (PCE) of the CQD PV obtained by structural approaches. Finally, we summarize the manners to improve the PCE of CQD PVs through optical design. The various issues mentioned in this review may provide insight into the commercialization of CQD PVs in the near future.

  2. Absorption of light by colloidal semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Pokutnyi, Sergey I.; Ovchinnikov, Oleg V.; Kondratenko, Tamara S.

    2016-07-01

    UV-Vis absorption of colloidal cadmium sulfide quantum dots (QDs) synthesized by an aqueous synthesis in a gelatin matrix was investigated. Using the dipole approximation, taking into account the Coulomb interaction between the electron and hole in a QD and the polarization effects on the spherical boundary of QD and matrix, it was found the change of selection rules for optical transitions. It is shown that the optical absorption edge of QDs is formed by two optical transitions of electron between low-excited levels of size quantization of heavy hole (1S and 2S), located in QDs valence band and fundamental size-quantized states 1Se of conduction band. These transitions are identical in intensity. Estimations of average values of CdS QDs radius were realized using the developed formalism for UV-Vis absorption spectra. These data were compared with experimental values of this parameter, obtained using transmission electron microscope.

  3. Colloidal quantum dots for low-cost MWIR imaging

    NASA Astrophysics Data System (ADS)

    Ciani, Anthony J.; Pimpinella, Richard E.; Grein, Christoph H.; Guyot-Sionnest, Philippe

    2016-05-01

    Monodisperse suspensions of HgTe colloidal quantum dots (CQD) are readily synthesized with infrared energy gaps between 3 and 12 microns. Infrared photodetection using dried films of these CQDs has been demonstrated up to a wavelength of 12 microns, and HgTe CQD single-elemnet devices with 3.6 micron cutoff have bee nreported nad show ogod absorption <(10^4 cm^-1), response time and detectivity (2*10^10 Jones) at at emperature of 175 K; with the potential fo uncooled imaging. The synthesis of CQDs and fabrication of detector devices employ bench-top chemistry techniques, leading to the potential for rapid, wafer-scale manufacture of MWIR imaging devices with low production costs and overhead. The photoconductive, photovoltaic and optical properties of HgTe CQD films will be discussed relative to infrared imaging, along with recent achievements in integrating CQD films with readout integrated circuits to produce CQD-based MWIR focal plane arrays.

  4. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films.

    PubMed

    Dang, Cuong; Lee, Joonhee; Breen, Craig; Steckel, Jonathan S; Coe-Sullivan, Seth; Nurmikko, Arto

    2012-04-29

    Colloidal quantum dots exhibit efficient photoluminescence with widely tunable bandgaps as a result of quantum confinement effects. Such quantum dots are emerging as an appealing complement to epitaxial semiconductor laser materials, which are ubiquitous and technologically mature, but unable to cover the full visible spectrum (red, green and blue; RGB). However, the requirement for high colloidal-quantum-dot packing density, and losses due to non-radiative multiexcitonic Auger recombination, have hindered the development of lasers based on colloidal quantum dots. Here, we engineer CdSe/ZnCdS core/shell colloidal quantum dots with aromatic ligands, which form densely packed films exhibiting optical gain across the visible spectrum with less than one exciton per colloidal quantum dot on average. This single-exciton gain allows the films to reach the threshold of amplified spontaneous emission at very low optical pump energy densities of 90 µJ cm(-2), more than one order of magnitude better than previously reported values. We leverage the low-threshold gain of these nanocomposite films to produce the first colloidal-quantum-dot vertical-cavity surface-emitting lasers (CQD-VCSEL). Our results represent a significant step towards full-colour single-material lasers.

  5. Generation of fluorescent CdSe nanocrystals by short-pulse laser fragmentation

    NASA Astrophysics Data System (ADS)

    Zholudov, Yu. T.; Sajti, C. L.; Slipchenko, N. N.; Chichkov, B. N.

    2015-12-01

    A simple liquid-phase laser fragmentation approach, resulting in the rapid transformation of CdSe microcrystals into colloidal quantum dots (QDs), is presented. Laser fragmentation is achieved by irradiating a CdSe suspension in dimethylformamide with intense infrared, picosecond laser pulses followed by surface passivation with oleylamine or different types of phosphines. The generated QDs reveal perfect colloidal stability preventing agglomeration and precipitation, and show characteristic QD absorption and fluorescence characteristics, whereas their emission properties strongly depend on the surface states and applied capping ligands. These QDs show distinct photoemission under 405-nm single-photon and 800-nm multi-photon excitations in the 560- to 610-nm spectral region corresponding to the QDs size of about 1.5-2 nm in diameter which is confirmed by transmission electron microscopy.

  6. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly.

    PubMed

    Yu, Shan; Li, Zhi-Jun; Fan, Xiang-Bing; Li, Jia-Xin; Zhan, Fei; Li, Xu-Bing; Tao, Ye; Tung, Chen-Ho; Wu, Li-Zhu

    2015-02-01

    A visible-light-induced hydrogen evolution system based on a CdSe quantum dots (QDs)-TiO2 -Ni(OH)2 ternary assembly has been constructed under an ambient environment, and a bifunctional molecular linker, mercaptopropionic acid, is used to facilitate the interaction between CdSe QDs and TiO2 . This hydrogen evolution system works effectively in a basic aqueous solution (pH 11.0) to achieve a hydrogen evolution rate of 10.1 mmol g(-1)  h(-1) for the assembly and a turnover frequency of 5140 h(-1) with respect to CdSe QDs (10 h); the latter is comparable with the highest value reported for QD systems in an acidic environment. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and control experiments demonstrate that Ni(OH)2 is an efficient hydrogen evolution catalyst. In addition, inductively coupled plasma optical emission spectroscopy and the emission decay of the assembly combined with the hydrogen evolution experiments show that TiO2 functions mainly as the electron mediator; the vectorial electron transfer from CdSe QDs to TiO2 and then from TiO2 to Ni(OH)2 enhances the efficiency for hydrogen evolution. The assembly comprises light antenna CdSe QDs, electron mediator TiO2 , and catalytic Ni(OH)2 , which mimics the strategy of photosynthesis exploited in nature and takes us a step further towards artificial photosynthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of water-soluble CdSe quantum dots with various fluorescent properties and their application in immunoassay for determination of C-reactive protein.

    PubMed

    Gasparyan, V K

    2014-09-01

    Effects of various factors on synthesis and fluorescent properties of CdSe quantum dots were studied. It was shown that variation of pH, stabilizer and concentration of precursors brings to obtaining of quantum dots with various fluorescent properties. The nanoparticles prepared were conjugated with rabbit antibodies to C-Reactive protein and C-Reactive protein for competitive immunoassay for determination of CRP. It was shown that interaction of these dots as a result of antigen-antibody reaction brings to resonance energy transfer and these changes in fluorescence spectra correlate with concentration of CRP. This approach permits to determine CRP in range between 4-100 ng.

  8. Anisotropy of electron-phonon interaction in nanoscale CdSe platelets as seen via off-resonant and resonant Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cherevkov, S. A.; Fedorov, A. V.; Artemyev, M. V.; Prudnikau, A. V.; Baranov, A. V.

    2013-07-01

    The off-resonant and resonant Raman spectra of optical phonons in colloidal CdSe nanoplatelets (NPLs) with the thickness of 4, 5, and 6 CdSe monolayers are analyzed. These spectra are dominated by SO and LO phonon bands of CdSe whose frequencies are thickness independent in the off-resonant Raman but demonstrate evident thickness dependence similar to that observed for confined optical phonons in CdSe quantum dots in the resonant Raman. The results show that conventional optical phonons propagating along the NPL lateral planes contribute mainly to the off-resonant Raman while confined optical phonons propagating in the perpendicular direction dominate the Raman spectra excited in the resonance with confined exciton transitions of CdSe NPLs. An anisotropic electron-phonon interaction is proposed to be responsible for this effect in the CdSe NPLs. A formation of Cd-S monolayer on the surface of CdSe NPLs treated by thiol-containing ligands is also detected in Raman spectra.

  9. Solar cells based on inks of n-type colloidal quantum dots.

    PubMed

    Ning, Zhijun; Dong, Haopeng; Zhang, Qiong; Voznyy, Oleksandr; Sargent, Edward H

    2014-10-28

    New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.

  10. Laser ablation synthesis route of CdTe colloidal quantum dots for biological applications

    NASA Astrophysics Data System (ADS)

    Almeida, D. B.; Rodriguez, E.; Moreira, R. S.; Agouram, S.; Barbosa, L. C.; Jimenez, E.; Cesar, C. L.

    2009-07-01

    In this work we report a novel technique for obtain thiol capped CdTe colloidal quantum dots in one step. These nanoparticles are compatible for silica capping indicating their possible use as fluorescent markers.

  11. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    NASA Astrophysics Data System (ADS)

    Tang, Jiang; Kemp, Kyle W.; Hoogland, Sjoerd; Jeong, Kwang S.; Liu, Huan; Levina, Larissa; Furukawa, Melissa; Wang, Xihua; Debnath, Ratan; Cha, Dongkyu; Chou, Kang Wei; Fischer, Armin; Amassian, Aram; Asbury, John B.; Sargent, Edward H.

    2011-10-01

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication.

  12. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress.

    PubMed

    Tang, Jiang; Sargent, Edward H

    2011-01-04

    Colloidal quantum dots (CQDs) are solution-processed semiconductors of interest in low-cost photovoltaics. Tuning of the bandgap of CQD films via the quantum size effect enables customization of solar cells' absorption profile to match the sun's broad visible- and infrared-containing spectrum reaching the earth. Here we review recent progress in the realization of low-cost, efficient solar cells based on CQDs. We focus in particular on CQD materials and approaches that provide both infrared and visible-wavelength solar power conversion CQD photovoltaics now exceed 5% solar power conversion efficiency, achieved by the introduction of a new architecture, the depleted-heterojunction CQD solar cell, that jointly maximizes current, voltage, and fill factor. CQD solar cells have also seen major progress in materials processing for stability, recently achieving extended operating lifetimes in an air ambient. We summarize progress both in device operation and also in gaining new insights into materials properties and processing - including new electrical contact materials and deposition techniques, as well as CQD synthesis, surface treatments, film-forming technologies - that underpin these rapid advances.

  13. Coexpression of CdSe and CdSe/CdS quantum dots in live cells using molecular hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Peng, Hui; Wang, Jing; Wang, Yiting; Guo, Fangmin

    2015-11-01

    A direct spatial and spectral observation of CdSe and CdSe/CdS quantum dots (QDs) as probes in live cells is performed by using a custom molecular hyperspectral imaging (MHI) system. Water-soluble CdSe and CdSe/CdS QDs are synthesized in aqueous solution under the assistance of high-intensity ultrasonic irradiation and incubated with colon cancer cells for bioimaging. Unlike the traditional fluorescence microscopy methods, MHI technology can identify QD probes according to their spectral signatures and generate coexpression and stain titer maps by a clustering method. The experimental results show that the MHI method has potential to unmix biomarkers by their spectral information, which opens up a pathway of optical multiplexing with many different QD probes.

  14. Coexpression of CdSe and CdSe/CdS quantum dots in live cells using molecular hyperspectral imaging technology.

    PubMed

    Li, Qingli; Peng, Hui; Wang, Jing; Wang, Yiting; Guo, Fangmin

    2015-11-01

    A direct spatial and spectral observation of CdSe and CdSe/CdS quantum dots (QDs) as probes in live cells is performed by using a custom molecular hyperspectral imaging (MHI) system. Water-soluble CdSe and CdSe/CdS QDs are synthesized in aqueous solution under the assistance of high-intensity ultrasonic irradiation and incubated with colon cancer cells for bioimaging. Unlike the traditional fluorescence microscopy methods, MHI technology can identify QD probes according to their spectral signatures and generate coexpression and stain titer maps by a clustering method. The experimental results show that the MHI method has potential to unmix biomarkers by their spectral information, which opens up a pathway of optical multiplexing with many different QD probes.

  15. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation.

    PubMed

    Wang, Gongming; Yang, Xunyu; Qian, Fang; Zhang, Jin Z; Li, Yat

    2010-03-10

    We report the design and characterization of a novel double-sided CdS and CdSe quantum dot cosensitized ZnO nanowire arrayed photoanode for photoelectrochemical (PEC) hydrogen generation. The double-sided design represents a simple analogue of tandem cell structure, in which the dense ZnO nanowire arrays were grown on an indium-tin oxide substrate followed by respective sensitization of CdS and CdSe quantum dots on each side. As-fabricated photoanode exhibited strong absorption in nearly the entire visible spectrum up to 650 nm, with a high incident-photon-to-current-conversion efficiency (IPCE) of approximately 45% at 0 V vs Ag/AgCl. On the basis on a single white light illumination of 100 mW/cm(2), the photoanode yielded a significant photocurrent density of approximately 12 mA/cm(2) at 0.4 V vs Ag/AgCl. The photocurrent and IPCE were enhanced compared to single quantum dot sensitized structures as a result of the band alignment of CdS and CdSe in electrolyte. Moreover, in comparison to single-sided cosensitized layered structures, this double-sided architecture that enables direct interaction between quantum dot and nanowire showed improved charge collection efficiency. Our result represents the first double-sided nanowire photoanode that integrates uniquely two semiconductor quantum dots of distinct band gaps for PEC hydrogen generation and can be possibly applied to other applications such as nanostructured tandem photovoltaic cells.

  16. Electron relaxation in the CdSe quantum dot--ZnO composite: prospects for photovoltaic applications.

    PubMed

    Zídek, Karel; Abdellah, Mohamed; Zheng, Kaibo; Pullerits, Tõnu

    2014-11-28

    Quantum dot (QD)-metal oxide composite forms a "heart" of the QD-sensitized solar cells. It maintains light absorption and electron-hole separation in the system and has been therefore extensively studied. The interest is largely driven by a vision of harvesting the hot carrier energy before it is lost via relaxation. Despite of importance of the process, very little is known about the carrier relaxation in the QD-metal oxide composites. In order to fill this gap of knowledge we carry out a systematic study of initial electron dynamics in different CdSe QD systems. Our data reveal that QD attachment to ZnO induces a speeding-up of transient absorption onset. Detailed analysis of the onset proves that the changes are caused by an additional relaxation channel dependent on the identity of the QD-ZnO linker molecule. The faster relaxation represents an important factor for hot carrier energy harvesting, whose efficiency can be influenced by almost 50%.

  17. Electron relaxation in the CdSe quantum dot - ZnO composite: prospects for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Žídek, Karel; Abdellah, Mohamed; Zheng, Kaibo; Pullerits, Tõnu

    2014-11-01

    Quantum dot (QD)-metal oxide composite forms a ``heart'' of the QD-sensitized solar cells. It maintains light absorption and electron-hole separation in the system and has been therefore extensively studied. The interest is largely driven by a vision of harvesting the hot carrier energy before it is lost via relaxation. Despite of importance of the process, very little is known about the carrier relaxation in the QD-metal oxide composites. In order to fill this gap of knowledge we carry out a systematic study of initial electron dynamics in different CdSe QD systems. Our data reveal that QD attachment to ZnO induces a speeding-up of transient absorption onset. Detailed analysis of the onset proves that the changes are caused by an additional relaxation channel dependent on the identity of the QD-ZnO linker molecule. The faster relaxation represents an important factor for hot carrier energy harvesting, whose efficiency can be influenced by almost 50%.

  18. Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO 2 Nanobelt

    DOE PAGES

    Tafen, De Nyago; Prezhdo, Oleg V.

    2015-02-24

    Understanding charge transfer reactions between quantum dots (QD) and metal oxides is fundamental for improving photocatalytic, photovoltaic and electronic devices. The complexity of these processes makes it difficult to find an optimum QD size with rapid charge injection and low recombination. We combine time-domain density functional theory with nonadiabatic molecular dynamics to investigate the size and temperature dependence of the experimentally studied electron transfer and charge recombination at CdSe QD-TiO2 nanobelt (NB) interfaces. The electron injection rate shows strong dependence on the QD size, increasing for small QDs. The rate exhibits Arrhenius temperature dependence, with the activation energy of themore » order of millielectronvolts. The charge recombination process occurs due to coupling of the electronic subsystem to vibrational modes of the TiO2 NB. Inelastic electron-phonon scattering happens on a picosecond time scale, with strong dependence on the QD size. Our simulations demonstrate that the electron-hole recombination rate decreases significantly as the QD size increases, in excellent agreement with experiments. The temperature dependence of the charge recombination rates can be successfully modeled within the framework of the Marcus theory through optimization of the electronic coupling and the reorganization energy. Our simulations indicate that by varying the QD size, one can modulate the photoinduced charge separation and charge recombination, fundamental aspects of the design principles for high efficiency devices.« less

  19. Pico-ampere current sensitivity and CdSe quantum dots assembly assisted charge transport in ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Pratap Singh, Dharmendra; Boussoualem, Yahia; Duponchel, Benoit; Sahraoui, Abdelhak Hadj; Kumar, Sandeep; Manohar, Rajiv; Daoudi, Abdelylah

    2017-08-01

    Octadecylamine capped CdSe quantum dots (QDs) dispersed 4-(1-methyl-heptyloxy)-benzoic acid 4‧-octyloxy-biphenyl-4-yl ester ferroelectric liquid crystal (FLC) were deposited over gold coated quartz substrate using dip-coating. The topographical investigation discloses that the homogeneously dispersed QDs adopt face-on to edge-on assembly in FLC matrix owing to their concentration. Current-voltage (I-V) measurement was performed using conductive atomic force microscopy (CAFM) which yields ohmic to critical diode like I-V curves depending upon the concentration of QDs in FLC. The recorded pico-ampere (pA) current sensitivity in FLC-QDs composites is attributed to micro-second drift time of electron due to weak electronic coupling between the π-electrons on the FLC and s-electrons on the metal surface. The observed pico-ampere sensitivity is the least current sensitivity recorded so far. For FLC-QDs composites, almost 24% faster electro-optic response was observed in comparison to pure FLC. The pico-ampere current sensitivity can be utilized in touch screen displays whereas the change in polarization for low applied electric field ameliorates the increased electrical susceptibility counteracting the internal electric field and its use in electronic data storage and faster electro-optical devices.

  20. Quantitative assessment of Tn antigen in breast tissue micro-arrays using CdSe aqueous quantum dots.

    PubMed

    Au, Giang H T; Mejias, Linette; Swami, Vanlila K; Brooks, Ari D; Shih, Wan Y; Shih, Wei-Heng

    2014-03-01

    In this study, we examined the use of CdSe aqueous quantum dots (AQDs) each conjugated to three streptavidin as a fluorescent label to image Tn antigen expression in various breast tissues via a sandwich staining procedure where the primary monoclonal anti-Tn antibody was bound to the Tn antigen on the tissue, a biotin-labeled secondary antibody was bound to the primary anti-Tn antibody, and finally the streptavidin-conjugated AQDs were bound to the biotin on the secondary antibody. We evaluated the AQD staining of Tn antigen on tissue microarrays consisting of 395 cores from 115 cases including three tumor cores and one normal-tissue core from each breast cancer case and three tumor cores from each benign case. The results indicated AQD-Tn staining was positive in more than 90% of the cells in the cancer cores but not the cells in the normal-tissue cores and the benign tumor cores. As a result, AQD-Tn staining exhibited 95% sensitivity and 90% specificity in differentiating breast cancer against normal breast tissues and benign breast conditions. These results were better than the 90% sensitivity and 80% specificity exhibited by the corresponding horse radish peroxidase (HRP) staining using the same antibodies on the same tissues and those of previous studies that used different fluorescent labels to image Tn antigen. In addition to sensitivity and specificity, the current AQD-Tn staining with a definitive threshold was quantitative.

  1. Cytotoxic effects of CdSe quantum dots on maturation of mouse oocytes, fertilization, and fetal development.

    PubMed

    Hsieh, Ming-Shu; Shiao, Nion-Heng; Chan, Wen-Hsiung

    2009-05-14

    Quantum dots (QDs) are useful novel luminescent markers, but their embryonic toxicity is yet to be fully established, particularly in oocyte maturation and sperm fertilization. Earlier experiments by our group show that CdSe-core QDs have cytotoxic effects on mouse blastocysts and are associated with defects in subsequent development. Here, we further investigate the influence of CdSe-core QDs on oocyte maturation, fertilization, and subsequent pre- and postimplantation development. CdSe-core QDs induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryo development, but not ZnS-coated CdSe QDs. Treatment of oocytes with 500 nM CdSe-core QDs during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased placental and fetal weights. To our knowledge, this is the first study to report the negative impact of CdSe-core QDs on mouse oocyte development. Moreover, surface modification of CdSe-core QDs with ZnS effectively prevented this cytotoxicity.

  2. Electron relaxation in the CdSe quantum dot - ZnO composite: prospects for photovoltaic applications

    PubMed Central

    Žídek, Karel; Abdellah, Mohamed; Zheng, Kaibo; Pullerits, Tõnu

    2014-01-01

    Quantum dot (QD)-metal oxide composite forms a “heart” of the QD-sensitized solar cells. It maintains light absorption and electron-hole separation in the system and has been therefore extensively studied. The interest is largely driven by a vision of harvesting the hot carrier energy before it is lost via relaxation. Despite of importance of the process, very little is known about the carrier relaxation in the QD-metal oxide composites. In order to fill this gap of knowledge we carry out a systematic study of initial electron dynamics in different CdSe QD systems. Our data reveal that QD attachment to ZnO induces a speeding-up of transient absorption onset. Detailed analysis of the onset proves that the changes are caused by an additional relaxation channel dependent on the identity of the QD-ZnO linker molecule. The faster relaxation represents an important factor for hot carrier energy harvesting, whose efficiency can be influenced by almost 50%. PMID:25430684

  3. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.

    PubMed

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2012-09-07

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing and microcontact printing of quantum dots have been recently developed. Herein, we present a simple method of patterning colloidal quantum dots for photonic nanostructures such as straight lines, rings and dot patterns either on transparent or metallic substrates. Sub-10 nm width of the patterned line could be achieved with a well-defined sidewall profile. Using this method, we demonstrate a surface plasmon launcher from a quantum dot cluster in the visible spectrum.

  4. A Two-Step Synthetic Strategy toward Monodisperse Colloidal CdSe and CdSe/CdS Core/Shell Nanocrystals.

    PubMed

    Zhou, Jianhai; Pu, Chaodan; Jiao, Tianyu; Hou, Xiaoqi; Peng, Xiaogang

    2016-05-25

    CdSe magic-size clusters with close-shell surface and fixed molecular formula are well-known in the size range between ∼1 and 3 nm. By applying high concentration of cadmium alkanoates as ligands, a conventional synthetic system for CdSe nanocrystals was tuned to discriminate completion from initiation of atomic flat facets. This resulted in ∼4-13 nm CdSe nanocrystals with hexahedral shape terminated with low-index facets, namely three (100), one (110), and two (111) facets. These low-symmetry (Cs group with single mirror plane) yet monodisperse hexahedra were found to be persistent not only in a broad size range but also under typical synthetic temperatures for growth of both CdSe and CdS. Atomic motion on the surface of the nanocrystals under enhanced ligand dynamics initiated intraparticle ripening without activating interparticle ripening, which converted the hexahedral nanocrystals to monodisperse spherical ones. This new synthetic strategy rendered optimal color purity of photoluminescence (PL) of the CdSe and CdSe/CdS core/shell nanocrystals, with the ensemble PL peak width comparable with that of a corresponding single dot.

  5. Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance.

    PubMed

    Narayanan, Remya; Deepa, Melepurath; Srivastava, Avanish Kumar

    2012-01-14

    Electron transfer dynamics in a photoactive coating made of CdSe quantum dots (QDs) and Au nanoparticles (NPs) tethered to a framework of ionic liquid functionalized graphene oxide (FGO) nanosheets and mesoporous titania (TiO(2)) was studied. High resolution transmission electron microscopy analyses on TiO(2)/CdSe/FGO/Au not only revealed the linker mediated binding of CdSe QDs with TiO(2) but also, surprisingly, revealed a nanoscale connectivity between CdSe QDs, Au NPs and TiO(2) with FGO nanosheets, achieved by a simple solution processing method. Time resolved fluorescence decay experiments coupled with the systematic quenching of CdSe emission by Au NPs or FGO nanosheets or by a combination of the latter two provide concrete evidences favoring the most likely pathway of ultrafast decay of excited CdSe in the composite to be a relay mechanism. A balance between energetics and kinetics of the system is realized by alignment of conduction band edges, whereby, CdSe QDs inject photogenerated electrons into the conduction band of TiO(2), from where, electrons are promptly transferred to FGO nanosheets and then through Au NPs to the current collector. Conductive-atomic force microscopy also provided a direct correlation between the local nanostructure and the enhanced ability of composite to conduct electrons. Point contact I-V measurements and average photoconductivity results demonstrated the current distribution as well as the population of conducting domains to be uniform across the TiO(2)/CdSe/FGO/Au composite, thus validating the higher photocurrent generation. A six-fold enhancement in photocurrent and a 100 mV increment in photovoltage combined with an incident photon to current conversion efficiency of 27%, achieved in the composite, compared to the inferior performance of the TiO(2)/CdSe/Au composite imply that FGO nanosheets and Au NPs work in tandem to promote charge separation and furnish less impeded pathways for electron transfer and transport. Such a

  6. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  7. CdSe magic-sized quantum dots incorporated in biomembrane models at the air-water interface composed of components of tumorigenic and non-tumorigenic cells.

    PubMed

    Goto, Thiago E; Lopes, Carla C; Nader, Helena B; Silva, Anielle C A; Dantas, Noelio O; Siqueira, José R; Caseli, Luciano

    2016-07-01

    Cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) are semiconductor nanocrystals with stable luminescence that are feasible for biomedical applications, especially for in vivo and in vitro imaging of tumor cells. In this work, we investigated the specific interaction of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and Langmuir-Blodgett (LB) films of lipids as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers constituted either of selected lipids or of tumorigenic and non-tumorigenic cell extracts. The films were transferred to solid supports to obtain microscopic images, providing information on their morphology. Similarity between films with different compositions representing cell membranes, with or without the quantum dots, was evaluated by atomic force microscopy (AFM) and confocal microscopy. This study demonstrates that the affinity of quantum dots for models representing cancer cells permits the use of these systems as devices for cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A facile method to synthesis high-quality CdSe quantum dots for large and tunable nonlinear absorption

    NASA Astrophysics Data System (ADS)

    Cao, Yawan; Wang, Chong; Zhu, Baohua; Gu, Yuzong

    2017-04-01

    The CdSe nanocrystals (NCs) were synthesized by a hot injection method in the atmospheric environment without any protective gas. The size of CdSe NC was tuned by controlling the growth time and the NCs' high-quality was confirmed by UV-visible spectroscopy, photoluminescence spectroscopy, X-ray diffraction and transmission electron microscopy. A large third-order nonlinear optical (NLO) absorption of CdSe NCs was obtained by using Z-scan technique with 30 ps excitation at 532 nm, which was tunable with variable size and the energy difference between the first exciton absorption peak and the laser wavelength. The NLO susceptibility of CdSe NCs can reach as high as 1.81 × 10-10 esu at the size of 3.3 nm and at resonance absorption peak.

  9. Facile synthesis and properties of CdSe quantum dots in a novel two-phase liquid/liquid system

    NASA Astrophysics Data System (ADS)

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Ke, Dandan; Zheng, Yue; Han, Shumin

    2017-10-01

    High-quantity CdSe QDs were synthesized in a novel two-phase liquid/liquid system. This system, ODE/water was stable and as-used solvents were almost nontoxic. The methodology leading to the successful synthesis of CdSe QDs was a typical, one-pot approach and the obtained CdSe QDs with zinc-blende phase structure exhibited excellent optical properties, narrow size distribution, higher particle uniformity and crystallinity. The mechanism of nucleation and growth of CdSe QDs were discussed by the possible thermodynamic equilibrium existing in ODE/water interface. This two-phase liquid/liquid system would broaden the synthesis of other semiconductor QDs.

  10. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2015-08-01

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP's) and PVA NC's with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np's, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP's Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP's.

  11. Toward Nanoscale Material Applications: Colloidal Quantum Dot Memory And Multi-Layer Graphene Electronics And Optoelectronics

    NASA Astrophysics Data System (ADS)

    Olac-vaw, Roman

    In this dissertation, the analysis of a possible use of colloidal semiconductor quantum dots (QDs) in memory storage devices is presented. The charging and discharging behaviors of capped cadmium selenide (CdSe) QDs deposited on a sheet of graphite film layers in ambient conditions were analyzed. Individual QDs can be addressed (charged) with the synergistic action of light and the mechanical interaction of a probe of an atomic force microscope (AFM). The probe squeezes the coating layer of QDs helping the photoelectron to tunnel to either the conductive AFM probe or to the substrate. The charge can be induced on individual QDs by locating the QDs with AFM. The charges were stable in ambient conditions (survived up to 24 hours), and even recovered within a minute after their forced neutralization by airflow of negative ions. The analyzed QDs allow recording information at a density up to 1Tb/cm 2. A possibility to attain charging (writing) time down to nanoseconds while keeping discharging (storage) times for more than 100 years is also demonstrated. These results may also be of interest for QDs based sensors, memory, and solar cell applications. Multi-layer heteroepitaxial graphene was successfully formed on 3C-SiC grown on a Si substrate using single gas source molecular beam epitaxy (MBE). The observation of ambipolar behavior, one of the unique properties of graphene, verifies the successful growth of graphene layers. The epitaxial graphene is believed to be unintentionally p-type doped with the Fermi level offset around +0.11˜+0.12 V at the Dirac point. Backgate field-effect transistors using multilayer graphene channel were designed, fabricated and characterized for electronic and optoelectronic applications. Even though some gate leakage current was observed, the experimental results show the device worked as an n-type transistor as well as an infrared detector. The drain saturated current of the graphene channel transistor is on the order of mA/mm. The

  12. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  13. Understanding the electronic structure of CdSe quantum dot-fullerene (C{sub 60}) hybrid nanostructure for photovoltaic applications

    SciTech Connect

    Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab

    2014-09-21

    By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C{sub 60}) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C{sub 60} systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD. With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C{sub 60}-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C{sub 60} hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.

  14. Anodic Electrogenerated Chemiluminescence of Ru(bpy)32+ with CdSe Quantum Dots as Coreactant and Its Application in Quantitative Detection of DNA

    PubMed Central

    Dong, Yong-Ping; Gao, Ting-Ting; Zhou, Ying; Jiang, Li-Ping; Zhu, Jun-Jie

    2015-01-01

    In the present paper, we report that CdSe quantum dots (QDs) can act as the coreactant of Ru(bpy)32+ electrogenerated chemiluminescence (ECL) in neutral condition. Strong anodic ECL signal was observed at ~1.10 V at CdSe QDs modified glassy carbon electrode (CdSe/GCE), which might be mainly attributed to the apparent electrocatalytic effect of QDs on the oxidation of Ru(bpy)32+. Ru(bpy)32+ can be intercalated into the loop of hairpin DNA through the electrostatic interaction to fabricate a probe. When the probe was bound to the CdSe QDs modified on the GCE, the intense ECL signal was obtained. The more Ru(bpy)32+ can be intercalated when DNA loop has larger diameter and the stronger ECL signal can be observed. The loop of hairpin DNA can be opened in the presence of target DNA to release the immobilized Ru(bpy)32+, which can result in the decrease of ECL signal. The decreased ECL signal varied linearly with the concentration of target DNA, which showed the ECL biosensor can be used in the sensitive detection of DNA. The proposed ECL biosensor showed an excellent performance with high specificity, wide linear range and low detection limit. PMID:26472243

  15. Anodic Electrogenerated Chemiluminescence of Ru(bpy)32+ with CdSe Quantum Dots as Coreactant and Its Application in Quantitative Detection of DNA

    NASA Astrophysics Data System (ADS)

    Dong, Yong-Ping; Gao, Ting-Ting; Zhou, Ying; Jiang, Li-Ping; Zhu, Jun-Jie

    2015-10-01

    In the present paper, we report that CdSe quantum dots (QDs) can act as the coreactant of Ru(bpy)32+ electrogenerated chemiluminescence (ECL) in neutral condition. Strong anodic ECL signal was observed at ~1.10 V at CdSe QDs modified glassy carbon electrode (CdSe/GCE), which might be mainly attributed to the apparent electrocatalytic effect of QDs on the oxidation of Ru(bpy)32+. Ru(bpy)32+ can be intercalated into the loop of hairpin DNA through the electrostatic interaction to fabricate a probe. When the probe was bound to the CdSe QDs modified on the GCE, the intense ECL signal was obtained. The more Ru(bpy)32+ can be intercalated when DNA loop has larger diameter and the stronger ECL signal can be observed. The loop of hairpin DNA can be opened in the presence of target DNA to release the immobilized Ru(bpy)32+, which can result in the decrease of ECL signal. The decreased ECL signal varied linearly with the concentration of target DNA, which showed the ECL biosensor can be used in the sensitive detection of DNA. The proposed ECL biosensor showed an excellent performance with high specificity, wide linear range and low detection limit.

  16. Anodic Electrogenerated Chemiluminescence of Ru(bpy)3(2+) with CdSe Quantum Dots as Coreactant and Its Application in Quantitative Detection of DNA.

    PubMed

    Dong, Yong-Ping; Gao, Ting-Ting; Zhou, Ying; Jiang, Li-Ping; Zhu, Jun-Jie

    2015-10-16

    In the present paper, we report that CdSe quantum dots (QDs) can act as the coreactant of Ru(bpy)3(2+) electrogenerated chemiluminescence (ECL) in neutral condition. Strong anodic ECL signal was observed at ~1.10 V at CdSe QDs modified glassy carbon electrode (CdSe/GCE), which might be mainly attributed to the apparent electrocatalytic effect of QDs on the oxidation of Ru(bpy)3(2+). Ru(bpy)3(2+) can be intercalated into the loop of hairpin DNA through the electrostatic interaction to fabricate a probe. When the probe was bound to the CdSe QDs modified on the GCE, the intense ECL signal was obtained. The more Ru(bpy)3(2+) can be intercalated when DNA loop has larger diameter and the stronger ECL signal can be observed. The loop of hairpin DNA can be opened in the presence of target DNA to release the immobilized Ru(bpy)3(2+), which can result in the decrease of ECL signal. The decreased ECL signal varied linearly with the concentration of target DNA, which showed the ECL biosensor can be used in the sensitive detection of DNA. The proposed ECL biosensor showed an excellent performance with high specificity, wide linear range and low detection limit.

  17. Optimization of charge transfer and transport processes at the CdSe quantum dots/TiO2 nanorod interface by TiO2 interlayer passivation

    NASA Astrophysics Data System (ADS)

    Jaramillo-Quintero, O. A.; Triana, M. A.; Rincon, M. E.

    2017-06-01

    Surface trap states hinder charge transfer and transport properties in TiO2 nanorods (NRs), limiting its application on optoelectronic devices. Here, we study the interfacial processes between rutile TiO2 NR and CdSe quantum dots (QDs) using TiO2 interlayer passivation treatments. Anatase or rutile TiO2 thin layers were deposited on an NR surface by two wet-chemical deposition treatments. Reduced interfacial charge recombination between NRs and CdSe QDs was observed by electrochemical impedance spectroscopy with the introduction of TiO2 thin film interlayers compared to bare TiO2 NRs. These results can be ascribed to in-gap trap state passivation of the TiO2 NR surface, which led to an increase in open circuit voltage. Moreover, the rutile thin layer was more efficient than anatase to promote a higher photo-excited electron transfer from CdSe QDs to TiO2 NRs due to a large driving force for charge injection, as confirmed by surface photovoltage spectroscopy.

  18. Depleted-heterojunction colloidal quantum dot solar cells.

    PubMed

    Pattantyus-Abraham, Andras G; Kramer, Illan J; Barkhouse, Aaron R; Wang, Xihua; Konstantatos, Gerasimos; Debnath, Ratan; Levina, Larissa; Raabe, Ines; Nazeeruddin, Mohammad K; Grätzel, Michael; Sargent, Edward H

    2010-06-22

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced. The first-the Schottky device-was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film. The second-the excitonic device-employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate CQD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest open-circuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety.

  19. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei

    2014-03-01

    A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.

  20. Colloidal Quantum Dot Red-Shifting on Textured Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Ferri, Christopher; Grimes, Anthony; Ghosh, Sayantani

    2011-03-01

    We have studied the influence of textured metal surfaces on the emission of an ensemble of colloidal CdSe/ZnS core-shell quantum dots (QDs). The texture was generated by sputter coating a thin film of Gold Paladium (AuPd) on a thermoplastic Polydimethylsiloxane (PDMS) sheet. We used two separate protocols to generate two types of surfaces. We constrained some substrates such that they shrunk along only one planar dimension (uniaxial) while some were allowed to shrink along both planar directions (biaxial). The uniaxial substrates forced the metal to buckle along one dimension and the biaxial substrates buckled into a pseudorandom texture. We found that the QDs deposited on the biaxial substrates had a general red shift in the emission wavelength compared to their emission in solution, which also corresponded to a change in the temporal dynamics of the emission. The QDs on the uniaxial substrates showed a change in their temporal dynamics corresponding to plasmonic coupling, but no spectral shift. We hypothesize that the effects observed on the biaxial substrates are caused by the Franz-Keldysh effect. National Science Foundation.

  1. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells.

    PubMed

    Choi, Hyekyoung; Lee, Jong-Gun; Mai, Xuan Dung; Beard, Matthew C; Yoon, Sam S; Jeong, Sohee

    2017-04-04

    Controlling the thickness of quantum dot (QD) films is difficult using existing film formation techniques, which employ pre-ligand-exchanged PbS QD inks, because of several issues: 1) poor colloidal stability, 2) use of high-boiling-point solvents for QD dispersion, and 3) limitations associated with one-step deposition. Herein, we suggest a new protocol for QD film deposition using electrical double-layered PbS QD inks, prepared by solution-phase ligand exchange using methyl ammonium lead iodide (MAPbI3). The films are deposited by the supersonic spraying technique, which facilitates the rapid evaporation of the solvent and the subsequent deposition of the PbS QD ink without requiring a post-deposition annealing treatment for solvent removal. The film thickness could be readily controlled by varying the number of spraying sweeps made across the substrate. This spray deposition process yields high-quality n-type QD films quickly (within 1 min) while minimizing the amount of the PbS QD ink used to less than 5 mg for one device (300-nm-thick absorbing layer, 2.5 × 2.5 cm(2)). Further, the formation of an additional p-layer by treatment with mercaptopropionic acid allows for facile hole extraction from the QD films, resulting in a power conversion efficiency of 3.7% under 1.5 AM illumination.

  2. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells

    DOE PAGES

    Choi, Hyekyoung; Lee, Jong-Gun; Mai, Xuan Dung; ...

    2017-04-04

    Controlling the thickness of quantum dot (QD) films is difficult using existing film formation techniques, which employ pre-ligand-exchanged PbS QD inks, because of several issues: 1) poor colloidal stability, 2) use of high-boiling-point solvents for QD dispersion, and 3) limitations associated with one-step deposition. Here in this paper, we suggest a new protocol for QD film deposition using electrical double-layered PbS QD inks, prepared by solution-phase ligand exchange using methyl ammonium lead iodide (MAPbI3). The films are deposited by the supersonic spraying technique, which facilitates the rapid evaporation of the solvent and the subsequent deposition of the PbS QD inkmore » without requiring a post-deposition annealing treatment for solvent removal. The film thickness could be readily controlled by varying the number of spraying sweeps made across the substrate. This spray deposition process yields high-quality n-type QD films quickly (within 1 min) while minimizing the amount of the PbS QD ink used to less than 5 mg for one device (300-nm-thick absorbing layer, 2.5 x 2.5 cm2). Further, the formation of an additional p-layer by treatment with mercaptopropionic acid allows for facile hole extraction from the QD films, resulting in a power conversion efficiency of 3.7% under 1.5 AM illumination.« less

  3. Photocatalytic H2 production using a hybrid assembly of an [FeFe]-hydrogenase model and CdSe quantum dot linked through a thiolato-functionalized cyclodextrin.

    PubMed

    Cheng, Minglun; Wang, Mei; Zhang, Shuai; Liu, Fengyuan; Yang, Yong; Wan, Boshun; Sun, Licheng

    2017-03-07

    It is a great challenge to develop iron-based highly-efficient and durable catalytic systems for the hydrogen evolution reaction (HER) by understanding and learning from [FeFe]-hydrogenases. Here we report photocatalytic H2 production by a hybrid assembly of a sulfonate-functionalized [FeFe]-hydrogenase mimic (1) and CdSe quantum dot (QD), which is denoted as 1/β-CD-6-S-CdSe (β-CD-6-SH = 6-mercapto-β-cyclodextrin). In this assembly, thiolato-functionalized β-CD acts not only as a stabilizing reagent of CdSe QDs but also as a host compound for the diiron catalyst, so as to confine CdSe QDs to the space near the site of diiron catalyst. In addition, another two reference systems comprising MAA-CdSe QDs (HMAA = mercaptoacetic acid) and 1 in the presence and absence of β-CD, denoted as 1/β-CD/MAA-CdSe and 1/MAA-CdSe, were studied for photocatalytic H2 evolution. The influences of β-CD and the stabilizing reagent β-CD-6-S(-) on the stability of diiron catalyst, the fluorescence lifetime of CdSe QDs, the apparent electron transfer rate, and the photocatalytic H2-evolving efficiency were explored by comparative studies of the three hybrid systems. The 1/β-CD-6-S-CdSe system displayed a faster apparent rate for electron transfer from CdSe QDs to the diiron catalyst compared to that observed for MAA-CdSe-based systems. The total TON for visible-light driven H2 evolution by the 1/β-CD-6-S-CdSe QDs in water at pH 4.5 is about 2370, corresponding to a TOF of 150 h(-1) in the initial 10 h of illumination, which is 2.7- and 6.6-fold more than the amount of H2 produced from the reference systems 1/β-CD/MAA-CdSe and 1/MAA-CdSe. Additionally, 1/β-CD-6-S-CdSe gave 2.4-5.1 fold enhancement in the apparent quantum yield and significantly improved the stability of the system for photocatalytic H2 evolution.

  4. Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation

    SciTech Connect

    Withers, Nathan J.; Sankar, Krishnaprasad; Akins, Brian A.; Memon, Tosifa A.; Gu Tingyi; Gu Jiangjiang; Smolyakov, Gennady A.; Greenberg, Melisa R.; Osinski, Marek; Boyle, Timothy J.

    2008-10-27

    Effects of {sup 137}Cs gamma irradiation on photoluminescent properties of CdSe/ZnS colloidal quantum dots are reported. Optical degradation is evaluated by tracking the dependence of photoluminescence intensity on irradiation dose. CdSe/ZnS quantum dots show poor radiation hardness, and severely degrade after less than 20 kR exposure to 662 keV gamma photons.

  5. On the crystal structure of colloidally prepared CsPbBr3 quantum dots.

    PubMed

    Cottingham, Patrick; Brutchey, Richard L

    2016-04-18

    Colloidally synthesized quantum dots of CsPbBr3 are highly promising for light-emitting applications. Previous reports based on benchtop diffraction conflict as to the crystal structure of CsPbBr3 quantum dots. We present X-ray diffraction and PDF analysis of X-ray total scattering data that indicate that the crystal structure is unequivocally orthorhombic (Pnma).

  6. Cd/Hg cationic substitution in magic-sized CdSe clusters: Optical characterization and theoretical studies

    NASA Astrophysics Data System (ADS)

    Antanovich, Artsiom; Prudnikau, Anatol; Gurin, Valerij; Artemyev, Mikhail

    2015-07-01

    We examine conversion of magic-sized CdSe clusters (MSCs) into HgSe ones by means of Cd/Hg cation exchange. With this procedure Cd8Cd17- and Cd32-selenide clusters can be converted into corresponding Hg8-, Hg17- and Hg32-selenide ones. Upon cationic exchange MSCs behavior differs from that of bulkier counterparts - larger (2-3 nm) quantum dots. Unlike CdSe colloidal quantum dots, magic-sized clusters are converted in fast and complete manner without a formation of intermediate mixed CdxHg1-x compounds that was established on the basis of optical absorption spectroscopy and chemical composition analysis. These assumptions were supported by DFT quantum chemical calculations performed for Cd8-, Cd17- and Hg8-, Hg17-selenide model clusters. Energies of experimental and calculated optical transitions were compared in order to prove the isostructural character of cationic substitution in magic-sized clusters.

  7. XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.

    2013-04-01

    The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.

  8. Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots

    PubMed Central

    Page, Robert C; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A; Smith, Charles; Lewis, Edward A; Haigh, Sarah J; Li, Chen; Radtke, Hanna; Pengpad, Atip; Bondino, Federica; Magnano, Elena; Pis, Igor; Flavell, Wendy R; O'Brien, Paul; Binks, David J

    2015-01-01

    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. This process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours. PMID:25348200

  9. Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity.

    PubMed

    Gupta, Shilpi; Waks, Edo

    2013-12-02

    We demonstrate spontaneous emission rate enhancement and saturable absorption of cadmium selenide colloidal quantum dots coupled to a nanobeam photonic crystal cavity. We perform time-resolved lifetime measurements and observe an average enhancement of 4.6 for the spontaneous emission rate of quantum dots located at the cavity as compared to those located on an unpatterned surface. We also demonstrate that the cavity linewidth narrows with increasing pump intensity due to quantum dot saturable absorption.

  10. All-inorganic colloidal upconversion quantum dots (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oron, Dan; Teitelboim, Ayelet

    2017-02-01

    Upconversion (UC) is a nonlinear process in which two, or more, long wavelength photons are converted to a shorter wavelength photon. This process is based on sequential absorption of two or more photons, involving metastable, long lived intermediate energy states, thus is not restricted to ultrashort pulsed excitation. Hence, requirements for UC processes are long lived excited states, a ladder like arrangement of energy levels and a mechanism inhibiting cooling of the hot charge carrier. UC holds great promise for bioimaging, enabling to perform multiphoton imaging in scattering specimen at very low powers. Rare-earth-doped nanocrystals, the most commonly used ones for UC, typically require a minimal particle diameter of several tens of nanometers and have a limited action spectrum. Here, we present a novel luminescence upconversion nano-system based on colloidal semiconductor double quantum dots, consisting of a NIR-absorbing component and a visible emitting component separated by a tunneling barrier in a spherical onion-like geometry. These dual near-infrared and visible core/shell/shell PbSe/CdSe/CdS nanocrystals are shown to efficiently upconvert a broad range of NIR wavelengths up to 1.2 microns to visible emission at room temperature, covering a spectral range where there are practically no alternative upconversion systems. The particle diameter is less than ten nanometers, and the synthesis enables versatility and tunability of both the visible emission color and the NIR absorption edge. The physical mechanism for upconversion in this type of structures, as well as potential advances and extensions on this system will be discussed.

  11. Enhanced performance of branched TiO{sub 2} nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell

    SciTech Connect

    Kim, Soo-Kyoung; Gopi, Chandu V. V. M.; Lee, Jae-Cheol; Kim, Hee-Je

    2015-04-28

    TiO{sub 2} branched nanostructures could be efficient as photoanodes for quantum dot-sensitized solar cells (QDSCs) due to their large surface area for QD deposition. In this study, Mn-doped CdS/Mn-doped CdSe deposited branched TiO{sub 2} nanorods were fabricated to enhance the photovoltaic performance of QDSCs. Mn doping in CdS and CdSe retards the recombination losses of electrons, while branched TiO{sub 2} nanorods facilitate effective electron transport and compensate for the low surface area of the nanorod structure. As a result, the charge-transfer resistance (R{sub CT}), electron lifetime (τ{sub e}), and the amount of QD deposition were significantly improved with branched TiO{sub 2} nanorod based Mn-doped CdS/Mn-doped CdSe quantum dot-sensitized solar cell.

  12. Enhanced performance of branched TiO2 nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Kyoung; Gopi, Chandu V. V. M.; Lee, Jae-Cheol; Kim, Hee-Je

    2015-04-01

    TiO2 branched nanostructures could be efficient as photoanodes for quantum dot-sensitized solar cells (QDSCs) due to their large surface area for QD deposition. In this study, Mn-doped CdS/Mn-doped CdSe deposited branched TiO2 nanorods were fabricated to enhance the photovoltaic performance of QDSCs. Mn doping in CdS and CdSe retards the recombination losses of electrons, while branched TiO2 nanorods facilitate effective electron transport and compensate for the low surface area of the nanorod structure. As a result, the charge-transfer resistance (RCT), electron lifetime (τe), and the amount of QD deposition were significantly improved with branched TiO2 nanorod based Mn-doped CdS/Mn-doped CdSe quantum dot-sensitized solar cell.

  13. Photo- and electroluminescence from semiconductor colloidal quantum dots in organic matrices: QD-OLED

    SciTech Connect

    Vitukhnovskii, A. G. Vaschenko, A. A.; Bychkovskii, D. N.; Dirin, D. N.; Tananaev, P. N.; Vakshtein, M. S.; Korzhonov, D. A.

    2013-12-15

    The results are reported of an experimental study of samples of organic light-emitting diodes (OLEDs) with luminescent layers fabricated on the basis of two types of CdSe/CdS/ZnS semiconductor quantum dots (QDs) with average CdSe core diameters of 3.2 and 4.1 nm and the same overall diameters of 6.5 nm. The dependences of the LED efficiency on the applied voltage are determined. Assumptions are made about ways of optimizing the design of high-efficiency LEDs.

  14. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    PubMed

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  15. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  16. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-07-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  17. Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Fan, Jiyang; Department of Physics, Southeast University, Nanjing 211189, People's Republic of China Team

    We synthesize the colloidal carbon/graphene quantum dots 1-9 nm in diameter through a novel alkaline-assisted method and deeply studied their photoluminescence properties. Surprisingly, the luminescence properties of a fixed collection of carbon dots can be systematically changed as the concentration varies. A model based on photon reabsorption is proposed which explains well the experiment. Infrared spectral study indicates that the surfaces of the carbon dots are totally terminated by three bonding-types of oxygen atoms, which result in their ultra-high hydrophilicity. Our result clarifies the mystery of distinct emission colors in carbon dots and indicates that photon reabsorption can strongly affect the luminescence properties of colloidal nanocrystals.This mechanism can be generalized to help understand the complex luminescence properties of other colloidal quantum dots. and should be seriously considered,otherwise, distinct conclusions may be drawn if different concentrations of quantum dots have been utilized in studying their luminescence properies.

  18. Utilizing Electrical Characteristics of Individual Nanotube Devices to Study the Charge Transfer between CdSe Quantum Dots and Double-Walled Nanotubes

    DOE PAGES

    Zhu, Yuqi; Zhou, Ruiping; Wang, Lei; ...

    2017-03-02

    To study the charge transfer between cadmium selenide (CdSe) quantum dots (QDs) and double-walled nanotubes (DWNTs), various sizes of CdSe-ligand-DWNT structures are synthesized, and field-effect transistors (FETs) from individual functionalized DWNTs rather than networks of the same are fabricated. From the electrical measurements, two distinct electron transfer mechanisms from the QD system to the nanotube are identified. By the formation of the CdSe-ligand-DWNT heterostructure, an effectively n-doped nanotube is created due to the smaller work function of CdSe as compared with the nanotube. In addition, once the QD-DWNT system is exposed to laser light, further electron transfer from the QDmore » through the ligand, i.e. 4-mercaptophenol (MTH), to the nanotube occurs and a clear QD-size dependent tunneling process is observed. Furthermore, the detailed analysis of a large set of devices and the particular methodology employed here for the first time allowed for extracting a wavelength and quantum dot size dependent charge transfer efficiency – a quantity that is evaluated for the first time through electrical measurement.« less

  19. The in vivo biodistribution and fate of CdSe quantum dots in the murine model: a laser ablation inductively coupled plasma mass spectrometry study.

    PubMed

    Wang, TsingHai; Hsieh, HuiAn; Hsieh, YiKong; Chiang, ChiShiun; Sun, YuhChang; Wang, ChuFang

    2012-12-01

    Understanding the cytotoxicity of quantum dots strongly relies upon the development of new analytical techniques to gather information about various aspects of the system. In this study, we demonstrate the in vivo biodistribution and fate of CdSe quantum dots in the murine model by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). By comparing the hot zones of each element acquired from LA-ICP-MS with those in fluorescence images, together with hematoxylin and eosin-stained images, we are able to perceive the fate and in vivo interactions between quantum dots and rat tissues. One hour after intravenous injection, we found that all of the quantum dots had been concentrated inside the spleen, liver and kidneys, while no quantum dots were found in other tissues (i.e., muscle, brain, lung, etc.). In the spleen, cadmium-114 signals always appeared in conjunction with iron signals, indicating that the quantum dots had been filtered from main vessels and then accumulated inside splenic red pulp. In the liver, the overlapped hot zones of quantum dots and those of phosphorus, copper, and zinc showed that these quantum dots have been retained inside hepatic cells. Importantly, it was noted that in the kidneys, quantum dots went into the cortical areas of adrenal glands. At the same time, hot zones of copper appeared in proximal tubules of the cortex. This could be a sign that the uptake of quantum dots initiates certain immune responses. Interestingly, the intensity of the selenium signals was not proportional to that of cadmium in all tissues. This could be the result of the decomposition of the quantum dots or matrix interference. In conclusion, the advantage in spatial resolution of LA-ICP-MS is one of the most powerful tools to probe the fate, interactions and biodistribution of quantum dots in vivo.

  20. Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites

    NASA Astrophysics Data System (ADS)

    Suresh, Anil K.

    2014-09-01

    Engineered nanoparticles of diverse forms are being profoundly used for various applications and demand ecologically benign synthesis processes. Conventional chemical methods employed for the syntheses of nanoparticles are environmentally unfriendly and energy intensive. Biologically inspired biofabrication approaches that utilize naturally existing microorganisms or plant extracts or biomaterials might overcome these issues. The present investigation for the first time shows the synthesis of small and monodispersed cadmium selenide nanoparticles utilizing the plant pathogenic fungus, Helminthosporum solani upon incubating with an aqueous solution of CdCl2 and SeCl4 under ambient conditions. Multiple physical characterizations involving ultraviolet-visible and photoluminescence spectroscopy, transmission electron microscopy, selected area electron diffraction and X-ray photoelectron spectroscopy confirmed the production, purity, optical and surface characteristics, crystalline nature, size and shape distributions, and elemental composition of the nanoparticles. Pluralities of the particles are monodisperse spheres with a mean diameter of 5.5 ± 2 nm, are hydrophilic, highly stable with a broad photoluminescence and 1% quantum yield. This approach provides an alternative facile route for the biofabrication of quantum dot that is reliable, environmentally friendly, and lends itself directly for the creation of fluorescent biological labels.

  1. Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites.

    PubMed

    Suresh, Anil K

    2014-09-15

    Engineered nanoparticles of diverse forms are being profoundly used for various applications and demand ecologically benign synthesis processes. Conventional chemical methods employed for the syntheses of nanoparticles are environmentally unfriendly and energy intensive. Biologically inspired biofabrication approaches that utilize naturally existing microorganisms or plant extracts or biomaterials might overcome these issues. The present investigation for the first time shows the synthesis of small and monodispersed cadmium selenide nanoparticles utilizing the plant pathogenic fungus, Helminthosporum solani upon incubating with an aqueous solution of CdCl2 and SeCl4 under ambient conditions. Multiple physical characterizations involving ultraviolet-visible and photoluminescence spectroscopy, transmission electron microscopy, selected area electron diffraction and X-ray photoelectron spectroscopy confirmed the production, purity, optical and surface characteristics, crystalline nature, size and shape distributions, and elemental composition of the nanoparticles. Pluralities of the particles are monodisperse spheres with a mean diameter of 5.5±2 nm, are hydrophilic, highly stable with a broad photoluminescence and 1% quantum yield. This approach provides an alternative facile route for the biofabrication of quantum dot that is reliable, environmentally friendly, and lends itself directly for the creation of fluorescent biological labels.

  2. Fluorescence modulation in single CdSe quantum dots by moderate applied electric fields

    SciTech Connect

    LeBlanc, Sharonda J.; McClanahan, Mason R.; Moyer, Tully; Moyer, Patrick J.; Jones, Marcus

    2014-01-21

    Single molecule time-resolved fluorescence spectroscopy of CdSe/ZnS core-shell quantum dots (QDs) under the influence of moderate applied electric fields reveals distributed emission from states which are neither fully on nor off and pronounced changes in the excited state decay. The data suggest that a 54 kV/cm applied electric field causes small perturbations to the QD surface charge distribution, effectively increasing the surface trapping probability and resulting in the appearance of gray states. We present simultaneous blinking and fluorescence decay results for two sets of QDs, with and without an applied electric field. Further kinetic modeling analysis suggests that a single trapped charged cannot be responsible for a blinking off event.

  3. CdSe quantum dot sensitized solar cell based hierarchical branched ZnO nanoarrays

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Deng, Jianping

    2015-05-01

    The hierarchical branched ZnO nanoarrays (NAs) photoanode was prepared by a two-step hydrothermal method. Vertically aligned long ZnO NWs were first synthesized using as the backbone of hierarchical branched ZnO NAs structure and high quality ZnO NAs branches were grown on the surface of backbone ZnO NAs. The structured films enhance the optical path length through the light scatting effect of branched ZnO NAs and prove the larger internal surface area in NAs film to increase quantum dots (QDs) sensitizer loadings, so the light absorption has an optimization. Compared with the cell based conventional 1D ZnO NAs, the efficiency of the new cells has a great improvement due to the increase of the short circuit current density.

  4. Surface-plasmon-polariton assisted modification of spontaneous emission of colloidal quantum dots in metal nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson L.; Jayasundara, Nadeepa; Cho, Sang-Yeon

    2013-01-01

    We experimentally demonstrate extraordinary optical transmission (EOT) assisted photoluminescence (PL) of CdSe/CdS colloidal quantum dots (QDs). The quantum dots were encapsulated between a metallic nanostructure and a Bragg reflector to enhance the interaction of spontaneously emitted photons with a resonant electromagnetic surface wave. The measured PL spectrum of the fabricated sample exhibits spectral narrowing and a shift in peak wavelength of 22 nm and 7 nm, respectively. Furthermore, we tested the angular dependence of the signal to confirm the existence of EOT. This demonstration is a critical step towards realizing plasmonic colloidal QD based coherent emitters.

  5. Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot.

    PubMed

    Zhang, Qiang; Dang, Cuong; Urabe, Hayato; Wang, Jing; Sun, Shouheng; Nurmikko, Arto

    2008-11-24

    In this paper, we developed a novel and efficient method of deterministically organizing colloidal particles on structured surfaces over macroscopic areas. Our approach utilizes integrated solution-based processes of dielectric encapsulation and electrostatic-force-mediated self-assembly, which allow precisely controlled placement of sub-10nm sized particles at single particle resolution. As a specific demonstration, motivated by application to single photon sources, highly ordered 2D arrays of single II-VI semiconductor colloidal quantum dots (QDs) were created by this method. Individually, the QDs display triggered single photon emission at room temperature with characteristic photon antibunching statistics, suggesting a pathway to scalable quantum optical radiative systems.

  6. Highly luminescent (Zn,Cd)Te/CdSe colloidal heteronanowires with tunable electron-hole overlap.

    PubMed

    Groeneveld, Esther; van Berkum, Susanne; van Schooneveld, Matti M; Gloter, Alexandre; Meeldijk, Johannes D; van den Heuvel, Dave J; Gerritsen, Hans C; de Mello Donega, Celso

    2012-02-08

    We report the synthesis of ultranarrow (Zn,Cd)Te/CdSe colloidal heteronanowires, using ZnTe magic size clusters as seeds. The wire formation starts with a partial Zn for Cd cation exchange, followed by self-organization into segmented heteronanowires. Further growth occurs by inclusion of CdSe. The heteronanowires emit in the 530 to 760 nm range with high quantum yields. The electron-hole overlap decreases with increasing CdSe volume fraction, allowing the optical properties to be controlled by adjusting the heteronanowire composition.

  7. Incidence of the core composition on the stability, the ROS production and the toxicity of CdSe quantum dots.

    PubMed

    Kauffer, Florence-Anaïs; Merlin, Christophe; Balan, Lavinia; Schneider, Raphaël

    2014-03-15

    Mercaptosuccinic acid-capped CdSe and alloyed CdSe(S) QDs were prepared in aqueous solution at 100 and 170°C, respectively. These dots were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-vis and photoluminescence spectroscopies. The dots were found to be of similar size (ca. 2nm) but differ in their composition and surface chemistry. The photostability of the QDs was found to correlate with their ability to produce reactive oxygen species (ROS) upon light activation. CdSe QDs produce hydroxyl radicals immediately after irradiation due to their modest photostability, while CdSe(S) QDs start to generate the hydroxyl radicals only once they start to be bleached (ca. 30min). Cytotoxicity experiments conducted on Escherichia coli cells revealed that CdSe QDs were the more toxic despite being the least loaded in cadmium. In addition, consistent with ROS assays, the cytotoxicity of the CdSe QDs appeared light-dependent and is in accordance with a light-dependent oxidative stress observed with an oxyR-based whole cell biosensor. Our results demonstrate the crucial role played by nanoparticles synthesis process on their PL properties, their stability and their toxicity.

  8. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    SciTech Connect

    Tyagi, Chetna Sharma, Ambika

    2015-08-28

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP’s) and PVA NC’s with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np’s, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP’s Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP’s.

  9. Interband optical transition energy and oscillator strength in a lead based CdSe quantum dot quantum well heterostructure

    SciTech Connect

    Saravanamoorthy, S. N.; Peter, A. John

    2015-06-24

    Binding energies of the exciton and the interband optical transition energies are studied in a CdSe/Pb{sub 1-x}Cd{sub x}Se/CdSe spherical quantum dot-quantum well nanostructure taking into account the geometrical confinement effect. The core and shell are taken as the same material. The initial and final states of energy and the overlap integrals of electron and hole wave functions are determined by the oscillator strength. The oscillator strength and the radiative transition life time with the dot radius are investigated for various Cd alloy content in the core and shell materials.

  10. Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

    SciTech Connect

    Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R.; Stranks, Samuel D.; Eperon, Giles E.; Snaith, Henry J.

    2015-09-07

    Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation current as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.

  11. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    PubMed

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb(2+)) with trivalent antimony (Sb(3+)) to synthesize stable and brightly luminescent Cs3Sb2Br9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs3Sb2X9) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  12. Role of ZnS shell on stability, cytotoxicity, and photocytotoxicity of water-soluble CdSe semiconductor quantum dots surface modified with glutathione

    NASA Astrophysics Data System (ADS)

    Ibrahim, Salwa Ali; Ahmed, Wafaa; Youssef, Tareq

    2014-09-01

    Biomedical applications of quantum dots (QDs) have become a subject of a considerable concern in the past few decades. The present study examines the stability and cytotoxicity of two QDs systems in cell culture medium in the presence and absence of a thin layer of ZnS shell. The two systems were built from core, CdSe QDs, surface modified with glutathione (GSH), named CdSe˜GSH and CdSe/ZnS˜GSH. Our results demonstrated that 0.7 nm layer of ZnS shell played a significant role in the stability of CdSe/ZnS~GSH QDs in supplemented cell culture medium (RPMI). Also, a significant improvement in the physicochemical properties of the core CdSe QDs was shown by maintaining their spectroscopic characteristics in RPMI medium due to the wide band gap of ZnS shell. Both systems showed insignificant reduction in cell viability of HFB-4 or MCF-7 cell lines in the dark which was attributed to the effective GSH coating. Following photoirradiation with low laser power (irradiance 10 mW cm-2), CdSe~GSH QDs showed a significant decrease in cell viability after 60 min irradiation which may result from detachment of GSH molecules. Under the same irradiation condition, CdSe/ZnS~GSH QDs showed insignificant decrease in cell viability or after 2 h incubation from laser irradiation which was attributed to the strong binding between ZnS and GSH coatings. It can be concluded that the stability of CdSe core QDs was significantly improved in cell culture medium by encapsulation with a thin layer of ZnS shell whereas their cytotoxicity and photo-cytotoxicity are highly dependent on surface modification.

  13. Comparison of Toxicity of CdSe: ZnS Quantum Dots on Male Reproductive System in Different Stages of Development in Mice

    PubMed Central

    Amiri, Gholamreza; Valipoor, Akram; Parivar, Kazem; Modaresi, Mehrdad; Noori, Ali; Gharamaleki, Hamideh; Taheri, Jafar; Kazemi, Ali

    2016-01-01

    Background Quantum dots (QDs) are new types of fluorescent materials for biological labeling. QDs toxicity study is an essential requirement for future clinical applications. Therefore, this study aimed to evaluate cytotoxic effects of CdSe: ZnS QDs on male reproductive system. Materials and Methods In this experimental study, the different concentrations of CdSe: ZnS QDs (10, 20 and 40 mg/kg) were injected to 32 male mice (adult group) and 24 pregnant mice (embryo group) on day 8 of gestation. The histological changes of testis and epididymis were studied by a light microscopy, and the number of seminiferous tubules between two groups was compared. One-way analysis of variance (one-way Anova) using the Statistical Package for the Social Sciences (SPSS, SPSS Inc., USA) version 16 were performed for statistical analysis. Results In adult group, histological studies of testis tissues showed a high toxicity of CdSe: ZnS in 40 mg/kg dose followed by a decrease in lamina propria; destruction in interstitial tissue; deformation of seminiferous tubules; and a reduction in number of spermatogonia, spermatocytes, and spermatids. However, there was an interesting result in fetal testis development, meaning there was no significant effect on morphology and structure of the seminiferous tubules and number of sperm stem cells. Also histological study of epididymis tissues in both groups (adult and embryo groups) showed no significant effect on morphology and structure of tubule and epithelial cells, but there was a considerable reduction in number of spermatozoa in the lumen of the epididymal duct in 40 mg/kg dose of adult group. Conclusion The toxicity of QDs on testicular tissue of the mice embryo and adult are different before and after puberty. Due to lack of research in this field, this study can be an introduction to evaluate the toxicity of QDs on male reproduction system in different stages of development. PMID:26985339

  14. Thiol capped colloidal CdTe quantum dots synthesized using laser ablation

    NASA Astrophysics Data System (ADS)

    Almeida, D. B.; Rodriguez, E.; Moreira, R. S.; Agouram, S.; Barbosa, L. C.; Jimenez, E.; Cesar, C. L.

    2009-08-01

    Semiconductor quantum dots [QD] have shown a great number of applications from fluorescent markers to solar cell devices. Colloidal systems have been usually obtained through chemical synthesis, that have to be devoleped for each material. The best quality QDs have been obtained with non-aqueous solution and non-physiological pH, requiring a posterior processing to be used in biology, for example. In contrast, the same physical synthetic method, such as laser ablation, would be applied to any semiconductor, metallic or dielectric material. Colloidal QD can be obtained by laser ablation of a target inside any solvent, given this method a very large flexibility. The fluorescence efficiency, however, depend on the surface traps and stability of colloids. The usual method to avoid surface traps is to grow a cap layer to passivate its surface and, at the same time, stabilize the colloid, sterically or electrostatically. In this work we report a novel technique for obtain thiol capped CdTe colloidal quantum dots in one step. A target immerse in a solution of ethanol and 3-mercaptopropyltrimethoxysilane (MPS), or thiol, was hit by a nanosecond 532 nm laser. With this assembly CdTe luminescent QDs were obtained. The colloid photoluminescence and other optical and structural properties are studied.

  15. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.

    PubMed

    Ehrler, Bruno; Musselman, Kevin P; Böhm, Marcus L; Morgenstern, Frederik S F; Vaynzof, Yana; Walker, Brian J; Macmanus-Driscoll, Judith L; Greenham, Neil C

    2013-05-28

    Recent research has pushed the efficiency of colloidal quantum dot solar cells toward a level that spurs commercial interest. Quantum dot/metal oxide bilayers form the most efficient colloidal quantum dot solar cells, and most studies have advanced the understanding of the quantum dot component. We study the interfacial recombination process in depleted heterojunction colloidal quantum dot (QD) solar cells formed with ZnO as the oxide by varying (i) the carrier concentration of the ZnO layer and (ii) the density of intragap recombination sites in the QD layer. We find that the open-circuit voltage and efficiency of PbS QD/ZnO devices can be improved by 50% upon doping of the ZnO with nitrogen to reduce its carrier concentration. In contrast, doping the ZnO did not change the performance of PbSe QD/ZnO solar cells. We use X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, transient photovoltage decay measurements, transient absorption spectroscopy, and intensity-dependent photocurrent measurements to investigate the origin of this effect. We find a significant density of intragap states within the band gap of the PbS quantum dots. These states facilitate recombination at the PbS/ZnO interface, which can be suppressed by reducing the density of occupied states in the ZnO. For the PbSe QD/ZnO solar cells, where fewer intragap states are observed in the quantum dots, the interfacial recombination channel does not limit device performance. Our study sheds light on the mechanisms of interfacial recombination in colloidal quantum dot solar cells and emphasizes the influence of quantum dot intragap states and metal oxide properties on this loss pathway.

  16. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles.

    PubMed

    Debnath, Ratan; Tang, Jiang; Barkhouse, D Aaron; Wang, Xihua; Pattantyus-Abraham, Andras G; Brzozowski, Lukasz; Levina, Larissa; Sargent, Edward H

    2010-05-05

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm(2) that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere.

  17. The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots.

    PubMed

    Grisorio, Roberto; Debellis, Doriana; Suranna, Gian Paolo; Gigli, Giuseppe; Giansante, Carlo

    2016-06-01

    Colloidal quantum dots are composed of nanometer-sized crystallites of inorganic semiconductor materials bearing organic molecules at their surface. The organic/inorganic interface markedly affects forms and functions of the quantum dots, therefore its description and control are important for effective application. Herein we demonstrate that archetypal colloidal PbS quantum dots adapt their interface to the surroundings, thus existing in solution phase as equilibrium mixtures with their (metal-)organic ligand and inorganic core components. The interfacial equilibria are dictated by solvent polarity and concentration, show striking size dependence (leading to more stable ligand/core adducts for larger quantum dots), and selectively involve nanocrystal facets. This notion of ligand/core dynamic equilibrium may open novel synthetic paths and refined nanocrystal surface-chemistry strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. PbS Colloidal Quantum Dot Photodetectors operating in the near infrared

    PubMed Central

    De Iacovo, Andrea; Venettacci, Carlo; Colace, Lorenzo; Scopa, Leonardo; Foglia, Sabrina

    2016-01-01

    Colloidal quantum dots have recently attracted lot of interest in the fabrication of optoelectronic devices due to their unique optical properties and their simple and low cost fabrication. PbS nanocrystals emerged as the most advanced colloidal material for near infrared photodetectors. In this work we report on the fabrication and characterization of PbS colloidal quantum dot photoconductors. In order to make devices suitable for the monolithic integration with silicon electronics, we propose a simple and low cost process for the fabrication of photodetectors and investigate their operation at very low voltage bias. Our photoconductors feature high responsivity and detectivity at 1.3 μm and 1 V bias with maximum values of 30 A/W and 2·1010 cmHz1/2W−1, respectively. Detectivity close to 1011 cmHz1/2W−1 has been obtained resorting to bridge sensor readout. PMID:27885269

  19. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots

    SciTech Connect

    Guyot-Sionnest, Philippe Roberts, John Andris

    2015-12-21

    The photovoltaic response of thin films of HgTe colloidal quantum dots in the 3–5 μm range is observed. With no applied bias, internal quantum efficiency exceeding 40%, specific detectivity above 10{sup 10} Jones and microseconds response times are obtained at 140 K. The cooled devices detect the ambient thermal radiation. A detector with 5.25 μm cut-off achieves Background Limited Infrared Photodetection at 90 K.

  20. Synthesis and characterization of InP and InN colloidal quantum dots.

    SciTech Connect

    Boyle, Timothy J.; Osinski, Marek; Greenberg, Melisa; Bunge, Scott D.; Chen, Weiliang; Smolyakov, G. A.; Pulford, B. N.; Jiang, Ying-Bing

    2005-04-01

    InP quantum dots (QDs) with zinc blende structure and InN QDs with hexagonal structure were synthesized from appropriate organometallic precursors in a noncoordinating solvent using myristic acid as a ligand. The QDs were characterized by TEM, the associated energy dispersive spectroscopy (EDS), electron diffraction, and steady state UV-VIS optical absorption and photoluminescence spectroscopy. To our best knowledge, this paper reports synthesis of InN colloidal quantum dots for the first time.

  1. Cleavable Ligands Enable Uniform Close Packing in Colloidal Quantum Dot Solids.

    PubMed

    Carey, Graham H; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-10-07

    Uniform close packing in colloidal quantum dot solids is critical for high-optical density, high-mobility optoelectronic devices. A hybrid-ligand strategy is developed, combining the advantages of solid state and solution-phase ligand exchanges. This strategy uses a medium length thioamide ligand that is readily cleaved in a single chemical treatment, leading to quantum dot solids with uniformly packed domains 3 times larger than those observed in ligand-exchanged films.

  2. Differences in soil mobility and degradability between water-dispersible CdSe and CdSe/ZnS quantum dots.

    PubMed

    Navarro, Divina A; Banerjee, Sarbajit; Watson, David F; Aga, Diana S

    2011-08-01

    The relative leaching potential and degradation of water-dispersible CdSe and CdSe/ZnS quantum dots (QDs) were evaluated using small-scale soil columns. The potential of QDs to release toxic Cd(2+) and/or Se(2-)/SeO(3)(2-) ions upon degradation is of environmental concern and warrants investigation. Both classes of QDs exhibited limited soil mobility in CaCl(2), with more than 70% of the total Cd and Se species from QDs retained in the top soil after passing 10 column volumes of solution through the soil column. However, mobilization of Cd- and Se-species was observed when EDTA was used as the leaching solution. Approximately 98% of the total Cd(2+) loaded leached out from the Cd(2+)-spiked soil, while only 30% and 60% leached out from the CdSe and CdSe/ZnS QD-spiked soils, respectively. Soil column profiles and analysis of leachates suggest that intact QDs leached through the soil. Longer incubation (15 days) in soil prior to leaching indicated some degradation and/or surface modification of both QDs. These results suggest that chelating agents in the environment can enhance the soil mobility of intact and degraded QDs. It is apparent that QDs in soil, including the polymer-coated CdSe/ZnS QDs that are generally assumed to possess a higher degree of environmental stability, can undergo chemical transformations, which subsequently dictate their overall mobility.

  3. Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells

    PubMed Central

    2014-01-01

    Different counter electrode (CE) materials based on carbon and Cu2S were prepared for the application in CdS and CdSe quantum dot-sensitized solar cells (QDSSCs). The CEs were prepared using low-cost and facile methods. Platinum was used as the reference CE material to compare the performances of the other materials. While carbon-based materials produced the best solar cell performance in CdS QDSSCs, platinum and Cu2S were superior in CdSe QDSSCs. Different CE materials have different performance in the two types of QDSSCs employed due to the different type of sensitizers and composition of polysulfide electrolytes used. The poor performance of QDSSCs with some CE materials is largely due to the lower photocurrent density and open-circuit voltage. The electrochemical impedance spectroscopy performed on the cells showed that the poor-performing QDSSCs had higher charge-transfer resistances and CPE values at their CE/electrolyte interfaces. PMID:24512605

  4. Mercaptoethanol capped CdSe quantum dots and CdSe/ZnS core/shell: synthesis, characterization and cytotoxicity evaluation.

    PubMed

    Painuly, Diksha; Bhatt, Anugya; Krishnan, V Kalliyana

    2013-02-01

    CdSe Quantum dots (Q-dots) and CdSe/ZnS core/shell have been synthesized by wet chemical route using mercaptoethanol (ME) as cappant. The synthesized Q-dots and core/shell were characterized using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDS), Dynamic Light Scattering (DLS), Optical absorption and luminescence spectroscopy. The core/shell formation was confirmed by both XRD and TEM analysis. The luminescence was shown to be considerably enhanced in the core/shell sample. Effect of dialysis process on the optical properties of the Q-dots and core/shell has also been discussed. Cytotoxicity studies have been carried out for Q-dots and core/shell. CdSe/ZnS core/shell was found to be non-cytotoxic as compared to CdSe Q-dots up to a certain concentration range. Polyethylene glycol (PEG) coating enhances the non-cytotoxic nature of CdSe/ZnS core/shell when compared with bare core/shell.

  5. Direct spectroscopic evidence of ultrafast electron transfer from a low band gap polymer to CdSe quantum dots in hybrid photovoltaic thin films.

    PubMed

    Couderc, Elsa; Greaney, Matthew J; Brutchey, Richard L; Bradforth, Stephen E

    2013-12-11

    Ultrafast transient absorption spectroscopy is used to study charge transfer dynamics in hybrid films composed of the low band gap polymer PCPDTBT and CdSe quantum dots capped with tert-butylthiol ligands. By selectively exciting the polymer, a spectral signature for electrons on the quantum dots appears on ultrafast time scales (≲ 65 fs), which indicates ultrafast electron transfer. From this time scale, the coupling between the polymer chains and the quantum dots is estimated to be J ≳ 17 meV. The reduced quantum dot acceptors exhibit an unambiguous spectral bleach signature, whose amplitude allows for the first direct calculation of the absolute electron transfer yield in a hybrid solar cell (82 ± 5%). We also show that a limitation of the hybrid system is rapid and measurable geminate recombination due to the small separation of the initial charge pair. The fast recombination is consistent with the internal quantum efficiency of the corresponding solar cell. We therefore have identified and quantified a main loss mechanism in this type of third generation solar cell.

  6. Genotoxicity evaluation of nanomaterials: dna damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice.

    PubMed

    Khalil, W K B; Girgis, E; Emam, A N; Mohamed, M B; Rao, K V

    2011-05-16

    Quantum dots (QDs) are a novel class of inorganic fluorophores which are gaining widespread recognition as a result of their exceptional photophysical properties and their applications as a biomarker and in molecular biomedical imaging. The aim of this study was to evaluate the in vivo genotoxicity in mice exposed to CdSe quantum dots of average size 5.0 ± 0.2 nm and CdSe doped with 1% cobalt ions of similar size. The quantum dots are surface modified using mercaptoacetic acid (MAA) in order to be biocompatible and water-soluble. The MAA-QDs were given to the mice orally at doses of 500, 1000, and 2000 mg/kg by weight of MAA-QDs. Bone marrow and liver samples were collected after two and seven days of treatment. The results indicated that after two days of treatment, the high dose of doped MAA-QDs was significantly able to induce DNA damage, formation of micronuclei (MNs), and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG). However, increasing DNA damage and the frequency of MNs formation as well as the generation of DNA adducts were observed with both the undoped MAA-QDs (2000 mg/kg) and doped MAA-QDs (1000 and 2000 mg/kg) after seven days of treatment. The results of our study indicate that exposure to high doses of pure MAA-QDs or MAA-QDs doped with cobalt has the potential to cause indirect in vivo genetic damage, which may be attributed to free radical-induced oxidative stress in mice.

  7. Control of photoinduced fluorescence enhancement of colloidal quantum dots using metal oxides

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed M.; Wing, Waylin J.; Patty, Kira; Campbell, Quinn

    2015-10-01

    It is well known that irradiation of colloidal quantum dots can dramatically enhance their emission efficiencies, leading to so-called photoinduced fluorescence enhancement (PFE). This process is the result of the photochemical and photophysical properties of quantum dots and the way they interact with the environment in the presence of light. It has been shown that such properties can be changed significantly using metal oxides. Using spectroscopic techniques, in this paper we investigate emission of different types of quantum dots (with and without shell) in the presence of metal oxides with opposing effects. We observed significant increase of PFE when quantum dots are deposited on about one nanometer of aluminum oxide, suggesting such oxide can profoundly increase quantum yield of such quantum dots. On the other hand, copper oxide can lead to significant suppression of emission of quantum dots, making them nearly completely dark instantly.

  8. Red, green, and blue lasing enabled by single-exciton gain in colloidal quantum dot films

    SciTech Connect

    Nurmikko, Arto V.; Dang, Cuong

    2016-06-21

    The methods and materials described herein contemplate the use films of colloidal quantum dots as a gain medium in a vertical-cavity surface-emitting laser. The present disclosure demonstrates a laser with single-exciton gain in the red, green, and blue wavelengths. Leveraging this nanocomposite gain, the results realize a significant step toward full-color single-material lasers.

  9. Facile synthesis and optical properties of colloidal silica microspheres encapsulating a quantum dot layer.

    PubMed

    Cho, Myungje; Lim, Kipil; Woo, Kyoungja

    2010-08-14

    We present colloidal silica microspheres encapsulating a homogeneous quantum dot layer at radial equidistance from the centre by utilizing electrostatic interaction between surface-engineered silica microspheres and QDs. The microspheres show dramatically enhanced optical absorption and emission with an appropriate silica shell thickness.

  10. Investigations into photo-excited state dynamics in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Gaurav

    Colloidal Quantum dots (QDs) have garnered considerable scientific and technological interest as a promising material for next generation solar cells, photo-detectors, lasers, bright light-emitting diodes (LEDs), and reliable biomarkers. However, for practical realization of these applications, it is crucial to understand the complex photo-physics of QDs that are very sensitive to surface chemistry and chemical surroundings. Depending on the excitation density, QDs can support single or multiple excitations. The first part of this talk addresses evolution of QD excited state dynamics in the regime of low excitation intensity. We use temperature-resolved time-resolved fluorescence spectroscopy to study exciton dynamics from picoseconds to microseconds and use kinetic modeling based on classical electron transfer to show the effect of surface trap states on dynamics of ground-state exciton manifold in core-shell CdSe/CdS QDs. We show that the thickness of CdS shell plays an important role in interaction of CdSe core exciton states with nanocrystal environment, and find that a thicker shell can minimize the mixing of QD exciton states with surface trap states. I will then present an investigation into the dynamics of multiply-excited states in QDs. One of the key challenges in QD spectroscopy is to reliably distinguish multi- from single-excited states that have similar lifetime components and spectroscopic signatures. I will describe the development of a novel multi-pulse fluorescence technique to selectively probe multi-excited states in ensemble QD samples and determine the nature of the multi-excited state contributing to the total fluorescence even in the limit of low fluorescent yields. We find that in our sample of CdSe/CdS core/shell QDs the multi-excited emission is dominated by emissive trion states rather than biexcitons. Next, I will discuss the application of this technique to probe exciton-plasmon coupling in layered hybrid films of QD/gold nanoparticles

  11. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids.

    PubMed

    Singh, Amol; Li, Xiangyang; Protasenko, Vladimir; Galantai, Gabor; Kuno, Masaru; Xing, Huili Grace; Jena, Debdeep

    2007-10-01

    Polarization-sensitive photodetectors are demonstrated using solution-synthesized CdSe nanowire (NW) solids. Photocurrent action spectra taken with a tunable white light source match the solution linear absorption spectra of the NWs, showing that the NW network is responsible for the device photoconductivity. Temperature-dependent transport measurements reveal that carriers responsible for the dark current through the nanowire solids are thermally excited across CdSe band gap. The NWs are aligned using dielectrophoresis between prepatterned electrodes using conventional optical photolithography. The photocurrent through the NW solid is found to be polarization-sensitive, consistent with complementary absorption (emission) measurements of both single wires and their ensembles. The range of solution-processed semiconducting NW materials, their facile synthesis, ease of device fabrication, and compatibility with a variety of substrates make them attractive for potential nanoscale polarization-sensitive photodetectors.

  12. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots.

    PubMed

    Page, Robert C; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A; Smith, Charles; Lewis, Edward A; Haigh, Sarah J; Li, Chen; Radtke, Hanna; Pengpad, Atip; Bondino, Federica; Magnano, Elena; Pis, Igor; Flavell, Wendy R; O'Brien, Paul; Binks, David J

    2015-04-01

    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. This process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots

    DOE PAGES

    Page, Robert C.; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A.; ...

    2014-10-27

    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. We find thismore » process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.« less

  14. Porous networks of CdSe nanocrystal chains from ultrafine Cd(OH)2 nanowires and their composite materials.

    PubMed

    Ko, Sungwook; Kim, Jeong Won; Moon, Geon Dae; Shim, Hee-Sang; Kim, Won Bae; Jeong, Unyong

    2010-03-16

    Long ultrathin Cd(OH)(2) nanowires have been selectively grown on silica colloids in a basic aqueous condition. The Cd(OH)(2) nanowires could be detached from the surface of the silica colloids by simply applying ultrasonication and then transformed into isolated CdSe nanocrystal chains. When the transformation into CdSe was conducted without detaching the Cd(OH)(2) nanowires, nanoporous CdSe shells composed of wire-like nanocrystal chains were produced. The good solubility of the Cd(OH)(2) nanowires in both hydrophilic and hydrophobic solvents facilitated the formation of composites with quantum dots, magnetic particles, organic molecules, and polymers. Embedding premade quantum dots possessed broad light absorption range and enhanced photoluminescence. Large amount of superparamagnetic particles endowed a fast magnetic response in addition to the fluorescence. Composites of organic/nanocrystal chains were readily fabricated by employing the electrostatic attraction between the positively charged Cd(OH)(2) nanowires and negatively charged polymers or small molecules.

  15. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system.

    PubMed

    Jiang, Hui; Ju, Huangxian

    2007-09-01

    This work elucidated the detailed electrochemiluminescence (ECL) process of the thioglycolic acid-capped CdSe quantum dots (QDs) film/peroxide aqueous system. The QDs were first electrochemically reduced to form electrons-injected QDs approximately -1.1 V, which then reduced hydrogen peroxide to produce OH* radical. The intermediate OH* radical was a key species for producing holes-injected QDs. The ECL emission with a peak at -1.114 V was demonstrated to come from the 1Se-1Sh transition emission. Using thiol compounds as the model molecules to annihilate the OH* radical, their quenching effects on ECL emission were studied. This effect led to a novel strategy for ECL sensing of the scavengers of hydroxyl radical. The detection results of thiol compounds showed high sensitivity, good precision, and acceptable accuracy, suggesting the promising application of the proposed method for quick detection of both scavengers and generators of hydroxyl radical in different fields.

  16. Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation.

    PubMed

    Kilina, Svetlana V; Kilin, Dmitri S; Prezhdo, Oleg V

    2009-01-27

    Spatial confinement can create relaxation bottlenecks by mismatch between electronic and vibrational frequencies. This hypothesis motivated discovery of multiple excitons, which could greatly enhance the efficiency of quantum dot (QD) solar cells. Surprisingly, recent experiments showed no bottleneck. Our time-domain ab initio study of the electron-phonon dynamics rationalizes the fast relaxation in PbSe and CdSe QDs, which have substantially different electronic properties. Atom fluctuations and surface effects lift degeneracies and create dense distributions of electronic levels at all but the lowest energies, while confinement enhances the electron-phonon coupling. The analysis applies to nanomaterials in general, modifying the fundamental view on the electron-phonon interaction.

  17. Joint mapping of mobility and trap density in colloidal quantum dot solids.

    PubMed

    Stadler, Philipp; Sutherland, Brandon R; Ren, Yuan; Ning, Zhijun; Simchi, Arash; Thon, Susanna M; Hoogland, Sjoerd; Sargent, Edward H

    2013-07-23

    Field-effect transistors have been widely used to study electronic transport and doping in colloidal quantum dot solids to great effect. However, the full power of these devices to elucidate the electronic structure of materials has yet to be harnessed. Here, we deploy nanodielectric field-effect transistors to map the energy landscape within the band gap of a colloidal quantum dot solid. We exploit the self-limiting nature of the potentiostatic anodization growth mode to produce the thinnest usable gate dielectric, subject to our voltage breakdown requirements defined by the Fermi sweep range of interest. Lead sulfide colloidal quantum dots are applied as the active region and are treated with varying solvents and ligands. In an analysis complementary to the mobility trends commonly extracted from field-effect transistor studies, we focus instead on the subthreshold regime and map out the density of trap states in these nanocrystal films. The findings point to the importance of comprehensively mapping the electronic band- and gap-structure within real quantum solids, and they suggest a new focus in investigating quantum dot solids with an aim toward improving optoelectronic device performance.

  18. Self-diffraction at a dynamic photonic crystal formed in a colloidal solution of quantum dots

    NASA Astrophysics Data System (ADS)

    Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K. V.; Mantsevich, V. N.; Dneprovskii, V. S.

    2016-11-01

    Self-diffraction at a one-dimensional dynamic photonic crystal formed in the colloidal solution of CdSe/ZnS quantum dots has been discovered. This self-diffraction appears simultaneously with self-diffraction at induced transparency channels at the resonant excitation of the main electron-hole (excitonic) transition of quantum dots by two laser beams with a Gaussian intensity distribution over the cross section. It is shown that a nonlinear change in the absorption of colloidal quantum dots results in the formation of a transparency channel and an induced amplitude diffraction grating, and a significant nonlinear change in the refractive index (Δ n ≈ 10-3) in the absorbing medium is responsible for the formation of the dynamic photonic crystal. Self-diffracted laser beams are revealed propagating not only in directions corresponding to self-diffraction at the induced diffraction grating but also in directions satisfying the Laue condition.

  19. Fabrication and characterization of on-chip silicon nitride microdisk integrated with colloidal quantum dots.

    PubMed

    Xie, Weiqiang; Zhu, Yunpeng; Aubert, Tangi; Hens, Zeger; Brainis, Edouard; Van Thourhout, Dries

    2016-01-25

    We designed and fabricated free-standing, waveguide-coupled silicon nitride microdisks hybridly integrated with embedded colloidal quantum dots. An efficient coupling of quantum dot emission to resonant disk modes and eventually to the access waveguides is demonstrated. The amount of light coupled out to the access waveguide can be tuned by controlling its dimensions and offset with the disk edge. These devices open up new opportunities for both on-chip silicon nitride integrated photonics and novel optoelectronic devices with quantum dots.

  20. Enhancement of Luminescence of Colloidal Ag2S Quantum Dots by Thionine Molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, O. V.; Grevtseva, I. G.; Kondratenko, T. S.; Smirnov, M. S.; Evtukhova, A. V.

    2016-07-01

    Enhancement of IR luminescence (1205 nm) of colloidal Ag2S quantum dots (QDs) with an average size of 2.5 ± 0.3 nm was detected upon excitation in the absorption band of thionine dye molecules (530-610 nm). It is found that the observed effect occurs during a hybrid association of Ag2S QDs with monomers of the cationic thionine (Th + ) molecule. It is concluded that the photosensitization of IR luminescence of colloidal Ag2S QDs is realized due to a resonance nonradiative transfer of electronic excitation energy directly to the centers of radiative recombination from the excited Th + molecules.

  1. CdSe quantum dot-functionalized TiO2 nanohybrids as a visible light induced photoelectrochemical platform for the detection of proprotein convertase subtilisin/kexin type 6.

    PubMed

    Pang, Xuehui; Pan, Jihong; Wang, Lin; Ren, Wei; Gao, Picheng; Wei, Qin; Du, Bin

    2015-09-15

    Proprotein convertase subtilisin/kexin type 6 (PCSK6) plays a major role in promoting the progression of rheumatoid arthritis to a higher aggressive status. A novel highly sensitive photoelectrochemical platform was developed for the detection of PCSK6 by using CdSe quantum dots (QDs)-functionalized TiO2 nanoparticles (NPs) nanohybrids (TiO2@CdSe) as the photo-to-electron conversion medium. TiO2@CdSe showed excellent visible-light absorbency, and much higher photoelectrochemical activity than both CdSe QDs and TiO2 NPs. The 5' and 3' primers of PCSK6 ssDNA acted as capture probes to realize the detection of PCSK6 ssDNA by the specific recognition. The capture probes can be fixed by poly-l-lysine (PLL) through positively strong electrostatic attraction and the carboxyl group of TiO2@CdSe nanohybrids. PLL was electropolymerized on ITO electrode by cyclic voltammetry (CV). Simultaneously, the amino group of PLL can interact with the carboxyl group of TiO2@CdSe nanohybrids to enhance the stability of the photoelectrochemical signal. The fabricated aptsensor exhibited excellent performance towards PCSK6 with a wide linear range (0.5 pg/mL to 80.0 ng/mL) and a detection limit of 0.1 fg/mL. This work opens up a new detection platform for PCSK6 with good sensitivity, reproducibility and stability.

  2. Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy

    SciTech Connect

    Hamad, K.S.; Hamad, K.S.; Roth, R.; Roth, R.; Rockenberger, J.; Rockenberger, J.; Alivisatos, A.P.; Alivisatos, A.P.; van Buuren, T.

    1999-10-01

    We report the observation of size dependent structural disorder by x-ray absorption near-edge spectroscopy (XANES) in InAs and CdSe nanocrystals 17{endash}80thinspthinsp{Angstrom} in diameter. XANES of the In and Cd M{sub 4,5} edges yields features that are sharp for the bulk solid but broaden considerably as the size of the particle decreases. FEFF7 multiple-scattering simulations reproduce the size dependent broadening of the spectra if a bulklike surface reconstruction of a spherical nanocrystal model is included. This illustrates that XANES is sensitive to the structure of the entire nanocrystal including the surface. {copyright} {ital 1999} {ital The American Physical Society }

  3. Colloidal 3-mercaptopropionic acid Capped Lead Sulfide Quantum Dots in a Low Boiling Point Solvent.

    PubMed

    Reinhart, Chase C; Johansson, Erik

    2017-04-10

    Colloidal 3-mercaptopropionic acid (3-MPA) capped lead sulfide quantum dots were prepared in a variety of organic solvents stabilized with a quaternary ammonium halide salt. The stabilized colloids' optical properties were studied through optical absorption and emission spectroscopy and found to be dependent on both the concentration of new ligand and stabilizer, and sample age. Nanocrystal ligand chemistry was studied through a combination of (1)H-NMR and 2-dimensional Nuclear Overhauser Effect Spectroscopy (NOESY) which revealed full displacement of the original oleate ligand to form a dynamically exchanging ligand shell. The colloids were studied optically and via NMR as they aged and revealed a quantitative conversion of monomeric 3-mercaptopropionic acid to its dimer, dithiodipropionic acid (dTdPA).

  4. Lamellar assembly of cadmium selenide nanoclusters into quantum belts.

    PubMed

    Liu, Yi-Hsin; Wang, Fudong; Wang, Yuanyuan; Gibbons, Patrick C; Buhro, William E

    2011-10-26

    Here, we elucidate a double-lamellar-template pathway for the formation of CdSe quantum belts. The lamellar templates form initially by dissolution of the CdX(2) precursors in the n-octylamine solvent. Exposure of the precursor templates to selenourea at room temperature ultimately affords (CdSe)(13) nanoclusters entrained within the double-lamellar templates. Upon heating, the nanoclusters are transformed to CdSe quantum belts having widths, lengths, and thicknesses that are predetermined by the dimensions within the templates. This template synthesis is responsible for the excellent optical properties exhibited by the quantum belts. We propose that the templated-growth pathway is responsible for the formation of the various flat, colloidal nanocrystals recently discovered, including nanoribbons, nanoplatelets, nanosheets, and nanodisks.

  5. Preparative size-exclusion chromatography for purification and characterization of colloidal quantum dots bound by chromophore-labeled polymers and low-molecular-weight chromophores.

    PubMed

    Wang, Mingfeng; Bardajee, Ghasem Rezanejade; Kumar, Sandeep; Nitz, Mark; Scholes, Gregory D; Winnik, Mitchell A

    2009-06-19

    We explore the use of preparative size-exclusion chromatography (SEC) and high-performance liquid chromatography (HPLC) to purify quantum dots (QDs) after surface modification. In one example, in which Bio-Beads (S-X1) were used as the packing material for the preparative SEC column, CdSe QDs treated with a functional coumarin dye could be separated from the excess free dye by using tetrahydrofuran (THF) as the mobile phase. This column was unable to separate polymer-coated QDs from free polymer (M approximately 8000) because of the relatively low cutoff mass of the column. Here a preparative HPLC column packed with TOYOPEARL gel allowed the effective separation of polymer-bound QDs from the excess free polymer by using N-methyl-2-pyrrolidinone (NMP) as the mobile phase. When other solvents such as absolute ethanol, acetonitrile, THF, and THF-triethylamine mixtures were used as the eluent, QDs stuck to the column. While NMP was an effective medium to remove excess free polymer from the QDs, it was difficult to transfer the purified QDs to more volatile solvents and maintain colloidal stability.

  6. Modification of hybrid active bilayer for enhanced efficiency and stability in planar heterojunction colloidal quantum dot photovoltaics

    PubMed Central

    2013-01-01

    Solution-processed planar heterojunction colloidal quantum dot photovoltaics with a hybrid active bilayer is demonstrated. A power conversion efficiency of 1.24% under simulated air mass 1.5 illumination conditions is reported. This was achieved through solid-state treatment with cetyltrimethylammonium bromide of PbS colloidal quantum dot solid films. That treatment was used to passivate Br atomic ligands as well as to engineer the interface within the hybrid active bilayer. PMID:24252664

  7. Highly fluorescent magnetic quantum dotprobe with superior colloidal stability

    NASA Astrophysics Data System (ADS)

    Basiruddin, Sk; Saha, Arindam; Sarkar, Rupa; Majumder, Moumita; Jana, Nikhil R.

    2010-12-01

    A magnetic quantum dot (MQD) based cellular nanoprobe, composed of a magnetic oxidenanoparticle component and a quantum dot component, has been synthesized and used for both imaging and separation. The successful synthesis is based on a reverse micelle based polyacrylate coating in the presence of component nanoparticles, followed by their functionalization viaconjugation chemistry.A magnetic quantum dot (MQD) based cellular nanoprobe, composed of a magnetic oxidenanoparticle component and a quantum dot component, has been synthesized and used for both imaging and separation. The successful synthesis is based on a reverse micelle based polyacrylate coating in the presence of component nanoparticles, followed by their functionalization viaconjugation chemistry. Electronic supplementary information (ESI) available: Details of the experimental procedure, MQD characterization via magnetic measurements, EDX, TEM, FTIR, fluorescamine test and control celllabeling data. See DOI: 10.1039/c0nr00501k

  8. Quantitative Determination of Skin Penetration of PEG-Coated CdSe Quantum Dots in Dermabraded but not Intact SKH-1 Hairless Mouse Skin

    PubMed Central

    Gopee, Neera V.; Roberts, Dean W.; Webb, Peggy; Cozart, Christy R.; Siitonen, Paul H.; Latendresse, John R.; Warbitton, Alan R.; Yu, William W.; Colvin, Vicki L.; Walker, Nigel J.; Howard, Paul C.

    2009-01-01

    Many cosmetics, sunscreens, and other consumer products are reported to contain nanoscale materials. The possible transdermal absorption of nanoscale materials and the long-term consequences of the absorption have not been determined. We used polyethylene glycol coated cadmium selenide (CdSe) core quantum dots (QD; 37 nm diameter) to evaluate the penetration of nanoscale material into intact, tape stripped, acetone treated, or dermabraded mouse skin. QD were suspended in an oil-in-water emulsion (approximately 9μM) and the emulsion was applied at 2 mg/cm2 to mouse dorsal skin pretreated as follows: intact; tape stripped to remove the stratum corneum; acetone pretreated; dermabraded to remove stratum corneum and epidermis. QD penetration into the skin was monitored in sentinel organs (liver and regional draining lymph nodes) using inductively coupled plasma mass spectrometry analysis of cadmium (from the CdSe QD). No consistent cadmium elevation was detected in the sentinel organs of mice with intact, acetone pretreated, or tape-stripped skin at 24- and 48-h post-QD application; however, in dermabraded mice, cadmium elevations were detected in the lymph nodes and liver. QD accumulation (as cadmium) in the liver was approximately 2.0% of the applied dose. The passing of QD through the dermabraded skin was confirmed using confocal fluorescence microscopy. These results suggest that transdermal absorption of nanoscale materials depends on skin barrier quality, and that the lack of an epidermis provided access to QD penetration. Future dermal risk assessments of nanoscale materials should consider key barrier aspects of skin and its overall physiologic integrity. PMID:19574408

  9. Reducing charge trapping in PbS colloidal quantum dot solids

    NASA Astrophysics Data System (ADS)

    Balazs, D. M.; Nugraha, M. I.; Bisri, S. Z.; Sytnyk, M.; Heiss, W.; Loi, M. A.

    2014-03-01

    Understanding and improving charge transport in colloidal quantum dot solids is crucial for the development of efficient solar cells based on these materials. In this paper, we report high performance field-effect transistors based on lead-sulfide colloidal quantum dots (PbS CQDs) crosslinked with 3-mercaptopropionic acid (MPA). Electron mobility up to 0.03 cm2/Vs and on/off ratio above 105 was measured; the later value is the highest in the literature for CQD Field effect transistors with silicon-oxide gating. This was achieved by using high quality material and preventing trap generation during fabrication and measurement. We show that air exposure has a reversible p-type doping effect on the devices, and that intrinsically MPA is an n-type dopant for PbS CQDs.

  10. Application of colloidal semiconductor quantum dots as fluorescent labels for diagnosis of brain glial cancer

    NASA Astrophysics Data System (ADS)

    Farias, Patrícia M. A.; Santos, Beate S.; Menezes, Frederico D.; Ferreira, Ricardo; Oliveira, Fernando J. M., Jr.; Carvalho, Hernandes F.; Romão, Luciana; Moura-Neto, Vivaldo; Amaral, Jane C. O. F.; Fontes, Adriana; Cesar, Carlos L.

    2006-02-01

    In this work we present the preparation, characterization and conjugation of colloidal core shell CdS-Cd(OH) II quantum dots to health and cancer glial rats living cells in culture media. The particles were obtained via colloidal synthesis in aqueous medium, with final pH=7.3-7.4. Laser Scan Confocal Microscopy (LSCM) and Fluorescence Microscopy were used to evaluate fluorescence intensities and patterns of health and cancer (glioblastoma) glial cells labeled with the quantum dots in different time intervals. Health and cancer glial cells clearly differ in their fluorescence intensities and patterns. These different fluorescence intensities and patterns may be associated to differences concerning cellular membrane and metabolic features of health and cancer cells. The results obtained indicate the potential of the methodology for fast and precise cancer diagnostics.

  11. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions

    SciTech Connect

    Greben, M.; Fucikova, A.; Valenta, J.

    2015-04-14

    The absolute photoluminescence (PL) quantum yield (QY) of oleic acid-capped colloidal PbS quantum dots (QDs) in toluene is thoroughly investigated as function of QD size, concentration, excitation photon energy, and conditions of storage. We observed anomalous decrease of QY with decreasing concentration for highly diluted suspensions. The ligand desorption and QD-oxidation are demonstrated to be responsible for this phenomenon. Excess of oleic acid in suspensions makes the QY values concentration-independent over the entire reabsorption-free range. The PL emission is shown to be dominated by surface-related recombinations with some contribution from QD-core transitions. We demonstrate that QD colloidal suspension stability improves with increasing the concentration and size of PbS QDs.

  12. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter DB (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > DB (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than DB show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  13. Infrared detection with colloidal quantum dots based on interband and intraband transitions

    NASA Astrophysics Data System (ADS)

    Guyot-Sionnest, Philippe

    2015-03-01

    While much research on colloidal quantum dots is focused on their potential as visible emitter or light harvester, this talk will cover our investigations of the mercury chalcogenide colloidal quantum dots in the thermal mid-infrared ranges of 3-5 microns and 8-12 microns where the atmosphere is transparent. HgTe is a zero-gap semiconductor. As a result, colloidal quantum dots (CQD) of sizes between 10 and 20 nm readily lead to infrared gaps tuning between 3 and 12 microns respectively. It is also very promising that infrared photodetection using dried films of these CQDs has now been demonstrated up to 12 microns. Further improvement through chemistry are likely and will be required to raise the detectivity to the level required to transform thermal infrared detection technology. In contrast to HgTe CQDs which tend to be intrinsic, beta-HgS and HgSe CQDs are naturally n-doped, in the first such instance with CQDs. Furthermore, the doping is modulated by modifying the surface composition, and this effect is attributed to the tuning of the energy level with respect to the environment, via the surface electrostatics. With controlled doping, both HgSe and HgS CQDs have now led to the first operation of mid-infrared CQD photodetector based on the intraband absorption. This is a breakthrough in the field of colloidal quantum dots where interband transitions had been exclusively used for the past 30 years. One challenge with both interband and intraband infrared CQDs will be to reduce the nonradiative recombination, which will improve the detectivity as well as allow to use their infrared luminescence.

  14. Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling.

    PubMed

    Yang, Zhenyu; Janmohamed, Alyf; Lan, Xinzheng; García de Arquer, F Pelayo; Voznyy, Oleksandr; Yassitepe, Emre; Kim, Gi-Hwan; Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Sargent, Edward H

    2015-11-11

    Solution-processed quantum dots are a promising material for large-scale, low-cost solar cell applications. New device architectures and improved passivation have been instrumental in increasing the performance of quantum dot photovoltaic devices. Here we report photovoltaic devices based on inks of quantum dot on which we grow thin perovskite shells in solid-state films. Passivation using the perovskite was achieved using a facile solution ligand exchange followed by postannealing. The resulting hybrid nanostructure created a more intrinsic CQD film, which, when incorporated into a photovoltaic device with graded bandstructure, achieved a record solar cell performance for single-step-deposited CQD films, exhibiting an AM1.5 solar power conversion efficiency of 8.95%.

  15. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield.

    PubMed

    Tessier, M D; Mahler, B; Nadal, B; Heuclin, H; Pedetti, S; Dubertret, B

    2013-07-10

    Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells. Here, we study in detail the spectroscopic properties of this novel generation of colloidal nanoparticles. We show that core/shell CdSe/CdZnS nanoplatelets with 80% quantum yield can be obtained. The emission time trace of single core/shell nanoplatelets exhibits reduced blinking compared to core nanoplatelets with a two level emission time trace. At cryogenic temperatures, these nanoplatelets have a quantum yield close to 100% and a stable emission time trace. A solution of core/shell nanoplatelets has emission spectra with a full width half-maximum close to 20 nm, a value much lower than corresponding spherical or rod-shaped heterostructures. Using single particle spectroscopy, we show that the broadening of the emission spectra upon the shell deposition is not due to dispersity between particles but is related to an intrinsic increased exciton-phonon coupling in the shell. We also demonstrate that optical spectroscopy is a relevant tool to investigate the presence of traps induced by shell deposition. The spectroscopic properties of the core/shell nanoplatelets presented here strongly suggest that this new generation of objects will be an interesting alternative to spherical or rod-shaped nanocrystals.

  16. Multi-photon microscopy based on resonant four-wave mixing of colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Masia, F.; Langbein, W.; Borri, P.

    2009-02-01

    We demonstrate a novel multi-photon imaging modality based on the detection of four-wave mixing (FWM) from colloidal nanoparticles. Four-wave mixing is a third-order signal which can be excited and detected in resonance with the ground-state excitonic transition of CdSe/ZnS quantum dots. The coherent FWM signal is detected interferometrically to reject incoherent backgrounds for improved image contrast compared to fluorescence methods. We measure transversal and axial resolutions of 140nm and 590nm respectively, significantly beating the one-photon diffraction limit. We also demonstrate optical imaging of quantum-dot-labeled Golgi structures of HepG2 cells.

  17. Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts

    NASA Astrophysics Data System (ADS)

    Debnath, Ratan; Greiner, Mark T.; Kramer, Illan J.; Fischer, Armin; Tang, Jiang; Barkhouse, D. Aaron R.; Wang, Xihua; Levina, Larissa; Lu, Zheng-Hong; Sargent, Edward H.

    2010-07-01

    With an aim to reduce the cost of depleted-heterojunction colloidal quantum dot solar cells, we describe herein a strategy that replaces costly Au with a low-cost Ni-based Ohmic contact. The resultant devices achieve 3.5% Air Mass 1.5 power conversion efficiency. Only by incorporating a 1.2-nm-thick LiF layer between the PbS quantum dot film and Ni, we were able to prevent undesired reactions and degradation at the metal-semiconductor interface.

  18. 25th anniversary article: Colloidal quantum dot materials and devices: a quarter-century of advances.

    PubMed

    Kim, Jin Young; Voznyy, Oleksandr; Zhitomirsky, David; Sargent, Edward H

    2013-09-25

    Colloidal quantum dot (CQD) optoelectronics offers a compelling combination of low-cost, large-area solution processing, and spectral tunability through the quantum size effect. Since early reports of size-tunable light emission from solution-synthesized CQDs over 25 years ago, tremendous progress has been made in synthesis and assembly, optical and electrical properties, materials processing, and optoelectronic applications of these materials. Here some of the major developments in this field are reviewed, touching on key milestones as well as future opportunities.

  19. Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters.

    PubMed

    Mutlugun, Evren; Guzelturk, Burak; Abiyasa, Agus Putu; Gao, Yuan; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-08-21

    Nonradiative energy transfer (NRET) is an alternative excitation mechanism in colloidal quantum dot (QD) based electroluminescent devices (QLEDs). Here, we develop hybrid highly spectrally pure QLEDs that facilitate energy transfer pumping via NRET from a phosphorescent small organic molecule-codoped charge transport layer to the adjacent QDs. A partially codoped exciton funnelling electron transport layer is proposed and optimized for enhanced QLED performance while exhibiting very high color purity of 99%. These energy transfer pumped hybrid QLEDs demonstrate a 6-fold enhancement factor in the external quantum efficiency over the conventional QLED structure, in which energy transfer pumping is intrinsically weak.

  20. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas

    NASA Astrophysics Data System (ADS)

    Yifat, Yuval; Ackerman, Matthew; Guyot-Sionnest, Philippe

    2017-01-01

    We report the fabrication of a colloidal quantum dot based photodetector designed for the 3-5 μm mid infrared wavelength range incorporated with optical nano-antenna arrays to enhance the photocurrent. The fabricated arrays exhibit a resonant behavior dependent on the length of the nano-antenna rods, in good agreement with numerical simulation. The device exhibits a three-fold increase in the spectral photoresponse compared to a photodetector device without antennas, and the resonance is polarized parallel to the antenna orientation. We numerically estimate the device quantum efficiency and investigate its bias dependence.

  1. Recombination dynamics of band edge excitons in quasi-two-dimensional CdSe nanoplatelets.

    PubMed

    Biadala, Louis; Liu, Feng; Tessier, Mickael D; Yakovlev, Dmitri R; Dubertret, Benoit; Bayer, Manfred

    2014-03-12

    We report a time-resolved study of the photoluminescence of CdSe colloidal nanoplatelets with two different thicknesses. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. The splitting between bright and dark excitons is enhanced compared to epitaxial quantum well structures as result of dielectric confinement. Despite of strong variations in the absolute magnitude, by comparison with literature data we find a relatively slightly varying bright-dark exciton lifetime ratio in very different CdSe-based colloidal nanostructures, regardless of growth technique and of core and shell properties such as materials, dimensions, etc. This finding points to a universal mechanism in the dark exciton recombination.

  2. Colloidal CdSe nanocrystals from tri-n-octylphosphine with various Cd sources: Control of a slow growth for high-quality and large-scale production

    NASA Astrophysics Data System (ADS)

    Yu, Kui; Zaman, Badruz; Taal, Remon; Ripmeester, John A.

    2005-09-01

    A slow growth in size at the early stages of reaction, together with a period of zero growth in size and size distribution is observed via monitoring the temporal evolution of the optical properties of the growing CdSe nanocrystals from reaction media consisting of tri-n-octylphosphine (TOP). The synthetic approach is as simple as a swift injection of a TOPSe/TOP solution into a Cd-source/TOP solution at 300 °C with subsequent growth at 250 °C. The various Cd sources investigated are cadmium acetate (Cd(Ac)2), cadmium oxide (CdO)/tetradecylphosphonic acid (TDPA), CdO, and CdO/oleylamine (OLA). With these various Cd sources studied, CdO with a 4Cd-to-1Se stoichiometry demonstrates its suitability for high-quality and large-scale production, due to a slow growth in size (less than 17 nm redshift of bandgap absorption and emission) and size distribution, as well as fairly constant photoluminescent properties of the growing nanocrystals during the 0.5-60 min growth time.

  3. A Highly Efficient Hybrid GaAs Solar Cell Based on Colloidal-Quantum-Dot-Sensitization

    NASA Astrophysics Data System (ADS)

    Han, Hau-Vei; Lin, Chien-Chung; Tsai, Yu-Lin; Chen, Hsin-Chu; Chen, Kuo-Ju; Yeh, Yun-Ling; Lin, Wen-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-07-01

    This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current.

  4. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots.

    PubMed

    Koleilat, Ghada I; Levina, Larissa; Shukla, Harnik; Myrskog, Stefan H; Hinds, Sean; Pattantyus-Abraham, Andras G; Sargent, Edward H

    2008-05-01

    Half of the sun's power lies in the infrared. As a result, the optimal bandgaps for solar cells in both the single-junction and even the tandem architectures lie beyond 850 nm. However, progress in low-cost, large-area, physically flexible solar cells has instead been made in organic and polymer materials possessing absorption onsets in the visible. Recent advances have been achieved in solution-cast infrared photovoltaics through the use of colloidal quantum dots. Here we report stable solution-processed photovoltaic devices having 3.6% power conversion efficiency in the infrared. The use of a strongly bound bidentate linker, benzenedithiol, ensures device stability over weeks. The devices reach external quantum efficiencies of 46% in the infrared and 70% across the visible. We investigate in detail the physical mechanisms underlying the operation of this class of device. In contrast with drift-dominated behavior in recent reports of PbS quantum dot photovoltaics, we find that diffusion of electrons and holes over hundreds of nanometers through our PbSe colloidal quantum dot solid is chiefly responsible for the high external quantum efficiencies obtained in this new class of devices.

  5. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization.

    PubMed

    Han, Hau-Vei; Lin, Chien-Chung; Tsai, Yu-Lin; Chen, Hsin-Chu; Chen, Kuo-Ju; Yeh, Yun-Ling; Lin, Wen-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-07-18

    This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current.

  6. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers

    PubMed Central

    Kress, Stephan J. P.; Cui, Jian; Rohner, Patrik; Kim, David K.; Antolinez, Felipe V.; Zaininger, Karl-Augustin; Jayanti, Sriharsha V.; Richner, Patrizia; McPeak, Kevin M.; Poulikakos, Dimos; Norris, David J.

    2017-01-01

    Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser—a laser-like source of high-intensity, narrow-band surface plasmons—was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot–based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications. PMID:28948219

  7. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers.

    PubMed

    Kress, Stephan J P; Cui, Jian; Rohner, Patrik; Kim, David K; Antolinez, Felipe V; Zaininger, Karl-Augustin; Jayanti, Sriharsha V; Richner, Patrizia; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J

    2017-09-01

    Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser-a laser-like source of high-intensity, narrow-band surface plasmons-was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot-based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications.

  8. A Highly Efficient Hybrid GaAs Solar Cell Based on Colloidal-Quantum-Dot-Sensitization

    PubMed Central

    Han, Hau-Vei; Lin, Chien-Chung; Tsai, Yu-Lin; Chen, Hsin-Chu; Chen, Kuo-Ju; Yeh, Yun-Ling; Lin, Wen-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-01-01

    This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current. PMID:25034623

  9. Near-field light design with colloidal quantum dots for photonics and plasmonics.

    PubMed

    Kress, Stephan J P; Richner, Patrizia; Jayanti, Sriharsha V; Galliker, Patrick; Kim, David K; Poulikakos, Dimos; Norris, David J

    2014-10-08

    Colloidal quantum-dots are bright, tunable emitters that are ideal for studying near-field quantum-optical interactions. However, their colloidal nature has hindered their facile and precise placement at desired near-field positions, particularly on the structured substrates prevalent in plasmonics. Here, we use high-resolution electro-hydrodynamic printing (<100 nm feature size) to deposit countable numbers of quantum dots on both flat and structured substrates with a few nanometer precision. We also demonstrate that the autofocusing capability of the printing method enables placement of quantum dots preferentially at plasmonic hot spots. We exploit this control and design diffraction-limited photonic and plasmonic sources with arbitrary wavelength, shape, and intensity. We show that simple far-field illumination can excite these near-field sources and generate fundamental plasmonic wave-patterns (plane and spherical waves). The ability to tailor subdiffraction sources of plasmons with quantum dots provides a complementary technique to traditional scattering approaches, offering new capabilities for nanophotonics.

  10. Purcell effect in triangular plasmonic nanopatch antennas with three-layer colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Eliseev, S. P.; Kurochkin, N. S.; Vergeles, S. S.; Sychev, V. V.; Chubich, D. A.; Argyrakis, P.; Kolymagin, D. A.; Vitukhnovskii, A. G.

    2017-05-01

    A model describing a plasmonic nanopatch antenna based on triangular silver nanoprisms and multilayer cadmium chalcogenide quantum dots is introduced. Electromagnetic-field distributions in nanopatch antennas with different orientations of the quantum-dot dipoles are calculated for the first time with the finite element method for numerical electrodynamics simulations. The energy flux through the surface of an emitting quantum dot is calculated for the configurations with the dot in free space, on an aluminum substrate, and in a nanopatch antenna. It is shown that the radiative part of the Purcell factor is as large as 1.7 × 102 The calculated photoluminescence lifetimes of a CdSe/CdS/ZnS colloidal quantum dot in a nanopatch antenna based on a silver nanoprism agree well with the experimental results.

  11. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor.

    PubMed

    Nikitskiy, Ivan; Goossens, Stijn; Kufer, Dominik; Lasanta, Tania; Navickaite, Gabriele; Koppens, Frank H L; Konstantatos, Gerasimos

    2016-06-17

    The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 10(5) and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics.

  12. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor

    PubMed Central

    Nikitskiy, Ivan; Goossens, Stijn; Kufer, Dominik; Lasanta, Tania; Navickaite, Gabriele; Koppens, Frank H. L.; Konstantatos, Gerasimos

    2016-01-01

    The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 105 and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics. PMID:27311710

  13. Study of optically trapped living Trypanosoma cruzi/Trypanosoma rangeli - Rhodnius prolixus interactions by real time confocal images using CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Almeida, D. B.; Faustino, W. M.; Jacob, G. J.; Fontes, A.; Barbosa, L. C.; Cesar, C. L.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.

    2008-08-01

    One of the fundamental goals in biology is to understand the interplay between biomolecules of different cells. This happen, for example, in the first moments of the infection of a vector by a parasite that results in the adherence to the cell walls. To observe this kind of event we used an integrated Optical Tweezers and Confocal Microscopy tool. This tool allow us to use the Optical Tweezers to trigger the adhesion of the Trypanosoma cruzi and Trypanosoma rangeli parasite to the intestine wall cells and salivary gland of the Rhodnius prolixus vector and to, subsequently observe the sequence of events by confocal fluorescence microscopy under optical forces stresses. We kept the microorganism and vector cells alive using CdSe quantum dot staining. Besides the fact that Quantum Dots are bright vital fluorescent markers, the absence of photobleaching allow us to follow the events in time for an extended period. By zooming to the region of interested we have been able to acquire confocal images at the 2 to 3 frames per second rate.

  14. Use of Surface Photovoltage Spectroscopy to Measure Built-in Voltage, Space Charge Layer Width, and Effective Band Gap in CdSe Quantum Dot Films.

    PubMed

    Zhao, Jing; Nail, Benjamin A; Holmes, Michael A; Osterloh, Frank E

    2016-09-01

    Surface photovoltage spectroscopy (SPS) was used to study the photochemistry of mercaptoethanol-ligated CdSe quantum dot (2.0-4.2 nm diameter) films on indium doped tin oxide (ITO) in the absence of an external bias or electrolyte. The n-type films generate negative voltages under super band gap illumination (0.1-0.5 mW cm(-2)) by majority carrier injection into the ITO substrate. The photovoltage onset energies track the optical band gaps of the samples and are assigned as effective band gaps of the films. The photovoltage values (-125 to -750 mV) vary with quantum dot sizes and are modulated by the built-in potential of the CdSe-ITO Schottky type contacts. Deviations from the ideal Schottky model are attributed to Fermi level pinning in states approximately 1.1 V negative of the ITO conduction band edge. Positive photovoltage signals of +80 to +125 mV in films of >4.0 nm nanocrystals and in thin (70 nm) nanocrystal films are attributed to electron-hole (polaron) pairs that are polarized by a space charge layer at the CdSe-ITO boundary. The space charge layer is 70-150 nm wide, based on thickness-dependent photovoltage measurements. The ability of SPS to directly measure built-in voltages, space charge layer thickness, sub-band gap states, and effective band gaps in drop-cast quantum dot films aids the understanding of photochemical charge transport in quantum dot solar cells.

  15. Alternate monolayers of CdSe nanocrystals and perylene tetracarboxylate: quantum dot hypersensitization for dye-sensitized solar cells.

    PubMed

    Vercelli, B; Zotti, G; Berlin, A

    2012-06-27

    Mono- and multilayers from CdSe nanocrystal dispersion and perylene tetracarboxylate solution are reported for the first time. The layers were investigated by UV-visible spectroscopy, cyclic voltammetry, photoconductivity, and photoelectrochemical techniques. The n-type organic semiconductor gives enhanced photoconductivity to the CdSe-NC multilayer structure. The photoactive perylene monolayer acts also as hypersensitizer of CdSe-NC structures. The perylene-modified CdSe-NC monolayer on indium tin oxide (ITO) electrode in a three-electrode photoelectrochemical cell upon illumination in the presence of oxygen generates an intense steady photocurrent as high as 10-20 times that expected from the individual contributions of perylene and CdSe-NCs. The hypersensitization mechanism is discussed on the basis of the energy level diagram of the components.

  16. Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells.

    PubMed

    Jin, Ho; Choi, Sukyung; Velu, Ranganathan; Kim, Sungjee; Lee, Hyo Joong

    2012-03-27

    A multilayer of CdSe quantum dots (QDs) was prepared on the mesoporous surface of a nanoparticulate TiO(2) film by a layer-by-layer (LBL) assembly using the electrostatic interaction of the oppositely charged QD surface for application as a sensitizer in QD-sensitized TiO(2) solar cells. To maximize the absorption of incident light and the generation of excitons by CdSe QDs within a fixed thickness of TiO(2) film, the experimental conditions of QD deposition were optimized by controlling the concentration of salt added into the QD-dissolved solutions and repeating the LBL deposition a few times. A proper concentration of salt was found to be critical in providing a deep penetration of QDs into the mesopore, thus leading to a dense and uniform distribution throughout the whole TiO(2) matrix while anchoring the oppositely charged QDs alternately in a controllable way. A series of post-treatments with (1) CdCl(2), (2) thermal annealing, and (3) ZnS-coating was found to be very critical in improving the overall photovoltaic properties, presumably through a better connection between QDs, effective passivation of QD's surface, and a high impedance of recombination, which were proved by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) experiments. With a proper post-treatment of multilayered QDs as a sensitizer, the overall power conversion efficiency in the CdSe QD-sensitized TiO(2) solar cells could reach 1.9% under standard illumination condition of simulated AM 1.5G (100 mW/cm(2)). © 2012 American Chemical Society

  17. Shell deposition of CdSe nano dots and rods

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Chen, Hsueh Shin; Zhang, Qiang; Shi, Ruixia; Wang, Junpeng; Che, Quande

    2014-08-01

    To investigate the shell deposited kinetics, CdSe quantum dots (QDs) and nanorods (NRs) with a maximum length of 17 nm were fabricated via organic synthesis routes. CdSe with a hexagonal crystal structure (wurtzite) favors epitaxial growth on the {002} surfaces when well-controlled conditions were used. The morphologies and sizes of CdSe samples depended strongly on chemicals and temperature. In the case of 320 °C, CdSe NRs with adjusted length of 7-17 nm were obtained from trioctylphosphine oxide (TOPO) and tetradecylphosphonic acid (TDPA). In contrast, short CdSe NRs (less than 10 nm) were created from octadecylphosphonic acid (ODPA) and trioctylamine (TOA). Spherical CdSe QDs were further fabricated using stearic acid (SA) and TOPO at 300 °C. CdSe cores were coated with Cd0.5Zn0.5S and CdTe shells. Anisotropic growth occurred during shell deposition because CdS shells grown preferentially on the {001} facet of the CdSe core. In the case of CdSe core prepared from TOPO and TDPA, CdSe/Cd0.5Zn0.5S core/shell samples prepared from long CdSe NRs (more than 10 nm) revealed a peanut morphology while the core/shell samples created from short ones (less than 10 nm) exhibited a spherical morphology. All of the CdSe/Cd0.5Zn0.5S core/shell samples revealed a similar length to that of the CdSe cores. This phenomenon was also observed for the core/shell samples fabricated using CdSe NRs prepared by ODPA and TOA. This is ascribed to the well-developed crystal structure of CdSe NRs fabricated using an organic synthesis at high temperature. In contrast, this anisotropic growth did not occur when spherical CdSe QDs prepared from SA and TOPO and the shell (Cd0.5Zn0.5S) coating carried out using SA and TOA. To indicate the shell depositing process, CdSe NRs fabricated using TDPA and TOPO were coated with a CdTe shell. CdTe monomers were deposited on the middle and tip parts of the CdSe NRs to form a tetrapod-like morphology at 220 °C. This is ascribed to the large difference of

  18. Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation.

    PubMed

    Koh, Weon-Kyu; Lee, Jaesoong; Cho, Kyung-Sang; Roh, Young-Geun

    2017-08-31

    We demonstrate optical pumping lasers based on colloidal quantum dots, with a very thin geometry consisting of a ≈20 nm thick film. Obstacles in ultrasmall laser devices come from the limitation of gain materials and the size of cavities for lasing modes, which requires a minimum thickness of the gain media (typically greater than 50-100 nm). Here we introduce dielectric waveguide structures with a high refractive index, in order to reduce the thickness of quantum dot gain media as well as their threshold energy (≈39 % compared to the original gain medium). Finite-difference time-domain simulations show that the modal confinement factor of thinner quantum dot films can be improved by the presence of an adjacent waveguide layer. We also discuss the possible role of dielectric waveguide layers for efficient heat dissipation during optical pumping. Integrating an extremely thin colloidal quantum dot gain medium into optical waveguides is a promising platform for downscaling on-chip photonic integrated devices, as well as investigating extreme interactions between light and matter such as surface plasmon-photon coupling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators.

    PubMed

    Sharma, Manoj; Gungor, Kivanc; Yeltik, Aydan; Olutas, Murat; Guzelturk, Burak; Kelestemur, Yusuf; Erdem, Talha; Delikanli, Savas; McBride, James R; Demir, Hilmi Volkan

    2017-08-01

    Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission

    NASA Astrophysics Data System (ADS)

    Prins, Ferry; Kim, David K.; Cui, Jian; De Leo, Eva; Spiegel, Leo L.; McPeak, Kevin M.; Norris, David J.

    2017-03-01

    We report on a template-stripping method for the direct surface patterning of colloidal quantum-dot thin films to produce highly luminescent structures with feature sizes less than 100 nm. Through the careful design of high quality bulls-eye gratings we can produce strong directional beaming (10{\\deg} divergence) with up to six-fold out-coupling enhancement of spontaneous emission in the surface-normal direction. A transition to narrow single-mode lasing is observed in these same structures at thresholds as low as 120 {\\mu}J/cm2. Furthermore, making use of the size-tunable character of colloidal quantum dots, we demonstrate spectrally selective out-coupling of light from mixed quantum-dot films. Our results provide a straightforward route towards significantly improved optical properties of colloidal quantum-dot assemblies.

  1. Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission

    PubMed Central

    2017-01-01

    We report on a template-stripping method for the direct surface patterning of colloidal quantum-dot thin films to produce highly luminescent structures with feature sizes less than 100 nm. Through the careful design of high quality bull’s-eye gratings we can produce strong directional beaming (10° divergence) with up to 6-fold out-coupling enhancement of spontaneous emission in the surface-normal direction. A transition to narrow single-mode lasing is observed in these same structures at thresholds as low as 120 μJ/cm2. In addition, we demonstrate that these structures can be fabricated on flexible substrates. Finally, making use of the size-tunable character of colloidal quantum dots, we demonstrate spectrally selective out-coupling of light from mixed quantum-dot films. Our results provide a straightforward route toward significantly improved optical properties of colloidal quantum-dot assemblies. PMID:28120610

  2. Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission.

    PubMed

    Prins, Ferry; Kim, David K; Cui, Jian; De Leo, Eva; Spiegel, Leo L; McPeak, Kevin M; Norris, David J

    2017-03-08

    We report on a template-stripping method for the direct surface patterning of colloidal quantum-dot thin films to produce highly luminescent structures with feature sizes less than 100 nm. Through the careful design of high quality bull's-eye gratings we can produce strong directional beaming (10° divergence) with up to 6-fold out-coupling enhancement of spontaneous emission in the surface-normal direction. A transition to narrow single-mode lasing is observed in these same structures at thresholds as low as 120 μJ/cm(2). In addition, we demonstrate that these structures can be fabricated on flexible substrates. Finally, making use of the size-tunable character of colloidal quantum dots, we demonstrate spectrally selective out-coupling of light from mixed quantum-dot films. Our results provide a straightforward route toward significantly improved optical properties of colloidal quantum-dot assemblies.

  3. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots.

    PubMed

    Swarnkar, Abhishek; Chulliyil, Ramya; Ravi, Vikash Kumar; Irfanullah, Mir; Chowdhury, Arindam; Nag, Angshuman

    2015-12-14

    Traditional CdSe-based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90 % PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single-NC and an ensemble are almost identical, ruling out the problem of size-distribution in PL broadening. Eliminating this problem leads to a negligible influence of self-absorption and Förster resonance energy transfer, along with batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm. Also, PL peak positions do not alter with measurement temperature in the range of 25 to 100 °C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90 % of the individual NCs remain mostly emissive (on-time >85 %), without much influence of excitation power.

  4. PbS Colloidal Quantum Dot Photodetectors operating in the near infrared.

    PubMed

    De Iacovo, Andrea; Venettacci, Carlo; Colace, Lorenzo; Scopa, Leonardo; Foglia, Sabrina

    2016-11-25

    Colloidal quantum dots have recently attracted lot of interest in the fabrication of optoelectronic devices due to their unique optical properties and their simple and low cost fabrication. PbS nanocrystals emerged as the most advanced colloidal material for near infrared photodetectors. In this work we report on the fabrication and characterization of PbS colloidal quantum dot photoconductors. In order to make devices suitable for the monolithic integration with silicon electronics, we propose a simple and low cost process for the fabrication of photodetectors and investigate their operation at very low voltage bias. Our photoconductors feature high responsivity and detectivity at 1.3 μm and 1 V bias with maximum values of 30 A/W and 2·10(10) cmHz(1/2)W(-1), respectively. Detectivity close to 10(11) cmHz(1/2)W(-1) has been obtained resorting to bridge sensor readout.

  5. Simultaneous quantification of arginine, alanine, methionine and cysteine amino acids in supplements using a novel bioelectro-nanosensor based on CdSe quantum dot/modified carbon nanotube hollow fiber pencil graphite electrode via Taguchi method.

    PubMed

    Hooshmand, Sara; Es'haghi, Zarrin

    2017-08-30

    A number of four amino acids have been simultaneously determined at CdSe quantum dot-modified/multi-walled carbon nanotube hollow fiber pencil graphite electrode in different bodybuilding supplements. CdSe quantum dots were synthesized and applied to construct a modified carbon nanotube hollow fiber pencil graphite electrode. FT-IR, TEM, XRD and EDAX methods were applied for characterization of the synthesized CdSe QDs. The electro-oxidation of arginine (Arg), alanine (Ala), methionine (Met) and cysteine (Cys) at the surface of the modified electrode was studied. Then the Taguchi's method was applied using MINITAB 17 software to find out the optimum conditions for the amino acids determination. Under the optimized conditions, the differential pulse (DP) voltammetric peak currents of Arg, Ala, Met and Cys increased linearly with their concentrations in the ranges of 0.287-33670μM and detection limits of 0.081, 0.158, 0.094 and 0.116μM were obtained for them, respectively. Satisfactory results were achieved for calibration and validation sets. The prepared modified electrode represents a very good resolution between the voltammetric peaks of the four amino acids which makes it suitable for the detection of each in presence of others in real samples. Copyright © 2017. Published by Elsevier B.V.

  6. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  7. Determination of carrier lifetime and mobility in colloidal quantum dot films via impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Rath, Arup K.; Lasanta, Tania; Bernechea, Maria; Diedenhofen, Silke L.; Konstantatos, Gerasimos

    2014-02-01

    Impedance Spectroscopy (IS) proves to be a powerful tool for the determination of carrier lifetime and majority carrier mobility in colloidal quantum dot films. We employ IS to determine the carrier lifetime in PbS quantum dot Schottky solar cells with Al and we verify the validity of the technique via transient photovoltage. We also present a simple approach based on an RC model that allows the determination of carrier mobility in PbS quantum dot films and we corroborate the results via comparison with space charge limited measurements. In summary, we demonstrate the potential of IS to characterize key-to-photovoltaics optoelectronic properties, carrier lifetime, and mobility, in a facile way.

  8. Photoinduced band filling in strongly confined colloidal PbS quantum dots

    SciTech Connect

    Ullrich, B.; Xi, H.; Wang, J. S.

    2014-06-21

    Increase in continuous wave laser excitation (6 W/cm{sup 2} to 120 W/cm{sup 2}) of colloidal PbS quantum dots in the strongly quantized regime (diameters 2.0 nm and 4.7 nm) deposited on semi-insulating GaAs and glass causes a clear blue shift (0.019 eV and 0.080 eV) of the emission spectra. Proof of the applicability of a dynamic three-dimensional band filling model is the significance of the presented results and demonstrates the effective electronic coupling in quantum dot arrays similar to superlattices. The work also reveals the influence of quantum dot sizes on photo-doping effects.

  9. Photoinduced band filling in strongly confined colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Xi, H.; Wang, J. S.

    2014-06-01

    Increase in continuous wave laser excitation (6 W/cm2 to 120 W/cm2) of colloidal PbS quantum dots in the strongly quantized regime (diameters 2.0 nm and 4.7 nm) deposited on semi-insulating GaAs and glass causes a clear blue shift (0.019 eV and 0.080 eV) of the emission spectra. Proof of the applicability of a dynamic three-dimensional band filling model is the significance of the presented results and demonstrates the effective electronic coupling in quantum dot arrays similar to superlattices. The work also reveals the influence of quantum dot sizes on photo-doping effects.

  10. Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature.

    PubMed

    Bidault, Sébastien; Devilez, Alexis; Maillard, Vincent; Lermusiaux, Laurent; Guigner, Jean-Michel; Bonod, Nicolas; Wenger, Jérôme

    2016-04-26

    Minimizing the luminescence lifetime while maintaining a high emission quantum yield is paramount in optimizing the excitation cross-section, radiative decay rate, and brightness of quantum solid-state light sources, particularly at room temperature, where nonradiative processes can dominate. We demonstrate here that DNA-templated 60 and 80 nm diameter gold nanoparticle dimers, featuring one fluorescent molecule, provide single-photon emission with lifetimes that can fall below 10 ps and typical quantum yields in a 45-70% range. Since these colloidal nanostructures are obtained as a purified aqueous suspension, fluorescence spectroscopy can be performed on both fixed and freely diffusing nanostructures to quantitatively estimate the distributions of decay rate and fluorescence intensity enhancements. These data are in excellent agreement with theoretical calculations and demonstrate that millions of bright fluorescent nanostructures, with radiative lifetimes below 100 ps, can be produced in parallel.

  11. Photoluminescence response of colloidal quantum dots on VO2 film across metal to insulator transition.

    PubMed

    Kuznetsov, Sergey N; Cheremisin, Alexander B; Stefanovich, Genrikh B

    2014-01-01

    We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. 71.30. + h; 73.21.La; 78.47.jd.

  12. Determination of carrier lifetime and mobility in colloidal quantum dot films via impedance spectroscopy

    SciTech Connect

    Rath, Arup K.; Lasanta, Tania; Bernechea, Maria; Diedenhofen, Silke L.; Konstantatos, Gerasimos

    2014-02-10

    Impedance Spectroscopy (IS) proves to be a powerful tool for the determination of carrier lifetime and majority carrier mobility in colloidal quantum dot films. We employ IS to determine the carrier lifetime in PbS quantum dot Schottky solar cells with Al and we verify the validity of the technique via transient photovoltage. We also present a simple approach based on an RC model that allows the determination of carrier mobility in PbS quantum dot films and we corroborate the results via comparison with space charge limited measurements. In summary, we demonstrate the potential of IS to characterize key-to-photovoltaics optoelectronic properties, carrier lifetime, and mobility, in a facile way.

  13. Advances in low-cost infrared imaging using II-VI colloidal quantum dots (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pimpinella, Richard E.; Buurma, Christopher; Ciani, Anthony J.; Grein, Christoph H.; Guyot-Sionnest, Philippe

    2017-02-01

    II-VI colloidal quantum dots (CQDs) have made significant technological advances over the past several years, including the world's first demonstration of MWIR imaging using CQD-based focal plane arrays. The ultra-low costs associated with synthesis and device fabrication, as well as compatibility with wafer-level focal plane array fabrication, make CQDs a very promising infrared sensing technology. In addition to the benefit of cost, CQD infrared imagers are photon detectors, capable of high performance and fast response at elevated operating temperatures. By adjusting the colloidal synthesis, II-VI CQD photodetectors have demonstrated photoresponse from SWIR through LWIR. We will discuss our recent progress in the development of low cost infrared focal plane arrays fabricated using II-VI CQDs.

  14. Sensitization of photoprocesses in colloidal Ag2S quantum dots by dye molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Oleg V.; Kondratenko, Tamara S.; Grevtseva, Irina G.; Smirnov, Mikhail S.; Pokutnyi, Sergey I.

    2016-07-01

    The effect of photosensitization of IR luminescence excitation (1205 nm) of colloidal Ag2S quantum dots (QDs) with average size of 2.5±0.6 nm in gelatin at 600 to 660 nm by molecules of 3,3'-di-(γ-sulfopropyl)-4,4',5,5'-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt (Dye1) and thionine dye (Dye2) was registered. Cis-J-aggregates of Dye1 and cations monomer of Dye2 conjugated with Ag2S QDs take part in this process. The photosensitization of luminescence excitation of colloidal Ag2S QDs was interpreted by resonance nonradiation transfer of electronic excitation energy from cis-J-aggregates of Dye1 and cations of Dye2 to centers of recombination luminescence of Ag2S QDs.

  15. Optical power limiting in ensembles of colloidal Ag{sub 2}S quantum dots

    SciTech Connect

    Ovchinnikov, O V; Smirnov, M S; Perepelitsa, A S; Shatskikh, T S; Shapiro, B I

    2015-12-31

    The effect of power limiting for optical radiation at a wavelength of 660 nm with a pulse duration of 10 ms and operation threshold of 2.2 – 3.1 mJ cm{sup -2} is observed in ensembles of colloidal Ag{sub 2}S quantum dots (QDs). Using the z-scanning method in an open-aperture scheme it is found that the power is limited mainly due to reverse saturable absorption caused by two-photon optical transitions that involve energy levels of Ag{sub 2}S photoluminescence centres, related to structural impurity defects in colloidal Ag{sub 2}S QDs. At the same time, the z-scanning in a closed-aperture scheme demonstrates the formation of a thermal dynamic lens. (nonlinear optical phenomena)

  16. Optical power limiting in ensembles of colloidal Ag2S quantum dots

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, O. V.; Smirnov, M. S.; Perepelitsa, A. S.; Shatskikh, T. S.; Shapiro, B. I.

    2015-12-01

    The effect of power limiting for optical radiation at a wavelength of 660 nm with a pulse duration of 10 ms and operation threshold of 2.2 - 3.1 mJ cm-2 is observed in ensembles of colloidal Ag2S quantum dots (QDs). Using the z-scanning method in an open-aperture scheme it is found that the power is limited mainly due to reverse saturable absorption caused by two-photon optical transitions that involve energy levels of Ag2S photoluminescence centres, related to structural impurity defects in colloidal Ag2S QDs. At the same time, the z-scanning in a closed-aperture scheme demonstrates the formation of a thermal dynamic lens.

  17. In vivo biodegradation of colloidal quantum dots by a freshwater invertebrate, Daphnia magna.

    PubMed

    Kwon, Dongwook; Kim, Min Jung; Park, Chansik; Park, Jaehong; Choi, Kyungho; Yoon, Tae Hyun

    2012-06-15

    Impacts of planktonic invertebrate, Daphnia magna, on the speciation of colloidal quantum dots (QD) were investigated using fluorescence spectromicroscopic technique. Well-dispersed (GA/TOPO)QD were prepared by forming a supramolecular assembly of hydrophobic (TOPO)QD with biomacromolecules (i.e., Gum Arabic, GA). Biological degradation of this nanomaterial was monitored by fluorescence spectromicroscopic methods. Our study confirmed the major uptake pathway of manufactured nanomaterials and in vivo biodegradation processes in a well-known toxicity test organism, D. magna. In addition, we also found that D. magna can induce significant deterioration of aquatic media by releasing fragments of partially degraded QD colloids. These biological processes may significantly change the predicted toxicities of nanomaterials in aquatic environments. Thus, we propose that the impacts of aquatic living organisms on the environmental fate of manufactured nanomaterials (MNs) should be carefully taken into account when assessing the risk of MNs to the environment and human health.

  18. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.

    PubMed

    Schimpf, Alina M; Thakkar, Niket; Gunthardt, Carolyn E; Masiello, David J; Gamelin, Daniel R

    2014-01-28

    Nanomaterials exhibiting plasmonic optical responses are impacting sensing, information processing, catalysis, solar, and photonics technologies. Recent advances have expanded the portfolio of plasmonic nanostructures into doped semiconductor nanocrystals, which allow dynamic manipulation of carrier densities. Once interpreted as intraband single-electron transitions, the infrared absorption of doped semiconductor nanocrystals is now commonly attributed to localized surface plasmon resonances and analyzed using the classical Drude model to determine carrier densities. Here, we show that the experimental plasmon resonance energies of photodoped ZnO nanocrystals with controlled sizes and carrier densities diverge from classical Drude model predictions at small sizes, revealing quantum plasmons in these nanocrystals. A Lorentz oscillator model more adequately describes the data and illustrates a closer link between plasmon resonances and single-electron transitions in semiconductors than in metals, highlighting a fundamental contrast between these two classes of plasmonic materials.

  19. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion.

    PubMed

    Wu, Kaifeng; Lian, Tianquan

    2016-07-11

    Solar energy conversion, particularly solar-driven chemical fuel formation, has been intensely studied in the past decades as a potential approach for renewable energy generation. Efficient solar-to-fuel conversion requires artificial photosynthetic systems with strong light absorption, long-lived charge separation and efficient catalysis. Colloidal quantum confined nanoheterostructures have emerged as promising materials for this application because of the ability to tailor their properties through size, shape and composition. In particular, colloidal one-dimensional (1D) semiconductor nanorods (NRs) offer the opportunity to simultaneously maintain quantum confinement in radial dimensions for tunable light absorptions and bulk like carrier transport in the axial direction for long-distance charge separations. In addition, the versatile chemistry of colloidal NRs enables the formation of semiconductor heterojunctions (such as CdSe/CdS dot-in-rod NRs) to separate photogenerated electron-hole pairs and deposition of metallic domains to accept charges and catalyze redox reactions. In this review, we summarize research progress on colloidal NR heterostructures and their applications for solar energy conversion, emphasizing mechanistic insights into the working principle of these systems gained from spectroscopic studies. Following a brief overview of synthesis of various NRs and heterostructures, we introduce their electronic structures and dynamics of exciton and carrier transport and interfacial transfer. We discuss how these exciton and carrier dynamics are controlled by their structures and provide key mechanistic understanding on their photocatalytic performance, including the photo-reduction of a redox mediator (methyl viologen) and light driven H2 generation. We discuss the solar-driven H2 generation mechanism, key efficiency limiting steps, and potential approaches for rational improvement in semiconductor NR/metal heterostructures (such as Pt tipped Cd

  20. Colloidal QDs-polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.